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Abstract— This paper presents the preliminary findings of a
multi-year clinical study evaluating the effectiveness of adding
a brain-machine interface (BMI) to the MAHI-Exo II, a
robotic upper limb exoskeleton, for elbow flexion/extension
rehabilitation in chronic stroke survivors. The BMI was used
to trigger robot motion when movement intention was detected
from subjects’ neural signals, thus requiring that subjects be
mentally engaged during robotic therapy. The first six subjects
to complete the program have shown improvements in both
Fugl-Meyer Upper-Extremity scores as well as in kinematic
movement quality measures that relate to movement planning,
coordination, and control. These results are encouraging and
suggest that increasing subject engagement during therapy
through the addition of an intent-detecting BMI enhances the
effectiveness of standard robotic rehabilitation.

I. INTRODUCTION

Stroke is one of the leading causes of permanent disability
in the United States [1]. Fortunately, rehabilitation research
has shown that it is possible for stroke survivors, even
those who are well into the chronic stage, to make motor
improvements with continued physical therapy [2], [3], [4],
[5]. However, chronic-stage rehabilitation seems to be most
effective in inducing lasting neuroplastic changes when it is
intensive, comprising a high number of effortful repetitions
at an appropriate level of difficulty [3], [5], [6], [7].

This insight has led to the increased use of robots as
rehabilitation tools due to their suitability for high repe-
titions, precise measurement capabilities, and versatility in
programming [5]. They can also provide large assistance
forces (or resistance forces, depending on nature of the
desired exercise), that would be physically burdensome for a
human therapist. More recently, assist-as-needed controllers
have been developed that can modulate the amount of
assistance provided by the robot, in real time, depending on
the patient’s physical capability [6], [8], [9], [10]. This design
more closely mimics the nature of rehabilitation provided
by human therapists, who have the pathological expertise
and patient specific-knowledge to adjust the intensity of the
therapy as appropriate [11]. However, many of these control
algorithms are based on signals related to physical exertion,
such as force, movement speed, or electromyography (EMG).
The downside to relying solely on physical exertion signals
is that they do not necessarily correlate with effort: while a
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decrease in the exertion signal can be indicative of fatigue
and a need for additional assistance, it might also be an
indication that the patient is “slacking,” i.e. relying too
much on the robot’s assistance [10]. Furthermore, even if the
patient is contributing an acceptable level of physical effort,
they still might not be focused on the task or concentrating on
the movement. This lack of mental engagement diminishes
the effectiveness of the therapy exercise [5], [7], [12].

The most reliable way to ensure mental engagement is to
measure neural signals directly. A number of research groups
have explored the use of non-invasive electroencephalog-
raphy (EEG) as a measure of subjects’ mental effort and
have been successful in both detecting movement intention
and distinguishing it from a rest state [13], [14], [15], [16],
[17], [18], [19]. These intent-detection classifiers have been
implemented in brain-machine interfaces (BMIs) as triggers
for robot motion; that is, the robot is only activated once
the user has made a conscious intention to move [16], [17],
[18], [19], [20]. Although small-scale studies have been able
to validate this concept by demonstrating high classification
accuracy of the intent detection algorithms, more longitudinal
clinical trials are needed to assess its actual efficacy for
rehabilitating chronic stroke survivors (see [7] and [14] for
more thorough reviews).

The study presented here is based on the framework
proposed by Blank et al. [20], and the feasibility studies
published by Bhagat et al. [16], [17]. In this paper, we present
the preliminary findings of a 12-session clinical trial (NCT
01948739) evaluating the effectiveness of a BMI-exoskeleton
system for elbow flexion/extension rehabilitation in chronic

Fig. 1. Left: BMI-Exo system setup. Right: Target-hitting task displayed
on monitor (both targets shown for reference).



stroke survivors. The BMI employs a noninvasive, EEG-
based, movement-intent detector that triggers an upper limb
exoskeleton, the MAHI Exo-II, to guide the subject through
a passive elbow movement. The close temporal proximity
of conscious movement intention to sensory feedback as-
sociated with smooth, coordinated motion is intended to
activate Hebbian mechanisms that strengthen the appropriate
neural pathways and activation timings [21], [22]. Motor
improvements were assessed in terms of both movement
quality and functional ability using kinematic metrics and
the Upper-Extremity portion of the Fugl-Meyer Assessment
(FM-UE).

