

ABSTRACT

Moving Device Power Management Out of Drivers

by

Jie Liao

Device drivers are well-known to be complex and error-prone. A widely practiced

strategy toward simpler drivers is to move functions out of drivers. Power manage-

ment (PM), an important function provided by drivers, however, has long resisted

this strategy. Today, device drivers provide functions to manage device PM context.

This work presents our attempt to move PM context management out of drivers and

realize it in a device-independent manner. Our key idea is the rule of representation:

separate device-specific knowledge from the logic of PM context management. We

design and prototype a generic context manager that provides device-independent

suspend/resume logic while allowing device vendors to fold device-specific knowledge

into data structures to drive the logic. Our evaluation on the BeagleBone Black plat-

form shows that our design can move most of suspend/resume code out of drivers,

and is as e↵ective as the original driver-based PM context management on power

savings.

Acknowledgments

First of all, I would like to express my sincere thanks to my advisor Dr. Lin Zhong,

for his great support and guidance. Through three years of study and research with

him, he has not only guided me to think deeply and critically, but also helped me to

develop a better research taste. I also want to thank my thesis committee members,

Dr. Joseph Cavallaro and Dr. Dan Wallach for giving me valuable feedback on my

thesis.

I am grateful to have my group mate Min Hong Yun to help with my project, his

contribution to the project helps a lot to the motivation chapter of this thesis. I also

thank my former o�ce mate Robert LiKamWa and current o�ce mate Kevin Boos

for their valuable feedback and suggestions in my daily research and life.

Moreover, I thank my other RECG group mates and all my friends for their

continuous help and support.

Finally, I want to thank my parents for firmly supporting all the decisions I made.

As rural farmers, they may never see or understand this thesis, but I want to let them

know that I cannot accomplish this thesis without their care and love.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vi

List of Tables ix

1 Introduction 1

2 Background 5

2.1 Device and their power-saving modes 6

2.2 PM context management . 8

2.3 Moving functions out of drivers . 11

3 Motivations 14

3.1 Analysis methodology . 14

3.2 Driver-based suspend/resume functions are expensive 17

3.2.1 suspend/resume functions account for significant SLoC count . 17

3.2.2 suspend/resume functions account for significant maintenance

e↵orts . 18

4 Device-independent Context Management 19

4.1 Design overview . 19

4.2 Reentrancy . 21

4.3 Generic suspend/resume logic . 24

4.3.1 Generic logic contains common PM activities 24

v

4.3.2 Device-specific PM activities remain in device drivers: 28

4.4 Device-specific knowledge representation 30

5 Implementation 35

6 Evaluation 37

6.1 Evaluation setup . 37

6.2 E↵ective power management . 38

6.3 Reduced device driver complexity . 41

6.4 Latency . 44

6.5 Limitations . 47

7 Related Work 49

7.1 Moving things out of driver . 49

7.2 Representing device knowledge . 50

7.3 Move drivers out of kernel . 51

7.4 Driver fault tolerance and correctness 53

8 Concluding Remarks 54

Bibliography 56

Illustrations

2.1 A simplified view of modern mobile application processors. Any

module that is not a CPU or memory is considered as a device and

managed by a device driver running on the CPU as part of the

high-level operating system. A device can be on-chip, integrated

inside the application processor, e.g., the I2C controller, or o↵-chip,

e.g., the sensor connected to the I2C interface. On-chip devices are

usually organized into hierarchical domains for power management. . 6

2.2 Device driver plays two roles in power management: (1) track device

usage by calling into the PM frameworks; and (2) provide callbacks

(marked as grey) for the PM frameworks to suspend/resume the

device. Linux kernel provides numerous device-independent

frameworks to simplify driver development, including the PM

frameworks themselves. Our goal is to move the suspend/resume()

callbacks out of drivers and realize them as a device-independent

framework. 7

3.1 Evolutionary history of average SLoC for 10 drivers that are common

for Nexus 5/6/6P/5X since the release date of Nexus 5. The most

recent devices have increased the average SLoC by more than 40% for

the same drivers. 16

vii

3.2 Accumulative number of commits for 10 drivers that are common for

Nexus 5/6/6P/5X since the release date of Nexus 5. After the release

date of Nexus 5, the suspend/resume functions for the same drivers

are still under active development on newer versions of the Nexus

devices before their releases. 16

4.1 Design overview of generic context manager. The generic context

manager maintains per-device context containers for each device to

privately contain their PM context. It provide generic

suspend/resume functions and takes device-specific knowledge

provided by device vendors to manage PM context for various devices. 20

4.2 Generic suspend/resume logic in the gray box. Runtime and system

PM share the same set of common PM activities for

suspending/resuming respectively (not all of them are shown in this

figure). A subset of the common PM activities are executed for a

device according to the device-specific knowledge. Device-specific PM

activities remain in device drivers. The figure shows a default order

for the PM activities, but device-specific knowledge can specify a

di↵erent order if necessary. 25

4.3 Power management as a simplified finite-state machine. Runtime and

system PM may have di↵erent power-saving states. In runtime PM,

runtime suspend() brings a device from the functional state to the

runtime power-saving state, and runtime resume() does the reversal.

In system PM, system suspend() can bring a device into the system

power-saving state from either the functional or the runtime

power-saving state, and system resume() has to make sure the device

is brought back to the same state as it was in before it was put into

the system power-saving state. 28

viii

6.1 Power rails on BBB, resources from [1,2]. Not all the devices in the

power domains are showed in the figure. When the system is

suspended, VDD MPU and VDD CORE will be scaled down to

0.95V, all other rails remain on. This causes the overall power

consumption to be 243 mW when the system is suspended. 43

Tables

3.1 SLoC counts of suspend/resume functions on 4 Nexus phones.

suspend/resume functions account for a significant portion of SLoC in

device drivers. 17

5.1 Suspend/resume support for the five drivers modified in our

implementation. 4 callbacks provided; 8: callbacks not provided. In

our implementation all the 5 drivers use the generic suspend/resume

functions as their PM callbacks. 36

6.1 Overall power consumption on BBB (mW). The generic context

manager can achieve the same level of power savings as the original

driver-based PM. When measuring the power for runtime PM, we

disable/enable the runtime PM feature only for the devices supported

by our modified drivers. 39

6.2 SLoC count for suspend/resume code that still remains in device

drivers. Generic context manager can move most of the

suspend/resume code out of the 5 drivers, as a result it reduces driver

complexity. 42

x

6.3 Execution latency of suspend/resume functions in CPU cycles, we

configure the CPU frequency to be 1GHz, so the numbers are also in

nanoseconds. Generic suspend/resume functions could be 1x to 9x

slower than the original ones. But the absolute execution time is very

small. 45

1

Chapter 1

Introduction

Most of the code in Linux is device drivers, so most of the Linux power

management (PM) code is also driver-specific. Most drivers will do very

little; others, especially for platforms with small batteries (like cell phones),

will do a lot. [3]

——Rafael Wysocki, Maintainer of Linux Device Power Management

In this work, we demonstrate that much of the PM suspend/resume code can be

realized outside the notoriously complex device drivers. This simultaneously achieves

two objectives: (1) simplify device drivers and their development, which is notoriously

error-prone, and (2) improve system energy e�ciency because many device drivers do

not provide adequate support for power management [4].

With tight battery and thermal budgets, mobile systems must carefully manage

their devices so that idle ones can stay in the lowest possible power mode. This

problem is generally known as device power management (PM). System PM has been

extensively studied and is widely used today. For example, Android aggressively

suspends a system into a low-power mode after a brief period of user inactivity,

unless an application holds a wakelock [5,6]. In contrast to system PM, runtime PM

2

is concerned with putting individual idle devices into a low-power mode even when

the rest of the system is serving the user. In Android-based mobile systems, runtime

PM is controlled by the Linux kernel while system PM by Android itself. Even when

a wakelock prevents Android from suspending the system, the Linux kernel can still

perform runtime PM of devices.

In today’s systems, power management replies on device drivers for two critical

roles. First, for runtime PM, device drivers are responsible for tracking the device

usage, e.g., by invoking the APIs exposed by the Linux runtime PM framework.

Second, the device driver implements the context saving and restoration functions

necessary for power management. Before allowing a device to enter a low-power mode

where its states may be lost, the system must save its states (or context); likewise, the

system must restore its states when resurrecting the device from a low-power mode to

be functional. The device drivers provide functions for both saving and restoration,

i.e., suspend() and resume(), often separately for system and runtime PM.

While it is convenient to have the device drivers assume the responsibility of doing

device power management, it also leads to three problems that are increasingly im-

portant. First, it adds to the complexity of drivers, which is already notoriously high.

