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Abstract

High order discontinuous Galerkin methods for simulating miscible displacement process in

porous media with a focus on minimal regularity

by

Jizhou Li

In my thesis, I formulate, analyze and implement high order discontinuous

Galerkin methods for simulating miscible displacement in porous media. The

analysis concerning the stability and convergence under the minimal regularity

assumption is established to provide theoretical foundations for using discon-

tinuous Galerkin discretization to solve miscible displacement problems. The

numerical experiments demonstrate the robustness and accuracy of the proposed

methods. The performance study for large scale simulations with highly hetero-

geneous porous media suggests strong scalability which indicates the efficiency

of the numerical algorithm. The simulations performed using the algorithms

for physically unstable flow show that higher order methods proposed in the-

sis are more suitable for simulating such phenomenon than the commonly used

cell-center finite volume method.
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Chapter 1

Introduction

1.1 Miscible displacement process

With the increasing demand of fossil fuel, coming up with smarter ways to produce the crude

oil becomes essential for the oil and gas industry. Enhanced oil recovery (EOR) is the key

discipline for introducing a wide range of techniques to improve oil production after primary

and secondary recovery. One of the most common techniques is called miscible displacement

process or miscible flooding. The end goal of the miscible displacement process is to increase

the production of the amount of remaining oil still trapped in the pores. The means by which

we achieve this end is to inject the fluid that can be mixed with the residing oil and that

forms a single-phase fluid mixture. Fluid such as CO2, propane and butane are commonly

used. By using the miscible fluid, the interfacial tension between the residing oil and injected

fluid can be eliminated completely; thereby, reducing the residual saturation to the lowest

possible value. As a result, it maximizes the amount of oil that we can displace. The

miscible flooding has long been investigated since the 1950’s and has significantly improved

production [1].

Miscible displacement occurs more than just in EOR. It can also be used to study pol-

lutant tracking, ground water contamination, CO2 sequestration and other fluid transport
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phenomena.

The mathematical model consists of a coupled nonlinear system of partial differential

equations with the pressure-velocity equations for the Darcy’s law and a concentration equa-

tion derived from mass conservation given as follows,

∇ · u = qI − qP , in Ω× (0, T ), (1.1)

u = −K(c)(∇p− ρ(c)g), in Ω× (0, T ), (1.2)

∂t(φc)− div (D(u)∇c− cu) = qI ĉ− qP c, in Ω× (0, T ), (1.3)

where the physical unknowns are p the fluid pressure, u the velocity and c the concentration

of the solvent.

The flow and transport processes can be driven by the functions qI and qP , which repre-

sent injection wells and production wells respectively. The other coefficients in the system

are the fluid density ρ(c), the gravity vector g, the porosity of the media φ, the diffusion-

dispersion matrix D(u), the injected concentration ĉ, and the tensor K(c), which is the ratio

between the permeability tensor k and the fluid viscosity µ(c). The initial concentration is

denoted by c0.

1.2 Reservoir simulations

In 1962, Peaceman and Rachford [2] developed a reservoir simulator using the finite dif-

ference method to simulate the miscible displacement process. With the advancement of

computer technology, the computer based reservoir simulator became a very important tool

to quantify the cost and benefit of oil recovery projects. Reservoir simulators stretched their

capabilities onto multi-phase, multi-component and multi-physics simulations, and at the

same time incorporating complex geological models and well information to address real

world engineering problems.
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Today, with the advancement of parallel computing capability, the development of the

reservoir simulator has become an enormous project for research development in the oil and

gas industry, and in the scientific community, attracting experts from various disciplines.

One of the most important aspects of the reservoir simulator is related to the discretiza-

tion and gridding which are the main focus points of my thesis.

1.3 My contributions on simulation of miscible flood-

ing

I propose high order discontinuous Galerkin (DG) discretization strategies for simulating

the miscible displacement process. In this work, I establish the stability and convergence

of the numerical methods proposed. From the simulation point of view, I demonstrate

the capability of the numerical methods to address large scale simulations for the physical

phenomenons. I also give detailed descriptions of the design of the simulation algorithm to

obtain strong scalability. The numerical experiment demonstrates that, in fact, the high

order methods are more adequate for simulating the miscible displacement while, at the

same time guaranteeing efficiency and high fidelity solutions.

The content of the thesis is as follows. In this next chapter, I survey the existing literature

concerning high order DG methods for reservoir simulation. Next, I discuss some commonly

used discretizations for the fluid transport in porous media and also present the advanced

discretization strategies I use for simulating miscible displacement. In chapter 4, the stability

of the numerical methods proposed are established under the minimal regularity assumption.

In chapter 5, I provide the proof for the convergence of the numerical solutions, also under the

minimal regularity assumption–followed by the discussion of the design of the linear solver

and its performance in chapter 6. Numerical experiments are presented in chapter 7, to

demonstrate the advantage of the high order algorithm in contrast with the commonly used

finite-volume method. In chapter 8, I specifically discuss the simulation of the viscous finger
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effect and the importance of using the high order method for simulating such phenomenon .

The last chapters, I present performance results for the large scale simulations and present

final conclusions.



Chapter 2

Literature Reviews

The study of advanced discretization using the Discontinuous Galerkin method (DG) for flow

in porous media was initiated by Rivière, Wheeler and Banaś in the year 2000 [3, 4], though

it was not the first time for DG to be used for solving the porous media flow [5]. Their work

demonstrates how the high order mass-conservative method significantly reduces the effect of

the computation grid on the quality of the numerical solutions for subsurface modeling and

provides an alternative to the commonly used numerical discretization techniques, including

the finite volume (FV) and finite difference (FD) methods. With the low sensitivity to the

grid orientation effect, it becomes much easier to incorporate complex geology for reservoir

simulation. On the other hand, the DG method introduces additional issues that researchers

have worked to address for the past 15 years. The four main issues concerning DG for the

reservoir simulation are:

• Construct mass-conservative continuous flux approximation;

• Handle overshoot and undershoot effect;

• Obtain efficient solver for the physical system;

• Establish convergence and stability of the numerical scheme.
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Within the last 15 years, various DG discretization concepts have been proposed to address

those four main concerns.

2.1 Numerical discretization

The first two issues concerning DG for reservoir flow rely on the discretization strategy. I

have listed several approaches and their variations as a proposition to fix these numerical

issues.

2.1.1 Sequential & semi-sequential DG-DG approach

This type of technique is designed for decoupled reservoir flow systems. Typically, we first

solve the Darcy’s flow equation for the pressure using DG; then, reconstruct the velocity

based on the pressure computed and use it to solve for the fluid transport system. We

call the decoupling methodology IMPES, or sequential, when we solve the pressure with

implicit time-stepping and saturation, or concentration, with explicit time-stepping. Another

decoupling approach is the semi-sequential approach, where we first solve for the pressure

implicitly, and reconstruct the flux to solve the fluid transport also implicitly. The reason

for such flux reconstruction is due to the requirement for maintaining a compatible global

mass-conservation property [6]. If we simply use the flux computed using DG discretization

for the Darcy’s flow, then only Incomplete Interior Penalty Galerkin (IIPG) and Local DG

(LDG) can satisfy such compatibility properties, which can be extremely restrictive in terms

of implementation and theoretical analysis. Consequently, Eslinger, in his dissertation [7]

and paper with Wheeler [8], presented a decoupled scheme based on the local DG (LDG) for

compressible fluids and problems with different capillary curves for two-phase flow. Despite

the compatibility property, in earlier literature by Rivière, Sun, and Wheeler [9, 10] for the

semi-sequential decoupling, the velocity was constructed directly from the pressure gradient

for moderately heterogeneous porous media with permeability varying from roughly 10−11
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to 10−12 m2. In this case, the slope-limiter was required.

The two flux reconstruction techniques are proposed by Ern, Nicaise, Vohral̀ık, Bastian

and Rivière [11, 12]. Unlike the flux computed directly using DG discretization, which is

discontinuous in the normal direction on faces of the neighboring element, the reconstructed

flux maintains mass-conservation and is continuous in the normal direction of the face.

Therefore, it is more accurate. The techniques have been used in [13, 14, 15, 16] to solve

both the single-phase and two-phase flow in porous media.

Both the sequential and semi-sequential decoupling approaches are used in the literature

[13, 14, 15, 16]. No slope-limiter is required for the semi-sequential approach.

Another technique often used along with flux reconstruction is the weighted averages

introduced in [17] by Ern et al. They apply it in the DG scheme for the average terms on

the interior faces to handle discontinuous and anisotropic permeability.

Most recently, this type of approach is used to study the gravity-driven viscous fingering

flow [18] with sequential decoupling. Explicit Runge-Kutta was used for solving the fluid

transport. No slope-limiter nor flux reconstruction were used in the study. The heterogeneity

of the permeability varied only in the magnitude of 10 which is similar to the results in the

earlier literature [9, 10] as described before.

2.1.2 MFE-DG approach

Another well-known discretization strategy proposed by and Sun, Rivière and Wheeler [19]

uses mixed finite element method for the Darcy’s flow; thereby, computing the pressure and

velocity simultaneously. The method takes advantage of the mixed finite element (MFE)

method for solving the elliptic system and DG for solving the fluid transport. The dis-

cretization , hybridization, and time stepping strategy were further developed by Nayagum,

Hoteit and Firoozabadi [20, 21, 22, 23, 24], by using a sequential approach with Runge-Kutta

explicit time-stepping for the fluid transport. A slope-limiter is required to post-process the

fluid saturation, which definitely reduces the accuracy in space.
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To this day, the MFE-DG approach has been used by Hoteit, Firoozabadi and Sun to

simulate multi-component fluid flow in unfractured and fractured media [22], two-phase

compositional flow [21, 23, 25, 26, 27], two-phase flow [28] with different capillary pressure

curves, two-phase flow [29, 30] with fracture media, and three-phase flow [31, 32, 33].

A fully-implicit scheme proposed by Bartel, Jensen and Müller [34] is also made possible

with the combination of the MFE and DG discretization, since unlike the flux reconstruction

approach we have to compute the pressure in order to reconstruct the flux. They also extend

the approach to second order Crank-Nicolson semi-sequential time stepping for miscible dis-

placement simulations. Li and Rivière [35, 36] proposed a higher order implicit Runge-Kutta

time-stepping strategy based DG in time for the MFE-DG approach. Similar approaches

such as the mixed DG-DG have also been proposed [37] to impose the continuity of the flux

in the normal direction weakly.

However, for large scale simulations, the higher order mixed finite element methods using

either Raviart-Thomas (RT ) basis of order two or three or Brezzi-Douglas-Marini (BDM)

basis of order two or higher, have rarely been used due to the complexity of generating the

finite element space and the fact that hybridization is required for MFE to avoid solving

large semi-definite saddle-point systems.

2.1.3 Fully-implicit DG-DG approach

Rivière and Epshteyn [38, 39] first used a fully-implicit approach to solve two-phase flow

in porous media. The interior penalty discontinuous Galerkin (IPDG) method is used to

discretize both pressure and saturation. Even without the slope-limiter and upwind stabi-

lization, the convergence of numerical solutions is achieved. Another finding in their results

is that the formulations of the problem can affect the quality of the solution. In particu-

lar, one formulation proposed in their work for the two-phase flow is very sensitive to the

penalty parameter; whereas, the other formulation is robust on the unstructured grid and

heterogeneous media.
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Bastian [40] proposes another fully-implicit scheme with the capillary pressure-wetting-

phase pressure pc-pw formulation. The DG discretization uses upwind stabilization and the

flux on interior faces are evaluated by taking the average of the pressure gradient with an

additional penalty term. The weighted average is taken from Ern’s result [17] to accommo-

date the heterogeneous permeability. First, second, and third order implicit time-updatings

are employed. No slope-limiter or any post-processing technique is required. Another formu-

lation comes from the Diplomarbeit dissertation by Grüninger [41, 42] using a fully-implicit

DG approach to discretize non-wetting-phase saturation-wetting-phase saturation so-pw for-

mulation of the two-phase flow. The result also uses the idea of the weighted average.

A fully-implicit approach with DG in time was used to study miscible displacement

simulation by Chen, Steeb, Diebels [43]. The coupled system is more expensive to solve,

however, it is compensated by allowing larger time step and mesh size for more complex

physical phenomenon such as viscous fingering. A fully-implicit approach was also used for

the miscible displacement simulation by Huang and Scovazzi [44, 45] to study the miscible

viscous fingering effect. The discretization’s capability to address heterogeneous porous

media is not mentioned.

The approach was most recently used to solve black-oil model by Rivière and Rankin in

[46].

The existing literature suggested that by using the fully-implicit DG-DG approach, we

can eliminate the overshoot and undershoot for miscible displacement, as we refine the mesh

because of diffusion term. For multi-phase flow, the overshoot and undershoot will remain

bounded, but they still present under mesh refinement. Therefore, in order to guarantee

positivity of the saturation we have to use positivity preserving slope-limiter.
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2.2 Computational efficiency

In general, the discontinuous Galerkin method is more expensive in comparison with com-

monly used finite volume and finite difference methods. During the last 15 years, there has

been tremendous effort put into developing an efficient algorithm to achieve good perfor-

mance for large scaling simulations. One trade-off with the high order method, however, is

that one can obtain the same level of accuracy on a coarser grid, which may result in short

assembling time and a smaller linear system.

One of the most effective means to attain efficiency is through adaptive mesh refinement.

From the very first publication using DG for porous media flow, the flexibility of mesh

adaptability was demonstrated [4]. The adaptive mesh refinement was used for single-phase

reactive transport in porous media in [47] and two-phase flow [48]. The results suggest

that with the adaptive mesh refinement the degree of freedom of the system can be 10

times smaller than using uniform mesh refinement while still maintaining the same level of

accuracy.

In terms of p-adaptation, work has been done to couple the finite volume (FV) with

DG [49, 50, 51]. The coupled approach not only relaxed the gridding, it also reduced the

computational cost.

With the high order DG method, the resulting linear system for the simulation of the

reservoir flow becomes larger and more ill conditioned. Also, the highly heterogeneous per-

meability poses additional difficulty for the linear solver. The algebraic multigrid (AMG)

solver introduced by Bastian, Blatt and Scheichl [52, 53] addressed the issue with linear solve.

This AMG preconditioning technique has been used in [40] for a fully-implicit coupled flow

system. The AMG preconditioner for the full system is able to solve the Jacobian system

within a few iterations. The AMG solver has also been used to solve the system resulted

from MFE discretization in [54] to attain efficiency for works on permeability upscaling.

Most recently, a similar AMG preconditioning approach was presented by [55], with some

differences on the subspace correction and the aggravation approach.
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For the coupled nonlinear system resulting from the multi-phase and multi-component

flow problems, Natvig and Lie [56, 57, 58] introduced the reordering technique for the

Newton-Raphson nonlinear solver algorithmically reducing the runtime and the memory

requirements to speed up the solver. The reordering technique has been applied to large

scale simulations of multi-phase and multi-component flows in porous media in their result

and was applied to solve flow problems in fractured media [59].

Overall, from the computational aspect, it is quite promising to achieve efficiency using

the DG method to address the simulations in porous media flow.

2.3 Theoretical analysis

With the introduction of finite element spaces, which are discontinuous on the face between

two neighboring elements for DG, new challenges have been posed in terms of establish-

ing a solid theoretical foundation for the high order method. The ground work was laid

by Arnold, Brezzi, Cockburn and Marini [60] introducing a unified approach to study the

whole class of IPDG methods for second-order elliptic problems. The hp-error estimate was

derived for the reactive-transport equations for the porous media flow by assuming that the

Darcy’s velocity was given [61, 62]. Following the error estimate, another hp-error estimate

was obtained for the coupled miscible displacement system [10] using the DG-DG approach

with pure Neumann boundary condition. It was extended to both Neumann and Dirichlet

boundary conditions [63]. A priori error analysis was done in [64]. Error estimate was estab-

lished for the fully-implicit MFE-DG approach in [19] using the “cut-off” operator for the

unbounded diffusion-dispersion tensor and in [65, 66] without using the “cut-off” operator,

but completely neglecting the dispersion and a result without using the “cut-off” operator

while considering the dispersion by means of an induction hypothesis [67] and superconver-

gence results [68, 69] for both compressible and incompressible miscible displacement. An

error estimate for the mixed-DG-DG fully-implicit approach was also established in [37].
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The analyses that have been done so far do not apply to the case with solutions under

minimal regularity. Without the additional regularity assumption for the solutions, there

is simply no convergence result from the literature listed so far. To bridge this theoretical

gap, Bartels, Jensen and Müller [34] proposed a fully-implicit Euler method in time, with

MFE, and a symmetric DG in space. The convergence analysis is obtained by applying the

standard Aubin-Lions lemma to the interpolated functional spaces that they constructed.

In the scheme [34], the diffusion-dispersion matrix is projected onto the space of piecewise

polynomial matrices. In addition, the penalty parameter depends on the shape regularity

of the mesh and polynomial degree of the approximation space. The work was extended

to a Crank-Nicolson time discretization by Jensen and Müller [70] with the system being

decoupled and solved using a semi-sequential approach, while still maintaining the second-

order approximation. Another result by Rivière and Walkington [71] titled “Convergence of a

discontinuous Galerkin method for the miscible displacement equation under low regularity”

studied the convergence of the numerical solutions for miscible displacement equations under

minimal regularity. In this case, however, the analysis was done with DG in time, and with

MFE for pressure and velocity, and the finite element method (FEM) for concentration.

One noticeable result in their analysis was a generalized compactness theorem that enabled

them to establish compactness with functions that are discontinuous in time. Li, Rivière

and Walkington [72] have proposed a numerical scheme with MFE-DG and DG in time for

solving miscible displacement equations. The convergence of the numerical solutions to the

low regularity solutions has been proven. An even more general compactness theorem has

been developed as a result to address function spaces that are discontinuous in both space and

time. Under the minimal regularity assumption, the convergence of the numerical solutions

using DG for the Darcy’s flow type of heterogeneous diffusion problem was obtained by Ern

and Di Pietro [73, 74]. The convergence analysis for mass-conservative flux reconstruction

for DG was done [75, 12], which laid the groundwork for using sequential and semi-sequential

DG-DG approaches, which I discuss in my thesis.
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Among all the existing literature concerning two-phase flow with DG discretization, very

few theoretical analyses have ever been provided. Rivière and Epshteyn [76] have provided

a theoretical proof of stability and convergence with a fully-implicit global pressure formu-

lation. The convergence rate is obtained in their error analysis. For 4 years, this result

was the only existing theoretical analysis using DG for solving two-phase flow problems in

porous media. The result was established for 2D cases, which to some extent, indicates

the technicality of establishing stability and convergence of the problem. Most recently, the

MFE-DG approach has been analyzed for two-phase flow problems [77]. Also, the more

commonly used DG-DG fully-implicit and IMPES approaches were analyzed by obtaining

error estimate in [78, 79]. All these recent results on two-phase flow were presented by Sun

and Kou.

No other theoretical analysis has been done for any other multi-phase or multi-component

flow in porous media using DG. Here is where my literature search concerning discontinuous

Galerkin methods for porous media flow comes to an end.

2.4 Summary

In summary, the various approaches mentioned above offer solutions for the four main issues

for using DG to solve porous media flow problems. Here, I list the issues with related

solutions provided by existing scientific literature:

• Construct the mass-conservative continuous flux approximation

– MFE for computing the flux

– RT flux reconstruction

– BDM flux reconstruction

• Handle overshoot and undershoot effect

– Slope-limiter
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– Fully-implicit approach

• Obtain an efficient solver for the physical system

– Reordering technique

– AMG solver

• Establish convergence and stability of the numerical scheme

– DG-DG and MFE-DG approaches for two-phase flow

– Fully-implicit DG-DG approach for miscible displacement

– Fully-implicit MFE-DG approach for miscible displacement under low regularity

– Semi-sequential MFE-DG approach for miscible displacement under low regularity

In the next chapter, I will discuss the discretization strategies for the miscible displacement

problem.



Chapter 3

Discretizations

In this chapter, I give a detailed description of the spacial descretizations and time updating

strategies used for solving the PDEs system resulted from the miscible displacement problem.

Before discussing the discretization, I first present the formulations of the problems being

solved and its related parameters.

3.1 Problem formulation

Let [0, T ] be a time interval and Ω ⊂ <d be the region occupied by the porous medium in

which a polymer solvent is being displaced. Under the assumption of incompressibility, the

fluid pressure p and velocity u satisfy the following equations

∇ · u = qI − qP , in Ω× (0, T ), (3.1)

u = −K(c)(∇p− ρ(c)g), in Ω× (0, T ). (3.2)

The concentration c of the solvent satisfies

∂t(φc)− div (D(u)∇c− cu) = qI ĉ− qP c, in Ω× (0, T ). (3.3)
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The coefficients in the model are the injection qI and production qP functions, the fluid

density ρ(c), the gravity vector g, the porosity of the medium φ, the diffusion-dispersion

tensor D(u), the injected concentration ĉ, and the tensor K(c), which is the ratio between

the permeability tensor k and the fluid viscosity µ(c).

The system is completed by the following boundary conditions.

p = pD on ΓD, u · n = uN · n on ΓN ,

and c = cin on Γin, D(u)∇c · n = qout on Γout

If the boundary condition is set to be no flow boundary condition, i.e. ΓN = ∂Ω, then the

system is completed by an additional constraint on the pressure for uniqueness and we also

need a compatibility condition,

∫
∂Ω

uN · n =

∫
Ω

(qI − qP )

with the initial condition

c(x, 0) = c0(x), x ∈ Ω.

Assumption 3.1.1. 1. Ω ⊂ <d is a bounded Lipschitz domain, d = 2 or 3.

2. K : Ω×< → <d×d is symmetric, Carathéodory (measurable in the first argument and

continuous in the second almost everywhere), uniformly bounded and elliptic. That is,

there exist constants 0 < k0 < k1 such that

k0 |ξ|2 ≤ ξTK(x, c)ξ ≤ k1 |ξ|2 , ξ ∈ <d, (x, c) ∈ Ω×<,

where |ξ| denotes the Euclidean norm. The spatial dependence is omitted below;

K(c) ≡ K(x, c).

3. D : Ω × <d → <d×d is Carathéodory, symmetric valued, and Lipschitz continuous in
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the second variable, and there exist constants 0 < d0 < d1 such that

d0(1 + |u|) |ξ|2 ≤ ξTD(x,u)ξ ≤ d1(1 + |u|) |ξ|2 , (x,u) ∈ Ω×<d, ξ ∈ <d. (3.4)

For simplicity, the spatial dependence is omitted in the rest of the thesis; D(u) ≡

D(x,u).

4. ĉ ∈ L∞(Ω), φ ∈ L∞(Ω) and φ0 < φ < φ1 for some positive constants φ0, φ1.

5. qI , qP ∈ L∞[0, T ;L2(Ω)] with qI , qP ≥ 0 and

∫
Ω

qI(x, t) =

∫
Ω

qP (x, t) for t ∈ [0, T ].

6. There exist positive constants ρ0, ρ1 such that the function ρ : < → < is Lipschitz

continuous and ρ0 ≤ ρ ≤ ρ1 .

Next, I proceed to discuss the weak formulations based on the problem frameworks that

were just presented.

3.2 Weak formulations

Two different weak formulations are presented for the miscible displacement problem. Fol-

lowing is the mixed formulation with pressure, velocity and concentration as unknowns.

Find the triple (u, p, c) in L∞(0, T ;HΓN (Ω; div)) × L∞(0, T ;L2(Ω)) ×
(
L2(0, T ;H1(Ω)) ∩

H1(0, T ;H2(Ω)′)
)

such that

∫ T

0

((K−1(c)u,v)− (p,∇ · v)) =

∫ T

0

(ρ(c)g,v)−
∫ T

0

(pD,v · n)ΓD (3.5)∫ T

0

(∇ · u, q) =

∫ T

0

(qI − qP , q) (3.6)∫ T

0

(−(φc, ∂tw) + (D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)) (3.7)

= (φc0, w(0)) +

∫ T

0

((qI ĉ, w) + (qout, w)Γout)
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For all (v, q) ∈ L1(0, T ;HΓN (Ω; div))× L1(0, T ;L2(Ω)) and for all

w ∈ {H1(0, T ;H2
Γout(Ω)) ∩H1(0, T ;H1

Γout(Ω)′)|w(T ) = 0}

Most of the convergence analyses for the numerical solutions under the low regularity as-

sumption are done in [34, 35, 72, 71] within the mixed formulation framework, where the

existence of the weak solution is still unknown. The mixed finite element and discontinuous

Galerkin (MFE-DG) discretization can be used as spacial discretization. Whereas, if we

treat only pressure and concentration as unknown and the velocity is obtained by taking the

gradient of the pressure, then there is result in terms of the existence of the weak solutions

[80]. In this case, the weak formulation is given as follow.

Find the triple (u, p, c) in L∞(0, T ;L2(Ω))× L∞(0, T ;H1(Ω))×
(
L2(0, T ;H1(Ω))

∩H1(0, T ;H2(Ω)′)
)

such that,

∫ T

0

(K(c)∇p,∇q) =

∫ T

0

((qI − qP , q)− (uN · n, q)ΓN + (K(c)ρ(c)g,∇q)) (3.8)

u = −K(c)∇p (3.9)∫ T

0

(−(φc, ∂tw) + (D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)) (3.10)

= (φc0, w(0)) +

∫ T

0

((qI ĉ, w) + (qout, w)Γout)

For all q ∈ L1(0, T ;H1
ΓD

(Ω)) and for all

w ∈ {H1(0, T ;H2
Γout(Ω)) ∩H1(0, T ;H1

Γout(Ω)′)|w(T ) = 0}

This weak form is more appropriate in terms of establishing the convergence under low

regularity condition for the numerical solutions which I examine in a later chapter using

DG-DG discretizarion.

Remark 3.2.1. The weak forms for the concentration (3.7) and (3.10) do not require the
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concentration solutions to be in H1(0, T ;H2(Ω)′). The result [80] for the existence of the

solutions, however, has established the weak solution to be in H1(0, T ;H2(Ω)′).

3.3 Notation

Before I introduce the discretization, it is helpful to introduce some useful notation. First,

QT is used to denote the space-time domain Ω× (0, T ). Let {tj}Nj=0 be a family of partitions

of [0, T ] that are quasi-uniform; i.e., there exists ν ∈ (0, 1] such that

νk ≤ min
1≤j≤N

(tj − tj−1), where k = max
1≤j≤N

(tj − tj−1).

For the time step on each interval is denote as,

kj = tj − tj−1

If the numerical solutions are discontinuous in time, then the jump of a function v at time

tj is denoted by [vj]t:

vj+ = lim
ε↓0

v(·, tj + ε), vj− = lim
ε↓0

v(·, tj − ε), [vj]t = vj+ − v
j
−.

If the numerical solution of the concentration is discontinuous across mesh elements, to

define the jump [·] and average {·} of a discontinuous function we let Γh denote the set of

interior faces. Then, for each e ∈ Γh fix a normal vector ne and let Ee
+ and Ee

− denote the

neighboring elements such that ne points from Ee
+ to Ee

−. Thus, we have

{v} =
v|Ee+ + v|Ee−

2
, and [v] = v|Ee+ − v|Ee− .
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The broken Sobolev spaces are denoted by W s,p(Eh) and let Hs(Eh) = W s,2(Eh).

The norms on H1(Eh) and W 1,4(Eh) are defined as

‖v‖H1(Eh) =

(
‖v‖2

L2(Ω) +
∑
E∈Eh

‖∇v‖2
L2(E) +

∑
e∈Γh

h−1‖[v]‖2
L2(e)

)1/2

,

‖v‖W 1,4(Eh) =

(
‖v‖4

L4(Ω) +
∑
E∈Eh

‖∇v‖4
L4(E) +

∑
e∈Γh

h−3‖[v]‖4
L4(e)

)1/4

.

The L2 inner-product on Eh and Γh are:

(·, ·)Eh =
∑
E∈Eh

(·, ·)E, (·, ·)Γh =
∑
e∈Γh

(·, ·)e.

The notation ”.” denotes less or equal with the constant independent of mesh size. Examples

of the usage of the notation are given in section B.2.1. We also use the notation Pk to

denote the polynomial of the degree k. With the notation defined, the discretizations can

be discussed.

3.4 Discretization of the Darcy’s flow

Recall the Darcy’s flow is given by,

u = −K(∇p− ρg) in Ω ⊂ <d

∇ · u = qI − qP in Ω ⊂ <d

with boundary condition,

p = pD on ΓD, u · n = uN · n on ΓN

I first consider using finite element discretization.
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3.4.1 Finite element discretization

A typical finite element (FEM) discretization for the pressure requires following weak form,

−
∫

Ω

∇ ·K(∇p− ρg)q =

∫
Ω

K(∇p− ρg) · ∇q −
∫
∂Ω

K(∇p− ρg) · nq

=

∫
Ω

K(∇p− ρg) · ∇q +

∫
ΓN

uN · nq

for all test functions q ∈ H1
ΓD

(Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on ΓD}. The equality above is

derived directly from integration by part. Hence, we have the system

∫
Ω

K(∇p− ρg) · ∇q +

∫
ΓN

uN · nq =

∫
Ω

fq

Then the system can be discretized according to the weak formulation by approximating p

using ph and have,

∫
Ω

K(∇ph − ρg) · ∇qh +

∫
ΓN

uN · nqh =

∫
Ω

fqh

where ph, qh ∈ {ϕ ∈ H1
0 (Ω) : ϕ ∈ Pk(Ω)}. For the finite element basis, we refer the reader to

Appendix A section A.2

However, the discretization using the FEM is not locally mass conservative. Written explic-

itly in mathematical notation, we have

−
∫
∂E

K(∇ph − ρg) · n 6=
∫
E

(qI − qP ).

The inability to maintain the local mass conservation triggers unphysical global oscillations

of the numerical solutions when used to solve fluid flow problems [34]. One way to maintain

local mass conservation without using the post-processing technique on FEM is to use the
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mixed finite element method.

3.4.2 Mixed finite element method

The weak formulation puts into consideration pressure and velocity simultaneously:

∫
Ω

∇ · u q =

∫
Ω

(qI − qP )q∫
Ω

K−1u · v −
∫

Ω

p ∇ · v =

∫
Ω

ρ(c)g · v −
∫

ΓD

pDv · n

with u,v ∈ HΓN (Ω; div) = {ϕ ∈ H(Ω, div) : ϕ · n = 0 on ΓN} and p, q ∈ L2(Ω). The

discretization can be constructed based on the weak formulation:

∫
Ω

∇ · uh qh =

∫
Ω

(qI − qP )qh∫
Ω

K−1uh · vh −
∫

Ω

ph ∇ · vh =

∫
Ω

ρg · vh −
∫

ΓD

pDvh · n

where uh,vh ∈ RT k(Ω) = {ϕ ∈ H0(Ω, div) : ϕ ∈ Pk(E)d + xPk(E) ∀E ∈ Eh} and ph, qh ∈

{φ ∈ L2(Ω) : φ ∈ Pk(E) ∀E ∈ Eh}. The bilinear form can for the discretization can be

written as,

a(uh,vh)− b(ph,vh) = (ρg,vh)− (pD,vh · n)ΓD

b(qh,uh) = (qI − qP , qh)
(3.11)

Other mixed finite element spaces can be used for the velocity approximation such as

BDMk(Ω). For the construction of the mixed finite element basis such as Raviart-Thomas

basis, we refer the reader to Appendix A section A.3. Notice, the local mass conservation

can be maintained. One can verify the mass conservation by choosing

qh = 1E,
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then we have

∫
∂E

uh · n =

∫
E

∇ · uh =

∫
E

(qI − qP ).

Therefore, it is a suitable discretization for porous media flow problems. In addition to the

property of maintaining local mass conservation, the velocity obtained by using a mixed

finite element is also continuous in the normal direction at the face between two neighboring

elements.

Also, notice that the linear system resulted from MFE discretization is a larger symmetric

positive semidefinite saddle-point system rather than the symmetric positive definite system

by FEM.

i.e. the system becomes

(
A B

BT 0

)
,

which poses certain difficulties in solving the system. In general, hybridization or precondi-

tioning techniques that exploit the block structure are used to reduce the size of the system.

To avoid solving the saddle-point problem, while also maintaining the local mass conserva-

tion, discontinuous Galerkin (DG) is a suitable candidate.

