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Abstract 

Filtration of Complex Suspensions Using Nanofiltration and 
Reverse Osmosis Membranes: Foulant-Foulant and Foulant­

Membrane Interactions 

by 

Alison Eleanore Contreras 

Membrane filtration is a promising advanced treatment method that has the 

technological capability to treat waters containing contaminants that typically 

escape traditional water treatment methods, including trace micro-pollutants as 

well as high salt concentrations. The accurate prediction of nanofiltration and 

reverse osmosis membrane performance in industrial applications is dependent 

upon understanding the fouling behavior of representative feed solutions. 

Combining conventional crossflow filtration experiments and characterization of 

foulant-foulant and foulant-membrane interactions, three mechanisms involved in 

combined fouling of organic and inorganic colloidal foulants are identified: 

increased hydraulic resistance of the mixed cake layer structure, hindered foulant 

diffusion due to interactions between solute concentration polarization layers, and 

changes in colloid and membrane surface properties due to organic adsorption. A 

range of typical organic foulants that exhibited different interactions in the 

membrane system were studied in combination with inorganic silica on low and 

high salt-rejecting membranes. Autopsying of the fouled membrane using 
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transmission electron microscopy (TEM) helped identify combined fouling layer 

structure. Direct organic adsorption of BSA onto inorganic colloids was shown to 

cause the greatest synergistic fouling through creation of an aggregated fouling 

layer structure. A stratified, active salt-rejecting layer of natural organic matter 

minimizes cake enhanced osmotic pressure (CEOP) and reduces fouling. The 

presence of divalent ions can lead to the creation of salt concentrating layers by 

causing aggregation of alginate molecules and enabling CEOP. 

The effect of membrane surface chemistry on adsorptive fouling by organics 

was studied using self-assembled monolayers (SAMs) with different ending 

functionalities. Surfaces were characterized by hydrophobicity and surface free 

energy incorporating van der Waals and Lewis acid-base interactions. Acid-base 

interactions were dominant for all model membrane surfaces tested and total 

interfacial energies predicted natural organic matter and polysaccharide adsorption, 

but do not account for protein adsorption. Specific interactions, such as hydrogen 

bonding and electrostatic interaction between specific functionalities, playa more 

important role than non-specific electrostatic and hydrophobic interactions in 

adsorption of and irreversible fouling by proteins. Therefore, surface modifications 

of NF and RO membranes that minimize -COOH and -NHz as well as other charged 

sites may be an effective approach to develop fouling resistant membranes. 
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Chapter 1 

Introduction 

Increased development in regions with limited freshwater resources has led 

to necessary development of drinking water treatment technologies that treat non­

traditional water sources. Membrane filtration is a promising advanced treatment 

method that has the technological capability to treat waters containing 

contaminants that typically escape traditional water treatment methods, including 

trace micro-pollutants and salts. However, the high operational costs associated 

with high pressures necessary to counterbalance decreased productivity as a result 

of membrane fouling remains the largest barrier to its widespread use. A better 

understanding of the mechanisms responsible for membrane fouling is necessary 

for developing more effective pre-treatment steps and chemical cleaning protocols 

as well as developing more fouling resistant membranes. 
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Most previous studies on membrane fouling have focused only on a single, well 

characterized foulant of homogenous physico-chemical properties (referred to in this 

paper as single fouling)[l, 2]. One marked limitation in applying the theoretical and 

experimental results obtained from these studies to water and wastewater filtration 

systems is that fouling in these systems is almost always caused by more than one type of 

contaminant with various particle/molecular sizes and surface characteristics, most 

commonly both colloidal materials and dissolved organic macromolecules, e.g., natural 

organic matter (NOM) and soluble microbial products. Previous studies on filtration of 

complex solutions (i.e., solutions containing both dissolved organic matter and 

colloids) have shown conflicting results, depending on the foulant used and the salt 

rejection of the membrane studied. The first part of this thesis focuses on 

understanding mechanistically the fouling behaviors of both high (reverse osmosis) 

and low (nanofiltration) salt-rejecting membranes that occur during filtration of a 

complex solution. In this study we explore not only the interactions between 

foulants, but also the interactions between the foul ants and the membrane surface. 

The second part of this thesis develops as the importance of the interactions 

between the membrane surface and the foulants emerges. Different theories have 

been applied to explain the membrane fouling behavior as a result of organic 

adsorption onto the membrane surface due to hydrophobic, entropic, and 

electrostatic interactions, but there is a lack in consistency in terms of the 

interactions involved and the goal of predicting fouling behavior based on foulant 

and membrane surface properties remains elusive. In the second part of this thesis, 
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the impact of specific membrane surface chemical functionalities as well as the 

molecular characteristics of organic foulants on adsorptive fouling is investigated 

using novel experimental techniques that allow molecular level characterization of 

the adsorption process. The adsorptive behavior is analyzed in terms of interfacial 

free energies. Additionally, different cleaning protocols are explored to understand 

mechanistically the effectiveness of various cleaning agents in eliminating fouling 

due to organic adsorption. 

1.1. Organization of Thesis 

The thesis consists of eight chapters. Chapter 2 presents a literature review 

on membrane chemistry and formation, factors that affect membrane fouling, both 

empirical and predictive membrane flux decline models, and organic adsorption. 

Chapter 3 contains a published journal article produced from this PhD. study 

entitled Combined Fouling of Nanofiltration Membranes: Mechanisms and Effect of 

Organic Matter (Journal of Membrane Science, Volume 327, Issues 1-2, 5 February 

2009, Pages 87-95). Chapter 4 contains a manuscript in preparation for submission 

to Journal of Membrane Science concerning combined fouling mechanisms of both 

nanofiltration and reverse osmosis membranes, entitled Comparing Structure and 

Resistance of Combined Organic and Colloidal Fouling Layers Formed During 

Nanofiltration and Reverse Osmosis. Chapter 5 consists of a manuscript that is 

currently under review for publication at Environmental Science and Technology 

entitled Studying the Impact of Membrane Surface Chemistry on Adsorption and 
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Cleaning of Organic Foulants using QCM-D. It explores the effect of membrane 

surface chemistry on adsorption of common organic foulants in water and 

wastewater. Chapter 6, a manuscript in preparation for submission to Journal of 

Membrane Science entitled, Surface and Interfacial Free Energy Analysis for 

Characterizing Organic Foulant Adsorption on Membrane Surface Functionalities 

explores a more in-depth approach to predicting organic adsorption onto 

functionalized surfaces using a thermo-dynamic approach. Finally, in Chapter 7 a 

protocol for developing fully and semi-aromatic membrane surfaces mounted on a 

solid substrate for creating specialized membrane surface chemistry for use in a 

variety of instrumental techniques where membranes are not currently used is 

explored. A conclusion and summary of the work is included in Chapter 8. A list of 

nomenclature (including Roman and Greek characters, as well as abbreviations) 

used in the thesis is included after the References. Additional appendices are 

references that include detailed characterization of model foulants used in both 

filtration and adsorption experiments (Appendix A), the statistical tools used 

(Appendix B), information on chemical structures of the alkanethiol self-assembled 

monolayers (SAMs) (Appendix C), and finally, the abstract ofa co-authored paper on 

modeling of combined fouling during dead-end filtration published in Langmuir 

2009, 25 (14), 7815-7827, entitled, Fundamental Mechanisms of Three-Component 

Combined Fouling with Experimental Verification (Appendix 0). 
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Chapter 2 

Literature Review 

Membrane filtration is a promising water treatment technology that converts 

natural and waste waters into clean water using pressure driven flow across a 

selective barrier. This technology has practical application in drinking water 

purification, desalination, wastewater recycling, water softening and the food 

processing industry. The separation process purifies water by allowing water 

molecules to pass through the membrane barrier while retaining suspended solids 

and other substances on the membrane surface. Different types of membranes may 

be employed for liquid separation applications, including microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RG) membranes, 

depending on both the quality of source water used and permeate water desired. 

The pore-size for each membrane type vary distinctly, from MF membranes, 

which have the largest pore-size that allows for the separation of only the largest 
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contaminants, to RO membranes, which do not have physical pores and only filter 

through diffusion. RO membranes can exclude all substances except for water 

molecules, making it a useful technology for desalination. Figure 2.1 shows 

specifically what size range of foulant each membrane can filter and example 

foulants within that size range. 

Figure 2.1 - Separation size range of different membrane technologies. 
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Synthetic membranes used for drinking water treatment can be assembled of 

both organic and inorganic materials. Organic membranes account for the majority 

of membranes used (including those in this study) and are typically assembled from 
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a polymer base, while inorganic membranes can be made of materials such as 

zeolite, aluminum oxide, or titanium oxide. Membranes can also vary in cross­

sectional structure, from symmetric to asymmetric to thin-film composite 

structures, depending on the method used to cast the membrane. Membrane 

material and casting method is not chosen arbitrarily but is based on specific factors 

of the given application and feed water solution characteristics [3]. In thin-film 

composite NF and RO membranes, a thin separation layer of polyamide is formed on 

a structural support layer (polysulfone on non-woven support, for example) in 

order to provide high rejection of salt ions and dissolved materials in the thin 

separation layer while still being able to withstand high operating pressures with 

the structural support layer. 

MF and UF configurations require minimal pretreatment steps due to their 

large pore sizes. However, due to increased rejection and consequently increased 

fouling potential, NF and RO membranes require more involved pretreatment steps. 

Generally, as membrane rejection increases an increase in operating pressure is also 

required which results in higher operating costs. The looser MF and UF membranes 

filter contaminants through size exclusion while tighter membranes (NF and RO) 

also employ Donnan exclusion (separation based on electrostatic repulsion). 

In order to minimize operating costs and maximize clean water production, 

fouling can be minimized through modification to system conditions. Feed solution 

composition (Le. pH, ionic strength, salt and organic composition, temperature), 

membrane unit geometry, operating pressure, and membrane characteristics (Le. 
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surface roughness, zeta potential, hydrophobicity) can all affect the fouling 

proclivity of a membrane. 

2.1. Composition of Nanofiltration and Reverse Osmosis 

Membranes 

Modern reverse osmosis and nanofiltration membranes are predominately 

thin-film composite (TFC) membranes, consisting of a bi-Iayer film formed by a two­

step process on a re-enforced fabric [4]. The bi-Iayer is usually a micro-porous 

structural support layer coated with an ultra thin barrier layer of polymeric 

composition that can be optimized for the desired flux and rejection properties 

(seen in Figure 2.2). The ultrathin barrier layer is the thinnest, yet most selective 

layer since it is in direct contact with the bulk solution. The micro porous layer 

primarily provides the foundation and mechanical stability of the barrier layer 

during operational high pressures and the reinforcing fabric is also for mechanical 

stability. 
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Figure 2.2 - Schematic of a thin-film composite (TFC) membrane and TEM images of 

the membrane layer[ 4]. 
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2.1.1. Microporous support layer. 

Not shown because 
too big for TEM 

The microporous support layer is typically made of polysulfone, although 

other polymers such as polycarbonate and poly(phenylene oxide) are also used, and 

the morphology and chemistry of this layer may influence the formation of the 
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ultrathin barrier layer. Polysulfone is usually favored for its low cost and strong 

stability against thermal, mechanical, chemical, and bacterial attack which may 

occur during filtration [4]. Key factors that control the characteristics of the support 

layer include choices of solvent, composition of the polymer (including 

concentration, MW and any additives), and the casting conditions, such as 

temperature and film thickness [5]. TFC membrane support layers are typically 

formed through a phase inversion process. The dissolved polymer composing the 

microporous support layer is spread evenly over the reinforcing fabric with a 

casting blade and immersed in de-ionized water to induce "phase inversion" - or 

precipitation into the fabric. The layer is left to soak in water for at least 30 seconds 

in order to entirely rinse the solvent and then removed, to lightly dry excess water 

and allow the rest of the moisture to adsorb for preparation of the interfacial 

polymerization process. 

2.1.2. Ultrathin barrier layer. 

The ultrathin barrier layer can be formed through several methods. The thin 

film can be cast separately and laminated to the micro porous support, the support 

layer can be dip-coated into a solution of a polymer and dried in place, or a reactive 

monomer solution can be dip-coated onto the support layer and post-cured with 

heat or irradiation [4]. Additionally, another method called interfacial 

polymerization involves an in situ polycondensation reaction onto the micro porous 
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support layer. At the micro porous layer interface, the reaction occurs by bringing 

two immiscible solvents, amine monomers in aqueous solution and acid chloride 

monomers in an apolar solvent, into contact. Once in contact, these monomers 

partition across the interface to polymerize and form a polyamide layer anywhere 

from 50 to 100 nanometers thick. Due to the low solubility of acid chlorides in 

water, polymerization primarily occurs in the organic phase and therefore changes 

to the morphology of the resulting polyamide can be best controlled by altering the 

solubility and/or diffusivity of the amine. An example of chemistry typical in an 

interfacial polymerization reaction is seen in Figure 2.3. 



Figure 2.3 - Example chemistry of an interfacial polymerization reaction, where a 

fully aromatic, highly cross-linked polyamide is formed due to the triple -COCI 

bonds [6] 
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There are several other factors that affect the interfacial polymerization 

reaction. The concentration of the monomer as well as the chosen organic solvent 

and its respective properties will govern the amine monomer solubility and 

diffusivity. Reaction conditions, such as temperature, can affect solvent viscosity 

which in turn affects diffusivity of the monomers. Additives such as 

dimethylformamide (DMF), dimethyl sulfoxide (DMSO), NaOH, dimethyl piperazine, 

and triethanolamine (TEA) can also affect monomer solubility and diffusivity [7]. 

Heat curing may also be a necessary step to help stabilize the thin films, remove 



residual organic solvent, and promote additional cross-linking in the polyamide 

layer [4]. 

2.1.3. Composition of commercial membranes. 

13 

An analysis of commercially available composite membranes with respect to 

their chemistries is made difficult due to the patents and proprietary laws 

protecting the membrane manufacturers and so consequently, very little 

information about their composition is known [4]. In a few recent studies, however, 

the physicochemical properties and elemental composition of commonly used 

commercial membranes have been dissected using a combination of analytical 

methods, including x-ray photo-electron spectroscopy (XPS), attenuated total 

reflection Fourier transform infared spectroscopy (ATR-FTIR), atomic force 

microscopy (AFM), transmission electron microscopy (TEM), and contact angle and 

streaming zeta potential measurements [6, 8, 9]. These studies were also able to 

differentiate between membranes with and without surface coatings, which are 

often added to enhance separation capabilities [4]. 

NF90 and NF270 (Dow FilmTec, Minneapolis, MN), high and low salt 

rejecting membranes, respectively, were among the nanofiltration membranes 

analyzed. LFC1 (Hydranautics, Oceanside, CA) was included in the analysis of 

reverse osmosis membranes. The NF90 membrane was determined to be an 

uncoated, fully aromatic polyamide membrane formed by the reaction between 1,3-
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benzene-diamine (m-phenylenediamine) and trimesoyl chloride (1,3,5-

benzentricarbonyl chloride) [9]. The LFC1 membrane was determined to be made 

from the same chemistry, but was coated with a polyvinyl alcohol (PV A) layer to 

create a more ion selective barrier layer. The NF270 was determined to be an 

uncoated semi-aromatic poly(piperazinamide) membrane formed by piperazine and 

trimesoyl chloride [9]. The knowledge of the chemical composition of commercially 

available membrane is useful for synthesizing similar surfaces. 

2.2. Membrane Fouling 

Membrane fouling can be reversible or irreversible. The original permeate 

flux of a membrane fouled from reversible fouling can be recovered after system 

pressure is released and the necessary cleaning protocol (such as backwashing or 

chemical cleaning) has been performed. Irreversible fouling causes a permanent 

decrease in membrane productivity through decreased permeate flux even after 

cleaning has been performed. Irreversible fouling will decrease the integrity of the 

membrane by reducing its lifetime and productivity. 

In order to predict membrane permeate flux decline, a thorough 

understanding of all contributing fouling mechanisms is required. Membrane 

fouling occurs as a result of foulants being brought to and accumulating on the 

membrane surface. Mechanisms leading to flux decline for loose membranes, such 
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as MF and UF, include pore blocking (when foulants cover membrane pore surfaces) 

and pore constriction (when foulants reduce pore size by clogging pores). 

Concentration polarization and cakejgellayer formation are fouling mechanisms of 

all types of membranes. Fouling during NF and RO is often assumed to occur only on 

the membrane surface due to the tightness of NF and RO membranes and relative 

size of the foulants compared to membrane pore size [10]. 

2.2.1. Typical natural and wastewater foulants. 

Feed streams treated by membrane filtration can contain a variety of 

suspended and dissolved substances depending on the geographical region and 

source of the water being treated. Typical foulants can be divided into four main 

categories: suspended inorganic colloids, dissolved organic macromolecules, 

inorganic precipitates, and bio-foulants (including extracellular polymeric 

substances or EPS). Colloids are ubiquitous in natural and waste waters and can 

vary in size from a few nanometers to a few micrometers. Aquatic inorganic colloids 

consist of clay minerals, colloidal silica, silicates, as well as iron, aluminum, and 

manganese oxides [11]. Natural organic matter (NOM) and humic substances are 

major organic foulants present in natural surface waters, while proteins and 

polysaccharides are found in larger concentrations in waste waters [12]. 

Additionally, emerging organic micro-pollutants are present at very low 

concentrations in waste waters (endocrine disrupting compounds CEDCs) and 
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pharmaceutically active compounds (PhACs)) yet are receiving much attention due 

to their potential long-term health effects [13, 14]. Scaling of membranes is caused 

by inorganic components, such as CaC03 and CaS04, which complicate fouling by 

precipitating out of the feed stream and crystallizing on the membrane surface, 

forming hard mineral deposits [15]. Bio-fouling, the least well understood type of 

fouling for nanofiltration and reverse osmosis membranes, is the deposition or 

growth of microorganisms on the membrane surface that results in flux decline [16]. 

Fouling of solutions containing multiple types of foulants is another situation that is 

poorly understood. Since individually their fouling mechanisms have been 

relatively well characterized, this study focuses on the fouling caused by suspended 

colloids and dissolved organic macromolecules in combination. 

2.2.2. Factors affecting membrane fouling. 

Fouling behavior is mainly influenced by three factors; hydrodynamic 

conditions at the membrane surface, membrane surface characteristics, and feed 

solution characteristics (including foulant characteristics and solution conditions). 

2.2.2.1. Hydrodynamic conditions. 

Filter geometry is very important during membrane processes, as 

hydrodynamic conditions determine particle accumulation and fouling layer 
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formation on the membrane surface, which in turn affects resistance and flux 

decline. Spiral wound, hollow fiber, plate and frame set-ups are all used in 

industrial applications. Incorporating spacers into membrane systems (such as the 

spiral wound set-up) is one way to enhance surface hydrodynamics. While all three 

configurations can include cross-flow dynamics, spiral wound and hollow fiber 

membranes have the additional advantage of maximizing membrane filtration area 

through radial filtration through a tube-like membrane. Seen in Figure 2.4, a cross-

flow configuration utilizes tangential dynamics along the surface of the membrane, 

while a tldead-end" configuration only allows for flow through the membrane 

(perpendicular to the membrane). 

Figure 2.4 - Comparison of cross-flow vs. dead-end filtration. 
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The advantage of cross-flow filtration over dead-end filtration is that 

accumulation of particles on the membrane surface is reduced [17]. Cross-flow 

filtration creates shear effects on the surface of the membrane that can help 

alleviate the formation of thick fouling layers. In cross-flow configurations, the 

retentate (concentrated water retained by the membrane) can also be recycled back 

to the beginning to be filtered again, whereas in dead-end filtration the fluid 

exposed to filtration is limited by permeate flux. 

In addition to cross flow rate, operating pressure and permeate flux can also 

have an impact on fouling behavior [2, 18, 19]. Higher operating pressures result in 

higher convective transport of foulants, increasing permeate flux through the 

membrane [2]. However, high operating pressures also has the adverse effect of 

creating higher permeation drag force and more compressed fouling layers that may 

counteract the advantage the higher permeate flux produces [18]. 

2.2.2.2. Membrane characteristics. 

Nanofiltration membranes are usually characterized by hydrophobicity, 

surface roughness, surface charge, molecular weight cut-off (MWCO), permeability, 

and porosity of the thin outermost layer [10, 20, 21]. The hydrophobicity of 

nanofiltration membranes is considered one of the most influential factors in 

membrane fouling [21]. A large portion of fouling is thought to be caused by organic 

compounds that adsorb on the membrane surface via hydrophobic interactions. If 

18 
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the membrane surface is charged, electrostatic attraction or repulsion forces 

between charged foulant components and the membrane surface can also influence 

the degree of fouling [19]. 

Colloidal fouling has been shown in most studies to correlate to the 

roughness of the membrane surface [22, 23]. NF and RO membranes exhibit ridge­

and-valley structures on the surface, which could lead to preferential accumulation 

of small colloids into the valleys (where there is the least resistance) causing a more 

severe flux decline than smooth membranes [24]. Surface roughness also affects 

fouling layer morphology, with smooth membranes producing a denser fouling layer 

than rough membranes, where fouling layers are more open [25]. Membrane 

permeability can govern flux decline by allowing a faster flow through the 

membrane. This increased permeate flux rate brings more foulants to the 

membrane surface, resulting in faster cake layer growth [10]. 

2.2.2.3. Feed solution characteristics. 

Fouling behavior is often dependent on the type of foulant being filtered as 

characterized by its surface charge, molecular weight or particle size, or 

hydrophobicity. Solution conditions (i.e. pH, salt ion type, and ionic strength) can 

affect foulant characteristics, membrane surface properties, and how foulants 

interact with each other and the membrane surface. Fouling is the greatest during 

filtration of solutions that have conditions in which foulant molecules are the least 



stable and exhibit the weakest attractive interactions [26, 27]. For example, 

hydrophilic uncharged dissolved foulants exhibited the least fouling at neutral pH, 

while negatively charged components perform better at high pH [21]. Additionally, 

organic fouling experiments performed with bovine serum albumin (BSA) on 

reverse osmosis membranes show that fouling of solutions with a pH close to BSA's 

iso-electric point (IEP) created the greatest fouling flux decline due to aggregation 

caused by weakened electrostatic repulsion of the BSA molecules [27]. High ionic 

strength solutions enhance double layer compression and charge-shielding effects, 

leading to weaker electrostatic repulsion, also creating more rapid fouling 

conditions [27]. Solution chemistry can also affect the charge and configuration of 

organic molecules, such as natural organic matter (NOM). Calcium ions have been 

shown to significantly enhance fouling in the presence of NOM by forming 

complexes which result in highly compacted fouling layers and thus more severe 

flux decline [2, 26, 28]. 

The strength of the intermolecular adhesion forces between bulk foulants 

and the membrane surface has been shown to control the rate of fouling [29]. 

Furthermore, the strength of the foulant-foulant interactions also plays a key role in 

determining the rate and extent of organic fouling [30]. In a study by Lee and 

Elimelech (2006) [30], it was found that stronger intermolecular adhesion forces 

between organic foulants existed under conditions of low pH, high ionic strength 

and in the presence of calcium ions. 

20 
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2.3. Single Foulant Filtration 

Flux of clean water (m3/m2·s), Vo, through a membrane can be directly 

related to applied pressure across a membrane through Darcy's law: 

M 
v =L M=-­orR 

J1 /II 

Equation 2.1 

where Lp is the permeability of the membrane (m/s·Pa), b.P is the trans-membrane 

pressure (Pa), J1 is the solution viscosity (Pa·s), and Rm is the hydraulic resistance 

due to the membrane (m-I). As long as clean water is being filtered, the relationship 

between flux and applied pressure will remain linear. In the presence of solutes 

(either salt ions and/or foulants), additional layers of resistance will form at the 

membrane surface as a result of the rejection of these constituents. During these 

conditions, the resistance-in-series model expresses membrane permeate flux, vw, 

as: 

Equation 2.2 

where Ll1Tm is the change in osmotic pressure across the membrane (Pa) due to 

rejection increasing the concentration of salt ions and Rep and Rf are the hydraulic 



resistances due to the foulant concentration polarization (CP) layers (of both salt 

ions and foulant particles) and the fouling layer (m- l ), respectively. 

Concentration polarization is the phenomenon in which the solute or particle 

concentration in the vicinity of the membrane surface is higher than that in the bulk 

[3]. Concentration polarization is a form of reversible fouling, disappearing as soon 

as the system pressure is released, and is determined by three transport 

mechanisms. These mechanisms include: transport to the membrane surface by 

convective permeate flow, back transport away from the membrane surface by 

diffusion, and transport along the membrane surface as convective tangential flow 

[3]. Back transport through diffusion incorporates Brownian diffusion, shear-

induced diffusion, and/or inertial lift (for particles « 111m, shear-induced diffusion 

and inertial lift are negligible) [1]. Solute transport within the CP layer is often 

described with the convective diffusion equation: 

ac +v.VC-V(DVC)=O 
at Equation 2.3 

where D is the back diffusion coefficient, v is the permeate flow velocity and 

C is the concentration of the solute. In the presence of a complex suspension, the 

diffusion term may be completely different from that when a single non-interacting 

foulant is present due to solute-solute interactions. 

22 
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2.3.1. Colloidal fouling. 

The fouling layer formed at the membrane surface during colloid filtration is 

commonly called a cake layer. Two approaches have been used to theoretically 

describe the formation of a cake layer. In the thermodynamic approach, or phase­

transition model [31], concentration polarization transforms into a cake phase only 

after a certain critical concentration at the membrane surface is exceeded, 

depending on the pressure of the system and size of particle filtered [32]. This 

approach simplifies surface interactions [33] and the effect of physical chemical 

properties of the colloids and membrane surface by assuming that once the critical 

concentration is reached, all particles transported to the membrane surface deposit. 

The other approach, a particle adhesion model, contends that the amount of 

particles that will deposit on the membrane surface is determined by a particle 

adhesion probability that considers surface roughness and particle size [34]. The 

major limitations of this model include the absence of particle or surface 

interactions during the calculation of particle adhesion probability, concentration 

polarization effects, and back transport mechanisms. Previous studies have clearly 

shown that fouling layer formation and membrane flux decline strongly depend on 

the interactions between the particle and membrane surface [29, 30]. 

