

ABSTRACT

Fort Neighborhoods: A Set Cover Formulation for Power Domination in Graphs

by

Logan Smith

This thesis introduces a novel separation algorithm for calculating power domination

numbers and minimum power dominating sets in graphs. Additionally, it shows how the

existence of solutions of special forms can be exploited by computational methods. Power

domination studies arise from a key problem in electrical engineering concerning place-

ments of monitoring devices known as Phasor Measurement Units (PMUs). PMUs are

installed in electrical networks for early detection of electrical imbalances, enabling cor-

rective actions to mitigate outages. In graph representations of electrical networks, power

dominating sets denote locations at which PMUs can be placed to monitor entire networks.

Due to PMU installation costs of up to $200,000, it is desirable to identify minimum power

dominating sets and their cardinality, known is the graph’s power domination number. Un-

like prior methods, this work exploits crucial yet previously neglected graph structures: the

neighborhoods of zero forcing forts. Utilizing these structures, algorithms are devised for

calculating minimum power dominating sets and the power domination numbers of graphs.

Computational experiments demonstrating an order of magnitude improvement over previ-

ous methods are presented.

Acknowledgments

I would like to thank all of the mentors and teachers who have helped me get to where I am

today. Without the support and guidance provided by each and every one of you, I would

surely not have made it this far.

Specifically, I would like to thank my advisor Dr. Illya Hicks for his direction in my

academic pursuits and the other members of my Master’s Thesis Committee: Dr. Andrew

Schaefer and Dr. Moshe Vardi.

Finally, I would like to thank my friends and family for their constant patience and

loving support for all of my endeavors.

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Preliminary Graph Theoretical Notation 2

1.2 Power Domination . 3

1.3 Zero Forcing . 6

1.4 Computational Methods in Zero Forcing 10

1.5 Computational Methods in Power Domination 15

1.6 Thesis Outline . 17

2 The Junction Vertex Partition 20
2.1 The Junction Vertex Partition . 21

2.2 Zero Forcing Forts and the Junction Vertex Partition 25

3 Zero Forcing Fort Neighborhoods 27
3.1 The Structure of Fort Neighborhoods . 28

3.2 The Detection of Fort Neighborhoods . 32

3.2.1 Computational Complexity . 33

3.2.2 Integer Program Approach . 40

3.2.3 Random Heuristic Approach . 43

4 Separation Algorithms for Power Domination 46
4.1 Set Covering and Power Domination . 46

iv

4.2 Separation Algorithms for Power Domination 51

4.2.1 General Separation Algorithm . 51

4.2.2 Initial Constraint Sets . 52

4.2.3 Set Cover Models . 54

4.2.4 Violated Constraint Search Methods 55

5 Computational Results 57
5.1 Power Domination Infection Model . 58

5.2 Power Domination Set Cover Model . 60

6 Conclusions and Future Work 63
6.1 Summary of Results . 63

6.2 Future Work . 64

6.2.1 Subproblem Complexity . 64

6.2.2 Minimum Power Dominating Sets of Special Forms 65

6.2.3 Kernelization with Junction Vertex Partition 66

Bibliography 67

1

Chapter 1

Introduction

This thesis proposes new algorithms for the computation of power domination numbers and

minimum power dominating sets in graphs. While several approaches have been previously

published in power domination literature, direct comparison reveals that the proposed algo-

rithms exhibit significantly improved runtime performance. The proposed algorithms depart

from earlier approaches by exploiting the presence of zero forcing fort neighborhoods, a

crucial graph structure that has been neglected in previous methods. It is shown here that

power dominating sets must intersect each of these neighborhood sets. Additionally, this

thesis investigates the properties of zero forcing fort neighborhoods and gives necessary and

sufficient conditions for a set of vertices to be the neighborhood of a zero forcing fort. These

conditions, paired with a novel vertex partitioning scheme, facilitate practical algorithms

for the identification of minimum power dominating sets.

In the remainder of this chapter, preliminary notation, the power domination graph color

changing process, and the zero forcing graph color changing process are introduced. Then,

zero forcing forts are defined and their relation to the study of zero forcing is discussed.

Next, existing computational methods for zero forcing and power domination are reviewed.

Finally, the introduction concludes with an outline of the remaining chapters of the thesis.

2

1.1 Preliminary Graph Theoretical Notation

The following notation will be used throughout this thesis. A graph, G = (V (G),E(G)) is

an ordered pair made up of a set of vertices V (G), and a set of edges, E(G)⊆V (G)×V (G).

Often these sets can be simply abbreviated as V,E, and the graph parameters order, n = |V |,

and size, m = |E|, are used for convenience. Two vertices u,v in V are said to be adjacent if

the edge uv= e is in E. Additionally, e= uv is said to be incident on its end vertices, u,v∈V .

The degree of a vertex v is the number of edges incident on v. The open neighborhood

of a vertex v is denoted N(v) and is defined as the set of vertices adjacent to v, or more

formally: {u ∈V : uv ∈ E(G)}. The closed neighborhood of a vertex is denoted N[v], and

is defined N[v] := N(v)
⋃
{v}. The open neighborhood of a set S is then defined as N(s) :=

(
⋃

v∈S
N(v))\S. Similarly, the closed neighborhood of a set S, is defined as N[S] =

⋃
v∈S

N[v].

The degree of a vertex is denoted deg(v), and is the equal to the number of edges incident on

v. A graph H = (VH ,EH) is said to be a subgraph of G if VH ⊆V and EH ⊆ E. A subgraph

H can be induced in G with a vertex set S, denoted H = G[S], by considering the vertices in

S and the edges with both end vertices in S.

An edge xy is a loop, if x = y. Two edges xy,uv are parallel if x = u and y = v or

x = v and u = y. A graph with no loops or parallel edges is called a simple graph, and all

graphs in this thesis are assumed to be simple. A digraph is a graph with directed edges,

often referred to as arcs. Here, edges are thought of as ordered pairs of vertices instead of

simply as pairs of vertices. Each arc has one end vertex designated as its tail and one end

vertex designated as its head. Arcs are said to be incident on their head vertices, and the

definitions of neighborhoods and degrees of vertices in digraphs can be defined analogously

to their undirected versions. A path in G is a sequence of vertices (v1,v2, . . . ,vk) such that

for i = 1,2, . . . ,k− 1,vi is adjacent to vi+1. G is called connected if for any two vertices

u,v, there is a path from u to v. A graph is called a cycle if it is connected and all vertices

3

have degree 2. A graph is called a tree if it is connected and does not contain any cycles. A

component of a graph is a maximal set of vertices that induce a connected subgraph.

Additional notation and well known properties of graphs are provided by Bondy and

Murty [7].

1.2 Power Domination

The graph theoretical power domination problem is equivalent to a key sensor placement

problem in electrical engineering known as the PMU Placement Problem. In electrical

networks, sensors called Phasor Measurement Units (PMUs) can be installed at power sub-

stations to measure the currents and phase angles of transmission lines incident upon the

substations. By measuring the states of these variables, in all areas of the network, incipient

electrical imbalances can be detected and mitigated. Early detection of these imbalances

enables corrective measures to prevent power outages and potential damage to energy infras-

tructure. While it would be possible to fully observe electrical networks by placing PMUs

at all power substations, the cost of the sensors makes this approach impractical. Instead,

PMUs can be placed at a subset of the substations, allowing a portion of the network to be

directly observed. Then, by using circuit laws such as Kirchhoff’s Voltage Law, the states of

additional areas within the network may be inferred and observed indirectly. Many sensor

placement strategies seek to either directly or indirectly observe the entire network, while

employing a minimum number of PMUs. This question, of how best to place PMUs in

general electrical networks, is referred to as the PMU Placement Problem. Within electrical

engineering literature several approaches and variations to the PMU Placement problem

have been well studied, such as placement in stages [42] and placement under probabilistic

equipment failures [43]. Manousakis, Korres, and Georgilakis [39] provide a taxonomic

survey of placement strategies.

4

Due to the complex chain of inferences needed to determine which substations and

transmission lines can be observed indirectly, many approaches for the PMU Placement

Problem rely upon heuristics or probabilistic placement strategies. However, this chain of

inferences can be simply modeled by abstracting the PMU placement problem into a graph

problem. Electrical networks can be thought of as graphs, where vertices represent power

substations and edges represent transmission lines. In a graph G = (V,E) a set of vertices

S⊆V is designated to have sensors, and the vertices that are colored by the following graph

color changing rule are either directly or indirectly observed by the sensors in S.

Power Domination Color Changing Rule: [5]

1. Color all vertices in or adjacent to S.

2. While there is a colored vertex adjacent to exactly one uncolored vertex u, color u.

The set of vertices which can be colored from an initial set of vertices S is called the

power domination closure of S, and is denoted as clP(S). If clP(S) =V (G), or equivalently

if all vertices in a graph G can be colored by this process, then S is said to be a power

dominating set in G. The cardinality of a minimum power dominating set in G, denoted as

γP(G), is called the power domination number of G. In the example of electrical networks, if

the locations where sensors are placed correspond to a power dominating set in the network’s

graph representation, then the sensors are able to fully observe the electrical network; γp(G)

is the minimum number of sensors needed to fully observe the electrical network. The

decision version of the power dominating set problem in graphs is the following: Given a

graph G, is there a power dominating set of cardinality k or less?

Haynes, Hedetniemi, Hedetniemi, and Henning [33] first established a graph color chang-

ing rule to describe the observability of power substations, based on PMU placements. Since

5

PMUs are able to directly observe the transmission lines incident to their locations, it was

noted that the set of observable locations resembles the well known dominating set problem

in graphs. In their publication, Haynes et al. also show that the power domination problem is

NP-Complete, even in the special cases of bipartite and chordal graphs. It was later further

shown by Brueni and Heath [11] that the power domination problem is also NP-Complete

in the case of planar bipartite graphs. Additionally, the color changing rule provided by

Haynes et al. was later simplified by Benson [5] to the graph color changing rule shown

above. Since then, theoretical and computational studies have been done to bound the sizes

of solutions [46], and to provide polynomial complexity algorithms for finding solutions in

certain graph families [15].

Variants of the power domination problem have also been studied in previous literature,

often motivated by other concerns within electrical engineering. One such example is the

connected power domination problem [10], in which the initial set S is also required to be

connected. This problem is motivated by the need for additional equipment to process the

information collected by PMUs. To lower the expenses of supporting infrastructure, PMUs

can be placed in compact regions so that the number of required processing centers is also

minimized. Another problem variant is the restricted power domination problem proposed

by Bozeman, Brimkov, Erickson, Ferrero, Flagg, and Hogben [8]. In this problem, solutions

are required to include a set of specified vertices. This corresponds to the incremental

nature in which power grids are constructed and adapted over time. In early iterations of

the electrical network, sensors may be incorporated into the power grid. As the network is

then modified, these sensors may remain operational and can be utilized without the cost

of repurchase or reinstallation. Thus, requiring the use of these sensors when considering

the placements of additional sensors allows for the placements of additional sensors to be

optimized in subsequent iterations of the power grid.

6

A wealth of similar graph theoretic problems motivated by practical concerns in PMU

placement still remain, and presents an interesting area of future research. In current PMU

placement literature, the effects of equipment failure [40, 43, 30] and malicious data injec-

tions [38, 35, 22] are highly active, and could motivate such future works.

1.3 Zero Forcing

Zero forcing is a phenomenon that was independently discovered by mathematicians work-

ing to establish bounds for the minimum rank of combinatorial matrices [44] and by physi-

cists seeking to control complex quantum systems while only directly affecting a small

quantum subsystem [12]. Since then, zero forcing has been well studied in mathematical

literature, including notably: characterizations of how the zero forcing number of a graphs

change with respect to graph operations [25], zero forcing in special families of graphs [26],

and bounds on the zero forcing number of graphs [2, 29].

Similar but distinct from the power domination problem, the zero forcing graph process

can also be described by a set of vertices and a color changing rule. Zero forcing is also

a widely studied graph coloring process, and has its own applications and techniques. It is

introduced here because the techniques developed for its study can be adapted for power

domination. Formally, given an initial set of colored vertices in G, the zero forcing color

changing rule is stated as follows:

Zero Forcing Color Changing Rule:

1. While there is a colored vertex adjacent to exactly one uncolored vertex u, color u.

The zero forcing closure of a vertex set S⊆V (G), denoted clZ(S), is defined as the set

7

of vertices that are colored after the zero forcing color changing rule is applied until no

more vertices can be colored. If clZ(S) = V (G), then S is called a a zero forcing set in G.

Additionally, the cardinality of the minimum zero forcing sets in a graph, denoted Z(G), is

the zero forcing number of G. If a vertex v is colored and had a colored neighboring vertex

u such that v was its only adjacent neighbor, u is said to force v. Following a sequence of

forces, a vertex u may be able to force a vertex, despite not being part of the original set

of colored vertices. The orders in which vertices are forced can be recorded to describing

possible ways in which the color changing rule can be applied. These sequences are known

as forcing chains and were introduced in the context of undirected graphs by Barioli, Barrett,

Fallat, Hall, Hogben, Shader, Driessche, and Holst. [4]. Forcing chains are often employed

as logical tools for analyzing the properties of zero forcing sets. The following proposition

makes use of this concept:

Proposition 1.1. If S1 is zero forcing in G, S1 ⊆ S2 ⊆V (G), then S2 is zero forcing in G.