The suspend/resume functions contain low-level knowledge that is device-specific,

tedious and error-prone. Second, related to the first problem, many device drivers

today forgo their responsibility completely, providing inadequate implementation of

suspend/resume functions. This requires continuous development e↵orts from driver

3

developers to maintain and update the power management code. Finally, because

device drivers are executed from the powerful CPU, driver-based power management

means that the CPU has to be always involved, limiting the e↵ectiveness of power

management, especially runtime PM. See §2 for details.

A recent work [4] has showed that it is possible to relieve the first role of device

drivers in power management but still relies on the drivers to supply the suspend/resume

functions. This work, however, focuses on relieving the second role by device drivers

in power management. That is, move suspend/resume functions out of drivers and

make them generic to devices. This goal is considerably harder and has a wider

system impact. First, the key idea of [4] was to infer whether a device has pending

tasks outside of driver. That is, it bypasses the drivers by monitoring access to device

registers or polling a specially designed status register bit exported by the device hard-

ware. Because on-chip device registers in ARM systems are usually memory-mapped,

one only needs to know which memory addresses to monitor or poll. In contrast,

suspend/resume functions involves intimate interaction between driver and hardware

and requires much more device-specific knowledge as will be elaborated in §2. In

order to move suspend/resume functions out of drivers, our key idea is to aggressively

apply the famed Rule of Representation, which seeks to “fold knowledge into data so

that logic can be simple and robust” [7]. Second, while the first role targeted by [4] is

only involved in runtime PM, the second role targeted by this work is critical for both

system and runtime PM. Although runtime and system suspend/resume functions are

4

usually implemented separately in the same driver, our approach will work for both.

As a result, our work will not only complement that of [4] to provide runtime PM to

devices but also enable system PM for devices whose drivers do not support it.

In this thesis, we present generic context manager, a novel design that moves

suspend/resume functions out of device drivers. The generic context manager provides

generic suspend/resume functions for both runtime and system PM for various devices.

It takes device-specific PM knowledge in data structures to manage their PM context.

We implement the generic context manager as a centralized kernel module in Linux

4.1 on the BeagleBone Black development platform. Our experimental evaluation

shows that the generic context manager not only can achieve the same level of power

savings as the original driver-based power management, but also moves most of the

suspend/resume code out of device drivers.

In summary, this thesis makes the following two contributions:

1. We present a novel design of generic context manager that provides generic sus-

pend/resume logic for various devices and manages device PM context according

to device-specific knowledge in data structures.

2. We present a prototype implementation of the generic context manager. We ex-

perimentally show that it achieves the same level of power savings as the original

driver-based power management and reduces driver complexity by moving most

of the suspend/resume code out of drivers.

5

Chapter 2

Background

The first principle of energy e�ciency is frugality. That is, unused, idle components

of a computer system should enter power-saving (PS) mode, or power managed. If

the rest of the system is still functional, the component is said to be runtime power

managed. When the entire system enters a non-functional power-saving mode, it is

said to be system power managed. In this case, the system often saves the states of

its components into the memory, e.g. suspend to RAM, or the non-volatile storage,

e.g., suspend to disk.

Power management is not only critical to the battery lifetime of mobile systems

but also important to meet the thermal and peak power constraints facing modern

computers: fundamentally idle components should remain dark, to use the popular

jargon of dark silicon [8].

We next describe how Linux performs device power management, both runtime

and system. In particular, we focus on the roles played by device drivers. Other OSes

like Mac OS X [9] and Windows [10] have drivers play similar roles in device power

management.

6

CPU

System bus Peripheral busOn-chip
memory

I2C
controller

USB
controller

Memory
controller …

DMA

Sensor

…

DRAM

Application
Processor

Chip
On-chip module

Figure 2.1 : A simplified view of modern mobile application processors. Any module
that is not a CPU or memory is considered as a device and managed by a device
driver running on the CPU as part of the high-level operating system. A device can
be on-chip, integrated inside the application processor, e.g., the I2C controller, or
o↵-chip, e.g., the sensor connected to the I2C interface. On-chip devices are usually
organized into hierarchical domains for power management.

2.1 Device and their power-saving modes

We first provide the necessary hardware background. Figure 2.1 presents a highly

simplified view of the hardware of mobile systems. It includes many chips, the ap-

plication processor, main memory (DRAM), various sensors and other I/O devices,

and wireless interface cards (not shown). The application processor is a system-on-

a-chip (SoC) with the actual multi-core CPU being only a relatively small fraction

of the chip. The majority of the chip is occupied by numerous modules, including

hardware accelerators such as video codecs, DSPs, and GPUs, I/O controllers and

DMA. The CPU and the modules are integrated with a hierarchy of buses, often a

system bus and a peripheral bus, as shown in Figure 2.1. On the chip, one will also

7

17

Power Management
Frameworks

Sensor driver

I2C ctrl driver

pinctrl

bus cores

clock management

power supply

DMA

Device-independent
frameworks

Figure 2.2 : Device driver plays two roles in power management: (1) track device usage
by calling into the PM frameworks; and (2) provide callbacks (marked as grey) for
the PM frameworks to suspend/resume the device. Linux kernel provides numerous
device-independent frameworks to simplify driver development, including the PM
frameworks themselves. Our goal is to move the suspend/resume() callbacks out of
drivers and realize them as a device-independent framework.

find other special hardware such as small ROM and RAM that are mapped into the

memory view of the CPU. Linux, as a high-level OS, runs its software on the CPUs;

To them, the other on-chip modules are devices that are managed by the OS with

device drivers.

To conserve power, all hardware components except a very few on-chip devices

implements power-saving modes. A device driver plays two critical roles for the

corresponding device to enter a power-saving mode, as shown in Figure 2.2. First, for

runtime PM, the device driver determines if a device is idle. It does so by tracking

the device usage, e.g., by invoking the APIs provided by the Linux runtime PM

framework. Only an idle device should ever enter a power-saving mode. Second, the

device driver must make it safe for an idle device to enter a power-saving mode in

which the device may not be able to retain all the states. This is done by calling a

8

suspend() function. Likewise, the driver must make the device ready for service when

it wakes up from a power-saving mode. This is done by calling a resume() function.

To amortize the hardware overhead of power management, multiple on-chip de-

vices can share the same clock source and its management circuitry and they con-

stitute a clock domain. Multiple clock domains can share the same on-chip power

source and its management circuity to form a power domain. The hardware of a

domain is also considered a device and is managed by its device driver. Necessarily,

before a domain enters a power-saving mode, it must be safe for all its members to

enter power-saving modes.

2.2 PM context management

The suspend/resume functions provided by drivers manage the PM context of devices.

When suspend() readies a device for power-saving modes, it must save the PM con-

text; Likewise, when resume() resumes a device for service, it must restore the PM

context.

The PM context is best explained by its four components: execution, interface,

wakeup, and physical. First, a digital component can be viewed as a finite state

machine, and the execution context is the state it is currently in. A device’s state

information is encoded by its storage elements, often including registers and memories.

Ideally when a device gets out of a power-saving mode, it should get back to the

same state as it was in before it gets into the power-saving mode. We note that an

9

important part of the execution context is the software-programmable configuration,

e.g., enabled features (e.g., interrupt) and operational settings (e.g., baud rate for

UART controller). Not all drivers have to deal with execution context. Many devices

have internal mechanisms to save their execution context. For example, on-chip DSP,

GPU, and micro-controller cores run their own software and have access to either the

main memory or their internal memory that retains content in power-saving modes;

some o↵-chip devices may also be able to save their own execution context. On

the other hand, most on-chip devices and many o↵-chip devices do rely on their

drivers to save and restore their execution context. As a result, they must make their

execution context accessible to software running on the CPU, i.e., the driver, in the

form of registers. On ARM-based SoCs, registers for on-chip devices are memory-

mapped. That is, software can access them as if they are part of the memory. For

o↵-chip devices like the sensor in Figure 2.1, software can access their registers via

the necessary buses, e.g., I2C in the sensor example.

Second, a device interfaces with the rest of the system and the world; two im-

portant interfaces are stateful: direct memory access (DMA) and interrupt. We call

such states the interface context. Instead of saving the interface context, suspend()

makes sure it vanishes properly; resume() then simply readies the interfaces. For

DMA, the Linux DMA framework provides device drivers with APIs to synchronize

data transfers on the DMA channels to prevent data loss before the devices are sus-

pended. Thus the suspend/resume functions utilize these APIs to properly stop/start

10

DMA channels. Alternatively when there is data on a DMA channel, suspend() can

copy and save the data and resume() will resubmit the data for DMA. Additionally,

suspend() will check if there is any pending interrupt to the device because an in-

terrupt may occur after the system considers the device is idle. When there is an

interrupt, the driver can either delay suspending using the autosuspend mechanism

or simply gives up suspending.