Resistance attributed to the colloidal cake layer eRe) is calculated through the 

equation: 



24 

Equation 2.4 

where i(. is the specific resistance of the colloidal cake layer, mp is the mass of 

particles deposited on the membrane, and Am is the membrane area. The specific 

resistance can be approximated using the properties of spherical particles through 

the Carman-Kozeny equation [35], 

R = 180,u(l-&) 
(' ppd~&3 

Equation 2.5 

where E is the porosity of the cake layer, pp is the density of the particles 

(kg/m3), and dp is the particle diameter (m) [35]. This model assumes a 

hydrodynamic diameter and the empirical condition of almost touching mono-

dispersed, incompressible spheres. The effect of neighboring particles is considered 

in Happel's cell model, which allocates fluid within a mono-dispersed cake layer to 

individual solid spheres located in a concentric spherical cell consisting of the 

sphere and a fluid envelope, on the surface of which tangential stress is nullified 

[36]. Neither model accurately represents a complex solution with a distribution of 

particles of different surface characteristics. 



2.3.2. Organic fouling. 

The fouling layer formed by organic macromolecules is often referred to as a 

gel layer. Complications arise when modeling gel layers since in addition to 

convective and diffusive mechanisms, adsorption onto the membrane surface is also 

involved. Consequently, gel layer formation is much less understood and models 

predicting flux behavior are mostly empirical or semi-empirical [37, 38]. Pore 

blocking and pore constriction are also organic fouling mechanisms that only 

contribute to flux decline during MF and UF [38, 39]. 

2.4. Filtration of Complex Solutions 

One marked limitation in applying the theoretical and experimental results 

obtained from studies involving one or two foulants to full-scale water and wastewater 

filtration systems is that fouling in these systems is almost always caused by more than 

one type of foulant with various particle sizes and surface characteristics, most 

commonly both colloidal materials and dissolved organic macromolecules, e.g., natural 

organic matter (NOM) and soluble microbial products. Several studies have identified 

that poly-dispersed suspensions form cake layer structures with resistances different than 

mono-dispersed suspensions and that interactions that occur between foulants can be 

correlated to flux decline behavior [30, 40-43]. There exist several relevant 

experimental and modeling studies that seek to better understand the fouling 

25 



behavior during filtration of complex suspensions. Here, a complex suspension is 

defined as a solution containing multiple types of foulants of different physico­

chemical properties (either size or surface characteristics). 

2.4.1. Dual component solutions. 

The presence of a cake layer on the membrane surface can also create 

another fouling mechanism that contributes to an increased flux decline when 

additional solutes, such as salt ions, are present. The diffusive tortuousity caused by 

the porosity of a cake layer can hinder the back diffusion of the rejected salt ions, 

enhancing the concentration polarization of the ions and (through Equation 2.2) 

decreasing the permeate flux [44, 45]. This effect is called cake-enhanced 

concentration polarization (CECP) or cake-enhanced osmotic pressure (CEOP) and 

is observable during filtration by a decrease in salt rejection over time as salt 

concentration at the membrane surface increases. CECP is verified elsewhere [28] 

yet is only a significant mechanism when the salt rejection of the membrane is 

relatively high (== 80%) [44]. 

26 
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2.4.2. Triple component solutions. 

2.4.2.1. Experimental studies. 

Experimental studies observing the combined fouling effect of colloids and 

organic macromolecules on NF and RO membranes are limited in number and 

scope. Additionally, conflicting results have been observed. In Lee et al. (2005) 

[28], a combined solution of silica colloids and natural organic matter (NOM) was 

filtered under different salt conditions on a high salt-rejecting NF membrane. Flux 

declines of the combined fouling experiments were compared to the additive sums 

of the individual (either colloid or NOM in solution alone) flux. Combined flux is 

termed "synergistic" if it is greater than the predicted sum and "reduced" if it is less 

than the predicted sum. Under several salt conditions - including differing 

concentrations of NaCI and the presence and absence of CaCh - combined fouling 

experiments show a faster flux decline initially, but a lower flux decline in the latter 

stages of fouling compared to that predicted by the sum of the individual 

components. This reduced fouling during combined filtration compared to the 

additive sum was determined to be from a diminished effect of cake-enhanced 

concentration polarization (CECP). In combined solutions containing Ca2+, the 

reduction is attributed to reduced NOM-calcium complexation due to competition 

between colloidal particles and NOM molecules for calcium ions. 

In a similar study done by Li et al. (2006) [46], solutions containing both 

silica colloids and Suwannee River humic acid (SRHA) were filtered using a low salt-
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rejecting NF membrane. Using the same comparison described earlier, the 

combined fouling experiments this time revealed a synergistic fouling effect present 

during the entire length of the fouling experiments. Because these experiments 

were performed on a low salt-rejecting membrane, the effect of CECP was not 

significant and could not be credited as the combined fouling mechanism. Instead, 

the synergistic behavior was attributed to the hindered back diffusion of the 

foulants caused by the interaction between the organic and colloid, resulting in a 

more substantial deposition on the membrane surface. Common to both studies is 

the observation that combined fouling cannot be predicted from fouling by individual 

foulants alone. 

2.4.2.2. Modeling studies. 

Several mathematical models have attempted to predict the flux decline of 

poly-disperse solutions. A semi-empirical model developed by Dharmappa et al. 

(1992) [43] predicts the fouling of MF and UF membranes during filtration of a 

poly-dispersed colloidal suspension by assuming that particle accumulation on the 

membrane surface is governed by deposition and re-suspension of the particles and 

using mass transport and mass balance equations. Limitations of this model which 

would prevent its use in modeling NF and RO processes include assumptions of a 

completely mixed layer (which is likely not the case for all of filtration), incomplete 

incorporation of back transport mechanisms, omission of the concentration 



polarization effect, and the necessity of fitting data due to the empirical nature of the 

model 
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A more advanced approach combines the classical filtration theory with the 

concept of a particle cut-off diameter (under which particles deposit on the 

membrane) to predict filter cake thickness as a function of time [41]. This approach 

assumes an incompressible cake of discrete layers, stratified horizontally by average 

particle size, with the layer consisting of the greatest particle size adjacent to the 

membrane and the lowest in the outermost layer. The model predicts that as trans­

membrane pressure is increased, the deposition of smaller particles increases 

average specific cake resistance. An analytical method by Kim and Ng (2007) 

verifies this phenomena by showing that a normal distribution of particle sizes will 

always exhibit a fouling layer with greater cake resistance (as compared to that of a 

log-normal distribution) due to the larger number of smaller particles in the normal 

distribution [47]. 

A predictive model by Baruah et al. [48] anticipates that in a poly-dispersed 

suspension of colloids and macromolecules flux will be limited by the particle size 

causing the lowest permeate flux. Using this determined flux, the concentration of 

each species in the filter cake is back-calculated out to determine the equilibrium 

concentrations at the membrane surface. Packing densities are explored based on 

known particle sizes until packing constraints are satisfied and then flux is 

evaluated. Experimental results show that despite not incorporating particle 



interactions, micro filtration of a poly-dispersed solution of macromolecules was 

accurately predicted [48]. 

2.5. Organic Adsorption 

Organic adsorption has been studied both in the context of membrane 

filtration as well as other chemical, biological, and medical applications [12, 14,49-

54]. In membrane systems, both specific and non-specific interactions of organic 

macromolecules with the membrane surface can cause organic adsorption which 

contributes to flux decline. This is particularly detrimental in nanofiltration and 

reverse osmosis systems since not only can organic adsorption contribute to a 

major part of irreversible fouling through strong chemical interactions with the 

membrane surface, but in the presence of highly concentrated retentate once 

adhered to the membrane surface some organic matter, such as extracellular 

polymeric substances (EPS), will further propagate irreversible bio-fouling. In 

addition to adsorption on the membrane surface, in ultrafiltration and 

micro filtration organic adsorption into the membrane pores can contribute to pore­

constriction and pore-blockage, also resulting in flux decline. 

There is evidence that suggests that highly monopolar materials such as 

polysulfone (PS) and polyethersulfone (PES) favor solute adsorption [55]. 

Hydrophilic non-interacting membranes are thought to decrease protein 
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adsorption, even though hydrophobic interaction is not the only interaction 

involved in adsorption [55]. In a study of nanofiltration membranes, wetting with 

ethanol and water increased the hydrophilicity of the surface (according to captive 

bubble technique) [56]. Increased surface roughness has also been found to 

correlate with increased flux loss due to protein adsorption for ultrafiltration 

membranes [57]. 

2.5.1. Theory of organic adsorption. 

Organic adsorption is a complicated process that involves van der Waals 

forces, hydrophobic and electrostatic interactions, and hydrogen bonding. Although 

nonspecific organic adsorption is complex and not well understood several chemical 

and physical approaches can be applied to explain these complicated interactions. 

Of the various organic macromolecules present in natural and wastewaters, 

protein adsorption has been the most heavily studied. Extensive work has shown 

that adsorption of proteins onto solid surfaces is entropically driven [58-66]. Norde 

et al. [66] has shown that upon adsorption, there is an increase in entropy (LlSads) 

that dominates the enthalpic change, resulting in a negative free energy change of 

adsorption (LlGads=LlHads - T LlSads). Expectedly, electrostatic interactions strongly 

influence not only protein adsorption [58-64, 66], but also protein configuration 

upon adsorption [67]. "Flat" configurations of proteins were found to occur by 

adsorbing highly charged polyelectrolyte onto highly charged positive or negative 
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surfaces [67]. The affinity of a protein to adhere to a surface increases with the 

hydrophobicity of the surface [54, 68-70] and the concept of using hydrophobicity of 

membranes to assess their propensity to foul has also been established [55, 56, 71, 

72]. This increased fouling propensity is attributed to the fact that hydrophobic 

membranes prefer to be covered with colloids than water [55]. 

Protein adsorption can be controlled by changing the bulk solution 

conditions, including pH and ionic strength. Norde et. al has shown that protein 

adsorption is a strong function of pH, with the highest amount of adsorption 

occurring near the isoelectric point (IEP) of the protein [58-64, 66]. They claim that 

adsorption behavior is determined mainly by the structural changes of the molecule 

at the IEP. 

DLVO theory, named for the Dutch and Russian scientists Derjaguin, Landau, 

Vervey, and Overbeek that simultaneously studied this phenomena, incorporates 

attractive (van der Waals) and repulsive (electrostatic double layer) interactions to 

describe the overall stability of hydrophobic colloids [73, 74]. However, too often 

these two interactions cannot accurately describe the interactions that lead to 

colloidal membrane fouling [75]. Among a variety of other reasons that the 

discrepancies may be ascribed to, including chemical and morphological 

hetereogeneity of the membrane surface [22, 76], additional interactions between 

the membrane and foulant induced by the polarity of the solvent has also be 

observed, which lead to the school of thought that proposes an extended DLVO (or 

xDLVO) approach [77, 78]. The extended DLVO theory includes the additional 
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short-range acid-base interaction between two surfaces immersed in a polar solvent 

such as water, quantified by the measurement of surface tensions of various 

substances. Several studies have shown that polymeric surfaces have a substantial 

acid-base contribution [55, 71, 78-80]. A few studies have recently shown that 

extended DLVO theory can be applied to account for organic adsorption during 

membrane filtration [71,80]. 

2.5.2. Experimental methods of measuring adsorption. 

The role of organic adsorption in membrane fouling is difficult to determine 

during cross-flow filtration experiments since it is usually accompanied by gel or 

cake layer formation, which also causes flux decline. Gravimetric, spectroscopic, 

and direct protein assays have been used to quantify the thickness or amount of 

organic adsorption for various applications. 

Ellipsometry is an optical method that records the changes in polarization of 

elliptically polarized light when it reflects on a sample surface [81]. When sampling 

adsorbed layers, the change in refractive index will cause a change in polarization 

and the optical thickness of the film can be deduced. One study created gradients of 

wettability on glass slides via diffusion of dichlorodimethylsilane vapor and then 

measured the amount of proteins and detergents adsorbed through ellipsometry 

[54, 82]. This study found that the amount of negatively charged proteins adsorbed 



increased with increasing contact angle of the surface, whereas non-ionic and 

negatively charged detergents did not adsorb to hydrophilic surfaces. 
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Surface plasmon resonance spectroscopy (SPR) is an optical technique that 

measures changes in the refractive index of the medium near a metal surface to 

quantify adsorption. Monochromatic polarized light is reflected from the backside 

of the glass-gold interface and for thin organic films «100 nm), the reflected 

intensity of this light versus the angle of incidence is approximately proportional to 

the thickness of the film. The major limitation of SPR is that because it measures 

within a certain boundary of the surface (-200 nm), it is sensitive to both the 

adsorbed molecules, the dissolved molecules in the bulk medium, and the bulk 

medium itself [83]. Several studies have successfully compared the adsorption of 

various organics onto engineered surfaces using SPR [83-86]. 

Atomic force microscopy (AFM) can measure inter-molecular adhesion 

forces involved in adsorption at small and precise ranges. In order to consider the 

effects that protein orientation has on the quantification of protein adsorption, 

Sethuraman et al. sought to quantify the adhesion or pull-off forces between a 

chosen protein immobilized onto a probe and a self-assembled monolayer coated 

solid substrate through AFM [68]. Lee et al. also used AFM to quantify the 

intermolecular adhesion forces between model organic foulant and reverse osmosis 

membranes, correlating increased fouling behavior to high adhesion forces [87]. 
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The quartz crystal microbalance with dissipation (QCM-D) has recently 

proven to be a sensitive and fundamental tool for measuring macromolecule 

adsorption in liquid-phase research [88-90]. In this technique, a quartz-crystal 

sensor with piezoelectric properties is subjected to an electric field, under which it 

vibrates at a resonant frequency. As a solution containing macromolecules flows 

past and adsorbs to the surface of the sensor, the frequency of the sensor vibration 

changes. For thin, rigid, and evenly distributed adsorbed layers, the adsorbed mass 

of the layer, LIm, can be deduced from the change in resonant frequency, LIt, using 

the Sauerbrey equation [81]: 

Equation 2.6 

where CQCM is a mass sensitivity constant based on sensor properties (per overtone 

number) and n (= 1, 3, 5, ... ) is the overtone number. The simultaneous dissipation 

measurement records energy dissipated through the adsorbed layer, which can give 

insight into the structure of the adsorbed layer. 

For two reasons, a non-rigid adsorbed layer is not appropriately modeled 

using the Sauerbrey equation. Firstly, while a rigid layer acts as a dead mass on the 

oscillator, a viscoelastic film couples the shear acoustic wave, making LIt not directly 

proportional to Llms. Additionally, a non-rigid layer will include water (or another 

liquid/solvent) entrapped in the spaces of the adsorbed film, increasing the 

perceived mass. To analyze a non-rigid adsorbed layer, a Voight-based viscoelastic 



model is more appropriate [91-93]. Using this approach, an adsorbed film is 

represented on the sensor surface using four unknown parameters: Pf - film density, 

df - film thickness, J1f - film elastic modulus, and 17J- film viscosity (Figure 2.5). 

Figure 2.5 - Schematic of the geometry and the parameters used to simulate the 

quartz crystal covered with a viscoelastic protein film with thickness df between the 

sensor surface and a semi-infinite Newtonian liquid. Retrieved from [81]. 

These four unknown parameters cannot be uniquely determined using only 

two independently measured quantities (L1/ and L1D). However, under the 
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assumption that the adsorbed film and bulk liquid system exhibits no other 

frequency dependence (apart from the complex shear modulus introduced via the 

model), it is possible to obtain a unique combination of these four parameters by 

using 2 or more harmonics [81]. Comparing the results of the Sauerbrey model to 

the Voight-model allows for an in-depth analysis of the mass and structure of the 

adsorbed layer. Several studies have used QCM-D successfully to study adsorption 

of polymers, surfactants, and organic macromolecules onto gold and modified 

polymer surfaces [88-90]. 

Although not capable of quantifying adsorbed organic layers, other 

techniques have been found to be helpful in analyzing the characteristics of 

adsorbed films. XPS and FTIR provide information on the chemical composition of 

the adsorbed layer. Contact angle measurement is usually used to quantify the 

hydrophobicity of the surface, with measurements above 90° indicating 

hydrophobic surfaces and below 90° indicating hydrophilic surfaces. 

2.5.3. SAMs as model surfaces for organic adsorption. 

Organic adsorption studies are limited by the heterogeneity of surfaces upon 

which adsorption takes place. This is especially challenging with water filtration 

membranes, whose surfaces are both physically and chemically heterogeneous. 

Previous studies have examined adsorption on glass and silicon dioxide surfaces, 

but remain limited by surface flaws that skew adsorption phenomena at the 
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molecular level [54, 82]. Self-assembled monolayers (SAMs) of long-chain w­

functionalized alkanethiolates prepared on gold films have been established as 

excellent model systems for studying the interactions of proteins with organic 

surfaces [94, 95]. Extensive work has been focused on protein adsorption onto 

monolayers of hydrophobic (methyl-terminated) and hydrophilic (hydroxyl- and 

hexa( ethylene glycol) terminated) alkanethiols and how to tailor surfaces to create 

desired degrees of adsorption [84, 86, 94-96] 

A common method to form SAMs is through immersion of a clean gold 

surface into a solution of thiol (see Figure 2.6). Many extensive studies have shown 

that w-functionalized alkanethiolates assemble into well-oriented, slightly canted, 

and closely packed formation, making them good surfaces for adsorption studies 

due to their consistent coverage. SAMs as model surfaces have been used in the 

previously discussed measurement techniques, including ellipsometry and SPR, 

with helpful conclusions [85, 86, 94]. Limited use of SAMs with QCM-D has been 

reported, although the studies that do exist show that conformational information 

about the adsorbed layer can be interpreted [97]. 
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Figure 2.6 - Schematic of the synthesis of n-alkane-thiol SAMs on gold [98]. 
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2.6. Membrane Cleaning 

A common method of recovering water flux caused by membrane fouling is 

through membrane cleaning. Backwashing is one method of cleaning ultrafiltration 

and microfiltration membranes that involves reversing the water flow [99]. In 

water treatment plants, one membrane module or treatment train will be 

periodically shut-down for a short amount of time (anywhere from 15 min. to 1 

hour [100, 101]) during cleaning while the other trains continue to operate. Foulant 

is removed through turbulent hydrodynamic forces at the membrane surface that 

loosens the fouling layer. 
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Chemical cleaning is a common method of cleaning nanofiltration and 

reverse osmosis membranes, where backwashing is not physically possible due to 

membrane asymmetry and tighter pore structures. Cleaning with chemicals works 

by creating solution conditions favorable for foulant dissolution as opposed to 

deposition on the membrane surface [102]. Generally, increased temperatures will 

increase dissolution, however most membrane materials are sensitive to 

degradation at high temperatures [103]. Cleaning agents accomplish this by 

changing the morphology of the foulants, the relative activity of the foulant in 

solution or the interaction between foulants within the fouling layer [29]. Typical 

cleaning agents include surfactants such as sodium dodecyl sulfate (SDS) and Tween 

20, alkaline agents such as sodium hydroxide (NaOH), acidic agents such as 

hydrochloric acid (HCl), sulphuric acid, citric acid, and oxalic acid, chelating agents 

such as ethylenediaminetetraacetic acid (EDTA), and enzymes [29, 101, 104-107]. 

Choosing the most effective chemical cleaning agent is dependent upon a 

combination of the foulants present in the water and the membrane material. 

Surfactants are effective at cleaning protein adsorption if the concentration is above 

a critical micelle concentration [29]. Alkaline chelating agents are efficient at 

chemical cleaning nanofiltration membranes when fouled by a combination of NOM­

metal complexes, however, they can also permanently reduce membrane ion 

rejection [lOS]. EDTA is particularly effective at cleaning Ca-organic complexed 

fouling layers when used at a high enough concentration [29, 102] Inorganic 



foulants, however, may not be removed by alkaline agents and may require periodic 

acidic cleaning [105]. 
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Chapter 3 

Combined Fouling of Nanofiltration 
Membranes: Mechanisms and Effect of 

Organic Matter1 

3.1. Introduction 

Nanofiltration (NF) is an attractive technology for producing clean water 

from non-traditional sources, i.e. brackish water and wastewater, since it can 

provide high multivalent ion and organic contaminant rejection at a much lower 

operating pressure than reverse osmosis. Unfortunately, as with all membrane 

Ipublished manuscript: Contreras A.E., A. Kim, and Q. Li. Combinedfouling ~fnanojiltratiun 
membranes: Mechanisms and effect of organic matter. Journal of Membrane Science. 2009. 327( 1-2): p. 
87-95. 
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filtration processes, an inherent problem of NF is decreased productivity due to 

fouling of the membrane by colloidal materials, dissolved organics, inorganic 

precipitates, and microorganisms. While fouling can be controlled by using low 

fouling membrane materials [22, 108-110], pre-treatment of the feed stream [111-

114], and optimizing the system configuration and operation [26,44], proper use of 

these control strategies still requires a deeper understanding of the responsible 

fouling mechanisms. 

Most previous studies on membrane fouling have focused only on a single, 

well characterized foulant of homogenous physico-chemical properties (referred to 

in this paper as individual fouling). One marked limitation in applying the 

theoretical and experimental results obtained from these studies to water and 

wastewater filtration systems is that fouling in these systems is almost always 

caused by more than one type of foulant with various particle sizes and surface 

characteristics, most commonly both colloidal materials and dissolved organic 

macromolecules, e.g., natural organic matter (NOM) and soluble microbial products. 

Several studies have identified that poly-dispersed suspensions form cake layer 

structures with resistances different than mono-dispersed solutions and that 

interactions that occur between foulants be correlated to flux decline behavior [41-

43,87]. 

A limited number of studies on combined fouling (Le., fouling with multiple 

types of foulants) by both inorganic colloids and dissolved organic matter have 

shown that fouling behavior differs under varying solution conditions and with 
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different membrane types [28,46, 115]. Li et al. [46] performed combined fouling 

experiments with a low salt-rejection NF membrane in the presence of silica colloids 

and NOM. Flux decline measurements revealed significantly faster membrane 

fouling in combined fouling experiments than what might be predicted by summing 

the contributions from each foulant based on the individual fouling experiments. 

The aggravated membrane fouling or enhanced flux decline, referred to as a 

synergistic effect, was attributed to the hindered back diffusion of each foulant. In 

another study performed on a high salt-rejection NF membrane, Lee et al. [28] found 

that flux decline during filtration of a mixture of NOM and silica colloids was initially 

greater than the sum of the flux declines caused by each foulant individually, but 

was reduced in the latter filtration stages. It was hypothesized that an "active salt 

rejecting layer" formed during combined fouling negated the effect of cake­

enhanced concentration polarization (CECP), which increases the salt concentration 

and consequently the osmotic pressure in the concentration polarization (CP) layer 

of salt ions [44, 45]. It is important to note that although fouling behavior differed 

according to the experimental conditions of each study, common throughout these 

studies is the observation that combined fouling cannot be predicted from fouling 

by individual foulants alone. 

The objective of this study was to understand the effects of different organic 

foulants found in water and wastewater on combined fouling during the 

nanofiltration of complex solutions containing both colloidal materials and 

dissolved organic matter. Interactions of four model organic macromolecules with 
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colloidal silica foulants and the membrane surface were thoroughly characterized 

and related to membrane flux behavior observed in cross-flow filtration 

experiments to reveal the different combined fouling mechanisms involved. Results 

of the study clearly demonstrated the significance of interactions among different 

foulant types, which has been largely neglected in previous mechanistic studies. 

3.2. Theory 

Three potential mechanisms have been identified as contributing to the 

combined fouling flux decline observed during previous combined fouling studies 

[28, 46, 115]. The weighted effect of each mechanism is anticipated to be different 

for interacting vs. non-interacting foulants. 

3.2.1. Increased cake layer resistance. 

Dissolved organic compounds in water and wastewater are much smaller in 

size compared to colloidal foulants such as silica. It has been shown that poly­

dispersity in particle size distribution is likely to affect fouling layer resistance by 

altering the structure of the cake/ gel layer formed at the surface of the membrane 

[41,47,116]. 
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In the presence of either organics or colloids alone, fouling layer formation is 

governed by the resistance in series model, 

Equation 3.1 

where v is the permeate flux, LlP is the applied pressure, Ll1Tm is the trans-membrane 

osmotic pressure, f1 is the dynamic viscosity of the solution, Rm is the resistance of 

the membrane and Rc is the resistance of the cakejgellayer. Rc is determined by the 

specific resistance of the fouling layer or the fouling layer mass per membrane unit 

area. For mono-dispersed, spherical colloids, the specific cake resistance is usually 

estimated using the Carman-Kozeny equation, 

Equation 3.2 

where Ec is cake layer porosity, pp is solid density of the particle, and dp is particle 

diameter. The Carmen-Kozeny equation predicts that decreases in cake porosity 

and particle diameter result in an increase in the specific cake layer resistance. 

Although this equation is only applicable for rigid, nearly touching particles, one can 

imagine that as the porosity of the layer decreases due to the presence of smaller 

particles filling interstitial pore spaces, as shown in Figure 3.1, for the mixed fouling 

layer adjacent to the membrane the same relation would be true. Fouling layer 
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resistance would consequently increase, resulting in increased flux decline. A recent 

analytical study verified this theory by showing that a cake layer composed of 

normally distributed particle sizes will always create a higher specific resistance 

compared to a log-normal distribution with the same mean particle size due to the 

presence of more small particles in the normal distribution [47]. 

3.2.2. Hindered back diffusion. 

The back diffusion of one foulant type may be hindered by the presence of 

the concentration polarization of fouling layer of other types of foulants. During 

filtration, permeate flow brings the solute towards the membrane surface, 

convective flow transports the solute along the membrane surface tangentially and 

Brownian diffusion and shear-induced diffusion simultaneously transport the solute 

back to the bulk fluid. Recently, the Brownian and shear-induced diffusion 

phenomena were unified using irreversible thermodynamics [117]. For small 

particles «< 1 11m), such as the colloidal particles used in this study, shear-induced 

diffusion is negligible [1]. Accumulation of the solute within the concentration 

polarization layer can be described by the convective-diffusion equation, 

ac +17 .VC-V(DVC)=O at \1' 

Equation 3.3 
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where D is the back diffusion coefficient, Vw is the flow velocity, and C is the 

concentration of the solute. A schematic description is available in Figure 3.1. 