3.4.3 DG discretization

Instead of deriving the weak formulation for FEM using integration by part over the entire

domain, we derive DG from the integration by part on each element. First, we define Eh to

be the set of all elements of the domain Ω and Γh to be the set of all interior faces. Hence,

for each E ∈ Eh we have:

−
∫
E

∇ ·K(∇p− ρg)q =

∫
E

K(∇p− ρg) · ∇q −
∫
∂E

K(∇p− ρg) · nq
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So, we can now sum up all the element in Eh:

−
∑
E∈Eh

∫
E

∇ ·K(∇p− ρg)q =
∑
E∈Eh

∫
E

K(∇p− ρg) · ∇q −
∑
E∈Eh

∫
∂E

K(∇p− ρg) · nq (3.12)

Let ne be a normal vector on each face e ∈ Γh where the direction of the ne is fixed to one

specific direction. We define E± to be the element such that e ∈ ∂E± and ne is the outward

normal of E+. We now examine the term −
∑
E∈Eh

∫
∂E

K(∇p− ρg) · nq:

−
∑
E∈Eh

∫
∂E

K(∇p− ρg) · nq = −
∑

e∈Γh∪ΓD∪ΓN

∫
e

[K(∇p− ρg) · neq]

= −
∑

e∈Γh∪ΓD

∫
e

[K(∇p− ρg) · neq] +
∑
e∈ΓN

∫
e

uN · neq (3.13)

where

[ϕ] =


ϕ+ − ϕ− on e ∈ Γh where ϕ± is basis value accessed from E±

ϕ on e ∈ ∂Ω

Define the average

{ϕ} =


1
2
(ϕ+ + ϕ−) on e ∈ Γh

ϕ on e ∈ ∂Ω

Since we are still in the continuum level, according to the regularity argument, the solution

p satisfies:

[p] = 0 and K∇p · ne = {K∇p · ne} a.e. on Γh for all p ∈ H1(Ω) (3.14)



25

and from (3.13) we have,

−
∑
E∈Eh

∫
∂E

K(∇p− ρg) · nq = −
∑

e∈Γh∪ΓD

∫
e

{K(∇p− ρg) · ne}[q] +
∑
e∈ΓN

∫
e

uN · neq

So, the weak formulation (3.12) becomes:

∑
E∈Eh

∫
E

K(∇p− ρg) · ∇q −
∑

e∈Γh∪ΓD

∫
e

{K(∇p− ρg) · ne}[q] +
∑
e∈ΓN

∫
e

uN · neq

Again by the regularity argument (3.14), we have following properties,

∑
e∈Γh∪ΓD

∫
e

{K∇q · ne}[p]−
∑
e∈ΓD

∫
e

K∇q · nepD = 0

∑
e∈Γh∪ΓD

γe

∫
e

[p][q]−
∑
e∈ΓD

γe

∫
e

pDq = 0

where γe is the penalty parameter, typically set to be

γe =
σ

|e|d−1
or σh−1

e , where σ is a constant

So, the weak formulation for the pressure is obtained as follow,

Bd(p, q) =
∑
E∈Eh

∫
E

K(∇p− ρg) · ∇q−
∑

e∈Γh∪ΓD

∫
e

{K(∇p− ρg) · ne}[q] +
∑
e∈ΓN

∫
e

uN · neq

+θ
∑

e∈Γh∪ΓD

∫
e

{K∇q · ne}[p]− θ
∑
e∈ΓD

∫
e

K∇q · nepD

+
∑

e∈Γh∪ΓD

γe

∫
e

[p][q]−
∑
e∈ΓD

γe

∫
e

pDq

Therefore, the weak form becomes

Bd(p, q) = (qI − qP , q)
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When θ = −1 we have a symmetric weak form. We call this Symmetric Interior Penalty

Galerkin (SIPG). When θ = 1 the weak form is non-symmetric. This is called Non-symmetric

Interior Penalty Galerkin (NIPG). When θ = 0 the entire term drops. This is called Incom-

plete Interior Penalty Galerkin (IIPG). Among those three weak forms, NIPG gives the most

stable scheme regardless of the penalty term γe. When the penalty parameter γe = 0, the

scheme is also known as Oden-Babuška-Baumann (OBB) DG [81]. Whereas, SIPG and IIPG

require the adjustment of the penalty parameter to guarantee the stability.

We discretize the pressure using piecewise polynomial bases,

ph, qh ∈ {ϕ ∈ H1(Eh) : ϕ ∈ Pk(E)}

For additional details concerning the basis functions for DG, we refer the reader to Appendix

A section A.2. We have the discretization,

Bd(ph, qh) = (qI − qP , qh) (3.15)

For the assembling of the linear system and numerical integration, we refer reader to Ap-

pendix A section A.1. We can verify the local mass conservation by setting qh = 1E, then

we have

−
∫
∂E

{K(∇ph − ρg)} · n +

∫
∂E

γe[ph] =

∫
E

qI − qP

where flux can be defined as

uDGh = −K(∇ph − ρg) on E

uDGh · n = −{K(∇ph − ρg)} · n + γe[ph] on ∂E
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Hence, according to the way the flux is constructed and the regularity of the solutions, local

mass conservation is preserved; However, the flux can be inaccurate on the face of the element

[12]. In particular, for miscible displacement problem we have to evaluate D(uh)∇ch·n, which

is undefined by the way we construct the flux. Some more appropriate ways to reconstruct

the flux are discussed in a later section.

Next, I present some additional modifications to the DG discretization to address several

numerical issues for the problem related to porous media flow.

3.4.3.1 Weighted average

To enhance the quality of the simulation with varying permeability, I present here a common

practice developed by Ern and et al [17, 74]. When integrating over the face element, instead

of taking the arithmetic average, we take the weight average according to the permeability

tensor on each adjacent element. Therefore,

Bd(ph, qh) = (qI − qP , qh) (3.16)

where,

Bd(ph, qh) =
∑
E∈Eh

∫
E

K(∇ph − ρg) · ∇qh −
∑

e∈Γh∪ΓD

∫
e

{K(∇ph − ρg) · ne}ω[qh]

+ θ
∑

e∈Γh∪ΓD

∫
e

{K∇qh · ne}ω[ph]− θ
∑
e∈ΓD

∫
e

K∇qh · nepD

+
∑

e∈Γh∪ΓD

γe,ω

∫
e

[ph][qh]−
∑
e∈ΓD

γe,ω

∫
e

pDqh +
∑
e∈ΓN

∫
e

uN · neqh

where {ϕ}ω is given by,

{ϕ}ω = ω+ϕ+ + ω−ϕ−
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for some weights ω+ + ω− = 1, w± ≥ 0. And the weights are given as

w± =
δ∓K

δ+
K + δ−K

with

δ± = nTeK±ne

And the corresponding penalty parameter γe,ω is

γe,ω = m
2δ+
Kδ
−
K

δ+
K + δ−K

k(k + d− 1) |e|
min(|E+| , |E−|)

where k is the order of approximation in space and m is a positive constant to adjust in

order to have the best convergence rate and condition number for the linear system. The

choice of the weight and penalty parameter is supposed to yield a robust error estimate with

respect to the diffusivity. The weighted average weakly imposes the continuity of the flux in

[17]; thereby, improving the stability and convergence of the solution.

3.4.3.2 Flux Reconstruction

One disadvantage for using DG is that the normal component of velocity field is not contin-

uous on the interior faces; Hence, when using sequential or semi-sequential time updating

where the fluid transport equation requires accurate evaluations of the velocity, it is better

to construct continuous flux while maintaining mass conservation properties.

One technique proposed by Bastian and Rivière [12], referred to as BDM flux recon-

struction, for the purpose of this thesis, has been used in single-phase and two-phase flow.

Here, we give some detailed descriptions of the flux reconstruction.
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We denote the velocity directly obtained from DG as

uDGh = −K(∇ph − ρg), with ph ∈ Pk(Eh)

The reconstructed velocity u∗h ∈ Pdk−1(Eh) have to satisfy following

∫
e

u∗h · nezh =

∫
e

{uDGh } · nezh, ∀z ∈ Pk−1(e), ∀e ∈ ∂E (3.17)∫
E

u∗h · ∇wh =

∫
E

uDGh · ∇wh, ∀wh ∈ Pk−2(E) (3.18)∫
E

u∗h · ∇ × φh =

∫
E

uDGh · ∇ × φh, ∀φh ∈Mk(E) (3.19)

where

Mk(E) = {φ ∈ Pk(E) : φh|∂E = 0}

The conditions above uniquely define a mass conservative u∗h that is continuous in the normal

components. By this construction, u∗h ∈ BDMk−1(Ω), the flux reconstruction is designed

for OBB DG discretization which is basically NIPG without the penalty term, but it can be

generalized for other types of DG.

Ern and et al. [75] proposed a more accurate flux reconstruction because the reconstruc-

tion offers the optimal error estimate for the divergence of the flux. We refer the technique

as RT flux reconstruction. The construction is as follows:

Let u∗h ∈ RT k(Ω) such that

∫
e

u∗h · neqh =

∫
e

({uDGh }ω · ne + γe[ph])qh, ∀qh ∈ Pk(e), ∀e ∈ ∂E (3.20)∫
E

u∗h · v =

∫
E

uDGh · vh + θ
∑
e∈∂E

ωE,e

∫
e

Kvh · ne[ph], ∀vh ∈ Pdk−1(E) (3.21)

These conditions, again, uniquely determine a mass conservative and continuous flux.

In both cases, the flux reconstructions are very efficient post-processing techniques since

they can be done locally on each element and face. For the construction of the Raviart-
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Thomas finite element on the quadrilateral element, we refer to the Appendix A section A.3.

3.4.3.3 Slope-limiter

Another numerical issue for using high order discretization for porous media flow is the effect

of overshoot and undershoot at the location where large gradient of the solution occurs. In

some cases, the overshoot and undershoot affect the quality of the numerical solutions so

drastically, that, they requires to completely eliminate the overshoot and undershoot. The

slope-limiter is designed to address this issue. In this part, I discuss the construction of the

slope-limiter. Let us consider the construction of the slope-limiter on a 2D Cartesian grid.

We denote DG solution by cDGh . On the element E = (xn, xn+1)× (ym, ym+1), we can expand

the solution

ch
DG(x, y) = an,m0 + an,m1 ψn(x) + an,m2 ξm(y) + an,m3 ψn(x)ξm(y)

+an,m4

(
ψn(x)2 − 1

3

)
+ an,m5

(
ξm(y)2 − 1

3

)
+ · · ·

where the basis are given as

ψn(x) =
x− xn+xn+1

2
xn+1−xn

2

, ξm(y) =
y − ym+ym+1

2
ym+1−ym

2

Since we use the orthogonal polynomial as the bases of the DG solution, we have the local

mass matrix is given explicitly by

M = |E| diag
(

1,
1

3
,

1

3
,

1

9
,

4

45
,

4

45
, · · ·

)

It is straightforward for us to obtain the coefficients. Since the coefficients we need are

an,m0 , an,m1 , an,m2 , we can be computed as follows

an,m0 =
1

|E|

∫
E

cDG, an,m1 =
3

|E|

∫
E

cDGψn, a
n,m
2 =

3

|E|

∫
E

cDGξm (3.22)
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Then, we can detect overshoots or undershoots by comparing an,m1 , an,m2 with some constant

parameter Mlim. If the overshoot or undershoot is detected, we can compute the neighboring

averages an−1,m
0 , an+1,m

0 , an,m−1
0 , an,m+1

0 and construct new slope ān,m1 , ān,m2 . The solution after

the post-processing is given to be

ch
∗(x, y) = an,m0 + ān,m1 ψn(x) + ān,m2 ξm(y)

The specific way to construct the new slope can be found in [82, 83]. The algorithm is given

as follow:

for All the elements E = (xn, xn+1)× (ym, ym+1) ∈ Eh do

Compute an,m0 , an,m1 , an,m2 using (3.22);

if |an,m1 | > Mlim then

Compute an−1,m
0 , an+1,m

0 using (3.22);

Reconstruct ān,m1 using minmod algorithm;

end

if an,m1 6= ān,m1 then

ch
∗ = an,m0 + ān,m1 ψn(x) + an,m2 ξm(y);

an,m1 = ān,m1

end

if |an,m2 | > Mlim then

Compute an,m−1
0 , an,m+1

0 using (3.22);

Reconstruct ān,m2 using minmod algorithm;

end

if an,m2 6= ān,m2 then

ch
∗ = an,m0 + an,m1 ψn(x) + ān,m2 ξm(y)

end

end

Algorithm 1: Slope-limiter
In addition to limiting the slope, the slope-limiter can detect the non-physical solution

such as negative saturation or concentration, thereby, making certain adjustment to preserve
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positivity.

3.4.4 Finite volume discretization

Finite volume discretization is a commonly used discretization for the porous media flow

problem. There are in fact various types of finite volume methods. Here, I only present the

cell-center finite volume (CCFV) method which can be seen as a DG method with piecewise

constant approximations. We simply restrict the approximation to be

ph, qh ∈ P0(Eh).

Then, from 3.16, we have

Bd(ph, qh) =
∑

e∈Γh∪ΓD

γe

∫
e

[ph][qh]−
∑
e∈ΓD

γe

∫
e

pDqh +
∑
e∈ΓN

∫
e

uN · neqh = (qI − qp, qh)

By setting
γe
|e|

to be transmissibility T, we have CCFV method, i.e.

∑
e∈∂E

T(p+
h − p

−
h ) =

∫
E

qI − qP for each interior element E

The advantage of using CCFV method is that it maintains mass conservation and monoton-

isity of the numerical solutions. However, this low order discretization suffers significantly

from the grid orientation effect and permeability anisotropy as I demonstrate in the chapter

on numerical experiments.

Apart from the discretizations I have discussed above, there are other advanced discretiza-

tion strategies that can be used for porous media flow simulations such as the multi-point

flux approximation (MPFA) method. MPFA is an extension of the CCFV with 2nd-order ap-

proximation. It is more suitable for handling the case with grid distortion and permeability

anisotropy.
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CCFV MPFA FEM MFE DG

Local mass conservation
√ √

×
√ √

Grid distortion ×
√ √ √ √

Anisotropy ×
√ √ √ √

High order ×
√ √ √ √

Convergence for minimal regularity × ×
√ √ √

Table 3.1: Discretization strategies comparison

Table 3.1 gives an overview of the numerical methods I described and the numerical is-

sues that they address. For the rest of the thesis, I specifically focus on the two types of

discretization namely the MFE method in (3.11), and the DG method in (3.16) with RT

flux reconstruction. Extensive treatment for convergence of the solution and the quality of

numerical simulation is discussed in the chapters that follow.

In the following section, I address the DG discretization for solving the fluid transport

equation.

3.5 Discretization of the fluid transport

In the previous section I have discussed several numerical discretization approaches for

Darcy’s flow and their related numerical issues. In this section, I solely use DG discretization

for the fluid transport. Recall, the fluid transport is given by

φ∂tc−∇ · (D(u)∇c− uc) = qI ĉ− qP c in Ω
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with boundary condition:

c = cin on Γin and D(u) · n = qout on Γout

and initial condition:

c(·, 0) = c0

For the DG discretization, we first consider using the upwind approximation for the convec-

tion.

3.5.1 Upwind stabilization DG

The discretization arises out of the most natural weak formulation. For the diffusion term,

we have:

Bdi(c, w; u) =
∑
E∈Eh

∫
E

D(u)∇c · ∇w−
∑

e∈Γh∪Γin

∫
e

{D(u)∇c · ne}[w]−
∑
e∈Γout

∫
e

qoutw

+θ
∑

e∈Γh∪Γin

∫
e

{D(u)∇w · ne}[c]− θ
∑
e∈Γin

∫
e

D(u)∇w · necin

+
∑

e∈Γh∈∪Γin

σ

he

∫
e

[c][w]−
∑
e∈Γin

σ

he

∫
e

cinw

For the convection term we have:

Bc(c, w; u) = −
∑
E∈Eh

∫
E

uc · ∇w +
∑

e∈Γh∪Γout

∫
e

u · necup[w] +
∑
e∈Γin

∫
e

cinu · new

where the upwind term is given as:

ϕup =


ϕ+ if u · ne ≥ 0

ϕ− otherwise
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Therefore, we have the spacial discretization

(φ∂tch, wh) +Btr(ch, wh; uh) = `tr(wh) (3.23)

with Btr(ch, wh; uh) = Bdi(ch, wh; uh) +Bc(ch, wh; uh) and `tr(wh) = (qI ĉ− qP ch, wh).

3.5.2 Lax-Friedrichs stabilization DG

The scheme I present next is based on the Lax-Friedrichs flux splitting. The scheme is more

helpful for theoretical analysis.

First, the transport equation can be rewritten as follows:

∂t(φc)−∇ · (D(u)∇c− (1/2)cu) + (1/2)u · ∇c+ (1/2)(qI + qP )c = qI ĉ.

The diffusion term is given as:

Bdi(ch, wh; uh) = (D(uh)∇ch,∇wh)Eh − ([wh], {D(uh)∇ch · ne})Γh

+ ε([ch], {D(uh)∇wh · ne})Γh + (σh−1(1 + {|uh|})[ch], [wh])Γh . (3.24)

The convection-source term is given to be:

Bcq(ch, wh; uh) =
1

2

(
(uh · ∇ch, wh)Eh − (uhch,∇wh)Eh + ((qI + qP )ch, wh)

+ (cup
h uh · ne, [wh])Γh − (wdown

h uh · ne, [ch])Γh

)
. (3.25)

The downwind term follows the same concept as the upwind term:

ϕdown =


ϕ+ if u · ne ≤ 0

ϕ− otherwise
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Therefore, the spacial discretization is shown to be:

(φ∂tch, wh) +Btr(ch, wh; uh) = `tr(wh) (3.26)

with Btr(ch, wh; uh) = Bdi(ch, wh; uh) +Bcq(ch, wh; uh) and `tr(wh) = (qI ĉ, wh).

In the remaining section, I present the fully discrete scheme for the miscible displacement

problem.

3.6 Fully discrete scheme for the miscible displacement

model

In the previous section, I have introduced the spacial discretizations for each component

of the miscible displacement problem. Now, I introduce the time-stepping techniques to

incorporate the time stepping scheme into the miscible displacement model. The resulting

algorithms can be implemented to simulate the miscible flooding.

3.6.1 MFE-DG discretization with DG in time

The numerical scheme with DG in time can be written as follows.

Finding uh ∈ P`(tj−1, tj; Uh), ph ∈ P`(tj−1, tj;Ph), ch ∈ P`(tj−1, tj;Ch), satisfying

∫ tj

tj−1

(
(K−1(ch)uh,vh)− (ph,∇ · vh)

)
=

∫ tj

tj−1

(ρ(ch)g,vh), (3.27)∫ tj

tj−1

(qh,∇ · uh) =

∫ tj

tj−1

(qI − qP , qh), (3.28)∫ tj

tj−1

(
(φ∂tch, wh) +Btr(ch, wh; uh)

)
+ (
[
cj−1
h

]
t
, φwj−1

h+ ) =

∫ tj

tj−1

(ĉqI , wh), (3.29)
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The scheme is fully implicit; therefore, it is necessary to solve a nonlinear coupled system at

each time step. In terms of the implementation, we can recast (3.29) as follows:

∫ tj

tj−1

(∂tch, wh) +
( [
cj−1
h

]
t
, wj−1

h+

)
=

∫ tj

tj−1

(Fh(ch), wh)

Using integration by parts, we have:

(cjh−, w
j
h−) = (cj−1

h− , w
j−1
h+ ) +

∫ tj

tj−1

(ch, ∂twh) +

∫ tj

tj−1

(Fh(ch), wh) (3.30)

Thus, simply by selecting the polynomial basis functions for the approximation in time and

numerical quadrature for the integration over time, we can construct time stepping schemes

that can be easily implemented.

For example, if we select basis functions over the reference interval in time [0, 1] to be

{
1, t,

1

2
(3t2 − 1)

}

and we use the Radau II quadrature with quadrature points and weights

Q =
{1

3
, 1
}

and W =
{3

4
,
1

4

}

Then, we have the time updating based on Butcher’s table as

1/3 1/3 0

1 1 0

3/4 1/4

which is a third-order method.
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If we select the basis function to be,

{
1, t,

1

2
(3t2 − 1)

}

and if we use the Lobatto III quadrature with quadrature points and weights

Q =
{

0,
1

2
, 1
}

and W =
{1

6
,
2

3
,
1

6

}
.

Then, we have a time updating based on Butcher’s table as

0 0 0 0

1/2 1/4 1/4 0

1 0 1 0

1/6 2/3 1/6

which is a fourth-order method.
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The algorithm for time updating for the entire problem is given as

for j = 1 : N and vh ∈ Uh, qh ∈ Ph, and wh ∈ Ch do

Set c
(0)
h = ch(·, tj−1);

for i = 1 : s− 1 where s− 1 is the number of the intermediate points do

Find (u
(i)
h , p

(i)
h ) ∈ (Uh, Ph) such that

(K−1(c
(0)
h )u

(i)
h ,vh)− (p

(i)
h , div(vh)) = (ρ(c

(0)
h )g,vh)

(qh, div(u
(i)
h )) = ((qI − qP )(t

(i)
j ), qh)

Find c
(i)
h ∈ Ch such that

(φ
c

(i)
h − c

j−1
h

dikj
, wh) +

i∑
k=1

ai,kBtr(c
(k)
h , wh; u

(k)
h ) =

i∑
k=1

ai,k((ĉq
I)(t

(k)
j ), wh)

end

Find (u
(s)
h , p

(s)
h ) ∈ (Uh, Ph) such that

(K−1(c
(0)
h )u

(s)
h ,vh)− (p

(s)
h , div(vh)) = (ρ(c

(0)
h )g,vh)

(qh, div(u
(s)
h )) = ((qI − qP )(t

(s)
j ), qh)

Update ch(·, tj) = cjh by solving

(φ
cjh − c

j−1
h

kj
, wh) +

s−1∑
i=1

biBtr(c
(i)
h , wh; u

(i)
h ) =

s−1∑
i=1

bi((ĉq
I)(t

(i)
j ), wh)

end

The intermediate time steps are defined as t
(i)
j = tj−1 + dikj. The coefficients ai,k’s,

bi’s and di’s are taken from the Butcher’s table for the Runge-Kutta method:

d A

bᵀ

Algorithm 2: Discontinuous Galerkin in time updating
The algorithm we just presented for the Discontinuous Galerkin in time updating is

essentially an implicit Runge-Kutta time updating scheme. Next, we take a look at some

more conventional time stepping methods such as the implicit Euler method and the Crank-

Nicolson method.
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3.6.2 DG-DG with implicit Euler decoupling

For the DG-DG spatial discretization with implicit Euler in time, we have
Data: Initial condition, boundary condition, well information, etc.

initialize t0 = 0; k1; c0
h;

while j = 1 : N do

Solve Darcy system Bd(p
j
h, qh; c

j−1
h ) = `jd(qh; c

j−1
h );

Reconstruct velocity ujh using RT flux reconstruction by solving:

(ujh,vh)E = −(K(c̄j−1
h )(∇pjh − ρ(c̄j−1

h )g),vh)E + θ(ωE,eK(c̄j−1
h )vh · ne, [pjh])∂E;

(ujh · ne, qh)e = −({K(c̄j−1
h )(∇pjh − ρ(c̄j−1

h )g)}ω · ne, qh)e + γe([p
j−1
h ], qh)e;

Solve transport system for cjh with given ujh with implicit Euler;(
φ
cjh − c

j−1
h

kj
, wh

)
+Btr(c

j
h, wh; u

j
h) = `jtr(wh);

tj+1 = tj + kj;

end

Algorithm 3: Implicit Euler decoupling for DG-DG
where we have,

Bd(ph, qh) =
∑
E∈Eh

∫
E

K(cj−1
h )∇ph · ∇qh −

∑
e∈Γh∪ΓD

∫
e

{K(cj−1
h )∇ph · ne}ω[qh]

+θ
∑

e∈Γh∪ΓD

∫
e

{K(cj−1
h )∇qh · ne}ω[ph] +

∑
e∈Γh∪ΓD

γe,ω

∫
e

[ph][qh]

and

`jd(qh; c
j−1
h ) =

∑
E∈Eh

∫
E

K(cj−1
h )ρ(cj−1

h )g · ∇qh −
∑

e∈Γh∪ΓD

∫
e

{K(cj−1
h )ρ(cj−1

h )g · ne}ω[qh]

+θ
∑
e∈ΓD

∫
e

K(cj−1
h )∇qh · nepjD +

∑
e∈ΓD

γe,ω

∫
e

pjDqh −
∑
e∈ΓN

∫
e

ujN · neqh

+((qIh − qPh )j, qh)



41

The source term is given to be as follow,

qIh =
1

kj

∫ tj

tj−1

qI , qPh =
1

kj

∫ tj

tj−1

qP and ĉh =
1

kj

∫ tj

tj−1

ĉ (3.31)

which is simply the L2-projection in time for the input data. If there is additional regularity

for the input data, then we can simply use the point-wise evaluation at tj over the interval

[tj−1, tj]. Since the problem itself does not provide any additional regularity in time for the

source functions, using L2-projection as the input data in the numerical scheme is required

for us to establish convergence and stability of the numerical solutions.

For the flux reconstruction, c̄h is the spacial piecewise averaging approximation of the

solution ch. We can also obtain high order approximation in time using the Crank-Nicolson

decoupling approach.
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3.6.3 DG-DG with Crank-Nicolson decoupling

For DG-DG discretization, we have
Data: Initial condition, boundary condition, well information, etc.

initialize t0 = 0; k0; c0
h;

Set c
(0)
h = c0

h;

Compute c1
h using implicit Euler algorithm over [0, k0];

for j = 1 : N do

Solve Darcy system Bd(p
j
h, qh; c

j
h) = `jd(qh; c

j
h);

Reconstruct velocity ujh using RT flux reconstruction by solving:

(ujh,vh)E = −(K(c̄jh)(∇p
j
h − ρ(c̄j−1

h )g),vh)E + θ(ωE,eK(c̄jh)vh · ne, [p
j
h])∂E;

(ujh · ne, qh)e = −({(K(c̄jh)∇p
j
h − ρ(c̄j−1

h )g)}ω · ne, qh)e + γe([p
j
h], qh)e;

Compute ǔj+1
h = 3

2
ujh − 1

2
uj−1
h ;

Solve transport system for cj+1
h with given ǔj+1

h using Crank-Nicolson;(
φ
cjh − c

j−1
h

kj
, wh

)
+Btr

(cjh + cj−1
h

2
, wh; ǔ

j
h

)
= `jtr(wh);

tj+1 = tj + kj;

end

Algorithm 4: Crank-Nicolson decoupling for MFE-DG

The Darcy system and source terms are the same as (3.31).
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3.6.4 MFE-DG with implicit Euler decoupling

For the implicit Euler time updating with the MFE-DG spacial discretization, the algorithm

is given as follow. We have
Data: Initial condition, boundary condition, well information, etc.

initialize t0 = 0; k1; c0
h;

while j = 1 : N do

Solve Darcy system;

(K−1(cj−1
h )ujh,vh)− (pjh, div(vh)) = (ρ(cj−1

h )g,vh);

(qh, div(ujh)) = ((qIh − qPh )j, qh);

Solve transport system for cjh with given ujh with implicit Euler;(
φ
cjh − c

j−1
h

kj
, wh

)
+Btr(c

j
h, wh; u

j
h) = `jtr(wh);

tj+1 = tj + kj;

end

Algorithm 5: Implicit Euler decoupling for MFE-DG

The algorithm just presented is different from [34]. In our case, the coupled nonlinear

systems have been decoupled into two linear systems and are solved sequentially. The source

terms are the same as (3.31).
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3.6.5 MFE-DG with Crank-Nicolson decoupling

For the Crank-Nicolson time updating, the algorithm is given as follows:
Data: Initial condition, boundary condition, well information, etc.

initialize t0 = 0; k0; c0
h;

Set c
(0)
h = c0

h;

Compute c1
h using implicit Euler algorithm over [0, k0];

for j = 1 : N do

Solve Darcy system;

(K−1(cjh)u
j
h,vh)− (pjh, div(vh)) = (ρ(cjh)g,vh);

(qh, div(ujh)) = ((qIh − qPh )j, qh);

Compute ǔj+1
h = 3

2
ujh − 1

2
uj−1
h ;

Solve transport system for cj+1
h with given ǔj+1

h using Crank-Nicolson;(
φ
cjh − c

j−1
h

kj
, wh

)
+Btr

(cjh + cj−1
h

2
, wh; ǔ

j
h

)
= `jtr(wh);

tj+1 = tj + kj;

end

Algorithm 6: Crank-Nicolson decoupling for MFE-DG

The algorithm given is based on [70]. The extrapolated velocity ǔj+1
h is needed to maintain

the second-order convergence rate in time [84]. The source terms are the same as (3.31).

The next chapter examine the stability of the numerical solutions provided by each of

the numerical schemes just presented.



Chapter 4

Stability Analysis

In this chapter, I establish stability of the numerical solutions provided by MFE-DG and

DG-DG discretizations proposed in Section 3.6. For simplicity, assume the following no flow

boundary conditions:

u · n = 0 and D(u)∇c · n = 0 on ∂Ω

To be well-posed, the following compatability conditions are introduced,

∫
Ω

qI =

∫
Ω

qP and

∫
Ω

p = 0.

First, I restate the weak formulations in light of the boundary conditions imposed for sim-

plicity.

4.1 Weak formulations

I present two weak formulations for the purpose of establishing convergence of numerical

solutions for using both MFE-DG and DG-DG discretizations.
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We first give the mixed weak formulation of the problem, for the solutions triplets

(u, p, c) ∈ L∞(0, T ;H(Ω; div))× L∞(0, T ;L2
0(Ω))×

(
L2(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)′)

)

∫ T

0

((K−1(c)u,v)− (p,∇ · v)) =

∫ T

0

(ρ(c)g,v) (4.1)∫ T

0

(∇ · u, q) =

∫ T

0

(qI − qP , q) (4.2)∫ T

0

(−(φc, ∂tw) + (D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)) = (φc0, w(0)) +

∫ T

0

(qI ĉ, w)

(4.3)

for all (v, q) ∈ L1(0, T ;H(Ω; div)) × L1(0, T ;L2(Ω)) and for all w ∈ {H1(0, T ;H2(Ω)) ∩

H1(0, T ;H1(Ω)′)|w(T ) = 0}.

Another weak formulation is presented as, (for the triplet):

(u, p, c) ∈ L∞(0, T ;L2(Ω)d)× L∞(0, T ;H1
0 (Ω))×

(
L2(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)′)

)

∫ T

0

(K(c)∇p,∇q) =

∫ T

0

((qI − qP , q) + (K(c)ρ(c)g,∇q)) (4.4)

u = −K(c)∇p (4.5)∫ T

0

(−(φc, ∂tw) + (D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)) = (φc0, w(0)) +

∫ T

0

(qI ĉ, w)

(4.6)

for all q ∈ L1(0, T ;H1(Ω)) and w ∈ {H1(0, T ;H1(Ω)) ∩ H1(0, T ;H1(Ω)′)|w(T ) = 0} with

the Sobolev spaces defined as,

L2
0(Ω) =

{
ϕ ∈ L2(Ω) :

∫
Ω

ϕ = 0

}
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and

H1
0 (Ω) =

{
ϕ ∈ H1(Ω) :

∫
Ω

ϕ = 0

}

The rest of the analysis concerning the stability and convergence of the solutions are based

on the formulations given above.

4.2 Stability analysis for MFE-DG with DG in time

I consider in this section, the stability analysis for the discretization strategy presented in

(3.27)-(3.29) where we have a fully-implicit scheme with MFE for the pressure and velocity,

DG for the concentration and DG in time.

4.2.1 Stability for pressure and velocity

The stability of the fluid pressure and velocity follows the same argument as in the result of

Walkington and Rivière’s work [71]. The derivation is directly taken from my master thesis

work [35]. For completeness, recall the existing results.

Lemma 4.2.1. There exists a constant m > 0 depending only upon Ω such that

sup
uh∈Uh

∫
Ω
phdiv(uh)

‖uh‖H(Ω;div)

≥ m‖ph‖L2(Ω), ph ∈ Ph

In particular, if Zh = {uh ∈ Uh | div(uh) = 0} and Uh = Zh ⊕ Z⊥h is the orthogonal

decomposition, then there exists a linear operator Lh : Ph → Z⊥h with ‖Lh‖L(Ph,Uh) ≤ 1 such

that

m‖ph‖2
L2(Ω) ≤

∫
Ω

phdiv(Lh(ph)), ph ∈ Ph

and if uh ∈ Z⊥h then m‖uh‖H(Ω;div) ≤ ‖div(uh)‖L2(Ω).
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Lemma 4.2.2. Let V be a linear space and (., .)V be a (semi) inner product on V ; w ≥ 0

be a non-zero element of L1(0, 1); and 0 < a < b. Then there exists a constant M` > 0,

depending only upon ` and w, such that for all u ∈ P`(a, b;V )

‖u‖Lp(a,b;V ) ≤ (b− a)1/p−1/2

(
M`

∫ b

a

w((t− a)/(b− a))‖u(t)‖2
V dt

)1/2

, 1 ≤ p ≤ ∞

In particular, if 1/p+ 1/p′ = 1 then

‖u‖Lp(a,b;V )‖u‖Lp′ (a,b;V ) ≤M`

∫ b

a

w((t− a)/(b− a))‖w(t)‖2
V

Now, I state and prove the stability for the pressure and velocity.

Theorem 4.2.3. There exists a constant M > 0 independent of h and k such that solutions

of the numerical scheme satisfy the following bounds.