Third, suspend() must configure the device properly for wakeup, i.e., the condi-

tions under which the device should leave a low-power mode. We call this configura-

tion the wakeup context.

Finally, the system provides a physical context for its devices. It supplies clock sig-

nal and power. The suspend/resume functions must properly disengage a device from

and engage it with this context, respectively. Usually the PM framework will invoke

the power domain’s suspend/resume functions to disable/enable necessary clocks and

power for a device, but device drivers have to deal with the rest part of the physical

context that is not handled by the PM framework. For example, if a GPIO controller

has an enabled debounce clock, its driver has to disable/enable this clock properly

in the suspend/resume functions. For clock management, device drivers invoke APIs

from the clock framework to disable/enable their clocks; The clock framework will

keep track of the clocks’ usage and gate them properly.

Runtime PM vs. System PM: Runtime and system PM’s suspend/resume()

functions are similar but have important di↵erences. First, the implementations of

11

runtime and system suspend/resume functions are based on di↵erent assumptions. For

runtime PM, when runtime suspend() is called, it assumes the device is in quiescent

state and no one is using the device; when there is new use on the device, runtime

resume() will resume the device to be functional. For system PM, system suspend()

assumes the device is always in use, it has to do whatever necessary to bring the

device to a power-saving mode like suspend-to-RAM; when the system is resumed,

system resume() will resume the device to the state it was in before it is put into the

power-saving mode. That is to say, even if a device is previously in runtime suspended

mode when its system suspend is triggered, the device has to be put into the same

runtime suspended mode when the system is resumed.

Moreover, the timings to invoke suspend/resume() functions are di↵erent. On one

hand, runtime PM is synchronous regarding device activities. For example, runtime

suspend() is called when there is no pending activity for a device. On the other hand,

system PM is asynchronous. A user can press the power button any time to suspend

the system, even when some devices are still processing tasks. Thus before calling

system suspend() to manage device PM context the PM framework has to properly

freeze the running tasks.

2.3 Moving functions out of drivers

Device drivers are notorious for accounting for a large share of the kernel code and

an even larger share of the kernel bugs and security exploits. The reasons are well-

12

known: they are di�cult to develop and require intimate hardware knowledge and

using unsafe programming languages, i.e., C and assembly. And they come from

hardware vendors of varying competence.

Making device drivers more reliable and more secure has been a lasting research

topic over the past two decades, including bug finding [11,12], fault tolerance [13–15],

new architecture [16, 17], new programming languages [18–20], and even automatic

synthesis [21,22]. The one strategy that has seen actual adoption is nevertheless very

simple: moving things out of drivers. The Linux kernel today provides numerous

device-independent frameworks such as pinctrl [23] and clock [24] to provide functions

necessary for device operations as shown in Figure 2.2. For example, the runtime PM

framework provides a reference counting mechanism for a driver to track its device

usage [25]. This strategy not only reduces the driver development e↵ort but also

makes it easier to guarantee drivers’ correctness. For example, instead of auditing

each every driver’s reference counting, the Linux kernel only needs to audit its runtime

PM framework. This strategy obviously contributes to the decreasing share by drivers

in the Linux kernel code, from 70% to 57%, and the decreasing fault density in drivers,

despite the growing diversity of Linux-ready hardware devices, according to studies

carried out a decade a part [11, 12].

Despite the success of the “moving-it-out” strategy, the function of power man-

agement has remained in the device drivers. It is not di�cult to understand why:

the diversity of hardware devices and the required interaction between hardware and

13

software for power management just make it extremely hard to realize it in a device-

independent manner. Recently, the authors of [4], motivated by that many device

drivers do not properly use the reference counting mechanism provided by the runtime

PM framework, showed that tracking device usage can be done without the driver.

This largely relieves device drivers from the first of the two roles in power man-

agement. However, the harder role of PM context management still remains in the

driver. That is, the suspend/resume functions are still device-specific. The goal of this

work is to move PM context management out of driver and into a device-independent

framework.

In the rest of the thesis, we will first quantify the development e↵ort of PM context

management in Linux, i.e., device-specific suspend/resume functions, and then present

our design and implementation of device-independent PM context management.

14

Chapter 3

Motivations

In this chapter, we show that it is highly desirable to move the PM context man-

agement code, i.e., the suspend/resume functions, out of device drivers. We build a

tool called ddAnalyzer to count the source lines of code (SLoC) of suspend/resume

functions in device drivers for four most recent Nexus phones. We also analyze the

evolutionary history of the suspend/resume functions for those phones. Our analy-

sis shows the suspend/resume functions contribute to a significant portion of code in

drivers and require significant maintenance e↵orts from driver developers.

3.1 Analysis methodology

We clone the kernels from the vendors’ repositories for the four Nexus phones, i.e.,

Nexus 5/6/6P/5x. We count the SLoC of the suspend/resume functions for each

device driver using the latest version of the source code. All the four Nexus phones

use device trees [26] to describe their hardware devices. Each phone has a device tree

source (.dts) file that comes with the kernel source. The .dts file usually includes

several .dtsi files that describe common hardware for multiple platforms, together

they describe the devices used on the phone. To analyze the evolutionary history of

15

the suspend/resume functions on a phone, our analysis starts from the .dts file of

that phone.

First, ddAnalyzer takes the .dts file of a phone as input and searches the corre-

sponding drivers for devices described in the .dts file and the .dtsi files it includes

in the kernel source. Then it traces each driver to check if the driver provides any

suspend/resume functions for either runtime PM or system PM. Note that we only

trace drivers that are configured to be compiled in the kernel .config file. Second,

once ddAnalyzer finds a suspend() or resume() function in a driver file, it searches the

commit history of the driver file for any modifications on the function and the func-

tions it calls. The analyzer then generates an evolutionary history for the function

based on all the modifications found. Third, for the latest version of suspend/resume

functions ddAnalyzer finds in the history, it generates the SLoC of the function using

cloc [27]. We count the SLoC of a function within the scope of the driver file. That

is to say, ddAnalyzer builds a function calling tree starting from the found suspend()

or resume() function (root caller) within the driver file. It adds the SLoCs of the

callees in the tree to the SLoC of the root caller. But the SLoC of a callee is only

counted once even if it could be called multiple times.

16

Figure 3.1 : Evolutionary history of average SLoC for 10 drivers that are common for
Nexus 5/6/6P/5X since the release date of Nexus 5. The most recent devices have
increased the average SLoC by more than 40% for the same drivers.

Figure 3.2 : Accumulative number of commits for 10 drivers that are common for
Nexus 5/6/6P/5X since the release date of Nexus 5. After the release date of Nexus
5, the suspend/resume functions for the same drivers are still under active development
on newer versions of the Nexus devices before their releases.

17

Mobile devices SLoC per driver Number of drivers Total SLoC

Nexus 5 117.5 19 2233

Nexus 6 218.6 17 3717

Nexus 6P 226.3 20 4526

Nexus 5X 237.7 19 4517

Table 3.1 : SLoC counts of suspend/resume functions on 4 Nexus phones.
suspend/resume functions account for a significant portion of SLoC in device drivers.

3.2 Driver-based suspend/resume functions are expensive

3.2.1 suspend/resume functions account for significant SLoC count

Table 3.1 shows the SLoC of suspend/resume functions in device drivers for 4 latest

Nexus phones. On average there are more than 220 lines of suspend/resume code

per driver on the most recent Nexus 5X and Nexus 6P phones (second column in

Table 3.1), which contributes to over 4000 SLoC in total for all suspend/resume

related functions on those devices. Even though those numbers are not considerably

big compared to the total number of SLoC of Linux kernel, they still account for a

significant portion of device driver code base. Our analysis shows that the SLoC of

suspend/resume functions accounts for 7.4% to 10.5% of all device drivers within the

same files we analyze (third column in Table 3.1). We conclude that suspend/resume

functions actually add significant complexity to device drivers which have already

been highly complex and error-prone.

18

3.2.2 suspend/resume functions account for significant maintenance e↵orts

We also analyze the evolutionary history of the above four Nexus mobile devices. All

these devices use the same series of Snapdragon 800 SoCs, we find 10 drivers that

are common for them. Figure 3.1 and Figure 3.2 shows the SLoC and number of

commits evolution for the 10 drivers on the four devices. Figure 3.1 shows that since

the release date of Nexus 5, the most recent devices (Nexus 6P and Nexus 5X) have

increased the average SLoC by more than 40% for the same drivers. Figure 3.2 shows

that after the release date of Nexus 5, the suspend/resume functions for the same

10 drivers are still under active development on newer versions of the Nexus devices

before their releases. The added SLoC are mainly for fixing bugs and adding new

features. For example, the above four phones share the same SPI controller driver.