The Stokes-Einstein equation (Equation 3.4) can be used to estimate the 

diffusion coefficient of small, spherical solutes in free solution 

Equation 3.4 

where k8 is the Boltzmann constant and T is absolute temperature. When there is 

significant accumulation of colloids at the membrane surface, i.e. formation of a cake 

layer, back diffusion of smaller solutes, e.g., dissolved organic foulants, is hindered 

by the presence of the cake-layer due to the tortuous pathway of transport. The 

hindered diffusion coefficient is related to the porosity (c) and tortuousity (r) ofthe 

cake layer [45]. 

Equation 3.5 

The slower back diffusion leads to faster accumulation of the smaller solutes and 

hence a higher concentration in the CP layer. This phenomenon has been 

demonstrated with salt ions - termed cake-enhanced concentration polarization 

(CECP) - and has been identified as a significant contributor to membrane flux 
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decline observed in colloidal fouling of NF and RO membranes [44, 45]. CECP is 

observed by a decrease in the observed salt rejection over time as the concentration 

of salt at the membrane surface increases. 

CECP may also occur for dissolved organic compounds that are small enough 

to penetrate the colloidal cake layer. As a result, the concentration of dissolved 

organic foulants in the CP layer is increased and formation of the organic gel layer is 

accelerated. Meanwhile, the higher organic concentration in the CP layer increases 

local fluid viscosity. Although only valid at dilute concentrations, the Stokes-Einstein 

equation predicts that the diffusivity of colloids will be reduced as the local fluid 

viscosity increases, further accelerating colloidal foulant accumulation at the 

membrane surface. In reality, higher concentrations at the membrane surface will 

make colloid-colloid interactions and volume exclusion more important. 

3.2.3. Alteration of colloid surface properties due to adsorption of 

dissolved organic macromolecules. 

Adsorption of dissolved macromolecules on colloidal surfaces can disturb 

electric double layer interactions and alter van der Waals forces among colloids and 

between colloids and membranes, as well as cause steric hindrance effects. A 

number of studies on colloidal transport in porous media have shown that NOM can 

play an important role in facilitating the transport of natural and model colloids 

[118-120] and their aggregation kinetics [121]. Additionally, interactions between 



the organic foulant and the membrane surface can modify membrane surface 

properties, including membrane surface roughness, hydrophobicity and charge, and 

has been shown to affect flux behavior [24, 27, 122, 123]. These changes can 

significantly modify the fouling behavior of colloidal particles by either increasing or 

decreasing (depending on the molecular characteristics of the organic foulant) 

colloidal aggregation in the CP layer and their deposition on the membrane surface. 

3.3. Materials and Methods 

3.3.1. NF membrane. 

A low-salt-rejection thin-film composite nanofiltration membrane (NF 270 

by Dow-FilmTec, Minneapolis, MN) was used in all filtration experiments. Precut 

membrane samples were stored in de-ionized water at 4 QC. The storage water was 

replaced weekly. The hydraulic resistance of the NF 270 membrane, determined 

from clean water flux measurements, was 1.98 (± 0.09) x 1013 m-1 at 20 ± 0.3 QC. 

Observed salt rejection with 10 mM NaCI ranged from 40.2% - 58.8% at 20 ± 0.3 QC, 

consistent with the manufacturer's specified salt rejection of 40-60%. Membrane 

surface zeta potential was characterized using a streaming potential analyzer (Zeta 

CAD, CAD Instrumentation, Les Essarts Ie Roi, France). Measurements were 

performed under the various solution conditions used in the filtration experiments. 

Before each measurement, the membrane coupons were soaked in 10 mM NaCI (the 
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background electrolyte solution used in filtration experiments) for 24 hr at 4 QC. 

Membranes were then allowed to equilibrate with the test solution for 30 min 

before the measurement was started. 

3.3.2. Model foulants. 

Commercial colloidal silica, Snowtex-XL (ST-XL, Nissan Chemical America 

Corp., Houston, TX) was used as the model colloidal foulant. Manufacturer supplied 

data specified that particle size ranged from 40 to 60nm. 

Humic substances, proteins and polysaccharides have been identified as the 

major organic foulants in water and wastewater [124-129] For this reason, four 

organic compounds were used in this study: Suwannee River humic acid (HA), 

dextran, sodium alginate, and bovine serum albumin (BSA). In addition to the other 

commonly studied organic foulants, dextran was chosen because it is known to have 

minimum interaction with most surfaces and can serve as a good model for "non­

interacting" macromolecules. 

HA (standard II) was obtained from International Humic Substances Society 

(St. Paul, MN) and was not purified any further. Dextran from Leuconostoc 

mesenteroides, sodium alginate derived from brown algae, and BSA were purchased 

from Sigma-Aldrich (St. Louis, MO). The molecular weights reported by the 

manufacturers are 1 - 5, 9 - 11, 10 - 60, and - 66 kDa for humic acid, dextran, 

sodium alginate, and BSA, respectively. All stock solutions and feed waters were 

S1 



prepared using ultrapure water produced by a Millipore system (RiDS System, 

Billerica, MA). Because HA has low solubility under acidic conditions, pH was raised 

to 8.2 with NaOH and the solution was filtered using a vacuum filter (Whatman 

Grade No. 1 filter paper, England) and stored in an amber glass bottle. The 

concentration of the stock solution was then verified by total organic carbon (TOC) 

measurements with a TOC analyzer (Shimadzu Scientific Instruments, Japan). All 

stock solutions were stored in the dark at 4QC. 

Surface zeta potential and hydrodynamic diameter of the model foulants 

were characterized by electrophoretic mobility and dynamic light scattering (DLS) 

measurements using a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA). 

3.3.3. Measurement of organic foulant adsorption on silica. 

Adsorption of organic foulants on the silica colloidal particle surface 

determines their impact on colloid-colloid and colloid-membrane interactions. 

Adsorption of the model organic foulants on a silica surface was investigated using a 

quartz crystal microbalance with dissipation monitoring (QCM-D) technique (Q­

Sense E4, Q-Sense, Glen Burnie, MD). Principles and applications of the QCM-D 

technique can be found elsewhere [130]. 

Silica-coated quartz crystals (QSX303, Q-Sense, Glen Burnie, MD) were used 

to simulate the surface of the model silica colloidal foulant. QCM-D measurements 

employed the same background solution (10 mM NaCl) and organic concentration 
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(20 mgjL) used in the cross-flow filtration experiments. Before each experiment, 

the crystal sensors and the flow modules were cleaned with 2% sodium dodecyl 

sulfate (SDS) solution followed by de-ionized water and dried with ultrapure Nz gas. 

The crystals were further cleaned in a UV jOzone ProCleaner (BioForce 

Nanosciences, Ames, IA) for 20 min. In each experiment, fundamental frequencies 

of each crystal were first verified under dry air conditions. Then, a baseline was 

established by running the background solution (10 mM NaCI) for 10 min. This was 

followed by the adsorption phase using the organic foulant solution. After 

adsorption equilibrium was established, the influent was switched to the buffer 

solution again to remove the residual foulant solution in the cell channel. 

3.3.4. Membrane filtration experiments. 

Nanofiltration experiments were carried out in a laboratory scale cross-flow 

membrane filtration system consisting of two membrane-cells in parallel [131]. A 

pulsation dampener (Model H1020V, Blacoh Fluid Control, Inc, Riverside, CA) 

situated at the outlet of the hydra-cell pump was charged at 80% operating pressure 

to dampen pressure irregularities. Feed water temperature was kept constant at 

20Q C using a re-circulating water chiller (VWR, West Chester, PA). 

Filtration experiments included three main phases: membrane compaction, 

conditioning, and fouling. The membranes were first compacted at 100 psi (689.5 

kPa), a pressure higher than the designed experimental pressure, using ultrapure 
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water for a minimum of 5 hours to obtain a stable clean water flux. During the 

conditioning phase, background electrolyte solution, i.e. 10 mM NaCI was filtered 

through the membranes for at least 9 hours. Pressure was adjusted to yield a stable 

permeate flux of 2 x 10-5 m/s in all experiments, corresponding to an applied 

pressure range of 65 -70 psi (448 - 483 kPa). This ensured the same initial 

permeate flux for the fouling stage of all experiments. Conductivity of both 

permeate and feed waters was monitored during the conditioning phase to check 

membrane integrity and establish initial observed salt rejection. After a stable 

permeate flux of 2x10-5 m/s and appropriate salt rejection had been achieved, the 

fouling phase was started by addition of the corresponding foulant or foulants. The 

pump was stopped while the foulant was introduced to the feed tank and allowed to 

mix thoroughly for 5 min before pumping was resumed. A sample was taken from 

the feed reservoir immediately before filtration was resumed for confirmation of 

foulant concentration. Concentrations of colloidal and organic foulants used were 

100 mg/L and 20 mg/L, respectively, in both individual fouling and combined 

fouling experiments. Pressure, permeate flux, and feed water temperature were 

continuously monitored during the experiments. Samples were taken from both the 

feed and permeate at predetermined times during both the conditioning and fouling 

stages for analysis of pH, conductivity (Oakton pH/CON 510 Benchtop Meter, 

Oakton Instruments, Vernon Hills, IL) and foulant concentrations. Concentrations of 

organic foulants were determined by TOC measurements. Colloidal foulant 

concentrations in the feed were determined by turbidity measurements using a 



turbidity meter (Hach Company, Loveless, CO). The cross-flow system was 

thoroughly cleaned after each experiment with 6 L of 5 mM NaOH re-circulated for 1 

hr followed by three rinses with 6 L of de-ionized water for at least 1 hr each. All 

experiments were repeated at least twice. 

3.4. Results and Discussion 

3.4.1. Characteristics of model foulants. 

The model foulants were characterized for their size and surface zeta 

potential under the solution conditions used in the filtration experiments. Table 3.1 

summarizes the results of the characterization. The mean hydrodynamic diameter 

was derived from an average number-based-distribution based on at least 5 

measurements. BSA has a negative surface zeta potential of -20.7 ± 0.9 mV under 

the experimental conditions used whereas that of dextran was close to neutral at -

7.2 ± 1.5 mY. Alginate and HA had a much more negative zeta potential, measuring-

45.0 ± 1.2 and -37.9 ± 1.2 mV, respectively, under the same solution conditions. 

The model inorganic foulant (ST-XL) measured 60.7 ± 1.2 nm in 

hydrodynamic diameter and had a high negative surface zeta potential (( = -37.9 ± 

0.4 mY) under experimental conditions. These results agree with the 

manufacturer's specifications of size (between 40-60nm) and previously published 

zeta potential measurements [28]. The measured particle sizes of dextran, BSA and 
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sodium alginate were all one order of magnitude smaller than that of ST-XL 

indicating that they can penetrate the ST-XL colloidal cake layer during filtration. 

Particle size is not reported for HA because it's extremely small size (~1 nm) is 

beyond the detection range for DLS measurement. 

3.4.2. Adsorption of organic foulants on silica surface. 

QCM-D experiments were performed using silica-coated crystal sensors to 

investigate adsorption of the model organic foulants on the silica surface. 

Adsorption is indicated by changes in the vibration frequency of the piezoelectric 

quart-crystal sensor, and the amount of organic molecules adsorbed can be 

calculated from the frequency change using the Sauerbrey equation [132] (Equation 

3.6) provided that the adsorbed layer is rigid (i.e., experiences low energy 

dissipation): 

Equation 3.6 

where !::.fis change in frequency (Hz),fo is the resonant frequency (Hz) ofthe crystal 

sensor, !::.m is change in mass adsorbed (kg), A is the piezoelectrically active crystal 

area (m2), pq is the density of quartz (kg/m3), and flq is the shear modulus of quartz 

(Pa). 



Experiments using dextran, HA, and sodium alginate showed negligible 

change in the vibration frequency of the silica-coated crystal sensor, indicating no 

adsorption of these compounds on the silica surface. This is consistent with the very 

high negative zeta potentials of humic acid and alginate (Figure 3.3) and 

consequently strong electrostatic repulsion between these molecules and the 

negative silica surface. 

Significant adsorption of BSA on silica surface was observed. Figure 3.2 

presents the areal mass of BSA adsorbed as well as the thickness of the adsorbed 

layer, calculated from the Sauerbrey equation. A comparison of the Sauerbrey 

model fit to that by a visco-elastic model [130] indicates that a rigid layer is 

adsorbed and that the Sauerbrey equation is valid. The calculated thickness of the 

adsorbed layer indicates a monolayer of BSA adsorbed on the surface of the silica 

coated crystal, suggesting that the presence of BSA may change the surface 

properties of the silica colloids and hence their interactions with the membrane and 

other silica colloids. 

3.4.3. Impact ofthe organic foulants on the physicochemical properties of 

silica colloids. 

Adsorption of dissolved organic compounds on the surface of ST-XL may 

alter its surface properties, e.g., zeta potential and particle size, and consequently 

impact the interactions among ST -XL colloids. Surface zeta potential and 
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hydrodynamic diameter of ST -XL were measured in the presence and absence of the 

model organic foulants, and the influence of the model organics under relevant 

solution conditions is demonstrated in Figure 3.3 and Figure 3.4. 

It is worth noting that although electrophoretic mobility measurement using 

phase analysis light scattering provides an average zeta potential of all particles in a 

suspension, the size and concentration (lor 20 mg/L) of dissolved organic 

compounds in the mixed suspensions were so small that the free organic molecules 

in the mixture had negligible impact on the zeta potential of the suspension. Zeta 

potential measurements of the organic foul ants alone at these concentrations 

yielded non-detectable signals. The zeta potential and size of the organic foulants 

reported in Table 3.1 were achieved using much higher concentrations: at least 100 

mglL for HA and 1 giL for dextran, alginate and BSA. Therefore, it is safe to 

consider that the measured zeta potential or mean particle size of the mixed 

suspensions represents that of the ST-XL with or without the model organic foulants 

adsorbed on the surface. 

As shown in Figure 3.3, the zeta potential of the ST -XL was not affected by 

dextran or HA despite the zeta potentials of both dextran and HA being very 

different from that of the silica colloids. Meanwhile, no significant changes in 

particle size were observed in the presence of these two organic compounds (Figure 

3.4), indicating no adsorption of HA dextran on the ST-XL colloidal surface. No 

significant change in zeta potential of particle size of the ST-XL colloids is again 

observed in the presence of alginate. This is consistent with the QCM-D 



measurements that showed no adsorption of these compounds on silica-coated 

quartz crystal sensors. 

In the presence of the model protein BSA, however, the magnitude of the zeta 

potential of the silica colloids decreased notably and the reduction increased with 

increasing BSA concentration (Figure 3.3). In addition, a careful examination of the 

particle size of ST -XL suggests the presence of an adsorbed BSA layer under these 

conditions (Figure 3.4). In the presence of 20 mg/L of BSA, the diameter of ST-XL 

increased by approximately 7 nm. The reduced zeta potential and increase particle 

size are consistent with the adsorption of a monolayer BSA on the silica surface 

observed in the QCM-D experiments. Data in Figure 3.3 and Figure 3.4 also indicate 

that surface coverage of BSA increases with BSA concentration. 

3.4.4. Impact of the organic foulants on membrane surface zeta potential. 

The zeta potential of the NF 270 membrane in 10mM NaCI solution at pH = 

5.0 is -23.6 ± 1.5 mY. Membrane surface zeta potential measurements in the 

presence of each model foulant were performed immediately after those without 

organic foulants using the same membrane coupon. Figure 3.5 illustrates the effect 

of the four model organic foulants on the membrane surface zeta potential. Changes 

in membrane surface zeta potential upon exposure to the organic foulants are 

presented. Negative values indicate reduction in the negative zeta potential, while 

positive values represent increases. 
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All model organic foulants except dextran caused notable changes in 

membrane surface zeta potential, indicating significant adsorption of BSA, alginate 

and HA on the membrane surface. While adsorption of the highly negatively charged 

HA and alginate led to an increase in the magnitude of the negative membrane 

surface zeta potential, BSA significantly reduced its magnitude due to its lower 

charge density. These changes suggest that HA and alginate will increase the 

electrostatic repulsion between the membrane and the ST-XL colloids, while BSA 

will have an opposite effect. 

3.4.5. Cross-flow filtration results. 

Fouling experiments were performed with feed waters containing ST-XL 

alone, an organic foulant alone and both the ST-XL and an organic foulant. 

Concentrations of ST-XL and the organic foulants were 100 mg/L and 20 mg/L, 

respectively, in all experiments. Figure 3.6 shows the membrane flux decline results 

of all four sets of experiments, each with a different model organic foulant. 

In order to examine the three proposed combined fouling mechanisms, the 

combined fouling layer resistance was compared to that predicted from the 

individual foulant resistance using a resistance in series model. The predicted 

value, calculated by summing the resistances of the individual colloidal and organic 

fouling layer, is referred as "the sum" in the discussion hereafter. 
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The resistance of the fouling layer was calculated using a rearrangement of 

Darcy's Law (Equation 3.1), where the trans-membrane osmotic pressure (Llrrm) was 

calculated following a previously published method [44,45]. Rearranging the film-

theory equation produces the following expression [44], 

Equation 3.7 

which relates the trans-membrane osmotic pressure to the bulk molar salt 

concentration (Cb), the observed salt rejection (Ro = 1 - CpjCb), and the mass-transfer 

coefficient (k) through the osmotic coefficient /os [133]. Since low salt 

concentrations were used in this study, van't Hoffs equation was used to determine 

ios [45]. 

As the experiments were performed under laminar conditions, the initial 

mass-transfer coefficient, ko, was calculated during the conditioning phase using 

Equation 3.8: 

k = O.808( 6QD~ J1
/
3 

o WH 2 L 
Equation 3.8 

Here, Doo is the bulk diffusion coefficient of the solute, Q is the volumetric 

feed flow rate, W is the channel width, H is the channel height, and L is the channel 

length. Plugging values of the initial permeate flux va, ko and the observed salt 
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rejection Ro during the conditioning stage into the second half of Equation 3.7 allows 

calculation of the intrinsic salt rejection Ri (Ri = 1 - Cp/Cm). Llrrm during the fouling 

experiment was then calculated using the first half of Equation 3.7 from the 

measured Cp assuming a constant Ri. 

Observed salt rejection during colloidal fouling alone decreased slightly from 

55.0 to 52.1% (Figure 3.8), which agrees well with the modeling results of 

calculated CECP for the NF270 membrane [44, 45]. These results show that silica 

colloid cake-enhanced concentration polarization has negligible contribution to the 

flux decline of the NF270 membrane due to its low salt rejection. Therefore, 

contrary to other studies [28], CECP as a combined fouling mechanism will not be 

discussed here. 

Figure 3.7 compares the calculated cakejgellayer resistances for each set of 

fouling experiments. The resistances are plotted as a function of cumulative 

permeate volume. This normalizes the plots, as the amount of colloidal or organic 

foulant transported to the membrane surface at a given permeate volume during the 

combined fouling experiment should be the same as that during colloidal fouling or 

organic fouling experiment if there are no organic-silica interactions. 

The flux decline rates during the initial stage of fouling for all experiments 

are summarized in Table 3.2. Salt rejections during selected experiments are 

presented in Figure 3.8. The effect of each organic foulant is discussed below. 
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3.4.5.1. Combined fouling with dextran. 

Figure 3.6a compares the membrane flux during filtration of the dextran 

solution, the ST-XL suspension and the mixture of dextran and ST-XL. The 

corresponding fouling layer resistances for these experiments are plotted in Figure 

3.7a. 

Dextran alone did not foul the membrane, as evidenced by the stable 

membrane flux throughout the organic fouling experiment. The ST-XL colloids 

caused significant decline of the membrane flux. Up until the latter stages of fouling, 

combined fouling with dextran creates a similar fouling layer resistance as that with 

silica alone. Towards the end of the experiment, however, the combined cake layer 

resistance begins to rapidly increase compared to the sum term, indicating a 

synergistic effect. Since dextran does not adsorb on ST-XL, the observed synergy 

indicates that both hindered back diffusion and a change in cake layer structure are 

present. Because this change in resistance is seen in the latter stages of fouling 

after significant accumulation of foulants has occurred, it is likely that the increase 

in resistance is caused by a change in cake layer structure as dextran fills in the 

interstitial pore space of the cake layer and that hindered back diffusion remains a 

small but contributive effect during combined fouling with dextran. 
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3.4.5.2. Combined fouling with HA. 

As shown in Figure 3.6b, fouling by HA alone caused only slight flux decline. 

The combined fouling experiment with HA and ST -XL showed no synergistic effect 

in the beginning stage. In fact, a closer look at the initial flux decline rates (Table 

3.2) during filtration of the ST-XL suspension and the mixture ofHA and ST-XL (0.77 

and 0.39 L-l, respectively) shows that the presence of HA reduced the initial flux 

decline rate. This is attributed to HA adsorption onto the membrane surface, which 

increases the electrostatic repulsion between the foulants and the membrane. In 

the latter fouling stages, however, the membrane flux during combined fouling 

deviated from the calculated sum and showed a synergistic effect that continued to 

increase with filtration time. As HA does not adsorb to ST-XL, this increase is either 

due to the hindered back diffusion effect or to the increased resistance caused by a 

mixed fouling layer with HA interspersed in the ST-XL cake layer. 

3.4.5.3. Combined fouling with sodium alginate. 

Initial flux decline in the presence of sodium alginate alone was the most 

substantial of all the organic foulants (Figure 3.6c). The alginate fouling layer also 

displayed active salt rejecting characteristics, as evidenced by the steady increase in 

observed salt rejection over the length of the experiment (Figure 3.8). Strong 
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synergism was observed during the filtration of the ST -XL-alginate mixture (Figure 

3.7c). The fouling layer resistance calculated during combined fouling is 

significantly higher than the calculated sum of individual fouling layers in spite of 

the slightly reduced initial fouling rate (Table 3.2, 0.77 vs. 0.44 L-l) caused by the 

increased repulsion between ST-XL and the membrane. Salt rejection during the 

combined fouling experiment remained stable over time, indicating either the 

impact of CECP and salt rejection by the fouling layer were negligible, or the two 

effects cancelled each other out. The same combined fouling mechanisms for HA 

(hindered back diffusion and cake layer structure) are expected to apply to alginate. 

However, the synergistic effect caused by sodium alginate is greater in the initial 

stages of filtration compared to that by HA. It is postulated that this is due to a more 

significant effect of the hindered back diffusion mechanism. Since sodium alginate 

solution is much more viscous than the other model foulants, the back diffusion of 

the ST -XL colloids in the CP layer may be more severely hindered, causing faster 

accumulation ofST-XL and therefore a greater flux decline rate. 

3.4.5.4. Combined fouling with BSA. 

Flux decline in the presence of BSA alone appears to be caused by a 

compressible fouling layer that increases in resistance over time (Figure 3.6d). The 

mixture of BSA and ST -XL caused much greater flux decline than the sum of the 

contribution from each foulant (Figure 3.7d). The greater initial flux decline rate 
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can be explained by the faster deposition of ST-XL due to the reduced electrostatic 

repulsion between ST-XL and the membrane as well as that between ST-XL colloids, 

a result of the lower negative surface zeta potential upon adsorption of BSA (Figure 

3.3 and Figure 3.5). Analysis of the feed water showed an increase, instead of the 

expected decrease, in turbidity with filtration time, resulting from the formation of 

ST-XL aggregates (Figure 3.9). Storage of the same feed solution over time did not 

show similar increase in particle size, indicating that these aggregates likely formed 

in the CP or fouling layer. This observation suggests that the cake layer formed was 

dynamic and some ST -XL aggregates were washed off from the membrane surface 

during cross-flow filtration. This is consistent with the large fluctuation of salt 

rejection observed during the combined fouling experiment (Figure 3.8). While it is 

unclear if the decrease in salt rejection is due to CECP or a disturbance in the fouling 

layer, calculations show that the increase in trans-membrane osmotic pressure over 

the course of the experiment has a negligible contribution to flux decline. 

The synergism during the combined fouling experiment continued 

throughout the experiment. Because BSA adsorbs on silica surfaces, the observed 

synergism results from the interplay of all the three combined fouling mechanisms 

discussed in the Theory. In addition, the observed aggregation of foulants in the 

cake layer as well as the change in the growth rate of the combined fouling layer 

resistance at permeate volume of about 2.5 L (Figure 3.7 d) suggests a shift in the 

combined fouling layer structure towards the latter stages of filtration. These 



results with BSA show that the effects of organic foulant adsorption on silica surface 

are complex and can have important implications on membrane flux decline. 

3.5. Conclusions 
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The flux decline behavior of a nanofiltration membrane in the presence of 

four model organic macromolecules and one model silica colloidal foulant was 

investigated to examine mechanisms responsible for the synergism observed in 

combined fouling. All model organic foulants tested exhibited a synergistic effect 

when in combination with the model silica colloids. The extent of the synergy, 

however, strongly depends on the molecular characteristics of the organic foulant. 

The three hypothesized mechanisms: increased resistance of the mixed fouling 

layer, hindered back diffusion, and organic foulant adsorption were shown to have 

varying effects on combined fouling, depending on the specific organic foulant. The 

greatest synergism was observed in the presence of an interacting organic foulant, 

BSA, which can adsorb onto silica colloids as well as the membrane surface to 

reduce repulsive interaction between foul ants and the membrane as well as that 

among foulants. Adsorption of the organic foulant to the clean membrane surface 

only impacts the very beginning fouling stage and does not have a lasting effect on 

the overall flux decline behavior. The study also showed that the interplay of the 

various mechanisms in combined fouling can be very complex, calling for further 
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investigation of the combined fouling process. More comprehensive models that 

incorporate the combined fouling mechanisms suggested here are needed to 

properly predict the fouling of complex solutions. 
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Table 3.1 - Characteristics of model foulants · Reported values are the average of five 

measurements with standard deviation. The solution condition used was 10 mM 

NaCI and pH 5.9 ± 0.3. 