II. METHODS

A. System Description

The MAHI Exo-II system is a 5-DOF upper-limb robotic
exoskeleton that provides motor-actuated movement in elbow
flexion/extension, forearm pronation/supination, and wrist
flexion/extension as well as radial/ulnar deviation. The de-
sign also allows for passive positioning of shoulder abduction
angle. For this study, the wrist and forearm module was
removed, and only elbow flexion/extension was trained (Fig.
1). The elbow joint has a range of motion of 60 degrees
and is actuated by a brushed DC motor. A counterweight
provides passive gravity compensation for the weight of the
user’s arm. Detailed descriptions of the MAHI Exo-II are
provided in [23] and [24].

Four usage modes are available on the MAHI Exo-II:
user-passive, triggered, backdrive, and active constrained. In
passive mode, the movement is entirely motor-actuated so
that the exoskeleton guides the user through flexion/extension
motion. In triggered mode, the user must provide an initial
push to exceed a pre-set threshold before the motor takes
over and guides the user through the rest of the motion. In
backdrive mode, the motor is disabled and the user moves
the exoskeleton arm without assistance. In active constrained
mode, the motor provides a scalable resistance force modeled
as a viscous force field. These four modes were designed to
accommodate a broad range of impairment levels, from full
paralysis to near-healthy function.

B. Movement Intent Detection

Intent detection was predicted with an EMG-gated BMI
system. A 64-channel, noninvasive EEG cap (actiCAP sys-
tem, Brain Products GmbH, Germany) was used to monitor
neural signals — specifically, slow movement-related cortical
potentials (MRCPs). MRCPs have been shown to be effective
in detecting volitional movement in stroke subjects using
the MAHI Exo-II with an accuracy of approximately 78%
[16], [17], [25] as well as in other contexts [15], [26], [27].
Surface EMG was collected from the biceps brachii and
triceps brachii of both arms. EMG signals from the affected
arm were used as additional inputs to the intent-detection
algorithm to minimize false positives of the BMI system
[14], [17]. EEG and EMG were sampled at 500 Hz and
synchronized. See [17] for a detailed description of the BMI
system and intent-detection algorithm.

TABLE I
PARTICIPANT DEMOGRAPHICS

Subj.
ID

Gender Age
Time

post-stroke
Affected

Arm
Baseline
FM-UE

S1 M 71 6 yrs Right 51

S2 F 49 9 yrs Left 21

S3 F 55 7 yrs Left 48

S4 F 51 2 yrs Left 21

S5 M 58 11 mos Right 43

S6 M 61 10 mos Right 45

C. Task

A target-hitting task was displayed on a computer monitor
positioned in front of the user. For elbow flexion/extension,
targets were arranged vertically, as shown in Fig. 1, where
the upper target corresponded to flexion and the lower
to extension. Each trial required the subject to start from
the midpoint of the pre-defined range of motion, move to
whichever target was presented, and then return back to
center. Equal numbers of flexion and extension trials, in
random order, were performed in each block.

To enforce mental movement planning in backdrive mode,
subjects were instructed to pause for a few moments and
think about their arm motion before moving towards the
displayed target. If they moved too soon, the robot would
block their movement with a virtual wall, reset back to the
center position, and the subject would redo the trial. Subjects
were not told how long they needed to wait in between trials,
but the software was programmed to choose a random value
between 1.75 and 2.25 seconds [15].

D. Participants

Six chronic-stage hemiparetic stroke survivors have par-
ticipated in the study. Inclusion criteria required that par-
ticipants have suffered only a single stroke, have sufficient
proprioception in the affected upper limb, and not be par-
ticipating in any other therapy program. IRB approval was
granted at all collaborating institutions, and all participants
provided written consent. Individual subject information is
provided in Table I.

E. Protocol

Before beginning therapy on the BMI-Exo system, each
subject underwent two clinical baseline assessment sessions,
approximately one month apart, with a physical therapist.
Provided there was minimal change in FM-UE score (re-
quirement: difference within ± 3 points; actual average: +0.3
points), robotic therapy commenced within a week of the
second baseline session. After completing robotic therapy,
subjects returned within one week for a post-treatment clini-
cal assessment. Data were analyzed using the second baseline
and one-week follow-up as pre- and post-treatment scores,
respectively.

The five-week therapy program consisted of two cali-
bration sessions followed by 12 training sessions. In each



TABLE II
AVERAGE (STANDARD DEVIATION) CLINICAL AND MOVEMENT QUALITY SCORE CHANGES. (+): IMPROVEMENT INDICATED BY SCORE INCREASE; (-):

IMPROVEMENT INDICATED BY SCORE DECREASE. BOLD VALUES INDICATE STATISTICAL SIGNIFICANCE.