The runtime PM framework could view unbalanced clocks on the SPI controller when

the SPI driver is unable to propagate local resource getting errors to the runtime PM

framework in its runtime resume() function. This bug was fixed on Nexus 6P [28].

Those two figures indicate that suspend/resume functions constantly needs significant

maintenance e↵orts from driver developers.

Therefore, our work aims for moving suspend/resume functions out of device

drivers to reduce PM code size and simplify driver development.

19

Chapter 4

Device-independent Context Management

In this chapter, we present our novel design of a generic context manager as shown

in Figure 4.1 to move suspend/resume functions out of device drivers. The generic con-

text manager is a device-independent framework that provides generic suspend/resume

functions to manage both runtime and system PM context.

4.1 Design overview

Our key idea to achieve device-independence is to separate the logic from the device-

specific knowledge that are used to suspend/resume devices. It is feasible to imple-

ment suspend/resume functions with generic logic for various devices while folding

device-specific PM knowledge into data structures, guided by the rule of represen-

tation [7]. For device-independent PM context management, the generic context

manager has to resolve three important technical challenges.

1. The generic context manager provides generic suspend/resume functions for

multiple devices, thus it has to support reentrancy to allow possible concurrent

invocations of the suspend/resume functions.

2. We have to decide what PM activities should be made device-independent.

20

suspend/resume
requests

device-specific
knowledge

Generic
context manager

v generic runtime_suspend()
v generic runtime_resume()
v generic system_suspend()
v generic system_resume()

context
containers

driver
instances

device
instances

match

pinctrl

bus cores

clock management

power supply

DMADevice
drivers

Power Management
Frameworks

Device-independent
frameworks

Figure 4.1 : Design overview of generic context manager. The generic context
manager maintains per-device context containers for each device to privately contain
their PM context. It provide generic suspend/resume functions and takes device-
specific knowledge provided by device vendors to manage PM context for various
devices.

3. We must design data structures to concisely represent device-specific PM knowl-

edge, while providing adequate device-specific PM information to the generic

logic.

Figure 4.1 shows the design overview of the generic context manager by putting

it into the same scope as shown in Figure 2.2. To resolve the above three challenges,

the generic context manager design contains three major components, i.e., context

containers associated with device and driver instances, generic suspend/resume func-

tions and device-specific knowledge representation. The context container resolves

the reentrancy challenge by maintaining the devices’ PM context privately to them.

The generic suspend/resume functions provides suspend/resume callback interfaces to

21

the PM framework, internally they contain the generic suspend/resume logic. And

the device-specific knowledge is represented by data structures such as register tables

and flags, which are passed to the generic context manager to drive the generic logic.

The generic context manager accesses devices using the same set of APIs from the

device-independent frameworks as what the original device drivers do, such as us-

ing read/write() to access memory-mapped registers and clk disable/enable() to

disable/enable clocks.

In the following, we describe how we resolve the above three challenges by the

three components in detail.

4.2 Reentrancy

The generic context manager is aiming to manage PM context for multiple devices, it

is possible that there are concurrent invocations of the suspend/resume functions; and

one invocation should not influence another. This naturally leads to the requirement

that the generic suspend/resume functions should be reentrant. To design reentrant

suspend/resume functions, we have to meet three requirements [29]:

• The suspend/resume functions should not use global non-constant or static vari-

ables;

• The suspend/resume functions should not call non-reentrant functions;

• The suspend/resume functions should not modify their own code.

22

Because the suspend/resume functions will not modify their code, the third require-

ment is automatically met. In the following, we focus on elaborating how we meet

the first and the second requirements in our generic context manager design.

No global non-constant or static variables: Since the suspend/resume

functions should not use global non-constant or static variables, the generic context

manager has to keep device-specific PM context private to individual devices. As a

result, it has to create a clean isolation among the PM context of di↵erent devices. To

isolate PM context of di↵erent devices, we design a per-device PM context container

to contain the PM context of each device privately, following the device driver “state

container” design pattern [30]. One invocation of the suspend/resume functions is only

allowed to access the context container of the device that is being power managed, it

cannot access other devices’ context containers.

A context container is associated with a device through an device instance regis-

tered by the device in the generic context manager, as shown in Figure 4.1. Linux

kernel uses struct device and struct device driver to present a device and a driver

respectively. To use the generic suspend/resume functions for a device, both the de-

vice and its driver have to register an instance in the generic context manager. The

device instance is responsible for providing per-device knowledge and hooking its cor-

responding context container, while the driver instance is responsible for providing

device-specific knowledge for all the devices that the driver supports. The device

instance and the driver instance are linked via a match function so that a device’s

23

context container can easily refer to the its driver-provided knowledge. This linking

design has at least two benefits: 1) It allows one instance of driver-provided knowl-

edge to serve multiple devices of the same type, which is commonly seen in modern

operating systems; 2) It also supports per-device suspend/resume behavior tuning.

Individual devices can provide additional knowledge through their device instances

to the generic context manager to tune a PM activity only for themselves, such as

choosing a locking mechanism type.

A context container contains the PM context for each device, besides, it also

contains necessary information to access the device. For example, the suspend/resume

functions need to know the memory-mapped base address for device registers to access

a device. The base address is configured and saved in the context container of the

device during device initialization. Other device access information includes DMA

channels, clock references and so on.

No non-reentrant function calls: We take the benefits of existing reentrancy

support in the device-independent frameworks to meet the second requirement. Be-

sides calling the reentrant functions created by our design, the suspend/resume func-

tions also call functions from the device-independent frameworks such as pinctrl and

clock frameworks that are designed for multiple devices, thus they should also be

reentrant. As a result, the suspend/resume functions do not call non-reentrant func-

tions.

24

However, there are still non-reentrant function calls in the generic context man-

ager, such as memory allocation for the context container and register address remap-

ping for memory-mapped devices. Those functions will not be called by the suspend/resume

functions. They are called by a one-time initialization function that is called when a

device instance is registered to the generic context manager. The device instance is

registered after a device is added to the system but before it is probed.

4.3 Generic suspend/resume logic

To resolve the second challenge, the generic suspend/resume logic contains PM ac-

tivities that are common across various devices, and it keeps the device-specific PM

activities remaining in device drivers, as shown in Figure 4.2. The order of common

PM activities in the generic logic can di↵er for di↵erent devices, we build a default

PM activity order and allow device-specific PM knowledge to specify specific orders

to execute the PM activities if necessary.

4.3.1 Generic logic contains common PM activities

When a device is suspended, it usually involves saving its execution and configuration

context and disengaging it from interface and physical context (as discussed in §2).

Each of these actions is called a PM activity. As shown in Figure 4.2, the generic

suspend logic contains a sequence of PM activities, i.e., save execution context, pause

DMA channels, disable IRQ, disable clock and select sleep pin state. These activities

25

14

disable clock

disable IRQ

save execution
context

pause DMA
channels

select sleep
pin state

device-specific
suspend

device-specific
suspend

Suspend
logic

…

enable IRQ

enable clock

select default
pin state

restore execution
context

resume DMA
channels

device-specific
resume

device-specific
resume

Resume
logic

…

Generic
context manager

Device drivers

Figure 4.2 : Generic suspend/resume logic in the gray box. Runtime and system PM
share the same set of common PM activities for suspending/resuming respectively
(not all of them are shown in this figure). A subset of the common PM activities
are executed for a device according to the device-specific knowledge. Device-specific
PM activities remain in device drivers. The figure shows a default order for the PM
activities, but device-specific knowledge can specify a di↵erent order if necessary.

26

are common across various devices when they are suspended, but not all the devices

have to execute all of them. Each PM activity could involve reading/writing a set

of device registers that are specified by device-specific knowledge (explained later).

It is the device-specific knowledge that decides which activities should be executed

for a device. The generic context manager relies on the device-independent frame-

works to execute PM activities. For example, DMA channels can be paused with

the channel pausing APIs from the DMA framework. In case any activity returns an

error indicating that the managed device is busy, the whole generic suspend function

should abort. The generic resume logic is a reversed process of suspend logic, i.e.,

basically restoring the execution and configuration context and engaging the device

with its interface and physical context again. It is also the device-specific knowledge

that determines what PM activities to execute in the resume logic for a device.