• If 1 ≤ p, q ≤ ∞ and qI , qP ∈ Lp(0, T ;Lq(Ω)), then

‖div(uh)‖Lp(0,T ;Lq(Ω)) ≤M
(
‖qI‖Lp(0,T ;Lq(Ω)) + ‖qP‖Lp(0,T ;Lq(Ω))

)

• If 1 ≤ p ≤ ∞, qI , qP ∈ Lp(0, T ;L2(Ω)), then

‖uh‖Lp(0,T ;H(Ω,div)) + ‖ph‖Lp(0,T ;L2(Ω)) ≤M
(
‖qI‖Lp(0,T ;L2(Ω)) + ‖qP‖Lp(0,T ;L2(Ω))

+‖ρ1g‖Lp(0,T ;L2(Ω))

)

Proof. For each E ∈ Eh, let Πh : L2(tj−1, tj;L
2(E)) → P`(tj−1, tj;Pk(E)) denote the L2

projection. A parent element calculation shows that there exists a constant M > 0 depending

only on the parent element such that

‖Πh(q
I − qP )‖Lp(tj−1,tj ,Lq(E)) ≤M‖qI − qP‖Lp(tj−1,tj ,Lq(E)), 1 ≤ p, q ≤ ∞
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Since div(uh) ∈ Ph it follows from (3.28) that

div(uh) = Πh(q
I − qP )

Next, we introduce the orthogonal decomposition Uh = Zh ⊕ Z⊥h , therefore, letting uh =

zh + u⊥h be the decomposition of uh. From Lemma 4.2.1, we find

M‖u⊥h ‖H(Ω;div) ≤ ‖div(u⊥h )‖L2(Ω) = ‖div(uh)‖L2(Ω)

and, since div(uh) = Πh(q
I − qP ), it follows that

‖u⊥h ‖Lp(tj−1,tj ;H(Ω;div)) ≤M‖div(uh)‖Lp(tj−1,tj ;L2(Ω))

≤M(‖qI‖Lp(tj−1,tj ,L2(Ω)) + ‖qP‖Lp(tj−1,tj ,L2(Ω)))

To estimate zh, select it to be the test function in (4.1), and we have:

∫ tj

tj−1

(K−1(ch)(zh + u⊥h ),vh) =

∫ tj

tj−1

(K−1(ch)uh,vh) =

∫ tj

tj−1

(ρ(ch)g,vh)

Upon rescaling that ‖zh‖H(Ω;div) = ‖zh‖L2(Ω), and the assumption on K, it follows that

‖zh‖2
L2(tj−1,tj ;div(Ω,div)) ≤M

∫ tj

tj−1

(K−1(ch)zh, zh)

≤M

(∣∣∣∣∣
∫ tj

tj−1

(ρ(ch)g,vh)

∣∣∣∣∣+

∣∣∣∣∣
∫ tj

tj−1

(K−1(ch)u
⊥
h ,vh)

∣∣∣∣∣
)

≤M‖zh‖Lp′ (tj−1,tj ;H(Ω;div))

(
‖ρ1g‖Lp(tj−1,tj ;L2(Ω)) + ‖u⊥h ‖Lp(tj−1,tj ;L2(Ω))

)
Since 1/p+ 1/p′ = 1 we can use Hölder’s inequality:

‖zh‖Lp(tj−1,tj ;div(Ω,div)) ≤M
(
‖ρ1g‖Lp(tj−1,tj ;L2(Ω)) + ‖u⊥h ‖Lp(tj−1,tj ;L2(Ω))

)
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We can construct the bound

‖zh‖Lp(tj−1,tj ;div(Ω,div)) ≤M
(
‖ρ1g‖Lp(tj−1,tj ;L2(Ω)) + ‖qI‖Lp(tj−1,tj ,L2(Ω)) + ‖qP‖Lp(tj−1,tj ,L2(Ω))

)
from which we can find the bound for ‖zh‖Lp(tj−1,tj ;div(Ω,div)). Since the operator Lh : Ph → Z⊥h

in Lemma 4.2.1 is independent of time, it follows that Lh(ph) ∈ P`(tj−1, tj,Uh). We may

then set vh = Lh(ph) in (3.27) to find:

M

∫ tj

tj−1

‖ph‖2
L2(Ω) ≤

∫ tj

tj−1

(ph, div(Lh(ph))) =

∫ tj

tj−1

((K−1(ch)uh, Lh(ph))− (ρ(ch)g, Lh(ph))

By Lemma 4.2.2, we have:

‖ph‖Lp(tj−1,tj ,L2(Ω)) ≤M
(
‖uh‖Lp(tj−1,tj ,L2(Ω)) + ‖ρ1g‖Lp(tj−1,tj ;L2(Ω))

)
≤M

(
‖ρ1g‖Lp(tj−1,tj ;L2(Ω)) + ‖qI‖Lp(tj−1,tj ,L2(Ω)) + ‖qP‖Lp(tj−1,tj ,L2(Ω))

)

4.2.2 Stability of concentration

In this section, I show that the scheme is stable for the concentration. We recall the dis-

cretization for the Lax-Friedrich DG scheme proposed in (3.26). I first consider using DG in

time.

Define the energy semi-norm ‖·‖Ch in the following way:

‖v‖Ch =

(∑
E∈Eh

‖D1/2(uh)∇v‖2
L2(E) +

∑
e∈Γh

h−1‖(1 + {|uh|})1/2[v]‖2
L2(e)

)1/2

(4.7)

I first show the coercivity of the diffusion term in the following lemma.
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Lemma 4.2.4. There always exists a penalty parameter σ > 0 such that

Bdi(wh, wh; uh) ≥
1

2
‖wh‖2

Ch
, ∀wh ∈ Ch

Proof. From our numerical scheme, we have

Bdi(wh, wh; uh) = (D(uh)∇wh,∇wh) + (ε− 1)([wh], {D(uh)∇wh · ne})Γh

+ (σh−1(1 + {|uh|})[wh], [wh])Γh

According to the results from Appendix B in (B.18)

([wh], {D(uh)∇wh ·ne})Γh ≤M

(∑
e∈Γh

h−1‖(1 + {|uh|})1/2[wh]‖2
L2(e)

)1/2

‖D1/2(uh)∇wh‖L2(Eh)

for a constant M independent upon h.

We use Young’s inequality to obtain,

([wh], {D(uh)∇wh · ne})Γh ≤
δ‖D1/2(uh)∇wh‖2

L2(Eh)

2
+
M2

2δ

∑
e∈Γh

h−1‖(1 + {|uh|})1/2[wh]‖2
L2(e)

for all δ > 0.

Thus,

Bdi(wh, wh; uh) ≥(1 +
δ

2
(ε− 1))‖D1/2(uh)∇wh‖2

L2(Eh)

+
∑
e∈Γh

(
σ +

ε− 1

2δ
M2

)
h−1‖(1 + {|uh|})1/2[wh]‖2

L2(e)

If ε = 1, immediately one obtains Bdi(wh, wh; uh) = ‖wh‖2
Ch

; (since ε = 1 in this case)

If ε = 0, choose δ = 1 and σ ≥ 1
2
(1 +M2);

If ε = −1, choose δ =
1

2
and σ ≥ 1

2
+ 2M2.

These criteria will guarantee Bdi(wh, wh; uh) ≥
1

2
‖wh‖2

Ch
.
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We just showed the coercivity of the diffusion term. Now, with the help of this property,

we will proceed by proving the stability of the concentration solution.

Theorem 4.2.5. The numerical scheme is stable with respect to the fluid concentration, so

that ‖ch‖`∞(L2(Ω)), ‖ch‖L2(0,T ;Ch) and ‖ch‖L2(0,T ;H1(Eh)) are bounded independent of h and k.

In particular, we have:

max
1≤n≤N

‖φ1/2cjh−‖
2
L2(Ω) +

N∑
j=1

‖[φ1/2cj−1
h ]‖2

L2(Ω) +

∫ T

0

(
‖ch‖2

Ch
+ ‖
√
qP ch‖2

L2(Ω)

+ (|uh · ne| [ch], [ch])Γh

)
≤ ‖φ1/2c0

h−‖2
L2(Ω) +

∫ T

0

‖
√
qI ĉ‖2

L2(Ω)

Proof. According to the result in Lemma 4.2.4, we have

Bdi(ch, ch; uh) ≥
1

2
‖ch‖2

Ch

Also according to our numerical scheme,

Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)− (uhch,∇wh) + ((qI + qP )ch, wh)

+ (cup
h uh · ne, [wh])Γh − (wdown

h uh · ne, [ch])Γh

)
then, we have

Bcq(ch, ch; uh) =
1

2

(
(u∇ch, ch)Eh − (uhch,∇ch)Eh + ((qI + qP )ch, ch)

+ (cup
h uh · ne, [ch])Γh − (cdown

h uh · ne, [ch])Γh

)
=

1

2

(
(qI + qP )ch, ch) + (|uh · ne| [ch], [ch])Γh

)
We can conclude:

Bcq(ch, ch; uh) =
1

2

(
(qI + qP )ch, ch) + (|uh · ne| [ch], [ch])Γh

)
(4.8)
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Now, we expand the numerical scheme:

∫ tj

tj−1

((φ∂tch, ch) +Bdi(ch, ch; uh) +Bcq(ch, ch; uh)) + (cj−1
h+ ,φcj−1

h+ )

= (cj−1
h− , φc

j−1
h+ ) +

∫ tj

tj−1

(ĉqI , ch)

Notice,

∫ tj

tj−1

(φ∂tch, ch) =

∫ tj

tj−1

1

2
∂t(φch, ch) =

1

2
(φcjh−, c

j
h−)− 1

2
(φcj−1

h+ , cj−1
h+ )

Thus, we have

∫ tj

tj−1

(φ∂tch, ch)+(cj−1
h+ , φcj−1

h+ ) =
1

2
(φcjh−, c

j
h−) +

1

2
(φcj−1

h+ , cj−1
h+ )

=
1

2
‖φ1/2cjh−‖

2 +
1

2
(φ[cj−1

h ]t, [c
j−1
h ]t) + (φcj−1

h+ , cj−1
h− )− 1

2
(φcj−1

h− , c
j−1
h− )

=
1

2
‖φ1/2cjh−‖

2 +
1

2
‖φ1/2[cj−1

h ]t‖2 + (φcj−1
h+ , cj−1

h− )− 1

2
‖φ1/2cj−1

h− ‖
2

Therefore,

∫ tj

tj−1

(Bdi(ch, ch; uh) +Bcq(ch, ch; uh)) +
1

2
‖φ1/2cjh−‖

2 +
1

2
‖φ1/2[cj−1

h ]t‖2

+(φcj−1
h+ , cj−1

h− )− 1

2
‖φ1/2cj−1

h− ‖
2 = (cj−1

h− , φc
j−1
h+ ) +

∫ tj

tj−1

(ĉqI , ch)

Hence, we obtain

1

2
‖φ1/2cjh−‖

2
L2(Ω) +

1

2
‖[φ1/2cj−1

h ]t‖2
L2(Ω) +

∫ tj

tj−1

(Bdi(ch, ch; uh) +Bcq(ch, ch; uh))

=
1

2
‖φ1/2cj−1

h− ‖
2
L2(Ω) +

∫ tj

tj−1

(ĉqI , ch)
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The equation above can be simplified by Lemma 4.2.4 and 4.8.

1

2
‖φ1/2cjh−‖

2
L2(Ω) +

1

2
‖[φ1/2cj−1

h ]t‖2
L2(Ω) +

1

2

∫ tj

tj−1

(
‖ch‖2

Ch
+ ((qI + qP )ch, ch)

+(|uh · ne| [ch], [ch])Γh) ≤ 1

2
‖φ1/2cj−1

h− ‖
2
L2(Ω) +

∫ tj

tj−1

(ĉqI , ch) (4.9)

Now, again Cauchy-Schwarz’s inequality and Young’s inequality can be used to obtain

(ĉqI , ch) ≤ ‖ĉ
√
qI‖L2(Ω)‖

√
qIch‖L2(Ω) ≤

‖
√
qIch‖2

L2(Ω)

2
+
‖ĉ
√
qI‖2

L2(Ω)

2

Now, substituting this term into (4.9):

1

2
‖φ1/2cjh−‖

2
L2(Ω) +

1

2
‖[φ1/2cj−1

h ]t‖2
L2(Ω) +

1

2

∫ tj

tj−1

(
‖ch‖2

Ch
+ ((qI + qP )ch, ch)

+(|uh · ne| [ch], [ch])Γh) ≤ 1

2
‖φ1/2cj−1

h− ‖
2
L2(Ω) +

1

2

∫ tj

tj−1

‖
√
qIch‖2

L2(Ω) +
1

2

∫ tj

tj−1

‖ĉ
√
qI‖2

L2(Ω)

Therefore,

‖φ1/2cjh−‖
2
L2(Ω) + ‖[φ1/2cj−1

h ]t‖2
L2(Ω) +

∫ tj

tj−1

(
‖ch‖2

Ch
+ ‖
√
qP ch‖2

L2(Ω) + (|uh · ne| [ch], [ch])Γh

)

≤ ‖φ1/2cj−1
h− ‖

2
L2(Ω) +

∫ tj

tj−1

‖
√
qI ĉ‖2

L2(Ω).

We sum up, overall, the time interval and obtain:

max
1≤n≤N

‖φ1/2cjh−‖
2
L2(Ω) +

N∑
j=1

‖[φ1/2cj−1
h ]t‖2

L2(Ω) +

∫ T

0

(
‖ch‖2

Ch
+ ‖
√
qP ch‖2

L2(Ω)

+ (|uh · ne| [ch], [ch])Γh

)
≤ ‖φ1/2c0

h−‖2
L2(Ω) +

∫ T

0

‖
√
qI ĉ‖2

L2(Ω)

Therefore, the scheme is stable for the concentration. Now, we show that
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‖ch‖L2(0,T ;H1(Eh)) is bounded, with the broken Sobolev space defined as

H1(Eh) = {ϕ ∈ L2(Ω) : ϕE ∈ H1(E), E ∈ Eh}

Define the semi-norm for H1(Eh) to be

|v|H1(Eh) =

(∑
E∈Eh

‖∇v‖2
L2(E) +

∑
e∈Γh

h−1‖[v]‖2
L2(e)

)1/2

and recall that the H1(Eh) norm is defined to be

‖v‖H1(Eh) =
(
‖v‖2

L2(Ω) + |v|2H1(Eh)

)1/2

We first consider the case when

∫
Ω

qP = 0 over a certain time interval. Since this implies

qP = 0 and qI = 0, it means we have to impose additional constraints for the concentration

such as ∫
Ω

ch = 0

for the well-posedness of the solution according to (3.27)-(3.29). Therefore, according to

Poincaré’s inequality,

∫
A

‖ch‖2
L2(Ω) ≤ C2

p

∫
A

|ch|2H1(Eh)

where A is the interval such that ∫
Ω

qP = 0.

Consider

∫
Ω

qP > 0, then apply the Poincaré’s inequality for the broken Sobolev space from

[85, 86].

‖ch‖L2(Ω) ≤ Cp

(
|ch|2H1(Eh) +

(∫
Ω

√
qP ch

)2
)1/2
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where Cp is the Poincaré constant independent of h on a regular mesh. We use Cauchy-

Schwarz’s inequality and obtain

‖ch‖L2(Ω) ≤ C
(
|ch|2H1(Eh) + ‖

√
qP ch‖2

L2(Ω)

)1/2

Therefore,

‖ch‖H1(Eh) .
(
|ch|2H1(Eh) + ‖

√
qP ch‖2

L2(Ω)

)1/2

.
(
‖ch‖2

Ch
+ ‖
√
qP ch‖2

L2(Ω)

)1/2

Hence, we have

∫
Ac
‖ch‖2

H1(Eh) .
∫ T

0

‖ch‖2
Ch

+ ‖
√
qP ch‖2

L2(Ω)

Therefore, ‖ch‖L2(0,T ;H1(Eh)) is bounded as well.

4.3 Stability analysis for DG-DG with implicit Euler

decoupling

4.3.1 Stability of pressure and velocity

Again for simplicity, I consider the case without the use of weighted average. Recall the DG

discretization for pressure in Algorithm 3, where we have

Bd(p
j
h, qh; c

j−1
h ) = `jd(qh; c

j−1
h ).

We define H1
0 (Eh) to be,

H1
0 (Eh) =

{
ϕ ∈ H1(Eh) :

∫
Ω

ϕ = 0

}
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The norm for H1
0 (Eh) is defined to be,

‖ϕ‖H1
0 (Eh) =

(∑
E∈Eh

‖∇ϕ‖2
L2(E) +

∑
e∈Γh

h−1‖[ϕ]‖2
L2(e)

)1/2

.

By the Poincaré’s inequality from [85, 86], one can verify it is indeed a norm for H1
0 (Eh).

Now, I establish a bound of the pressure and velocity solutions.

Theorem 4.3.1. There exists a constant M > 0 independent of h and k such that solutions

of the numerical scheme presented in Algorithm 3 satisfy the following bounds.

• For all qI , qP ∈ L2(0, T ;L2(Ω)), then

‖div(uh)‖L2(0,T ;L2(Ω)) ≤M
(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

)

• For all qI , qP ∈ L2(0, T ;L2(Ω)), then

‖uh‖L2(0,T ;H(Ω,div)) + ‖ph‖L2(0,T ;H1
0 (Eh)) ≤M

(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

+‖ρ1g‖L2(0,T ;L2(Ω))

)

Proof. From DG discretization, we have

Bd(ph, ph; ch) =∑
E∈Eh

‖K(ch)∇ph‖2
L2(E) + (θ − 1)

∑
e∈Γh

({K(ch)
1/2∇ph · ne}, [ph])e +

∑
e∈Γh

σh−1‖[ph]‖2
L2(e)

Thus, we can obtain a lower bound for the bilinear form,

Bd(ph, ph; ch) ≥(
1− δ

2
|1− θ|

)
k0

∑
E∈Eh

‖∇ph‖2
L2(E) +

∑
e∈Γh

(
σ − C2

t k
2
1n0

2δk0

|1− θ|
)
h−1‖[ph]‖2

L2(e)
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for all δ > 0. Next, we have

Bd(p
j
h, p

j
h; c

j−1
h ) ≥ 1

2
‖pjh‖

2
H1

0 (Eh)

where pjh is the piecewise constant approximation in time over the interval [tj−1, tj].

Then, we can derive an upper bound for `jd(p
j
h; c

j−1
h ), where we have,

`jd(p
j
h; c

j−1
h ) ≤ δk0

2C2
t k

2
1n0

‖(qIh − qPh )j‖2
L2(Ω) +

C2
t k

2
1n0

2δk0

‖pjh‖
2
L2(Ω) +

k1δ

2
‖ρg‖2

L2(Ω)

+
C2
t k

2
1n0

2δk0

∑
e∈Γh

h−1‖[pjh]‖
2
L2(e)

for all δ > 0 according to the trace inequality and Young’s inequality.

For the source term:

∫ T

0

‖qIh − qPh ‖2
L2(Ω) =

N∑
j=1

∫ tj

tj−1

‖(qIh − qPh )j‖2
L2(Ω) =

N∑
j=1

∫ tj

tj−1

((qIh − qPh )j, qI − qP )

≤
(∫ T

0

‖qIh − qPh ‖2
L2(Ω)

)1/2(∫ T

0

‖qI − qP‖2
L2(Ω)

)1/2

Hence, we have

‖qIh − qPh ‖L2(0,T ;L2(Ω)) ≤ ‖qI − qP‖L2(0,T ;L2(Ω)) (4.10)

Similarly, we also have:

‖qIh‖L2(0,T ;L2(Ω)) ≤ ‖qI‖L2(0,T ;L2(Ω)) (4.11)

‖qPh ‖L2(0,T ;L2(Ω)) ≤ ‖qP‖L2(0,T ;L2(Ω)) (4.12)
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So, for the right-hand-side we have:

N∑
j=1

∫ tj

tj−1

`j(pjh; c
j−1
h ) ≤ δk0

2C2
t k

2
1n0

‖qI − qP‖2
L2(0,T ;L2(Ω)) +

C2
t k

2
1n0

2δk0

‖ph‖2
L2(0,T ;L2(Ω))

+
k1δ

2
‖ρg‖2

L2(0,T ;L2(Ω)) +
C2
t k

2
1n0

2δk0

∫ T

0

∑
e∈Γh

h−1‖[pjh]‖
2
L2(e)

(4.13)

From Poincaré’s inequality, we have:

‖ϕ‖L2(Ω) ≤ Cp‖ϕ‖H1
0 (Eh) for all ϕ ∈ H1

0 (Eh)

for all δ > 0.

Therefore, from (4.10),(4.13) and (4.14) we have

1

2
‖ph‖2

L2(0,T ;H1
0 (Eh)) ≤

N∑
j=1

∫ tj

tj−1

Bd(p
j
h, p

j
h; c

j−1
h ) =

N∑
j=1

∫ tj

tj−1

`jd(p
j
h; c

j−1
h )

≤
δk0C

2
p

2C2
t k

2
1n0

‖qI − qP‖2
L2(0,T ;L2(Ω)) +

C2
t k1n0

2δk0

‖ph‖2
L2(0,T ;H1

0 (Eh)) +
k1δ

2
‖ρ1g‖2

L2(0,T ;L2(Ω))

We have therefore derived an upper bound for the pressure:

‖pjh‖H1
0 (Eh) ≤M

(
‖qI‖L2(Ω) + ‖qP‖L2(Ω) + ‖ρ1g‖L2(Ω)

)
For the velocity term uh, according to the flux reconstruction in Algorithm 3, we have:

‖uh‖2
L2(Ω) ≤ |(K∇ph,uh)Eh|+ |θ| |({K}uh · ne, [ph])Γh |+ |(Kρg,uh)Eh |

≤ k1δ

2
‖∇ph‖2

L2(Eh) +
k1

2δ

(
2 + C2

t

)
‖uh‖2

L2(Ω) +
k1δ

2

∑
e∈Γh

h−1‖[ph]‖2
L2(e) +

k1δ

2
‖ρ1g‖2

L2(Ω)

≤ k1δ

2
‖ph‖2

H1
0 (Eh) +

k1

2δ

(
2 + C2

t

)
‖uh‖2

L2(Ω) +
k1δ

2
‖ρ1g‖2

L2(Ω)

for all δ > 0 by Young’s inequality. Therefore, we also have an upper bound for the velocity
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term,

‖ujh‖L2(Ω) ≤M
(
‖pjh‖H1

0 (Eh) + ‖ρ1g‖L2(Ω)

)
≤M

(
‖(qIh)j‖L2(Ω) + ‖(qPh )j‖L2(Ω) + ‖ρ1g‖L2(Ω)

)
According to [75], the reconstructed flux satisfies the following property:

∇ · ujh = πh(q
I
h − qPh )j

where πh is the L2-projection in space.

Then, we can obtain an upper bound for ∇ · uh,

‖∇ · ujh‖L2(Ω) ≤M
(
‖(qIh)j‖L2(Ω) + ‖(qPh )j‖L2(Ω)

)
We can simply integrate over the time interval [0, T ] and use the result (4.11), (4.12) to

obtain,

‖div(uh)‖L2(0,T ;L2(Ω)) ≤M
(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

)

‖uh‖L2(0,T ;H(Ω,div)) + ‖ph‖L2(0,T ;H1
0 (Eh)) ≤M

(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

+‖ρ1g‖L2(0,T ;L2(Ω))

)
for all qI , qP in L2(0, T ;L2(Ω)). And since we know the input source term qI , qP are in

L∞(0, T ;L2(Ω)); we can obtain the stability for the pressure and velocity.

Remark 4.3.2. In comparison with DG in time, the upper bound for pressure and velocity

using the implicit Euler decoupling is L2 in time instead of L∞. The reason for this is because

we take the L2 projection in time for the source information in our numerical scheme.
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4.3.2 Stability of concentration

The stability result for the implicit Euler scheme for the concentration has been established

in [34]. We simply state the stability result here.

Theorem 4.3.3. For all j = 1, 2, · · · , N , we have the following bound for the concentration

solution computed using Algorithm 3:

‖φ1/2cjh‖
2
L2(Ω) +

∫ tj

0

k‖φ1/2∂tch‖2
L2(Ω) + ‖ch‖2

Ch
+‖
√
qP ch‖2

L2(Ω)dt

≤ ‖φ1/2c0
h‖2

L2(Ω) +

∫ tj

0

‖
√
qI ĉ‖2dt

where k = max
i=1,··· ,j

{ki}.

Corollary 4.3.4. There is a positive constant M > 0 such that for the concentration com-

puted using Algorithm 3, we have:

‖ch‖L2(0,T ;H1(Eh)) ≤M

Proof. According to Theorem 4.3.3 we have,

∫ T

0

‖ch‖2
H1(Eh) + ‖

√
qP ch‖2

L2(Ω) ≤ ‖φ1/2c0
h‖2

L2(Ω) +

∫ T

0

‖
√
qI ĉ‖2.

With the same argument as in Theorem 4.2.5 using Poincaré’s inequality and bounding the

term where there is no injection and production. We have an upper bound for ‖ch‖L2(0,T ;H1(Eh)).
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4.4 Stability analysis for DG-DG with Crank-Nicolson

decoupling scheme

4.4.1 Stability of pressure and velocity

The stability of the pressure and the velocity for the Crank-Nicolson decoupling scheme,

according to the Algorithm 4, we have almost exactly the same result as the case with the

implicit Euler time stepping, because the bilinear form in each interval is

Bd(p
j
h, qh; c

j
h) = `jd(qh; c

j
h).

With the same argument as in Theorem 4.3.1, we have following result.

Theorem 4.4.1. There exists a constant M > 0 independent of h and k such that the

pressure and velocity solutions of the numerical scheme presented in Algorithm 4 satisfy the

following bounds.

• For all qI , qP ∈ L2(0, T ;L2(Ω)), then

‖div(uh)‖L2(0,T ;L2(Ω)) ≤M
(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

)

• For all qI , qP ∈ L2(0, T ;L2(Ω)), then

‖uh‖L2(0,T ;H(Ω,div)) + ‖ph‖L2(0,T ;H1
0 (Eh)) ≤M

(
‖qI‖L2(0,T ;L2(Ω)) + ‖qP‖L2(0,T ;L2(Ω))

+‖ρ1g‖L2(0,T ;L2(Ω))

)

4.4.2 Stability of concentration

The stability result for the Crank-Nicolson scheme for the concentration has been established

in [70]. The stability result is simply stated here. For the Crank-Nicolson scheme, we have
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Theorem 4.4.2. For all j = 2, · · · , N , we have:

‖φ1/2cjh‖
2
L2(Ω) +

∫ tj

t1

‖c̄h‖2
Ch

+ ‖
√
q̄P c̄h‖2

L2(Ω)dt ≤ ‖φ1/2c1
h‖2

L2(Ω) +

∫ tj

t1

‖
√
q̄I ¯̂c‖2dt (4.14)

where k = max
i=1,··· ,j

{ki}.

As a consequence, we also have the upper bound for the concentration solution in

L2(0, T ;H1(Eh)). For the proof, we refer to Corollary 4.3.4.

Corollary 4.4.3. There is a positive constant M > 0 such that for the concentration com-

puted using Algorithm 4 we have:

‖c̄h‖L2(0,T ;H1(Eh)) ≤M

4.5 Stability analysis for MFE-DG with implicit Euler

and Crank-Nicolson decoupling schemes

For the stability analysis of the MFE-DG with implicit Euler and Crank-Nicolson decoupling

schemes, I refer the reader to the results in [34] and [70].



Chapter 5

Convergence Analysis

In this chapter, I establish the convergence of the numerical solutions under low regularity

condition. Under the low regularity, one has to rely upon the compactness result to estab-

lish subsequential convergence. The Aubin-Lions compactness theorem is extremely useful

in establishing the compact embedding of the Sobolev spaces. However, the Aubin-Lions

compactness theorem is restricted to function spaces that are continuous in time. Hence,

the Aubin-Lions compactness theorem works for Implicit Euler and Crank-Nicolson time

updating. For DG in time, I have generalized the compactness theorem so that it works on

Sobolev spaces with discontinuous functions in time.

With the help of the compactness result, I demonstrate the convergence of pressure

and velocity using Mixed-Finite Element (MFE) discretization and also using discontinu-

ous Galerkin (DG) discretization with flux reconstruction. Then, I proceed to prove the

convergence of the concentration to the weak solution using DG discretization.

5.1 Compactness theorems

The Aubin-Lions compactness theorem [87] states:

Theorem 5.1.1 (Aubin-Lions compactness theorem). Consider Banach spaces B0, B1, B2

such that B0 ↪→→ B1 is compact and B1 ↪→ B2 is continuous. Assume that B0 is reflexive



65

and separable. Then W = {u ∈ L2(0, T ;B0) : ∂tu ∈ L2(0, T ;B2)} is compactly embedded

into L2(0, T ;B1).

The generalized compactness theorem is presented as follows [72]:

Theorem 5.1.2. Let H be a Hilbert space with inner-product (·, ·)H and V and W be Banach

spaces equipped with norms ‖ · ‖V and ‖ · ‖W . Assume that W ⊂ H is dense and

W ↪→ V ↪→→ H ↪→ W ′

are dense embeddings with V compactly embedded in H. The space W ′ denotes the dual space

of W . Let h ∈ (0,∞) be a (mesh) parameter and for each h > 0 let W (Eh) be a Banach

space with W ↪→ W (Eh) ↪→ V where the embedding constants are independent of h.

For each h, let Wh ⊂ W (Eh) be a closed subspace and let {tj}Nj=0 be a quasi-uniform family

of partitions of [0, T ]. Let πh : H → Wh denote the orthogonal projection, and assume that

its restriction to W (Eh) is stable in the sense that there exists a constant M > 0 independent

of h such that ‖πhw‖W (Eh) ≤M‖w‖W (Eh) for w ∈ W (Eh).

Fix ` ≥ 0 an integer and 1 < p <∞, 1 ≤ q <∞, with 1/p+ 1/q ≥ 1, and assume that

1. For each h > 0, wh ∈ {wh ∈ Lp(0, T ;Wh) | wh|(tj−1,tj)h ∈ P`(tj−1, tj;Wh)} and on each

interval satisfies

∀zh ∈ P`(tj−1, tj;Wh),

∫ tj

tj−1

(∂twh, zh)H + (wj−1
h+ − w

j−1
h− , z

j−1
h+ )H =

∫ tj

tj−1

Fh(zh).

2. The sequence {wh}h>0 is bounded in Lp(0, T ;V ).

3. For each h > 0, Fh ∈ Lq(0, T ;W ′
h) and {‖Fh‖Lq(0,T ;W ′h)}h>0 ⊂ < is bounded.

Then the set {wh}h>0 is precompact in Lp(0, T ;H) ∩ Lr(0, T ;W ′) for each 1 ≤ r <∞.

Proof. First, fix δ > 0 and consider the space Lp(δ, T ;W (Eh)). Its dual space is Lp
′
(δ, T ;W (Eh)′)

with 1/p+1/p′ = 1. Since the function t→ wh(t)−wh(t−δ) belongs to Wh, use the definition
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of the projection πh onto Wh and its stability on W (Eh) to have:

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

= sup
v∈Lp(δ,T ;W (Eh))

∫ T
δ

(wh(t)− wh(t− δ), v)Hdt

‖v‖Lp(δ,T ;W (Eh))

= sup
v∈Lp(δ,T ;W (Eh))

∫ T
δ

(wh(t)− wh(t− δ), πhv)Hdt

‖v‖Lp(δ,T ;W (Eh))

= sup
v∈Lp(δ,T ;W (Eh))

∫ T
δ

(wh(t)− wh(t− δ), πhv)Hdt

‖πhv‖Lp(δ,T ;W (Eh))

‖πhv‖Lp(δ,T ;W (Eh))

‖v‖Lp(δ,T ;W (Eh))

≤M sup
v∈Lp(δ,T ;W (Eh))

∫ T
δ

(wh(t)− wh(t− δ), πhv)Hdt

‖πhv‖Lp(δ,T ;W (Eh))

.

This implies

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

≤M sup
v∈Lp(δ,T ;Wh)

∫ T
δ

(wh(t)− wh(t− δ), v)Hdt

‖v‖Lp(δ,T ;W (Eh))

. (5.1)

Lemma 3.9 of [71] then gives that

sup
vh∈Lp(δ,T ;Wh)

∫ T
δ

(wh(t)− wh(t− δ), vh)H dt
‖vh‖Lp(δ,T ;W (Eh))

≤M(`, ν)‖Fh‖Lq(0,T ;W ′h) max(k, δ)1/q′δ1/p′ .

Thus equation (5.1) becomes (with a different constant M that depends on ‖πh‖L(W (Eh),Wh))

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

≤M(`, ν)‖Fh‖Lq(0,T ;W ′h) max(k, δ)1/q′δ1/p′ .

Next, since W ↪→ W (Eh), there is a constant M > 0 such that

‖wh(t)− wh(t− δ)‖W ′ ≤M‖wh(t)− wh(t− δ)‖W ′h .

Therefore, we have

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

≤M(`, ν)‖Fh‖Lq(0,T ;W ′h) max(k, δ)1/q′δ1/p′ . (5.2)
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By assumption, ‖Fh‖Lq(0,T ;W ′h) is uniformly bounded. We now show that {wh}h>0 is equicon-

tinuous in Lp
′
(0, T ;W ′).

Fix ε > 0. We want to show there is δ0 > 0 such that

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

≤ ε, ∀h > 0, ∀δ < δ0. (5.3)

Since p > 1, we have p′ < ∞. If q = 1, we choose δ0 such that Mδ
1/p′

0 < ε. If q > 1, it

suffices to find δ0 such that

M max(k, δ0)1/q′δ
1/p′

0 < ε.

We can assume that δ0 < k and take

δ0 = min

(
1

2
(

ε

Mk1/q′
)p
′
, k

)
.

Consider now the case q > 1, then q′ <∞. It suffices to find δ0 such that

M max(k, δ0)1/q′δ
1/p′

0 < ε.

We can assume that δ0 < k and choose

δ0 = min

(
1

2
(

ε

Mk1/q′
)p
′
, k

)
.