Proof. If S1 is zero forcing, then there exists a forcing chain F in which all vertices in

V (G)\S1 are forced, with initial set of colored vertices S1. Modify F by removing each

force in F in which a member of the set (V (G)\S1)\S2 is forced to obtain F ′. Then for

any force in F ′, consider initial set of colored vertices S2 and without loss of generality

assume vertex v forces vertex u. Since this force is valid in F , at this point in the forcing

sequence each neighbor of v, with the exception of u is colored. In the forcing chain F ′

originating from vertex set S2 each neighbor of v, with the exception of u, is in S2 or colored

at a previous step. Since all vertices in V (G)\S2 are colored by F ′, S2 is zero forcing in

G.

A related concept used for analyzing of zero forcing sets is the propagation time of a

zero forcing sets. This parameter describes the maximum number of forces needed to force

8

any vertex in a graph, with respect to a particular zero forcing set. Beyond a theoretical

curiosity, in applications this parameter relates to how tightly systems are controlled, and

was originally discovered in quantum control theory [41, 13]. Later introduced by Hogben,

Kingsley, Meyer, Walker, and Young [34], the minimum propagation time of a graph, which

is denoted pt(G), is the minimum number of forces needed for any vertex in a graph to be

forced for any minimum zero forcing set in G. In addition to stronger results for special

families of graphs, the following proposition holds for general graphs:

Proposition 1.2. For any graph G, the propagation time pt(G)≤ n−1.

First acknowledged by Dean, Ilic, Ramirez, Shen, and Tian [21], since the zero forcing

color changing rule and the second line of the power domination color changing rule are

identical, the following proposition holds:

Proposition 1.3. [21] S ⊆ V is a power dominating set in G if and only if N[S] is a zero

forcing set in G.

This proposition offers an immediate relationship between zero forcing and power dom-

ination. This correspondence allows for both theoretical and computational results in zero

forcing to be adapted and applied to the study of power domination.

Originally introduced in the PhD Thesis of Caleb Fast [28], subgraphs known as forts

can be used to enhance the study of zero forcing. Intuitively, forts can be thought of as sets

of vertices that cannot be colored by applying the zero forcing color changing rule, if all

members of the fort are all initially uncolored. Formally, forts are defined as follow:

Definition 1.1. A non-empty set of vertices F ⊆ V (G) forms a fort in G if for any v ∈

V (G)\F , N(v)
⋂

F =∅ or N(v)
⋂

F ≥ 2.

As an immediate consequence of the zero forcing color changing rule, since each vertex

that is adjacent to the fort is adjacent to at least 2 members of the fort even if all vertices

9

outside of a fort are colored the vertices inside of the fort cannot be forced. Any fort with

any members that are colored during the zero forcing color changing process must have

began the process with at least one colored vertex. The following theorem generalizes this

idea and is presented by Fast as Theorem 5.2 [28].

Theorem 1.1. [28] If S is a zero forcing set in G and F is a fort in G, then there exists a

vertex v ∈ S∩F .

The set covering approach for computing zero forcing numbers in graphs, discussed in

Section 1.4, is motivated by this theorem. It provides a necessary condition that must be

satisfied by any zero forcing set. If a set S does not contain a specific fort F , then S can be

augmented by adding a member of F . While not directly stated in this theorem, finding a

set that contains a member of all forts in a graph ensures that all uncolored vertices can be

colored by the zero forcing process. This concept is the intuition behind the set covering

approach discussed in the next section.

As a final note on zero forcing, beyond the standard zero forcing problem, several sim-

ilar coloring processes and generalizations of zero forcing have also been studied. These

problems arise in various applications that can be described with slightly altered color chang-

ing rules. Specifically concerned with infectious disease spread, Dreyer and Roberts [24]

introduced a coloring process in which vertices are colored if they have at least k colored

neighboring vertices. A direct generalization of zero forcing is also provided by Amos, Caro,

Davila, and Pepper [2] in which an uncolored vertex can only be colored if it has k colored

neighbors for which it is the only uncolored neighbor. Furthermore, the restricted zero forc-

ing problem analogous to the restricted power domination problem was also introduced by

Bozeman et al. [8]. Related color changing processes such as these are motivated by other

applications, but the ideas presented in this thesis are likely to have parallels in these related

paradigms.

10

1.4 Computational Methods in Zero Forcing

Previous work regarding the computation of zero forcing sets has been done through the use

of Integer Linear Program (ILP) models and exponential complexity algorithms. Discussed

in detail in Section 1.5, one flavor of the ILP models developed for the zero forcing problem

has been modified for use in power domination computational studies.

This ILP model is known as the infection model because it models the way colorings

iteratively spread throughout the graph, akin to the creeping spread of an infection. Expand-

ing upon this notion, the infection model works by considering the possible chronological

chains of forces originating from an initial set of colored vertices. Solutions for this model

represent a zero forcing set and a specific chronological chain of forces such that all ver-

tices in the graph are colored. In its objective function, the model minimizes the cardinality

of the set of initially colored vertices, and thus optimal solutions correspond to minimum

power dominating sets. Intuitively, the solutions for this model offer an optimal solution for

the zero forcing set problem, as well as a certificate of its feasibility. Constraints are then

introduced to verify that the candidate zero forcing set is indeed a valid zero forcing set.

Formally, the model works by considering a constructed directed graph. Given a graph

G = (V,E), a digraph D is obtained by replacing each edge e = xy in E with an arc xy and

yx. The model also introduces S, a binary variable over V indicating the members of a zero

forcing set, X , an integer variable over V indicating the timestep or wave in which each

vertex is forced, and a binary variable y over the arcs in D indicating which vertices are

responsible for forcing other vertices.

Stated below is the zero forcing infection model formulated by Brimkov, Fast, and

Hicks [9], appearing as Integer Program 1.1 :

11

Integer Program 1.1. Zero Forcing Infection Model [9]:

Min: ∑v∈V sv

s.t. sv +∑e→v ye = 1 ∀v ∈V (1)

xu− xv +(T +1)ye ≤ T ∀e = (u,v) ∈ E (2)

xw− xv +(T +1)ye ≤ T ∀e = (u,v) ∈ E,∀w ∈ N(u)\{v} (3)

xv ∈ {0,1, . . . ,T}, sv,ye ∈ {0,1} ∀v ∈V,e ∈ E

In this model, constraint (1) ensures that each vertex is either contained the initial set of

vertices, or is forced by an adjacent vertex exactly once. Constraints (2) and (3) then make

certain that all forcings are valid by the color changing rule. Constraint (2) requires that if

the variable ye is non zero, then the foot of arc e was colored at a time step predating the

timestep that the head of e was colored. Constraint (3) guarantees that the foot of the arc

has exactly one uncolored neighbor at the time the forcing occurs at.

This model also includes an integer parameter T , which is a tunable parameter restricting

the total number of forcing waves solutions are allowed to have. Thus, beyond finding

minimum zero forcing sets, this model can also be used to find minimum zero forcing sets

subject to a maximum propagation time. Note that by Proposition 1.2, if T ≥ n− 1 the

characteristic vector of any zero forcing set in the original graph with its corresponding

forcing edges and timestep information is a feasible solution to 1.1. The correctness of this

model was verified by Brimkov, Fast, and Hicks [9].

Besides the infection model, an alternative approach is introduced by Fast [28] in his

PhD thesis. From Theorem 1.1, it is clear that any zero forcing set must include a member

of each fort. This idea can be exploited to create a set covering problem and corresponding

integer program. In this approach, the vertex sets of forts form sets that must be covered

by a zero forcing set. Thus, the following integer program finds a minimum cardinality set

12

which covers all forts for a graph G.

Integer Program 1.2. Zero Forcing Set Cover IP [28]

Minimize ∑v ∈V sv

Subject To ∑
v∈F

sv ≥ 1 ∀F ∈F

sv ∈ {0,1}

In this model, F is the set of vertex sets of forts in G. Unfortunately, some graphs may

contain an exponential number of distinct vertex sets that are forts. One such example is the

k-star graph, the graph obtained by adding k leaves to a vertex. In this graph any set of two

or more leaves forms a fort, thus there are 2k−2 distinct forts in a k-star.

However, the Zero Forcing Set Cover integer program is a classical set cover problem

which has been well studied in combinatorial optimization literature. As such, well known

results including the necessary and sufficient conditions for set cover constraints to be

facets, provided by Balas and Ng [3], can be considered. In order to reproduce these results,

additional notation must be introduced. Let P := conv{x ∈ {0,1}n : Ax≥ 1} be the set cover

polytope, with rows (A1, . . . ,An) of A indicating sets in a constraint set M.

Theorem 1.2. [3] The inequality ∑
j∈Ai

x j ≥ 1 is facet inducing for P if and only if

1. There exists no constraint set Sk in M such that the constraint set S j contains Sk.

2. For each item not included in the constraint set S j, there exists an item k′ in S j such

that for any constraint set S ∈M that includes an item k such that S⊂ S j∪ k′, then k′

is also in S.

In the case of the Zero Forcing Set Cover Polytope, the first statement of Theorem 1.2

has an intuitive meaning: facet defining constraints for the Zero Forcing Set Cover IP must

be minimal forts. In practicality, this means that constraints corresponding to non-minimal

13

forts can be excluded from the Zero Forcing Set Cover Polytope. In an obvious sense, if a

set contains a smaller set which is covered by a potential solution to the set cover problem,

the larger set is also covered. Thus, this theorem ensures that only constraints corresponding

to minimal forts must be included in the integer program formulation.

To solve this integer program, an algorithm for finding forts is also required. To this end,

Fast [28] proposes several integer program models that can be used to identify forts. These

models find forts that are minimum with respect to a set of vertex weights c, and exclude

certain forbidden vertices in a set S ⊆ V (G). The results presented in Fast’s thesis also

include more complex integer program models which are designed to find facet-inducing

fort inequalities. This goal is accomplished by ensuring that the forts that are found satisfy

the second property of Theorem 1.2. For simplicity, only the most basic of Fast’s integer

program models is reproduced below:

Integer Program 1.3. Fort Finding IP [28]

Minimize ∑
v∈V

cvxv

Subject To ∑
v∈V

xv ≥ 1 (1)

xw− xv + ∑
i∈N(w)\{v}

xi ≥ 0 ∀vw ∈ E (2)

xv ∈ {0,1}, ∀v ∈V

In this model, xv variables indicate the vertices that are potential members of a discovered

fort. Additionally, Fast [28] shows that optimal solutions for this integer program correspond

to minimum weight forts. Constraint (1) ensures solutions are non-empty, while constraint

(2) requires each vertex u with xu = 0 adjacent to an vertex u indicated to be in the fort

is adjacent to at least one other member of the fort. In practice, this model can be used to

generate the constraint set for the Zero Forcing Set Cover ILP. As previously stated however,

the number of constraints may be large relative to the problem size.

14

Ultimately, this problem with the use of a separation algorithm. Similar to the historic

Traveling Salesman Problem studied by Dantzig, Fulkerson, and Johnson [20], this is done

by formulating a solution that satisfies a subset of the constraints for a master problem, and

then incorporating constraints that the interim solution violates. This process of finding

partial solutions and violated constraints is then performed repeatedly until a solution is

found and verified to satisfy all problem constraints. This commonly used scheme often

allows for solutions to be found that satisfy large systems of constraints, without explicitly

finding the entire set of constraints that must be fulfilled [32, 31, 19]. Finding violated

constraints can thought of as a series of subproblems that must be solved while ultimately

progressing towards the goal of solving a master problem. The computational complexity of

solving these subproblems is also a matter of concern. This ensures that the methods used

are efficient as possible, and that exponential complexity algorithms are not used to solve

problems that could instead be solved by more tractable strategies.

In practice, separation algorithms are often computationally efficient methods. As such it

is expected that an efficient separation algorithm should outperform the infection model. In

the case of Zero Forcing and Power Domination, this benefit in performance is demonstrated

by Brimkov, Fast, and Hicks [9], as well as by the work in this thesis. It can be noted however,

that this improvement in performance is dependant on the graphs in which the techniques

are compared. In some types of graphs, such as small world networks and social networks,

the infection model and the separation algorithm has similar performance results. In the

graphs corresponding to electrical networks however, the separation algorithm can be seen

to outperform the infection model. These graphs are often more sparse and may contain

a smaller number of forts, requiring fewer subproblems to be resolved by a separation

algorithm.

However, there is another algorithm in zero forcing literature which can be observed

15

to outperform both of the previously introduced approaches. This approach is known as

the Wavefront Algorithm, and was introduced by Butler, DeLoss, Grout, Hall, LaGrange,

McKay, Smith, and Tims [14], with code available for download. The performance of the

wavefront algorithm was evaluated by Fast [28] and compared with the other methods

introduced in this section. In the case of some types of graphs, the wavefront algorithm

greatly outperforms both the set cover approach and the infection model approach, while in

others its performance is comparable. Brimkov, Fast, and Hicks also consider the wavefront

algorithm, and prove its correctness.

1.5 Computational Methods in Power Domination

Aazami [1] introduces the first integer program formulation for the power dominating set

problem. This formulation is similar to the Zero Forcing Infection Model in that it requires

the use of a parameter T , limiting the number of rounds the color changing rule can be

applied. As with Zero Forcing Infection Model, any power dominating set fully colors V in

fewer than n−1 color changing applications. Thus, T can be chosen to be large enough so

that solutions can always be found.