Di↵erent PM activity orders in the generic logic could result in di↵erent PM

behaviors on devices. We build a default PM activity order as shown in the grey

boxes Figure 4.2, but device-specific knowledge is allowed to specify their own PM

activity orders in the generic suspend/resume logic. For example, one device has to

disable clock for before disabling the IRQs while another device needs to disable IRQ

before disabling clock. Our implementation in §5 uses the default PM activity and it

works well to suspend/resume all the devices we consider.

Runtime PM logic vs. System PM logic: Runtime suspend/resume()

and system suspend/resume() are functionally the same, they share the same set of

27

common PM activities as shown in Figure 4.2. Actually system suspend/resume()

can reuse the code of the same PM activities in the runtime suspend/resume(). For

example, system suspend() can reuse the code to save device’s execution context from

runtime suspend().

However, runtime PM and system PM can have di↵erent power-saving modes

when the devices are suspended, thus we have to separate their suspend/resume

logic necessarily. Figure 4.3 shows device power management as simplified finite-

state machine (FSM) when doing both runtime and system PM. As we discuss in §2,

runtime suspend/resume functions are synchronous, runtime suspend() is called to

bring a device from the functional state to the runtime power-saving state when it is

not used; and runtime resume() is called to bring the devices back to the functional

state when it is used again. On the other hand, system suspend/resume functions are

asynchronous. System suspend() can be called at any time when a device is either in

the functional state or in the runtime power-saving state. But no matter what state

the device was in, the system resume() has to make sure when the device is waken

up it will be put into the same state as it was in before. Since the generic context

manager does not know which state a device could be in when system suspend()

is called, it has to assume that the device could be in runtime power-saving state.

Therefore, if the device is currently in the runtime power-saving state, the generic

system suspend logic has to bring the device back to the functional state before it

executes any PM activities to put the device into the system power-saving state. Vice

28

functional

runtime
power-saving

system
power-savingruntime_resume()

system_resume()

system_suspend()

runtime_suspend()

system_resume()

system_suspend()

Figure 4.3 : Power management as a simplified finite-state machine. Runtime and sys-
tem PM may have di↵erent power-saving states. In runtime PM, runtime suspend()

brings a device from the functional state to the runtime power-saving state, and run-
time resume() does the reversal. In system PM, system suspend() can bring a device
into the system power-saving state from either the functional or the runtime power-
saving state, and system resume() has to make sure the device is brought back to the
same state as it was in before it was put into the system power-saving state.

versa, the generic system resume logic has to put the device into runtime power-saving

mode after it executes necessary PM activities to put the device into the functional

state. Tracking the runtime PM state of a device can be easily done by calling APIs

from the runtime PM framework.

4.3.2 Device-specific PM activities remain in device drivers:

Although we can as much code in susepend/resume() as possible out of device drivers,

we find some device-specific power management code have to remain in the drivers to

execute device-specific PM activities as shown in Figure 4.2. Those activities include:

a) dealing with device silicon bugs; b) setting up interactions with device-specific

frameworks; c) configuring device-specific remote wakeup.

29

Device hardware can contain silicon flaws, and device drivers have to explic-

itly handle those flaws to make the devices functional. For example, the MMC

host controller on TI OMAP5 can report false timeout command under high-speed

mode [31,32]. This errata has to be handled in the MMC controller driver’s runtime

resume() function when setting up clocks. PM activities like this cannot be moved

out from device drivers. Also, functions in device drivers usually are not called di-

rectly by device users, instead they are registered with upper layer frameworks which

provide standard APIs to the device users. For example, an 8250 UART driver has to

register an 8250 port interface during device probe, after which all the device accesses

are done through the port interface [33]. We find it hard to separate suspend/resume

logic from the device-specific frameworks when device drivers are tightly coupled with

them, unless the driver stack is fully redesigned. Thus in our design we also leave

this kind of PM activities in the device drivers. Finally, runtime PM requires devices

to be remote wakeup-capable, but some devices have specific wakeup configurations.

For example, level-detectable GPIO pins are configured to be edge-detectable during

runtime suspend such that they can generate wakeup events to the PRCM [34]. If we

can design the hardware in a way that all the wakeup configurations are done using

a standard, such as writing a series of registers, we can still move this part of code to

the generic logic.

30

4.4 Device-specific knowledge representation

The suspend/resume logic we describe above is generic, it only follows the device-

specific knowledge represented by data structures to manage device PM context.

How to represent the device-specific knowledge is the key to reduce driver develop-

ment e↵ort and make device drivers less error-prone. We use tables and status flags

to represent device knowledge, which is simple enough to relieve driver developers’

e↵ort to write complex code and also provides adequate information for the generic

suspend/resume logic to manage devices’ PM context.

Device knowledge representation has two parts: (1) Vendors are supposed to pro-

vide device-specific knowledge in tables and flags; and (2) Operating system kernel

saves the tables and flags in memory and associates them with the corresponding

devices and drivers.

The first part is not complicated, once the specifications of the tables and flags

are well defined, vendors can generate device knowledge tables and flags from the

device technical reference manual (TRM). We can extend existing solutions using

domain-specific languages like Devil [19] and HAIL [20] to automatically generate the

tables and flags. Those tables and flags can be passed to the kernel by compiling

them into the kernel image or other binaries such as device tree blob. We will focus

on discussing the second part.

31

1 static u32

2 omap_i2c_reg_context []= {

3 [OMAP_I2C_IE] = 0,

4 [OMAP_I2C_CON] = 0,

5 [OMAP_I2C_PSC] = 0,

6 [OMAP_I2C_SCLL] = 0,

7 [OMAP_I2C_SCLH] = 0,

8 [OMAP_I2C_IRQENABLE] = 0,

9 [OMAP_I2C_WE] = 0,

10 };

11

Listing 4.1: I2C controller’s context array representation

1 static universal_reg_entry

2 omap_i2c_save_context_tbl [] = {

3 {

4 .reg_op = PM_REG_READ ,

5 .reg_offset = OMAP_I2C_PSC_REG ,

6 .ctx_index = OMAP_I2C_PSC ,

7 },

8 {

9 .reg_op = PM_REG_READ ,

10 .reg_offset = OMAP_I2C_SCLL_REG ,

11 .ctx_index = OMAP_I2C_SCLL ,

12 },

13 ...

14 };

15

Listing 4.2: I2C controller’s “save context” register table

32

Device knowledge representation in kernel: Device-specific knowledge is

represented in two categories in the kernel, per-driver knowledge and per-device knowl-

edge. As we indicate above, it is very common for a driver to support multiple devices.

Thus per-driver knowledge refers to the knowledge that is common across all devices

supported by the same driver; per-device knowledge refers to the knowledge of a single

device that has individual requirements regarding doing power management. In the

perspective of generic context manager, per-driver knowledge is provided through the

driver instances while per-device knowledge is provided through the device instances.

As we discuss above in §4.2, the per-device context container contains the reference

of per-device knowledge because it is directly hooked to the device instance. Once a

driver instance and a device instance are matched by the match function, the device’s

context container will save the reference to the per-driver knowledge and access it

easily.

Per-driver knowledge includes a context array that is of interest to doing power

management and register tables for suspend/resume PM activities in the generic

logic. The context array is provided by a device driver for all the devices it supports.

When a device is probed, the generic context manager will create a copy of the

context array and save its reference to the context container of the device. All the

PM activities read/write a device’s registers based on its context array. For each PM

activity, the involved registers are represented in one or more tables. Each table entry

indicates an access operation (read/write), the values and the index in the context

33

array for a device register. For example, Listing 4.1 shows the context array for

OMAP I2C controllers, and Listing 4.2 is a register table that is passed to the save

execution context PM activity in the generic suspend logic. The two entries shown

in the save context table indicate that the PSC register and the SCL low register

on an I2C controller are saved to the PSC and SCLL entries in its context array

respectively. The register tables can also embed simple logic to help simplify the

generic suspend/resume logic. For example, device vendors can provide two register

tables to the restore execution context activity of the generic resume logic, i.e., a

restore context table and a check context loss table. Before the resume logic restores

device execution context from the first table, it can check if there is context loss from

the second one. If there is no context loss, then no context restoring is needed for

this activity.

Per-device knowledge is usually represented by status flags. For example, whether

a device supports DMA can be indicated by a flag passed from the device instance,

which will determine if DMA channels need to be paused/resumed in the generic

suspend/resume logic. Per-device knowledge is directly associated with the device

instance in the kernel, thus it is easy to use the status flags to tune the suspend/resume

behaviors independently for individual devices.