By assumption {wh}h>0 is bounded in Lp(0, T ;V ) with p > 1. This implies that {wh}h>0

is bounded in L1(0, T ;V ). In addition, we showed that {wh}h>0 is equicontinuous in Lp
′
(0, T ;W ′)

for 1 < p′ <∞. Then, from Theorem 3.2 of [88], we conclude that for all 0 < θ < T/2, the

set {wh|(θ,T−θ)}h>0 is precompact in Lp
′
(θ, T − θ;W ′).

Equation (5.2), with the assumption 0 < δ < T , gives:

∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt ≤Mδ.
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Using Lemma 3.4 in [88], we conclude that {wh}h>0 is uniformly bounded in Lr(0, T ;W ′)

for any 1 ≤ r < ∞. Therefore uniform integrability holds and this implies that {wh}h>0

is precompact in Lp
′
(0, T ;W ′). Now, the fact that {wh}h>0 is bounded in Lr(0, T ;W ′) for

any 1 ≤ r < ∞, and that {wh}h>0 is precompact in Lp
′
(0, T ;W ′), implies that {wh}h>0 is

precompact in Lr(0, T ;W ′) for any 1 ≤ r <∞.

Finally it remains to show that {wh}h>0 is precompact in Lp(0, T ;H). From [87] the fact

that V ↪→→ H ↪→ W ′ implies that for all ε > 0 there exists M(ε) > 0 such that

‖wh(t)‖H ≤ ε‖wh(t)‖V +M(ε)‖wh(t)‖W ′ .

So,

‖wh‖Lp(0,T ;H) ≤ ε‖wh‖Lp(0,T ;V ) +M(ε)‖wh‖Lp(0,T ;W ′).

Since {wh}h>0 is bounded in Lp(0, T ;V ) and precompact in Lp(0, T ;W ′), it easily follows

that it is also precompact in Lp(0, T ;H).

5.1.1 Compactness of the solutions with DG in time

One important and challenging step in proving convergence of the numerical approximation

of the concentration is to show compactness of {ch}h>0. This is stated in the following

theorem, which is a non-trivial application of Theorem 5.1.2.

Theorem 5.1.3. Suppose the maximal time step k tends to zero with the mesh parameter h.

Then the concentration {ch}h>0 computed using the numerical scheme (3.29) are precompact

in L2(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,4(Ω)′) for all 1 ≤ r <∞.

Proof. Apply Theorem 5.1.2 with the following choice of spaces:

W = W 1,4(Ω), V = BV (Ω) ∩ L4(Ω), H = L2(Ω), W (Eh) = W 1,4(Eh), Wh = Ch.

The spaces W, V and H are clearly Banach spaces and it is easy to check that W (Eh)
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equipped with the following norm is a Banach space.

‖w‖W (Eh) = ‖w‖W 1,4(Eh). (5.4)

From [34] and [71], we also have that W ⊂ H is dense, and that W ↪→ V ↪→→ H ↪→ W ′ are

dense embeddings with V compactly embedded in H. Next we easily see that W 1,4(Ω) is

embedded in W 1,4(Eh), which is itself embedded in V , with embedding constants independent

of h. It remains to check the assumptions of Theorem 5.1.2. The fact that the L2 projection,

πh : L2(Ω)→ Ch is stable in W 1,4(Eh) is proved in Lemma 5.1.4. Assumption 1 in Theorem

5.1.2 is immediately satisfied if the inner-product on H is the weighted L2 inner-product

with weight φ, and if we define the function Fh as:

Fh(wh) = (ĉqI , wh)−Bdi(ch, wh; uh)−Bcq(ch, wh; uh). (5.5)

Assumption 2 is satisfied for p = 2, since the boundedness of {ch}h>0 in L2(0, T ;V ) is a con-

sequence of the embedding of H1(Eh) into V and the boundedness of {‖ch‖L2(0,T ;H1(Eh))}h>0.

Finally, it remains to check Assumption 3 of Theorem 5.1.2. This requires upper bounds for

the forms Bd, Bcq, that are proved in Lemma B.2.17. Since ĉ ∈ L∞(Ω), one can easily obtain

(ĉqI , wh) . ‖qI‖L2(Ω)‖wh‖L4(Ω).

Therefore, by Lemma B.2.17 we have,

|Fh(wh)| ≤M‖wh‖W 1,4(Eh)

(
(1 + ‖uh‖1/2

L2(Ω))‖ch‖Ch + ‖qI‖L2(Ω)

+
(
‖qI + qP‖L2(Ω) + ‖uh‖L2(Ω)

)
‖ch‖L4(Ω)

)
,

(5.6)

with the constant M independent of the mesh size.
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From [34], [89], [90], [73] and (3.4),

‖ch‖L4(Ω) . ‖ch‖H1(Eh), (5.7)

hence, using Cauchy-Schwarz’s inequality, one can obtain

∫ T

0

|Fh(wh)| ≤M
∫ T

0

‖wh‖W 1,4(Eh)

((
1 + ‖uh‖1/2

L2(Ω)

)
‖ch‖Ch + ‖qI‖L2(Ω)

+
(
‖qI + qP‖L2(Ω) + ‖uh‖L2(Ω)

)
‖ch‖L4(Ω)

)
≤M

((
1 + ‖uh‖1/2

L∞(0,T ;L2(Ω))

)
‖ch‖L2(0,T ;Ch)

+ ‖qI‖L∞(0,T ;L2(Ω)) +
(
‖qI + qP‖L∞(0,T ;L2(Ω))

+ ‖uh‖L∞(0,T ;L2(Ω))

)
‖ch‖L2(0,T ;H1(Eh))

)
‖wh‖L4(0,T ;W 1,4(Eh)).

Therefore, Fh belongs to L1(0, T ;W ′
h) and we have

‖Fh‖L1(0,T ;W ′h) ≤M
((

1 + ‖uh‖1/2

L∞(0,T ;L2(Ω))

)
‖ch‖L2(0,T ;Ch) + ‖qI‖L∞(0,T ;L2(Ω))

+
(
‖qI + qP‖L∞(0,T ;L2(Ω)) + ‖uh‖L∞(0,T ;L2(Ω))

)
‖ch‖L2(0,T ;H1(Eh))

)
.

Furthermore, according to the stability analysis in Theorem 4.2.3 and Theorem 4.2.5, we

know that ‖uh‖L∞(0,T ;L2(Ω)), ‖ch‖L2(0,T ;H1(Eh)) and ‖ch‖L2(0,T ;Ch) are bounded by a constant

independent of h and k. Therefore,
{
‖Fh‖L1(0,T,W ′h)

}
h>0

is bounded.

Lemma 5.1.4. The L2 projection

πh : L2(Ω)→ Ch
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is stable in W (Eh) = W 1,4(Eh), i.e. there is a constant M > 0 independent of h such that

‖πhw‖W (Eh) ≤M‖w‖W (Eh), ∀w ∈ W (Eh).

Proof. Fix w ∈ W 1,4(Eh). For the term ‖πhw‖L4(Ω), use an inverse inequality, the stability

of πh in L2 and Cauchy-Schwarz’s inequality to obtain

‖πhw‖4
L4(Ω) =

∑
E∈Eh

‖πhw‖4
L4(E) .

∑
E∈Eh

h−d‖πhw‖4
L2(E) .

∑
E∈Eh

h−d‖w‖4
L2(E) . ‖w‖4

L4(Ω). (5.8)

Next, let w̄ denote the average of w on each element, i.e.

w̄|E =
1

|E|

∫
E

w, ∀E ∈ Eh.

Thus, we have

(∑
E∈Eh

‖∇πhw‖4
L4(E) +

∑
e∈Γh

h−3‖[πhw]‖4
L4(e)

)1/4

≤

(∑
e∈Γh

h−3‖[πhw̄]‖4
L4(e)

)1/4

+

(∑
E∈Eh

‖∇πh(w − w̄)‖4
L4(E) +

∑
e∈Γh

h−3‖[πh(w − w̄)]‖4
L4(e)

)1/4

.

For the first term in the upper bound, we have

‖[πhw̄]‖L4(e) = ‖[w̄]‖L4(e) ≤ ‖[w − w̄]‖L4(e) + ‖[w]‖L4(e).

From [91], we have

∑
e∈Γh

h−3‖[w − w̄]‖4
L4(e) .

∑
E∈Eh

‖∇w‖4
L4(E).
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Hence, we have

∑
e∈Γh

h−3‖[πhw̄]‖4
L4(e) .

∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e∈Γh

h−3‖[w]‖4
L4(e).

Using the same derivation as in (5.8), we have:

∑
E∈Eh

‖∇πh(w − w̄)‖4
L4(E) =

∑
E∈Eh

‖∇πhw‖4
L4(E) .

∑
E∈Eh

‖∇w‖4
L4(E).

Furthermore, by trace and inverse inequalities we obtain

‖πh(w − w̄)‖L4(e) ≤Mh
−1/4
E ‖πh(w − w̄)‖L4(E) ≤Mh

−1/4
E h

−d/4
E ‖πh(w − w̄)‖L2(E)

≤Mh
−1/4
E h

−d/4
E ‖w − w̄‖L2(E) ≤Mh

1/4
E h

−d/4
E h

−1/2
E ‖w − w̄‖L2(E)

≤Mh
1/4
E h

−d/4
E h

1/2
E ‖∇w‖L2(E) ≤Mh

1/4
E h

−d/4
E h

1/2
E h

d/4
E ‖∇w‖L4(E)

≤Mh3/4‖∇w‖L4(E).

Hence, we have ∑
e∈Γh

h−3‖[πh(w − w̄)]‖4
L4(e) ≤M

∑
E∈Eh

‖∇w‖4
L4(E).

So, we can conclude by combining all the bounds above.

In the next theorem, I give more information about the accumulation points of the

concentration solutions.

Theorem 5.1.5. Suppose that the maximal time step k and mesh size h tend to zero

with mesh parameter. Then upon passage to a subsequence, the concentrations {ch}h com-

puted using the scheme (3.27)-(3.29) over a regular family of meshes converge strongly in

L2(0, T ;L2(Ω)) to c ∈ L2(0, T ;H1(Ω)) and {∇ch}h converges weakly in L2(0, T ;H−1(Ω)) to

∇c.

Proof. From Theorem 5.1.3 we know {ch}h>0 is precompact in



73

L2(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,4(Ω)′) for all 1 ≤ r < ∞. There exists a subsequence {ch}h

that converges to c ∈ L2(0, T ;L2(Ω)) strongly in L2(0, T ;L2(Ω)). From the stability result in

Theorem 4.2.5, we also know there exists M > 0 such that ‖ch‖L2(0,T ;H1(Eh)) < M . Therefore,

from Theorem 6.1 in [34] we have there exists a subsequence {∇ch}h that converges weakly

in L2(0, T ;H−1(Ω)) to ∇c.

Simply having the weak convergence of the gradient is not enough to suggest the con-

vergence of the numerical solutions to the weak solution. Therefore, it is necessary for us

to introduce the discrete gradient to further our study on the convergence of the numerical

solutions.

First, we shall introduce the lifting operator. Following [73], for any face e in Γh and any

function ϕ ∈ L2(e), we define the lifting re(ϕ) ∈ P`(Eh)d by

∫
Ω

re(ϕ) · vh =

∫
e

{vh · ne}ϕ ∀vh ∈ P`(Eh)d. (5.9)

We observe that the support of re is the union of the elements sharing the edge e. In other

words, for any E in Eh,

re(ϕ)|E = 0 if e /∈ ∂E.

Then, for any wh in H1(Eh), we set

Rh([wh]) =
∑
e∈Γh

re([wh]),

and define the discrete gradient Gh in each element E by

Gh(wh) = ∇wh −Rh([wh]) (5.10)
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such that

(G(wh),vh) = (∇wh,vh)Eh − ([wh], {vh · ne})Γh , for all vh ∈ P`(Eh)d (5.11)

and the discrete gradient can be extended to

(G(wh),v) = (∇wh,v)Eh − ([wh], {πhv · ne})Γh , for all v ∈ L2(Ω)d (5.12)

for functions in L2(Ω).

With the help of the discrete gradient we have additional convergence result in terms of

the gradient.

Theorem 5.1.6. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

the numerical scheme (3.27)-(3.29). Then, there exist c ∈ L2(0, T ;H1(Ω)) such that with

maximal mesh size and time step h, k tend to zero by passing a subsequence, we have

ch converges to c strongly in L2(0, T ;L2(Ω)),

Gh(ch) converges to ∇c weakly in L2(0, T ;L2(Ω)).

Proof. The uniform boundedness of {‖ch‖L2(0,T ;H1(Eh))}h>0 implies that the sequence

{G(ch)}h>0 is bounded; therefore, there exists subsequence {G(ch)}h>0 such that it converges

weakly to v in L2(0, T ;L2(Ω)). According to the definition of the discrete gradient in (5.11)

we know that, in fact, {G(ch)}h>0 converges weakly to ∇c according [74]. The proof can

also be found in Theorem 6.3 in [34].

Remark 5.1.7. In [34], we are given an example of a sequence of functions as in Figure 5.1

to show the necessity of using the discrete gradient.
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1

c1 c3 c4c2

1 0 1 0 1 0 10

1 1 1

Figure 5.1: Function cn with n = 1, 2, 3, 4

where we have cn → c = 0 strongly in L2(Ω) and c ∈ H1(Ω), but clearly we do not have

∇cn ⇀ ∇c weakly in L2(Ω). If we consider the discrete gradient, then we have

(Gh(cn), Inv) = (∇cn, Inv)Eh − ([cn], Inv · ne)Γh =

∫ 1

0

Inv −
1

2n−1

2n−1∑
i=1

Inv

(
i

2n−1

)

where Ihv is the Lagrange interpolate of smooth function v; thus, we have

lim
n→∞

(Gh(cn), Inv) = lim
n→∞

∫ 1

0

Inv − lim
n→∞

1

2n−1

2n−1∑
i=1

v

(
i

2n−1

)
= lim

n→∞

∫ 1

0

(Inv − v) = 0

Therefore, we have:

lim
n→∞

(Gh(cn),v) = lim
n→∞

(Gh(cn), Inv) = (∇c,v)

So, indeed we have the convergence of the discrete gradient, but not the gradient of the

piecewise function. Examples in 2D and 3D can also be easily generated.



76

5.1.2 Compactness of the solutions with implicit Euler

For the Implicit Euler decoupling in Algorithm 3 and Algorithm 5, since we now have the

solution function that is continuous in time by defining the concentration ch as,

ch(t) = cjh
t− tj−1

kj
− cj−1

h

t− tj
kj

over interval (tj−1, tj). (5.13)

We can use the Aubin-Lions compactness theorem.

We consider the numerical schemes proposed in Algorithm 3 and Algorithm 5, since both

algorithms share the same discretization for the concentration.

Lemma 5.1.8. Let ch be the concentration solutions obtained from either Algorithm 3 or

Algorithm 5, then

ch ∈ L2(0, T ;H2(Ω)′)

Proof. Notice that the discretization for the concentration can be written as

∫ T

0

(φ∂tch, wh) =

∫ T

0

Fh(wh) (5.14)

where Fh(wh) over each interval (tj−1, tj) is given by:

Fh(wh) = (ĉjh(q
I
h)
j, wh)−Bdi(c

j
h, wh; u

j
h)−Bcq(c

j
h, wh; u

j
h). (5.15)

Therefore, the same upper bound as in (5.6) applies, and we have

Fh(wh) ≤M‖wh‖W 1,4(Eh) (5.16)

with M > 0 independent of the mesh size.
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Lemma B.2.18 implies that

Fh(wh) ≤M
(∑
E∈Eh

‖wh‖2
H2(E)

)1/2

(5.17)

Now, let w ∈ C∞0 (0, T ;C∞(Ω)) and wh = πhw where πh is the L2-projection in space,

i.e. wh(·, t) = πhw(·, t),

Then, according to Lemma B.1.2, we have

Fh(wh) .
(∑
E∈Eh

‖wh − w‖2
H2(E)

)1/2

+
(∑
E∈Eh

‖w‖2
H2(E)

)1/2

.
(∑
E∈Eh

‖w‖2
H2(E)

)1/2

= ‖w‖H2(Ω)

Finally, by the definition of the L2 projection,

∫ T

0

(φ∂tch, w) =

∫ T

0

(φ∂tch, wh) =

∫ T

0

Fh(wh) .
∫ T

0

‖w‖H2(Ω) . ‖w‖L2(0,T ;H2(Ω))

Therefore, ch ∈ L2(0, T ;H2(Ω)′).

Remark 5.1.9. In fact, for the implicit Euler decoupling, we can even show ch ∈ L2(0, T ;H2(Ω)′)

with mesh adaptation in each time step because of the stability result in Theorem 4.3.3 also

provides an upper bound for the ∂tch. Since mesh adaptation is beyond the scope of the

thesis, I will not pursue the subject any further.

I now establish the compactness of the numerical solution for the concentration in the

next result using Aubin-Lions compactness theorem.

Theorem 5.1.10. Let {ch}h>0 be a sequence of the numerical solutions for the concentration

obtained using Algorithm 3 or Algorithm 5; then, {ch}h>0 is precompact in L2(0, T ;L2(Ω)).

Proof. According to Theorem 4.3.3, we know that there exist a constant M > 0 independent
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of mesh size or time step such that

‖ch‖L2(0,T ;H1(Eh)) < M

Therefore, ch ∈ L2(0, T ;BV (Ω)) since we have

‖ϕ‖BV (Ω) ≤ ‖ϕ‖L1(Ω) + ‖∇ϕ‖L1(Ω) + ‖[ϕ]‖L2(Γh) . ‖ϕ‖H1(Eh)

Thus,

ch ∈ L2(0, T ; [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2).

Also, from Lemma 5.1.8 we know that

ch ∈ L2(0, T ;H2(Ω)′).

According to [34], we have

[BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 ↪→→ L2(Ω) ↪→ H2(Ω)′

with [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 being both separable and reflexive; therefore, according

Aubin-Lions compactness theorem in Theorem 5.1.1, the solutions set {ch}h>0 is precompact

in L2(0, T ;L2(Ω)).

Theorem 5.1.11. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 3 or Algorithm 5; then, there exist c ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H2(Ω)′) such

that with maximal time step k and mesh size h tend to zero. By passing a subsequence, we
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have

ch → c strongly in L2(0, T ;L2(Ω)),

∂tch converges to ∂tc weakly in L2(0, T ;H2(Ω)′),

∇ch converges to ∇c weakly in L2(0, T ;H−1(Ω)),

Gh(ch) converges to ∇c weakly in L2(0, T ;L2(Ω)).

If c0
h → c0 in H2(Ω)′; then, the c satisfies the initial condition.

Proof. Since {ch}h>0 is precompact in L2(0, T ;L2(Ω)), the proof is taken exactly from [34].

5.1.3 Compactness of the solutions with Crank-Nicolson

The compactness of the concentration solutions obtained through Algorithm 4 and Algo-

rithm 6 with Crank-Nicolson decoupling can be established using the same technique intro-

duced for the implicit Euler time stepping.

Lemma 5.1.12. Let ch be the concentration solutions obtained from either Algorithm 4 or

Algorithm 6; then:

ch ∈ L2(0, T ;H2(Ω)′)

Proof. Notice, that the discretization for the concentration can written as

∫ T

0

(φ∂tch, wh) =

∫ T

0

Fh(wh) (5.18)

where Fh(wh) over each interval (tj−1, tj) is given by,

Fh(wh) = (
1

4
((qIh)

j + (qIh)
j−1)(ĉjh + ĉj−1

h ), wh)−Bdi(c
j
h, wh; ǔ

j
h)−Bcq(c

j
h, wh; ǔ

j
h). (5.19)
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Therefore, we can follow exactly the same proof as Lemma 5.1.8 to show ch ∈ L2(0, T ;H2(Ω)′).

Next, we have the compactness of the numerical solutions.

Theorem 5.1.13. Let {ch}h>0 be a sequence of the numerical solutions for the concentration

obtained using Algorithm 4 or Algorithm 6; then, {ch}h>0 is precompact in L2(0, T ;L2(Ω)).

Proof. The proof is the same as in Theorem 5.1.10.

Finally, we have the convergence of the numerical solutions.

Theorem 5.1.14. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 4 or Algorithm 6; then, there exist c ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H2(Ω)′) such

that with maximal time step k and mesh size h, tend to zero. By passing a subsequence we

have:

ch converges to c strongly in L2(0, T ;L2(Ω)),

∂tch converges to ∂tc weakly in L2(0, T ;H2(Ω)′),

∇ch converges to ∇c weakly in L2(0, T ;H−1(Ω)),

Gh(ch) converges to ∇c weakly in L2(0, T ;L2(Ω)).

If c0
h → c0 in H2(Ω)′, then, the c satisfies the initial condition.

5.2 Convergence of MFE-DG with DG in time

By establishing the compactness of the concentration solution, we can now show the conver-

gence of the numerical solutions to the solutions of the weak problem (4.1)-(4.3). We begin

by establishing the convergence of the pressure and velocity.
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5.2.1 Convergence of pressure and velocity

We show the convergence of velocity and pressure using the exact argument from [88]. The

proof is taken exactly from my master’s thesis [35] for the sake of completion.

Theorem 5.2.1. Given the data, parameters and numerical scheme. Assume the maximal

time step k tends to zero with the mesh parameter. Suppose that the sequence {ch}h>0 ⊂

L2(0, T ;L2(Ω)) converges to c in L2(0, T ;L2(Ω)); then, the velocity and pressure computed

using the scheme (3.27)-(3.29) over the regular family of meshes converges strongly to the

solutions of the weak forms (4.1) and (4.2).

Proof. For completeness, we repeat the proof given in [71]. Let U = L2(0, T ;H(Ω; div)) and

P = L2(0, T ;L2(Ω)). Denote the finite element subspaces to be

Uh = {uh ∈ U | uh|(tj−1,tj) ∈ P`(tj−1, tj; Uh)}, and

Ph = {ph ∈ P | ph|(tj−1,tj) ∈ P`(tj−1, tj;Ph)}

By Lemma 4.2.3, we know the numerical approximation {(uh, ph)}h>0 are bounded in U×P;

so, we may pass to a subsequence for which (uh, ph) converges weakly to a pair (u, p) in U×P.

Also, we can use dominate convergence theorem to show µ(ch)→ µ(c) in Lr(0, T ;Lr(Ω)) for

each 1 ≤ r <∞.

To show (u, p) is the weak solution of the mixed problem, we fix (v, q) ∈ C∞([0, T ]× Ω̄)∩

(U × P). Approximation theory tells us that there exists a sequence ((vh, qh))h ⊂ Uh × Ph

such that (vh, qh)→ (v, q) in W 1,∞((0, T )× Ω); Hence, we can pass the limit term-by-term

in equation (4.1) and (4.2) to show that

∫ T

0

(K−1(c)u, v)− (p, div(v)) =

∫ T

0

(ρ(c)g, v)

∫ T

0

(q, div(u)) =

∫ T

0

(qI − qP , q)
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Since C∞([0, T ]× Ω̄) ∩ (U× P) is dense in U× P, it follows that (u, p) is a weak solution of

the mixed problem.

In order to show strong convergence we introduce the notation b(·, ·; c) such that for a

fixed c ∈ L2(0, T ;L2(Ω)) we have b(·, ·; c) : (U× P)2 → R where

b((u, p), (v, q); c) =

∫ T

0

(
(K−1(c)u,v)− (p, div(v)) + (q, div(u))

)
Lemma 4.2.1 shows that b(·, ·; c) is coercive on Uh×Ph. Cleary, b(·, ·; c) is continuous. Hence,

we can use the Strang’s Lemma

‖(u− uh, p− ph)‖U×P ≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P

+ sup
(vh,qh)∈Uh×Ph

|b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch)|
‖(vh, qh)‖U×P

Since we have

b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch) =

∫ T

0

(K−1(c)−K−1(ch))u,vh)

so

‖(u− uh, p− ph)‖U×P

≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P + ‖(K−1(c)−K−1(ch))u‖L2(0,T ;L2(Ω))

The assumptions on K guarantee that |K−1(ch)u|2 converges pointwise to |K−1(c)u|2, and

since K−1 takes values in a compact set it follows that |K−1(ch)u|2 ≤ M |u|2. Apply the

dominated convergence theorem shows K−1(ch)u→ K−1(c)u in L2(0, T ;L2(Ω)), and strong

convergence of the velocity and pressure follows.



83

5.2.2 Convergence of concentration

With the convergence of the pressure and velocity established, we can now show the conver-

gence of the concentration.

Theorem 5.2.2. Suppose that the maximal time step k and h tend to zero with the mesh

parameter. Then, upon passage to a subsequence, the concentrations {ch}h computed using

the scheme (3.29) with SIPG namely ε = 1 over a regular family of meshes converge strongly

in L2(0, T ;L2(Ω)) to c ∈ L2(0, T ;H1(Ω)); which satisfies the weak formulation (4.3).

Proof. The uniform boundedness of {‖ch‖L2(0,T ;H1(Eh))}h>0, obtained from Theorem 4.2.5, im-

plies that every accumulation point of {ch}h>0 in L2(0, T ;L2(Ω)) belongs to L2(0, T ;H1(Ω)),

and that there exists a subsequence, still denoted by {ch}h>0, such that {∇ch}h>0 converges

weakly in L2(0, T ;H−1(Ω)) to ∇c (see Theorem 7.1 [34]). Let w ∈ C∞(0, T ;C∞(Ω)) and

w(T ) = 0. Approximation theory guarantees existence of wh ∈ C(0, T ;L2(Ω)) such that

wh|(tj−1,tj) belongs to P`(tj−1, tj;Ch), with wh(T ) = 0 and such that the sequence {wh}h>0

converges strongly to w in the following sense

lim
h→0
‖wh − w‖L∞(0,T ;L∞(Ω)) = 0,

lim
h→0
‖∇wh −∇w‖L∞(0,T ;L∞(Ω)) = 0. (5.20)

Integrating the temporal term in (3.29), summing over n, and using the fact that wh(T ) = 0,

yields

∫ T

0

(−(φch, ∂twh) +Bdi(ch, wh; uh) +Bcq(ch, wh; uh)) = (φc0
h−, wh(0)) +

∫ T

0

(ĉqI , wh).

(5.21)
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We now pass to the limit term by term in (5.21). We clearly have

lim
h→0

∫ T

0

(φch, ∂twh) =

∫ T

0

(φc, ∂tw),

lim
h→0

(φc0
h−, wh(0)) = (φc0, w(0)),

lim
h→0

∫ T

0

(ĉqI , wh) =

∫ T

0

(ĉqI , w).

Next we show that

∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

Bdi(ch, wh; uh). (5.22)

The proof of this result is technical and requires the introduction of the operator Dh and

the discrete gradient introduced in (5.10). The matrix Dh(v) is a piecewise constant matrix

defined by

Dh(v)|E = D(ṽ|E), ṽ|E =
1

|E|

∫
E

v, ∀E ∈ Eh.

By the Lipschitz continuity of the diffusion-dispersion tensor D, we have

‖Dh(uh)− D(u)‖L2(Ω) = ‖D(ũh)− D(u)‖L2(Ω) . ‖ũh − u‖L2(Ω)

. ‖ũh − ũ‖L2(Ω) + ‖ũ− u‖L2(Ω).

Since ũ is the piecewise constant approximation of u, then

lim
h→0

∫ T

0

‖ũ− u‖2
L2(Ω) = 0. (5.23)

Furthermore,

‖ũh − ũ‖L2(Ω) ≤ ‖uh − u‖L2(Ω).

Since the sequence {uh}h converges strongly to u in L2(0, T ;L2(Ω)), according to the The-
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orem 5.2.1, we have

lim
h→0

∫ T

0

‖ũh − ũ‖2
L2(Ω) = 0.

Therefore, we can conclude

lim
h→0

∫ T

0

‖Dh(uh)− D(u)‖2
L2(Ω) = 0. (5.24)

Since we also have the property,

lim
h→0

∫ T

0

‖D(uh)− D(u)‖2
L2(Ω) = 0. (5.25)

Consequently we have

lim
h→0

∫ T

0

‖D(uh)− Dh(uh)‖2
L2(Ω) = 0. (5.26)

From the property (5.26), we have

lim
h→0

∫ T

0

(∇ch,D(uh)∇wh)Eh = lim
h→0

∫ T

0

(∇ch, (D(uh)− Dh(uh))∇wh)Eh

+ lim
h→0

∫ T

0

(∇ch,Dh(uh)∇wh)Eh

= lim
h→0

∫ T

0

(∇ch,Dh(uh)∇wh)Eh . (5.27)

Additionally, from the property (5.24) and (5.20), we have

∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh . (5.28)
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We also observe:

∫ T

0

|(G(ch),Dh(uh)∇wh)Eh − (∇c,Dh(uh)∇wh)Eh| ≤
∫ T

0

|(G(ch)−∇c,D(u)∇w)Eh|

+

∫ T

0

|(G(ch), (Dh(uh)− D(u))∇wh)Eh |+ |(G(ch),D(u)(∇wh −∇w))Eh|

+

∫ T

0

|(∇c, (D(u)− Dh(uh))∇w)Eh|+ |(∇c,Dh(uh)(∇w −∇wh))Eh| .

Therefore, we have from (5.20), (5.24) and the weak convergence of {G(ch)}h to∇c according

to Theorem 5.1.6.

lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh = lim
h→0

∫ T

0

(G(ch),Dh(uh)∇wh)Eh . (5.29)

Thus, we conclude with (5.28), (5.29) and (5.11)

∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh = lim
h→0

∫ T

0

(G(ch),Dh(uh)∇wh)Eh

= lim
h→0

∫ T

0

(
(∇ch,Dh(uh)∇wh)Eh − ([ch], {Dh(uh)∇wh · ne})Γh

)
. (5.30)

Using a trace inequality, we write

∫ T

0

([ch], {(D(uh)− Dh(uh))∇wh · ne})Γh

.
∫ T

0

‖ch‖Ch
(∑
e∈Γh

h‖D(uh)− Dh(uh)‖2
L2(e)

)1/2

‖∇wh‖L∞(Ω)

.
∫ T

0

‖ch‖Ch‖uh − ũh‖L2(Ω)

(
‖∇w‖L∞(Ω) + ‖∇w −∇wh‖L∞(Ω)

)
.

From the stability of ch in L2(0, T ;Ch) and (5.20), we obtain

lim
h→0

∫ T

0

([ch], {D(uh)∇wh · ne})Γh = lim
h→0

∫ T

0

([ch], {Dh(uh)∇wh · ne})Γh . (5.31)
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Thus (5.27), (5.30) and (5.31) imply

∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇ch,D(uh)∇wh)Eh − ([ch], {D(uh)∇wh · ne})Γh . (5.32)

Next, let us examine the term ([wh], {D(uh)∇ch · ne})Γh . Using (B.18) and Theorem 4.2.5,

we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh .

(∫ T

0

∑
e∈Γh

∫
e

h−1
(

1 + {|uh|}
)

[wh]
2

)1/2

.

Then, with (B.26) and (B.27), we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh .

(∫ T

0

(
1 + ‖uh‖2

L2(Ω)

))1/4
(∫ T

0

∑
e∈Γh

h−3‖[wh]‖4
L4(e)

)1/4

.

From Lemma 4.2.3 and an inverse inequality we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh .

(∫ T

0

h−(2+d)
∑
e∈Γh

‖[wh]‖4
L2(e)

)1/4

.

We now apply Jensen’s inequality and an approximation result

∫ T

0

([wh], {D(uh)∇ch · ne})Γh .

(∫ T

0

h−(2+d)

(∑
e∈Γh

‖[wh]‖2
L2(e)

)2
)1/4

.

(∫ T

0

h−(2+d)

(∑
e∈Γh

‖[wh − w]‖2
L2(e)

)2
)1/4

.

(∫ T

0

h4−d‖w‖4
H2(Ω)

)1/4

. h1/4

(∫ T

0

‖w‖4
H2(Ω)

)1/4

.

Therefore, we have

lim
h→0

∫ T

0

([wh], {D(uh)∇ch · ne})Γh = 0. (5.33)
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For the penalty term, we use a similar argument

∫ T

0

(σh−1(1 + {|uh|})[ch], [wh])Γh

.

(∫ T

0

(h−1(1 + {|uh|})[wh], [wh])Γh

)1/2(∫ T

0

‖ch‖2
Ch

)1/2

. h1/4

(∫ T

0

‖w‖4
H2(Ω)

)1/4

.

Therefore, we have

lim
h→0

∫ T

0

(σh−1(1 + {|uh|})[ch], [wh])Γh = 0. (5.34)

Combining the results above, namely (5.32), (5.33), (5.34), yields (5.22). Next we show that

1

2

∫ T

0

(
(u · ∇c, w)− (cu,∇w) + ((qI + qP )c, w)

)
= lim

h→0

∫ T

0

Bcq(ch, wh; uh). (5.35)

Since {uh}h converges strongly to u in L2(0, T ;L2(Ω)), it is easy to show that

1

2

∫ T

0

(
−(cu,∇w) + ((qI + qP )c, w)

)
= lim

h→0

1

2

∫ T

0

(
−(chuh,∇wh) + ((qI + qP )ch, wh)

)
.

(5.36)

Using trace inequality and inverse inequality, we also have,

(cup
h uh · ne, [wh])Γh . ‖uh‖L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h−
d+1
2

∫
e

[wh − w]2

)1/2

. h1/2‖w‖H2(Ω)‖uh‖L2(Ω)‖ch‖L4(Ω).