Several years later, Fan and Watson[27] introduced a similar integer program formu-

lation for a power domination like problem. In their work, they consider optimal sensor

placement in electrical grids, but with the presence of zero injection buses. Zero injection

buses are electrical buses which are known to not affect the voltage levels of adjoining buses.

However, the information imparted by zero injection buses leads to a different problem for-

mulation than the standard graph theoretic power dominating set problem. Thus, the method

presented by Fan and Watson is not immediately comparable to the others presented in this

thesis. For completeness however, this model is acknowledged.

Finally, an additional integer program formulation for power domination was also intro-

16

duced by Brimkov, Mikesell, and Smith [10]. This formulation also includes a parameter T

limiting the total number of color changing rounds. In their study, Brimkov et al. demon-

strate how runtime performance varies significantly with this parameter T , and find no clear

choice for T which offers consistently improved performance. Nonetheless the model they

propose requires a reduced number of variables and outperforms the model introduced by

Aazami in their presented computational experiments. As with Integer Program 1.1, when

considering a graph G the full algorithm constructs a digraph by replacing the edges of G

with arcs facing both directions. The following model is then solved:

Integer Program 1.4. Power Domination Infection Model [10]:

Min: ∑v∈V sv

s.t. sv +∑e→v ye = 1 ∀v ∈V (1)

xu− xv +(T +1)ye ≤ T ∀e = (u,v) ∈ E (2)

xw− xv +(T +1)ye ≤ T +(T +1)su ∀e = (u,v) ∈ E,∀w ∈ N(u)\{v} (3)

xv ∈ {0,1, . . . ,T}, ∀v ∈V,

sv,ye ∈ {0,1} ∀e ∈ E

Also proven by Brimkov, Mikesell, and Smith [10], optimal solutions for the ILP cor-

respond to minimum power dominating sets in G. In the computational experiments per-

formed in Chapter 5, I reimplement this algorithm and use it as a point of comparison

for the methods introduced in this thesis. When applicable, improvements made for these

novel approaches are also applied to this method, and demonstrate consistently improved

performance for this model as well.

While integer program modelss for the power dominating set problem have been intro-

duced in three separate publications, all three models take generally similar approaches. In

essence, each model has variables corresponding to an initially colored vertex set, possi-

ble edges along which colorings occur, and the times at which vertices are colored. Each

17

model then features a system of constraints verifying that the directions and times that

these colorings occur at are valid under the power domination color changing rule. This

thesis works to introduce a method distinct from these previous infection style approaches.

Instead, the methods introduced here more closely resemble the set cover problem reduc-

tion for zero forcing used by Fast [28]. Ultimately, this style of model can be effectively

solved through the use of a separation algorithm, unlike the infection model. This strategy

improves the performance of these novel methods, giving them a strong advantage over the

current approaches seen in the power domination literature.

1.6 Thesis Outline

The primary focus of this thesis is to create a separation algorithm similar to the algorithm

described by Fast [28] in his thesis, but instead for the power dominating set problem. As

was the case for computational approaches in zero forcing, it expected that this approach

will outperform the infection model approaches, which are the current state of the art in

power domination literature.

In order to accomplish this alternative approach for power domination, a new set cover

problem is defined where the neighborhoods of forts correspond to constraints. This ap-

proach requires an analysis of fort neighborhoods, a graph structure that has not been ex-

plored in previous literature. Additionally, a practical means of identifying these new graph

structures is required for a runtime efficient method. To improve the runtime efficiency of

this method, the properties of typical electrical networks is exploited. Using this intuition, I

verify the existence of optimal solutions with a special form. Then, I show how the structure

of these solutions can lead to a dimensional reduction of the power dominating set prob-

lem, further improving the performance of the proposed separation algorithm, as well as

improving the existing approaches for the power dominating set problem.

18

The remaining contents of this thesis are aligned as follows. Chapter 2 provides a

novel vertex partitioning scheme useful for analyzing the properties of power dominating

sets, forts, and neighborhoods of forts. This chapter also gives a proof guaranteeing the

existence of minimum power dominating sets made up entirely of degree three or more

vertices in nearly all graphs. The theoretical results and lemmas given in this chapter create

a framework which is exploited throughout the later chapters.

Chapter 3 uses the findings of Chapter 2 to characterize the forms of fort neighborhoods

in the neighborhoods of high degree vertices. Areas in graphs where high degree vertices

are adjacent to low degree vertices form critical regions which can provide insight on the

detection of fort neighborhoods. With this intuition, necessary and sufficient conditions for

vertex sets to be fort neighborhoods are then derived. These conditions are used to create

an ILP for finding minimum fort neighborhoods. The correctness of this ILP is verified and

used as an approach for solving subproblems in the power domination separation algorithm

in the following chapter. Additionally, the complexity of finding minimal weight fort neigh-

borhoods is explored, and a practical algorithm and random heuristic for finding these sets

are given. These algorithms act as subprocesses for the separation algorithm introduced in

the next chapter.

Chapter 4 continues upon the work in Chapter 3 by using the integer program defined

in Chapter 3 with a set cover formulation for solving the power dominating set problem. A

separation algorithm for this approach is given and proven to correctly identify minimum

power dominating sets. Variations of the separation algorithm are discussed and compared

and details of their implementation are considered.

Chapter 5 compares the performance of the separation algorithm presented in Chapter

4 with the performance of the previous infection model presented by Brimkov, Mikesell,

and Smith [10]. These experiments demonstrate that the the proposed algorithms have

significantly improved performance over previous methods. Furthermore, it is shown that the

variable elimination method introduced in Chapter 2 provides a performance improvement

for both the separation algorithm and the previously introduced infection model.

Finally, Chapter 6 provides a summary of results, and presents several open problems

that are promising avenues for future research efforts.

20

Chapter 2

The Junction Vertex Partition

Since the power domination problem is motivated by an optimization problem in electrical

networks, it is reasonable to consider the typical structures present in graphs corresponding

to electrical networks. The graphs present in standard IEEE data sets often have a subset of

high degree vertices and contain many chains of degree one and two vertices that form paths

adjacent to one or more of the high degree vertices. An example of one such commonly

used graph is presented as Figure 2.1.

The main focus of this chapter is to introduce a graph vertex partition which will be

used in subsequent chapters to analyze the properties of power dominating sets. In this

chapter, I also present a proof guaranteeing the existence of minimum power dominating

sets comprised solely of degree three or higher vertices, in all connected graphs except for

cycles and paths. A similar statement is included by Haynes et al. [33], however I provide

a counterexample to that statement and give the additional assumptions needed for the

statement to be made correct.

Due to the weakness of the necessary assumptions, this special class of optimal solution

exists in virtually all graphs corresponding to electrical networks. Additionally, the existence

of these special minimum power dominating sets allow several computational approaches

presented in later sections to consider only a restricted subset of possible solutions. This

possible restriction of solutions has been previously neglected in computational approaches.

However, exploiting the existence of these sets can significantly reduce the time needed to

find a minimum power dominating set and guarantee its optimality, thereby improving the

21

1 2 3

45

6 7

8

11

10 9

1413

12

Figure 2.1 : A graphical representation of the IEEE 14 Bus system. Electrical networks are

often relatively sparse and contain many low degree vertices.

runtime performance of the algorithms introduced in this thesis, as well as the performance

of previously developed work such as Integer Program 1.4.

2.1 The Junction Vertex Partition

The vertices of a connected graph G can be partitioned into a sets of degree three or more

vertices, which I refer to as junctions, and a set of path inducing subgraphs which may be

each adjacent to one or more of the junctions. I will refer to these path inducing subgraphs

as junction paths. The formal descriptions of these sets are given as follows:

Definition 2.1. Junction Vertex Partition:

J(G) :={v ∈V : δ (v)≥ 3},

P(G) :={P⊆V : P is a component of G[V\J(G)]}.

From the definitions of these sets, it can be seen that each vertex in V is either con-

tained in J(G) or is contained in exactly one junction path P ∈ P(G). Thus, the sets

22

J(G),P1, . . . ,P|P(G)| form a partition of the vertices of G. Several observations regarding

these sets can be made in the case that G is connected and J(G) is non-empty:

Observation 2.1. For any connected graph G such that J(G) is non-empty, each junction

path P in P(G) is such that N(P)⊆ J(G). Additionally, either |N(P)|= 1 or |N(P)|= 2.

Observation 2.1 follows because no paths Pi,Pj can be adjacent to one another. This

implies that the only possible neighbors for these sets are those contained in J(G). Addi-

tionally, if |N(P)| ≥ 3, then P must contain a junction. Since G is assumed to be connected

and to contain a degree 3 or higher vertex, each path P is in the same component as a high

degree vertex. If a path P does not have a neighbor, then it forms its own component in G,

contradicting the connectedness of the graph. Thus |N(P)|> 0 and |N(P)|< 3.

Observation 2.2. For any connected graph G such that J(G) is non-empty, and for any

junction path P in P(G) such that |N(P)|= 1, either one or two vertices in P are adjacent

to a vertex that is not in P.

This second observation provides a characterization for the junction paths based on their

neighborhoods. Thus, a trichotomy for junction paths can be considered. The first type are

pendant paths and have exactly one vertex adjacent to a vertex not in P. The second type are

referred to as pendant cycles, and contain two vertices which are adjacent to some vertex u

not contained in P. While the vertices in P do not induce a cycle in G, P∪{u} does induce

cycle in this case. Finally, the third category of junction paths can be called joining paths.

These junction paths are adjacent to two distinct junctions in J(G). Two of these categories

appear in the IEEE 14 examples shown earlier, as illustrated in Figure 2.2.

Vertices in V (G) can be partitioned in linear time, and the paths in P can classified in

linear time as well. Relevant to the discussion of zero forcing forts, any two pendant paths

that neighbor the same junction vertex form a fort. Likewise, any two joining paths with the

23

1 2 3

45

6 7

8

11

10 9

1413

12

Figure 2.2 : The Junction Vertex Partition for the graph representation of the IEEE 14 Bus

System. Shaded vertices are in J(G) and maximal connected sets of unshaded vertices form

junction paths. One pendant path and five joining paths can be seen in this example.

same neighbors also form a fort, and additionally each pendant cycle forms a fort. Efficient

categorization of pendant paths allows for some forts and fort neighborhoods to be quickly

detected. In the case of fort neighborhoods, the sets obtained this way correspond to distinct

minimal fort neighborhoods. The algorithms introduced in 4 can make use of this procedure

to find a partial list of constraints and improve their overall performance.

The following theorem makes use of the categories describing junction paths to construct

a power dominating set comprised solely of a vertices in the set J(G). Initially starting

from any power dominating set in G, vertices not in J(G) can be removed and replaced

with vertices in J(G) as needed. Furthermore, the cardinality of the constructed set can be

verified to be no larger than the original power dominating set.

24

Theorem 2.1. For every power dominating set S in a connected graph G such that J(G) 6=∅,

there exists a set S′ ⊆ J(G) such that S′ is a power dominating set in G and |S′| ≤ |S|.

Proof. Let S be a power dominating set in G, such that S∩(V (G)\J(G)) 6=∅, and let S′= S.

Then let P = {P∈P : P∩S 6=∅}. For each P∈PS: remove all vertices in P from S′, and

if S′∩N(P) =∅ then add a vertex from N(P) to S′. By applying the power domination color

changing rule to S′ after at most t = maxP∈PS |P| applications of the second step, all vertices

in N[S] are colored. Since this set of colored vertices contains a set that is assumed to be

zero forcing, by Proposition 1.1 it must also be a zero forcing set. Thus clP(S′) =V (G), so

S′ is power dominating. By construction, S′ ⊆ J(G), and |S′| ≤ |S|.

Corollary 2.1. For any connected graph G such that J(G) is non-empty, there exists a set

of vertices S⊆ J(G) such that S is a minimum power dominating set in G.

Proof. Let G be a connected graph such that J(G) is non-empty. Theorem 2.1 can then be

applied to any minimum power dominating set in G, ensuring the existence of a minimum

power dominating set S′ contained in J(G).

Additionally, this result offers a bound on the power domination number of connected

graphs with at least one vertex of degree three or more. While this bound is not strong in

the case graphs with minimum degree three or more, in case of tree or tree like graphs such

as those associated with power grids, this bound may be tighter than other bounds in power

domination literature.

Note that Corollary 2.1 is similar to the claim posed by Haynes et al. [33]. However, the

authors there do not provide a proof, nor do they include the necessary assumption that the

graph is connected. In the case that G is a graph with J(G) 6=∅ and has a component without

a degree three or more vertex, no power dominating set exists made solely of vertices in

J(G). Thus, the additional assumption is indeed needed. While this difference is a relatively

25

minor distinction for a theoretical upper bound on γP(G), this detail is the difference between

correctness and infeasibility for Model 4.2 in Chapter 4.

Observation 2.3. There exists a graph G with no zero forcing set S contained in J(G).

Unlike power domination sets, the corresponding statement for Corollary 2.1 is not valid

when zero forcing sets are considered. This is demonstrated with a simple counterexample.

Consider a claw graph: the graph obtained by appending 3 leaves to a vertex. The set of all

junctions in this graph is just the original vertex, which is not a zero forcing set. In Chapter

4, Corollary 2.1 can be used to motivate a dimension reduction for computational techniques

introduced there. This observation shows that this result cannot be simply extended to zero

forcing as well.