Model foulant Zeta potential (m V) Diameter (nm) 

4.3 ±0.2 

~ 

BSA -20.7 ± 0.9 6.9 ± 0.2 

n/a 

Sodium alginate -45.0 ± 1.2 5.12 ± 2.2 

60.7 ± 1.2 



Table 3.2 - Initial flux decline rates of all fouling experiments. 

Foulant(s) Initial flux decline ratea (L -1) 

Dextran 0.02 

Humic acid 0.04 

Sodium alginate 0.25 

BSA 0.16 

a The initial flux decline rate is calculated by fitting data collected during the first 

100 min by a linear function assumingJ /Jo = 1. 
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Figure 3.1 - Schematic description of the cake/gel and CP layers of colloids and 

macromolecules after cake/gel layer formation. Cs: concentration at the membrane 

surface; Cb: bulk concentration; D: back diffusion coefficient. Subscript: c = colloids, 

m = macromolecules. 

o o o y 
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Figure 3.2 - Areal mass and thickness of the adsorbed BSA layer on the silica surface. 

Phase 1: 10 mM NaCl; phase 2: 20 mg/L BSA in 10 mM NaCI; phase 3: 10 mM NaCl. 
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Figure 3.3 - Surface zeta potential of ST -XL in the presence of varying concentrations 

of model organic foulants. Horizontal black line with striped halo represents the 

average and standard deviation of ST -XL surface zeta potential in the absence of 

model organic foulants. All test solutions contained 10 mM NaCI and the pH was 

5.9 ± 0.3. 
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Figure 3.4 - Particle size of ST -XL in the presence of varying concentrations of model 

organic foulants. Black line with striped halo represents the average and standard 

deviation of the measured particle size of ST -XL in the absence of model organic 

foulants. All test solutions contained 10 mM NaCI, and the pH was 5.9 ± 0.3. 
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Figure 3.5 - Effect of organic foulants on membrane surface zeta potential (10 mM 

NaCl, pH 5.2 ± 5.5). Values represent the change from the original membrane zeta 

a.. 
N 
ro 
c 
"5> 
.~ 

o 

potential of -23.6 ± 1.5 mV. 

15 ~----~------~------~------~ 

10 ------------- -------- ------r------ ------- ------------_ 

5 

o f----f--.....;..-

-5 --- ----------

-10 

-15 L------L ___ ------L-_ __ -L-__ ----.J 

Dextran BSA Humic Acid Alginate 

75 



Figure 3.6 - Normalized flux of the individual organic and colloidal fouling and the 

combined fouling experiments for, (a) dextran; (b) humic acid; (c) sodium alginate; 

and (d) BSA. 
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Figure 3.7 - Calculated cake/gel layer resistances (Re) of each fouling experiment 

compared to the sum of individual foulant contribution for (a) dextran; (b) humic 
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Figure 3.8 - Salt rejections observed during selected filtration experiments. 
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Figure 3.9 - Feed solution turbidity measurements of selected filtration experiments. 
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Chapter 4 

Comparing Structure and Resistance 
of Combined Organic and Colloidal 

Fouling Layers Formed During 
Nanofiltration and Reverse Osmosis2 

4.1. Introduction 

Membrane fouling is an inherent obstacle to the advancement and 

widespread use of membrane technologies in water and wastewater treatment. 

Prediction of membrane fouling is complicated by the multiple types of foulants 

present in water and waste-water, including colloids, dissolved organic matter, 

mineral precipitates, and bio-foulants [29, 134, 135]. Each foulant contributes to 

2 Manuscript in preparation for submission to Water Research. 



the overall membrane flux decline through a variety of mechanisms. Most previous 

mechanistic studies on membrane fouling focused only on a single, well 

characterized foulant of homogenous physicochemical properties (referred to in 

this paper as singlet fouling) [1, 2]. One marked limitation in applying the 

theoretical and experimental results obtained from these studies to water and 

wastewater filtration systems is that fouling in these systems is almost always 

caused by more than one type of foulant, each with various particle/molecular sizes 

and surface characteristics. 

One difficulty that arises when considering filtration of a solution containing 

foulants of different particle sizes and/or surface characteristics (referred to in this 

paper as combined fouling) is understanding if and how these differences affect 

foulant-foulant interactions and fouling layer formation. A limited number of 

studies on combined fouling by both inorganic colloids and dissolved organic matter 

have shown that fouling behavior differs under varying solution conditions and with 

different membrane types [28, 46, 136]. Although all studies observed that 

combined fouling cannot be predicted from fouling by individual foulants alone, 

fouling mechanisms specific to combined fouling have been identified to explain the 

complex behavior. Li et al. [46] performed combined fouling experiments with a 

low salt-rejection NF membrane in the presence of silica colloids and NOM. Flux 

decline measurements revealed significantly faster membrane fouling in combined 

fouling experiments than what might be predicted by summing the contributions 

from each foulant based on the individual fouling experiments. The aggravated 
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membrane fouling or enhanced flux decline (referred to in this paper as a synergistic 

effect) was attributed to the hindered back diffusion of each foulant. Hindered back 

diffusion, where two foulants indirectly affect each other to change the way they 

deposit onto the membrane surface by reducing effective diffusivity due to 

increased concentration and changes to solution viscosity, may be caused by other 

relatively small suspended foulants such as organics. Similar synergistic effects 

were reported by Contreras et al. using the same low salt rejecting NF membrane 

[136]. In another study performed on a high salt-rejection NF membrane, Lee et al. 

[28] found that flux decline during filtration of a mixture of NOM and silica colloids 

was initially enhanced compared to the sum of the flux declines caused by each 

foulant individually, but was reduced in the latter filtration stages. It was 

hypothesized that an /(active salt rejecting layer" formed during combined fouling 

negated the effect of cake-enhanced osmotic pressure (CEOP), in which the colloidal 

cake layer increases the salt concentration in the concentration polarization layer 

and consequently the osmotic pressure at the membrane surface [44, 45]. Contreras 

et al. investigated the mechanisms of combined fouling using four different organic 

foulants: dextran, BSA, alginate and Suwannee River humic acid. It was found that 

both organic-colloid and organic-membrane interactions played important roles in 

combined fouling. The impact of these interactions on membrane flux strongly 

depended on the molecular properties of the dissolved organic foulant. For 

example, BSA adsorbs on Si02 particles and aggregation in the fouling layer; on the 
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other hand, dextran, alginate and humic acid indirectly contribute to synergistic flux 

decline due to hindered back diffusion [136]. 

Another important factor that determines membrane flux during combined 

fouling is the structure of the fouling layer [136]. The specific resistance of a fouling 

layer formed by polydispersed foulants strongly depends on its physical structure 

[137-139]. Several studies have shown that models assuming poly-dispersed 

suspensions form stratified layers or completely mixed layers results in different 

resistances and permeabilities, with layers foulants with small diameter expected to 

deposit first due to decreased drag and to form layer of higher resistance due to 

increased layer specific resistance [41, 43]. 

In all reported experimental studies on combined fouling, flux decline or 

fouling layer resistance during combined fouling was compared to that predicted 

from the simple additive sum of the flux decline or hydraulic resistance caused by 

individual foulants. Kim et al. illustrated that summing individual foulant resistance, 

i.e., the resistance in series model, implicitly assumes horizontally stratified layers 

of individual foulants in the fouling layer; summing flux decline due to each 

individual foulants, however, assumes resistance in parallel or a horizontally 

stratified structure i.e., different types of foulants exists in the fouling layer in a 

segregated manner and occupy different areas of the membrane surface. This study 

developed a mathematical model that determines the hydraulic resistance of a 

combined fouling layer assuming that colloidal and dissolved organic foulants are 

completely mixed in the fouling layer. Comparison between experimental 
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measurements and model calculations revealed that the combined fouling layer of 

BSA and Si02 colloids formed during dead-end filtration with no stirring actually 

had a resistance between those predicted for a completely mixed and a horizontally 

stratified fouling layer [138], suggesting that the actual structure of the combined 

fouling layer may be a combination of the two. 

In this study, two ways of calculating combined fouling layer resistance 

based on individual foulants separately were compared to actual combined fouling 

layer resistance in order to elucidate fouling mechanisms unique to combined 

fouling: additive resistance and equivalent resistance. We use direct observation to 

determine the structure of combined fouling layers formed during filtration of 

complex suspensions and investigate the impact of foulant-foulant interaction on 

fouling layer structure, thickness and thus hydraulic resistance. We show that the 

combined fouling layer structure depends on salt rejection of the membrane, the 

particular dissolved organic foulant involved, and the type of foulant-foulant 

interactions present. Multiple combined fouling layer structures were identified 

that impacted layer resistance differently: completely mixed layers, aggregated 

layers, and stratified layer structure. 
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4.2. Methods 

4.2.1. Membranes. 

A nanofiltration membrane NF 270 (Dow-FilmTec, Minneapolis, MN) and a 

reverse osmosis membrane LFC 1 (Hydranautics, Nitto Denko, Oceanside, CA) were 

used in this study. Precut membrane samples were stored in de-ionized water at 4 

QC. The storage water was replaced weekly. Both retentate and permeate water 

were continuously recycled back into the feed water and the crossflow velocity was 

1 LPM (laminar range). The average hydraulic resistance and permeability of the NF 

270 membrane, determined from clean water flux measurements, was 1.96 (± 0.09) 

x 1013 m-1 and 5.11 (± 0.26) x 10-11 m2s/kg, respectively, at 20 ± 0.3 QC. Observed 

NaCI rejection at a feed concentration of 10 mM ranged from 40.2% - 58.8% at 20 ± 

0.3 QC, consistent with the manufacturer's specified salt rejection of 40-60%. The 

average hydraulic resistance and permeability of the LFC 1 membrane under the 

same conditions was 1.19 (± 0.14) x 1014 m-1 and 8.54 (± 1.17) x 10-12 m2s/kg. The 

LFCl rejection of NaCI ranged from 96.6% - 98.2 % , slightly lower than the 

manufacturer's specified salt rejection of 99.0% 

4.2.2. Model foulants. 

Humic substances, proteins and polysaccharides have been identified as the 

major organic foulants in water and wastewater [124-129]. In order to study the 



different effect of each organic foulant type, four organic compounds from these 

classifications were used in this study: Suwannee River humic acid (SRHA), dextran 

(DEX), sodium alginate (ALG), and bovine serum albumin (BSA). Dextran, a neutral 

polysaccharide, was chosen because it is known to have minimum interaction with 

most surfaces and serves as a good model for (fnon-interacting" macromolecules. 

SRHA (standard II) was obtained from International Humic Substances 

Society (St. Paul, MN) and used as received. Dextran from Leuconostoc 

mesenteroides, sodium alginate derived from brown algae, and BSA were purchased 

from Sigma-Aldrich (St. Louis, MO). The molecular weights reported by the 

manufacturers are 1 - 5, 9 - 11, 10 - 60, and,...., 66 kDa for SRHA, dextran, sodium 

alginate, and BSA, respectively. All stock solutions and feed waters were prepared 

using ultrapure water produced by a Millipore system (18.1 n - RiOS System, 

Billerica, MA). SRHA stock solution was prepared by dissolving the SRHA powder at 

pH 8.2 (adjusted using 1 M NaOH) followed by vacuum filtration (Whatman Grade 

No. 1 filter paper, England). The concentrations of the stock solutions were 

determined by total organic carbon (TOC) measurements with a high sensitivity 

TOC analyzer (TOC-Vcsh, Shimadzu Scientific Instruments, Japan). All stock 

solutions were stored in the dark at 4Q C. 

Commercial colloidal silica, Snowtex-XL (ST -XL, Nissan Chemical America 

Corp., Houston, TX) was used as the model colloidal foulant. Manufacturer supplied 

data specified that the particle size ranged from 40 to 60 nm, which agreed with the 

measured particle size of 60.7 ± 1.2 nm. 
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Surface zeta potential and hydrodynamic diameter of the model foulants 

were characterized by electrophoretic mobility and dynamic light scattering (DLS) 

measurements using a Zetasizer Nano ZS (Malvern Instruments} Westborough} MA). 

Details of the characterization were reported elsewhere [136]. 

4.2.3. Membrane filtration experiments. 

Membrane filtration experiments were carried out in a laboratory scale 

cross-flow filtration system consisting of two plate-and-frame membrane filtration 

cells in parallel [136]. Filtration experiments included three phases: membrane 

compaction} conditioning} and fouling. The membranes were first compacted at 100 

psi for NF 270 membrane and 400 psi for the LFC 1 membrane} using ultrapure 

water for a minimum of 5 hours to obtain a stable clean water flux. During the 

conditioning phase} background electrolyte solution} was filtered through the 

membranes for at least 9 hours. Pressure was adjusted to yield a stable permeate 

flux of 2 x 10-5 mls in all experiments} corresponding to an applied pressure range 

of 65 -70 psi and 380 - 420 psi for the NF 270 and LFC 1 membranes} respectively. 

This ensured the same initial permeate flux for the fouling stage of all experiments. 

Conductivity of both permeate and feed waters was monitored during the 

conditioning phase to check membrane integrity and establish initial observed salt 

rejection. 
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Fouling experiments were performed with feed waters containing ST-XL 

alone, an organic foulant alone and both the ST -XL and an organic foulant. 

Concentrations of ST-XL and the organic foulants were 100 mg/L and 20 mg/L, 

respectively, in all experiments. Two background electrolyte solutions of the same 

ionic strength were studied, 10 mM NaCI and 7 mM NaCl/l mM CaCh). NF 270 

experiments were performed in 10 mM NaCI only while LFC 1 experiments were 

performed under both solution conditions. Pressure, permeate flux, and feed water 

temperature were continuously monitored during the experiments. Samples were 

taken from both the feed and permeate lines at predetermined times during both 

the conditioning and fouling stages for analysis of pH, conductivity, and foulant 

concentration. 

4.2.4. Autopsying membranes using Transmission Electron Microscopy 

(TEM). 

At the end of each filtration experiment, fouled membranes were carefully 

removed from the filtration cells, stored in dark at 4 °C and kept moist in sealed 

containers until autopsy could take place. A resin embedding protocol was adapted 

[140] to prepare fouled membrane samples for TEM analysis. The skin layers of the 

fouled membrane samples were first carefully separated from the support layer 

using tweezers and were then dehydrated by soaking in a series of ethanol/DI water 

solutions (of 700/0,900/0, 100%, 100% ethanol, each step for 15 min). Next, a series 
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of resin exchanges with a low viscosity resin (LR white resin, SPI Supplies, West 

Chester, PA) were used to insure full infiltration of both the fouled layer and the 

membrane. Samples were then sealed from air using flat embedding molds (Ted 

Pella, Inc., Redding, CA) and heated in an oven at 60°C for 3 days to dry. This 

dehydration protocol may decrease the overall dimensions of the sample slightly 

(up to 10%), which is well within an acceptable amount given the large degree 

foulant layer thickness can vary from sample location to location [141]. 

Thin sections (120 nm) of the resin embedded samples were cut first using 

an Leica ultramicrotome followed by a Leica diamond knife and then transferred 

onto formvar/carbon coated copper TEM grids (Ted Pella, Inc. Redding, CA). No 

staining was necessary to image the fouling layer. TEM images were obtained for 

both virgin and fouled membranes with a lEOL 1230 transmission electron 

microscope (TEM) (tungsten filament) at an acceleration voltage of 80 kV (JEOL 

USA, Peabody, MA). 

4.2.5. Calculation of combined fouling layer resistance. 

During filtration of foulant-free water, the resistance of the clean membrane 

(Rm - m-1) can be calculated using Darcy's law with the knowledge of experimentally 

measured permeate flux (v - m/s), applied pressure (LlP - Pa), and solution viscosity 

(f.1 - N/m 2s). 
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M 
v = -----,,---:-

HIli (R) JL m 

Equation 4.1 

When a foulant is present, the additional resistance caused due to 

accumulation of this foulant at the membrane surface can be included in terms of an 

effective decrease in pressure, such as an osmotic pressure difference that occurs as 

a result of concentration polarization when salt ions are present (Ll1Tm), or an 

additional resistance, such as the resistance caused by a fouling layer (Rf). 

Equation 4.2 

IV is determined by the specific resistance of the fouling layer or the fouling 

layer mass per unit membrane area. For mono-dispersed, spherical colloids, the 

specific cake resistance can be estimated using the Carman-Kozeny equation, 

Equation 4.3 
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Although several models have been proposed to predict and/or explain the 

filtration of complex solutions consisting of multiple foulant types, the calculation of 

fouling layer resistance must assume a certain fouling layer structures that mayor 

may not represent the actual fouling layer structure. Determinations must be made 

on whether the fouling layer structure is completely mixed or completely stratified. 

Assuming a completely mixed fouling layer, Kim et al. [138] developed a model 

calculation of combined fouling layer specific resistance using a composite cell 

model approach based on volume fraction of the colloid (¢(' ) and the organic ( rp ~ ) 

Equation 4.4 

where Q KY is Happel's correction factor [36], a and fJ are factors corresponding to 

the permeability of the composite layer [138], and b is the diameter of the 

composite sphere. 

4.2.6. Equivalent resistance calculation. 

Previous studies on combined fouling (fouling with a combination of salt 

ions, organic macromolecules, and colloid particles) have calculated the flux decline 

due to mUltiple foulants via two different equivalent flux methods, a strong form 

and a weak form [138]. Originally proposed by Lee et al. and Li and Elimelech [28, 
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46], the strong form of the equivalent flux (v;q) assumes that the flux decline of a 

combined solution(vcom} is equivalent to the sum of the flux declines of the 

individual components (where Vc - flux due to inorganic colloids alone and Vg is the 

flux due to organic alone). It is effectively an additive flux decline calculation: 

V ;:q = V it'O - (v wo - vc ) - (v wo - v g ) = V c + vI{ - V wO == V C(}/II Equation 4.5 

Normalized and in terms of membrane resistance, the same equation can be 

rearranged to be: 

__ R~' /II~ _ _ __ R_' m __ + __ R_' ' ___ 11_ -1 
R/II +R'g Rm +R'c Rill + R'C() /11 

Equation 4.6 

where R'm is the resistance attributed to the membrane and the concentration 

polarization layer at the end of the conditioning phase (m-I). Rg and R'c are the 

resistances due to organic and colloid accumulation at the membrane surface, 

respectively, and include the resistance due to osmotic pressure. This calculation 

assumes vertically stratified fouling layers of each foulant, and is essentially a 

resistance in parallel model. 
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4.2.7. Additive resistance calculation. 

In this study, the additive resistance calculation, or weak form of the 

equivalent flux, is used to calculate the combined fouling layer resistance (Reom) 

during the experiment. The additive resistance calculation assumes that the total 

resistance (Reom) of a fouling layer consisting of organics and colloids can be 

calculated from additive contributions of each foulant: 

R (;0111 = Rill + R c + R x Equation 4.7 

where Rm, Re, and Rg , are the resistances due to the membrane, colloid cake layer, 

and organic gel layer, respectively, in series. These resistances differ from R'm, R'g 

and R'e in that they do not include the resistance due to osmotic pressure. Osmotic 

pressure contribution is calculated separately by rearranging the film-theory 

equation to produce the following expression [44], 

Equation 4.8 

which relates the trans-membrane osmotic pressure (L1rrm) to the bulk, membrane 

surface, and permeate molar salt concentrations (Cb, Cm, and Cp), the observed salt 

rejection (Ro = 1 - Cp/Cb), and the mass-transfer coefficient (k) through the osmotic 

coefficient /os [133]. Salt concentrations are calculated based on feed and permeate 



conductivity measurements. Since low salt concentrations were used in this study, 

van't Hoffs equation was used to determine los [45]. Details for calculating k can be 

found in our previous work [136]. 
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This method includes the ability to examine the effect of cake enhanced 

osmotic pressure (CEOP) in L1rrm, when the presence of a cake layer increases 

concentration polarization of salt ions within the tortuous pores of the cake layer 

and increases the osmotic pressure at the membrane surface [45]. In our 

calculation, membrane intrinsic rejection was assumed constant for a given 

membrane. Therefore CEOP is assumed when the osmotic pressure differences 

(L1rrm) increases over the course of the experiment. Analyzing the change in osmotic 

pressure over the course of the experiment reveals insight into the fouling layer 

structure mechanisms contributing to the combined fouling flux decline. 

4.3. Results and Discussion 

4.3.1. Cross-flow filtration experimental results. 

In order to examine combined fouling mechanisms, the measured combined 

fouling layer resistance (Reom) was compared to that predicted from individual 

fouling resistances using an equivalent resistance (ER) calculation and the additive 

resistance CAR) calculation at similar volume of permeate collected. 
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Normalized equivalent resistance of the fouling layers are presented in 

Figure 4.1 and Figure 4.2a, for NF 270 and LFC 1 membranes in 10 mM NaCl. LFC1 

membrane in 7 mM NaCI and 1 mM CaCh is also presented in Figure 4.2b. 

Normalized additive resistances of the fouling layer are presented in Figure 4.3 and 

Figure 4.4a for NF 270 and LFC 1 membranes in 10 mM NaCI, respectively, after 5 L 

of permeate was collected. Additionally, experiments performed on LFC 1 

membrane in 7 mM NaCI and 1 mM CaCh are shown in Figure 4.4b. Model silica 

colloids alone caused significant decline of the membrane flux (Figure 4.1 - 4.4). 

With ST -XL-only experiments with each membrane, increases in osmotic pressure 

are observed after 5L of permeate is filtered (Table 4.1). This increase is greater for 

the LFC1 membrane as salt rejection is also greater. Increase in osmotic pressure 

during filtration of colloids-only is known fouling mechanism called cake enhanced 

osmotic pressure (CEOP) or cake enhanced concentration polarization (CECP) [45] 

and is caused due to an increased salt concentration gradient within the pores of the 

colloid cake layer. This increase in osmotic pressure acts as an increase in 

resistance causing further flux decline in a similar manner as hindered back 

diffusion. Each combined fouling case will be examined in order to determine if 

osmotic pressure increases are greater or less than the colloid-only counterpart, 

revealing additional information about the combined fouling layer structure. 

Resistances will be analyzed alongside TEM images of the layer itself to 

identify combined fouling mechanisms related to structure and to determine if the 

assumptions made during combined resistance calculation are valid. Combined 
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fouling layers are directly inspected through TEM images of autopsied membranes. 

For reference, virgin membranes NF270 and LFC1 are shown in Figure 4.Sa and b, 

respectively. A ST-XL-only fouling layer (Figure 4.Sc) and an organic layer of BSA­

only (Figure 4.Sd) formed on the NF270 membrane are also shown for comparison. 

4.3.1.1. Combined fouling with dextran. 

Dextran alone did not significantly foul either membrane, as evidenced by the 

low normalized fouling layer resistances presented in Figures 4.1 to 4.4. There 

appears to be little to no synergistic effect during the latter stages (after 5.0 L 

permeate collected) of combined fouling with dextran on the NF270 as compared to 

either the additive or equivalent resistance. The combined fouling layer formed on 

the LFC1 membrane has a higher resistance than either the calculated additive or 

equivalent resistance, indicating slight synergism. Because dextran and silica do not 

directly interact [136], the synergism observed cannot be due to modified silica 

properties that enhance deposition and membrane fouling. 

TEM imaging of the combined fouling layer on the NF270 membrane shows a 

closely packed layer, similar in structure to the silica-alone fouling layer (Figure 

4.6a). These layers appear to have dextran evenly mixed within the layer. No 

significant variation is seen between the additive and equivalent calculations 

because the individual resistance of dextran-alone is so small. The fouling layer 

created with the LFC1 membrane with and without the presence of CaCh had 
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similar structures (Figure 4.6c and Figure 4.8a), with dextran evenly mixed, yet 

exhibited a greater synergistic effect. Because LFCl is a more selective membrane, 

the effect of hindered back diffusion as well as the increased resistance due to a 

completely mixed layer both contributes to the slight synergistic flux decline. 

After 5.0L of permeate during combined filtration with dextran and ST-XL 

there is slight increased osmotic pressure with the NF270 membrane (Table 4.1). 

Although there is significantly decreased osmotic pressure with the tighter LFC1 

membrane under both salt conditions, the total increase in osmotic pressure is less 

than experiments performed with ST-XL alone. From the TEM images in Figure 4.7c 

and Figure 4.8a, interstitial dextran was observed. Analyzing the osmotic pressure 

change over the experiments in conjunction with the TEM images reveals that 

osmotic pressure decreases as the void space previously occupied by salt ions is 

replaced by dextran. For layers created on the LFCl membrane, the presence of 

dextran within the layer makes the layer less permeable to convective flow and 

forms a "salt-rejecting layer," thus osmotic pressure decreases over time (Table 4.1). 

4.3.1.2. Combined fouling with BSA. 

During the filtration of the BSA solution with both membranes, the fouling 

layer appears to be compressible as the resistance remains steady in the beginning 

(after 0.5 L permeate collected) and then increases drastically in the later stages of 

fouling (after 5.0 L permeate collected) (Figure 4.3 and 4.4). BSA layer 



compressibility is seen more clearly when considering the flux decline curves (for 

NF270 membrane, see [136]. Data for LFC1 membrane is similar but not shown). 

This is consistent with the study by Kim et al. which reported an increase in the 

volume fraction of the BSA gel layer formed during dead-end filtration [138]. 

Significant synergism is observed throughout the combined fouling of both 

membranes when compared to both the additive and the equivalent resistances, 

despite different salt rejections of the two membranes (Figures 4.2 to 4.4). In 

addition to the hindered foulant back diffusion, greater combined fouling resistance 

as compared with the calculated resistances during initial fouling is also attributed 

to the faster deposition of ST -XL, a result of the lower negative surface zeta potential 

of ST -XL and membrane upon adsorption of BSA [136]. For the LFC1 membrane in 

the presence of Ca2+, the resistance created by the combined fouling layer is 

significantly greater than that created in NaCI alone (Figure 4.4). 