With the stability bounds on uh and ch, we then have

lim
h→0

∫ T

0

(cup
h uh · ne, [wh])Γh = 0. (5.37)

Integrating by parts on each element and summing over all elements yields:

(ch, div(uhw)) = −(uh · ∇ch, w)Eh + (w uh · ne, [ch])Γh . (5.38)
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We write

(ch, div(uhw))− (c, div(uw)) = (ch, (div(uh)− div(u))w) + (ch, (uh − u) · ∇w).

We denote by πh(q
I − qP ) the L2-projections of qI − qP respectively, in the space Ph. We

remark that (3.28) yields

div(uh) = πh(q
I − qP ). (5.39)

Therefore we have

div(uh)− div(u) = πh(q
I − qP )− (qI − qP ).

We can now obtain

lim
h→0

∫ T

0

(ch, div(uhw)) =

∫ T

0

(c, div(uw)). (5.40)

From (5.20), we have

lim
h→0

∫ T

0

(uh · ∇ch, wh)Eh = lim
h→0

∫ T

0

(uh · ∇ch, w)Eh , (5.41)

lim
h→0

∫ T

0

(wdown
h uh · ne, [ch])Γh = lim

h→0

∫ T

0

(w uh · ne, [ch])Γh . (5.42)

Thus, from the result obtained in (5.38), (5.40), (5.41) and (5.42) we have

∫ T

0

(u · ∇c, w) =

∫ T

0

−(c, div(uw))

= lim
h→0

∫ T

0

(uh · ∇ch, wh)Eh − (wdown
h uh · ne, [ch])Γh . (5.43)

We have then proved (5.35) and we conclude that the limit c satisfies the weak problem.

Next result, we are presenting much stronger convergence for the gradient of the concen-

tration solution. We also extend our proof of the convergence to NIPG and IIPG provided
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that we have additional regularity for the velocity such that u is bounded in L∞(Ω).

Theorem 5.2.3. Suppose that the maximal time step k and h tend to zero with mesh pa-

rameter. Then upon passage to a subsequence, the concentrations {ch}h computed using the

scheme (3.27)-(3.29) with SIPG, NIPG and IIPG over a regular family of meshes converge

strongly in L2(0, T ;H1(Eh)) to c ∈ L2(0, T ;H1(Ω)), i.e. we have

ch converges to c strongly in L2(0, T ;L2(Ω)),

∇ch converges to ∇c strongly in L2(0, T ;L2(Ω)),

lim
h,k→0

∫ T

0

(h−1
e [ch], [ch])Γh = 0,

where c is the same accumulation point as in Theorem 5.1.6.

Proof. To simplify, let A(ch, wh; uh) denote the bilinear form in the left-hand side by summing

over all j from 1 to N ,

A(ch, wh; uh) =

∫ T

0

(
(φ∂tch, wh) +Bdi(ch, wh; uh) +Bcq(ch, wh; uh)

)
dt

+
N∑
j=1

(
[
cj−1
h

]
t
, φwj−1

h+ ) =

∫ T

0

(ĉqI , wh). (5.44)

The stability Theorem 4.2.5 gives us a lower bound for A(wh, wh; uh):

2A(wh, wh; uh) ≥‖φ1/2wNh−‖2
L2(Ω) +

N∑
j=1

‖[φ1/2wj−1
h ]t‖2

L2(Ω) − ‖φ1/2w0
h−‖2

L2(Ω)

+ 2

∫ T

0

‖wh‖2
Ch

+

∫ T

0

‖(qI + qP )1/2wh‖2
L2(Ω) +

∫ T

0

‖|uh · ne|1/2[wh]‖2
Γh
.

(5.45)

A glance at (5.45) suggests to apply it to the difference between ch and an interpolant of

c, and use the discrete concentration equation (5.44) to derive a useful upper bound for the

left-hand side. However, this upper bound requires higher regularity that can be expected
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from c. Therefore, we shall proceed by density argument and start with a smooth function

ϕ that is arbitrary for the moment but will approximate c further on. For each time t, we

discretize ϕ in space by its Lagrange interpolant, Ihϕ in the space

Vh = {q ∈ C0(Ω) ; ∀E ∈ Eh, q|E ∈ P1}.

This is possible since the mesh is conforming and ϕ is smooth. We also set (Ihϕ)0
− = (Ihϕ)0

+.

On one hand, (5.45) gives a lower bound for A(ch − Ihϕ, ch − Ihϕ; uh). On the other hand,

using (5.44), we can write

A(ch − Ihϕ, ch − Ihϕ; uh) = A(ch, ch − Ihϕ; uh)− A(Ihϕ, ch − Ihϕ; uh)

=

∫ T

0

(ĉqI , ch − Ihϕ)dt− A(Ihϕ, ch − Ihϕ; uh).

By combining with (5.45), this gives:

‖φ1/2(cNh− − (Ihϕ)N− )‖2
L2(Ω) +

N∑
j=1

‖[φ1/2(ch − Ihϕ)j−1]t‖2
L2(Ω) + 2

∫ T

0

‖ch − Ihϕ‖2
Ch

+

∫ T

0

‖(qI + qP )1/2(ch − Ihϕ)‖2
L2(Ω) +

∫ T

0

‖|uh · ne|1/2[ch − Ihϕ]‖2
Γh

≤ 2

∫ T

0

(ĉqI , ch − Ihϕ)dt− 2A(Ihϕ, ch − Ihϕ; uh) + ‖φ1/2(c0
h− − (Ihϕ)0

−)‖2
L2(Ω),

and in particular,

∫ T

0

‖ch − Ihϕ‖2
Ch
≤
∫ T

0

(ĉqI , ch − Ihϕ)− A(Ihϕ, ch − Ihϕ; uh) +
1

2
‖φ1/2(c0

h− − (Ihϕ)0
−)‖2

L2(Ω).

(5.46)

As we we know that ch tends to a function c weakly in L2(Ω × (0, T )) and Ihϕ tends

to ϕ strongly in L2(Ω × (0, T )), we can pass to the limit in the first and last term of this

right-hand side, and it remains to examine the middle term. Since Ihϕ has no discontinuity
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in space or time, A(Ihϕ, ch − Ihϕ; uh) simplifies to

A(Ihϕ, ch−Ihϕ) =

∫ T

0

(
(φ∂t(Ihϕ), ch−Ihϕ)+Bdi(Ihϕ, ch−Ihϕ; uh)+Bcq(Ihϕ, ch−Ihϕ; uh)

)
.

For the first term in the right-hand side, we note that

∂

∂t
Ihϕ = Ih(

∂

∂t
ϕ),

and since ϕ is smooth in space and time,

∫ T

0

‖Ih(∂tϕ)− ∂tϕ‖2
L2(Ω) ≤ C2h2‖∂tϕ‖2

L2(0,T ;H1(Ω)).

Thus φ1/2∂t(Ihϕ) converges strongly in L2((0, T )× Ω) to φ1/2∂tϕ, since φ is independent of

time and bounded in space. Hence

lim
h→0

∫ T

0

(φ∂tIhϕ, ch − Ihϕ) =

∫ T

0

(φ∂tϕ, c− ϕ). (5.47)

The continuity of Ihϕ simplifies the third term:

Bcq(Ihϕ, ch − Ihϕ; uh) =
1

2

(
(uh · ∇ Ihϕ, ch − Ihϕ)Eh − (uhIhϕ,∇(ch − Ihϕ))Eh

+ ((qI + qP )Ihϕ, ch − Ihϕ) + ((Ihϕ)uh · ne, [ch − Ihϕ])Γh

)
.

After an integration by parts, it reduces to

Bcq(Ihϕ, ch − Ihϕ; uh) = (uh · ∇ Ihϕ, ch − Ihϕ)Eh +
1

2
((qI + qP + πh(q

I − qP ))Ihϕ, ch − Ihϕ),

where πh(q
I − qP ) are the L2-projections of qI − qP respectively, in the space Ph. Therefore,

considering that Ihϕ converges to ϕ strongly in L∞(0, T ;W 1,∞(Ω)) and uh converges to u
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strongly in L2(0, T ;L2(Ω)d), we have

lim
h→0

∫ T

0

Bcq(Ihϕ, ch − Ihϕ; uh) =

∫ T

0

(
(u · ∇ϕ, c− ϕ) + (qIϕ, c− ϕ)

)
. (5.48)

Hence it remains to study the second term. Again, it simplifies owing to the continuity of

Ihϕ:

Bdi(Ihϕ, ch − Ihϕ; uh) = (D(uh)∇ Ihϕ,∇(ch − Ihϕ))Eh − ([ch], {D(uh)∇Ihϕ · ne})Γh .

We propose to expressBd in terms of the discrete gradients Gh. But, as mentioned previously,

this is achieved by replacing D(uh) by piecewise constants. Thus, we introduce Dh(uh) and

write:

Bdi(Ihϕ,ch − Ihϕ; uh) = (Dh(uh)∇ Ihϕ,∇(ch − Ihϕ))Eh − ([ch], {Dh(uh)∇Ihϕ · ne})Γh

+
(
(D(uh)− Dh(uh))∇ Ihϕ,∇(ch − Ihϕ)

)
Eh
− ([ch], {(D(uh)− Dh(uh))∇Ihϕ · ne})Γh .

(5.49)

Let us bound first the terms in the second line. Since D(uh) is symmetric positive definite,

in view of (B.6), we can write in any E,

(
(D(uh)− Dh(uh))∇ Ihϕ,∇(ch − Ihϕ)

)
E

≤ ‖(D(uh)− Dh(uh))∇Ihϕ‖L2(E)‖∇(ch − Ihϕ)‖L2(E)

≤ ‖D(uh)− Dh(uh)‖L2(E)‖∇Ihϕ‖L∞(E)‖∇(ch − Ihϕ)‖L2(E)

Now, (5.26) states that

lim
h,k→0

‖D(uh)− Dh(uh)‖L2(0,T ;L2(Ω)d) = 0.
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Since the second and third factors are bounded, it follows that

lim
h,k→0

∫ T

0

(
(D(uh)− Dh(uh))∇ Ihϕ,∇(ch − Ihϕ)

)
Eh

= 0. (5.50)

The treatment of the second term is similar, but more involved, by using (B.6) and (B.7),

we have

∣∣∣ ∫
e

[ch − Ihϕ]{(D(uh)− Dh(uh))∇ Ihϕ · ne}
∣∣∣

≤ h−1/2
e ‖[ch − Ihϕ]‖L2(e)h

1/2
e ‖{|(Dh(uh)− D(uh))∇ Ihϕ · ne|2}‖L2(e)

≤ h−1/2
e ‖[ch − Ihϕ]‖L2(e)h

1/2
e ‖{|Dh(uh)− D(uh)|2}‖L2(e)‖{∇ Ihϕ}‖L∞(e)

Therefore

∣∣∣([ch − Ihϕ], {(D(uh)− Dh(uh))∇ Ihϕ · ne}
)

Γh

∣∣∣
≤
(∑
e∈Γh

1

he
‖(1 + {|uh|2})1/2[ch − Ihϕ]‖2

L2(e)

)1/2(∑
e∈Γh

he‖{|Dh(uh)− D(uh)|2}‖2
L2(e)

)1/2

×‖∇ Ihϕ‖L∞(Ω).

When integrating this inequality over time, as the first and last factors are bounded, Corol-

lary B.2.8 implies that

lim
h,k→0

∫ T

0

(
[ch − Ihϕ], {(D(uh)− Dh(uh))∇ Ihϕ · ne}

)
Γh

= 0. (5.51)

Hence the treatment of Bdi(Ihϕ, ch − Ihϕ; uh) reduces to the two terms of the first line of

(5.49). With the notation (5.10) for the discrete gradient, we have

(Dh(uh)∇ Ihϕ,∇(ch − Ihϕ))Eh−([ch], {Dh(uh)∇Ihϕ · ne})Γh

=
(
∇Ihϕ,Dh(uh)Gh(ch − Ihϕ)

)
Eh
.

(5.52)
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The result follows immediately from the definitions discrete gradient (5.10) and the fact that

Ihϕ has no jumps. Now consider

∫ T

0

(
∇Ihϕ,Dh(uh)Gh(ch − Ihϕ)

)
Eh
dt.

On one hand, as Gh is the symmetric discrete gradient, we know that [73]

lim
h→0

Gh(ch − Ihϕ) = ∇(c− ϕ) weakly in L2(Ω× (0, T )).

On the other hand, from (5.24) we have,

lim
h→0
‖Dh(uh)− D(u)‖L2(Ω×(0,T )) = 0.

Finally, from approximation theorem using Lagrange interpolation we have,

lim
h→0
‖∇Ihϕ−∇ϕ‖L∞(0,T ;L∞(Ω)) = 0.

Hence

lim
h→0

∫ T

0

[
(Dh(uh)∇ Ihϕ,∇(ch − Ihϕ))Eh − ([ch], {Dh(uh)∇Ihϕ · ne})Γh

]
=

∫ T

0

(
∇ϕ,D(u)∇(c− ϕ)

)
.

(5.53)

Thus, by collecting (5.50), (5.51), and (5.53), we obtain

lim
h→0

∫ T

0

Bdi(Ihϕ, ch − Ihϕ; uh) =

∫ T

0

(
∇ϕ,D(u)∇(c− ϕ)

)
. (5.54)
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Then, by combining (5.54), (5.47) and (5.48), we deduce

lim
h,k→0

A(Ihϕ, ch − Ihϕ; uh) =

∫ T

0

(
(u · ∇ϕ, c− ϕ) + (qIϕ, c− ϕ) +

(
∇ϕ,D(u)∇(c− ϕ)

)
+ (φ∂tϕ, c− ϕ)

)
.

Hence, in view of (5.46), we derive for all sufficiently smooth ϕ:

lim
h,k→0

∫ T

0

‖ch − Ihϕ‖2
Ch
≤
∫ T

0

(ĉqI , c− ϕ) +
1

2
‖φ1/2(c0 − ϕ(0))‖2

L2(Ω)

−
∫ T

0

(
(u · ∇ϕ, c− ϕ) + (qIϕ, c− ϕ) +

(
∇ϕ,D(u)∇(c− ϕ)

)
+ (φ∂tϕ, c− ϕ)

)
.

(5.55)

This is true in particular for any sequence (ϕs)s≥0 of smooth functions approximating c in

L2(0, T ;H1(Ω)). Therefore

lim
h,k→0

∫ T

0

‖ch − Ihϕs‖2
Ch

= 0. (5.56)

From here we deduce the strong convergence of ch to c in the following sense. Then (5.55)

implies on one hand

∇ch converges to ∇ c strongly in L2(Ω× (0, T ))d, (5.57)

and on the other hand

lim
h→0

(∫ T

0

∑
e∈Γh

1

he
‖(1 + {|uh|2})1/2[ch]‖2

L2(e)

)1/2

= 0. (5.58)

Now we are in a position to pass to the limit in (3.29) to show the convergence numerical
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solution for the concentration produced using SIPG, NIPG and IIPG.

Theorem 5.2.4. Suppose that the maximal time step k and h tend to zero with mesh pa-

rameter. Then upon passage to a subsequence, the concentrations {ch}h computed using the

scheme (3.29) with SIPG, NIPG and IIPG over a regular family of meshes converge strongly

in L2(0, T ;H1(Eh)) to c ∈ L2(0, T ;H1(Ω)), that satisfies the weak formulation (4.3). i.e. we

have

ch converges to c strongly in L2(0, T ;L2(Ω)),

∇ch converges to ∇c strongly in L2(0, T ;L2(Ω)).

Proof. Again, let ϕ be a smooth function in space and time satisfying ϕ(T ) = 0. Let us test

(3.29) with wh = Ihϕ and integrate the first term by parts in time. This gives

∫ T

0

(
− (φch, ∂t(Ihϕ)) +Bdi(ch, Ihϕ; uh) +Bcq(ch, Ihϕ; uh)

)
= (φc0

h−, Ihϕ(0)) +

∫ T

0

(ĉqI , Ihϕ). (5.59)

As far as the right-hand side is concerned, the regularity of ϕ and the convergence of the

initial data imply

lim
h→0

(
(φc0

h−, Ihϕ(0)) +

∫ T

0

(ĉqI , Ihϕ)
)

= (φc0, ϕ(0)) +

∫ T

0

(ĉqI , ϕ).

Now, we examine the left-hand side. For the first term, we find immediately

lim
h→0

∫ T

0

(φch, ∂t(Ihϕ)) =

∫ T

0

(φc, ∂tϕ).

With the notation ∇hch, the form Bd reduces to

Bdi(ch, Ihϕ; uh) =
(
D(uh)∇hch,∇(Ihϕ)

)
Eh

+ ε([ch], {D(uh)∇Ihϕ · ne})Γh .
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The strong convergences of ∇hch in L2(0, T ;L2(Ω)d), of D(uh) in L2(0, T ;L2(Ω)d×d) and Ihϕ

in W 1,∞(Ω× (0, T )) readily imply that

lim
h,k→0

∫ T

0

(
D(uh)∇hch,∇(Ihϕ)

)
Eh

=

∫ T

0

(
D(u)∇ c,∇ϕ

)
.

By invoking the same reasons, applying (5.58), and the regularity of the mesh, we readily

derive that the second term in Bd tends to zero.

Regarding Bcq, the regularity of Ih(ϕ) yields

Bcq(ch, Ihϕ; uh) =
1

2

(
(uh · ∇hch, Ihϕ)Eh − (uhch,∇ Ihϕ)Eh + ((qI + qP )ch, Ihϕ)

− ((Ihϕ)uh · ne, [ch])Γh

)
. (5.60)

Then a similar argument gives

lim
h→0

∫ T

0

Bcq(ch, Ihϕ; uh) =
1

2

∫ T

0

(
(u · ∇ c, ϕ)− (uc,∇ϕ) + ((qI + qP )c, ϕ)

)
.

Hence, by collecting these limits, we find that the limit function c satisfies indeed (4.3):

∫ T

0

(
− (φc, ∂tϕ) +

(
D(u)∇ c,∇ϕ

)
+

1

2

(
(u · ∇ c, ϕ)− (uc,∇ϕ) + ((qI + qP )c, ϕ)

)
= (φc0, ϕ(0)) +

∫ T

0

(ĉqI , ϕ)),

for all sufficiently smooth ϕ that vanishes at time T .



99

5.3 Convergence of DG-DG with implicit Euler in time

5.3.1 Convergence of pressure and velocity

With implicit Euler in Algorithm 3, additional error is introduced in the decoupling. I

begin by showing that the error occurs due to the decoupling is sufficiently small for us to

maintain the convergence of the numerical solutions for the pressure and velocity. To put it

more precisely, I show that the numerical solution cj−1
h provides a good approximation not

only for the function c in the time interval (tj−2, tj−1), but also for the time interval (tj−1, tj).

Lemma 5.3.1. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 3 with maximal time step k and mesh size h tend to zero, and c be an accumulating

point for {ch}, then we have

lim
h,k→0

N∑
j=1

∫ tj

tj−1

‖cj−1
h − c‖2

L2(Ω) = 0

Proof. From theorem 5.1.11, we have

ch converges to c in L2(0, T ;L2(Ω))

which means

lim
h,k→0

∫ T

0

‖ch − c‖2
L2(Ω) = 0 (5.61)

where the

ch = cjh
t− tj−1

kj
− cj−1

h

t− tj
kj

over interval (tj−1, tj) (5.62)
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Thus,

N∑
j=1

∫ tj

tj−1

‖cj−1
h − c‖2

L2(Ω) ≤
N∑
j=1

∫ tj

tj−1

‖cj−1
h − ch‖2

L2(Ω) +
N∑
j=1

∫ tj

tj−1

‖ch − c‖2
L2(Ω)

For the second term converges to zero because of the convergence of the concentration

solution. We can also derive an upper bound for the term as follows,

N∑
j=1

∫ tj

tj−1

‖cj−1
h − ch‖2

L2(Ω) =
N∑
j=1

∫ tj

tj−1

k2
j‖∂tc

j
h‖

2
L2(Ω) ≤ k

∫ tN

0

k‖∂tch‖2
L2(Ω).

The term

∫ tN

0

k‖∂tch‖2
L2(Ω) is bounded abound according to Theorem 4.3.3. Now, as the

time step k → 0 and mesh size h→ 0, we have

lim
h,k→0

N∑
j=1

∫ tj

tj−1

‖cj−1
h − ch‖2

L2(Ω) = 0, (5.63)

which implies

lim
h,k→0

N∑
j=1

∫ tj

tj−1

‖cj−1
h − c‖2

L2(Ω) = 0.

We conclude cj−1
h is a sufficiently good approximation for c in time interval (tj−1, tj). The

same argument can be used to show that cjh is also a sufficiently good approximation for c

in time interval (tj−1, tj)

Lemma 5.3.1 shows that instead of using continuous piecewise linear approximation in

time for the concentration, we can accurately approximate the concentration using piecewise

constant in time.

In order for us to show the convergence of the numerical solution for the pressure, we

first establish a weak convergence for the pressure solution.

Theorem 5.3.2. Let (uh, ph, ch) be a sequence of the numerical solutions computed using
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Algorithm 3 with maximal time step k and mesh size h tend to zero, then there exist p ∈

L2(0, T ;H1(Ω)) such that after passing a subsequence,

ph converges to p weakly in L2(0, T ;L2(Ω)),

Gh(ph) converges to ∇p weakly in L2(0, T ;L2(Ω)).

Proof. First, we show the weak convergence of the pressure. By the stability argument in

Theorem 4.3.1, we have ph is bounded and L2(0, T ;L2(Ω)) = L2(QT ) is a Hilbert space.

Thus, there exit p ∈ L2(0, T ;L2(Ω)) such that

ph converges to p weakly in L2(0, T ;L2(Ω))

Also, we have an upper boundary for the discrete gradient,

∫ T

0

‖Gh(ph)‖2
L2(Ω) .

∫ T

0

‖ph‖2
H1(Eh) < M

Hence, we also have a weakly convergence subsequence,

Gh(ph) converges to v weakly in L2(0, T ;L2(Ω))

Now, we want to show that, in fact, v = ∇p. So, for all ϕ ∈ C∞0 (0, T ;C∞0 (Ω)), then we have

∫
QT

Gh(ph)ϕ =

∫ T

0

(Gh(ph), ϕ) =

∫ T

0

(∇ph, ϕ)−
∫ T

0

({πhϕ} · ne, [ph])Γh

= −
∫ T

0

(ph,∇ · ϕ)−
∫ T

0

({πhϕ− ϕ} · ne, [ph])Γh

By taking the limit and that ph ⇀ p weakly, we have

lim
h,k→0

∫
QT

Gh(ph)ϕ = − lim
h,k→0

∫ T

0

(ph,∇ · ϕ) = − lim
h,k→0

∫ T

0

(p,∇ · ϕ) = lim
h,k→0

∫ T

0

(∇p, ϕ)
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Next result, we show the strong convergence of numerical solution with NIPG, IIPG and

SIPG.

Theorem 5.3.3. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 3 with NIPG, IIPG and SIPG as the maximal mesh size h and time step size k

tend to zero, then we have

ph converges to p strongly in Lp(0, T ;H1(Eh))

where p is the solution of the weak problem.

Proof. Let ϕ be a smooth function in space and time and let Ihϕ be its Lagrange interpola-

tion, then we have

‖ϕ− Ihϕ‖L∞(0,T ;L∞(Ω)) = 0 and ‖∇ϕ−∇Ihϕ‖L∞(0,T ;L∞(Ω)) = 0

then we have

∫ T

0

Bdi(ph − Ihϕ, ph − Ihϕ; ch) =
N∑
j=1

∫ tj

tj−1

Bdi(p
j
h − Ihϕ, p

j
h − Ihϕ; cj−1

h )

=
N∑
j=1

∫ tj

tj−1

`jd(p
j
h − Ihϕ; cj−1

h )−Bdi(Ihϕ, p
j
h − Ihϕ; cj−1

h )

We examine the first term on the right-hand-side, first recall the definition of source terms

(3.31), we have

lim
h,k→0

‖(qIh − qPh )− (qI − qP )‖L2(0,T ;L2(Ω)) = 0
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Hence,

lim
h,k→0

∫ T

0

`d(p
j
h − Ihϕ; ch) = lim

h,k→0

N∑
j=1

∫ tj

tj−1

`d(p
j
h − Ihϕ; cj−1

h )

= lim
h,k→0

N∑
j=1

∫ tj

tj−1

(K(cj−1
h )ρ(cj−1

h )g,∇(pjh − Ihϕ)) + (qI − qP , pjh − Ihϕ)

− lim
h,k→0

N∑
j=1

∫ tj

tj−1

({K(cj−1
h )ρ(cj−1

h )g} · ne, [pjh − Ihϕ])Γh

= lim
h,k→0

N∑
j=1

∫ tj

tj−1

((K(cj−1
h )ρ(cj−1

h )−Kh(c
j−1
h )ρh(c

j−1
h ))g,∇(pjh − Ihϕ))

− lim
h,k→0

N∑
j=1

∫ tj

tj−1

({(K(cj−1
h )ρ(cj−1

h )−Kh(c
j−1
h )ρh(c

j−1
h ))g} · ne, [pjh − Ihϕ])Γh

+ lim
h,k→0

N∑
j=1

∫ tj

tj−1

(Kh(c
j−1
h )ρh(c

j−1
h )g,Gh(p

j
h − Ihϕ))

+ lim
h,k→0

N∑
j=1

∫ tj

tj−1

((qIh − qPh )j, pjh − Ihϕ)

=

∫ T

0

(K(c)ρ(c)g,∇p−∇ϕ) +

∫ T

0

(qI − qP , p− ϕ)

For the second term, we have

lim
h,k→0

∫ T

0

Bdi(Ihϕ, ph − Ihϕ; ch) = lim
h,k→0

N∑
j=1

∫ tj

tj−1

Bdi(Ihϕ, p
j
h − Ihϕ; cj−1

h )

= lim
h,k→0

N∑
j=1

∫ tj

tj−1

(∇Ihϕ, (K(cj−1
h )−Kh(c

j−1
h ))∇(pjh − Ihϕ))

− lim
h,k→0

N∑
j=1

∫ tj

tj−1

({(K(cj−1
h )−Kh(c

j−1
h ))∇Ihϕ} · ne, [pjh])Γh

+ lim
h,k→0

N∑
j=1

∫ tj

tj−1

(Gh(p
j
h − Ihϕ),Kh(c

j−1
h )∇Ihϕ)

=

∫ T

0

(∇p−∇ϕ,K(c)∇ϕ)
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Therefore, we have

lim
h,k→0

1

2
‖ph − Ihϕ‖2

L2(0,T ;H1(Eh)) ≤ lim
h,k→0

∫ T

0

Bdi(ph − Ihϕ, ph − Ihϕ; ch)

=

∫ T

0

(qI − qP , p− ϕ)

−
∫ T

0

(∇p−∇ϕ,K(c)∇ϕ) +

∫ T

0

(K(c)ρ(c)g,∇p−∇ϕ)

By the density argument, we can pass through the sequence (ϕs)s≥0 of smooth function

approximating p in L2(0, T ;H1(Ω)). Therefore,

lim
h,k,s→0

‖ph − Ihϕs‖2
L2(0,T ;H1(Eh)) = 0

Hence, we have

ph converges to p stronly in L2(0, T ;L2(Ω)) (5.64)

∇ph converges to ∇p strongly in L2(0, T ;L2(Ω)) (5.65)

also we have for the jump term,

lim
h,k→0

∫ T

0

(h−1
e [ph], [ph])Γh = 0 (5.66)

Now, we can show in fact the pressure approximation converges to the weak solution.

Theorem 5.3.4. Let (uh, ph, ch) be a sequence of the numerical solutions computed using Al-

gorithm 3 with maximal time step k and mesh size h tend to zero, the pressure approximation

converges to weak solution in (4.4).

Proof. Let ϕ ∈ C∞0 (0, T ;C∞(Ω)) and let Ihϕh be the Lagrange approximation of the ϕ over
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each time interval. And according to (5.64), (5.65) and (5.66) we have

lim
h,k→0

∫ T

0

Bdi(ph, Ihϕ; ch) = lim
h,k→0

N∑
j=1

∫ tj

tj−1

Bdi(p
j
h, Ihϕ; cj−1

h )

= lim
h,k→0

N∑
j=1

∫ tj

tj−1

(∇pjh,K(cj−1
h )∇Ihϕ) + θ({K(cj−1

h )∇Ihϕ} · ne, [pjh])Γh

=

∫ T

0

(∇p,K(c)∇ϕ)

For the right-hand-side, we have

lim
h,k→0

∫ T

0

`d(Ihϕ; ch) = lim
h,k→0

N∑
j=1

∫ tj

tj−1

`d(Ihϕ; cj−1
h )

= lim
h,k→0

N∑
j=1

∫ tj

tj−1

(K(cj−1
h )ρ(cj−1

h )g,∇Ihϕ) + ((qIh − qPh )j, Ihϕ)

=

∫ T

0

(K(c)ρ(c)g,∇ϕ) +

∫ T

0

(qI − qP , ϕ)

Therefore, the numerical solution for the pressure indeed converges to the weak solution of

the miscible displacement problem.

After we establish the convergence of the pressure, we can also establish the convergence

of the velocity as follow. Notice, the numerical solution ph for the pressure is essentially

piecewise constant in time which does not indicate any additional regularity in time.

Theorem 5.3.5. Let (uh, ph, ch) be a sequence of the numerical solutions using algorithm

with maximal time step k and mesh size h tend to zero, then we have

uh converges to u strongly in L2(0, T ;L2(Ω))

where u = −K(c)∇p as in the weak formulation (4.5) and p is the solution of the weak

problem (4.4).
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Proof. By result in [75] and the construction of the flux, we have

N∑
j=1

∫ tj

tj−1

‖ujh − u‖2
L2(Ω) .

∫ T

0

‖ph − p‖2
L2(Ω)

Corollary 5.3.6. If u = −K(c)∇p is in H(Ω; div), then we have

uh converges to u in L2(0, T ;H(Ω; div))

Proof. From [75], we know

∇ · ujh = πh(q
I
h − qPh )j

Therefore,

∇ · ujh = πh(q
I
h − qPh )j converges to qI − qP = ∇ · u strongly in L2(0, T ;L2(Ω))

Remark 5.3.7. Using DG discretization for the Darcy’s flow relaxes the regularity of the

velocity to be only in L2(0, T ;L2(Ω)) such that its existence is known [80]. Whereas using

the MFE for the discretization requires the velocity to be in H(Ω; div), but there is no

theoretical result in terms of the existence of the solution in this case.

5.3.2 Convergence of concentration

The proof of the convergence of the concentration is very similar to the case with DG in

time.

Theorem 5.3.8. Suppose that the maximal time step k and h tend to zero with mesh pa-

rameter. Then upon passage to a subsequence, the concentrations {ch}h>0 computed using
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Algorithm 3 with SIPG over a regular family of meshes converge strongly in L2(0, T ;L2(Ω))

to c ∈ L2(0, T ;H1(Ω)), that satisfies the weak formulation (4.6).

Proof. Let wh be the Lagrange interpolation function approximating w ∈ C∞(0, T ;C∞(Ω)).

Using the same argument as in Theorem 5.2.2 we have

lim
h,k→0

∫ T

0

Bdi(ch, wh; uh) = lim
h,k→0

N∑
j=1

∫ tj

tj−1

Bdi(c
j
h, wh; u

j
h) =

∫ T

0

(D(u)∇c,∇w)

lim
h,k→0

∫ T

0

Bcq(ch, wh; uh) = lim
h,k→0

N∑
j=1

∫ tj

tj−1

Bcq(c
j
h, wh; u

j
h) =

1

2

∫ T

0

(
(u · ∇c, w)− (cu,∇w) + ((qI + qP )c, w)

)
=

∫ T

0

(
(u · ∇c, w) + (qIc, w)

)

Also, we have

lim
h→0

∫ T

0

(φ∂tch, wh) = lim
h→0

∫ T

0

(φ∂tch, w) = − lim
h→0

∫ T

0

(φch, ∂tw) + (φch(0), w)

= −
∫ T

0

(φc, ∂tw) + (φc(0), w)

So, we have

lim
h,k→0

∫ T

0

Bdi(ch, wh; uh) +Bcq(ch, wh; uh) =

∫ T

0

(
(D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)

)

And we have the right-hand-side,

lim
h,k→0

∫ T

0

(qIhĉh, wh) =

∫ T

0

(qI ĉ, w)

Therefore, the numerical solution for the concentration converges to the solution to the weak

problem.
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5.4 Convergence of MFE-DG with implicit Euler in

time

With the analysis we have presented for MFE-DG with DG in time and DG-DG with implicit

Euler decoupling, the convergence analysis for the MFE-DG with implicit Euler in time has

become very straightforward. In this section, we present the proof of the convergence.

5.4.1 Convergence of pressure and velocity

The convergence of the pressure and velocity for the MFE-DG with implicit Euler follows

the same idea as DG-DG with implicit Euler. First, we have to show the decoupling provides

sufficiently good approximation for the concentration.

Theorem 5.4.1. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 5 with maximal time step k and mesh size h tend to zero, and c be an accumulating

point for {ch}, then we have

lim
h,k→0

N∑
j=1

∫ tj

tj−1

‖cj−1
h − c‖2

L2(Ω)

Proof. The proof is exactly the same as Theorem 5.3.1 since the discretization of the con-

centration has not changed.

Next result is based on mixed finite element analysis.