2.2 Zero Forcing Forts and the Junction Vertex Partition

In this section, I give two basic lemmas regarding the structure of forts, fort neighborhoods,

and the sets given by the junction vertex partition. In essence, the sets given by the junction

vertex partition, namely J(G),P1, . . . ,Pk where Pi ∈P(G) for i = 1, . . . ,k, can be thought

of as pieces adding up to create fort neighborhoods. This idea is formalized in the necessary

and sufficient conditions for fort neighborhoods: Theorem 3.1 in Chapter 3. To show this

however, several lemmas must be established. To ease notation, another definition is intro-

duced; any vertex v in a junction path P is called a header of P if it is adjacent to a vertex

in J(G). Then, consider the following lemmas:

Lemma 2.1. Let F be a fort in graph G and P be a junction path such that P∩N[F] 6=∅.

Then for any header v adjacent to junction u, at least one of u,v is in F . Additionally, any

leaf w in P is in F .

Proof. First, I show that if w ∈ P and w is a leaf, then v is in N[F]. Assume that w is a

leaf in P, and to verify the contrapositive of this statement, assume that v 6∈ F . Then by the

definition of a fort, any node adjacent to v cannot be in F . This argument can be repeated

for each vertex in P, and then any junction adjacent to P (if one exists).

Next, consider the case where v is a header of P and adjacent to a junction u. Also

proving this statement using its contrapositive, if neither v nor u are in F , then any other

neighbor of v cannot be in F . Repeating this argument iteratively for each other member of

P, and the other junction in N(P) if one exists, it is shown that P∩N[F] =∅.

This lemma shows that if a junction path intersects the neighborhood of a fort, then

the ends of that junction path must also intersect the neighborhood of the fort. The next

lemma shows that this relation between junction paths and the neighborhoods of forts is

much stronger. In fact, if a junction path intersects the closed neighborhood of a fort at all,

it must be entirely contained in closed neighborhood of the fort.

Lemma 2.2. For any graph G with a fort F and junction path P, if N[F]∩P 6= ∅ then

P⊆ N[F].

Proof. It can first be shown that for any graph G with fort F and junction path P, if N[F]

intersects P then for any adjacent u,v in P, at least one of u,v are in F . Again, by the same

arguments used to shown Lemma 2.1, assume that neither u nor v are in F . Then any other

vertices adjacent to u or v are also not in F . This argument is repeated for each vertex in P,

and any junctions in N(P). Thus if P∩N[F] 6=∅, then for any 2 adjacent vertices in P, at

least one is in F . Alternatively, if P is made up of a single vertex and intersects N[F], then

clearly P is entirely contained in N[F]. In all cases, P⊆ N[F].

27

Chapter 3

Zero Forcing Fort Neighborhoods

This chapter is focused upon investigating the neighborhoods of zero forcing forts. Simply

referred to as fort neighborhoods, the relationship between these structures and the power

dominating set problem is akin to that of zero forcing forts and the zero forcing set problem.

Forts indicate areas within graphs that cannot be colored by either the second step in the

power domination color changing rule or the zero forcing color changing rule. Since the

first step in the power domination color changing rule colors all neighbors of the initially

colored vertex set, it is possible for vertices in forts to be colored despite starting with no

colored members. This is not the case for the zero forcing color changing rule. Because of

this difference, the neighborhoods of these forts are as crucial to the power dominating set

problem as the forts themselves.

The contents of this chapter are arranged as follows. In the first section, the structure

of fort neighborhoods is investigated. A set of necessary and sufficient conditions for de-

termining if a vertex set S is the neighborhood of a fort are then given. These conditions

build upon the vertex partition scheme defined in Chapter 2, and show that a fort with closed

neighborhood S can always be constructed if two easily verified properties are satisfied.

Using these necessary and sufficient conditions, a proof is given showing that the vertices

of any minimal fort neighborhood induce a connected subgraph. These two characteristics

are powerful tools that can be utilized when reasoning about fort neighborhoods in graphs.

Employing these tools, I then give an example of a graph which can be verified to contain a

subexponential number of minimal fort neighborhoods.

28

Section 3.2 explores both the computational complexity and two practical options for

detecting minimum weight fort neighborhoods in graphs. In Chapter 4, the minimum weight

fort neighborhood problem becomes the a subproblem that must be repeatedly addressed

in the separation algorithms introduced there. Here, the details of this subproblem are the

main focus and techniques for detecting these structures are introduced.

3.1 The Structure of Fort Neighborhoods

I first present necessary and sufficient conditions for a set S to be a the neighborhood of

a fort in a graph G. In addition to offering an efficient way to determine if a set is the

neighborhood of a fort, these conditions offer insights into the fundamental nature of fort

neighborhoods.

Theorem 3.1. Necessary and sufficient conditions for fort neighborhoods:

There exists JS ⊆ J(G),PS ⊆ P(G) such that for S :=
(⋃

Pi∈PS

Pi
)
∪ JS,JN := {v ∈ JS :

|N(v)∩ (V\S)| ≥ 1},

the following properties hold:

1. For any junction v adjacent to a junction path P ∈PS, v is in JS,

2. For any junction u in JN , |(N(u)\JN)∩S| ≥ 2,

if and only if there exists a fort F in G, such that N[F] = S.

Proof. First, note that J can be partitioned into three disjoint sets: J0,JN , and J\JS, where

J0 := { j ∈ JS : |N(j)∩ (V\S)|= 0}.

To prove the sufficiency of these two conditions, suppose there exist PS,JS such that

S :=
(⋃

Pi∈PS

Pi
)
∪ JS, and JS,PS satisfy JS ⊆ J(G),PS ⊆P(G), and Properties 1 and 2.

Then, let F := J0∪PS. It will suffice to show that S = N[F], and that F is a fort.

29

S = N[F] can be shown by set inclusions. If v ∈ S either there exists a P ∈PS such that

v ∈ P,v ∈ J0, or v ∈ JN . If v ∈ P or v ∈ J0, then v ∈ F. If v ∈ JN ,, then by Property 2, v is

adjacent to at least 2 vertices in F . Next, to show that N[F]⊆ S, note that if v ∈ N[F] either

v ∈ F , v ∈ N(u), or v ∈ N(P), for some u ∈ J0, or P ∈PS. All neighbors of u are in S, and

by Property 1 any junction that is adjacent to P is in S. Thus S = N[F].

F can be shown to be a fort by definition. That is, ∀v ∈ V\F, either |N(v)∩F | = 0 or

|N(v)∩F | ≥ 2. Let v ∈ V\F. If v 6∈ N(F), then |N(v)∩ f | = 0. If instead v ∈ N(F), then

there exists a w ∈ F that is adjacent to v. By property 1 and the definition of J0, any vertex

that is adjacent to a path in PS or a junction in J0 must be in S. Thus v ∈ S\F , so v ∈ JN .

Additionally, consider the following identity:

(N(v)\JN)∩S = N(v)∩ (S\JN) = N(v)∩F.

Making use of this identity and the assumption property 2 is satisfied:

|(N(v)\JN)∩S|= |N(v)∩F |= |(N(v)\JN)∩S| ≥ 2.

By definition, F is a fort.

To show the necessity of these conditions, assume that F is a fort in G. Then, let JS :=

J ∩N[F], and PS := {P ∈P : P∩N[F] 6= ∅}. It will suffice to show that JS ⊆ J, that

PS ⊂P , and that Properties 1 and 2 hold. Clearly, JS ⊆ J. By Lemma 2.2, no junction path

can be partially contained in the neighborhood of a fort; PS ⊆P .

To prove property 1, note that ∀P ∈PS,P ⊆ N[F]. Thus by Lemma 2.1, for any v ∈

N(Pi), v must be in N[F], so Property 1 is satisfied. Property 2 can be shown to hold by using

the set equivalence identity shown earlier: N(v)∩F = (N(v)\JN)∩S. Since F is assumed

to be a fort,

|(N(v)\JN)∩S|= |N(v)∩F | ≥ 2.

Thus Property 2 is also satisfied, concluding the proof.

30

Using the conditions presented by Theorem 3.1, the structural features of fort neighbor-

hoods can be better understood. In particular, the following theorem describes an additional

necessary condition for all minimal fort neighborhoods:

Theorem 3.2. For any graph G, if M ⊆V (G) is a minimal fort neighborhood, then G[M]

is connected.

Proof. This statement can be shown by its contrapositive. Let G be a graph, and M be a fort

neighborhood in G such that G[M] is disconnected. It can be shown that each component of

G[M] forms a fort neighborhood. Let M0 be the vertex set of a component in G[M]. Then

for any P ∈P(G) such that P∩M0 6=∅, P is contained in M0. Since P⊂M, by Theorem

3.1 N(P) ⊂M, and thus N(P) ⊂M0. In G, M0 satisfies the first of the two necessary and

sufficient conditions for vertex sets to be fort neighborhoods. For any vertex v∈ J(G)∩M0, if

v is adjacent to a vertex not in M then since v∈M and M is a fort neighborhood in G, v must

be adjacent to at least two vertices that are in J(G) with a neighborhood entirely contained

in M or contained in some P ∈P(G). Thus by Theorem 3.1, M0 is a fort neighborhood in

G and M is not minimal.

In particular, these two theorems are useful for reasoning about minimal fort neighbor-

hoods that may be present in general graphs. An example of such use can be seen in the

proof of the next theorem. This theorem demonstrates that the number of distinct minimal

fort neighborhoods in graphs may increase at a subexponential rate with respect to the order

of graphs. To do so, I introduce the graph parameter mmin(G), to denote the number of

distinct minimal fort neighborhoods in a graph G. Then, to prove a lower bound on the po-

tential number of minimal fort neighborhoods in sequence of graphs, consider the following

theorem:

Theorem 3.3. There exists a family of graphs for which mmin(Gk) = O(2
√

v(Gk)).

31

Figure 3.1 : Examples of construction used for Theorem 3.3, where k = 4,5

Proof. This can be shown by direct construction. Consider the family of graphs generated by

the following procedure. For any positive integer k ≥ 3, define Gk to be the graph obtained

by subdividing each edge of the complete graph Kk, and appending a leaf to each node

originally in V (Kn). Examples of the construction for k = 4,5 are given as Figure 3.1.

Next, consider the vertex set M obtained by fixing a cycle in V (Gn), removing a vertex

from said cycle to form a path inducing vertex set, and the leaf adjacent to each end of

the path. The set of degree 1 and 2 vertices in M form a fort for which M is the closed

neighborhood.

M can be shown to be minimal by contradiction. Assume that M is not minimal. Then

there exists some M0 ⊂M such that M0 is a minimal fort neighborhood. By Theorem 3.2,

any minimal fort neighborhood induces a connected subgraph. Since G[M] is a path, G[M0]

is also a path graph. Then, if M0 contains both degree one vertices in M, then since M0 is

connected, either M0 ⊆M or M0 contains at least one vertex not in M. The second option

contradicts M0 ⊂ M. Alternatively if M0 does not contain at least one of the degree one

vertices in M, then it is either an isolated node, or one of its end vertices is not a leaf in Gk.

There are no isolated nodes in Gk with k ≥ 3, so M0 cannot be a single node.

32

If one of the end vertices of M0 is not a leaf then that end vertex is either a node originally

in Kk, thus has a neighbor that is adjacent to only one member of M0 violating the second

condition of Theorem 3.1, or the end vertex was added at the subdivision step and has only

one adjacent member of M0, violating the first condition of Theorem 3.1. Thus, M0 is not a

fort neighborhood, so M is indeed minimal.

Finally, the number of vertex sets in Gk that can be obtained by this process can be

counted as follows:

mmin(f)≥
k

∑
i=3

(
k
i

)
(i)

=
k

∑
i=0

(
k
i

)
(i)−O(n3)

=2k−O(n3)

=O(2k) = O(2
√

v(Gk)).

3.2 The Detection of Fort Neighborhoods

Finding fort neighborhoods is the backbone of the separation algorithms presented in this

thesis. Shown in Chapter 4, these sets correspond to constraints in the master problem.

Quickly identifying these violated constraints can significantly improve runtime perfor-

mance. In this section, I discuss the computational complexity of identifying these violated

constraints and the related subproblem in the zero forcing separation algorithm presented

by Fast [28]. Then, I provide both a polynomial time heuristic and an exponential time exact

algorithm for generating violated constraint sets.

33

3.2.1 Computational Complexity

The decision version of the min weight fort neighborhood problem can be formally stated

as follows:

Problem: Min Weight Fort Neighborhood

Instance: Graph G, Vertex Weights W ∈ [0,1]n, Integer k

Question: Does G contain a fort neighborhood of weight less than k?

In the case that k = 1, this problem exactly defines the subproblems that the separation

algorithm in Chapter 4 must solve. The remaining parameters are given by the graph G that

is considered and fractional vertex weights in the interval [0,1], which are determined by

the optimal solution of a LP relaxation of the master problem. Presently, I have been unable

to resolve the computational complexity of the above problem. However, the following anal-

ysis on a related problem may still provide some light on the complexity of this problem, as

well as the tractability of possible algorithms that could be developed. Consider the problem:

Problem: Restricted Min Weight Fort Neighborhood

Instance: Graph G, Vertex v, Vertex Weights W ∈ [0,1]n, Integer k

Question: Does G contain a fort neighborhood of weight less than k that contains v?

Intuitively, one approach for finding fort neighborhoods of low vertex weight is to con-

struct a fort neighborhood from a specific vertex or a set of vertices, potentially improving

a solution with some iterative process through a local search. In this case, a vertex or set of

vertices may be known to be in the fort neighborhood that is being constructed. This type of

approach corresponds to the restricted min weight fort neighborhood problem listed above.