Fugl- Trial Duration (-) Number of Peaks (-) Time to First Peak (+) MJ Smoothness (+)
Meyer Flex Ext Flex Ext Flex Ext Flex Ext

Baseline 39.0 1.43 1.72 1.56 2.15 0.37 0.32 0.42 0.31
(12.4) (0.36) (0.54) (0.29) (0.78) (0.11) (0.14) (0.37) (0.36)

End 42.3 1.20 1.06 1.38 1.57 0.44 0.42 0.55 0.38
(13.4) (0.42) (0.32) (0.38) (0.46) (0.14) (0.15) (0.25) (0.38)

Change 3.3 -0.23 -0.66 -0.18 -0.57 0.06 0.10 0.13 0.07
(3.1) (0.63) (0.41) (0.26) (0.51) (0.07) (0.06) (0.21) (0.07)

P-value 0.048 0.438 0.031 0.312 0.031 0.156 0.031 0.156 0.031

calibration session, subjects performed 4 blocks of 20 trials
(10 flexion, 10 extension, randomly ordered) in backdrive
mode. This data was used to assess their baseline movement
quality and to collect individual EEG and EMG data for
calibrating the BMI system. Calibration for subjects with
higher impairment levels was done in triggered mode if they
were unable to backdrive the robot. Once the BMI system
was tuned for the individual subject, the training sessions
began. Each training session started with one block of 20
trials in backdrive mode for movement quality assessment.
Subjects then completed 8 closed-loop training blocks (20
trials each) with the exoskeleton in user-passive mode and
the BMI intent-detection active. To hit the on-screen target,
subjects were instructed to think about their arm move-
ment (neural intent) and give the exoskeleton a small push
(muscular intent). If both EEG intention and EMG signals
were detected, the BMI system sent a ”go” command to the
exoskeleton to initiate movement. Each closed-loop training
block also included an additional three “catch trials” in which
a red circle appeared instead of the typical green target. For
those trials, subjects were instructed to keep the cursor still
in the middle of the screen by NOT thinking about their
arm movement. These trials were included to assess the false
positive rate of the intent-detection algorithm.

F. Data Analysis
Elbow angle position data were collected at 1000 Hz

with a high-resolution encoder. Velocity was calculated and
low-pass filtered at 50 Hz in real time from the position
data. In post-processing, backdrive trials were segmented
into flexion (center to upper target) and extension (center
to lower target) movements, which were analyzed separately.
Movements from the outer targets back to the center position
were considered “reset” movements and excluded from the
analysis. A Savitzky-Golay filter (3rd order polynomial,
window size of 101) was applied to the velocity data to
filter out high-frequency noise without removing the natural
characteristics of the subjects’ movements. The smoothed
velocity was then used to calculate four movement quality
metrics:
Trial Duration: Time (in seconds) for the subject to move
from center target to the outer target. Since the task in this

study does not require high precision, a decrease in Trial
Duration indicates improvement.
Minimum-Jerk Smoothness: The minimum-jerk (MJ) velocity
profile is a smooth, symmetric, bell-shaped curve that closely
matches the velocity profiles of healthy point-to-point move-
ments [3], [28]. The MJ velocity profile is defined as

vmj(t) = ∆

(
30t4

T 5
− 60t3

T 4
+

30t2

T 3

)
(1)

where t is time, T is the duration of the movement, and
∆ is the total distance traveled. Its formulation is based on
the assumption that the underlying objective of the neuro-
motor control system is to minimize squared jerk, the time
derivative of acceleration [29]. The metric is calculated as
the correlation coefficient (ρ) between the subject’s velocity
profile and the corresponding MJ velocity profile, given the
same distance traveled (∆) and Trial Duration (T) [30], [31].
Values generally range from 0 to 1, where 0 is no correlation
and 1 is perfect correlation. Negative values (0 to -1) occur
when the subject’s velocity profile bears more resemblance
to a concave-up 4th-order polynomial than concave-down
(bell-shaped). An increase in MJ Smoothness corresponds
to improvement.
Number of Peaks: Number of velocity peaks, where a “peak”
needed to be at least (peak speed)/4 larger than the sur-
rounding data to be counted [32]. Since velocity profiles
for impaired movements are often fragmented with many
peaks, a decrease in the Number of Peaks metric indicates
improvement.
Time to First Peak: Time elapsed from movement start
to the first velocity peak, as a percentage of total Trial
Duration. As discussed, healthy velocity profiles are typically
single-peaked and symmetric, and therefore have a Time
to First Peak value of approximately 0.5 (50%). Impaired,
fragmented velocity profiles often have multiple velocity
peaks, where Time to First Peak is less than 0.5. Thus, an
increase in Time to First Peak indicates improvement.