Inspection of the BSA-ST -XL fouling layer shows a hybrid structure of 

unevenly spaced particles and organic, possibly the result of aggregation with the 

CP or fouling layer (Figure 4.6b, Figure 4.6d and Figure 4.8b). Analysis of the feed 

water over the course of these experiments showed an increase, instead of the 

expected decrease, in turbidity with filtration time, resulting from the formation of 

BSA-ST-XL aggregates. Storage of the same feed solution over time did not show 

similar increase in particle size, indicating that these aggregates likely formed in the 

CP or fouling layer above the membrane. Because BSA adsorbs on silica surfaces, 

the observed synergism results from the interplay of all the three combined fouling 
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mechanisms introduced earlier and further discussed in [136]. As permeate volume 

increases, the calculated combined resistance is likely higher due to increased gel 

volume concentration within the fouling layer. The results of combined fouling with 

BSA show that the effects of organic foulant adsorption on silica surface are complex 

and can have important implications on membrane flux decline. Additionally, the 

aggregated structure creates a much more resistant layer than is predicted by 

calculations based on the individual components. 

On NF270 and LFC1 in the presence of NaCI-only, the osmotic pressure of 

combined fouling layers created with BSA remains constant, while it increases 

slightly for LFC1 with Ca2+ present (Table 4.1). These changes are still less than ST­

XL-only experiments, indicating that the BSAjST -XL aggregate structure does not 

promote CEOP as a pure colloid cake layer does in NaCI alone. In the presence of 

Ca2+, BSA zeta potential decreases, increasing its likelihood to aggregate (Chapter 5, 

Table 5.2). These larger aggregates result in slight CEOP as salt is concentrated 

within the spaces, which are not present with smaller aggregates. 

4.3.1.3. Combined fouling with humic acid. 

Fouling layer resistance resulting from fouling due to SRHA-alone was very 

small for both membranes (Figure 4.1 to Figure 4.4). SRHA was previously shown 

to have contradicting effects on combined fouling depending on the salt rejection of 

the membrane used [28, 46]. The results presented here agree with the previously 
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published results and are consistent throughout the experiments: for the low salt­

rejecting NF 270 membrane, a synergistic effect was observed during the combined 

fouling experiment; with the high salt-rejecting LFC 1 membrane, a reduced fouling 

effect was observed during combined fouling compared to what would be 

anticipated from the results of the individual components. In a study using a high 

salt rejection NF membrane, Lee et al. suggested enhanced colloidal stability in the 

presence of the NOM decreased colloid deposition and decreased the CEOP effect 

[28]. While our previous results show that ST -XL properties remain unchanged in 

the bulk concentration and at best slightly stabilized in the presence of Ca2+ 

(Appendix A), it is possible that at higher concentrations SRHA would enhance ST­

XL stability, as would be seen at the membrane surface [136]. 

TEM imaging of the combined SRHA-ST -XL fouling layer shows a notable 

difference between the fouling layer structures on NF 270 and LFC 1 (Figure 4.7a vs. 

Figure 4.7c and Figure 4.8c). As humic acid does not adsorb to ST-XL [136], the 

synergism observed with the NF 270 membrane is attributed to the hindered back 

diffusion of the foulants as well as the greater specific resistance of a completely 

mixed fouling layer with humic acid interspersed in the ST -XL cake layer. Direct 

observation of the fouling layer during filtration with NF270 shows a thinner, well 

mixed layer (Figure 4.7a) as opposed to the thicker, stratified layers formed during 

filtration with LFC1 (Figure 4.7c and Figure 4.8c) where immediately adjacent to the 

membrane surface is a dense, dark layer of humic acid and much looser layer with 

both colloids and larger pockets of humic acid towards the feed side. The 



completely mixed layer during low-salt rejection filtration exhibits more resistance 

than what would be expected by summing individual components, which is 

supported by literature which showed that foulant polydispersity increases 

resistance and thus specific resistance through the addition of smaller particles [41]. 

However, during high-salt rejection filtration, the stratified fouling layer formation 

produces a total resistance that is less than the sum of the individual components. 

Based on the osmotic pressure data, the dense layer at the surface seen in the 

images is salt rejecting. while the looser, predominately ST-XL layer has a lower 

specific resistance, so the combined total is still less than the either calculated 

resistance. 

Similar to the dextran combined fouling cases, combined fouling for humic 

acid and ST-XL had no observable change in osmotic pressure using the NF270 

membrane and decreased osmotic pressure using the LFC1 membrane (Table 4.1). 

With the LFC1 membrane, the combined fouling layer created at the membrane 

surface decreases osmotic pressure by becoming less permeable to salt ions than 

the membrane itself. This phenomena of an "active rejecting fouling layer" is 

consistent with an earlier study on combined fouling using high salt rejecting 

membranes [28]. 
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4.3.1.4. Combined fouling with alginate. 

Sodium alginate fouling resistance created on both membranes in the 

presence of NaCI-only was comparable to that of the resistance created by the other 

organic foulants. In the presence of Ca2+, however, the alginate layer increases 

resistance greatly by forming a strong cross-linked gel layer which creates 

substantial resistance (Figure 4.5). Strong synergism was observed during the 

filtration of the ST-XL-alginate mixture in NaCI for both membranes as the fouling 

layer resistance calculated during combined fouling is significantly higher than the 

calculated sum of individual fouling layers (80% and 48% higher for NF270 and 

LFC1, respectively). However, although the absolute resistance of the layer in the 

presence of Ca2+ is much greater than all the other experiments, synergism is not 

observed during combined fouling in the presence of calcium (Figure 4.4). 

TEM images of the alginate combined fouling layer formed on N270 and LFC1 

in NaCI-only show a very dense, compact fouling layer of closely packed colloids 

(Figure 4.7b and Figure 4.7d). The alginate combined fouling layer formed on LFC1 

in the presence of Ca2+ consists of ST-XL suspended within a gel-like alginate 

structure (Figure 4.8d). The same combined fouling mechanisms for SRHA 

(hindered back diffusion and cake layer structure) are expected to apply to alginate 

combined fouling based on individual and combined fouling characterization since 

alginate did not modify the ST -XL surface [136]. It is postulated the stronger 

synergism is due to a more significant effect of the hindered back diffusion 

mechanism. Since sodium alginate solution is much more viscous than the other 
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model foulants, the back diffusion of the silica colloids in the CP layer may be more 

severely hindered, causing faster accumulation of silica and therefore a greater flux 

decline rate. In the presence of Ca2+, the additional resistance caused by the 

presence of ST-XL is cancelled out by the loss of resistance due to interrupting the 

cross-linking of a continuous alginate gel layer. Therefore, the calculated 

resistances overestimate the combined fouling layer resistance and a reduced 

fouling effect is observed. 

Combined fouling for alginate and silica had no observable change in osmotic 

pressure using the NF270 membrane yet different osmotic pressure changes using 

the LFC1 membrane (Table 4.1). In the presence of only NaCl, the osmotic pressure 

decreased significantly whereas in the presence of CaCh there was significant 

increase in osmotic pressure. The gelled structure ofthe alginate-ST-XL-Ca2+ fouling 

layer retains salt ions, increasing the resistance further, while the alginate-ST-XL 

layer in the presence of NaCl acts as an active rejecting layer. In the presence of 

Ca2+, alginate particle size nearly doubles and when closely packed, larger pore 

spaces are present. Salt is able to penetrate this layer, since it is not fully cross­

linked like the alginate-only layer in Ca2+, and accumulate in the interstitial pore 

space and create CEDP. 
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4.4. Conclusions 

Understanding the fouling behavior of complex suspensions and being able 

to predict fouling based on water characteristics is a formidable research challenge. 

Most previous studies on combined fouling of organic macromolecules and 

inorganic colloids have attempted to predict fouling behavior based on knowledge 

of individual foulant characteristics. In this study, the flux decline behavior of 

combined suspensions were investigated on a nanofiltration (NF 270) and a reverse 

osmosis (LFC 1) membrane in order to examine mechanisms responsible for the 

synergistic and reduced fouling phenomena previously observed in combined 

fouling. Combined fouling of four model organic macromolecules in combination 

with one model inorganic foulant was investigated. Actual combined fouling layer 

resistances formed in the presence of two foulants were compared to two calculated 

resistances based on individual foulant resistances: an additive resistance 

(resistances in series) and an equivalent resistance (or additive flux decline). The 

three hypothesized mechanisms: hindered back diffusion, organic foulant 

adsorption, and increased resistance of the mixed fouling layer due to interstitial 

presence of the organic were shown to have varying effects on combined fouling, 

The extent of the synergistic effects observed during combined fouling strongly 

depends on the molecular characteristics of the organic foulant and the structure of 

the fouling layer. Great synergism was observed in the presence of an interacting 

organic foulant, BSA, which adsorbed to silica colloidal as well as the membrane 

surface to reduce repulsive interaction between foulants and the membrane as well 
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as that among foulants. Its aggregate fouling layer structure also led to increased 

resistance beyond what is predicted by the individual components. Lack of 

synergism during filtration of SRHA and ST -XL with a high-salt rejecting membrane 

is related to differences in the cake layer structure and the presence of an active 

rejecting layer which minimizes the effect of CEOP, which is confirmed with direct 

imagine by TEM. In the presence of Ca2+, alginate was also shown to form a gel 

layer of significant resistance but the additional presence of ST-XL during combined 

fouling acts to break up the cross-linked alginate layer to reduce fouling. 

Additionally, observing and calculating changes in osmotic pressure during the 

experiments reveal that combined fouling on high-salt rejecting membranes reduce 

the CEOP effect by forming a combined layer resistant to convective flow. TEM 

imaging of the layer directly helps to elucidate which mechanisms contribute to flux 

behavior regarding foulant positioning within the combined fouling layer. 



Table 4.1 - Change in calculated osmotic pressure after 5.0 L of permeate is 

collected with for NF270 - 10mM NaCl, LFC1 - 10mM NaCI, and LFC1 - CaClz. 

Values are calculated from Equation 4.8 using conductivity measurements collected 

from the permeate and feed waters. 

Foulant(s) 

STX L I jw!vjiM~%h} ·jlliWilKilll!£i.k~ ;;j 
Dextran + STXL 

BSA + STXL 

SRHA + STXL 

ALG + STXL 14tmmn.\) ·"' •• .. "MtlntlkC 
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Figure 4.1 - Comparison of the normalized equivalent resistance (ER) calculation 

(R' fiR' m) for the NF 270 membrane after 5.0 L of permeate filtered. Background 

solution: 10mM NaCI, pH = 6.0 ± 0.2. Experiments run with both colloid and organic 

present are listed as tlORGANIC + STXL" and are compared to the ER based on the 

individual components, tiER ORGANIC + STXL" for synergism. 

2 

J E 1.8 I NF270 - NaCl1 0:: 

--- I <4- 1.6 j 0:: 

Q) 1.4 u 
c: I 

ro 1.2 ···1 .... 
.~ .j Vl 1 Q) 
0:: 

·1 
""0 0.8 W-; 
Q) 

.t:::! 0.6 -1 ro 
E 0.4 

1 ,_1_-
~ 

0 
z 0.2 .,' -1 Jt 0 .+-

~ <ve+ c;..~ c;..~ <oc.,t(- c;..~ c;..~ 9:-v:-t(- c;..~ c;..~ :-v0 ~ ~ c} ~ c} c} 
x x x x '? x x x x 

e+ e+ ~~ ~~ ~~ ~~ :-v0 :-v0 
<:) ~ <:) <0 ~<o c.,~ c.,~ ~ ~~ «; «; <v«:- «; 



108 

Figure 4.2 - Comparison of the normalized equivalent resistance (ER) calculation 

(R'f/R'm) for the LFCl membrane after 5.0 L of permeate filtered. Background 

solution: (a)10mM NaCI, and (b) 7 mM NaCI/l mM CaC}z, pH = 6.0 ± 0.2. 

Experiments run with both colloid and organic present are listed as "ORGANIC + 

STXL" and are compared to the ER based on the individual components, "ER 

o RGANI C + STXL" for synergism. 
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Figure 4.3 - Comparison of the normalized additive resistance CAR) calculation. 

Normalized fouling layer resistance CRf/Rm) for the NF 270 membrane after 5.0 L of 

permeate filtered. Background solution: 10mM NaCI, pH = 6.0 ± 0.2. Experiments 

run with both colloid and organic present are listed as "ORGANIC + STXL" and are 

compared to the sum of the individual components, "SUM ORGANIC + STXL" for 

synergism. 
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Figure 4.4 - Comparison of the normalized additive resistance CAR) calculation. 

Normalized fouling layer resistance CRf/Rm) for the LFC 1 membrane after 5.0 L of 

permeate filtered, in both background solutions: a) 10mM NaCI and b) 7mM 

NaCI/lmM CaCh, pH = 6.0 ± 0.2. Experiments run with both colloid and organic 

present are listed as "ORGANIC + STXL" and are compared to the sum of the 

individual components, "SUM ORGANIC + STXL" for synergism. 
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Figure 4.5 - TEM images of autopsied membranes: a) NF270 Virgin; b) LFCl Virgin; 

c) NF270 STXL layer in 10mM NaCl, and; d) NF270 BSA layer in 10 mM NaCI. 
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Figure 4.6 - TEM images of autopsied fouling layers a) NF270 STXL/Dex in lOmM 

NaCl; b) NF270 STXL/BSA layer in lOmM NaCl; c) LFCl STXL/Dex in NaCt and; d) 

LFCl STXL/BSA in lOmM NaCI. 
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Figure 4.7 - TEM images of autopsied fouling layers a) NF270 STXL/HA in lOmM 

NaCI; b) NF270 STXL/Alg layer in lOmM NaCI; c) LFCl STXL/HA in NaCI, and; d) 

LFCl STXL/ Alg in lOmM NaCl. 
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Figure 4.8 - TEM images of autopsied fouling layers formed on LFCI in 7mM NaCI 

and ImM CaCh, a) STXLjDex layer; b) STXLjBSA layer; c) STXLjHA layer, and; d) 

STXLj Alg layer. 
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Chapter 5 

Studying the Impact of Membrane 
Surface Chemistry on Adsorption and 

Cleaning of Organic Foulants using 
QCM-03 

5.1. Introduction 

Thin-film composite (TFC) membranes are widely used in reverse osmosis 

(RO) and nanofiltration (NF) systems for desalination, ultra-pure water production, 

drinking water purification and wastewater reuse [4]. A major hindrance to wider 

application of NF and RO for water treatment is fouling of the membrane by mineral 

precipitation (scaling), colloidal or dissolved organic matter [29, 134, 135], and 

3 Manuscript submitted and in review at Environmental Science and Technology. 
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biofilm formation (bio-fouling) [142, 143]. Fine colloidal and dissolved organic 

compounds, including proteins, polysaccharides, and natural organic matter (NOM), 

are the most common foulants found in natural and wastewaters [125, 126, 144-

146]. They can escape pretreatment and cannot be controlled by anti-scalants. In 

addition to increasing hydraulic resistance, adsorption of dissolved organic 

compounds forms the conditioning layer for bacterial adhesion and subsequent 

biofilm development [126, 127, 143]. The distribution and relative abundance ofthe 

adsorbed proteins and polysaccharides has been shown to influence the biofilm 

structure [147]. However, design of membrane materials resistant to organic fouling 

is a formidable challenge because our understanding of the main interactions 

controlling the organic foulant accumulation on RO and NF membranes is limited. 

The influence of membrane properties such as hydrophobicity, charge, surface 

roughness, and porosity on fouling has been investigated in many previous studies 

[109, 148]. In particular, membrane surface hydrophobicity, usually determined by 

water contact angle measurement, was commonly related to organic fouling 

propensity [131, 135], although some recent studies showed that this was not 

always the case [131, 148]. Membrane surface properties such as hydrophobicity 

and charge are directly determined by membrane surface chemistry. Unfortunately 

the roles of specific chemical functionalities on membrane surfaces are largely 

unknown because of the chemical heterogeneity resulting from the interfacial 

polymerization that forms the thin active barrier in RO and NF membranes. 
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One possible route for simplifying the problem is to study the contribution of 

individual chemical functionalities using well-defined and homogenous surface 

chemistry. Whitesides and coworkers formed self-assembled monolayers (SAMs) of 

alkanethiolates with different ending chemical groups on gold surfaces to study the 

effect of surface wettability on non-specific adsorption of proteins and detergents 

[83]. Surface wettability of each monolayer, measured by water contact angle in 

cyclooctane, was correlated to adsorption of proteins and detergents measured by 

surface plasmon resonance (SPR); in general, adsorption was found to be higher on 

low-wettability surfaces with the polyethylene glycol monolayer being an exception, 

to which adsorption was lower than expected. Belfort and coworkers used atomic 

force microscopy (AFM) to evaluate the adhesion between several proteins, 

including bovine serum albumin (BSA), immobilized on gold surfaces and a series of 

SAMs with uncharged ending functionalities formed on AFM cantilevers [68]. They 

found a 'step-like' dependence of protein adsorption on surface wettability: surfaces 

with high wettability, i.e., those terminated with hydroxyl, amide and ethylene­

glycol showed weak adhesion, while methyl, phenoxy, methoxy, trifluoromethyl and 

nitrile (low wettability) showed high protein adhesion. In another study, adsorption 

of BSA on a hydrophilic (-OH) and a hydrophobic (-CH3) surface was studied using a 

combination of quartz crystal microbalance (QCM) and grazing angle Fourier 

transform infrared spectroscopy. It was found that BSA adsorption was 

accompanied by protein conformational changes and was higher on hydrophobic 

surfaces [97]. Other studies using similar approaches identified a number of 
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chemical functionalities that resist protein adhesion [84, 149]. In general, chemical 

moieties that are hydrophilic, include H-bond acceptors but do not include H-bond 

donors, and are electrically neutral were resistant to protein adherence. 

Quartz-crystal microbalance with dissipation monitoring (QCM-D) is capable 

of measuring minute changes in mass adsorbed on a surface [130, 150]. The 

additional energy dissipation monitoring feature provides information on structure 

of the adsorbed layer. Quartz crystal sensors can be easily modified to yield a wide 

variety of surface chemistries. For example, gold-coated sensors were modified by 

aromatic polyamide mimetic of RO membranes in our recent study [151]. 

In this study we used QCM-D to investigate the adsorption equilibrium as well 

as kinetics of common organic foulants in wastewaters on SAMs of a variety of 

chemical functionalities. The effectiveness of different cleaning solutions in 

removing the adsorbed foulants was also evaluated. Our results suggest that 

membrane surface bulk properties such as hydrophobicity and charge are not 

reasonable predictors of organic foulant adsorption, especially for proteins. Specific 

interactions with individual chemical functional groups in many cases control 

adsorption equilibrium and kinetics as well as the removal of organic foulants by 

chemical cleaning. Surface modification of NF and RO membranes, therefore, should 

aim to minimize such specific interactions. 



5.2. Experimental Section 

5.2.1. Materials. 

Alkanethiols (Table 5.1) used to create the SAMs were purchased in either 

neat form or premade solutions at 1 mM in 200 proof ethanol (Asemblon, Inc., 

Remond, WA). Sodium alginate (10 - 60 kDa) derived from brown algae and BSA (-

66 kDa) were purchased from Sigma-Aldrich (St. Louis, MO). Surface zeta potential 

and hydrodynamic diameter of BSA and sodium alginate (Table 5.2) were 

characterized by electrophoretic mobility and dynamic light scattering (DLS) 

measurements using a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA). 

Reagent grade NaCI, CaCh, NaOH, HCI and sodium-dodecyl-sulfate (SDS) were 

purchased from Sigma Aldrich (St. Louis, MO). All solutions were prepared using 

ultrapure water (~18.1 megan-cm) produced by an E-Pure system (Barnstead, 

Batavia,IL). 

5.2.2. Methods. 

5.2.2.1. SAM preparation and characterization. 

Seven SAMs each with a different ending functional group (Table 5.1) were 

prepared on both gold-coated QCM-D crystals (used for adsorption experiments) 

and gold-coated silicon wafers (for characterization) according to our previous 

publication [152] with slight modifications. Silicon wafers were cleaned 

121 



sequentially in acetone, methanol, and isopropanol in an ultrasonic bath (Bendeline 

Sonorex, London, England) followed by oxygen plasma cleaning for 5 min. They 

were then coated (one side polished, 330-llm thick) with a 10 nm titanium layer 

followed by a 30 nm gold layer at a pressure of 2 x 10-6 bar using a thermal 

evaporator (Odem Ltd., Rehovot, Israel). 

Prior to self-assembly, gold-coated QCM-D crystals and silicon wafers were 

cleaned sequentially in toluene, acetone and ethanol twice in each solvent for 10 

min each time in an ultrasonic bath. The substrates were then dried with ultrapure 

Nz and exposed to UV jozone in a Pro Cleaner chamber (Bioforce Nanosciences, 

Ames, IA) for 30 min. Clean substrates were first immersed in 1 mM alkanethiol 

solutions in ethanol for 24 h at room temperature. Prior to immersion, the pH of 11-

Mercaptoundecanoic acid and ll-Amino-l-undecanethiol hydrochloride solutions 

was adjusted to 2 and 11, respectively, using 0.2 M HCI and NH40H to reduce 

electrostatic repulsion between thiol chains and create a more ordered, 

homogeneous surface. After self-assembly, the substrates were transferred to 1 mM 

dodecanethiol solutions in ethanol for an additional 24 h, dried in ultrapure Nz and 

stored under vacuum. 

The chemical composition of each SAM was analyzed by x-ray photoelectron 

spectroscopy (XPS) using ESCALAB 250 (Thermo Fisher Scientific Inc., Waltham, 

UK) with an Al x-ray source and a monochromator. Since XPS analysis is destructive, 

measurements were performed on SAMs formed on silicon wafers formed in 

parallel with SAMs on QCM-D crystals. 
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Thickness of the SAMs was estimated by Cauchy's equation [153] using an 

SE800 ellipsometer (Sentech Instruments GmbH, Berlin, Germany) with a light spot 

size of 0.5 cm2• The phase difference between the sand p polarized waves and the 

amplitude attenuation were measured as a function of the wavelength from 380 to 

820 nm at incidence angles of 60°, 65° and 70°. The optical constants of the 

underlying layers were determined based on measurements on a clean Au coated 

silicon wafer, and the refraction index of the organic layer was assumed to be 1.5 

[154], which may introduce slight error in the calculated SAM thickness. 

Static contact angle of water in air for the SAMs was measured using the 

sessile drop method with a CAM 200 contact angle analyzer (KSV Instruments LTD, 

Helsinki, Finland). Water drop size was approximately 2.0 ~L. At least four 

measurements were taken per sample surface. Measurements were conducted both 

immediately after preparation of the SAMs and after QCM-D adsorption and 

cleaning experiments. 

5.2.2.2. Adsorption experiments. 

Adsorption of the model organic foulants was investigated using QCM-D (Q­

Sense E4, Q-Sense, Glen Burnie, MD) on freshly prepared SAM coated quartz 

crystals. For a rigid adsorbed layer (Le., negligible energy dissipation, L1D), the 

adsorbed mass is proportional to the change in frequency as described by the 

Sauerbrey equation (Equation 5.1) [132]: 
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2// 11/ = - 0 11m 
A~ Pq f.1 q 

Equation 5.1 

where !::.fis the change in frequency (Hz), !::.m is the change in mass adsorbed (kg),fo 

is the resonant frequency (Hz) of the crystal sensor, A is the piezoelectrically active 

crystal area (mZ), and pq and /1q are the density (kg/m3) and shear modulus (Pa) of 

quartz. For viscoelastic layers that exhibit high energy dissipations (LID), the 

vibrations amplify the shear acoustic wave such that 1Jf is not directly proportional 

to 1Jm. A viscoelastic model was used to fit the I1f and LID data simultaneously to 

determine the density (PI), thickness (d/), shear elastic modulus (/11), and viscosity 

(1]1) ofthe adsorbed layer[91-93]. 

In each experiment, fundamental frequencies of each crystal were first 

verified in air. A baseline was established by running the background electrolyte 

solution for 10 min at 50 ilL/min (Reynold's number = 1.6 x 10-6). This was followed 

by the adsorption step in which the organic foulant in the corresponding 

background solution was fed to the flow modules. After adsorption equilibrium was 

established, the influent was replaced with the background solution to remove the 

residual foulant solution and the subsequent equilibrium data were used for 

analysis. 



After the foulant adsorption experiment, ultrapure water was pumped 

through the flow modules at 50 ~L/min for 10 min to simulate hydraulic rinsing. 

The amount of foulant remaining was then measured in the background solution 

used for the adsorption experiment. The cleaning process was repeated with 2% 

SDS to evaluate the effectiveness of surfactant cleaning. Figure 5.1 shows an 

example of raw data collected from a typical adsorption and cleaning experiment. 

Before each experiment, the crystal sensors and the flow modules were 

cleaned with 2% SDS followed by rinsing with ultrapure water for at least 1 hr at 

100 ~L/min and dried with ultrapure N2. 

5.3. Results and Discussion 

5.3.1. SAM characterization. 

SAMs were characterized by XPS, ellipsometry and water drop contact angle 

measurements and the results are summarized in Table 5.1. Water contact angles 

measured in air were similar to data previously reported for similar SAMs [155]. 

Ellipsometry measurements showed SAMs with thickness of 0.9 - 2.4 nm. XPS 

elemental analyses support the presence of the desired functional groups. A second 

immersion step in dodecanethiol solution was found to improve the homogeneity of 

the SAM surface, as evident by the small standard deviation of the water contact 

angles. XPS and contact angle measurements made with and without the second 
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immersion step suggest that the amount of dodecanethiol adsorbed in surfaces of 

other SAMs was very small. 

5.3.2. BSA and alginate adsorption equilibrium on SAM surfaces. 

5.3.2.1. Adsorption equilibrium data analysis. 

BSA and alginate (at a concentration of 100 mg/L) were chosen as a model 

protein and polysaccharide, respectively, the predominant organic foulant types in 

wastewater [125, 126]. Because Ca2+ has been shown to playa key role in organic 

fouling of NF and RO membranes [18, 27, 148, 156, 157], adsorption experiments 

were performed in two electrolyte solutions: 10 mM NaCI or 7mM NaCI and ImM 

CaCh at an unadjusted pH of 6.0 ± 0.2. 