34

However, this problem can be verified to be NP-Complete in general:

Theorem 3.4. The Restricted Min Weight Fort Neighborhood problem is NP-Complete.

Before proving this theorem, it is easier to see that this is also true for the analogously

posed question regarding forts. The computational complexity of the decision problem for

minimum weight forts is also of interest for the zero forcing separation algorithm intro-

duced by Fast [28]. However, this problem is also unaddressed in previous literature. Here I

provide a polynomial reduction for the restricted minimum weight fort problem to the well

known 3-SAT problem. Consider the following problem statements and theorem:

Problem: Restricted Min Weight Fort

Instance: Graph G, Vertex v, Vertex Weights W ∈ [0,1]n, Integer k

Question: Does G contain a fort of weight less than k that contains v?

Problem: 3-SAT

Instance: Boolean formula f in conjunctive normal form

Question: Is there a variable assignment such that f is satisfied?

35

v2

¬v2

v̂2

v1

¬v1

v̂1

vn

¬vn

v̂n

c1

c2

cm

w

Figure 3.2 : Visual representation of the construction used in proof of Theorem 3.5

Theorem 3.5. The Restricted Min Weight Fort Problem is NP-Complete.

Proof. Any candidate set of vertices, F in a graph G, can be verified to be a fort of weight

less than k by checking each vertex in V (G)\F to verify that it is not adjacent to exactly 1

member of F and by checking that the total weight of vertices in F is less that k. Thus, the

Restricted Min Weight Fort problem is in NP.

To show that this problem is also NP-Hard, a construction given a general 3-SAT prob-

lem with boolean formula f with clauses C1, . . . ,Cm and variables V1, . . . ,Vn can be built. Let

G be the graph obtained by the following: Add a vertex ci for each clause Ci in f , vertices

vi,¬vi, v̂i for each variable Vi in f , and a vertex w. Then, add any edge vici if Vi appears in

36

clause Ci. Likewise, add the edge¬vici if¬Vi appears in clause Ci. Next, add edges viv̂i,¬viv̂i

for each i in 1, . . . ,n. Finally, add edges c jw, v̂iw for i = 1, . . . ,n, j = 1, . . . ,m. Since the

total number of vertices and edges built in this construction is linear with respect to the size

of f , this construction can be built in a polynomial number of steps. A visualization of this

construction is provided in Figure 3.2.

In this newly constructed graph G, assign vertex weights as follows: let vi,¬vi have

weight 1 and c j, v̂i have weight n+1 for i = 1, . . . ,n and j = 1, . . . ,m. Let w have weight 0.

Then, consider the Restricted Minimum Weight Fort Problem with mandatory vertex w, the

vertex weights assigned for G, and the integer n+1. Next I will show that f is satisfiable if

and only if G has a fort F containing w of total vertex weight less than n+1. Moreover, the

vi,¬vi vertices contained in F indicate a variable assignment that satisfies f .

First, assume that f is satisfiable with variable assignment Vf . Then it is easy to see that

the union of w and the corresponding vi,¬vi in Vf form a fort, call it F , in G. Since there

are a total of n variable assignments and m has weight 0, this set has weight n.

Alternatively, assume that F is a fort in G that contains w and has total vertex weight

less than n+1. Then, F cannot contain any of the c j, v̂i vertices as they are of weight n+1.

Since they are adjacent to w, which is a member of fort F , they must each be adjacent to at

least one other member of F . Thus for each vi,¬vi pair, at least one vertex is in F . By the

pigeonhole principle, if any vi,¬vi pair are both contained in F , then another pair is entirely

excluded from F . Thus, each vi,¬vi pair must have exactly one member contained in F . The

vi,¬vi included in F therefore form a valid variable assignment for f .

Finally, this variable assignment is shown to satisfy f . Since each ci is adjacent to the

fort F but not in F , it must also be adjacent to another member of F . Each ci node is only

adjacent to w and vertices corresponding to variable assignments in its corresponding Ci

clause. Thus, the other member of F that ci is adjacent to must also correspond to a variable

37

assignment in Ci. The vi,¬vi included in F encode a variable assignment that satisfies f .

Thus, the Restricted Min Weight Fort Problem is NP-Complete.

A similar construction can also be used to prove Theorem 3.4:

Proof of Theorem 3.4. The conditions given by Theorem 3.1 can be used to verify in a

polynomial number of steps, that a set of vertices is in fact the neighborhood of a fort.

Checking that a candidate set has total vertex weight less than or equal to k and contains

a specified vertex can also be done in a linear number of steps. Thus, the Restricted Min

Weight Fort Neighborhood Problem is in NP.

Next, a construction similar to the Restricted Min Weight Fort construction can be

considered. For boolean formula f , with variables Vi for i = 1, . . . ,n and clauses C j for

j = 1, . . .m, let G be the graph obtained by the following steps: let there be a vertex c j

for each clause C j, vertices vi,¬vi, v̂i for each variable Vi, and additional vertices wman,

w f ort ,wout , and w0. Then add edges viv̂i, ¬viv̂i, v̂iw f ort , and v̂iwout for each variable Vi and

edges c jw f ort and c jwout for each clause C j. Next, add an edge between vertices vi and c j

for each variable assignment Vi appears in a clause C j, for each clause in f . Likewise, add

edge ¬vic j for each variable assignment ¬Vi that appears in clause C j. Finally, add edges

woutwman, w f ortwman, and w0wman. In totus, this construction contains m+3n+4 vertices

and 5m+4n+3 edges; it can be constructed in a polynomial number of steps with respect

to the size of the 3-SAT problem that is encoded. A visualization for this construction is

provided in Figure 3.3.

Vertex weights for G can be assigned as follows. Let vertex wout have weight n+1 and

vertices vi,¬vi have weight 1 for each variable Vi in f . Let all other vertices have weight

0. Next I will show that f is a satisfiable formula if and only if G has a fort neighborhood

containing wman of total vertex weight less than n+1. Moreover, the variable assignment

38

v2

¬v2

v̂2

v1

¬v1

v̂1

vn

¬vn

v̂n

c1

c2

cm

w f ort

wman

wout

w0

Figure 3.3 : Visual representation of the construction used in proof of Theorem 3.4

39

vertices that this fort neighborhood contains encode a variable assignment that satisfies f .

First, assume that f is satisfied by some variable assignment Vf . The union of {w f ort ,w0}

and the set of vertices vi,¬vi corresponding to variable assignments in Vf form a fort in G.

Then the union of {wman,w f ort ,w0}, the corresponding variable assignment vertices vi,¬vi

in Vf , v̂i for each variable Vi, and c j for each clause C j forms the neighborhood of that fort.

This fort neighborhood includes wman and has total vertex weight n.

Alternatively, assume that M is the neighborhood of a fort in G, contains vertex wman,

and has total vertex weight less than n+1. Since wman is in M but is also adjacent to a vertex

not in M, by the second condition of Theorem 3.1 the remaining two neighbors of wman must

have neighborhoods entirely contained in M. Equivalently, since wman is in the neighborhood

of a fort but as adjacent to a non member of M, its remaining neighbors w f ort ,w0 must be

in the fort itself. Each clause vertex c j must be adjacent to another member of this fort as

well, since these vertices are also adjacent to w f ort and wout , as must each v̂i vertex. By the

same pigeonhole principle argument presented in Theorem 3.5, each v̂i is adjacent to no

more than one vertex in {vi,¬vi} contained in M. Thus, each variable Vi has exactly one

corresponding variable assignment vertex in M. This forms a valid variable assignment for

M. Then since each clause vertex c j must be adjacent to at least one additional member of

M and is only adjacent to variable assignments that satisfy it, this variable assignment must

satisfy f . Thus, fort neighborhoods with the assumed conditions encode satisfying variable

assignments to the original 3-SAT problem. The Restricted Min Weight Fort Neighborhood

Problem is NP-Complete.

The construction used to prove Theorem 3.4 can also be used to show that finding a

minimum weight fort neighborhood M with a vertex contained in M and vertex contained

not in M is NP-Complete to solve in general. The hardness of this problem in the case that

no vertex is required to be contained in the fort neighborhood set is unknown.

40

3.2.2 Integer Program Approach

Given the necessary and sufficient conditions for a vertex set to be the neighborhood of

a fort presented as by Theorem 3.1, an integer program can be used to identify minimum

weight fort neighborhoods. This presents a first option for finding minimum weight fort

neighborhoods. While this approach is based upon an exponential time algorithm, computa-

tional results given in Chapter 5 indicate that this approach is computationally effective for

the typical problems seen in power domination literature. This model is presented as Integer

Program 3.1.

When a fort neighborhood is found using Integer Program 3.1, the model’s solution also

encodes a fort with that neighborhood. In addition, each vertex in graph G is considered to

be a member of one of three sets. The set O is made up of vertices that are not contained

in the neighborhood of the discovered fort. The set B are the vertices in V (G) that are in

the neighborhood of the fort, but are not in the fort itself. Finally, the set I indicates which

vertices are members of the candidate fort. Using the necessary and sufficient conditions for

fort neighborhoods, members of these sets must each satisfy conditions that can be verified

with a system of constraints.

Finally, this model incorporates vertex weights in its cost function as cv for v ∈ V (G)

and assumes that the graph G is connected and contains a vertex of degree 3 or more. If

G is not connected or does not contain a vertex of degree 3 or more, it can be efficiently

detected. In this first scenario, the low degree component is itself a fort neighborhood and

the only minimal fort neighborhood with vertices in that component. Components with at

least one degree 3 or more vertex satisfy the assumptions of this model and can be solved

directly. Without loss of generality then, we can assume that G is connected and has a vertex

of degree at least 3.

41

Integer Program 3.1. Min Fort Neighborhood Model

Minimize ∑
v∈V

cv(I(v)+B(v))

Subject To ∑
v∈V

I(v)+B(v)≥ 1 (1)

I(v)+B(v)+O(v) = 1 ∀v ∈V (2)

B(v) = 0 ∀v ∈V : deg(v)≤ 2 (3)

|N(v)| ∗ I(v)+ ∑
u∈N(v)

O(u)≤ |N(v)| ∀v ∈V (4)

∑
i∈N(v)

I(v)≥ 2B(v) ∀v ∈V : deg(v)≥ 3 (5)

I,B,O ∈ B|V |

In the Min Fort Neighborhood Model, constraints intuitively enforce the following

features. Constraint (1) ensures that the empty set is not a valid solution. Constraint (2)

forces each vertex to be a member of exactly one of the I,B,O sets. Constraint (3) ensures

that no vertices that are not junctions in G are contained in B. The fort constructed in the

proof of Theorem 3.1 shows that if a set is the neighborhood of a fort, then a fort F with

only junctions in N[F] exists. Next, Constraint (4) ensures that vertices in the fort are not

adjacent to any vertices not adjacent to the neighborhood of the fort. Finally, Constraint

(5) requires that each vertex in the open neighborhood of the fort is adjacent to at least 2

members of the fort. This is formally shown in the following theorem.

Theorem 3.6. The optimal solution of Integer Program 3.1 is a minimum weight fort

neighborhood for graph G.

Proof. To prove this theorem it suffices to show that solutions for the model each correspond

to fort neighborhoods in G, that each fort neighborhood corresponds to a feasible solution

for the model, and that the objective function correctly optimizes the minimum weight fort

neighborhood.

42

Let O,B, I be the solution for Integer Program 3.1. Since these cases can be easily de-

tected and resolved as discussed before, without loss of generally assume that G is connected

and contains at least one vertex of degree 3 or more. Since O,B, I are binary vectors and

Constraint (2) requires that for each v in V (G) exactly one of O(v),B(v), I(v) is non-zero,

these sets form a partition for the vertices of G. By Constraint (1), I∪B cannot be an empty

set. Next, it is shown that I∪B forms the vertex set of a fort neighborhood by verifying that

this union satisfies the necessary and sufficient conditions given in Theorem 3.1.

To see that the first property of Theorem 3.1 is satisfied, consider any junction path P in

G. Constraint (3) requires that each vertex in P is either in I or O. Constraint (4) ensures that

any vertex in both P and I cannot have neighbors are in O. Thus, if any vertex in P is in I,

then all vertices in P are in I, and all junction vertices adjacent to P are in I or B. Therefore

I∪B satisfies Property 1.

To see that the second property of Theorem 3.1 is satisfied, consider any junction v ∈

I ∪B. If v is in I then all neighbors of v are in I or B and the assumptions of the second

property do not apply to v. In that case that v is in B, Constraint (5) requires that v is

adjacent to at least two vertices in I, thus Property 2 is also satisfied so I∪B forms a fort

neighborhood.

Alternatively if M is a fort neighborhood in G, V (G) can be partitioned in the following

way: for each vertex in V (G)\M, let v ∈ O. For each degree 2 or less vertex in M let v ∈ I.

For each degree 3 or more vertex v in M such that N(v) ⊂ M, let v ∈ I, and let v be in B

otherwise. These assignments satisfy all constraints in Integer Program 3.1 so each fort

neighborhood corresponds to a feasible solution for the model. Since the objective function

of this model is just the total vertex weight of the identified fort neighborhood, solutions

corresponding to minimum weight for neighborhoods are optimal solutions.

43

3.2.3 Random Heuristic Approach

The integer program approach for finding violated constraints is guaranteed to find fort

neighborhoods with total vertex weight less than one if they exist, but it may be more

computationally efficient to find violated constraints by using a heuristic with worst-case

polynomial complexity. To this end, the following heuristic is presented.