Note that using tables and flags is not the only way to represent device-specific

PM knowledge in the kernel. We use them to show the feasibility of folding device-

34

specific knowledge into data structures. Using other data structures to represent

device knowledge requires further exploration.

35

Chapter 5

Implementation

Based on our design in §4 we implement the generic context manager as a central-

ized kernel module in Linux kernel 4.1 on the BeagleBone Black (BBB) development

platform. BBB embeds an AM3358 SoC that integrates a 1GHz Cortex-A8 proces-

sor and tens of on-chip peripherals. It uses a device tree to describe the hardware

components on the board, which is compiled into a device tree blob and passed to

kernel at booting time. We choose this platform because it is well-documented and

its kernel source code is under active development by a large group of developers.

We modify 5 device drivers for BBB to register our generic suspend/resume func-

tions as their runtime PM and system PM callbacks, including the I2C controller

driver, the GPIO controller driver, the multimedia card (MMC) controller driver,

the SPI controller driver and the LCD controller driver. Table 5.1 lists the sus-

pend/resume support provided by the above 5 drivers, not all of them provide all

the suspend/resume functions on BBB. We choose these drivers not only because

they are widely used but also because they provide callbacks for either runtime

suspend/resume() or system suspend/resume(), which can be used to best guide

our design and evaluation of our generic suspend/resume functions. Each of these

drivers can support one or more devices on BBB. Specifically, there are in total 3 I2C

36

Device drivers
original callbacks generic callbacks

runtime system runtime system

I2C 4 8

GPIO 4 8

4 4

MMC 4 4

SPI
suspend 8

resume 4
4

LCDC 8 4

Table 5.1 : Suspend/resume support for the five drivers modified in our implementa-
tion. 4 callbacks provided; 8: callbacks not provided. In our implementation all the
5 drivers use the generic suspend/resume functions as their PM callbacks.

controllers, 4 GPIO controllers, 3 MMC controllers, 2 SPI controllers and 1 LCD con-

troller that can be supported by those 5 drivers respectively. In our implementation,

the generic context manager manages PM context of these devices for both runtime

PM and system PM.

37

Chapter 6

Evaluation

In the evaluation, we experimentally answer two questions:

1. Is the generic context manager as e↵ective as the driver-based suspend/resume

functions?

2. How much does the generic context manager reduce the driver complexity?

To evaluate the PM e↵ectiveness of generic context manager, we measure the overall

power consumption of the whole BBB platform when suspend/resume functions are

provided by generic context manager and the original device drivers respectively. We

show that generic context manager can achieve the same level of power savings as

the original driver-based suspend/resume functions when doing both runtime PM and

system PM. We also count the SLoC of the suspend/resume functions in device drivers

before and after we move them out, showing that we can either completely move or

move at least 40% of the driver-based suspend/resume code out of device drivers.

6.1 Evaluation setup

To set up the evaluation, we connect BBB with a Monsoon Power Monitor [35] and

power the BBB through a USB cable. To test the PM e↵ectiveness on the LCD

38

controller, we connect the board with a micro HDMI cable to a G245H Acer HDMI

monitor running at 1024⇥ 768 resolution. The LCD controller interface is converted

to HDMI by an on-board HDMI framer TDA19988BHN that is connected on the

I2C0 bus (Figure 6.1) of the SoC. For debugging and issuing system PM commands

purposes, we also connect the board to a host Linux PC through a serial cable. We

disable the DVFS feature on the board and fix the CPU frequency to be 1GHz.

BBB uses a device tree to describe its hardware, some devices on the board are

disabled in the device tree. Based on our implementation in §5, we enable all the

devices that can be supported by the 5 drivers we modify. Note that not all those

devices are being used on BBB when the system is running, idle ones are supposed

to be disabled at runtime if the runtime PM feature is enabled for them. We use the

same device tree blob for all our experiments to make sure that all the measurements

are on the same device hardware.

6.2 E↵ective power management

Table 6.1 shows the overall power consumption on the BBB using both our generic

and the driver-provided suspend/resume functions. With generic context manager

providing generic suspend/resume functions, we can achieve the same level of power

savings as the original driver-based suspend/resume functions when doing both run-

time PM and system system PM.

For each result in Table 6.1, we measure the power consumption for 60 seconds

39

PM functions
runtime PM

disabled

runtime PM

enabled

suspend-to-RAM

Generic 904.80 ±2.72 757.05 ±2.55 243.45 ±0.50

Original 904.19 ±3.25 758.80 ±1.91 244.24 ±0.24

Table 6.1 : Overall power consumption on BBB (mW). The generic context manager
can achieve the same level of power savings as the original driver-based PM. When
measuring the power for runtime PM, we disable/enable the runtime PM feature only
for the devices supported by our modified drivers.

with 5000 data samples per second. We then evenly divide all data samples into 10

pieces and calculate the average power consumption of each piece. The final results

shown in the table are the means and standard deviations of the 10 average power

consumption measurements. The standard deviations in the table are very small,

but the power consumption within each piece does have a lot of variation when the

system is running. We care about the power consumption in a long run, thus these

variation are amortized by the average power consumption within each piece.

Runtime PM: When measuring the power consumption for runtime PM, we

disable/enable the runtime PM feature only for the devices we list in §5 to test the

runtime PM e↵ectiveness on them. Runtime PM feature can be disabled and enabled

by issuing on and auto commands to the power/control sysfs entry respectively for

each device. Both the our generic and the original runtime suspend/resume functions

can save ⇠146 mW when runtime PM feature is enabled. 97% of this power saving

comes from the fact that the LCD controller is disabled at runtime. Note we only

40

test the e↵ectiveness of the suspend/resume functions, we do not control when to

disable/enable a device at runtime, this is done by the original device drivers.

System PM: When measuring the power consumption for system PM, we put

the system into the suspend-to-RAM mode by issuing the command:

echo mem > /sys/power/state

When the system is suspended to this mode, on-chip devices in the wakeup domain

will remain always on to wait for any wakeup events to resume the system. We resume

the system by pressing a key on the keyboard from the Linux host machine, which will

send a wakeup event to UART0 in the wakeup domain (shown in Figure 6.1). Both

the generic suspend/resume functions and the original ones can put the system into

the suspend-to-RAM mode that consumes ⇠243 mW. This shows that the generic

suspend/resume functions are as e↵ective as the original ones.

However, this 243 mW power consumption is very high for a mobile system in the

suspend-to-RAM mode. The reason for this high power consumption is that all power

rails (Figure 6.1) are left on by the original BBB kernel when the system is suspended.

We enable the HDMI framer to convert the signals from the LCD controller, when

the system is suspended this hardware is not turned o↵, which contributes ⇠90 mW

power consumption. Moreover, VDD 3V3B and VDD 3V3AUX are used to supply

power for on-board components such as LAN, eMMC and pin pads, they also consume

a significant amount of power. After we disable the HDMI framer (as a result LCD

controller is also disabled) and turn o↵ the VDD 3V3AUX power rail, we reduce the

41

overall power consumption to 130 mW when the system is in suspend-to-RAM mode.

But we are not able to turn o↵ the VDD 3V3B rail because of the subtle PCB design

on the board. We expect that even lower power consumption can be achieved if the

VDD 3V3B is turned o↵.

As we discuss in §4, we can provide per-device knowledge to the generic con-

text manager through the device instances to tune per-device PM behaviors. The

original GPIO and I2C controller drivers don’t provide system suspend/resume func-

tions, therefore all the GPIO and I2C controllers will remain on when the system is

suspended. But only GPIO0 and I2C0 in the wakeup power domain (PD WKUP)

are supposed to be always on. In our implementation, we tailor the device-specific

knowledge for GPIO0 and I2C0 to avoid doing the system suspending and resuming,

while letting other GPIO and I2C controllers use the generic system suspend/resume

functions normally. In this way, we can disable more devices than the original driver-

based PM. But the power savings for GPIO and I2C controllers are too trivial to be

observed in our evaluation.

6.3 Reduced device driver complexity

We count the SLoC of suspend/resume functions before and after we move them out of

the device drivers. As shown in Table 6.2, generic context manager reduces the driver

complexity by completely removing or removing at least 40% of the suspend/resume

code out of device drivers.

42

Device drivers PM type
Original

SLoC

Remaining

SLoC

Reduction

ratio

I2C
runtime 41 0 100%

system 0 0 N/A

GPIO
runtime 175 59 66%

system 0 0 N/A

MMC
runtime 193 104 46%

system 76 45 40%

SPI
runtime 25 0 100%

system 25 0 100%

LCDC
runtime 0 0 N/A

system 35 13 63%

Table 6.2 : SLoC count for suspend/resume code that still remains in device drivers.
Generic context manager can move most of the suspend/resume code out of the 5
drivers, as a result it reduces driver complexity.