Theorem 5.4.2. Let (uh, ph, ch) be a sequence of the numerical solutions computed using

Algorithm 5, with h, k go to zero, then we have

ph converges to p strong in Lp(0, T ;L2(Ω))

uh converges to u strong in Lp(0, T ;H(Ω; div))

where p,u are the solutions of the weak formulation (4.1),(4.2),(4.3).
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Proof. We use the same notation as in Theorem 5.2.1, where we have

Uh = {uh ∈ U | uh|(tj−1,tj) ∈ P0(tj−1, tj; Uh)}, and

Ph = {ph ∈ P | ph|(tj−1,tj) ∈ P0(tj−1, tj;Ph)}

From Strang’s Lemma we have,

‖(u− uh, p− ph)‖U×P ≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P

+ sup
(vh,qh)∈Uh×Ph

|b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch)|
‖(vh, qh)‖U×P

where,

b((u, p), (v, q); c) =

∫ T

0

(
(K−1(c)u,v)− (p, div(v)) + (q, div(u))

)
Since we have

b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch) =
N∑
j=1

∫ tj

tj−1

(K−1(c)−K−1(cj−1
h ))u,vh)

so

‖(u− uh, p− ph)‖U×P

≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P + ‖(K−1(c)−K−1(ch))u‖L2(0,T ;L2(Ω))

The assumptions on K guarantee that
∣∣K−1(cj−1

h )u
∣∣2 converges pointwise to |K−1(c)u|2, and

since K−1 takes values in a compact set it follows that
∣∣K−1(cj−1

h )u
∣∣2 ≤ M |u|2. Apply

the dominated convergence theorem shows K−1(cj−1
h )u → K−1(c)u in L2(0, T ;L2(Ω)), and

strong convergence of the velocity and pressure follows.
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5.4.2 Convergence of concentration

Theorem 5.4.3. Suppose that the maximal time step k and h tend to zero with mesh pa-

rameter. Then upon passage to a subsequence, the concentrations {ch}h computed using

Algorithm 5 with SIPG over a regular family of meshes converge strongly in L2(0, T ;L2(Ω))

to c ∈ L2(0, T ;H1(Ω)), that satisfies the weak formulation (4.3).

Proof. The proof is the same as in Theorem 5.2.2.

5.5 Convergence of MFE-DG and DG-DG with Crank-

Nicolson in time

The stability result presented in Theorem 4.4.2 for the Crank-Nicolson scheme does not

provide additional information for the derivative in time for the concentration. As a conse-

quence, we cannot obtain the result to show that cj−1
h is a sufficiently good piecewise constant

approximation for concentration over the interval (tj−1, tj). So, in order to establish the con-

vergence for Crank-Nicolson decoupling approach we have to assume additional regularity

in time for the pressure and velocity. However, the assumption of the additional regularity

is beyond the scope of this thesis. Therefore, no further discussion is given.

For the proof of convergence for the Algorithm 6 for MFE-DG with Crank-Nicolson

decoupling, we refer to [70].



Chapter 6

Linear solver

6.1 Overlapping domain decomposition

The parallelism aspect of the simulation is done using domain decomposition (DD). The

domain is partitioned into each process. Hence, the entire assembling process is done in

parallel. For the linear solver, the non-overlapping DD commonly used for the nodal basis in

FEM simply requires us to keep track of the nodes’ values at the interface for matrix-vector

multiplication illustrated in Figure 6.1.

(a) Original Domain (b) Decomposed Domain

Figure 6.1: Non-overlapping domain decomposition

In our case, since we also want to consider the modal bases, we use overlapping DD by

partitioning the domain into smaller subdomains with additional ghost cells. Then we use
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the additive Schwartz alternating process, by setting the boundary of the ghost cells to be

the previously computed values in corresponding cells from the neighboring subdomains and

iterate until convergence is achieved as being illustrated Figure 6.2.

(a) Original Domain (b) Decomposed Domain

Figure 6.2: Overlapping domain decomposition

For the Darcy’s flow using MFE, the saddle-point problem is still challenging to solve due

to the semi-definite system. From the implementation perspective, I use MUMPS [92, 93]

the parallel direct solver by linking DUNE [94, 95] with PETSc [96, 97, 98] environment. The

overall performance of for the MFE-DG method for 2D homogeneous permeability model up

to 32 processes is given in Figure 6.3.
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Figure 6.3: Overall preformance of the MFE-DG

We do observe speedup, but the scaling terms to be poor. The poor scaling is due to

the parallel direct solver for solving the saddle-point problem. However, solving the Darcy’s

system using DG can be efficiently implemented with AMG preconditioning as I discuss in

the next section.

6.2 Algebraic multigrid preconditioner for DG

Before introducing the preconditioner for the miscible displacement problem, I first present

a table of commonly used preconditioning techniques and their pros and cons.
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Type Pros Cons Example

Direct Solver LU decomposi-

tion

higher precision,

reusable

not scalable MUMPS, PARDISO,

SuperLU, UMFPACK

ILU approximated

LU

cheap setup not robust Hyper, PaStiX

AMG graph based

coarsening

robust, scalable expensive setup BoomerAMG, AGMG

Table 6.1: Preconditioner comparison

The Darcy’s system (3.16) resulting from the pressure equation is more difficult to solve

than the transport system (3.26) because of the highly varying permeability field. We solve

the transport system with domain decomposition preconditioned by ILU(0) with Restarted

GMRES.

For the Darcy’s system, ILU based preconditioning fails for the large scale simulation or

the case with highly heterogeneous permeability. Whereas, using direct solver we encounter

difficulty for obtaining scalability as being mentioned using MFE method. In this case, we

construct our preconditioner using algebraic multigrid (AMG) algorithm based on the works

[52, 53]. Without going into the details of the solver, we give an overview of our approach

for the reader familiar with AMG. We use overlapping domain decomposition for the parallel

implementation and subspace correction to reduce the first coarse level onto low order finite

element space. The resulting coarser levels are constructed and solved by going through a

V-cycle using non-smooth aggregation AMG. The coarsest level is solved using direct solver.

We choose ILU(1) to be the smoother for the original system (3.16). On the coarse level

SSOR is used as smoother. Our approach differs from [52] by the choice of nonconforming

piecewise constant for the low order finite element space instead of continuous piecewise

linears. This choice results in an M-matrix on the first coarsening level and a more robust
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solver for highly heterogeneous porous media. For the reduction onto the piecewise constant

space, the restrictive operator can be constructed as follows

ψEi =
∑
Ei∈Eh

∑
j

REi,jφEi,j

with

φEi,j ∈ Ph and ψEi =

 1 on Ei

0 elsewhere

Then the restrictive operator is

R0 =



RE1 0 · · · 0

0 RE2 · · · 0

...
...

. . .
...

0 0 · · · REn


The first coarse level can be constructed as

A0 = R0ADGRT
0

where ADG is the linear system from (3.16). BiCGStab or Restarted GMRES can be used

to solve the preconditioned system.

6.3 Performance evaluation

To demonstrate the efficiency and the robustness of the solver, we consider a problem driven

by flux boundary conditions at one side (velocity is 0.1m/s), pressure on the other side

(pD = 1000Pa) and no-flow boundary condition on the rest of the boundary, as illustrated
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in Figure 6.4. Viscosities are chosen as

µs = 5.8Pa · s and µo = 2.9Pa · s (6.1)

Following parameters are given for the diffusion-dispersion matrix and porosity,

dm = 1.8× 10−7m2/s , αl = 1, 8× 10−5m and αt = 1.8× 10−6m, φ = 0.2. (6.2)

p = pD

u · n = uN · n

z

y

x

1m

1m

1m

u · n = 0

Figure 6.4: Flux driven problem

The permeability field, as illustrated in Figure 6.5, is discontinuous; the lens inside the

domain has permeability equal to 10−4m2 while the rest of the domain has permeability

equal to 1m2. The gravitational effect is neglected in this case.
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Figure 6.5: Discontinuous permeability field

We have implemented the discretization in parallel architecture IBM iDataPlex with

Intel(R) Xeon(R) CPU X5660 2.80GHz processors. In Figure 6.6 we present the performance

of the entire simulation for one time step up to 512 processors with piecewise quadratic

approximation. The mesh contains 262,114 cells which yields 7,077,888 degrees of freedom

for the Darcy’s system and 2,621,140 degrees of freedom for the transport system.
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Figure 6.6: Overall performance

Figure 6.6 shows the computational time for each component of the solver. The most
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time-consuming process is the AMG solver for the Darcy’s system. This cost increases with

the heterogeneities and discontinuities of the permeability field. Our proposed AMG solver

performs well on the parallel cluster. Figure 6.7 suggests a linear trend of the speedup as we

increase the number of the processors, which indicates strong scalability of the AMG solver.
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AMG Solver Speedup

AMG solver speedup
Linear speedup

Num Procs

Figure 6.7: AMG solver speedup

The implementation was done within Distributed and Unified Numerics Environment

(DUNE) [94, 95] and DUNE-PDELab [99]. The flexible C++ template based development

environment allows for an efficient implementation of our method. For more detail infor-

mation on the software including compilation and simulation capability, we refer reader to

Appendix C.



Chapter 7

Numerical Experiments

7.1 Simulation using MFE-DG

In this section, I present the simulation results using MFE-DG method.

7.1.1 Analytical problem and convergence study

Consider the miscible displacement problem in Ω = (0, 1)2 with the following analytical

solutions:

p(x, y, t) =
(
2− e−x

(
1 + x+ x2

)
− e−y

(
1 + y + y2

))
e
πt
2 ,

c(x, y, t) =
1

2

(
sin(2πx)2 + cos(2πy)2

)
sin

(
πt

2

)
.

For the diffusion-dispersion tensor we use the semi-empirical relation:

D(u) = dmI + |u| (αlE(u) + αt(I− E(u))), (7.1)

where E(u) =
uuT

|u|2
and we set,

dm = 1.8× 10−7 , αl = 1, 8× 10−5 and αt = 1.8× 10−6. (7.2)
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The parameters dm, αl and αt are the molecular diffusion, longitudinal dispersivity and

transverse dispersivity respectively. The other parameters are

φ = 0.2 , K(c) =
9.44× 10−3

(c(2.9)−0.25 + (1− c)(5.8)−0.25)−4
, g = 0. (7.3)

Pressure and velocity

h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 1.50e-1 – 2.54e-4 –

2−2 5.26e-2 1.52 9.89e-5 1.36

2−3 1.89e-2 1.47 3.65e-5 1.44

2−4 7.44e-3 1.35 1.60e-5 1.19

2−5 3.36e-3 1.15 7.70e-6 1.06

Concentration

h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 1.78e-1 – 3.05e+0 –

2−2 2.13e-2 3.07 4.86e-1 2.65

2−3 1.57e-2 0.44 9.78e-1 -1.01

2−4 4.03e-3 1.96 5.00e-1 0.96

2−5 1.02e-3 1.99 2.52e-1 0.99

Table 7.1: Errors and rates for the method with RT0-NIPG1 and Lobatto III methods.

We observe that for a given mesh size h, the errors decrease as the order of the method

increases (see Table 7.1, 7.2 and 7.3). The notation RTk-NIPGp means using Raviart-Thomas

finite element basis of order k for the Darcy’s system and pth-order NIPG for the transport
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Pressure and velocity
h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 4.26e-2 – 1.04e-4 –
2−2 1.55e-2 1.45 1.38e-5 2.91
2−3 4.74e-3 1.71 6.19e-6 1.16
2−4 1.30e-3 1.86 1.55e-6 2.00
2−5 3.44e-4 1.93 3.86e-7 2.00

Concentration
h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 4.85e-2 – 1.04e+0 –
2−2 2.13e-2 1.19 1.11e+0 -0.09
2−3 2.10e-3 3.34 2.17e-1 2.35
2−4 2.68e-4 2.97 5.53e-2 1.97
2−5 3.38e-5 2.99 1.39e-2 2.00

Table 7.2: Errors and rates for the method RT1-NIPG2 and Lobatto III methods.

system. We also observe the expected optimal rates in space:

‖p(T )− pNh ‖L2(Ω) = O(hk+1)

‖u(T )− uNh ‖L2(Ω) = O(hk+1)

‖c(T )− cNh ‖L2(Ω) = O(hr+1)

‖∇(c(T )− cNh )‖L2(Eh) = O(hr)
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Pressure and velocity

h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 1.09e-2 – 2.45e-5 –

2−2 1.87e-3 2.55 8.59e-6 1.51

2−3 2.56e-4 2.87 8.47e-7 3.34

2−4 3.44e-5 2.89 1.04e-7 3.03

2−5 4.93e-6 2.80 1.30e-8 3.00

Concentration

h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 4.88e-2 – 1.82e+0 –

2−2 6.93e-4 6.14 4.48e-2 5.34

2−3 2.08e-4 1.73 3.15e-2 0.51

2−4 1.33e-5 3.97 4.02e-3 2.97

2−5 9.68e-7 3.78 5.07e-4 2.99

Table 7.3: Errors and rates for the method with RT2-NIPG3 and Lobatto III methods.

In the next two tables we show that the choice of the symmetrization parameter ε in

(3.24) does not have a visible effect on the errors and rates. We repeat the experiments

above with either the SIPG method (ε = −1) or the IIPG method (ε = 0). Errors and rates

are computed for the last two finer meshes (see Table 7.4 and Table 7.5).
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h ‖p− ph‖L2(Ω) rate ‖u− uh‖L2(Ω) rate

RT0-SIPG1

2−4 7.44e-3 – 1.60e-5 –

2−5 3.36e-3 1.15 7.70e-6 1.06

RT0-IIPG1

2−4 7.44e-3 – 1.60e-5 –

2−5 3.36e-3 1.15 7.70e-6 1.06

RT1-SIPG2

2−4 1.30e-3 – 1.55e-6 –

2−5 3.44e-4 1.93 3.86e-7 2.00

RT1-IIPG2

2−4 1.30e-3 – 1.55e-6 –

2−5 3.44e-4 1.93 3.86e-7 2.00

RT2-SIPG3

2−4 3.44e-5 – 1.04e-7 –

2−5 4.93e-6 2.80 1.30e-8 3.00

RT2-IIPG3

2−4 3.44e-5 – 1.04e-7 –

2−5 4.93e-6 2.80 1.30e-8 3.00

Table 7.4: Pressure and velocity: errors and rates for RTk-SIPGr and RTk-IIPGr methods
and Lobatto III methods.
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h ‖c− ch‖L2(Ω) rate ‖∇c−∇ch‖L2(Eh) rate

RT0-SIPG1

2−4 4.03e-3 – 5.00e-1 –

2−5 1.02e-3 1.99 2.52e-1 0.99

RT0-IIPG1

2−4 4.03e-3 – 5.00e-1 –

2−5 1.02e-3 1.99 2.52e-1 0.99

RT1-SIPG2

2−4 2.68e-4 – 5.53e-2 –

2−5 3.38e-5 2.99 1.39e-2 2.00

RT1-IIPG2

2−4 2.68e-4 – 5.53e-2 –

2−5 3.38e-5 2.99 1.39e-2 2.00

RT2-SIPG3

2−4 1.33e-5 – 4.02e-3 –

2−5 9.68e-7 3.78 5.07e-4 2.99

RT2-IIPG3

2−4 1.33e-5 – 4.02e-3 –

2−5 9.68e-7 3.78 5.07e-4 2.99

Table 7.5: Concentration: errors and rates for RTk-SIPGr and RTk-IIPGr methods and
Lobatto III methods.

We also varies the order of approximation in time from 1st to 3rd-order time stepping as

we illustrated in Table 7.6, 7.7 and 7.8 with RT2-NIPG3 and mesh size h = 0.015625.
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Pressure and velocity

∆t ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 3.66e-2 – 3.32e-5 –

2−2 2.08e-2 0.90 1.90e-5 0.90

2−3 1.11e-2 0.95 1.02e-5 0.95

2−4 5.75e-3 0.97 5.30e-6 0.97

2−5 2.93e-3 0.99 2.70e-6 0.99

Concentration

∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 9.32e-2 – 5.24e-1 –

2−2 5.37e-2 0.89 3.02e-1 0.89

2−3 2.90e-2 0.94 1.63e-1 0.94

2−4 1.51e-2 0.97 8.48e-2 0.97

2−5 7.70e-3 0.98 4.33e-2 0.98

Table 7.6: Errors and rates with implicit Euler time-stepping method and RT2-NIPG3.
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Pressure and velocity

∆t ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 6.44e-2 – 6.21e-5 –

2−2 1.61e-2 2.05 1.50e-5 2.06

2−3 3.87e-3 2.01 3.59e-6 2.01

2−4 9.60e-4 2.01 8.91e-7 2.00

2−5 2.38e-4 2.05 2.22e-7 1.99

Concentration

∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 1.83e-1 – 1.03e+0 –

2−2 4.31e-2 2.07 2.42e-1 2.06

2−3 1.03e-2 2.01 5.78e-2 2.01

2−4 2.54e-3 2.00 1.43e-2 2.00

2−5 6.35e-4 2.00 3.57e-3 2.00

Table 7.7: Errors and rates with Gauss I time-stepping method and RT2-NIPG3.
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Pressure and velocity

∆t ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Ω) Cvg. rate

2−1 1.12e-1 – 9.73e-5 –

2−2 1.33e-2 3.30 1.23e-5 3.30

2−3 1.35e-3 3.15 1.25e-6 3.16

2−4 1.52e-4 2.92 1.39e-7 3.00

2−5 2.00e-5 2.13 1.75e-8 1.55

Concentration

∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 2.65e-1 – 1.49e+0 –

2−2 3.48e-2 3.29 1.95e-1 3.29

2−3 3.56e-3 3.16 2.00e-2 3.15

2−4 3.98e-4 3.07 2.24e-3 3.02

2−5 4.72e-5 2.98 2.76e-4 2.45

Table 7.8: Errors and rates with Radau II time-stepping method and RT2-NIPG3.

We observe higher order for convergence rate in time as well using the implicit Runge-

Kutta time updating formulated using DG in time.

7.1.2 Grid distortion

In this part, we study the MFE-DG method in terms of the its capability to address the grid

distortion under hp-refinement on unstructured grid. Consider the quarter 5-spot problem,

we observe in Figure 7.1.
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(a) undistorted grid (b) RT0-DG3 (c) RT1-DG4

Figure 7.1: Grid distortion under p-refinement

Despite the fact that we using unstructured grid, we still observe similar concentration

front profile. Also, as we increase the order of the approximation, the solution becomes

more consistent with the case with undistorted grid. Next result, we use h-refinement with

RT1-DG2 approximation.
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(a) undistorted grid (b) refinement level 0 (c) refinement level 1

(d) refinement level 2 (e) refinement level 3 (f) refinement level 4

Figure 7.2: Convergence under h-refinement

As the Figure 7.2 demonstrated, the convergence of numerical solution under h-refinement

on unstructured quadrilateral grid.

7.1.3 Permeability anisotropy

Another important aspect when incorporating realistic geological model for the simulation

in porous media is the anisotropy of the permeability.

To test the numerical method’s ability to produce correct solution for anisotropic perme-

ability field, we consider the same model problem as in Figure 7.15 with the same input data

except for permeability. Let R(θ) denote the rotation matrix of angle θ. The permeability
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is defined as

k = R(−θ)

(
100 0

0 1

)
R(θ)

Figure 7.3 shows the spatial distribution of the permeability field; the angle θ is equal to

45◦ in the red regions and alternates between 90◦ and 0◦ in the green and blue regions. This

experiment is based on a numerical experiment done in [100].

Figure 7.3: Anisotropic permeability setup

The simulation is illustrated in Figure 7.4,

(a) RT0-DG3 (b) RT1-DG4 (c) RT2-DG5

Figure 7.4: Anisotropic permeability simulation

where we are able to capture the zigzag flow pattern in based the anisotropic permeability

field.



131

7.1.4 3D simulation

For the 3D simulation, we consider the permeability field sampled from the SPE10 model.

In this case, we sample 32× 32× 32 from SPE10 model with the permeability in z-direction

the same as the permeability in xy-direction demonstrated in Figure 7.5.

Figure 7.5: 3D permeability with unit mD

Notice, we sample most of the permeability from the Taber formation from the top layers

of the SPE10 model. The simulation snapshots are illustrated as follows,
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Figure 7.6: 3D model on 32× 32× 32 grid

The simulation is done using RT0-DG1. Due to the improper scaling of the unit the

actual time for the physical simulation is given. For the SPE10 problem, we will have

further discussion in the chapter on large scale simulation.

7.2 Simulation using DG-DG

In this section, I present the simulation results using DG-DG method.
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7.2.1 Convergence study

First, we conduct study on the convergence of the discretization by testing the method with

the following analytic solutions over the unit square

p(x, y, t) = (2 + (−e−x(1 + x+ x2)− e−y(1 + y + y2)))e
πt
2

c(x, y, t) = 0.5(sin(2πx)2 + cos(2πy)2) sin (0.5πt) .

The permeability is constant, k = 9.44× 10−3m2, gravity is neglected and the viscosities are

given by (7.1). We plot the L2 norm of the errors in pressure, velocity and concentration,

and the broken H1
0 norm of the errors in concentation. We vary the order of the spatial

discretization from one to four. Crank-Nicolson updating is used with T = 0.5s and a

uniform time step ∆t = 0.001s.
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Figure 7.7: Error in spatial discretization for first, second, third and fourth order methods
in space. A second order in time method is used.

We observe, as expected, a higher convergence rate and a greater of level accuracy as the

order of the method increases. Next, we test the convergence in time by fixing spatial order

(four) and grid (size h = 1/128). Figure 7.8 demonstrates optimal rates in time for both

implicit Euler and Crank-Nicolson decoupled algorithms.
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Figure 7.8: Error in time updating for first and second order methods in time. A fourth
order method in space is used.

We remark that for smooth solutions the Crank-Nicolson scheme yields second order

approximation in time. However, we have observed that for non-smooth realistic solutions,

important overshoot and undershoot phenomena (about 10%) occur in the neighborhood of

a sharp gradient. Slope limiters are needed to minimize the overshoot/undershoot amounts

even if they remain bounded throughout the simulation. For the remainder of the thesis, we

choose to use the implicit Euler scheme as overshoot/undershoot phenomena are negligible.

We also investigate the computational time required in order to achieve a given accuracy.

We vary the order of the method as well as the mesh size. Results are shown in Figure 7.9.
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Figure 7.9: Computation time vs. accuracy

From the results, we see that choosing a higher order method on a coarse mesh can not

only yield higher level of accuracy but can also be faster than a lower order method on a

finer mesh. The comparison experiment is run in serial on Intel(R) Xeon(R) CPU X5660

2.80GHz.

7.2.2 Effect of flux reconstruction

In this part, we investigate the impact of flux reconstruction, more specifically how it im-

proves the quality of the solution. First, we consider a simple 2D case with flux driven flow

for a discontinuous permeability (10−6m2 in the lens and 1m2 throughout the rest of the

domain, see Figure 7.10). The flux boundary condition is uN · n = −0.1m/s on the left

boundary of the domain and the pressure on the right boundary is pD = 1000Pa. No flow

boundary condition is imposed on the rest of the domain. The viscosity is the same as in

(7.1). The time step is chosen as ∆t = 0.1s. The second order method in space is employed.
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u · n = 0

1m

1m

0.4m 0.4m

0.2m

0.2m

u · n = uN · n

p = pD

u · n = 0

Figure 7.10: 2D flux driven problem with lens

For the case without the flux reconstruction, the velocity on the face is given by

uDGh = {uh}ω

In Figure 7.11, we observe a significant contrast for the concentration profile at T = 8s when

flux reconstruction is activated or not.

(a) no flux reconstruction (b) with flux reconstruction

Figure 7.11: Concentration profile with DG2 on 40× 40 Cartesian grid

We can observe in Figure 7.11, that the flux reconstruction reduces the non-physical

oscillations around the region where the permeability changes. The effect is more obvious in

the case of highly varying permeability. In the next numerical experiment we use the perme-
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ability field from layer 39 of the SPE10 model [101]. The highly discontinuous permeability

is shown in Figure 7.12.

Figure 7.12: SPE10 permeability: layer 39 (log scale with unit m2)

The flow is driven by injection and production wells:
∫

Ω
qI =

∫
Ω
qP = 0.01m2/s. We

inject from the lower left corner and produce from the upper right corner of domain. No flow

boundary condition is imposed. The rest of the parameters is the same as in the previous

experiment. Figure 7.13 demonstrates a clear improvement of the numerical concentration if

flux reconstruction is activated. The case without flux reconstruction produces poor results

with severe overshoot and undershoot.
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(a) no reconstruction (b) with reconstruction

Figure 7.13: Concentration profile after 13 days, obtained with second order method

We conclude this section by noticing that, even for homogeneous porous media, solutions

obtained with flux reconstruction are more accurate. We repeat the simple flux driven

problem for a permeability equal to 1m2. Figure 7.14 compares the x-component velocity

obtained with or without flux reconstruction at time t = 0.8s. In this homogeneous case,

the exact velocity is (0.1, 0). We observe a non-negligible error in the velocity without flux

reconstruction. The error is larger at the location of the concentration front, and arises from

the coupling between the Darcy’s and transport systems.

(a) no flux reconstruction (b) with flux reconstruction

Figure 7.14: Velocity in x-direction with DG2 on 80× 80 Cartesian grid
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7.2.3 Grid orientation effect

In subsurface modeling, the complex geological formations can be too complicated to be

appropriately approximated by structured grids. On the other hand, unstructured grids,

although they can more vividly portrait the geological formations, are likely to yield grid

distortions. In the following numerical experiments, we evaluate the quality of the DG

discretization when using distorted unstructured grids.

The grid orientation effect for reservoir simulation was first observed by Garrett [102] and

was subsequently investigated by Todd, O’dell and Hirasaki [103]. We consider the quarter

five-spot problem illustrated in Figure 7.15.

injection

1m

1m

production

Figure 7.15: Quarter five-spot problem set-up

We consider injection and production rates given by
∫

Ω
qI =

∫
Ω
qP = 0.18m2/s and no

flow boundary condition. The permeability is homogeneous (1m2) and viscosity is set to be

the same as (7.1). Our first test case is to consider grid distortion of 30◦ and −30◦. The

meshes that we use to test our method are shown in Figure 7.16. The experiment is based

a numerical experiment conducted in [100].
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(a) no distortion (b) 30◦ distortion (c) −30◦ distortion

Figure 7.16: Meshes for grid distortions study

We compare the solutions obtained with our DG method of first order (DG1) to the

solutions obtained with the cell-centered finite volume (CCFV) method. We also compute

a reference CCFV solution on a 2048× 2048 undistorted grid. We first compare the concen-

tration profiles at time t = 0.5s on the grid with 30◦ distortion.

(a) CCFV reference (b) CCFV (c) DG1

Figure 7.17: Concentration profiles on grid with 30◦ distortion

We observe in Figure 7.17 that the profile produced by CCFV is significantly impacted

by the distortion of the grid, whereas the DG solution is not sensitive to the grid distortion

and can represent the reference solution well. Similar conclusions can be made from the

comparisons on grid with −30◦ distortion, shown in Figure 7.18.
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(a) CCFV reference (b) CCFV (c) DG1

Figure 7.18: Concentration profiles on grid with −30◦ distortion

We now test the quality of the DG solutions obtained on quadrilateral and triangular

meshes given in Figure 7.19.

(a) quadrilateral mesh (b) triangular mesh

Figure 7.19: Unstructured meshes

The concentration profiles are shown on Figure 7.20 and 7.21 respectively. The CCFV

solution is obtained on the coarse mesh that has been uniformly refined three times (h3)

whereas the DG solution is obtained on the coarse mesh uniformly refined once (h1).
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(a) CCFV reference (b) CCFV (h3) (c) DG1 (h1)

Figure 7.20: Concentration profiles on unstructured quadrilateral meshes

Both figures show that after three levels of refinement, the CCFV solution fails to con-

vergence to the reference solution whereas the DG solution converges on a mesh with one

level of refinement.

(a) CCFV reference (b) CCFV (h3) (c) DG1 (h1)

Figure 7.21: Concentration profiles on unstructured triangular meshes

Figure 7.22 and Figure 7.23 show convergence of the DG solutions using h-refinement.
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(a) refinement level 1 (b) refinement level 2 (c) refinement level 3

Figure 7.22: Convergence of DG1 solutions on successively refined quadrilateral meshes

(a) refinement level 1 (b) refinement level 2 (c) refinement level 3

Figure 7.23: Convergence of DG1 solutions on successively refined triangular meshes

Figure 7.24 and Figure 7.25 show convergence of the DG solutions using p-refinement.

Solutions are computed on coarse meshes shown in Figure 7.19.

(a) DG k = r = 1 (b) DG k = r = 2

Figure 7.24: p-Convergence of DG solutions on coarse quadrilateral mesh
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(a) DG k = r = 1 (b) DG k = r = 2

Figure 7.25: p-Convergence of DG solutions on coarse triangular mesh

Unstructured grid can better capture the complex geological formation as we will demon-

strate in the next experiment that models a pinch-out geological formation. In Figure 7.26,

the pinch-out is the white triangular region with high permeability of 1m2, and the shaded

region has low permeability 10−10m2.

0.8m

u · n = uN · n

u · n = 0

p = pD

1m

1m

u · n = 0

0.5m

0.2m

Figure 7.26: Pinch-out problem set-up and unstructured grid

Flow is driven by boundary conditions, identical to the ones in Figure 7.10. In order for

CCFV to provide accurate solutions, we have to use k-orthogonal grid such as Cartesian grid.

But, for this problem the k-orthogonal grid simply fails to capture the realistic geometry

around the pinch-out location. The flexibility of DG methods is an advantage for this
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particular set-up and enables us to both attain accurate geometry and solution accuracy.

The unstructured grid that we use to realistically represent the geometry is illustrated in

Figure 7.27.

Figure 7.27: Unstructured mesh for pinch-out example

The concentration profiles obtained by either CCFV or DG at time t = 0.3s are shown

in Figure 7.28. The CCFV solutions are obtained on a mesh with five levels of bisection

refinement of the coarse mesh. The second order DG solutions are obtained on a mesh with

three levels of refinement. This yields for the Darcy’s system 284, 672 degrees of freedom for

CCFV and 160, 128 degrees of freedom for DG. The CCFV solution suffers from gridding

effects and exhibits a large amount of diffusion in the pinch-out region.

(a) CCFV (h5) (b) DG k = r = 2 (h3)

Figure 7.28: Concentration profiles
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Throughout the test cases that we have conducted, we observe that the method we

propose has low sensitivity with respect to grid distortion and can achieve convergence using

h and p-refinement on unstructured grids.

7.2.4 Anisotropy permeability

Another important aspect when incorporating realistic geological model for the simulation

in porous media is the anisotropy of the permeability.

To test the numerical method’s ability to produce correct solution for anisotropic perme-

ability field, we consider the same model problem as in Figure 7.15 with the same input data

except for permeability. Let R(θ) denote the rotation matrix of angle θ. The permeability

is defined as

k = R(−θ)

(
100 0

0 1

)
R(θ)

Figure 7.29 shows the spatial distribution of the permeability field; the angle θ is equal to

45◦ in the red regions and alternates between 90◦ and 0◦ in the green and blue regions. This

experiment is based on a numerical experiment done in [100].

Figure 7.29: Anisotropic permeability set-up

Figure 7.30 shows the concentration profiles obtained on a Cartesian grid of size 256×256

at time 0.25s. We compare the CCFV solution with the DG solutions of order one to five. We

first observe that the CCFV solution fails to capture the successive changes in the principal
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directions of the permeability matrix. We also note that as the polynomial degree increases

the DG solution has less numerical diffusion. With the first order DG method, the channel

flow is captured but with some amount of numerical diffusion. In contrast differences between

the profiles obtained with DG of order two to five, are negligible or very small.

(a) CCFV (b) DG k = r = 1 (c) DG k = r = 2

(d) DG k = r = 3 (e) DG k = r = 4 (f) DG k = r = 5

Figure 7.30: Comparison between CCFV and DG solutions for anisotropic medium

Since CCFV is a low order method, we show the solution profile obtained on a finer mesh

(1024× 1024) in Figure 7.31. Even on a finer mesh, the CCFV method performs poorly for

such anisotropic medium. There is no tendency to converge to a realistic solution.
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Figure 7.31: CCFV solution on finer mesh of size 1024× 1024



Chapter 8

Viscous Fingering Simulation

In this chapter, I want to focus the attention on a very interesting phenomenon called

viscous fingering effect in miscible displacement process in porous media. In particular,

after going through the physical concept of this phenomenon I present the simulation results

using DG in comparison with commonly used CCFV method. I explore the hp-convergence

of the viscous fingering in 2D and grid orientation effect in simulating viscous fingering in

radial flow. Afterwards, I present some results for the study of the viscous fingering in 3D

simulation. In the last section, I present the computational cost to justify the use of the

high order DG.

8.1 Concept of the viscous fingering

In porous media flow, under the condition when the mobility ratio is greater than one i.e.

M =
µo
µs

> 1,

the flow becomes unstable. A what looks like irregular finger shapes started to emerge during

the displacement process at the location where the injected solvent and residing fluid are in

contact. We call this type of phenomenon viscous fingering. Such phenomenon, interestingly,
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occurs even in homogeneous media. In our case, we are studying the viscous fingering in

miscible flow.

The physics of viscous fingering can be understood in following simplified way. Consider

the rectlinear miscible displacement, demonstrated in Figure 8.1.