The heuristic presented here works by randomly generating vertex sets S such that

V (G)\S has total weight less than k. Then if S is not a power dominating set, the complement

of the power dominating closure of S forms a fort in G. Moreover, its closed neighborhood

does not intersect the closed neighborhood of the initial set S, and thus has total weight less

than k as desired.

Algorithm 3.1 Fort Neighborhood Random Heuristic

1: W (v) = Non negative valued weights
2: R = {v ∈V (G) : W (v)> 0}
3: Rsum = sum of W (v) for each v in R
4: if Rsum < k then
5: return V (G)

6: i = 0
7: while i < MaxIterations do
8: sum = 0; R′ = R; S =∅
9: while sum≤ Rsum− k do

10: Randomly select r in R′

11: S = S∪ r
12: sum = sum+W (r)
13: R′ = R′\{r}
14: if V\clP(S) 6=∅ then
15: return N[V\clP(S)]
16: i = i+1
17: return No solution found

In the following theorem, I formally show that the fort neighborhoods identified by this

algorithm have total vertex weight less than k. In addition, I show that this algorithm has

44

worst case complexity O(n3).

Theorem 3.7. Program 3.1 returns a fort neighborhood of weight less than k or nothing

with worst case O(n3) time complexity.

Proof. Let G be a graph, MaxIterations≥ 1, W : V → [0,∞). Then due to line 4 if Rsum < k,

then at line 5 the algorithm returns V (G), which is trivially a fort neighborhood with weight

less than k. Assume instead that Rsum ≥ k. At each iteration of the while loop in line 7, S is

initialized to be ∅, R′ to be R, and sum = 0. Then, with each application of the while loop

at line 9 an element is removed from R′ and added to S, and sum is updated. This continues

until sum > Rsum− k. At most n elements can be exchanged by this process; since Rsum < k

this while loop executes at least once and terminates when or prior to when all elements

have been exchanged.

When the while loop at line 9 is exited, sum > Rsum− k. The IF statement at line 14

evalutes as true if and only if V\clP(S) 6= ∅. Thus if a vertex set is returned at line 15,

V\clP(S) 6=∅. By definition S is not a power dominating set and V\clP(S) is a fort. Since

N[V\clP(S)]⊆V (G)\S, the total weight of N[V\clP(S)]< k. Thus, if a vertex set is returned

at line 15, it must be a fort neighborhood of weight less than k.

To verify the time complexity of Algorithm 3.1, note that lines 1 through 6 each exe-

cute in linear or constant time. Additionally, the while loop at line 7 executes a constant

number of times as specified by the user parameter MaxIterations. The while loop at line 9

then executes a O(n) times. Since clP(S) can be calculated in O(n2) time, the overall time

complexity of this heuristic is worst-case O(n3).

In the next chapter, I show a way that this program can be utilized for generating violated

constraints for the Linear Program (LP) relaxation of Integer Program 4.1. Specifically, this

is done by setting k = 1 and the vertex weight function W to be the vertex weights of

the fractional optimal solution for the separation algorithm’s master problem. While this

program is not guaranteed to find an uncovered fort neighborhood, even in one exists, it

has worst-case polynomial computational complexity. If no set is found after a maximum

number of iterations is reached, Integer Program 3.1 can be used to verify that none exist or

identify an undetected violated constraint. For large problem instances, this heuristic may

outperform the approach offered by solely using Integer Program 3.1.

46

Chapter 4

Separation Algorithms for Power Domination

The structure of power dominating sets is intimately related to the presence neighborhoods

of zero forcing forts. The work in this chapter formally explores this idea, and relates the

results of Chapter 3 for use in practical computations. For example, a large portion of

Chapter 3 was devoted to deriving necessary and sufficient conditions for sets to be fort

neighborhoods. In this chapter these conditions are exploited to create methods for finding

fort neighborhoods via integer programs or random heuristic methods.

The contents of this chapter are presented as follows. First, a set cover formulation for

power domination is given and proven to equivalently describe solutions of the power domi-

nating set problem. For practical implementation, a separation algorithm for the power dom-

ination set cover formulation is then introduced. Both a general algorithm and an algorithm

finding solutions of the type guaranteed by Corollary 2.1 are produced. The differences

between these algorithms are detailed in Section 4.2.

4.1 Set Covering and Power Domination

As discussed in Section 1.4, Fast [28] proposes a set cover approach for the zero forcing

set problem. The constraint used in this formulation correspond to zero forcing forts, each

of which must be covered at least once by any set that is zero forcing. Here, I present an

analogous approach for the power dominating set problem. In this formulation however,

the closed neighborhoods of forts must be covered rather than the forts themselves. Let M

47

denote the set of closed neighborhoods of forts in G. Consider the following model:

Integer Program 4.1. Power Domination Set Cover Model

Minimize ∑
v∈V

sv

Subject To ∑
v∈M

sv ≥ 1 ∀M ∈M

sv ∈ {0,1}, ∀v ∈V

Due to the first step in the power domination color changing rule, having an initially

colored vertex in the neighborhood of each fort in a graph is sufficient for a set to be power

dominating. This follows because at the end of the first step in the power domination color

changing rule at least one member of each fort is colored. Thus the resulting set is zero

forcing, and the remaining uncolored vertices can be fully colored by repeatedly applying

the second step of the power domination color changing rule. In addition, this condition is

also necessary as shown by the following theorem:

Theorem 4.1. For any graph G, S ⊆ V (G) contains at least one member of the closed

neighborhood of every fort in G if and only if S is a power dominating set.

Proof. Let G be a graph and S ⊆ V (G) contain at least one member of the closed neigh-

borhood of every fort in G. For a contradiction, assume that S is not a power dominating

set in G. Then the vertex set F := V (G)\clP(S) 6= ∅. If any v ∈ F is adjacent to exactly

one member of clP(S), then v can be colored by the second step of the power domination

color changing rule, and v would be in clP(S). Thus, each v is adjacent to either zero or two

or more members of clP(S). F is by definition a fort in G. Moreover, if any u ∈ N[F] is in

S, then a member of F would be colored by the first step of the power domination color

changing rule. Thus no member of N[F] is contained in S, a contradiction.

The sufficiency of this property can be shown by contrapositive. Assume that there is

a fort F in G such that S∩N[F] =∅. Then N[S]∩F =∅. By the contrapositive statement

48

of Theorem 1.1 since there is a fort that is disjoint from N[S], N[S] is not zero forcing in G.

Thus S is not power dominating in G.

Corollary 4.1. Feasible solutions for the power domination set cover model, for a graph G,

are characteristic vectors of power dominating sets in G, and the optimal value of the model

is γP(G).

As a corollary, I posit that optimal solutions for the power domination set cover model

correspond to power dominating sets. Since any feasible solution for the model must cover

all fort neighborhoods in G, by Theorem 4.1 the corresponding vertex set is power dominat-

ing. The optimal value of this model is then equal to the cardinality of the minimum power

dominating sets in G.

The next model is a modification of Integer Program 4.1 which exploits the results given

by Corollary 2.1. Corollary 2.1 guarantees the existence of a minimum power dominating

set S such that S⊆ J(G) for any connected G with J(G) 6=∅. As a result, if its assumptions

hold then this model will attain the same optimum while potentially considering a smaller

number of variables. I prove this claim in Theorem 4.2.

Integer Program 4.2. Junction Set Cover Model

Minimize ∑
v∈J(G)

sv

Subject To ∑
v∈J(G)∩M

sv ≥ 1 ∀M ∈M

sv ∈ {0,1}, ∀v ∈ J(G)

Theorem 4.2. For a connected graph G with J(G) 6=∅, the optimal value of the junction

set cover model is γP(G).

Proof. This theorem follows from Corollary 2.1 and Corollary 4.1. For any graph G, the

optimal solution for power domination set cover model is the characteristic vector of a

49

minimum power dominating set. Any feasible solution for the junction set cover model

indicates a power dominating set contained in J(G), which is also a feasible for the power

domination set cover model. Thus, the optimum of the junction set cover model is bounded

below by the optimum of the power domination set cover model. By Corollary 2.1, if G is

connected and J(G) 6=∅ then there exists a power dominating set of cardinality γP(G). The

characteristic vector for this set is a feasible solution for the junction set cover model, so its

optimum is γP(G).

For completeness, this theorem can be slightly strengthened. It applies to all graphs

where each component of the graph contains a vertex of degree three or more. Here, I have

chosen to state this theorem in a slightly weaker form for clarity.

While both of these models have optimum γP(G), their assumptions regarding G differ.

Additionally, the objective function of power domination set cover model can be easily

changed to incorporate vertex weights. This model could then be use to consider a weighted

version of the power dominating set problem. This is likely to be a practical concern as in

the original application, the costs of installing sensors in power grids can change signifi-

cantly from substation to substation. As a result, the costs of incorporating a sensor in some

substations may be cheaper than in others, and merely finding minimum power dominat-

ing sets may not always provide the cheapest sensor array when implementation costs are

considered. Nevertheless, in practice redundant, measurements and increased direct obser-

vations are also matters of concern. Placing sensors in highly connected substations, those

corresponding to vertices in J(G), is also desirable. Computational experiments indicate

that the performance of solving the junction set cover model is significantly better than

that of the power domination set cover model. This is intuitively clear as the junction set

cover model can be thought of as a dimensional reduction of the regular set cover model. In

this model, a largely reduced feasible region can be considered while the same optimum is

50

guaranteed to be reached.

Each of these models provably determines the power domination number of graphs sat-

isfying their respective assumptions, however, identifying the sets corresponding to their

constraints has not yet been addressed. To accomplish this, vertex sets of fort neighborhoods

must be identified. In the next section I discuss several approaches for identifying these ver-

tex sets. As demonstrated by Theorem 3.3, the number of constraints that must be satisfied

may increase at a larger than polynomial rate in relation to the size of the graphs that are

being considered.

Furthermore, if a constraint corresponding to a fort neighborhood is satisfied, any fort

neighborhoods containing that neighborhood are also covered. Thus, it suffices to only

consider minimal fort neighborhood constraints. This idea is supported by the findings of

Balas and Ng provided in Chapter 1 as Theorem 1.2; constraints corresponding to non-

minimal fort neighborhoods are never facet inducing inequalities. However, also shown by

Theorem 3.3, the number of distinct minimal fort neighborhoods may increase with problem

size at a faster than polynomial rate.

For large graphs, it is likely to be infeasible to explicitly find all constraints needed to

fully define the feasible regions of either of the power domination set cover integer programs.

In response to this issue, I have adopted to use a constraint generation approach. As in other

separation algorithms, a master problem and a series of subproblems can be considered.

In the algorithms presented in this chapter, the master problem is either of the previously

defined set cover integer programs and the subproblems are defined as detecting the fort

neighborhood cover constraints that solutions for the master problem violate.

In a general branch and cut framework for solving the power domination set cover inte-

ger program, the integrality constraints on the variables are relaxed and optimal fractional

solutions satisfying a portion of the constraints are identified. This assigns each vertex a

51

weight in the interval [0,1]. Violated constraints then correspond to fort neighborhoods with

total vertex weight strictly less than 1. When no more violated constraints can be found,

fractional variables are branched upon until an integral optimal solution is found.

4.2 Separation Algorithms for Power Domination

4.2.1 General Separation Algorithm

Algorithm 4.1 General Power Domination Separation Algorithm
1: M ←M0
2: Add set cover constraints for sets in M0 to Model 4.1
3: S← optimal solution for LP relaxation of Model 4.1
4: Set vertex weights for IP 3.1 to S
5: while IP 3.1 is feasible do
6: M← optimal solution for IP 3.1
7: Add set cover constraint for set M to Model 4.1
8: S← optimal solution for LP relaxation of Model 4.1
9: Set vertex weights for IP 3.1 to S

10: if S is fractional then
11: Branch on most fractional Sv, go to 5
12: return S

Algorithm 4.1 is a basic separation algorithm that finds a minimum power dominating

set for a graph by repeatedly finding violated fort neighborhood constraints for fractional

solutions to Integer Program 4.1. First, the constraint set M0 is added to Integer Program

4.1. In the case that no fort neighborhood constraints are known, M0 can be set to ∅.

Algorithm 4.1 then proceeds to find violated constraints by obtaining integral solutions

for Integer Program 3.1 repeatedly until there are all fort neighborhood constraints are

satisfied by S. At this point, S is a possibly fractional solution satisfying all fort neighborhood

constraints. Then, if S is a non integral solution, the most fractional value of S is branched

52

upon and the algorithm returns to the violated constraint search. Eventually, an optimal

integral solution is found and returned.

This algorithm is intended to be modular and can be adapted in several ways. First, the

set M0 is in essence a warm start for the algorithm and can be initialized by a plethora of

options. Next, the set cover model used for 4.1 was Integer Program 4.1, however Integer

Program 4.2 can have also been used under certain assumptions. Finally, Integer Program

3.1 was used to find violated fort neighborhood constraints. The polynomial complexity

random heuristic introduced in Chapter 3 can also be used to search for these constraints.

In the following subsections, these customization options are each investigated and

discussed. Additionally, I provide more specific implementation details for the methods

compared in Chapter 5, as well as the reasoning behind those decisions.