43

16

TPS PMIC

TL5209

VDD_RTC

VDD_MPU

PD_RTC

VDD_CORE

VDD_1V8

DDR RAM

PD_MPU
PD_PER

I2C 1-3
GPIO 1-3
MMC1-3
SPI 0-2
LCDCPD_WKUP

I2C0
GPIO0
UART0

On-board
components

LAN
eMMC

USB connector

VDDS_DDR

HDMI
framerVDD_3V3A

VDD_3V3B

AM3358 SoC

VDD_3V3AUX

Figure 6.1 : Power rails on BBB, resources from [1, 2]. Not all the devices in the
power domains are showed in the figure. When the system is suspended, VDD MPU
and VDD CORE will be scaled down to 0.95V, all other rails remain on. This causes
the overall power consumption to be 243 mW when the system is suspended.

We use the same counting techniques as described in §3, i.e., we expand the

function calls in suspend/resume functions to the scope of the driver file. Runtime

suspend/resume functions could share code with system suspend/resume functions,

in this evaluation we count them separately. In our implementation, we represent

device-specific knowledge in C data structures. But we don’t include the SLoC of

those data structures in Table 6.2, assuming these data structures can be generated

automatically from the device TRM.

As we explain in §4, not all suspend/resume code can be moved out of device

drivers. Specifically in our evaluation, suspend/resume code for I2C and SPI con-

44

troller drivers is completely removed. Runtime suspend/resume code remained in the

GPIO controller driver is for configuring remote wakeup. For the MMC controller

driver, the code remained for runtime PM is a resume function that reinitializes the

controller if there is a context loss when the controller is suspended; and the code

remained for system PM is used to configure the voltage supply after resuming from

the system PM. For the LCD controller driver, the remained code is for restoring the

framebu↵er content from the DRM framework.

The implementation of our generic context manager consists of 2338 lines of C

code, among which 1053 lines are for generic suspend/resume implementation and

register table definition. The remaining code are for device and driver instance regis-

tration and device accessing methods configuration, such as device register memory

remapping and clock configuration, etc. Our generic context manager can support

more drivers with only very minor modifications.

6.4 Latency

Our implementation of generic suspend/resume functions can incur additional latency

when executing PM activities compared to the original driver-based ones. We use the

ARM cycle counter registers to count the CPU cycles (at 1GHz) taken to execution

both our generic and the original suspend/resume functions. Because we are focusing

on moving the suspend/resume functions out from device drivers, we only measure the

suspending/resuming execution time on the device driver side and the generic context

45

runtime PM system PM

I2C GPIO MMC MMC SPI LCDC

original

suspend

3646 2228 3702 2786 202 2093919

generic

suspend

14796 22631 17363 5475 17285 2829146

original

resume

4143 4469 3262 1373 7078 16574198

generic

resume

11489 17927 17962 1823 2169 16745088

Table 6.3 : Execution latency of suspend/resume functions in CPU cycles, we config-
ure the CPU frequency to be 1GHz, so the numbers are also in nanoseconds. Generic
suspend/resume functions could be 1x to 9x slower than the original ones. But the
absolute execution time is very small.

46

manager side. For comparison between the original driver-provided suspend/resume

functions and our generic ones, we measure the execution time only if the original

drivers provide the suspend/resume functions, as indicated by Table 5.1.

Our generic suspend/resume functions are 1x to 9x slower than the original ones.

This is because the generic context manager implements a wrapper around normal

read/write() functions to access various device registers in a generic way, which adds

50 to 100 cycles to each read() or write() call. Besides this, parsing the register tables

mentioned in §4.4 to figure out the operations and values for each register access also

adds a runtime overhead of 100 to 400 more cycles. The generic system suspend() for

the SPI device in Table 6.3 is 85x slower than the original one, because it does much

more than the original one. The original system suspend() for SPI is inadequate, it

only selects a sleep state for SPI pins. Besides this, our generic system suspend()

also saves necessary execution context and disengages the power and clock for SPI

controllers by calling the APIs from the runtime PM framework. Also, because of

this di↵erence, the original system resume() takes a lot more time (more than 90%

of the original system resume() execution time) than the generic one in the runtime

PM framework to check the device’s runtime PM status.

Even though the ratio of the slowness of our generic suspend/resume functions is

big, the actual time for suspend/resume functions execution is very small. Most of the

suspend/resume functions execution time is under 20 µs, except the LCD controller

driver whose execution time is dominated by the framebu↵er saving and restoring.

47

This time is negligible compared to the time period that a device is disabled or

enabled, e.g., 50 to 100 ms [4]. The tolerance for the suspending/resuming latency

depends on the Quality of Service (QoS) requirements from the device or system

users. We defer the exploration of better data structures to represent device-specific

knowledge that can reduce the suspend/resume functions execution latency to future

work.

6.5 Limitations

As our implementation of the generic context manager is a prototype to show the

feasibility of moving suspend/resume functions out of device drivers, it currently faces

several limitations.

Our current generic context manager does not completely move all the suspend/re-

sume code out of device drivers. Driver developers still need to spend considerable

e↵ort handling device-specific PM activities discussed in §4.3. Also, our proposed de-

sign only works for devices whose PM context is accessible to the CPU. Some devices

such as GPUs and DSPs run their own software, usually the CPU does not have full

access to their internal registers or memories. To power manage these devices, they

should provide interface to expose their context to CPU or rely on their own software

to manage their PM context. In the latter case, the CPU only issues commands to

inform the software that the devices should be power managed.

Actually, with the presence of more and more ASICs, we argue that a standard

48

power management interface should be introduced to hardware design to simplify their

power management code. With the standard hardware interface, device-specific power

management happening in hardware is hidden from the device drivers, which can

further advance moving power management code out of drivers and greatly simplify

driver development.

49

Chapter 7

Related Work

Device drivers are notorious for their development di�culty, which is partially re-

flected by their relative portion in the kernel in terms of source lines of code, and

by the prevalence and severity of their bugs. About 60% of mainline Linux kernel

code is drivers [12]; more than 60% of kernel bugs identified in two studies across

10 years [11, 12] are from drivers. Driver bugs are famous for crashing the entire

system [13] and subjecting it to security exploits [17, 36].

Our work is the first publicly known work that aims at moving the suspend/resume

functions out of drivers. It also represents an important step toward simplifying device

drivers and improving their reliability, following the strategy of moving things out of

drivers.

7.1 Moving things out of driver

Over the past decade, the Linux kernel has moved many driver functions out of drivers

and implemented them as device-independent frameworks, such as the common clock

framework [24] and pinctrl framework [23]. Power management, nevertheless, has

remained in the driver, despite the recent runtime PM framework that provides a

reference counting mechanism for drivers to track their device usage. The authors

50

of [4] showed that many device drivers failed to use the Linux runtime PM frame-

work properly. In particular, they failed to properly invoke the APIs that track if a

device has pending tasks. They presented a tool to insert the API calls automati-

cally based on trace-based analysis and an OS module that can infer if a device has

pending tasks without driver’s help. Both solutions still rely on the driver to pro-

vide the suspend/resume functions. Our work complements this work toward device-

independent power management by to move much of suspend/resume functions out

of drivers.

7.2 Representing device knowledge

Many prior works have explored how to simplify driver development by redesigning

the interfaces that drivers use to interact with both hardware and software.

The device access interface describes how the device can be accessed in software

running on the CPU. Because a device’s programming interface consists of registers,

the device access interface is about these registers. Driver code that provides the

device access, or access code, is considered boilerplate code [37], tedious and error-

prone [20]. Devil [19] and HAIL [20] sought to specify this interface in order to

automatically generate the access code in C.

A device driver also exports services to the rest of the operating system and

may use services provided by the rest of the OS. This OS-driver interface is about

the interaction between the driver and the OS. Tingu [38] specifies the OS-driver

51

interface as a state machine that has ports to receive/send messages. As successor

to Tingu, the Termite specification language [21,22] specifies both the device and OS

interfaces as state machines.

How we represent device-specific knowledge is very similar to the existing ap-

proaches about device access interface. We can potentially exploit their techniques to

describe device-specific knowledge using high-level domain specific languages (DSL)

and automatically compile them into data structures. However, we do not aim at

synthesizing the access code from the knowledge, rather, we make device access code

generic.

Moreover, Barrelfish OS utilized a constraint logic programming language (CLP)

to separate device configuration logic from the configuration mechanism [39]. This

CLP-based declarative language o↵ers more flexibilities to adapt new driver designs

when both device configuration algorithms and device hardware are changing rapidly.