L

x+ ε

x

Figure 8.1: Viscous fingering concept

where we have the Darcy’s law,

dx

dt
= − k∆p

φµs(ML+ (1−M)x)

when under certain perturbation ε,

d(x+ ε)

dt
= − k∆p

φµs(ML+ (1−M)(x+ ε))

It follows that

dε

dt
=

k∆p(1−M)ε

φµs(ML+ (1−M)x)2

Therefore,

ε(t) = eSt

where

S =
k∆p(1−M)

φµs(ML+ (1−M)x)2

with ∆p being the pressure difference and µs(ML+ (1−M)x) being the simplified viscous

of the fluid mixture.
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If we have M < 1, then the perturbation decays exponentially. Otherwise, when M > 1,

i.e. when using less viscous fluid to displace more viscous residing fluid, the perturbation is

amplified exponentially. In homogeneous porous media, even with microscopic variation of

the permeability, it is enough perturbation to trigger the viscous fingering in the concentra-

tion profile under the case with mobility ratio greater than one.

The diffusion-dispersion also impacts the pattern of the viscous fingering profoundly. In

particular, when the transverse dispersion is large, the fingering can be stabilized or reduced

down to a few large fingers.

From the simulation point of view, additional challenges occurs when modeling the un-

stable flow. One challenge simply has to do with obtaining a reliable viscous finger pattern.

Finite volume method is able simulation the unstable flow, but with different grid orien-

tations namely the grid parallel to the flow or diagonal to the flow direction the viscous

fingering pattern can be different with large mobility ratio. Another challenge is to ensure

the trustworthiness of the simulation results, since with unstable flow a small numerical

floating point error can be amplified and eventually pollute the entire solution. Also, with

large mobility ratio the unstable system becomes harder to solve which can significantly limit

the range of problem to only small mobility ratio whereas in reality the mobility ratio can

go up 1000 or more. From efficiency point of view, we want to know if there is a gain using

higher order method.

To be able to accurately simulate the finger growth could essentially improve the pre-

diction of the breakthrough time and avoiding undesirable fingering pattern in the flow for

both reservoir simulation and pollutant removal process.

8.2 2D viscous fingering simulation

The viscous fingering effect in 2D has been frequently studied both from engineering aspect

and numerical aspect. Recently, a fully-implicit DG discretization has been investigated in
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[44, 45]. The finding from their results is that CCFV is not adequate for the simulation of

viscous finger effect as I demonstrate next. First, let us consider the rectlinear flow.

8.2.1 Rectlinear flow & hp-refinement

The model for the rectlinear flow can be regarded as the 2D cross-section of the 3D core

flooding simulation in figure 8.2.

u · n = uN · n

u · n = 0

u · n = 0

52 cm

5.1 cm p = pD

Figure 8.2: Core flooding problem setup

For the problem, we set the injection rate to be 1.53 mL/min and permeability to

3.720700841 × 10−13 m2. The mobility ratio is given to be 30.3 and the parameters for

the diffusion dispersion tensor are

dm = 1.8× 10−7m2/s , αl = 1, 8× 10−5m and αt = 1.8× 10−6m, φ = 0.2. (8.1)

First, we examine the convergence of the fingering pattern under h-refinement.

Figure 8.3: CCFV 20480×2048 dofs 41,943,040

Figure 8.4: DG1 1280×128 dofs 655,360
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Figure 8.5: DG1 2560×256 dofs 2,621,440

Figure 8.6: DG1 5120×512 dofs 10,485,760

Figure 8.7: DG1 10240×1024 dofs 41,943,040

The snapshot of the simulation is taken at time 0.5s, 1.0s, 1.5s, 2.0s. We observe

the convergence of the fingering pattern as we refine the grid. Indeed, we have a consistent

fingering pattern with grid sizes 5120×512 and 10240×1024. Whereas, the solution provided

bv CCFV does not converge to the same pattern, despite the fact that the linear system has

the same degree of freedom as the finest 1st-order DG approximation.

Now, let us examine the same viscous fingering simulation under p-refinement.

Figure 8.8: DG1 10240×1024 dofs 41,943,040

Figure 8.9: DG1 1280×128 dofs 655,360

Figure 8.10: DG2 1280×128 dofs 1,474,560

Figure 8.11: DG3 1280×128 dofs 2,621,440

Figure 8.12: DG4 1280×128 dofs 4,096,000
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We observe the convergence under p-refinement on coarser grid with resulted linear system

in 4th-order DG approximately 10 times smaller than 1st-order DG approximation which in

fact takes less time solve as we demonstrate in the last section.

8.2.2 Radial flow & grid orientation effect

In this part, we consider the radial flow and the impact of grid orientation effect. For the

simulation of the viscous fingering, due to instability of the flow. Even a small perturbation

of the simulation can lead to very different fluid flow profile. We have full control of the

perturbation that initially triggers the viscous fingerings, but the perturbation can also

caused by numerical error. One of the most prevalent numerical errors come from the

geometry of the grid. Many times simply by changing the direction of the grid can alter

the shape of the fingers profoundly as we will see in our numerical experiments. The goal

of using DG discretization is to reduce the grid orientation effect, thereby producing high

fidelity simulation results.

We again consider the quarter of 5-spot problem, with permeability and porosity set to

be

k = 3.720700841× 10−13m2, φ = 0.2

We still consider using the quarter-mixing rule with mobility ratio,

M = 303

The diffusion-dispersion parameter is given to be

dm = 1.8× 10−5m2/s, αl = 1.8× 10−5m, αt = 1.8× 10−5m
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The injection and production wells are set to be

qI =
7.2× 10−1

2πσ2
exp{−(x− xwell)2 + (y − ywell)2

2σ2
}, σ = 0.2

where qP = −qI with the well location set to be the production well location. We perturb

the initial permeability as follow,

k̂ = k(1 + 10−2cos(50πx)cos(50πy)).

The Peclet number is estimated to be around Pe = 104 and the time step size is set to be

∆t = 10−3s. We present the simulation results with parallel grid and diagonal grid. The

parallel grid is Cartesian grid with cells oriented parallel to the flow direction, whereas the

diagonal grid is Cartesian grid with cells oriented diagonal to the flow direction. First, let us

evaluate the solution provided by CCFV method for the simulation of the viscous fingerings.

(a) para. t = 0.05s (b) diag. t = 0.05s (c) para. t = 0.1s (d) diag. t = 0.1s

(e) para. t = 0.15s (f) diag. t = 0.15s (g) para. t = 0.2s (h) diag. t = 0.2s

Figure 8.13: Viscous fingering with M = 303 CCFV h = 9.77× 10−4

We observe that the solutions provided by CCFV method suffer severely from the grid

orientation effect. In particular, the case with diagonal grid where the solution looks dras-
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tically different from time 0.1s, 0.15s and 0.2s as illustrated in Figure 8.13. Next, we use

1st-order DG approximation in Figure 8.14.

(a) para. t = 0.05s (b) diag. t = 0.05s (c) para. t = 0.1s (d) diag. t = 0.1s

(e) para. t = 0.15s (f) diag. t = 0.15s (g) para. t = 0.2s (h) diag. t = 0.2s

Figure 8.14: Viscous fingering with M = 303 DG1 h = 9.77× 10−4

For the 1st-order DG approximation, we still see the grid orientation effect on the sim-

ulation of the viscous fingers. As time evolve, in particular at time t = 0.2s where the

simulations look very different between parallel and diagonal grid, but considerably bet-

ter in the resemblance of the concentration profiles in earlier time comparing with CCFV

method.
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(a) para. t = 0.05s (b) diag. t = 0.05s (c) para. t = 0.1s (d) diag. t = 0.1s

(e) para. t = 0.15s (f) diag. t = 0.15s (g) para. t = 0.2s (h) diag. t = 0.2s

Figure 8.15: Viscous fingering with M = 303 DG2 h = 2.76× 10−3

As we increase the order of approximation to 2nd-order DG and run the simulation on

coarser grid in Figure 8.15, we now observe a similar pattern for the viscous fingering at all

time for our simulations which suggest the necessity of using higher order method to simulate

the viscous fingering to obtain reliable simulation result.

8.3 3D viscous fingering simulation

We also experiment on simulating 3D miscible viscous fingering. We consider the same core

flooding model. We generate the unstructured grid using GMSH [104] for the cylindrical core

illustrated in Figure 8.16.
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Figure 8.16: Mesh for 3D cylindrical core

We presentation the simulation result with 3,932,160 cells using DG1 with mobility

M = 30.3

(a) 0.5 s (b) 1.0 s (c) 1.5 s

(d) 2.0 s (e) 2.5 s (f) 3.0 s

Figure 8.17: 3D viscous finger simulation over 3,932,160 cells DG1
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Figure 8.17 demonstrates the capability of DG-DG numerical method for simulating 3D

viscous fingering. In Figure 8.17, we observe the formation of the viscous fingers, and the

spreading, the merging, the splitting and eventually the breakthrough of the fingers.

8.4 Computational cost

In this section, I demonstrate the advantage of the high order approximation for the viscous

fingering simulation. I evaluate the performance the 2D viscous fingering simulation in

section 8.2.1 running on parallel over 48 processes. The performance is demonstrated in

Figure 8.18 with time evaluated in second.

Viscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processes
x y size order

Viscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processesViscous fingering simulation per time step on 48 processes
Assemble 

Darcy’s system
AMG solver 

Darcy’s system
Assemble 

transport system
DD solver 

transport system

1280 128 163840 1

2560 256 655360 1

5120 512 2621440 1

10240 1024 10485760 1

1280 128 163840 2

1280 128 163840 3

1280 128 163840 4

0.091726 0.49026 0.096872 0.036834

0.3687 1.6312 0.381 0.45408

1.50438 9.9872 1.54426 7.3868

6.381 116.77 6.3872 69.054

0.193884 1.0233 0.24528 0.119732

0.43196 2.613 0.65162 0.46058

0.88736 6.784 1.73176 2.6724

Figure 8.18: Performance of viscous fingering simulations

From Figure 8.18, we observe higher order method running on coarser grid is more efficient

in terms of the computational cost per time step for assembling the linear systems and linear

solvers.

Therefore, we conclude the chapter by claiming that the higher order DG is adequate for

providing accurate and efficient numerical simulation for the viscous fingering simulation.



Chapter 9

Large Scale Simulations

9.1 Three-dimensional heterogeneous medium

The experiments I have done so far have demonstrated the robustness and accuracy of the

DG discretization while facing various numerical challenges. Next, I would like to test our

discretization on some realistic physical data. I select the permeability field from the SPE10

model [101], which is well-known for its large heterogeneities varying from 10−10 to 10−18m2.

In addition, the bottom 50 layers of the permeability field represent the Upper Ness structure

which include underground channels and pose additional challenges.

We consider the five-spot problem by placing injection and production wells as in Figure

9.1.

Figure 9.1: SPE10 permeability in m2 and location of wells

We set the injection rate to be
∫

Ω
qI = 1.7 m3/s and production rate at each corner to



161

be
∫

Ω
qP = 0.425 m3/s. We keep the permeability in the z-direction the same as in the

xy-direction. Gravitational force g = (0, 0,−9.8)Tm/s2 is incorporated in the simulation.

No flow boundary condition is imposed. Viscosities are

µs = 10−3Pa · s and µo = 9× 10−4Pa · s

Densities are

ρs = ρo = 1000 kg/m3

We set a uniform time step to be 1 day and use piecewise quadratic approximation. The

mesh consists of 1, 220, 000 elements. Snapshots of the concentration profiles over several

days are shown in Figure 9.2. Concentrations are plotted above a threshold of 0.5.

(a) 1 day (b) 5 days (c) 8 days

(d) 10 days (e) 15 days (f) 20 days

Figure 9.2: Concentration snapshots obtained with DG2

We observe in Figure 9.2 that the simulation results can realistically represent the chan-

nels in the bottom layer of the Upper Ness structure. To validate our simulation result, we
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plot in Figure 9.3 the “water cut” profiles for the injected fluid at the production wells, with

solutions obtained by 1st and 2nd order DG.
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Figure 9.3: Water cut plot at the production wells

We observe in Figure 9.3 that the water cuts overlap. The plots give us confidence that

the DG discretization can produce reliable results for large scale simulations. Also, the S-

shape of the water cut curve is also realistic for the miscible displacement flooding which is

different from multi-phase flow.
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9.2 Performance evaluation

In this section, I evaluate the performance of solver when solving the SPE10 problem. The

mesh consists of 1, 220, 000 elements. The Darcy’s system has 30, 294, 000 degrees of freedom

with 2nd-order Lagrange basis and the transport system 10, 098, 000 degrees of freedom with

2nd-order Orthogonal basis. The performance evaluation is done by taking 20 time steps

with each time step to be 1 day for the same problem in previous section. In this case,

we use Restarted GMRES for both Darcy’s and transport system. The Darcy’s system is

preconditioned with aggregated AMG. The subspace correction is done by projecting the DG

space to piecewise constant functions. ILU0 is used as the smoother for the finest system

and Jacobi preconditioner is used as the smoother for the coarser system on each level. For

the transport system, ILU0 is used as the preconditioner.

We observe in figure 9.4 the AMG solver is the most time consuming part in the overall

performance. We then plot the AMG efficiency of the AMG solver. Interestingly, we ob-

serve a quite significant performance boost after running up to 32 processes which is quite

unexpected consider the additional communications it requires. We then notice that in fact

the number of the Krylov subspace iteration reduced significantly and eventually is reduced

to 17 iterations per linear solve as we increase of the number of processes. This reduction

is caused by the reduction of heterogeneity of the permeability in each subproblem. There-

fore, for problem with highly varying heterogeneity like SPE10 problem, we observe domain

decomposition technique not only can be used as a parallelism strategy, but also can be

consider as a preconditioner to exploit the geological structure to achieve speedup.
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Figure 9.4: SPE10 model performance evaluation

In order for us to better evaluate the performance of AMG solver, we plot the speedup

of AMG solver in each Krylov subspace iteration. And again we observe the linear trend in

terms of the speedup. The efficiency is estimated to be 79% up to 512 processes.



Chapter 10

Conclusions

In this thesis, I introduced high order methods using a MFE-DG approach with DG in

time, and a semi-sequential DG-DG approach, with 1st and 2nd-order time-stepping, and

flux reconstruction for solving miscible displacement equations. I have presented theoretical

analyses for the numerical discretizations introduced. Both stability and convergence has

been proven with minimal regularity assumption. The results grant a theoretical basis for the

reliability of the associated numerical approaches for solving miscible displacement problems.

I have implemented numerical algorithms for solving miscible displacement problem based

on the discretizations proposed. A series of numerical experiments demonstrate the robust-

ness and accuracy of the numerical methods.

Both numerical algorithms were implemented in parallel. In particular, the semi-sequential

DG-DG algorithm was solved using an overlapping domain decomposition with an AMG pre-

conditioner and achieved strong scalability up to 512 processes.

I specifically examined the viscous fingering simulation using DG discretization. In con-

trast with the cell-center finite volume method, the high order DG method provided more

reliable solutions and was considered to be more adequate for simulating the unstable flow

phenomenon.

Apart from the specific challenges in miscible displacement problems, the study of single-
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phase flow is the foundation for understanding multi-phase, and multi-component flow prob-

lems in porous media. The results and techniques I presented in the thesis can be extended

to multi-phase and multi-component flows in porous media.



Appendix A

Numerical aspect of the finite element method

A.1 Numerical integration

For the integration of the basis function, it is possible in some case to obtain the analytical

forms for the integral values. But, in general, it is not feasible. Hence, it is important to use

numerical quadrature. The concept of the quadrature rule is as following. For example, if

we want to compute the integral of function f over the domain [0, 1]. We can approximate

the integral by the function values evaluate at some locations in the domain and time the

some certain weight. In this example we have:

∫ 1

0

f(x)dx ≈
NQ∑
k=1

wkf(sk)

For higher dimensional quadrature rule follows the same concept,

∫ 1

0

∫ 1

0

f(x, y)dx dy ≈
NQ∑
k=1

wkf(sx,k, sy,k)

Since the discretization itself is an approximation of the solution of the problem, as long

as the order of approximation is no less than the order of the approximation of the polynomial

basis for the discretization we can still achieve the same order of convergence rate.
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Since we have to integrate element by element, for finite element method in general it

would be extremely tedious if we construct quadrature rule on each element when computing

the numerical integration. Therefore, we introduce the reference element and the transforma-

tion from reference element to physical element. Hence, the quadrature rule is constructed

only once on the reference element. The element-wise integration is done on the reference

element and transform to the physical element integration. Also, by defining the reference

element we can construct basis functions on the reference element and transform them to be

the local basis function on the physical element.

We now introduce the affine map from the reference element to the physical element as

illustrated in the Figure A.1.

Figure A.1: Transformation between reference element and physical element

The transformation is the affine map,

FE(x̂) = BEx̂+ bE

where

BE =

∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ
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We have the transformation of the basis function,

ϕ(FE(x̂)) = ϕ̂(x̂) and ϕ̂(F−1
E (x)) = ϕ(x)

Then we can show that

∇ϕ(x) =
dF−1

E

dx
∇ϕ(x̂) = B−1

E ∇ϕ(x̂)

Now, the integration of any function f on any element E can be computed from the inte-

gration over the reference element Ê, such that

∫
E

f(x)dx =

∫
Ê

f(FE(x̂)) |detBE| dx̂ =

∫
Ê

f̂(x̂) |detBE| dx̂

In the same way we have,

∫
E

ϕj(x) · ϕi(x)dx =

∫
Ê

ϕ̂j(x̂) · ϕ̂i(x̂) |detBE| dx̂∫
E

K∇ϕj(x) · ∇ϕi(x)dx =

∫
Ê

KB−1
E ∇ϕ̂j(x̂) ·B−1

E ∇ϕ̂i(x̂) |detBE| dx̂

For the integration on the faces, we also have the following affine transformation illustrated

in Figure A.2,

Figure A.2: Transformation between reference face and physical face
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The transformation is given as,

Fe(x̂) = Bex̂+ be

where

Be =

∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ


Define,

ϕ̃(x̂) = ϕ(F−1
e (x̂))

We have the integration on the face as follows,

∫
e

ϕj(x)ϕi(x)dx =

∫
ê

ϕ̃j(x̂)ϕ̃i(x̂) |detBe| dx̂∫
e

K∇ϕj(x) · neϕi(x)dx =

∫
ê

KB−1
e ∇ϕ̃j(x̂) · neϕ̃i(x̂) |detBe| dx̂

Now, we can use the numerical quadrature to the evaluate the integral. For the integral over

the element we have,

∫
E

ϕj(x)ϕi(x)dx =

∫
Ê

ϕ̂j(x̂)ϕ̂i(x̂) |detBE| dx̂ ≈ |detBE|
NQ∑
k=1

ϕ̂j(sk)ϕ̂i(sk)wk∫
E

K∇ϕj(x) · ∇ϕi(x)dx =

∫
Ê

KB−1
E ∇ϕ̂j(x̂) ·B−1

E ∇ϕ̂i(x̂) |detBE| dx̂

≈ |detBE|
NQ∑
k=1

KB−1
E ∇ϕ̂j(sk) ·B

−1
E ∇ϕ̂i(sk)wk
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For the faces, we have

∫
e

ϕj(x)ϕi(x)dx =

∫
ê

ϕ̃j(x̂)ϕ̃i(x̂) |detBe| dx̂ ≈ |detBe|
NQ∑
k=1

ϕ̃j(sk)ϕ̃i(sk)wk∫
e

K∇ϕj(x) · neϕi(x)dx =

∫
ê

KB−1
e ∇ϕ̃j(x̂) · neϕ̃i(x̂) |detBe| dx̂

≈ |detBe|
NQ∑
k=1

KB−1
e ∇ϕ̃j(sk) · neϕ̃i(sk)wk

For the quadrature rules, we refer readers to Appendix A in [83].

A.2 Finite element spaces

In this section, we would like to introduce various kinds DG finite element space without

going into too much technical details. We begin by understanding the continuous finite

element space. The continuous finite element space can be represented by nodal functions

as following figure.

(a) CG/P1 (b) CG/P2 (c) CG/P3 (d) CG/P4

(e) CG/Q1 (f) CG/Q2 (g) CG/Q3 (h) CG/Q4

Figure A.3: Conforming finite element spaces
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The continuity is required on each nodes in figure A.3. Hence, we have the adjacent

elements illustrated in figure below.

(a) CG/P4 and its neighbors (b) CG/Q4 and its neighbors

Figure A.4: Conforming finite element spaces and their neighbors

The solution has its value on each nodes. Because of the requirement of continuity, the

basis functions are not localized apart from the interior nodes on each element. But, the

finite element space guarantee the continuity of the solution on the face of all the elements.

Each basis function are simply Lagrange polynomial taking value on one node and vanishing

on other nodes.

Now, DG finite element space seeks to localize the basis functions in following way that

in the weak formulation it introduces additional terms on the faces which results in more

basis functions, but much more localized system. We can still use the nodal function to

represent the finite element spaces as following.
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(a) DG/P1 (b) DG/P2 (c) DG/P3 (d) DG/P4

(e) DG/Q1 (f) DG/Q2 (g) DG/Q3 (h) DG/Q4

Figure A.5: Nonconforming finite element spaces (Lagrange basis)

And the adjacent elements are as follows.

(a) CG/P4 and its neighbors (b) CG/Q4 and its neighbors

Figure A.6: Nonconforming finite element spaces and their neighbors (Lagrange basis)

In this case, the Lagrange basis is defined on each element and vanishing outside the

element. Hence, the basis is localized on each element.

Not only do we have the advantage of the defining localized basis functions, we also have
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more freedom of choosing the basis function on each element since the continuity on the face

is no longer required. For example, we can define none nodal basis such as monomial space

on both triangle and quadrilateral.

(a) DG/M1 (b) DG/M2 (c) DG/M3 (d) DG/M4

(e) DG/M1 (f) DG/M2 (g) DG/M3 (h) DG/M4

Figure A.7: Nonconforming finite element spaces (monomial basis)

In the same way, we can also construct basis function using orthogonal polynomial basis.

In this case, with orthogonal basis function we have diagonal matrix as mass matrix.

A.3 Raviart-Thomas element construction on 2D quadri-

lateral element

The 2D RT space on rectangular element is give to be

RT [k](E) = Qk+1,k(E)×Qk,k+1(E)
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where

Qr,s(E) = {`i(x)`j(y) : i = 0, · · · , r and j = 0, · · · , s}

with `i(x) to be the ith 1D basis.

And the Degree of freedom is given to be

(v · ne, q)e ∀q ∈ Pk(e)

(v,w)E ∀w ∈ Qk−1,k ×Qk,k−1(E)

In this case, we let the Pk(e) be span by the basis function

Pk(e) = {`0, `1, · · · , `k}

where `i is the Legendre polynomial of the order i with `i(0) = (−1)i and `i(1) = 1.

e2

e0

e3

e1

Figure A.8: Reference rectangular element

Given the reference rectangular element and direction of the integration as in figure A.8,
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we have for example

Pk(e0) = span{`0(y), `1(y), · · · , `k(y)}

Pk(e1) = span{(−1)0`0(y), (−1)1`1(y), · · · , (−1)k`k(y)}

Pk(e2) = span{(−1)0`0(x), (−1)1`1(x), · · · , (−1)k`k(x)}

Pk(e3) = span{`0(x), `1(x), · · · , `k(x)}

We also set basis Qk−1,k(E)×Qk,k−1(E) to be

Qk−1,k(E)×Qk,k−1(E) = span{v = e0

k−1∑
i=0

k∑
j=0

αJ0(i,j)`i(x)`j(y) + e1

k∑
i=0

k−1∑
j=0

αJ1(i,j)`i(x)`j(y)}

And the we set the basis for RT [k](E) = Qk+1,k(E)×Qk,k+1(E) to be

RT [k](E) = span{e0`i(x)`j(y) with i = 0, · · · , k + 1, j = 0, · · · , k and

e1`i(x)`j(y) with i = 0, · · · , k, j = 0, · · · , k + 1}

in order for us to derive the basis for RT[k](E).

Now, we can establish the way to derive the basis.

e0:

(v · n0, `I(y))e0 =
k+1∑
i=0

αJ0(i,I)
(−1)i+1

2I + 1
, I = 0, 1, · · · , k at position (I, J0(i, I))

e1:

(v · n1, `I(y))e1 =
k+1∑
i=0

αJ0(i,I)
(−1)I

2I + 1
, I = 0, 1, · · · , k at position (I, J0(i, I))
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e2:

(v · n2, `I(x))e2 =
k+1∑
j=0

αJ1(I,j)
(−1)j+I+1

2I + 1
, I = 0, 1, · · · , k at position (I, J1(I, j))

e3:

(v · n3, `I(x))e3 =
k+1∑
j=0

αJ1(I,j)
1

2I + 1
, I = 0, 1, · · · , k at position (I, J1(I, j))

E:

(v, e0`i(x)`j(y))E = αJ0(i,j)
1

2i+ 1

1

2j + 1
, i = 0, · · · , k − 1, j = 0, · · · , k

at position (I0(i, j), J0(i, I)).

(v, e1`i(x)`j(y))E = αJ1(i,j)
1

2i+ 1

1

2j + 1
, i = 0, · · · , k, j = 0, · · · , k − 1

at position (I1(i, j), J1(i, I)). with

I0(i, j) = i(k + 1) + j, and I1(i, j) = ik + j + k(k + 1)

J0(i, j) = i(k + 1) + j, and J1(i, j) = i(k + 2) + j + (k + 1)(k + 2)

Once the DOF matrix A is assembled we can construct the basis by solving Aα = ei with

i = 0, · · · , 2(k + 1)(k + 2)

I was able to implemented such construction in DUNE and is now available at:

http://cgit.dune-project.org/repositories/dune-localfunctions



Appendix B

Properties of Sobolev spaces

In appendix B, I supply some useful properties of functions in Sobolev space related to

approximation theory.

The first result has to do with using smooth functions to approximate the functions in

Sobolev spaces.

B.1 Approximation theories in Sobolev spaces

Lemma B.1.1. The space W l
p(Ω) ∩ C∞(Ω) is dense in W l

p(Ω).

This is very useful result to pass smooth function into weak formulation. The proof the

result can be found in page 9 of [105].

Next result has to do with L2-orthogonal projection.

Lemma B.1.2. Let Eh be the mesh sequence of the domain Ω. Let

πkh : Hs(Ω)→ Pk(Eh)

be the L2 projection onto the piecewise polynomial space. Then, for s = 0, · · · , k + 1 and all



179

f ∈ Hs(E) with E ∈ Eh, we have

∣∣f − πkhf ∣∣Hm(E)
≤ C ′apph

s−m
E |f |Hs(E)

This result can be found in [74].

Now, I shall present result of the convergence of the L2 projection for the function in

Sobolev space with minimal regularity.

Lemma B.1.3. Let f ∈ L2(Ω) and πkh be the L2 projection define as previous lemma, then

we have for all

πkhf → f strongly in L2(Ω)

Proof. Let ε > 0 be given, by the density argument in lemma B.1.1, we know there exist

f̂ ∈ C∞(Ω) ∩ L2(Ω) such that

‖f̂ − f‖L2(Ω) ≤ ε

Thus, we have

‖πkhf − f‖L2(Ω) ≤ ‖πkhf − πkhf̂‖L2(Ω) + ‖πkhf̂ − f̂‖L2(Ω) + ‖f̂ − f‖L2(Ω)

For the first term we have by Cauchy-Schwartz inequality,

‖πkhf − πkhf̂‖2
L2(Ω) = 〈πkhf − πkhf̂ , πkhf − πkhf̂〉 = 〈πkhf − πkhf̂ , f − f̂〉

≤ ‖πkhf − πkhf̂‖L2(Ω)‖f − f̂‖L2(Ω)

So, the first term

‖πkhf − πkhf̂‖L2(Ω) ≤ ε
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For the second term, according to the result in Lemma B.1.2, we know that

πkhf̂ → f̂ strongly in L2(Ω)

Therefore, πkhf → f strongly in L2(Ω).

Remark, in this case, we have only convergence for the L2 projection without knowing

the convergence rate.

As a corollary, we have following result in terms of the using piecewise constant approx-

imation.

Corollary B.1.4. Let f̄ be the element-wise averaging approximation for f ∈ L2(Ω) over

the mesh sequence Eh, then we have

f̄ → f strongly in L2(Ω).

Proof. It is clear that

〈f̄ , 1〉E = 〈f, 1〉E.

Thus, f̄ = π0
hf is L2 projection of the function f onto piecewise constant polynomial space.

By Lemma B.1.3, we can establish the result.

B.2 Preliminary results

B.2.1 Basic inequalities

I begin by stating several well-known inequalities that will be used to obtain some useful

results in the setting concerning the numerical scheme. In following analysis, I require the

mesh for the numerical method to be a regular mesh, i.e. there are positive constant a◦, a
◦,
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b◦ and b◦ independent of h such that:

a◦ |e|
d
d−1 ≤ |E| ≤ a◦ |e|

d
d−1

b◦ |e|
1
d−1 ≤ h ≤ b◦ |e|

1
d−1

where E is a mesh element and its measure|E|, e is a face and its measure |e|. We use

the notation ”.” to denote the fact that the constant is independent of e, E and h. The

properties above can be written as:

|e|
d
d−1 . |E| and |E| . |e|

d
d−1

|e|
1
d−1 . h and h . |e|

1
d−1

If it satisfies the properties as above, we use the notation ”≈” to describe the relationships.

i.e.

|E| ≈ |e|
d
d−1 , h ≈ |e|

1
d−1 and

|E|
|e|
≈ h (B.1)

I shall now state the inverse inequality as follow.

Lemma B.2.1 (Inverse Inequality [91]). Let ρh ≤ diam(E) ≤ h, where 0 < h ≤ 1, and P

be finite dimensional subspace of W`,p(E) ∩Wm,q(E), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and

0 ≤ m ≤ `. Then there exists C = C(P̂ , Ê, `, p, q, ρ) then

∀v ∈ P , ‖v‖W`,p(E) ≤ Chm−`+
d
p
− d
q ‖v‖Wm,q(E) (B.2)

Another inequality that will be used frequently is a simplified version of Jensen’s inequal-

ity, stated as

Lemma B.2.2 (Jensen’s Inequality [106]). Let p, q, and n be positive integers. If 1 ≤ q ≤
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p ≤ ∞, then

(
n∑
i=1

|ai|p
)1/p

≤

(
n∑
i=1

|ai|q
)1/q

,∀ai ∈ R (B.3)

Also, the trace inequality is extremely useful when one needs to translate the property

of element from edge to the interior of the element.

Lemma B.2.3 (Trace Inequality [83]). If v ∈ P, where P is a finite dimensional subspace,

then

‖v‖L2(e) ≤ Ch−1/2‖v‖L2(E) (B.4)

‖v‖L4(e) ≤ Ch−1/4‖v‖L4(E) (B.5)

where C is positive and independent of e and E.

B.2.2 Bounds for stabilization terms

In this section, we inspect the interior face terms ([ch], {D(uh)∇wh·n})Γh and ([wh], {D(uh)∇ch·

n})Γh for the DG discretization for the concentration. The goal in this section is to estab-

lish the bound for the these terms as stated in Proposition B.2.16. First, we obtain several

inequalities that are proved to be useful for our analysis.

B.2.3 Properties of D(u)

First, from (3.4), we deduce that

(
D(v)ξ, ξ

)
≥ d0

(
1 + |v|2

)
|ξ|22.

Hence

|D−1/2(v)|2 ≤
1(

d0(1 + |v|2)
)1/2
≤ 1

d
1/2
0

. (B.6)
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Similarly

|D1/2(v)|2 ≤
(
d1(1 + |v|2)

)1/2
. (B.7)

Furthermore

{|D1/2(v)|2} ≤
(
d1(1 + {|v|2})

)1/2
. (B.8)

In the following lemmas, we estimate this right-hand side in L2(E) and L2(e) for any

element E of Eh and face e of Γh.

Lemma B.2.4. Let L be the Lipschitz constant of D and v any function in L2(Ω)d. Then,

for any E in Eh,

∥∥D(uh)− πh(D(uh))
∥∥
L2(E)

≤ 2L
∥∥v − uh

∥∥
L2(E)

+
∥∥D(v)− πh(D(v))

∥∥
L2(E)

. (B.9)

Proof. By inserting D(v), we write

∥∥D(uh)− πh(D(uh))
∥∥
L2(E)

≤
∥∥D(uh)− D(v)

∥∥
L2(E)

+
∥∥D(v)− πh(D(v))

∥∥
L2(E)

+
∥∥πh(D(v)− D(uh)

)∥∥
L2(E)

.

Then (B.9) follows from the fact that πh is a projection in L2(E) and from the Lipschitz

continuity of D.

Lemma B.2.5. We retain the notation of Lemma B.2.4. Let e be any face of Γh and E an

element of Eh adjacent to e. Then

∥∥D(uh)|E − πh(D(uh))|E
∥∥
L2(e)

≤
( |e|
|E|

)1/2(
Ĉ L

∥∥uh − πh(v)
∥∥
L2(E)

+ L
∥∥πh(v)− v

∥∥
L2(E)

+ L
∥∥uh − v

∥∥
L2(E)

+
∥∥D(uh)− πh(D(uh))

∥∥
L2(E)

)
,

(B.10)

where Ĉ is a constant that depends only on the reference element and the degree of the

polynomials.
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Proof. To simplify the notation, we drop the index specifying restriction to E. The proof

is not totally straightforward because to pass from e to E, we need either an equivalence

of norms or a trace theorem and neither of them is applicable to D(uh), which is neither

finite-dimensional nor sufficiently smooth. In order to argue in finite dimension, we insert

πh(v) and write

∥∥D(uh)− πh(D(uh))
∥∥
L2(e)

≤
∥∥D(uh)− D(πh(v))

∥∥
L2(e)

+
∥∥D(πh(v))− πh(D(uh))

∥∥
L2(e)

≤ L
∥∥uh − πh(v)

∥∥
L2(e)

+
∥∥D(πh(v))− πh(D(uh))

∥∥
L2(e)

,

from the Lipschitz-continuity of D. Now, as uh−πh(v) belongs to a finite-dimensional space,

a standard equivalence of norms yields

∥∥uh − πh(v)
∥∥
L2(e)

≤ Ĉ
( |e|
|E|

)1/2∥∥uh − πh(v)
∥∥
L2(E)

.