4.2.2 Initial Constraint Sets

The initial constraint sets for Algorithm 4.1 allow the separation algorithm to be adjusted

to utilize information about easily found constraints. The approach used in my implementa-

tions stems from the Junction Vertex Partition discussed in Chapter 2. In polynomial time,

the partition can be constructed, and junctions and junction paths can be combined to form

fort neighborhood vertex sets. Examples of these combinations include any junction and

two or more pendant paths adjacent to that junction, any junction and an adjacent pendant

cycle, or any two junctions and two or more joining paths between them. It can be seen

that in the case of the k-star graph that unless accounted for, this process could generate an

exponential number of constraints. To avoid this, I used the following algorithm to initialize

M0:

Algorithm 4.2 finds the number of pendant paths and pendant cycles adjacent to each

junction v ∈ J(G), as well as the number of joining paths between each pair of junctions

53

Algorithm 4.2 Initial Constraint Set Algorithm
1: M0←∅
2: pend paths(v)←∅ for v ∈ J(G)
3: pendcycls(v)←∅ for v ∈ J(G)
4: joinpaths(v,u)←∅ for (v,u) pair in J(G)
5: for P ∈P(G) do
6: if P has no headers then
7: Append P to M0
8: else if P is a pendant path then
9: Append P to pend paths[v]

10: else if P is a pendant cycle then
11: Append P to pendcycls[v]
12: else if P is a joining path between vertices v,u then
13: Append P to joinpaths(v,u)
14: for v ∈ J(G) do
15: if |pendcycls(v)|> 0 then
16: Append pendcycls(v)[0]∪{v} to M0

17: if |pend paths(v)|> 1 then
18: Append pend paths(v)[0]∪ pend paths(v)[1]∪{v} to M0

19: for (v,u) for (v,u) pair in J(G) do
20: if | joinpaths(v,u)|> 1 then
21: Append joinpaths(v,u)[0]∪ joinpaths(v,u)[1]∪{v,u} to M0

22: return M0

54

(v,u)⊆ J(P). The algorithm avoids explicitly finding an exponential number of fort neigh-

borhoods by only including one fort neighborhood of each type, for each vertex or pair of

vertices in J(G). Note that in case Model 4.2 is used these constraints result in either a re-

quired vertex or a set cover constraint over a pair of vertices, further reducing the dimension

of the master problem.

It has also been shown that the power dominating set problem is solvable by polynomial

time or even linear time complexity algorithms in some special cases including: trees [33,

15], block graphs [45], grid graphs [23], interval graphs [36], and circular-arc graphs [37].

In these cases it is likely that algorithms similar to Algorithm 4.2 could be devised to find

a polynomial number of constraints that fully describe solutions for the power dominating

set problem. If solutions of special forms such as optimal solution of degree 3 or more

vertices are sought after, these constraints may reduce the set cover problem to a set of

mandatory vertices, allowing certain graph families to be solved in polynomial time. This

type of behavior is exhibited for some constraints found by Algorithm 4.2 if Integer Program

4.2 is used as the master problem.

4.2.3 Set Cover Models

While Algorithm 4.1 makes no assumptions upon the graph to which is is applied, graphs

representing electrical networks are often connected and have at least one vertex of degree

3 or more. In the case that the network is not connected, it often the case that the compo-

nents contain a vertex of degree 3 or more. These properties can be seen in the commonly

considered IEEE test cases in power domination literature.

These properties can be exploited to significantly improve the runtime performance of

Algorithm 4.1 by replacing Integer Program 4.1 with Integer Program 4.2. Doing so allows

any set cover constraint C to be instead reduced to C∩ J. Additionally, variables are only

55

needed for vertices in J. Many of the commonly considered test cases feature networks with

chains of degree 2 vertices which form long junction paths. By excluding these vertices

as candidates for a minimum power dominating set, a significantly smaller set of feasible

solutions for the master problem can be considered.

However, in the case that a minimum weight power dominating set is desired this mod-

ification may not be a good choice. If the cardinality of the power dominating set is not

important but rather the weight of the vertices in that set are being minimized, this approach

introduces cuts that may exclude optimal solutions. In this case the general set cover model

should be used so that every power dominating set in the considered network has a corre-

sponding feasible solution. In the Chapter 5, I present the computational results of when

this modification is incorporated to the separation algorithm as well as when the general set

cover model is considered.

Finally, the set cover model can be easily adapted to incorporate additional constraints

that a solution must satisfy. As an example, in the case of the connected variant of power

domination, solution vertex sets must induce connected graphs. Several sets of constraints

have been introduced that force solutions to satisfy this additional requirement. In this

case, the separation algorithm can be modified to solve this problem by simply adding the

connectivity constraints to the set cover model.

4.2.4 Violated Constraint Search Methods

Section 3.2 introduces two approaches for the detection of violated constraints. The strategy

taken in the general approach, Algorithm 4.1, is to find violated constraints by directly

evaluating of the fort neighborhood finding integer program presented in Section 3.2. Instead

however, the random heuristic could be used to search for violated constraints up to a certain

number of iterations, and then the integer program could be solved if no violated constraints

were identified. Overall, a combined approach like this is likely to quickly identify violated

constraints if they exist, while still being able to verify solutions are optimal if no violated

constraints exist. One possible scheme is presented as Algorithm 4.3:

Algorithm 4.3 Mixed Heuristic Separation Algorithm
1: M ←M0
2: Add set cover constraints for sets in M0 to Model 4.1
3: S← optimal solution for LP relaxation of Model 4.1
4: while Random Heuristic with weights S returns a solution M do
5: Add set cover constraint for set M to Model 4.1
6: S← optimal solution for LP relaxation of Model 4.1
7: Set vertex weights for Model 3.1 to S
8: if IP 3.1 is feasible then
9: M← optimal solution for Model 3.1

10: Add set cover constraint for set M to Model 4.1
11: go to 4
12: if S is fractional then
13: Branch on most fractional Sv, go to 4
14: return S

57

Chapter 5

Computational Results

In this chapter, I compare the runtime performance of the power dominating infection model

presented by Brimkov, Mikesell, and Smith [10] with the models presented in this thesis.

In their work, the authors compare their model with that of other known computational

methods for the power dominating set problem, and demonstrate improved performance of

their algorithm over the other variants of power domination infection models in power dom-

ination literature. In order to ensure a fair comparison, I have implemented all algorithms

on the same software platforms and have run all computational experiments using the same

hardware. Experiments presented in this chapter were implemented using Python 3.5 and

Gurobi 7.5.2, and ran on a laptop with 16GB of RAM and an i7 2.80GHz processor.

The graphs used to compare the various methods are predominantly standard IEEE

Bus graphs, which are commonly used in electrical engineering literature as electrical test

cases for the PMU Placement Problem as well as in power domination literature for com-

paring computational methods. The graphs considered here are available for download at

the University of Washington Power Systems Test Archive [17].

In the first section of this chapter, I present the runtime performance of the unmodified

infection model given by Brimkov, Mikesell, and Smith [10] to create a baseline. Next, I

show that the performance of their proposed model can be further improved by including

the requirement that feasible solutions consist of degree three or higher vertices. Since each

test graph considered is connected and contains a vertex of degree 3 or more, by Corollary

2.1 an optimal solution of this form is guaranteed to exist in each test case. Experiments

58

in this section show that in addition to finding optimal solutions, under this requirement

runtime performance is consistently improved.

In the latter section, I present the computational results of the separation algorithm

developed in this thesis.

5.1 Power Domination Infection Model

In this section, the runtime performance for Integer Program 1.4, the method introduced

by Brimkov, Mikesell, and Smith [10], is evaluated in both its original form and with the

added constraint that power dominating sets only include vertices of degree 3 or more. The

unmodified model is reproduced in Section 1.5. The modified version is given as Integer

Program 5.1.

Integer Program 5.1. Modified Power Domination Infection Model:

Min: ∑v ∈V sv

s.t. sv +∑e→v ye = 1 ∀v ∈V (1)

xu− xv +(T +1)ye ≤ T ∀e = (u,v) ∈ E (2)

xw− xv +(T +1)ye ≤ T +(T +1) ∀e = (u,v) ∈ E,∀w ∈ N(u)\{v} (3)

sv = 0 ∀v ∈V : deg(v)≤ 2 (4)

xv ∈ {0,1, . . . ,T}, ∀v ∈V,

sv,ye ∈ {0,1} ∀e ∈ E

59

Power Domination Infection Model

Computational Experiments

Graph Run Time (s)

Name |V | |J(G)| γP(G) Inf. Model Inf. Model* Speed Up

IEEE Bus 14 14 7 2 0.0446 0.0340 × 1.33

IEEE Bus 30 30 12 3 0.124 0.103 × 1.20

IEEE Bus 57 57 24 3 0.653 0.489 × 1.34

RTS-96 96 43 6 3.306 1.811 × 1.83

IEEE Bus 118 118 55 8 6.475 5.471 × 1.18

IEEE Bus 300 300 155 30 97.088 46.138 × 2.10

Figure 5.1 : Computational experiments comparing the performance of Integer Program 1.4

(Inf. Model) and modified version Integer Program 5.1 (Inf. Model*) demonstrate a modest,

yet consistent, improvement for runtime performance.

The experiments shown in Figure 5.1 compare the performance of the unmodified infec-

tion model with the performance of the modified infection model. Notably, the improvement

is significantly larger for some test cases. The magnitude of this improvement is likely to

be dependant upon the structure of specific graphs. Previously, restrictions of this nature

have not been considered for the power dominating set problem. It is possible that other

solutions of special forms may be guaranteed to exist or nearly always exist, and provide

more significant performance improvements when only these solutions are considered.

In the case of power dominating sets of only degree 3 or more vertices, the possible

values that the s vector can take is greatly reduced in these test cases. Additionally, these

60

test sets are considered to be reasonable representations of electrical networks. Thus, the

improvement seen in these test cases is expected to extend to other graphs representing

electrical networks as well as graphs with similar general structure.

5.2 Power Domination Set Cover Model

In this section, computational experiments regarding the separation algorithm introduced

in Chapter 4 are conveyed. Details on how this approach was implemented are given in

Section 4.2.

61

Power Domination Separation Algorithm

Computational Experiments

Graph Run Time (s)

Name |V | |J(G)| γP(G) Sep. Alg. Sep. Alg.* Speed Up

IEEE Bus 14 14 7 2 0.0101 0.00845 × 1.19

IEEE Bus 30 30 12 3 0.0169 0.0193 × 0.88

IEEE Bus 57 57 24 3 0.0807 0.0676 × 1.19

RTS-96 96 43 6 0.295 0.351 × 0.84

IEEE Bus 118 118 55 8 1.198 0.757 × 1.58

IEEE Bus 300 300 155 30 195.520 16.415 × 11.91

Figure 5.2 : This table details computational experiments comparing the performance of

Algorithm 4.1 (Sep. Alg.) and the modified version that uses Integer Program 4.2 as its set

cover model (Sep. Alg.*). Here, runtime performance is mainly comparable between the

two models, with the exception of the IEEE Bus 300 case. This test case appears to greatly

benefit from the additional cuts, as a similarly drastic improvement for this test case was

also demonstrated in Figure 5.1.

Interestingly, a major speed up is seen for the Separation Algorithm if the vertex degree

constraint is included in test case IEEE Bus 300. In Figure 5.1 a significant speed up is also

noted, though not of the same magnitude. This is likely the result of the structure of IEEE

300, and this additional constraint being particularly effective. One avenue for future re-

search is the investigation of graph structures where this additional constraint is particularly

effective, and to relate these findings to other previously studied graph parameters.

Power Domination Separation Algorithm

Computational Experiments

Graph Run Time (s)

Name |V | |J(G)| γP(G) Inf. Model Sep. Alg.* Speed Up

IEEE Bus 14 14 7 2 0.0446 0.00845 × 5.28

IEEE Bus 30 30 12 3 0.124 0.0193 × 6.42

IEEE Bus 57 57 24 3 0.653 0.0676 × 9.69

RTS-96 96 43 6 3.306 0.351 × 9.42

IEEE Bus 118 118 55 8 6.475 0.757 × 8.55

IEEE Bus 300 300 155 30 97.088 16.415 × 5.91

Figure 5.3 : This table directly compares the computational performance of the fully modi-

fied version of Algorithm 4.1 (Sep. Alg.*) and the state of the art infection model. Here, a

runtime improvement of 5 to 10 times can be seen across all test cases.

Finally, Figure 5.3 compares the ultimate version of the computational methods pre-

sented in this thesis with the state of the art infection model. Here, the separation algorithm

is considered with the additional cuts provided by Corollary 2.1 as incorporated in Inte-

ger Program 4.2. A runtime improvement on all test cases can be observed ranging from

approximately 5 to 10 times.

63

Chapter 6

Conclusions and Future Work

In this final chapter, I give a summary of what I consider to be the key results presented in

this thesis, and a discussion of several open problems.

6.1 Summary of Results

In Chapter 2, the Junction Vertex Partition is introduced. For a graph G, this partition

establishes a set of vertices of degree three or more vertices called junctions, denoted as

J(G), and set of path inducing subgraphs, denoted as P(G). It is then shown that for any

closed neighborhood of a fort, members of the sets J(G),P(G) are either disjoint from

or entirely contained in that neighborhood. Thus, this partition separates the vertices of

the graph into building blocks which can be combined to form the neighborhoods of forts.

Additionally, it is verified that if G is connected and has J(G) 6=∅, then a minimum power

dominating set S exists such that S⊆ J(G).