Adsorption equilibrium occurred in all solution conditions in less than 2 

hours, usually within an average of 1 hour. BSA adsorption in all experiments 

exhibited significant shift in frequency (Llj) but negligible change in dissipation (LlD), 

suggesting the formation of a rigid BSA layer on the SAM surface. Therefore, the 

Sauerbrey equation (Equation 5.1) was applied and the calculated adsorbed mass 

was converted to layer thickness assuming a layer density of 1100 kg/m3. The 

calculated adsorbed mass of BSA and alginate is presented in Figure 5.2 as a 

function of water contact angle on the sensor. 
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Notable LJD (greater than 1) was observed in most experiments with alginate. 

In a few cases when LJD was smaller than 1 and LJfwas extremely low the normalized 

dissipation (LJDjLJj) was used to determine the applicability of the Sauerbrey 

equation. All adsorbed alginate layers either had LJD values greater than 1 or LJDjLJf 

values greater than 0.1 (Table 5.3). Therefore, the visco-elastic model (Q-Tools 3.0) 

was used for all alginate adsorption data. Density of the alginate layer determined 

using the viscoelastic model ranged from 1075 to 1100 kg/m3. Bulk fluid density 

was calculated to be 997.1 kg/m3 and fluid viscosity was 0.001 kg/m·s. All 

experiments were evaluated for the 3rd (n = 3) and 5th (n = 5) harmonics, but only 

data from the 3rd harmonic is presented in this paper. 

5.3.2.2. Relationship between organic adsorption and surface wettability. 

Equilibrium adsorption of BSA and alginate was related to the 

hydrophobicity of the SAMs as measured by the cosine of water contact angle, 0 

(Figure 5.2). A correlation analysis between cos(O) and adsorbed mass was 

performed using the Pearson product-moment coefficient (PPMC) to evaluate linear 

correlation and with the Spearman's rank correlation to determine monotonic 

dependence [30, 158]. BSA adsorption in the presence and absence of calcium did 

not correlate with water contact angle by either analysis (Figure 5.2a), indicating 

that hydrophobicity alone is not a strong predictor of BSA adsorption. 



Among the uncharged surfaces, the highly hydrophobic surfaces (-CH3 and -

OPh) adsorbed significant amounts of BSA (approximately a monolayer according to 

the calculated thickness), while the hydrophilic -EG60H and -OH surfaces showed 

low adsorption, consistent with previous studies [68, 97]. The -EG60H surface, in 

particular, was resistant to BSA adsorption due to its hydrophilicity and 

electrosteric effect [83, 149, 159]. Interestingly, the -CONH2 surface, with a water 

contact angle similar to that of the -OH surface, adsorbed notably higher amounts of 

BSA (600 ngjcm2) in the absence of Ca2+. This can be attributed to hydrogen 

bonding between the -CONH2 surface and multiple amine groups on BSA. This 

observation is different from that by Sethuraman et al. [68], who measured 

adhesion forces between four immobilized proteins and a series of chemical groups, 

and found similar values for -CONH2, -OH and -EG60H surfaces. In their study 

immobilization of the proteins may have limited specific interactions including 

hydrogen bonding with the SAMs. Hydrogen bonding may also have contributed to 

BSA adsorption on the -OH surface, which was higher than that predicted from its 

very low contact angle. 

The positively charged -NH2 and negatively charged -COOH surfaces 

adsorbed significantly more BSA than the -EG60H and -OH surfaces, which had 

similar contact angles. This is consistent with a previous study on BSA adsorption 

on SAMs using SPR [160]. BSA adsorption on the -NH2 and -COOH surfaces were 

similar to that on the highly hydrophobic -CH3 and -OPh surfaces even though the 

surfaces were much more hydrophilic. Adsorption on the -NH2 surface was the 
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highest likely due to the strong electrostatic attraction between the negatively 

charged BSA molecules and the positively charged -NHz SAM (pKa - 7.5) [161]. The 

high BSA adsorption on the -COOH surface despite its hydrophilicity and negative 

charge is attributed to the charge heterogeneity of BSA: positively charged amine 

groups were present even though the net charge was negative. Silin et al. [160] also 

suggested that the presence of positively charged sites on the overall negatively 

charged BSA led to electrostatic interactions with the negatively charged -COOH 

SAM. 

In summary, BSA adsorption equilibrium data suggest that specific 

interactions, e.g., between -CONHz or -OH and BSA, play an important role in BSA 

adsorption in addition to the non-specific electrostatic and hydrophobic 

interactions; charge heterogeneity can lead to significant adsorption when the 

overall electrostatic interaction is repulsive. Therefore, water contact angle 

measured in air and surface zeta potential are not good indicators for protein 

adsorption; membranes with higher negative zeta potential due to the presence of -

COOH groups may be more prone to protein fouling. 

In contrast to BSA, alginate adsorption on all SAMs correlated well with 

water contact angle, where -CH3 and -OPh showed the highest adsorption (Figure 

S.2b). Although -EG60H surfaces have been shown to be the most resistant to 

protein adsorption [83, 149], alginate (polysaccharide) adsorption shows a different 

pattern, where the most hydrophilic surfaces (-OH and -CONHz) had the lowest 

alginate adsorption (Figure S.2b). The mass of alginate adsorbed on the hydrophilic 
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surfaces was less than that of a monolayer, indicating patched adsorption (Figure 

5.4). Although alginate has been reported to foul NF and RO membranes more 

severely than BSA [71, 136], our measurements show similar adsorption of both, 

indicating the greater fouling rate of alginate is likely due to faster gel layer 

formation. 

5.3.2.3. Effect of calcium on adsorption. 

Calcium showed an intense effect on alginate adsorption, and moderate effect 

on BSA adsorption. The effect of Caz+ on BSA adsorption depended on the particular 

surface functionality. In the presence of Caz+, BSA adsorption on the -CON Hz and -

COOH surfaces decreased (Figure S.2a). This is consistent with the complexation of 

Caz+ with -COOH groups on both the BSA and the SAM. BSA adsorption increased on 

the -OH surface and decreased on -CH3. This could be explained by changes in 

surface interaction energy of BSA and the SAMs, as has been shown for alginate and 

RO membranes [162]. 

Addition of Caz+ increased alginate adsorption intensely on all SAMs tested 

(Figure 5.2b). Alginate has the propensity to aggregate and form cation-stabilized 

gels due to a high carboxyl content (approximately 61 % mannuronic acid and 39% 

guluronic acid) [121, 162]. Caz+ has also been reported to decrease the cohesive free 

energy of alginate and decrease the free energy of adhesion between alginate and 

RO membranes [162]. As a result, both the adsorbed mass (Figure 5.2b) and 
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adsorbed layer thickness (Figure 5.3) of alginate increased in the presence of Caz+. 

The gel formation was also evident in the increased viscosity of all adsorbed 

alginate layers (Figure 5.4). 

5.3.3. Surface chemistry effect on adsorption kinetics. 

Adsorption kinetics of organic foulants is important as it is related to the 

initial fouling rate on a clean membrane as well as changes in membrane surface 

properties. Mass adsorption kinetics curves of BSA and alginate were obtained 

from time-resolved IJ.! and IJ.D data, and the initial adsorption rate determined from 

the linear section of kinetics curve was shown in Figure 5.4. 

Despite comparable adsorbed mass at equilibrium (Figure 5.2), initial fouling 

rates on all SAMs were markedly higher for BSA than alginate (Figure 5.4). This 

result suggests that proteins could be a dominant component in the initial 

conditioning layer and consequently playa critical role in membrane bio-fouling 

even though its quantity in the fouling layer may be low. Adsorption kinetics of both 

BSA and alginate strongly depended on the type of SAM. In NaCl, BSA initial 

adsorption rate followed the order of -COOH > -CH3 > -OPh > -NHz > -OH > -CONHz > 

-EG60H, showing no correlation to water contact angle. The presence of Caz+ 

increased BSA adsorption rate on most SAMs except for the two most hydrophobic 

surfaces, -CH3 and -OPh, on which BSA adsorption decreased compared to that in 

NaCl. 



132 

Initial alginate adsorption rates were much lower than those of BSA (Figure 

5.4) and were consistently higher in the presence of Ca2+ on all SAMs, even though 

alginate formed large aggregates in solution (Table 5.2) which reduces the diffusive 

mass transfer. This increase in adsorption rate is attributed to enhanced alginate­

alginate attraction and is consistent with increased membrane fouling rates 

observed with alginate in the presence of Ca2+ [163]. 

The -COOH surface showed the greatest initial adsorption rate for both BSA 

and alginate. These results suggest higher initial protein and polysaccharide fouling 

rates on membranes that expose -COOH groups and further support that specific 

interactions may delineate fouling properties more accurately than non-specific 

hydrophobic interactions. 

5.3.4. Adsorbed layer structure. 

In addition to the total mass and thickness, the structure of the organic gel 

layer plays a critical role in determining the hydraulic resistance of the gel layer. 

The normalized dissipation, t1D / t1f, provides structural information of the adsorbed 

layer. Figure 5.5 presents t1D as a function of t1f at adsorption equilibrium for both 

BSA and alginate. The BSA or alginate layers formed on different SAMs showed 

similar normalized dissipation, indicating that surface chemistry did not affect the 

structure of the adsorbed layer at equilibrium. All alginate layers exhibited much 

higher t1D / t1f than the BSA layers, showing that alginate layers are looser and more 
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elastic than the BSA layers. The rigid structure of the BSA layer was not affected by 

Caz+, while the alginate layer in the presence of Caz+ is denser and probably more 

cross-linked. However, this effect cannot be observed in Figure 5.5 because the 

increase in I1D / I1f due to higher viscosity counter balances the effect of higher 

density. A similar plot of ilD vs. ilf during the adsorption process illustrates the 

dynamic change of the adsorbed layer structure (Figure 5.6). BSA adsorption 

exhibited a two-phase growth with notable faster increase in ilD in the second 

phase, suggesting changes in BSA molecular conformation or orientation [97, 160, 

164]. Such change in structure strongly depended on the SAM ending functionality. 

Despite of the overall rigidity, the adsorbed BSA layer on all SAMs exhibited two­

phase growth (Figure 5.6a and Figure 5.6b). At the beginning of the experiment, the 

surface was not fully covered; ilD/ilfwas low. In the later stage of the adsorption, 

the slope of the curve or ilD/ilf increased markedly, suggesting changes in BSA 

molecular conformation or orientation (seen more clearly in Figure 5.6c and Figure 

5.6d) [97, 160, 164]. Little structural change was observed during formation of the 

visco-elastic alginate layers, as shown by the linear relationship between ilD and ilf 

throughout the whole adsorption process (Figure 5.6e and Figure 5.6f). Slight 

compaction was observed on the -NHz and -OH SAMs. 

These results suggest that membrane surface chemistry does not affect the 

specific resistance of BSA or alginate fouling layer. However, when other foulants 

are also present, which is the case for any natural water or wastewater, the impact 

of surface chemistry on the initial structure of the adsorbed protein layer may playa 
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role in the subsequent attachment of other foulants (e.g., mineral precipitates and 

bacterial cells) and consequently the structure of the fouling layer. 

5.3.5. Cleaning of adsorbed organic foulants on SAMs. 

The effectiveness of cleaning with DI water and 2% SDS was evaluated 

sequentially by the fraction of mass removed (Figure 5.7). DI water rinsing was not 

very effective, with -14 to 52% removal (negative values resulted from adsorbed 

layer swelling). SDS cleaning was more effective, removing 21 to 100% of the 

adsorbed mass. In general, cleaning efficiency for alginate was much greater than 

for BSA, indicating that proteins may contribute to irreversible fouling more than 

polysaccharides. Although the two most hydrophobic SAMs (-CH3 and -OPh) 

adsorbed a large amount of BSA and alginate, the adsorbed foulants can be removed 

relatively effectively by SDS cleaning. SAMs of -NHz, -COOH, and -CONHz, however, 

consistently showed significant residual BSA and/or alginate. Despite the 

importance of Caz+ in adsorption equilibrium and kinetics, Caz+ did not significantly 

affect BSA irreversible fouling of any SAMs except the -NHz and -CON Hz surface, for 

which irreversible fouling increased greatly in the presence of Caz+. This 

phenomena was extended to -NHz for alginate. These results indicate that -CONHz 

and especially -NHz on membrane surfaces may contribute more to irreversible 

fouling of NF and RO membranes than other functional groups under typical 

wastewater solution conditions. 
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5.3.6. Implications for membrane fouling. 

Understanding factors controlling organic foulant adsorption on NF and RO 

membranes is important for developing fouling resistant membranes and other 

fouling control strategies such as pretreatment and chemical cleaning. Our study 

shows direct evidence for the first time that specific interactions, such as hydrogen 

bonding and electrostatic interaction between specific functionalities, playa more 

important role than non-specific electrostatic and hydrophobic interactions in 

adsorption of and irreversible fouling by proteins and polysaccharides. Because the 

initial adsorption of proteins and polysaccharides (Le., surface conditioning) has 

important impacts on the subsequent formation of scales and bio-films, these results 

suggest that specific surface functionality may be more important than bulk surface 

properties, such as zeta potential and hydrophobicity, in long term fouling and 

cleaning of NF and RO membranes. Therefore, surface modifications of NF and RO 

membranes that minimize the presence of H-bond donor and acceptor (e.g., -COOH, 

-NHz) as well as charged sites may be an effective approach to develop fouling 

resistant membranes. We also show for the first time that proteins, although usually 

found in smaller quantity on fouled membranes [165, 166], adsorb much faster to 

functional groups typically found on NF and RO membrane surfaces and are more 

difficult to remove by chemical cleaning than polysaccharides. These results suggest 

that proteins play an important role in initiating bio-fouling despite their smaller 



quantity. Therefore, pretreatment and chemical cleaning methods should also target 

protein removal. 
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Table 5.1 - Characteristics of SAMs on gold prepared in this study. 

XPS Elemental 
Terminal Alkanethiol compound 

Contact Thickness Composition (10.2)* 
Group Anglet (0) (nm) 

O/C N/C 

-CH3 1-Dodecanethiol 102.6 ± 3.7 0.91 0.99 -

-OPh 11-Phenoxy undecanethiol 91.2 ± 3.5 0.97 8.95 -

-NHz 11-Amino-1-undecanethiol, 63.3 ± 3.2 1.43 0.16 15.2 
hydrochloride 

(1-Mercapto-11undecyl) 
-EG6OH 43.2 ± 4.3 1.62 21.4 -

hexa( ethylene glycol) 

-COOH 11-Mercaptoundecanoic acid 42.1 ± 6.7 1.25 24.6 -

-CON Hz 11-Mercaptoundecaneamide 35.7 ± 4.0 1.25 16.9 9.45 

-OH 11-Hydroxy-1-Undecanethiol 34.2 ± 2.5 2.41 19.1 -

t Average of 10 surfaces tested. * By Peak Area analysis. 
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Table 5.2 - Hydrodynamic diameter and zeta potential of foulants (pH 6.0 ± 0.2). 

10 mM NaCI [136] 7 mM NaCI, 1 mM CaCh 

Model 

Foulant 
Zeta Potential Hydrodynamic Zeta Potential Hydrodynamic 

(mY) Diameter (nm) (mV) Diameter (nm) 

BSA -20.7 ± 0.9 6.9 ± 0.2 -11.4±0.7 6.8±0.5 

Sodium Alginate -45.0 ± 1.2 5.12±2.2 -37.6 ± 2.3 12.8 ± 2.6 
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Table 5.3 - Raw Llf(Hz) and LlD (xl0-6) values for each surface tested under each 

solution condition tested. LlD/Llfvalues for each surface are included in order to 

determine which model to use . 

" 
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OrgaDie$Jo\l~' . Aig 
.' "u\>~:: 

'" ,>," 

Solutior" . lOmM 7mMNaCl lOmM 7mMNaCl 

COJul~1i .. NaCl ImMCaCh NaCl ImMCaCh 
" ,·.,eV:'wy 

4f -41.4 -30.7 -17.9* -26.5 
I" '.' .... / 
-cm .,t· 

W 0.92 0.59 6.43 8.93 

WI4f -0.02 -0.02 -0.36 -0.33 
.. I.,., 

··.···1 
!!:.f -27.8 -28.0 -11.51 -23.9 

I .. .. 
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~ 

.. WI!!:.f 0.09 -0.09 -0.32 -0.37 

" 
.:' !!:.f -44.5 -36.3 -7.2 -19.0 

~CQPH"; W l.57 0.75 3.16 5.99 

{ .. 
. "'::!rc' WI4f -0.03 -0.02 -0.44 -0.3/ 

. 'I •.. : 
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... ' •. <. 
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." !1f -19.6 -26.9 -2.2 -11.0 
.... > . 
. " 

-QH /)J) 0.86 0.86 0.98 1.71 

.'," .. " /)J)/4f -0.03 -0.03 -0.45 -0.15 

* Italicized values are modeled using the visco-elastic model, while all others are 

assumed rigid and modeled using the Sauerbrey equation 
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Figure 5.1 - Changes in frequency and dissipation during an adsorption and cleaning 

experiment. Experiment shown is the adsorption of 100 mgjL BSA in 10 mM NaCI 

on the -CH3 SAM. 
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Figure 5.2 - Calculated adsorbed mass a) BSA, and b) sodium alginate on different 

SAMs at equilibrium. Adsorption occurred in 10 mM NaCI (solid symbols) and 7 mM 

NaCI/l mM CaCh (open symbols). 
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Figure 5.3 - Calculated thickness and viscosity of adsorbed alginate layers in 10 mM 

NaCI and 7 mM NaCI with 1 mM CaCb . 
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Figure 5.4 - Initial adsorption rate of BSA and alginate. 
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Figure 5.5 - Measured dissipation change (LiD) and frequency change (Lif) at 
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Figure 5.6 - Evolution of BSA and alginate layers illustrated by ~D vs. ~F curves. 
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Figure 5.7 - Stacked bar graph indicating % mass of adsorbed layer removed by D I 
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Chapter 6 

Surface and Interfacial Free Energy 
Analysis for Characterizing Organic 

Foulant Adsorption on Membrane 
Surface Functionalities 4 

6.1. Introduction 

Understanding the role of membrane surface properties in membrane fouling 

is critical to the development of fouling resistant membranes and other fouling 

control strategies. Although the impact of membrane surface charge, 

hydrophobicity and roughness have been studied extensively, little has been done to 

elucidate the role of membrane surface chemistry due to the highly heterogeneous 

4 Manuscript in preparation for submission to Journal of Membrane Science. 
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nature of membrane surfaces. On the other hand, several studies have shown that 

specific interactions between the foulant and chemical functionalities on the 

membrane surface playa key role in organic and biological fouling. Unfortunately, 

traditional approaches to studying membrane adsorption through filtration and flux 

decline experiments are not sensitive enough to identify the interactions that 

control initial fouling by adsorption. By developing a better understanding of 

organic adsorption interactions across a wide range of surface functionality relevant 

to membrane chemistry, adsorption at the membrane surface can be avoided by 

developing better anti-fouling membrane coatings and materials. 

Our previous research has shown that hydrophobicity as measured through 

water contact angle alone is not sufficient for determining adsorption and fouling 

propensity[167]. Although nonspecific organic adsorption is complex and not well 

understood, several chemical and physical approaches can be applied to explain 

these complicated interactions. DLVO theory, named for the Dutch and Russian 

scientists Derjaguin, Landau, Vervey, and Overbeek that simultaneously studied this 

phenomena, incorporates attractive (van der Waals) and repulsive (electrostatic 

double layer) interactions to describe the overall picture of stability of hydrophobic 

colloids [73, 74]. However, too often these two interactions cannot accurately 

describe the interactions that lead to colloidal membrane fouling [75]. Among a 

variety of other reasons that the discrepancies may be ascribed to, including 

chemical and morphological heterogeneity of the membrane surface and 

interactions [22, 76], additional interactions between the membrane and foulant 
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induced by the polarity of the solvent has also be observed, which lead to the school 

of thought that proposes an extended DLVO (or xDLVO) type of approach [77, 78]. 

The extended DLVO theory includes the additional short-range acid-base interaction 

between two surfaces immersed in a polar solvent such as water, quantified by the 

measurement of surface tensions of various substances, to which polymeric surfaces 

are shown to have a significant acid-base contribution [78]. Several studies have 

shown that polymeric surfaces have a substantial acid-base contribution [55, 71, 79, 

80]. Previous studies have shown that membrane flux decline of both colloids and 

some organics can be accurately described using an extended DLVO theory that 

includes acid-base interactions [71, 79, 80, 162]. However, this phenomenon has 

not been linked to specific membrane chemistry or properties responsible in order 

to create anti-fouling surfaces. 

Of the various organic macromolecules present in natural and wastewaters, 

protein adsorption has been the most heavily studied. Extensive work has shown 

that adsorption of proteins onto solid surfaces is entropically driven [58-66]. 

Expectedly, electrostatic interactions strongly influence not only protein adsorption 

[58-64, 66], but also protein configuration upon adsorption [67]. "Flat" 

configurations of proteins were found to occur by adsorbing highly charged 

polyelectrolyte onto highly charged positive or negative surfaces [67]. The affinity 

of a protein to adhere to a surface increases with the hydrophobicity of the surface 

[54, 68-70] and the concept of using hydrophobicity of membranes to assess their 
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propensity to foul has also been established [55, 56, 71, 72], although it does not 

fully account for all adsorption phenomena [167]. 

Organic adsorption studies are limited by the heterogeneity of surface upon 

which adsorption takes place. Self-assembled monolayers (SAMs) of long-chain 00-

functionalized alkanethiolates prepared on gold films have been established as 

excellent homogeneous model systems for studying the interactions of proteins with 

organic surfaces [94, 95]. Although SAMs can serve as great models of mono­

functionalized surfaces, actual thin-film composite membranes include a 

combination of several functional groups. To date, instrument limitations have 

prevented the study of organic adsorption on membrane surfaces directly. 

Quartz-crystal microbalance with dissipation monitoring (QCM-D) is capable 

of measuring minute changes in mass adsorbed on a surface [130, 150]. The 

additional energy dissipation monitoring feature provides information on structure 

of the adsorbed layer. Quartz crystal sensors can be easily modified to yield a wide 

variety of surface chemistries. For example, gold-coated sensors was modified by 

aromatic polyamide mimetic ofRO membranes in a recent study [151]. 

In this study, we seek to explain organic adsorption onto specific chemical 

moieties through a thermodynamic analysis of surface tensions and interfacial free 

energies. Isolating the effect of van der Waals and acid-base components of 

adsorptive interactions will help reveal a more mechanistic understanding of the 
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initial adsorption that affects initial fouling layer and subsequent fouling layer 

formation onto membrane functional groups that represent clean membranes. 

6.2. Theory 

In this study, surface free energies of different functionalized surfaces are 

evaluated based on an approach that incorporates the sum of van der Waals and 

acid-base components. Presence of either specific or electrostatic interactions will 

be determined from deviating adsorption behavior. Comparing these energetic 

values to adsorbed mass will enable us to determine if the organic adsorption is 

being caused by either of these interactions or if unaccounted for interactions, such 

as electrostatic or hydrogen bonding are present. 

Contact angles were converted to interfacial free energies using the DLVO 

approached outlined by van Oss [78]. Van Oss shows that the acid-base component 

(yAB) of the interfacial tension and the Lifshitz-van der Waals (yLW) component are 

additive: 
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Equation 6.1 

where the acid-base component is comprised of two non-additive parameters [168], 

the electron acceptor surface tension parameter (y) and the electron-donor surface 

tension parameter (y), which are related through: 

yAH = 2~y+y- Equation 6.2 

Combining both the Young-Dupre and the Dupre equation yields a force­

balance equilibrium equation that comprises both the polar and apolar interactions 

that depicts the free energy of adhesion between a liquid and a solid [78]: 

Equation 6.3 

The unknown surface tension parameters of the solid surface (r,~W ,r,;, r,~) 

can be determined using the contact angle measurements of three probe liquids 

with known surface tension parameters (y:'>w ,y~ ,y;:-). According to van Oss [78], 

the three liquids should be high energy to produce easily measured contact angles 

and one of the three probe liquids should be apolar (in order to calculate r~w ) and 

the other two polar liquids. 
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The Young-Dupre equation [169] also derives the solid-liquid interfacial free 

energy, L1GSL. from liquid contact angle: 

Equation 6.4 

Classically, "lyophilic" or "wetting" interaction has been defined as the 

contact angle less than 90° or a LlGSL value larger than that of the liquid. "Lyophobic" 

or "non-wetting" materials have contact angles greater than 90° or LlGSL value 

smaller than that of the liquid. 

Although traditionally used to explain colloid interaction, surface tensions 

calculated in Equation 6.3 can then be used to evaluate the interfacial free energies 

per unit area between a surface/membrane and an organic macromolecule [71, SO, 

162]. Expressions for the LW (.1.G;L~) and AB ( .1.G;:!o) components of interfacial 

free energy per unit area are given by [7S] 

Equation 6.5 

and 
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Equation 6.6 

where yo is the minimum equilibrium cut-off distance where contact between the 

two surfaces assumed to occur. This value is usually 0.158 nm (± 0.009 nm) and can 

be considered as the distance between the outer electron shells of adjoining non-

covalently interacting molecules [170]. The free energy of adhesion (LlGswT01), 

describes the attraction or repulsion of a solid material interacting with another 

solid material, through a liquid media and is defined as the sum of /)'G.~:'~,yO and 

/)'Gs~'!o,yo (Le., a solid surface and an organic macromolecule). The free energy of 

cohesion (LlGowT01), describes the energetic favorability of a solid material to 

interact with itself in a liquid media and is defined as the sum of /)'G~~;),yO and 

/)'G~fo,yo (Le., for a given scenario rs = ro). A negative free energy represents a 

thermodynamically unstable state (attractive), while a positive free energy 

represents a stable state (repulsive). 

Additionally, surface tension of water with high, salt water type 

concentrations has been found to deviate significantly from pure water. An 

empirical formula has been derived by Fleming and Revelle to relate the surface 

tension of pure water to temperature and salt content: 
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y" = 75.64 - 0.144(T) + 0.0399(Cr) Equation 6.7 

where temperature (T) is in degrees Celsius and chloride concentration (Cl-) is 

reported in grams per liter. 