Statistical analysis was done on within-subject changes in
FM score and in movement quality metrics from beginning
to end of treatment. Baseline movement quality metrics for
each subject were calculated by averaging movement quality
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Fig. 2. Individual changes in Fugl-Meyer scores. Left: Baseline total scores
(pre) and score changes (diff) post-treatment. Right: Score changes broken
down by subsection. Subsections are A: Shoulder/Elbow/Forearm, B: Wrist,
C: Hand, D: Coordination/Speed. Negative values indicate score decreases.
Subjects are ordered by baseline FM score, highest to lowest (left to right).

scores from the two robotic calibration sessions. End-of-
treatment scores were calculated by averaging the movement
quality scores from the assessment blocks of the last two
training sessions (11 & 12). Due to slight non-normality that
was evident from quantile-quantile plots, Wilcoxon Signed-
Rank tests were used on the paired differences for each
movement quality metric in flexion and in extension. Pre-
and post-treatment FM scores were compared using a paired
t-test to evaluate clinical improvement. For all difference
testing, p-values less than 0.05 were considered significant.
Linear correlations were also calculated between pre/post FM
scores and starting/ending movement quality scores (flexion
and extension scores averaged within-subject).

III. RESULTS

Table II shows average score changes, with associated p-
values, across all subjects for the FM assessment and for
each movement quality metric.

A. Clinical Improvements

Functional gains from clinical assessments are shown in
Fig. 2. FM score increases ranged from -1 to 8 out of 66, with
an average of 3.3. This increase was statistically significant
(t(5) = 2.6, p = 0.048). Moreover, there were some interesting
trends in the specific sections and items where subjects
showed improvement. Four out of six subjects (S1, S3, S5,
S6) had lower impairment levels, with baseline FM scores
above 40. These higher-functioning (HF) individuals tended
to have score gains in section A: Shoulder/Elbow/Forearm,
specifically in “volitional movement within synergies” and
“volitional movement mixing synergies,” and in section B:
Wrist. Overall, the HF subjects had larger functional score
increases than the two lower-functioning (LF) individuals (S2
and S4; baseline FM scores less than 30): a 4.0-point increase
for HF versus 2.0 points for LF. The two LF individuals only
made improvements in section D: Coordination/Speed.

B. Movement Quality Improvements

Baseline and end-of-treatment movement quality scores
are shown in Fig. 3. Score values tended to be lower for
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Fig. 3. Individual changes in movement quality scores from calibration
(open circles) to end of training (filled circles). Improvement is indicated by
a decrease (-) in Trial Duration and Number of Peaks and an increase (+)
in Time to First Peak and Minimum Jerk Smoothness. Subjects are ordered
by baseline Fugl-Meyer score, highest to lowest (left to right).

extension than for flexion, but score improvements were
on average higher in extension than in flexion (see Table
II). Results of the Wilcoxon Signed-Rank tests showed
statistically significant improvement in all movement quality
metrics in extension (p = 0.03), but not in flexion. However,
group statistics were skewed by S4’s flexion scores, which
was the only set of scores that got worse. Her extension
scores, on the other hand, were comparable to the rest of the
group’s. The other five subjects showed score improvements
in all metrics, and in similar amounts between flexion and
extension. S2, who had the lowest baseline movement quality
scores, showed particularly large score improvements. Ceil-
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Fig. 4. Correlations between FM scores and movement quality metrics. Both baseline (circles) and post-treatment (triangles) scores are included.

ing effects were evident in Trial Duration, Number of Peaks,
and Time to First Peak for exceptionally high-functioning
subjects.

C. Correlations

Strong relationships were found between FM scores and
MJ Smoothness, Time to First Peak, and Number of Peaks
(R2 = 0.56, 0.54, 0.51, Fig. 4). No relationship was found
between Trial Duration and FM score. For Trial Duration,
baseline scores were more strongly correlated with score
improvement (R2 = 0.58); that is, subjects with the largest
(worst) baseline scores made the largest improvements.

IV. DISCUSSION

Subjects showed impressive functional and movement
quality gains for a 5-week therapy program. Given the very
low number of active repetitions (20 backdrive trials/session,
3 sessions/week), it was expected that subjects with higher
impairment levels would benefit more from this treatment
protocol than the subjects with lower impairment levels.