Next, since D(πh(v)) and πh(D(uh)) are both matrices with constant coefficients, we can

write

∥∥D(πh(v))− πh(D(uh))
∥∥
L2(e)

=|e|1/2
∣∣D(πh(v))− πh(D(uh))

∣∣
2

=
( |e|
|E|

)1/2∥∥D(πh(v))− πh(D(uh))
∥∥
L2(E)

.

Then by inserting D(v) and using the Lipschitz-continuity of D, we immediately derive

∥∥D(πh(v))− πh(D(uh))
∥∥
L2(E)

≤L
(
‖πh(v)− v

∥∥
L2(E)

+ ‖v − uh
∥∥
L2(E)

)
+
∥∥D(uh)− πh

(
D(uh)

)∥∥
L2(E)

,

whence (B.10).

These two lemmas have the following consequences.
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Corollary B.2.6. We suppose that

lim
h→0
‖uh − u‖L2(0,T ;L2(Ω)d) = 0.

Then

lim
h→0
‖Dh(uh)− D(uh)‖L2(0,T ;L2(Ω)d) = 0

where

Dh(uh) = D(ūh).

Proof. Let L be the Lipschitz constant of D that for any v in L2(Ω)d,

‖Dh(uh)− D(uh)‖L2(Ω) ≤ 2L‖uh − v‖L2(Ω) + ‖D(v)− πh(D(v))‖L2(Ω).

Take v = u. Then the first term in the above right-hand side tends to zero. For the second

term, by Lemma B.1.3 we have

lim
h→0
‖D(u)− πh(D(u))‖L2(0,T ;L2(Ω)d) = 0. (B.11)

Proposition B.2.7. We suppose that the mesh Eh is regular. Then, there exists a constant

C, depending only on the reference element, the degree of the polynomials, the Lipschitz

constants of D, and the regularity of the mesh, such that

∑
e∈Γh

he‖{|Dh(uh)− D(uh)|2}‖2
L2(e) ≤C

(
‖uh − v‖2

L2(Ω) + ‖v − πh(v)‖2
L2(Ω)

+ ‖D(uh)− πh(D(uh))‖2
L2(Ω)

)
.

(B.12)



186

Proof. We have

‖{|Dh(uh)− D(uh)|2}‖2
L2(e) ≤ {‖Dh(uh)− D(uh)‖2

L2(e)}.

As in Corollary B.2.6,

‖Dh(uh)− D(uh)‖2
L2(e) ≤ ‖D(uh)− πh(D(uh))‖2

L2(e).

Therefore, we must bound

∑
e∈Γh

he{‖D(uh)− πh(D(uh))‖2
L2(e)}.

By applying (B.10) and substituting (B.9), we see that each term in the sum over e is

multiplied by he|e|
|E| , where E are the elements sharing e. The other factors are constants that

depend on m, g1, L, on the reference element and on the degree of the polynomials. But the

regularity of the mesh implies that

he|e|
|E|

≤ C,

with a constant C independent of e, E, and h. This yields (B.12).

By choosing v = u and using (B.11), an immediate argument proves the following corol-

lary:

Corollary B.2.8. In addition to the assumptions of Proposition B.2.7, we suppose that

lim
h→0
‖uh − u‖L2(0,T ;L2(Ω)d) = 0.

Then

lim
h→0

(∫ T

0

∑
e∈Γh

he‖{|Dh(uh)− D(uh)|2}‖2
L2(e)

)1/2

= 0.

The result we obtain for the diffusion-dispersion tensor D(u), also apply to the tensor
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K(c) which is more regular than the diffusion-dispersion tensor. Therefore, we simply state

following result.

Corollary B.2.9. In addition to the assumptions of Proposition B.2.7, we suppose that

lim
h→0
‖ch − c‖L2(0,T ;L2(Ω)d) = 0.

Then

lim
h→0

(∫ T

0

∑
e∈Γh

he‖{|Kh(ch)−K(ch)|2}‖2
L2(e)

)1/2

= 0

and

lim
h→0
‖Kh(ch)−K(ch)‖L2(0,T ;L2(Ω)d) = 0

where

Kh(ch) = K(c̄h).

B.2.4 Properties of the interior face terms

Lemma B.2.10. Let e be a given face of an arbitrary mesh element E. If w ∈ Pd where w

is a vector function and P is a finite dimensional subspace, then

‖w‖L2(e) . h−1/2‖w‖L2(E)

Proof. We write the definition of L2 norm:

‖w‖L2(e) =

(
d∑
i=1

∫
e

w2
i

)1/2

=

(
d∑
i=1

‖wi‖2
L2(e)

)1/2
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Hence, applying the Trace Inequality in Lemma B.2.3 we have

‖w‖L2(e) .

(
d∑
i=1

h−1‖wi‖2
L2(E)

)1/2

. h−1/2

(
d∑
i=1

∫
E

w2
i

)1/2

. h−1/2‖w‖L2(E)

With the help of this inverse estimate, the following inequalities can be obtained.

Lemma B.2.11. Given wh ∈ P and uh ∈ Pd then for a fixed element E and a face e ∈ ∂E,

‖∇wh‖L2(e) . h−1/2‖∇wh‖L2(E) and ‖|uh|E|1/2 |∇wh|‖L2(e) . h−1/2‖|uh|1/2 |∇wh|‖L2(E).

Proof. The first inequality directly follows from Lemma B.2.10.

For the second inequality,

‖|uh|1/2 |∇wh|‖L2(e) . |e|1/4
(∫

e

|uh|2 |∇wh|4
)1/4

. |e|1/4
(

d∑
i,j=1

∫
e

u2
h,i

(
∂wh
∂xj

)4
)1/4

. |e|1/4
(

d∑
i,j=1

‖uh,i
(
∂wh
∂xj

)2

‖2
L2(e)

)1/4

As the consequence of Trace Inequality from Lemma B.2.3,

‖uh,i
(
∂wh
∂xj

)2

‖L2(e) . h−1/2‖uh,i
(
∂wh
∂xj

)2

‖L2(E)

Hence, we related the face to the interior of the element E,

‖|uh|1/2 |∇wh|‖L2(e) . |e|1/4
(
h−1

d∑
i,j=1

‖uh,i
(
∂wh
∂xj

)2

‖2
L2(E)

)1/4
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By the Inverse Inequality from Lemma B.2.1,

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥
L2(E)

. h−d/2‖uh,i
(
∂wh
∂xj

)2

‖L1(E)

Therefore, we can conclude

‖|uh|1/2 |∇wh|‖L2(e) . |e|1/4
(
h−1h−d

d∑
i,j=1

‖uh,i
(
∂wh
∂xj

)2

‖2
L1(E)

)1/4

. h−1/2

 d∑
i,j=1

(∫
E

|uh,i|
(
∂wh
∂xj

)2
)2
1/4

. h−1/2

(∫
E

d∑
i=1

|uh,i| |∇wh|2
)1/2

. h−1/2

(∫
E

|uh| |∇wh|2
)1/2

. h−1/2‖|uh|1/2 |∇wh|‖L2(E)

Lemma B.2.12. If wh ∈ P, then we have

‖∇wh‖L2(Eh) . ‖∇wh‖L4(Eh)

Proof. We apply Cauchy-Schwarz inequality,

(∑
E∈Eh

‖∇wh‖2
L2(E)

)1/2

≤

(∑
E∈Eh

|E|1/2
(∫

E

|∇wh|4
)1/2

)1/2

≤

(∑
E∈Eh

|E|

)1/4(∑
E∈Eh

∫
E

|∇wh|4
)1/4

. ‖∇wh‖L4(Eh)
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Lemma B.2.13. Let uh ∈ Pd and ch ∈ P, then for an element E and one of its face e,

‖D1/2(uh|E)∇ch‖L2(e) . h−1/2‖D1/2(uh)∇ch‖L2(E)

and

‖D1/2(uh|E)∇ch‖L2(e) . h−1/2
(
‖∇ch‖L2(E) + ‖uh‖1/2

L2(E)‖∇ch‖L4(E)

)
Proof. Recall the property of diffusivity tensor in (3.4), we have

d0(1 + |uh|) |∇ch|2 ≤ ∇chTD(uh)∇ch ≤ d1(1 + |uh|) |∇ch|2

We therefore obtain the inequality,

(∫
e

D(uh)∇ch · ∇ch
)1/2

.

(∫
e

(1 + |uh|) |∇ch|2
)1/2

.
(
‖∇ch‖2

L2(e) + ‖|uh|1/2 |∇ch|‖2
L2(e)

)1/2

According to Lemma B.2.11, we have

(∫
e

D(uh)∇ch · ∇ch
)1/2

. h−1/2
(
‖∇ch‖2

L2(E) + ‖|uh|1/2 |∇ch|‖2
L2(E)

)1/2

. h−1/2

(∫
E

(1 + |uh|) |∇ch|2
)1/2

Therefore, we obtain the first inequality using the property (3.4),

‖D1/2(uh)∇ch‖L2(e) . h−1/2‖D1/2(uh)∇ch‖L2(E)
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Also, by Lemma B.2.2

(∫
E

(1 + |uh|) |∇ch|2
)1/2

=

(∫
E

|∇ch|2 +

∫
E

|uh| |∇ch|2
)1/2

≤
(∫

E

|∇ch|2
)1/2

+

(∫
E

|uh| |∇ch|2
)1/2

≤ ‖∇ch‖L2(E) + ‖uh‖1/2

L2(E)‖∇ch‖L4(E)

Therefore, we have

‖D1/2(uh)∇ch‖L2(e) . h−1/2
(
‖∇ch‖L2(E) + ‖uh‖1/2

L2(E)‖∇ch‖L4(E)

)

With all the helpful inequalities attained so far, we can now bound the terms ([wh], {D(uh)∇ch·

ne})e and ([ch], {D(uh)∇wh · ne})e in our scheme.

For the next result, let Ee
+ and Ee

− be the mesh elements that share the face e. We define

the average to be:

{‖w‖Lp(Ee)} =
1

2

(
‖w‖Lp(Ee+) + ‖w‖Lp(Ee−)

)
likewise,

{‖w‖Lp(Ee)‖v‖Lq(Ee)} =
1

2

(
‖w‖Lp(Ee+)‖v‖Lq(Ee+) + ‖w‖Lp(Ee−)‖v‖Lq(Ee−)

)

we also use the notations

w+ = w|Ee+ and w− = w|Ee−

In the rest of the analysis, we will use the notations Ph, Uh and Ch corresponding to the

finite element spaces for the numerical scheme. But, those results hold for all the piecewise

polynomials.
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Lemma B.2.14. Let e be a given face of an arbitrary mesh element E. Given ch, wh ∈ Ch,

uh ∈ Uh and D the diffusion dispersion matrix satisfying the property (3.4), then we have

([ch], {D(uh)∇wh · ne})e .
(∫

e

h−1(1 + {|uh|})[ch]2
)1/2

×
{
‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)

}

Proof. We begin by expanding and bounding the terms using Cauchy-Schwarz’s inequality,

([ch], {D(uh)∇wh · ne})e . ([ch],D(u+
h )∇w+

h · ne)e + ([ch],D(u−h )∇w−h · ne)e

. {
∫
e

∣∣D1/2(uh)ne
∣∣ |[ch]| ∣∣D1/2(uh)∇wh

∣∣}
. {
(∫

e

∣∣D1/2(uh)ne
∣∣2 [ch]

2

)1/2(∫
e

∣∣D1/2(uh)∇wh
∣∣2)1/2

}

.

(∫
e

{
∣∣D1/2(uh)ne

∣∣}2[ch]
2

)1/2

{
(∫

e

∣∣D1/2(uh)∇wh
∣∣2)1/2

}

By the property (3.4), we obtain

([ch], {D(uh)∇wh · ne})e .
(∫

e

(1 + {|uh|})[ch]2
)1/2

{‖D1/2(uh)∇wh‖L2(e)} (B.13)

By Lemma B.2.13, therefore, we have

([ch], {D(uh)∇wh · ne})e .
(∫

e

h−1(1 + {|uh|})[ch]2
)1/2

×
{
‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)

}

Lemma B.2.15. Given ch, wh, uh and D as in Lemma B.2.14, then

([wh], {D(uh)∇ch · ne})e .
(∫

e

h−1(1 + {|uh|})[wh]2
)1/2

{‖D1/2(uh)∇ch‖L2(Ee)}
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Proof. From (B.13), we have

([wh], {D(uh)∇ch · ne})e .
(∫

e

(1 + {|uh|})[wh]2
)1/2

{‖D1/2(uh)∇ch‖L2(e)}

And according to Lemma B.2.13,

([wh], {D(uh)∇ch · ne})e .
(∫

e

h−1(1 + {|uh|})[wh]2
)1/2

{‖D1/2(uh)∇ch‖L2(Ee)}

We now sum up the contributions over all the interior edge and establish the following

proposition.

Proposition B.2.16. Let ch, wh be in Ch and uh be in Uh. We have

([ch], {D(uh)∇wh · ne})Γh . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)) (B.14)

and

([wh], {D(uh)∇ch · ne})Γh . R(wh; uh)‖D1/2(uh)∇ch‖L2(Eh) (B.15)

with

J(ch, ch; uh) =
∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[ch]2 (B.16)

and

R(wh; uh) =
(

1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(B.17)
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Proof. To sum up over all the interior edges, by Lemma B.2.14 one would have

([ch], {D(uh)∇wh · ne})Γh =
∑
e∈Γh

([ch], {D(uh)∇wh · ne})e

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2

{‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2 (

{‖∇wh‖L2(Ee)}+ {‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}
)

. J(ch, ch; uh)
1/2

(∑
e∈Γh

{‖∇wh‖L2(Ee)}2

)1/2

+

(∑
e∈Γh

{‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}2

)1/2


For the term, (∑
e∈Γh

{‖∇wh‖L2(Ee)}2

)1/2

we have

(∑
e∈Γh

{‖∇wh‖L2(Ee)}2

)1/2

.

(∑
e∈Γh

(
‖∇wh‖2

L2(Ee+) + ‖∇wh‖2
L2(Ee−)

))1/2

. ‖∇wh‖L2(Eh)

Likewise, we can obtain

(∑
e∈Γh

{‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}2

)1/2

.

(∑
E∈Eh

‖uh‖L2(E)‖∇wh‖2
L4(E)

)1/2

. ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)

Therefore, for the term ([ch], {D(uh)∇wh · ne})Γh we have

([ch], {D(uh)∇wh · ne})Γh . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh))
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For the term ([wh], {D(uh)∇ch · ne})Γh using Lemma B.2.15 we have,

([wh], {D(uh)∇ch · ne})Γh =
∑
e∈Γh

([wh], {D(uh)∇ch · ne})e

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[wh]2
)1/2

{‖D1/2(uh)∇ch‖L2(Ee)}

. J(wh, wh; uh)
1/2

(∑
e∈Γh

{‖D1/2(uh)∇ch‖L2(Ee)}2

)1/2

. J(wh, wh; uh)
1/2‖D1/2(uh)∇ch‖L2(Eh)

Thus,

([wh], {D(uh)∇ch · ne})Γh . J(wh, wh; uh)
1/2‖D1/2(uh)∇ch‖L2(Eh) (B.18)

For J(wh, wh; uh)
1/2, we can establish the inequality,

J(wh, wh; uh)
1/2 =

(∑
e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

.

(∑
e∈Γh

∫
e

h−1[wh]
2

)1/2

+

(∑
e∈Γh

∫
e

h−1{|uh|}[wh]2
)1/2

For the first term we have,

(∑
e∈Γh

∫
e

h−1[wh]
2

)1/2

.

(∑
e∈Γh

h−1 |e|1/2
(∫

e

[wh]
4

)1/2
)1/2

.

(∑
e∈Γh

|E|

)1/4(∑
e∈Γh

h−2 |e|
|E|

∫
e

[wh]
4

)1/4
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Using the property of regular mesh in (B.1), we have

(∑
e∈Γh

h−2 |e|
|E|

∫
e

[wh]
4

)1/4

.

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

For the second term we notice,

(∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2)1/2

.

(∑
e∈Γh

h−1

(∫
e

∣∣u+
h

∣∣2)1/2(∫
e

[wh]
4

)1/2
)1/2

.

(∑
e∈Γh

‖u+
h ‖

2
L2(e)

)1/4(∑
e∈Γh

h−2

∫
e

[wh]
4

)1/4

.

(∑
e∈Γh

h−1‖uh‖2
L2(Ee+)

)1/4(∑
e∈Γh

h−2

∫
e

[wh]
4

)1/4

. ‖uh‖1/2

L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

In the same way we can establish,

(∑
e∈Γh

∫
e

h−1
∣∣u−h ∣∣ [wh]2

)1/2

. ‖uh‖1/2

L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(B.19)

To summarize we have,

(∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[wh]2
)1/2

.
(

1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(B.20)

Therefore, we conclude

([wh], {D(uh)∇ch · ne})Γh . R(wh; uh)‖D1/2(uh)∇ch‖L2(Eh)
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Lemma B.2.17 (Continuity properties). Let ch and wh be in Ch and let uh be in Uh.

|Bd(ch, wh; uh)| . (1 + ‖uh‖1/2

L2(Ω))‖ch‖Ch‖wh‖W 1,4(Eh), (B.21)

|Bcq(ch, wh; uh)| . ‖wh‖W 1,4(Eh)

(‖uh‖1/2

L2(Ω)‖ch‖Ch +
(
‖qI + qP‖L2(Ω) + ‖uh‖L2(Ω)

)
‖ch‖L4(Ω)). (B.22)

The proof of Lemma B.2.17 is now given.

Proof. The first term of Bd(ch, wh; uh) is

(D(uh)∇ch,∇wh)Eh ≤
∑
E∈Eh

‖D1/2(uh)∇ch‖L2(E)‖D1/2(uh)∇wh‖L2(E).

Notice that by (3.4),

‖D1/2(uh)∇wh‖L2(E) .

(∫
E

(
1 + |uh|

)
|∇wh|2

)1/2

. ‖∇wh‖L2(E) +

(∫
E

|uh| |∇wh|2
)1/2

. ‖∇wh‖L2(E) + ‖uh‖1/2

L2(E)‖∇wh‖L4(E).

So, we have

(D(uh)∇ch,∇wh)Eh .
∑
E∈Eh

‖D1/2(uh)∇ch‖L2(E)

(
‖∇wh‖L2(E) + ‖uh‖1/2

L2(E)‖∇wh‖L4(E)

)
. ‖D1/2(uh)∇ch‖L2(Eh)

(
‖∇wh‖L2(Eh) +

( ∑
E∈Eh

‖uh‖L2(E)‖∇wh‖2
L4(E)

)1/2
)

. ‖D1/2(uh)∇ch‖L2(Eh)

(
‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)

)
.

And consequently using the fact that

‖∇wh‖L2(Eh) . ‖∇wh‖L4(Eh), (B.23)



198

we have,

(D(uh)∇ch,∇wh)Eh . ‖ch‖Ch
(

1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W 1,4(Eh). (B.24)

For the term ([wh], {D(uh)∇ch · ne})Γh we have,

([wh], {D(uh)∇ch · ne})Γh .
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[wh]2
)1/2

‖D1/2(uh)∇ch‖L2(Eh). (B.25)

We have the following inequality:

(∑
e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

.

(∑
e∈Γh

∫
e

h−1[wh]
2

)1/2

+

(∑
e∈Γh

∫
e

h−1{|uh|}[wh]2
)1/2

.

Using Cauchy-Schwarz’s inequality and the fact that |e| ≈ hd−1, we have

∑
e∈Γh

∫
e

h−1[wh]
2 .

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/2(∑
e∈Γh

hd

)1/2

.

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/2

. (B.26)

For the other term, we can write

∑
e∈Γh

∫
e

h−1{|uh|}[wh]2 .
∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2 +
∑
e∈Γh

∫
e

h−1
∣∣u−h ∣∣ [wh]2.

We treat each term separately, but in a similar fashion

∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2 . (∑
e∈Γh

h−3

∫
e

[wh]
4

)1/2(∑
e∈Γh

h

∫
e

∣∣u+
h

∣∣2)1/2

.

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/2(∑
e∈Γh

‖uh‖2
L2(Ee+)

)1/2

.
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Therefore we have

∑
e∈Γh

∫
e

h−1{|uh|}[wh]2 . ‖uh‖L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/2

. (B.27)

To summarize, from (B.26) and (B.27), we have,

(∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[wh]2
)1/2

.
(

1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

, (B.28)

and thus,

([wh], {D(uh)∇ch · ne})Γh .
(

1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W (Eh)‖D1/2(uh)∇ch‖L2(Eh). (B.29)

For the third term of Bd(ch, wh; uh), we use a trace inequality and a similar argument as in

(B.13)

([ch], {D(uh)∇wh · ne})Γh =
∑
e∈Γh

([ch], {D(uh)∇wh · ne})e

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2

{‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2 (

{‖∇wh‖L2(Ee)}+ {‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)}
)

. ‖ch‖Ch
(
‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)

)
. (B.30)

Using Cauchy-Schwarz’s inequality and (B.28), the penalty term in Bd(ch, wh; uh) can be
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bounded as

(σh−1(1 + {|uh|})[ch], [wh])Γh

.

(∑
e∈Γh

∫
e

h−1(1 + {|uh|})[ch]2
)1/2(∑

e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

. ‖ch‖Ch
(

1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W (Eh). (B.31)

Therefore the bound (B.21) is obtained by combining (B.23), (B.24), (B.29), (B.30) and

(B.31).

To obtain (B.22), we now bound each term in Bcq(ch, wh; uh). For the first term, using

(3.4), we have:

(uh∇ch, wh)Eh ≤
∑
E∈Eh

(∫
E

|uh| |∇ch|2
)1/2(∫

E

|uh|w2
h

)1/2

.
∑
E∈Eh

‖D1/2(uh)∇ch‖L2(E)‖uh‖1/2

L2(E)‖wh‖L4(E)

. ‖D1/2(uh)∇ch‖L2(Eh)‖uh‖1/2

L2(Ω)‖wh‖L4(Ω). (B.32)

Similarly we have

(uhch,∇wh)Eh ≤
∑
E∈Eh

‖uh‖L2(E)‖ch‖L4(E)‖∇wh‖L4(E)

≤ ‖∇wh‖L4(Eh)‖uh‖L2(Ω)‖ch‖L4(Ω). (B.33)

For the third term in Bcq(ch, wh; uh) we easily obtain

(
(qI + qP )ch, wh

)
≤ ‖qI + qP‖L2(Ω)‖ch‖L4(Ω)‖wh‖L4(Ω). (B.34)
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For the upwind term, we remark that

|cup
h | ≤ max

{ ∣∣c+
h

∣∣ , ∣∣c−h ∣∣ } ≤ ∣∣c+
h

∣∣+
∣∣c−h ∣∣ .

Therefore, using the fact that u+
h · ne = u−h · ne, we can write

(cup
h uh · ne, [wh])e ≤

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]|+ ∫
e

∣∣c−h ∣∣ ∣∣u−h ∣∣ |[wh]| .
We treat each term separately but in a similar fashion. By Cauchy-Schwarz’s inequality and

trace inequalities, we have

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| ≤ (∫
e

∣∣u+
h

∣∣ ∣∣c+
h

∣∣2)1/2(∫
e

∣∣u+
h

∣∣ [wh]2)1/2

. ‖uh‖1/2

L2(Ee+)‖ch‖L4(Ee+)

(
h−1

∫
e

{|uh|}[wh]2
)1/2

.

Next, we sum up over all interior faces and obtain

∑
e∈Γh

(cup
h uh · ne, [wh])e . ‖uh‖1/2

L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h−1

∫
e

{|uh|}[wh]2
)1/2

, (B.35)

which, with (B.27), yields

(cup
h uh · ne, [wh])Γh . ‖uh‖L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

. (B.36)

We apply the same idea as in (B.35) to the last term and have:

(wdown
h uh · ne, [ch])Γh . ‖uh‖

1/2

L2(Ω)‖wh‖L4(Ω)

(∑
e∈Γh

h−1

∫
e

(
1 + {|uh|}

)
[ch]

2

)1/2

. (B.37)

Therefore, the bound (B.22) is obtained by combining (B.32), (B.33), (B.34), (B.36) and

(B.37).
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Lemma B.2.18. Let wh be in Ch, then we have

‖wh‖W 1,4(Eh) .
(∑
E∈Eh

‖wh‖2
H2(E)

)1/2

. (B.38)

Proof. By the inverse inequality, we have

‖wh‖W 1,4(E) . h1− d
4‖wh‖H2(E),

which implies

‖wh‖4
L4(E) + ‖∇wh‖4

L4(E) . h4−d‖wh‖4
H2(E).

For the jump term, we have according to the trace inequality,

‖[wh]‖L4(e) . h−
1
4‖wh‖L4(E+

e ) + h−
1
4‖wh‖L4(E−e ).

So, based on inverse inequality,

‖[wh]‖L4(e) . h2− 1+d
4 ‖wh‖L4(E+

e ) + h2− 1+d
4 ‖wh‖L4(E−e ).

We simply sum the terms and use Jensen’s inequality,

‖wh‖W 1,4(Eh) .
(∑
E∈Eh

h4−d‖wh‖4
H2(E)

)1/4

.
(∑
E∈Eh

‖wh‖2
H2(E)

)1/2

These results are used extensively in the analysis to come concerning the stability and

compactness theorem. In our analysis, we use a rather unconventional jump term to bypass

the difficulty of the low regularity condition.



Appendix C

User manual for the software

In this part of the appendix, I provide some descriptions about the software developed for

the miscible displacement simulations.

C.1 Installation and compilation

Since the code is based on DUNE and DUNE-PDELab, it is important to talk about the

installation and compilation of the DUNE and DUNE-PDELab. The code is compatible

only with the most current version of DUNE, namely DUNE 2.3.1. gcc 4.7 or greater is

required for the compiler. On DaVinCI cluster, I load following modules

• gcc/4.8.2

• openmpi/1.6.5-gcc

• cmake

for compilations. For the code to be fully functional, additionally, we need external libraries

listed as follows.

• gmp

• metis
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• parmetis

• UGGrid

• OpenBLAS

• UMFPack

• SuperLU

They need to be compiled with the same compiler. After properly compiling the external

libraries, we can create the root directory and extracting all the DUNE and DUNE-PDELab

modules in the root directory. The folders are

• dune-common-2.3.1

• dune-geometry-2.3.1

• dune-grid-2.3.1

• dune-istl-2.3.1

• dune-localfunctions-2.3.1

• dune-typetree-2.3.1

• dune-pdelab-2.0.0

• dune-pdelab-howto-2.0.0

Then for a simple compilation, enter the DUNE root directory and type:

./dune-common-2.3.1/bin/dunecontrol all

This simple compilation is only for serial code without the external libraries. In order for

us to run the miscible displacement simulation with DG discretization on structured and

unstructured grid in parallel, we have to compile DUNE in following way:
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./dune-common-2.3.1/bin/dunecontrol --opts=my.opts all

In my case, the option file my.opts is given as:

SHELL="bash"

GXX_WARNING_OPTS=" \

-Wall \

-Wunused \

-Wmissing-include-dirs \

-Wcast-align \

-Wno-sign-compare \

-Wno-packed-bitfield-compat \

-Wno-unused-parameter"

GXX_OPTS=" \

-fopenmp \

-fno-strict-aliasing \

-fstrict-overflow \

-ffast-math \

-fno-finite-math-only \

-O3 \

-march=native \

-DNDEBUG=1"

LDFLAGS_OPTS=" \

-Wl,-rpath \

-Wl,/opt/apps/gcc/4.8.2/lib64

"

CONFIGURE_FLAGS=" \

--enable-parallel \

--enable-fieldvector-size-is-method \
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--with-gmp=/home/jl48/local/external-new/gmp-gcc4.8 \

--with-superlu=/work/br1/jl48/external-new/SuperLU_4.3-gcc4.8 \

--with-superlu-dist=/work/br1/jl48/external-new/SuperLU_DIST_3.2 \

--with-alugrid=/work/br1/jl48/external-new/ALUGrid \

--with-ug=/work/br1/jl48/external-new/ug-3.11.0-gcc4.8 \

--with-metis=/work/br1/jl48/external-new/metis-gcc4.8 \

--with-parmetis=/work/br1/jl48/external-new/parmetis-gcc4.8 \

--with-umfpack-includedir=/home/jl48/local/external-new/UMFPACK-gcc4.8/

include \

--with-umfpack-libdir=/home/jl48/local/external-new/UMFPACK-gcc4.8/lib \

--with-blas=\"/work/br1/jl48/external-new/OpenBLAS-gcc4.8/lib/

libopenblas.a -pthread\"

"

and it should be placed in the root directory. The user should make changes in the option

file for the path of the external libraries and compiler if they differ.

During the compilation, user might encounter compilation failure for dune-istl. Most

likely, the problem is caused by the timer. To resolve the issue, simply add:

#ifndef TIMER_USE_STD_CLOCK

#define TIMER_USE_STD_CLOCK

#endif

at the beginning of the timer.hh header in the directory:

dune-common-2.3.1/dune/common/

Once the compilation is successful, user can extract dune-miscible-flow into the root

directory. For compilation type:

./dune-common-2.3.1/bin/dunecontrol --opts=my.opts

--only=dune-miscible-flow all
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When the compilation is completed, the user should have a miscible displacement simulation

driver in the directory:

dune-miscible-flow/src

with the file name dune-miscible-flow. In the next section I introduce anatomy of the

code for dune-miscible-flow.

C.2 Anatomy of dune-miscible-flow

In this section, I introduce components of simulator for users to get a better understanding

of the content and capability of the research code. The source code are contained in the

directory:

dune-miscible-flow/src

The content of the code is as follows,

• the driver

– dune-miscible-flow.cc:

∗ problem setup

∗ grid setup

∗ finite element space setup

∗ discretization setup

∗ solver setup

∗ time loop

∗ input and output

• discretization routines:

– diffusionccfv.hh
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∗ cell-center finite volume (CCFV) discretization for Darcy’s system

– diffusiondg.hh

∗ DG discretization for Darcy’s system

– convectiondiffusionccfv.hh

∗ CCFV discretization for transport system

– convectiondiffusiondg.hh

∗ DG discretization for transport system

• Solver routine:

– cg_to_dg_prolongation.hh

∗ subspace correction

– ovlp_amg_dg_backend.hh

∗ AMG solver setup

• Post-processing routines:

– slope-limter.hh

∗ slope-limiter

– utility.hh

∗ flux reconstruction

∗ error estimate

∗ permeability generating

• Problem files:

– dune_miscible_flow-param-5spot-fingering.hh

∗ radial flow viscous fingering simulation problem with diagonal grid
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– dune_miscible_flow-param-5spot-fingering-parallel.hh

∗ radial flow viscous fingering simulation problem with parallel grid

– dune_miscible_flow-param-5spot.hh

∗ quarter of 5-spot simulation problem

– dune_miscible_flow-param-analytical.hh

∗ problem with analytical solution

– dune_miscible_flow-param-fingering-disc.hh

∗ viscous fingering simulation problem on a disc

– dune_miscible_flow-param-fingering.hh

∗ core flooding viscous fingering simulation problem

– dune_miscible_flow-param-lens.hh

∗ miscible displacement problem with heterogeneous permeability on a square

– dune_miscible_flow-param-spe10.hh

∗ flow problem with SPE10 permeability model with Dirichlet boundary con-

dition

– dune_miscible_flow-param-spe10-well-injection.hh

∗ flow problem with SPE10 permeability model with well injection

Users are also given following options:

• #define USE_PURE_NEUMANN: solve problem with no-flow boundary condition

• #define USE_CN: solve the problem using Crank-Nicolson method (implicit Euler by

default)

• #define USE_UGGRID: use unstructured grid (quadrilateral mesh by default)
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• #define USE_SIMPLEX: use triangular (2D) or tetrahedral mesh (3D) for unstructured

grid

Once the users have the problem and options setup, to compile go to the directory:

dune-miscible-flow/src

and type:

make

The code is recompiled accordingly.

C.3 Running the simulation

In this section, I explain how to run the code. For users to run the code type:

mpiexec -n <#procs> dune-miscible <nx> <ny> <nz> <level> <tend>

<timestep> <sigma_p> <sigma_c> <addintorder>

The parameters are given as follows:

• <#procs>: number of processes

• <nx>: numbers of the cells in x directions

• <ny>: numbers of the cells in y directions

• <nz>: numbers of the cells in z directions

• <level>: level of bisection refinement

• <tend>: the final time of the simulation in sec

• <timestep>: time step size

• <sigma_p>: penalty parameter for Darcy’s system
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• <sigma_c>: penalty parameter for transport system

• <addintorder>: additional order for the numerical quadrature

By building the application on DUNE and DUNE-PDELab, I expect the code to be easily

modifiable and maintainable by others to further the study and research in the area of

numerical methods for porous media flows.
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