6.3. Materials and Methods 

6.3.1. Model organic foulants. 

Humic acid, sodium alginate and bovine serum albumin (BSA) were chosen 

as the three natural organic matter, polysaccharide and protein model organic 

foulants, respectively, for their well-defined characterization and representative 

presence in natural and wastewaters. Sodium alginate (ALG) derived from brown 

algae (10 - 60 kDa) and BSA (,.., 66 kDa) were purchased from Sigma-Aldrich (St. 

Louis, MO). Suwannee river humic acid (SRHA - standard II) was obtained from 

International Humic Substances Society (St. Paul, MN). SRHA stock solution was 

prepared by dissolving the SRHA powder at pH 8.2 (adjusted using 1 M NaOH) 

followed by vacuum filtration (Whatman Grade No.1 filter paper, England). Surface 

zeta potential and hydrodynamic diameter of BSA, SRHA and sodium alginate were 

characterized by electrophoretic mobility and dynamic light scattering (DLS) 

measurements using a Zeta sizer Nano ZS (Malvern Instruments, Westborough, MA). 

Reagent grade NaCl, CaCh, NaOH, HCI and sodium-dodecyl-sulfate (SDS) were 
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purchased from Sigma Aldrich (St. Louis, MO). All solutions were prepared using 

ultrapure water (~18.1 megan-cm) produced by an E-Pure system (Barnstead, 

Batavia,IL). 

6.3.2. SAM surfaces. 

Seven SAMs each with a different ending functional group (Table 6.1) were 

prepared on both gold-coated QCM-D crystals (used for adsorption experiments) 

and gold-coated silicon wafers (for characterization) according to a previous 

publication [152] with slight modifications. Alkanethiols used to create the self 

assembled monolayers (SAMs) were purchased in either neat form or premade 

solutions at 1 mM in 200 proof ethanol (Asemblon, Inc., Remond, WA) [167]. 

Prior to self-assembly, gold-coated QCM-D crystals were cleaned sequentially 

in toluene, acetone and ethanol twice in each solvent for 10 min each time in an 

ultrasonic bath. Silicon wafers were cleaned sequentially in acetone, methanol, and 

isopropanol in an ultrasonic bath (Bendeline Sonorex, London, England) followed by 

oxygen plasma cleaning for 5 min. Both substrates were then dried with ultrapure 

N2 and exposed to UV jozone in a Pro Cleaner chamber (Bioforce Nanosciences, 

Ames, IA) for 30 min. Clean substrates were first immersed in 1 mM alkanethiol 

solutions in ethanol for 24 h at room temperature. Prior to immersion, the pH of 11-

Mercaptoundecanoic acid and ll-Amino-l-undecanethiol hydrochloride solutions 

was adjusted to 2 and 11, respectively, using 0.2 M HCI and NH40H to reduce 
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electrostatic repulsion between thiol chains and create a more ordered, 

homogeneous surface. After self-assembly, the substrates were transferred to 1 mM 

dodecanethiol solutions in ethanol for an additional 24 h, dried in ultrapure Nz and 

stored under vacuum. The chemical composition of each SAM was analyzed by x-ray 

photoelectron spectroscopy (XPS) using ESCALAB 250 (Thermo Fisher Scientific 

Inc., Waltham, UK) with an Al x-ray source and a monochromator. Since XPS analysiS 

may contaminate the SAMs, measurements were performed on SAMs formed on 

silicon wafers formed in parallel with SAMs on QCM-D crystals. 

Thickness of the SAMs was estimated by Cauchy's equation [153] using an 

SE800 ellipsometer (Sentech Instruments GmbH, Berlin, Germany) with a light spot 

size of 0.5 cmz. The phase difference between the sand p polarized waves and the 

amplitude attenuation were measured as a function of the wavelength from 380 to 

820 nm at incidence angles of 60°, 65° and 70°. The optical constants of the 

underlying layers were determined based on measurements on a clean Au coated 

silicon wafer, and the refraction index of the organic layer was assumed to be 1.5 

[154], which may introduce slight error in the calculated SAM thickness. 

6.3.3. Surface thermodynamic analysis. 

Static contact angle in air of each SAM was measured using the sessile drop 

method with a CAM 200 contact angle analyzer (KSV Instruments LTD, Helsinki, 

Finland). Water drop size was approximately 2.0 ilL and at least five measurements 
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were taken per sample. Contact angles were measured using three probe liquids 

(deionized water, diiodomethane, and glycerol, Sigma-Aldrich, St. Louis, MO). 

Surfaces measured include the seven different SAM surfaces as well as filtered 

organic lawns of the three model foulants (ALG, BSA, and SRHA), prepared as 

described in [78]. 

6.3.4. Adsorption experiments. 

Adsorption of the model organic foulants was investigated using QCM-D (Q­

Sense E4, Q-Sense, Glen Burnie, MD) on freshly prepared SAM coated quartz 

crystals. All experiments employ background solutions of 10 mM NaCI or 7 mM NaCI 

and 1 mM CaCh, an organic foulant concentration of 100 mg/L and a flow-rate of 50 

Ill/min. In each experiment, fundamental frequencies of the crystal are first verified 

under dry air conditions, followed by establishing a baseline by running the 

respective background solution for 10 min. This is followed by the adsorption phase 

using the organic foulant solution. After adsorption equilibrium is established the 

buffer is reintroduced in order to remove bulk viSCOSity effects and adsorbed layer 

mass was measured at this point. A more detailed experimental protocol was 

described previously [167]. 



6.4. Results and Discussion 

6.4.1. Organic adsorption equilibrium data analysis. 

Adsorption equilibrium data analysis for alginate and BSA adsorbed layers 

are presented in an earlier section (Adsorption equilibrium data analysis - page 

126). Adsorbed layers of SRHA had a dissipation of less than 1 and were modeled 

using the Sauerbrey equation (Equation 5.1) to calculate adsorbed mass. Thickness 

of the adsorbed layers was determined assuming a density of 1100 kgjm3. Figure 

6.1 and Figure 6.2 present the adsorption equilibrium vs. water contact angle of 

SAM surface and thickness of the SRHA adsorbed layers, respectively. SRHA 

adsorption follows a linear correlation as determined by the Pearson product 

moment correlation coefficient (PMCC) [30] to the cosine of the water contact angle 

in solutions of 10 mM NaCl, with more adsorption on higher water contact angle. In 

the presence of CaCh, adsorbed mass of SRHA at equilibrium is greater and similar 

on different SAMs, with the exception of the -EG60H surface which resists 

adsorption of SRHA in both solution conditions). Previous studies have indicated 

that Ca2+ complexation occurs in the presence of NOM and humic acid [171], which 

reduces the humic acid zeta potential and increases adsorption. Additional 

adsorbed mass in the presence of Ca2+ is likely due to increased SRHA-SRHA 

interaction and not to additional adsorption to the SAM surface itself. 
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6.4.2. Organic-liquid and SAM-liquid interfacial free energy. 

Characterization of the SAMs is presented in Table 6.1. Probe liquid 

compositions and liquid surface tensions reported from literature are detailed in 

Table 6.2. Equation 6.7 was used to calculate the adjusted surface tension 

parameter due to the presence of salt ions in the electrolyte solutions of interest. 

Due to the low concentration (10 mM ionic strength for both solutions) YL for the 

electrolyte solutions only decreased to 72.77 (from 72.80 for pure water[78]). This 

adjusted surface tension coupled with electrolyte liquid contact angles (Table 6.3) 

and the Young-Dupre equation (Equation 6.4) was used to calculate the solid-liquid 

interfacial free energy between the organic and SAM surfaces (Table 6.4 and Table 

6.5). Due to the low salt concentrations, changes in contact angles were very slight 

as were solid-liquid interfacial energies. Alginate and SRHA had slightly increased 

solid-liquid interfacial free energies in the presence of Ca2+, while BSA remained the 

same. These results were much lower in magnitude than has been reported for salt 

concentrations exceeding 32g/L NaCI[162]. All organics were lyophilic or "wetting" 

for both electrolyte solutions, given that llGsL is more negative than the liquid 

surface tensions. All SAM layers were also lyophilic, with the exception of -CH3 and -

OPh as they had solid-interfacial free energies more positive than the liquids 

themselves. 
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6.4.3. Organic-organic free energies of cohesion. 

A negative free energy of cohesion describes an orgamc that IS 

thermodynamically unstable in the liquid, while a positive free energy of cohesion 

suggests stability. Table 6.4 presents the surface tension parameters (the van der 

Waals, electron-acceptor, electron-donor, acid-base, and total surface tension) as 

well as the free energies of cohesion (LlGow) calculated by the protocol described by 

van Oss [78]. These values agree well with values found on similar organics previously 

[71, 80]. Additionally, it has been reported that a large portion of materials[168], 

including proteins[172] and polysaccharides[173], are i monopoles with very low 

electron accepting capacity, and therefore do not have strong ytB contributions. With 

negative free energIes of cohesion, alginate and SRHA are considered 

thermodynamically unstable in water, which is reflected in the solution preparation 

protocol (6.3.1 Model organic foulants), while BSA would be considered stable. 

However, stability is also determined kinetically through electric double layer 

interactions in water. Given the negative charge of all three organics (Table 5.2 and 

Appendix A) in the measured solution conditions, the presence of carboxylate and other 

acidic moieties increases the inherent stability of these macromolecules. 

6.4.4. SAM surface tensions and organic-SAM free energies of adhesion. 

Table 6.5 presents the van der Waals, electron-acceptor, electron donor, acid­

base, and total surface tensions as well as the free energies of adhesion with each 

163 



organic. -CH3 and -OPh resist oxidation and reduction and therefore have low acid­

base surface tension. As non-polar functionalities, the van der Waals component is 

also low, resulting in lyophobic or "non-wetting" surfaces. The -NHz surface is 

formed at a high pH past its pKa [167], ensuring completely reduced NHz and a high 

electron donating surface tension. Amide (-CONHz) surface is a weak base over the 

solution conditions tested and therefore has more mixed electron-donor/acceptor 

surface tensions. The polarity of -COOH creates a tendency to "self-associate", so 

the carboxyl surface has high acid-base and van der Waals surface tension 

components. Hexa(ethyleneglycol) (-EG60H) and the hydroxyl functionality both 

have high concentration of -OH whose polarity increases the surface tension 

parameters through increased van der Waals and acid-base components. 

Organic-membrane interfacial free energies of adhesion give insight into the 

probability of an organic being attracted and adsorbing to or being repelled from 

the SAM surface (Table 6.S). For each SAM and organic combination, the relative 

amounts of the acid-base component of the free energy of cohesion (LlGsu0B), the 

van der Waals component of the free energy of cohesion (LlGswLW), and the total free 

energy of adhesion (LlGswT01), are shown in Figure 6.3. The attraction due to van 

der Waals forces is relatively small, so that the total free energy of each SAM-organic 

combination is largely dictated by the acid-base contribution. Increasingly positive 

(or decreasingly negative) values indicate less organic-membrane attraction (or 

greater organic-membrane repulsion). Values of adsorbed organic mass vs. free 

energy of that respective organic are illustrated in Figure 6.4 and the PMCC for 
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correlation analysis is reported in Table 6.6. All three organic macromolecules 

followed this order of decreasing free energy of adhesion: -CH3 > -OPh > -NHz > -

EG60H > -CONHz > -OH > -COOH. Both alginate and SRHA follow the expected trend 

of increasingly positive free energy of adhesion with decreased adsorbed mass, 

indicating that van der Waals and Lewis acid-base contributions to adsorptive 

interactions are sufficient for predicting their relative adsorption, even in the 

presence of divalent ions, with the exception of -COOH. More adsorption was seen 

on -COOH surface than predicted by the thermodynamic analysis. BSA adsorption 

does not follow the order suggested by the free energy of adhesion analysis, 

indicating that other interactions such as electrostatic or hydrogen bonding, which 

are not fully accounted for in this surface free energy analysis, are responsible for 

adsorption. As a protein, the structure of BSA is different that the polysaccharide 

and natural organic matter. Its tendency to create hydrogen bonds with the amine, 

amide, carboxyl, and hydroxyl surfaces increases the adsorbed mass at equilibrium 

on those surfaces. -EG60H surfaces resist adsorption of both BSA and SRHA beyond 

what is predicted due to electrosteric interactions. 

6.4.5. Correlation of adsorption rate with free energy of adhesion. 

The free energy of adhesion is an indicator of the strength of the attractive 

and repulsive forces between the organic and the membrane and it has been shown 

to correlate well with the initial rate of flux decline, which is also governed by 

interfacial interactions between foulants and clean membrane [162]. The free 

energies of adhesion are plotted vs. the initial adsorption rate, as defined by the 
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linear portion of the adsorption kinetics curve, in Figure 6.S, however correlation is 

not significant for any of the SAM-organic pairs (PMCC < 0.3 or> -0.3). For alginate 

and SRHA, solutions containing Ca2+ formed bridges with the carboxyl in the organic 

and had higher adsorption rates overall. Because this surface free energy analysis 

is a thermodynamic approach that assumes equilibrium conditions, it does not 

appear to be a good predictor for adsorption rate kinetics. 

6.5. Conclusions 

Although membrane flux decline due to organic filtration has been explained 

using a thermodynamic surface free energy analysis previously, understanding what 

membrane material or membrane chemistry resists adsorption at a theoretical level 

has been less clear. Additionally, a thermodynamic approach for organic fouling 

onto commercial membranes does not account for specific interactions that may 

occur or for membrane imperfections and heterogeneity. In this study we aim to 

explain organic adsorption of three model foulants onto specific chemical 

functionalities relevant to membrane chemistry using surface and interfacial free 

energies which account for van der Waals and Lewis acid-base interactions. Surface 

and interfacial free energy analysis revealed that acid-base contributions for all 

three organics impact total interfacial free energy much more on each SAM than van 

der Waals interactions. The mass of alginate and SRHA adsorbed layers correlates 

strongly with the interfacial free energy of adhesion in both electrolyte conditions. 

166 



However, for the surfaces tested BSA adsorption does not correlate at all. Because 

this approach neglects to incorporate electrostatic interactions, which have been 

shown to be important for protein adsorption, xDVLO theory would likely better 

represent protein adsorption onto specific charged functional groups and should be 

explored in the future. Hydrogen bonding is a special polar interaction and is not 

fully accounted for in this analysis either but likely contributes to adsorption. 

167 



168 

Table 6.1 - Characteristics of SAMs on gold prepared in this study. 

XPS Elemental 
Terminal 

Alkanethiol compound 
Contact Thickness Composition (10-2)* 

Group Anglet e) (nm) 

OIC N/C 

-CH3 1-Dodecanethiol 102.6 ± 3.7 0_91 0.99 -

-OPh 11-Phenoxy undecanethiol 91.2 ± 3.5 0.97 8.95 -

-NH2 11-Amino-1-undecanethiol, 
hydrochloride 

63.3 ± 3.2 1.43 0.16 15.2 

(1-Mercapto-11undecyl) 
-EG60H 43.2 ± 4.3 1.62 21.4 -

hexa( ethylene glycol) 

-COOH 11-Mercaptoundecanoic acid 42.1 ± 6.7 1.25 24.6 -

-CONH2 11-Mercaptoundecaneamide 35.7 ± 4.0 1.25 16.9 9.45 

-OH 11-Hydroxy-1-Undecanethiol 34.2 ± 2.5 2.41 19.1 -

t Average of 10 surfaces tested. * By Peak Area analysis. 

Table 6.2- Probe liquid surface tension parameters [78]. 

vL lW ~B + -
V V '1 

Water 72.8 21.8 51 25.5 25.5 0.01 

Glycerol 64 34 30 3.92 57.4 14.9 

Diiodomethane 50.8 50.8 0 0 0 0.028 
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Table 6.3 - Contact angles (0) and standard deviations as measured on each created 

SAM and organic film using solutions of 10mM NaCI and 7mM NaCljlmM CaClz as 

well as the three probe liquids. Average of at least 6 measurements . 

Surface or .. ,.,S~n~act ~!:!~li~S (0) ~!~ng Probe Liquid , 

-R Group NaCI ,CaCI2 Water Glycerol Dioodomethane 

Alginate 59.2 ± 5.2 62.1 ± 2.2 59.5 ± 2.2 57.2 ± 1.5 51.5 ± 3.1 

BSA 39.1 ± 1.9 38.3 ± 1.5 37.9 ± 5.5 51.9±0.5 42.1 ± 0.8 

SRHA 52.0 ± 0.3 55.0 ± 0.6 53.1 ± 0.3 48.0 ± 4.2 50.9 ± 2.5 

-CH] 108.3 ± 0.4 109.2 ± 1.1 108.7±1.1 96.7 ± 2.3 73.6 ± 1.1 

-OPh 93.4 ± 1.4 95.0 ± 0.4 90.1 ± 0.9 78.1 ± 1.5 46.0 ± 1.8 

-NH2 60.7 ± 3.5 61.2 ± 3.1 57.7 ± 3.1 58.7 ± 1.8 35.0 ± 2.0 

-COOH 31.5 ± 2.8 32.4 ± 5.9 33.5 ± 2.9 46.2 ± 1.3 41.1 ± 1.4 

-CONH2 42.2 ± 1.3 45.6 ±2.1 41.9 ± 2.2 46.9 ± 0.8 34.5 ± 2.3 

-EG6OH 44.5 ± 2.0 47.5 ± 0.9 44.3 ± 2.0 46.2 ± 1.2 36.8 ± 0.4 

-OH 29.0 ± 1.4 36.5±2.7 29.4 ± 1.5 38.5 ± 2.5 30.2 ± 1.5 
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Table 6.4 - Organic surface tensions, organic-liquid interfacial free energies (LlGSL-

mJ/m2) and cohesive free energies (LlGoLO - mJ/m2). NaCI solution is 10 mM NaCI 

and CaCh solution is 7mM NaCI and 1 mM CaCho 

Solid-Liquid Free Energy 

Sur/ace Tensions (mJ/m2) 
Inter/acial Free o/Cohesion 

Energy LlGOLO 

-LlGLS (mJ/m2) (mJ/m2) 

Organic + - ysLW ysAB ysTOT 01 NaCI CaCI2 LlGLOL ys ys 

ALG 0.70 21.92 33.43 7.84 41.27 110.0 106.9 109.7 -8.67 

BSA 0.06 47.72 38.54 3.41 41.95 130.2 129.2 129.9 30.96 

SRHA 1.72 23.51 33.78 12.70 46.48 117.6 114.5 116.5 -5.62 

Table 6.5 - SAM surface tension, SAM-liquid interfacial free energies (LlGSL - mJ/m2) 

and organic-membrane adhesive free energies (LlGSLO TOT - mJ/m2). NaCI solution is 

10 mM NaCI and CaCh solution is 7mM NaCI and 1 mM CaCho 

Solid-Liquid 

Sur/ace Tensions (mJ/m2) 
Inter/acial Free Free Energy 0/ Adhesion 

Energy LlGSLOTOT (mJ/m2) 
-LlGsLCmJ/m2) 

SAM ys+ ys - ysLW y~B ysTOT 01 NaCI CaCI2 Alginate BSA SRHA 

-CH3 0.00 0.39 20.86 0 .06 20.92 49.9 48.8 49.4 -40.75 -23.63 -34.89 

-OPh 0.00 2.49 36.49 0.10 36.59 68.5 66.4 72.6 -35.99 -18.92 -31.11 

-NH2 0.02 24.30 42.01 1.38 43.39 108.4 107.8 111.7 -8.66 11.51 -7.02 

-COOH 0.28 47.70 39.07 7.37 46.44 134.8 134.2 133.5 8.81 29.75 8.46 

-CONH2 0.28 36.43 42.28 6.38 48.66 126.7 123.7 126.9 0.91 20.64 1.37 

-EG6OH 0.51 32.71 41.19 8.15 49.35 124.7 121.9 124.9 -1.44 17.16 -0.73 

-OH 0.45 44.53 44.12 8.97 53.09 136.4 131.3 136.2 6.07 25.79 5.87 
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Table 6.6 - Pearson product moment correlation coefficients (PMCCs) between 

different surface and interfacial free energy parameters and calculated mass of 

adsorbed organic in electrolyte solutions (NaCI = 10mM NaCI, CaCh = 7 mM NaCI/l 

mM CaCh). Variables have high negative correlation if more negative than -0.5 and 

a high positive correlation if greater than 0.5. 

Interfacial Free Energy of SAMs 
(mJ/m2) 

ALG 

BSA 

SRHA 
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Figure 6.1 - Calculated adsorbed mass of SRHA on different SAMs at equilibrium. 

Adsorption occurred in 10 mM NaCI (solid symbols) and 7 mM NaCI/l mM CaCh 

(open symbols). 
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Figure 6.2 - Calculated thickness of the SRHA adsorped layers at equilibrium. 

Adsorption occurred in 10 mM NaCI (solid) and 7 mM NaCI/l mM CaClz (stripes). 
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Figure 6.3 - Comparison of free energies of adhesion (Ll G SLOT01), as well as the AB 

and LW components, of each SAM to (a) alginate, (b) BSA, and (c) SRHA. 
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Figure 6.4 - Correlation between adsorbed organic mass and free energy of 

adhesion - (LlGSLOT0T) for (a)ALG, (b) BSA, and (c) SRHA. Solid markers are for 

solutions in lOmM NaCl. Open markers are for solutions in 7mM NaCI and ImM 
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Figure 6.5 - Correlation between adsorption rate and free energy of adhesion for 

(a)ALG, (b) BSA, and (c) SRHA. Solid markers are for solutions in lOmM NaCI. Open 

markers are for solutions in 7mM NaCI and lmM CaClz. 
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Chapter 7 

Interfacial Polymerization of a 
Polyamide Layer on a Solid Substrate 

7.1. Introduction 

Membrane fouling propensity is usually directly measured through flux 

decline experiments at laboratory or bench-scale level. While this traditional 

approach to investigating membrane fouling is reasonable for a basic understanding 

of long term fouling of specific waters, there are several limitations to this method 

that prohibit a more mechanistic understanding of membrane fouling. First of all, 

the flux decline from bench-scale experiments may only be able to detect fouling 

due to cake- or gel-layer formation present only after several days of filtration. Flux 

decline experiments are insensitive to fouling due to foulant adsorption at the 

membrane surface, interactions that directly initiate subsequent membrane fouling 

and fouling layer formation [147]. Secondly, due to the nature of the interfacial 
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polymerization process, membrane chemistry and material can vary significantly 

over the membrane surface area. Several techniques and instruments outside of 

membrane filtration experiments directly have promised to be helpful for 

characterizing membrane adsorption, including surface plasmon resonance (SPR), 

atomic force microscopy (AFM), and quartz crystal microbalance with dissipation 

(QCM-D) [68, 88, 130, 160, 174]. However, the issue of mechanistically 

understanding adsorption onto heterogeneous membrane material with many 

imperfections still limits our ability to isolate specific variables, such as surface 

charge, well-characterized functionality, and surface roughness. 

Being able to create of a synthetic membrane surface through interfacial 

polymerization at a smaller scale than membranes are typically mass produced 

would allow for systematic study of controlled chemical and surface modification of 

membranes for a more thorough understanding of the initial interactions that 

control membrane adsorption and fouling. In this chapter, we explore the process 

for creating synthetic membrane surfaces on solid substrates for eventual use with 

instruments such as SPR, AFM and QCM-D that would be able to quantify membrane 

adsorption. 
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7.2. Materials and Methodology. 

7.2.1. Materials. 

Polysulfone beads (PSf, Udel P3500) were obtained from Solvay Membranes. 

m-Phenylenediamine (MPD), or 1,3,benzenediamine, was obtained from Sigma­

Aldrich (St. Louis, MO). Piperazine anhydrous was obtained from Fluka Analytical 

(Sigma-Aldrich, St. Louis, MO). Trimesoyl chloride (TMC) or 1,3,5-

benzenetricarboxylic acid chloride, was obtained from Sigma-Aldrich (St. Louis, 

MO). n-Hexane (Fluka) and N,N-dimethylformamide (DMF) (Omnisolv, Charlotte, 

NC) were both used as solvents. 1.0 N NaOH (EMD Chemicals, Darmstadt, Germany) 

and 20% sodium dodecyl sulfate (SDS) (MP Biomedicals, LLC, Solon, Ohio) were 

used as stock solutions. 

7.2.2. Methodology. 

7.2.2.1. Polysulfone base layer. 

The first layer of the synthetic membrane is a polysulfone support layer, 

whose porous layer will serve as a collector for the aqueous-phase amine in the 

subsequent interfacial polymerization step. Gold-coated silicon surfaces are 

prepared as described elsewhere [167]. An 8% PSf solution in N,N­

dimethylformamide (DMF) was stirred and heated to 70°C to dissolve completely. 

The solution was then cooled for 30 min. and dropped by pipette onto gold-coated 
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silicon wafers to be spin coated at 2000rpm for 2 min. (Model WS-650S-6NPP JLITE, 

Laurell Technologies Corp., North Wales, PA). Phase inversion of the layer for pore 

formation occurs by immersing the layer in a solution composed of DI water, 2% 

DMF and 1% SDS. Layer is thoroughly rinsed with DI water to remove excess DMF 

and SDS, dried by spin coating for 2 min. at 2000rpm and then air dried for at least 

30 min. 

7.2.2.2. Preparation of thin-film composite polyamide layer. 

Two types of polyamide membranes were of interest in this study: a fully 

aromatic, polyamide TFC and a semi-aromatic, poly(piperazineamide) TFC. In order 

to create these two polyamide surfaces, two diamines in aqueous phase were used: 

MPD and piperazine, respectively. The chemistry for the reaction is illustrated in 

Figure 7.1. In the interfacial polymerization process, the PSf membrane support 

was immersed for 4 min in either 2.0 wt% MPD or 4.0 wt% piperazine in DI water 

solution containing 1% SDS and 1% NaOH to allow all the PSf pores to contain the 

aqueous phase amine. The excess solution is then removed by spinning the 

immersed surface at 1500rpm for 15 sec. These semi-dried surfaces are then put in 

contact with 0.2 wt% TMC in hexane for 10 s to allow the interfacial polymerization 

reaction to take place. Excess TMC solution is then removed and the surface is dried 

by spinning at 3000rpm for 1min. Formed TFC layers are then dried in vacuum 

oven conditions (50°C) for a minimum of 3 hours to allow annealing to take place. 
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7.2.3. Membrane layer characterization. 