However, this did not seem to be the case for the clinical
assessments, as FM score increases tended to be larger for the
HF subjects than for the LF subjects (average increase of 3.8
versus 2.0 points, respectively). Furthermore, the HF subjects
tended to improve in section A: Shoulder/Elbow/Forearm,
and in section B: Wrist, where their baseline scores were
already fairly high (24.8/36 and 7.5/10, respectively). While
this seems logical given that the therapy involved elbow flex-
ion/extension, 3 of the 4 HF subjects had already scored the
maximum number of points for the elbow flexion/extension
items at baseline, so their improvements were actually in
items related to shoulder and forearm function. This trend is
encouraging, suggesting that individuals can make functional
gains even if they are not directly related to the specific
rehabilitation task performed.

Interestingly, the item in which subjects made the most
substantial improvements was dysmetria (section D: Coor-
dination/Speed). Dysmetria refers to a movement-planning
impairment demonstrated by the tendency to over- or un-
dershoot a target in point-to-point movements. The FM
dysmetria item is scored from 0 to 2, where 0 = “pronounced
or unsystematic”, 1 = “slight and systematic”, and 2 = “no
dysmetria.” Baseline dysmetria scores across all six subjects

were low: four (S3, S5, S2, S4) had baseline scores of 0,
and two (S1, S6) had baseline scores of 1. Post-treatment,
however, all four of the individuals with baseline scores of
0 improved: two increased by 1 point (S2, S3), and two
increased by 2 points (S5, S4). In other words, of the four
subjects who started with “pronounced or unsystematic” dys-
metria, after only 5 weeks, half of them improved to “slight
and systematic” dysmetria, and the other half improved all
the way to “no dysmetria.” Although our sample size is still
quite small, this finding is encouraging in its implication
of the effectiveness of the movement planning and mental
engagement aspects of this therapy protocol.

The results of the movement quality measures do some-
what support the idea that this therapy was more effective for
subjects with higher impairment levels. S2, who showed the
largest movement quality score improvements overall, was
also the individual with the lowest baseline movement quality
scores, especially in extension. This is likely due, in part, to
the fact that she had the most room for improvement, whereas
ceiling effects were evident for especially high-functioning
subjects (e.g. S1). This was not a limiting factor across the
board, though, as correlations between baseline movement
quality scores and score improvements were low for MJ
Smoothness, Time to First Peak, and Number of Peaks.

Although their improvements were more moderate than
for S2, our subjects overall showed movement quality gains
in both flexion and extension. However, the score increases
in extension were statistically significant and larger than
the increases in flexion scores. As our subjects’ baseline
movement quality scores were lower for extension than
for flexion, this inconsistency seems to provide additional
support for the idea that this therapy protocol is particularly
effective for more highly-impaired movements. That said, the
group statistics were strongly skewed by S4’s flexion scores,
which were the only set of scores that got worse. These
decreases could simply be anomalies attributable to fatigue
or unusually high flexor muscle tone in the last two sessions,
as S4 maintained her usual work schedule during the study
and had a long commute to the research center. Removing
S4 from the group statistics produces marginally significant
p-values (p = 0.06).

Strong correlations were found between FM scores and av-
erage flexion/extension movement quality scores for Number



of Peaks, Time to First Peak, and MJ Smoothness. Celik et
al. [30] also found a strong relationship between FM scores
and MJ Smoothness, even with a slightly narrower range
of FM scores (most greater than 35). It is unsurprising that
similar trends would be found for MJ Smoothness, Time
to First Peak and Number of Peaks, as they all assess the
shape of the velocity profile but with varying degrees of
coarseness. Currently, our data is very bimodal due to the
large difference in scores between the HF and LF subjects,
so it will be interesting to see how strongly that relationship
persists as more subjects complete the therapy.

V. CONCLUSION

This paper presents the preliminary findings of a multi-
year clinical study evaluating the effectiveness of a BMI-
exoskeleton system for elbow flexion/extension rehabilita-
tion in chronic stroke survivors. The first six subjects to
complete the program have shown improvements in both
FM-UE scores as well as in movement quality measures
that relate to movement planning, coordination, and control.
These improvements were made in spite of the fact that
subjects only performed approximately 60 active movement
repetitions per week, which would normally be considered
nowhere near sufficient for inducing neuroplastic changes.
These preliminary results are promising, and suggest that
increasing subject engagement during therapy through the
addition of an intent-detecting BMI can enhance the effec-
tiveness of standard robotic rehabilitation.
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