In Chapter 3, necessary and sufficient conditions for a set S⊆V (G) to be the neighbor-

hood of a fort in G are given. Additionally, it is shown that all minimal fort neighborhoods

induce connected subgraphs. The task of detecting minimum weight fort neighborhoods

is then discussed and a related complexity result is given. Two approaches for finding fort

neighborhoods of minimized weight are then given, including an Integer Program whose

solutions correspond to fort neighborhoods and a random heuristic.

Next in Chapter 4, a separation algorithm for the minimum power dominating set prob-

64

lem is given. In this chapter, details regarding the algorithm’s implementation are discussed

and options for adapting this algorithm for related power domination problems are shared.

Finally in Chapter 5, computational experiments comparing the methods presented in this

thesis and previous computational methods are presented. These results demonstrate the

separation algorithm introduced in Chapter 4 generally outperforms the current state of the

art infection model introduced by Brimkov, Mikesell, and Smith [10], with an improvement

of ×5 to ×10 in runtime performance.

6.2 Future Work

6.2.1 Subproblem Complexity

At the conclusion of this thesis, several interesting open problems remain. Foremost of these

may be the tractability of the Min Weight Fort and Min Weight Fort Neighborhood problems.

This thesis proves that these problems are both NP-Complete in general if even a single

vertex is known to be in the solution set. In the case of the fort neighborhood problem, it

can also be seen that finding a fort neighborhood that contains a given vertex and excludes

a given vertex is also an NP-Complete. However, it may be the case that the non-restricted

version can be solved with a polynomial complexity algorithm.

This is the case for a well known problem in graph theory called the Even Hole Detection

Problem. The Even Hole Detection Problem can be stated as follows: Does graph G contain

set C such that G[C] is a cycle and |C| is even? It was shown by Bienstock [6], that this

problem is NP-Complete in the case that C must contain a specific vertex. However, a 73-

page polynomial time algorithm with complexity of around O(n40∗ was given by Conforti,

∗In their paper Even-hole-free graphs part II: Recognition algorithm, the authors estimate the complexity

of their algorithm to be O(n40), but do not formally show it.

65

Cornuéjols, Kapoor, and Vušković [18], solving the problem in the case that no specific

vertex was required to be in the set C. Since the work of Conforti, Cornuéjols, Kapoor,

and Vušković, several improvements have been introduced. The algorithm with the best

known computational complexity has complexity O(n11) and was introduced by Chang and

Lu [16].

The Min Weight Fort Neighborhood problem may also permit a polynomial time algo-

rithm for finding fort neighborhoods of weight less than k. It may also be possible to reduce

this problem to the Even Hole Detection Problem given the similarity in their computational

complexities in the case a vertex is assumed to be in their solutions. It seems likely, however,

that even if a polynomial algorithm exists for the min weight fort neighborhood problem it

would not perform well in practice.

6.2.2 Minimum Power Dominating Sets of Special Forms

Corollary 2.1 shows that for the vast majority of interesting electrical networks, there is a

minimum power dominating set that is entirely contained in J(G). Computational experi-

ments in Chapter 5 show that creating algorithms to specifically look for solutions of this

special form can reduce the time needed to find a minimum power dominating set.

If other optimal solutions of special forms exist in all graphs or graphs resembling

electrical networks, a similar approach may be devised. As was the case with the special

solutions guaranteed by Corollary 2.1, knowing properties of an optimal solution structure

may allow a dimension reduction for the problem or the allow for the set of feasible solutions

to be significantly reduced.

66

6.2.3 Kernelization with Junction Vertex Partition

Another promising avenue of future research is the possibility of introducing a kernelization

procedure based on the Junction Vertex Partition. As shown in Chapter 2, for any fort

neighborhood, every junction path in the graph is entirely contained or disjoint from that

neighborhood. This is due to the second part of the power domination color changing rule;

if the end of a junction path is colored at any step, then each vertex in that junction path can

be colored at a later step. This structure appears ripe for kernelization. These sets are also

conveniently identified by the Junction Vertex Partition and junction paths can be cleanly

separated into distinct categories.

67

Bibliography

[1] Ashkan Aazami. Domination in graphs with bounded propagation: algorithms, formu-

lations and hardness results. Journal of combinatorial optimization, 19(4):429–456,

2010.

[2] David Amos, Yair Caro, Randy Davila, and Ryan Pepper. Upper bounds on the k-

forcing number of a graph. Discrete Applied Mathematics, 181:1–10, 2015.

[3] Egon Balas and Shu Ming Ng. On the set covering polytope I: All the facets with

coefficients in {0, 1, 2}. Mathematical Programming, 43(1-3):57–69, 1989.

[4] Francesco Barioli, Wayne Barrett, Shaun M. Fallat, H. Tracy Hall, Leslie Hogben,

Bryan Shader, P. van den Driessche, and Hein van der Holst. Zero forcing parameters

and minimum rank problems. Linear Algebra and its Applications, 433(2):401 – 411,

2010.

[5] Katherine F. Benson, Daniela Ferrero, Mary Flagg, Veronika Furst, Leslie Hog-

ben, Violeta Vasilevska, and Brian Wissman. Power domination and zero forcing.

arXiv:1510.02421, 2015.

[6] Dan Bienstock. On the complexity of testing for odd holes and induced odd paths.

Discrete Mathematics, 90(1):85 – 92, 1991.

[7] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with

applications, volume 290. Citeseer, 1976.

68

[8] Chassidy Bozeman, Boris Brimkov, Craig Erickson, Daniela Ferrero, Mary Flagg,

and Leslie Hogben. Restricted power domination and zero forcing problems. arXiv

preprint arXiv:1711.05190, 2017.

[9] Boris Brimkov, Caleb C. Fast, and Illya V. Hicks. Computational approaches for zero

forcing and related problems. arXiv:1704.02065, 2017.

[10] Boris Brimkov, Derek M. Mikesell, and Logan A. Smith. Connected power domination

in graphs. arXiv:1712.02388, 2017.

[11] Dennis J. Brueni and Lenwood S. Heath. The PMU placement problem. SIAM Journal

on Discrete Mathematics, 19(3):744–761, 2005.

[12] Daniel Burgarth and Vittorio Giovannetti. Full control by locally induced relaxation.

Physical review letters, 99(10), 2007.

[13] Daniel Burgarth and Vittorio Giovannetti. Full control by locally induced relaxation.

Physical review letters, 99(10):100501, 2007.

[14] Steve Butler, Laura DeLoss, Jason Grout, H. Tracy Hall, Joshua LaGrange, Tracy

McKay, Jason Smith, and Geoff Tims. Minimum rank library, 2014.

[15] Gerard Jennhwa Chang, Paul Dorbec, Mickael Montassier, and André Raspaud. Gen-

eralized power domination of graphs. Discrete Applied Mathematics, 160(12):1691–

1698, 2012.

[16] Hsien-Chih Chang and Hsueh-I Lu. A faster algorithm to recognize even-hole-free

graphs. Journal of Combinatorial Theory, Series B, 113:141 – 161, 2015.

[17] Rich Christie. Power systems test case archive. Electrical Engineering dept., Univer-

sity of Washington, 2000.

69

[18] Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, and Kristina Vušković. Even-hole-

free graphs part II: Recognition algorithm. Journal of graph theory, 40(4):238–266,

2002.

[19] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander

Schrijver. Combinatorial Optimization, volume 33. John Wiley & Sons, 2011.

[20] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale

traveling-salesman problem. Journal of the operations research society of America,

2(4):393–410, 1954.

[21] Nathaniel Dean, Alexandra Ilic, Ignacio Ramirez, Jian Shen, and Kevin Tian. On the

power dominating sets of hypercubes. In Computational Science and Engineering

(CSE), 2011 IEEE 14th International Conference on, pages 488–491. IEEE, 2011.

[22] Ruilong Deng, Gaoxi Xiao, and Rongxing Lu. Defending against false data injection

attacks on power system state estimation. IEEE Transactions on Industrial Informatics,

13(1):198–207, 2017.

[23] Michael Dorfling and Michael A. Henning. A note on power domination in grid

graphs. Discrete Applied Mathematics, 154(6):1023 – 1027, 2006.

[24] Paul A. Dreyer Jr and Fred S. Roberts. Irreversible k-threshold processes: Graph-

theoretical threshold models of the spread of disease and of opinion. Discrete Applied

Mathematics, 157(7):1615–1627, 2009.

[25] Christina J. Edholm, Leslie Hogben, Joshua LaGrange, and Darren D. Row. Vertex

and edge spread of zero forcing number, maximum nullity, and minimum rank of a

graph. Linear Algebra and its Applications, 436(12):4352–4372, 2012.

70

[26] Linda Eroh, Cong X. Kang, and Eunjeong Yi. A comparison between the metric

dimension and zero forcing number of trees and unicyclic graphs. Acta Mathematica

Sinica, English Series, 33(6):731–747, 2017.

[27] Neng Fan and Jean-Paul Watson. Solving the connected dominating set problem and

power dominating set problem by integer programming. In International Conference

on Combinatorial Optimization and Applications, pages 371–383. Springer, 2012.

[28] Caleb C. Fast. Novel Techniques for the Zero-Forcing and p-Median Graph Location

Problems. PhD thesis, Rice University, 2017.

[29] Michael Gentner, Lucia D. Penso, Dieter Rautenbach, and Uéverton S Souza. Ex-

tremal values and bounds for the zero forcing number. Discrete Applied Mathematics,

214:196–200, 2016.

[30] Mohammad Ghamsari-Yazdel and Masoud Esmaili. Reliability-based probabilistic

optimal joint placement of PMUs and flow measurements. International Journal of

Electrical Power & Energy Systems, 78:857–863, 2016.

[31] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and

its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[32] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and

combinatorial optimization, volume 2. Springer Science & Business Media, 2012.

[33] Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Michael A

Henning. Domination in graphs applied to electric power networks. SIAM Journal on

Discrete Mathematics, 15(4):519–529, 2002.

71

[34] Leslie Hogben, Nicole Kingsley, Sarah Meyer, Shanise Walker, and Michael Young.

Propagation time for zero forcing on a graph. Discrete Applied Mathematics,

160(13):1994–2005, 2012.

[35] Gaoqi Liang, Steven R. Weller, Junhua Zhao, Fengji Luo, and Zhao Yang Dong. The

2015 ukraine blackout: Implications for false data injection attacks. IEEE Transactions

on Power Systems, 32(4):3317–3318, 2017.

[36] Chung-Shou Liao and Der-Tsai Lee. Power domination problem in graphs. In Inter-

national Computing and Combinatorics Conference, pages 818–828. Springer, 2005.

[37] Chung-Shou Liao and Der-Tsai Lee. Power domination in circular-arc graphs. Algo-

rithmica, 65(2):443–466, 2013.

[38] Yao Liu, Peng Ning, and Michael K. Reiter. False data injection attacks against state

estimation in electric power grids. ACM Transactions on Information and System

Security (TISSEC), 14(1):13, 2011.

[39] Nikolaos M. Manousakis, George N. Korres, and Pavlos S. Georgilakis. Taxonomy of

PMU placement methodologies. IEEE Transactions on Power Systems, 27(2):1070–

1077, 2012.

[40] Anamitra Pal, Anil Kumar S. Vullikanti, and S. S. Ravi. A PMU placement scheme

considering realistic costs and modern trends in relaying. IEEE Transactions on Power

Systems, 32(1):552–561, 2017.

[41] Simone Severini. Nondiscriminatory propagation on trees. Journal of Physics A:

Mathematical and Theoretical, 41(48), 2008.

72

[42] Ranjana. Sodhi, S. C. Srivastava, and Sri Niwas Singh. Multi-criteria decision-making

approach for multi-stage optimal placement of phasor measurement units. IET Gener-

ation, Transmission & Distribution, 5(2):181–190, 2011.

[43] Xin Tai, Damián Marelli, Eduardo Rohr, and Minyue Fu. Optimal PMU placement for

power system state estimation with random component outages. International Journal

of Electrical Power & Energy Systems, 51:35–42, 2013.

[44] AIM Minimum Rank-Special Graphs Work et al. Zero forcing sets and the minimum

rank of graphs. Linear Algebra and its Applications, 428(7):1628–1648, 2008.

[45] Guangjun Xu, Liying Kang, Erfang Shan, and Min Zhao. Power domination in block

graphs. Theoretical Computer Science, 359(1-3):299–305, 2006.

[46] Min Zhao, Liying Kang, and Gerard J. Chang. Power domination in graphs. Discrete

mathematics, 306(15):1812–1816, 2006.

	Abstract
	Acknowledgments
	Introduction
	Preliminary Graph Theoretical Notation
	Power Domination
	Zero Forcing
	Computational Methods in Zero Forcing
	Computational Methods in Power Domination
	Thesis Outline

	The Junction Vertex Partition
	The Junction Vertex Partition
	Zero Forcing Forts and the Junction Vertex Partition

	Zero Forcing Fort Neighborhoods
	The Structure of Fort Neighborhoods
	The Detection of Fort Neighborhoods
	Computational Complexity
	Integer Program Approach
	Random Heuristic Approach

	Separation Algorithms for Power Domination
	Set Covering and Power Domination
	Separation Algorithms for Power Domination
	General Separation Algorithm
	Initial Constraint Sets
	Set Cover Models
	Violated Constraint Search Methods

	Computational Results
	Power Domination Infection Model
	Power Domination Set Cover Model

	Conclusions and Future Work
	Summary of Results
	Future Work
	Subproblem Complexity
	Minimum Power Dominating Sets of Special Forms
	Kernelization with Junction Vertex Partition

	Bibliography