All stages of the membrane layer formation were directly imaged using 

emission scanning electron microscopy (ESEM). Arial view images of dried 

membrane layers were taken with a FEI Quanta 400 ESEM FEG at 20 kV in high 

vacuum mode after coating with approximately 10 nm of gold (CrC-150 Sputtering 

System, TORR International) to observe membrane surface features, homogeneity 

and pore structure. 

Chemical and elemental composition was verified through X-Ray 

Photoelectron Spectroscopy (XPS) (PHI Quantera XPS, Physical Electronics, Inc. 

Chanhassen, MN) and ATR-FTIR (Nicolet 6700 ATR-FTIR Infrared Microscope, 

Thermo Nicolet, Madison, WI) measurements. The combination of XPS and ATR­

FTIR measurements provide a complimentary analYSis of the membrane layers 

across a large length scale, since XPS is a highly surface sensitive technique with a 

penetration depth of 1 - 5 nm and ATR-FTIR can penetrate up to -300 nm 

depending on the incident wave number. 

ATR-FTIR spectra were obtained on dry membrane surfaces using Omnic 6.2 

software (Thermo Electron Corporation) and an ATR element (Golden Gate Single 

Reflection Diamond ATR, Specac Ltd., Kent, United Kingdom). The active layer of 

the surface was pressed tightly against the crystal plate and the baseline 

background was subtracted out from the measurement. Spectra were measured 
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from 800 to 4000 cm-1 and each measurement was an average over 164 scans_ At 

least 4 replicates were measured per sample. 

XPS measurements were taken after membrane surfaces were stored in a 

vacuum oven (Fisher Scientific) at 50°C. Survey scans swept over 0-1100 eV 

electron binding energy at a resolution of 0.5eV. Relative elemental composition 

was determined based on intensity of the O(ls), N(ls) and C(ls) peaks centered 

around 532, 399, and 284.5 eV, respectively. 

7.3. Results and Discussion 

7.3.1. FTIR characterization. 

The FTIR spectra over the range of 1800 - 800 cm-1 for the completed 

membrane TFCs and membranes with respective similar chemistries (NF90 and 

NF270) are shown in Figure 7.2. NF90 was previously reported to be an 

unmodified, fully aromatic polyamide membrane [6]. NF270 was characterized as 

an unmodified, semi-aromatic poly(piperazinamide) membrane [6, 175]. Also 

shown in Figure 7.2 is the polysulfone base layer. Because the TFC is formed on top 

of an existing polysulfone layer and the penetration depth of the ATR-FTIR 

technique is several hundred micrometers, the spectra for polysulfone is able to be 

detected in all samples. 



Table 7.1 describes the peak assignments for the peaks associated with 

polysulfone, polyamide and poly(piperazinamide) layers. These latter peaks are 

identified in Figure 7.2 with arrows. 

Peaks that describe polysulfone bonds, such as aromatic in-plane ring bend 

stretching vibration (-1587, 1504, and 1488 cm-1), asymmetric SOz stretching 

vibration (1350-1280 cm-1), and the C-O-C asymmetric stretching vibration of the 

aryl-O-aryl group (-1245 cm-1), are all described in Table 7.1 and indicated in 

Figure 7.2a and b as the support layer of each TFC. Three other FTIR peaks have 

been identified as relevant peaks for fully aromatic polyamides: 

1. Amide I band (C=O stretching - dominant contributor, C-N 

stretching, and C-C-N deformation vibration in a secondary amide 

group) [176,177] 

2. Aromatic amide (N-H deformation vibration [178] or C=C ring 

stretching vibration [179] 

3. Amide II band (N-H in-plane bending and N-C stretching vibration 

ofa -CO-NH- group [176, 178] 

These peaks are all present in the spectra of the polyamide TFC created by 

interfacial polymerization of m-phenylenediamine and trimesoyl chloride (Figure 

7.2a). Spectra of semi-aromatic membranes lack the amide II band (1541 cm-l)and 

the aromatic amide peak (at 1609 cm-1), but contain a amide I band that is shifted to 

1630 em-l from 1661 em-l [6]. This peak is seen and indicated in Figure 7_2b. This 
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confirms that a sufficient poly(piperazinamide) TFC is being formed in this reaction 

of piperazine and trimesoyl chloride. 

7.3.2. XPS characterization. 

186 

XPS results revealed that TFC membrane layers created contained oxygen, 

nitrogen, and carbon as dominate peaks, with additional trace amounts of sulfur and 

chlorine present as well. XPS has a penetration depth of about 5 nm, so trace 

amounts of sulfur indicate that the TFC layer is thinner than that amount in certain 

areas. Trace amounts of chlorine means that some of the trimesoyl chloride is left 

un-reacted. For simplicity, these trace amounts (less than 1%) are not included in 

the total atomic wt%. The relative elemental composition of C(ls), O(ls) and N(ls) 

was determined based on the intensity of those peaks and is shown in Table 7.2. 

For a fully cross-linked polyamide formed from trimesoyl chloride and m­

phenylenediamine, the molecular formula is C6H40N and the O/N is therefore 1. For 

a fully linear polyamide, the molecular formula is ClsHlO04Nz and the O/N is 

therefore 2. Corresponding carbon content for the fully cross-linked and fully linear 

polyamide layers are 75.0% and 71.4%. A poly(piperazinamide) layer, fully cross­

linked and fully linear, would have molecular formula of CsHsON and C13H1204Nz, 

respectively, and O/N ratios of 1 and 2, respectively, as well (shown in Table 7.2)[6, 

8]. Corresponding carbon content for the fully cross-linked and fully linear 

poly(piperazinamide) layers are 71.4% and 68.4%. 
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According to Table 7.2, both the TFC polyamide and poly(piperazinamide) 

layers are nearly fully cross-linked, with DIN ratios of 1.11 and 1.04 respectively. 

Additionally, both the polyamide and poly(piperazinamide) layers have carbon 

contents (74.97 and 71.98 wt.%) that closely match theoretical values for their 

molecular formulas. Both TFCs formed under these conditions are fully cross­

linked, which closely mimics those found in commercial membranes. 

7.3.3. SEM characterization. 

Directly observing the membrane layers using SEM can determine 

membrane surface features and membrane homogeneity. In order to prove 

consistent reaction conditions, we must be able to observe a continuous layer across 

the silicon surface. Figure 7.3 contains both close-up and more distant images ofthe 

polysulfone layer alone (a and b), the fully aromatic layer (c and d) and the semi­

aromatic layer (e and f). Figure 7.3 a and b show consistent pore formation of the 

polysulfone base layer, which serves as the base for the other Figure 7.3 images. 

Images of the fully aromatic layer shows a rough layer that closely resembles SEM 

images of other fully aromatic membranes taken in literature [131, 180]. Previous 

studies have measured the roughness of the NF90 membrane, a fully aromatic 

membrane, at around 50 nm [180, 181]. Images of the fully aromatic layer show a 

surface that indicates a rough polymerization reaction occurred (Figure 7.3c and d). 

These features decreased in size and AFM roughness with increasing spin-off 



velocity of the second step in the polymerization reaction (images for comparison 

not shown). NF270, the semi-aromatic membrane, is a much smoother membrane 

with a reported roughness on the scale of a few nanometers, between 4 - 15 nm 

[175, 180]. Figure 7.3e and f show a much smoother surface. The larger creases and 

ridges are from the drying procedure and not from polymerization reaction. 

7.3.4. Application of substrate-based polyamide layers. 

Originally, interfacial polymerized polyamide layers attached to gold-coated 

silicon substrates were created for use on Q-Sense QCM-D crystal sensors in order 

to directly detect changes in organic adsorption for different membrane chemistries. 

However, although chemically representative of commercial membranes and typical 

membrane chemistry, the current thickness and porosity of the created layers limits 

its use with the QCM-D technique, which relies on establishing a resonant frequency. 

The layer is able to be immersed in experimental conditions and remains attached 

after removal and drying, but the layer attached to the crystal sensor surface 

remains too porous to detect a consistent resonant frequency. It is possible that 

changes may be made to this protocol to make these surfaces more reliable for 

microbalance changes in mass and suitable for the QCM-D technique. However, 

creating membranes on solid substrates is shown to be a perfect method for small 

scale techniques interested in examining membrane chemistries or characteristics, 

such as XPS, SPR, or AFM. Additionally, different membrane modification 
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techniques can be examined without creating an entire sheet of membrane, which 

tends to contain numerous heterogeneities. 
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Table 7.1- Peak assignment for FTIR spectra over wave number 1800-800 em-I. 

Adapted from a table in [6]. 

Assignable to: 

Polysulfone 

Fully aromatic 

polyamide 

FTIR peaks 
~1587, 1504, 

1488 cm-l 

1385-1365 cm-l 

~1350-1280 cm-l 

1180-1145 cm-l 

~830 cm-l 

1663 cm-l 

1609 cm-l 

1541 cm-l 

Semi-aromatic 1630 cm-l 

poly(piperazinamide) 

Peak assignments 
and Aromatic in-place ring bend 

stretching vibration[176] 

C-H symmetric deformation 

vibration of >C(CH3h [178] 

Asymmetric S02 stretching vibration 

[176] 

C-O-C asymmetric stretching 

vibration of the aryl-a-aryl group 

[182] 

Symmetric S02 stretching vibration 

In-phase out-of-plane hydrogen 

deformation of para-substituted 

phenyl groups [182] 

Amide I band (C=O stretching -

dominant contributor, C-N stretching, 

and C-C-N deformation vibration in a 

secondary amide group) [176,177] 

Aromatic amide (N-H deformation 

vibration [178] or C=C ring stretching 

vibration [179] 

Amide II band (N-H in-plane bending 

and N-C stretching vibration of a -

CO-NH- group [176, 178] 

Amide I band 

poly(piperazinamide) [183] 

for 
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Table 7.2 - XPS elemental composition and peak atomic wt. % for C(ls), O(ls) and 

N(ls). Trace amounts ofCI (ls) and S(ls) were also detected, but not included in 

the overall wt. %. Theoretical values calculated from [8]. 

XPS Atomic Wt. % 

C(ls) O(ls) N(ls) O/N 

Fully Aromatic Polyamide 74.97 12.89 11.61 1.11 

Semi-Aromatic Poly(piperazinamide) 71.98 14.26 13.77 1.04 

NF270 72.53 17.72 9.74 1.82 

NF90 75.15 13.66 11.2 1.22 

Theoretical Fully Cross-linked Values 75.0 12.5 12.5 1.0 
Theoretical Fully Linear Values 71.4 19.1 9.5 2.0 



Figure 7.1- Chemistry of a) polyamide and b) poly (piperazinamide) thin-film 

composite layers created, from [6]. (n=1 for a fully crosslinked layer, n=O for a fully 

linear layer). 

C1OCY'(COCI ~NY'lr". Nli2 Y + V --. 
cac) 

1 ,3-benzenediami tIC 

~ ~ Ii 

-VC
-

N'0'"' 
eaOH 

n l-n 

(a) Fully aromatic polyamide based on trimesoyl chloride and 1,3-benzenediamine 

CIOCYYCOCI 

~+ 
CDCI 

trimesoyl chloride 

r-\ 
HN NH 

'--..I 

n 

interfacialJ)' Conned poly(piptlf3Zinam ide) 

(b) Semi-aromatic pol}dlllide based on 1rimesoyl chloride and pipe:razine 

1-0 

192 



Figure 7.2 - ATR-FTIR spectra for (a) semi-aromatic TFC and NF270 membrane and 

(b) fully-aromatic TFC and NF90 membrane. Spectra of 8% PSf base layer is also 

shown. Peaks assigned to polyamide and poly(piperazinamide) bonds are indicated 

(black arrows), as well as polysulfone peaks (gray arrows). 
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Figure 7.3 - SEM images of PSf support layer (a and b), fully aromatic polyamide (c 

and d), and semi-aromatic poly(piperazine)amide (e and f) 
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Conclusions 

Membrane fouling is an inherent obstacle to the more widespread use of 

membrane filtration technologies. In order to develop the most robust 

pretreatment, fouling control strategies, and effective membrane cleaning protocols 

that will drive down energy costs and increase efficiency, fouling mechanisms of 

well-characterized yet relevant feed water solutions must be understood. The flux 

decline behavior of nanofiltration and reverse osmosis membrane in the presence of 

four model organic macromolecules and one model silica colloidal foulant was 

systematically investigated to examine mechanisms involved in combined fouling. 

All model organic foulants tested exhibited a synergistic effect when in combination 

with the model silica colloids during nanofiltration. The extent of the synergy, 

however, strongly depended on the molecular characteristics of the organic foulant. 

Three mechanisms: increased resistance of the mixed fouling layer, hindered back 

diffusion, and organic foulant adsorption were shown to have varying effects on 

combined fouling, depending on the specific organic foulant. The greatest 

synergism was observed in the presence of BSA, which adsorbs onto silica colloids 

as well as membrane surfaces to reduce repulsive interactions between foulants and 

the membrane as well as that among foulants. This resulted in aggregation of silica 

colloids in the fouling layer and consequently a fouling layer structure that enhances 

the cake enhanced osmotic pressure mechanism. The combined fouling layer 

structure was found to depend on membrane salt rejection. A stratified fouling layer 

structure was observed in filtration of the humic acidjST -XL by a RO membrane vs. 
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a completely mixed structure when an NF membrane was used. The stratified 

structure caused lower-than-predicted flux decline by rejecting salt, which negates 

the effect of CEOP. Alginate formed a gel layer of significant resistance in the 

presence of Caz+; the presence of silica colloids during combined fouling, however, 

disrupts the cross-linked alginate layer to reduce fouling. 

The effect of membrane surface chemistry on organic fouling and chemical 

cleaning was investigated using SAMs with ending functionalities found in 

commercial and surface modified membranes (-OPh, -NHz, -CONHz, -EG60H, -COOH, 

-OH, and -CH3). Organic adsorption of alginate and humic acid was strongly 

correlated to water contact angle measurements of the surface while BSA 

adsorption did not correlate, indicating that common parameters used to 

characterize membrane chemistry, such as hydrophobicity, may not predict organic 

adsorption during membrane fouling. In order to understand specific interactions 

controlling organic adsorption, surface and interfacial free energies that account for 

van der Waals and Lewis acid-base interactions were calculated. Surface and 

interfacial free energy analysis revealed that acid-base interactions playa more 

important role than van der Waals interactions in adsorption of all three organic 

foulants studied. Although humic acid and alginate adsorption is well described 

using this thermodynamic approach, interactions determining BSA adsorption are 

not well captured. Dynamic adsorptive layer energy dissipation and mass data 

support the conclusion that adsorption onto charged (-NHz and -COO H) surfaces 



are initiated by electrostatic interactions by observation of molecular 

reconfiguration. 

This study shows evidence for the first time that specific interactions, such as 

hydrogen bonding and electrostatic interaction between specific functionalities, 

play a more important role than non-specific electrostatic and hydrophobic 

interactions in adsorption of and irreversible fouling by proteins. Because the initial 

adsorption of proteins and polysaccharides (i.e., surface conditioning) has 

important impacts on the subsequent formation of scales and biofilms, these results 

suggest that specific surface functionality may be more important than bulk surface 

properties, such as zeta potential and hydrophobicity, in long term fouling and 

cleaning of NF and RO membranes. Therefore, surface modifications of NF and RO 

membranes that minimize the presence -COOH and -NHz functionalities as well as 

other charged sites may be an effective approach to developing fouling resistant 

membranes. We also show for the first time that proteins, although usually found in 

smaller quantity on fouled membranes [165, 166], adsorb much faster to functional 

groups typically found on NF and RO membrane surfaces and are more difficult to 

remove by chemical cleaning than polysaccharides. These results suggest that 

proteins may play an important role in initiating bio-fouling despite their smaller 

quantity. Therefore, pretreatment and chemical cleaning methods should also target 

protein removal. 
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Nomenclature 

Roman-

A - piezoelectrically active crystal area (m2), 

Am - membrane area (m2) 

b - diameter of the composite sphere (m) 

C - concentration of the solute (M) 

Cb - bulk molar salt concentration (M) 

Cm - membrane surface molar salt concentration (M) 

Cp - permeate molar salt concentrations (M) 

CQCM - mass sensitivity constant based on sensor properties (per overtone number) 

df - film thickness (m) 

dp - particle diameter (m) 

d, - thickness of adsorbed layer (m) 

D - back diffusion coefficient (m2js) 

Doo - bulk diffusion coefficient of the solute (m2js) 

D* - effective diffusivity (m2js) 

iJD - change in energy dissipation (xl0-6) 
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fjf - change in resonant frequency (Hz) 

fo - resonant frequency of the crystal sensor(Hz) 

fos - the osmotic coefficient 

11 GAB - Interfacial free energy due to Lewis acid-base contributions (mJ/m2) 

l1GADH - Interfacial free energy of adhesion (also flGLOS), sum of flGAB and flGLW 

(mJjm2) 

l1GsL - Interfacial free energy between the solid (S) and liquid (L) (mJ/m2) 

l1GLW - Interfacial free energy due to Lifshitz-van der Waals contributions (mJ/m2) 

l1GoLO- Interfacial free energy of cohesion of the organic (0) in liquid (L) (mJ/m2) 

l1GsLO - Interfacial free energy of adhesion of organic (0) to surface (S) in liquid (L) 

(mJ/m2) 

H - membrane channel height (m) 

k - mass-transfer coefficient (m/s) 

ko- the initial mass-transfer coefficient (m/s) 

L - membrane channel length (m) 

Lp - permeability of the membrane (m/s'Pa) 

mp - mass of particles deposited on the membrane (kg) 

11m - change in mass adsorbed (kg) 

n - overtone number( = 1,3,5, ... ) 

I1P - applied trans-membrane pressure (Pa) 

Q - volumetric feed flow rate (m3/s) 

Rc - resistance attributed to the colloidal cake layer (m-I) 
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R'e - resistance attributed to the colloidal cake layer, including osmotic pressure 

(m-1) 

Ream - resistance attributed to the combined fouling cake layer (m-1) 

R'eam - resistance attributed to the combined fouling cake layer, including osmotic 

pressure (m-1) 

i( - specific resistance of the colloidal cake layer 

Reg C¢c' cP g) - combined fouling layer specific resistance by using a composite cell 

model approach (m-1) 

Rep - hydraulic resistances due to the foulant concentration polarization (CP) layers 

(of both salt ions and foulant particles) (m-1) 

Rf - hydraulic resistances due to the fouling layer (formed from the rejection of the 

foulant) (m-1) 

Rg - resistance due to the organic gel layer (m-1) 

R'g - resistance due to the organic gel layer, including osmotic pressure (m-1) 

Ri - intrinsic salt rejection 

Rm - hydraulic resistance due to the membrane (m-1) 

R'm - resistance attributed to the membrane and the concentration polarization layer 

at the end of the conditioning phase (m-1) 

Ra - observed salt rejection 

LlSads - change in entropy of adsorption (J/kg/mol) 

T - absolute temperature (K) 

W - membrane channel width (m) 



Greek -

a -factor corresponding to the permeability composite layer 

f3 - factor corresponding to the permeability composite layer 

yAB - Lewis acid-base parameter of the surface tension (mJ/m2) 

yLW - Lifshitz-van der Waals parameter of the surface tension (mJ/m2) 

yTOT - Sum of all surface tension parameters (LW and AB) (mJ/m2) 

y+ - electron-acceptor parameter of the surface tension (mJ/m2) 

y - - electron-donor parameter ofthe surface tension (mJ/m2) 

E - porosity of the cake layer 

Ec - cake layer porosity 

S - surface zeta potential (mV) 

KB - Boltzmann constant (1.38 x 10-23 m2 kg/s2/K) 

17f- film viscosity (Paos) 

YJI - viscosity of the adsorbed layer (Paos) 

e -water contact angle (0) 

fl - solution viscosity (Pa os) 

flf- film elastic modulus (Pa) 

flq - shear modulus of quartz (Pa) 

fll - shear elastic modulus of adsorbed layer (Pa) 

v - permeate flux (m3/m20s) 

Vc - permeate flux due to inorganic colloids alone (m3 /m20s) 

Vcom - permeate flux due to combined foulants in solution (m3/m20s) 
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Vo - flux of clean water (m3 /m2·s) 

v;" - the strong form of the equivalent flux, assumes that the flux of a combined 

solution (Vearn) is equivalent to the sum of the fluxes of the individual components 

Vg - the flux due to organic alone (m3/m2·s) 

Vw - membrane permeate flux during filtration (m3/m2·s) 

11 - permeate flow velocity (m3 /m2·s) 

.Mrrn - trans-membrane osmotic pressure due to rejection increasing the 

concentration of salt ions (Pa) 

PI - density of adsorbed layer (kg/m3) 

pp - density of the particles (kg/m3) 

Pf- film density (kg/m3) 

pq - density of quartz (kg/m3), 

T - tortuousity 

rP, -volume fraction of the colloid 

rp g - volume fraction of the organic 

n KY - Happel's correction factor 
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Abbreviations -

AFM - Atomic force microscopy 

ALG - Sodium alginate, model organic foulant 

ATR-FTIR - Attenuated total reflectance - Fourier transform infrared spectroscopy 

BSA - Bovine serum albumin, model organic foulant 

CECP - Cake-enhanced concentration polarization (same as CEOP) 

CEOP - Cake-enhanced osmotic pressure (same as CECP) 

CP - Concentration polarization 

DEX - Dextran, model organic foulant 

DI - De-ionized (water) 

DLS - Dynamic light scattering 

DLVO - Derjaguin, Landau, Verwey and Overbeek theory 

EDCs - Endocrine disrupting compounds 

EDT A - Ethylenediaminetetraacetic acid 

EPS - Extracellular polymeric substances 

HA - Suwannee River humic acid, Standard II 

IEP - Iso-electric point 

LFC1- High salt rejecting RO membrane (Hydranautics, Nitto Denko, Oceanside, CA) 

MF - Microfiltration 

MPD - m-Phenylenediamine 

MWCO - Molecular weight cut-off 

NF - Nanofiltration 
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NF270 - Low salt rejecting NF membrane (Dow-FilmTec, Minneapolis, MN) 

NOM - Natural organic matter 

PPMC - Pearson product-moment coefficient 

PES - Polyethersulfone 

PSf - Polysulfone 

PV A - Polyvinyl alcohol 

QCM - Quartz crystal microbalance 

QCM-D - Quartz crystal microbalance with dissipation monitoring 

RO - Reverse osmosis 

SAM - Self-assembled monolayer 

SDS - Sodium dodecyl sulfate 

SEM - Scanning electron microscopy 

SPR - Surface plasmon resonance 

SRHA - Suwannee river humic acid (Standard II), model organic foul ant 

ST -XL - Snowtex - XL, colloidal silica, model inorganic foulant 

TEM - Transmission electron microscopy 

TFC - Thin-film composite 

TMC - Trimesoyl chloride 

TOC - Total organic carbon 

UF - Ultrafiltration 

XPS - X-ray photoelectron spectroscopy 

xDVLO - Extended DLVO theory 
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Appendix A - Complete Characterization of 
Model Foulants 
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Bovine Serum Albumin (BSA): 
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Humic Acid (HA): 
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Appendix B - Statistical Tools 

1. Pearson product moment correlation coefficient (PMCC)[30)-

PMCC is a measure of the strength of correlation (or linear dependence) of 

two variables, between -1 (highly negatively correlated) and + 1 (highly positively 

correlated). A PMCC of 0 represents zero linear correlation. The PMCC (px,y) is 

calculated by the covariance (cov) of two variables (X and Y) divided by the product 

of their standard deviations (a): 

cov(X,Y) 
PXY = 

, l7x l7y 

Large correlation is considered to be a PMCC value between -0.5 and -lor 0.5 and 1. 

2. Spearman's rank correlation coefficient[158) -

Spearman's rank (ps) is a measure of strength of correlation between two 

variables (X; and Yd that can be described by any monotonic function, as opposed to 

only a linear function as described by the PMCC. Assuming no tied variables: 

6" d 2 
-1 L..J I 

Ps - - n{n 2 - 1) 

where di = Xi - Yi, the difference between the ranks (Xi,Yi) of variables (X;, Yd and n is 

the sample number. Significance is determined using the student t-test with n-2 

degrees of freedom under the null-hypothesis. 



Appendix C - Chemical Structure of 
Alkanethiols Used in SAMs 

1-Dodecanethiol (-CH3) 

HS 

11-Hydroxy-1-Undecanethiol (-OH) 

HS OH 

11-Phenoxy undecanethiol ( -0 Ph) D o HS 

11-Mercaptoundecanamide (-CONHz) 

HS N 

11-Amino-1-undecanethiol, hydrochloride (-NHz) 

HS 

o 
11-Mercaptoundecanoic acid (-COOH) 

HS OH 

(1-Mercapto-11-undecyl)hexa( ethylene glycol) (-EG60H) 
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Abstract. 

The present article describes a novel fundamental theory for investigating 

combined fouling by colloids (ST -XL), macromolecules, and solute ions (NaCI). 

Three macromolecules were used for the combined fouling study, bovine serum 

albumin (BSA), alginate, and dextran. The presented theory unifies singlet, doublet, 

and triplet fouling phenomena, including cake-enhanced osmotic pressure and 

binary colloidal fouling models, giving rise to the combined flux equation for three-

component fouling assuming a completely mixed fouling layer. The predicted 

combined flux was compared to two equivalent fluxes calculated from individual 

foulant contributions. The strong form of the equivalent flux, known as the additive 

flux, was based on a linear superposition of flux decline due to individual foulants. 

The weak form of equivalent flux assumed stratification of individual foulant layers 

and hence a linear superposition of the individual fouling resistance. A comparison 
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of experimental data and theoretical calculations revealed that the weak form of 

equivalent flux and the combined flux that was predicted by the novel theory 

provided the upper and lower limits, respectively, of the observed permeate flux. 

Furthermore, the model simulation results suggested a structural compression of 

the BSA gel layer, where as such a compression did not occur in cases of alginate and 

dextran. The gel concentrations of alginate and dextran in the combined fouling 

layer seemed to be less than those in the macromolecular gel layer. 