Similar to their work, our generic PM logic can be considered as the configuration

mechanism for power management, and the device-specific knowledge is the configu-

ration logic. The separation between the device-specific knowledge and PM logic also

helps to simplify PM code adaption in device drivers.

7.3 Move drivers out of kernel

An orthogonal strategy to deal with buggy drivers is to move them out of the kernel.

LeVasseur et al. [40] run an unmodified driver with its own OS in a virtual machine

52

but to serve another OS. Doing so allows drivers developed for one OS to be used

by another; importantly it isolates the second OS from the driver failure because the

driver is running outside the second OS. SUD [41] emulates a Linux kernel environ-

ment in the user space to run unmodified device drivers in that emulated environment.

It leverages the fact the device registers are memory mapped to provide direct device

access to the driver. It also leverages the IOMMU and transaction filtering in PCI

express bridges to control the memory operations from the device as directed by the

driver.

Instead of moving a driver entirely out of kernel, one can also move part of a

driver to the user space to improve system’s reliability and reduce its attack surface

size. Microdriver [16] split a device driver into a high-performance k-driver and a low-

performance u-driver. k-driver runs in kernel level at full speed to handle data path,

while u-driver runs in user level at reduced speed to handle control path. Library

driver [17] separated resource management and resource isolation in a driver, push-

ing resource management to an untrusted user-space library while keeping resource

isolation running in the trusted OS kernel.

Related to moving things out of kernel, Nooks [13] isolates OS extensions such

as drivers insight lightweight kernel protection domains which restrict extensions’

accesses to kernel memory and protect operating system from their faults.

53

7.4 Driver fault tolerance and correctness

Another line of previous work related to our goal of simplifying drivers is to improve

their fault tolerance and enhance their correctness. Nooks [13] isolates drivers within

kernel protection domains, and when it detects a driver is faulty, it recovers the

driver by reloading and restarting it. Shadow drivers [14] employs record and replay

to rollback failed drivers transparently from driver clients. FGFT [15] employs a

finer-grained checkpointing mechanism than shadow drivers to rollback failed drivers.

Importantly, it relies on the driver-supplied suspend/resume functions to checkpoint

and restore device states. Dingo [42] leveraged the Tingu specification [38] of the

OS-driver interaction to generate a runtime protocol observer that detects possible

driver protocol violations. Ryzhyk et al. unified hardware verification with driver

development to improve driver reliability [43]. One extreme approach to ensure driver

correctness is to synthesize them from device knowledge automatically, as attempted

by Termite [21] and Termite-2 [22].

54

Chapter 8

Concluding Remarks

By separating knowledge from logic for PM context management, we are able to

make much of the PM context management device-independent and realize it out

of device drivers. This leads to several directions that we should further explore.

First, device-specific knowledge data structures should be generated automatically

by device vendors. We can explore more standardized data structures to represent

PM knowledge that covers as many devices as possible. The device-specific knowledge

can be represented by a high-level descriptive language and compiled into the data

structures by sophisticated compiler techniques. In our implementation, we manually

study the original suspend/resume functions and separate the PM knowledge from

the logic. As tons of di↵erent device drivers already exist in commodity operating

systems, manual separation of PM knowledge from logic will take huge e↵orts. Thus,

we can explore automatic techniques to extract PM knowledge from existing drivers,

e.g., by monitoring their interactions with devices.

Second, running the generic context manager as a centralized module makes it

possible to move the module onto low-power processors. When the system is put into

sleep, runtime PM can be done by the low-power processors without waking up the

power-hungry CPUs.

55

Furthermore, moving PM suspend/resume functions out of device drivers is part

of our work to simplify device drivers. The Linux kernel has evolved such that more

and more common frameworks are built to handle common resources such as power,

clock, pinctrl, and so on. Following this trend, our generic context manager o↵ers a

way to redesign device driver software stack to make drivers simple, i.e., by folding

as much knowledge as possible into data structures and building generic logic for the

knowledge. Device drivers should only provide minimal interfaces for the device users

to tab to exploit specific device functionalities. Other than that, device drivers only

contain device-specific knowledge in data structures that are used to drive device-

independent logic. Besides power management, there are other functions that can be

moved out of device drivers such as device initialization.

56

Bibliography

[1] AM335x Sitara TM Processors Technical Reference Manual. Texas Instruments.

[2] G. Coley, Beaglebone Black System Reference Manual. Texas Instruments.

[3] R. J. Wysocki, “Device power management.” https://www.kernel.org/doc/

Documentation/power/devices.txt.

[4] C. Xu, X. Lin, Y. Wang, and L. Zhong, “Automated OS-level device runtime

power management,” in Proc. ACM ASPLOS, 2015.

[5] “Android WakeLock Mechanism.” https://developer.android.com/

reference/android/os/PowerManager.WakeLock.html.

[6] K. Kim and H. Cha, “Wakescope: runtime wakelock anomaly management

scheme for android platform,” in Proceedings of the Eleventh ACM International

Conference on Embedded Software, p. 27, IEEE Press, 2013.

[7] E. S. Raymond, The Art of Unix programming. Addison-Wesley Professional,

2003.

[8] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in Computer Architecture

https://www.kernel.org/doc/Documentation/power/devices.txt
https://www.kernel.org/doc/Documentation/power/devices.txt
https://developer.android.com/reference/android/os/PowerManager.WakeLock.html
https://developer.android.com/reference/android/os/PowerManager.WakeLock.html

57

(ISCA), 2011 38th Annual International Symposium on, pp. 365–376, IEEE,

2011.

[9] “I/o Kit Overview.” https://developer.apple.com/library/content/

documentation/DeviceDrivers/Conceptual/IOKitFundamentals/

Introduction/Introduction.html.

[10] “Windows Driver Model (WDM).” https://msdn.microsoft.com/en-us/

library/windows/hardware/Ff565698(v=vs.85).aspx.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of

operating systems errors,” in Proc. ACM SOSP, 2001.

[12] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller, “Faults in

linux: Ten years later,” in Proc. ACM ASPLOS, 2011.

[13] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability of

commodity operating systems,” in Proc. ACM SOSP, 2003.

[14] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recovering device

drivers,” ACM Trans. Comput. Syst., vol. 24, Nov. 2006.

[15] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault tolerance

using device checkpoints,” in Proc. ACM ASPLOS, 2013.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S. Jha,

https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://msdn.microsoft.com/en-us/library/windows/hardware/Ff565698(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/Ff565698(v=vs.85).aspx

58

“The design and implementation of microdrivers,” ACM SIGOPS Operating Sys-

tems Review, vol. 42, no. 2, pp. 168–178, 2008.

[17] A. A. Sani, L. Zhong, and D. S. Wallach, “Glider: A gpu library driver for

improved system security,” arXiv preprint arXiv:1411.3777, 2014.

[18] M. J. Renzelmann and M. M. Swift, “Decaf: Moving device drivers to a modern

language.,” in USENIX Annual Technical Conference, 2009.

[19] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller, “Devil: An IDL

for hardware programming,” in Proc. USENIX OSDI, 2000.

[20] J. Sun, W. Yuan, M. Kallahalla, and N. Islam, “HAIL: a language for easy and

correct device access,” in Proc. ACM EMSOFT, pp. 1–9, 2005.

[21] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser, “Automatic device

driver synthesis with Termite,” in Proc. ACM SOSP, pp. 73–86, 2009.

[22] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and M. Vij,

“User-guided device driver synthesis,” in Proc. USENIX OSDI, 2014.

[23] “Linux pinctrl (Pin Control) Subsystem.” https://www.kernel.org/doc/

Documentation/pinctrl.txt.

[24] “Linux Common Clock Framework.” https://www.kernel.org/doc/

Documentation/clk.txt.

https://www.kernel.org/doc/Documentation/pinctrl.txt
https://www.kernel.org/doc/Documentation/pinctrl.txt
https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt

59

[25] “Linux Runtime Power Management for I/O Devices.” https://www.kernel.

org/doc/Documentation/power/runtime_pm.txt.

[26] devicetree.org, “Devicetree specification release 0.1,” 2016.

[27] A. Danial, “https://github.com/aldanial/cloc.”

[28] https://review.cyanogenmod.org/#/c/139054.

[29] M. Kerrisk, The Linux programming interface. No Starch Press, 2010.

[30] “https://www.kernel.org/doc/documentation/driver-model/design-

patterns.txt.”

[31] T. Instruments, OMAP543x Multimedia Device Silicon Revision 2.0. 2015.

[32] https://github.com/beagleboard/linux/blob/4.1/drivers/mmc/host/

omap_hsmmc.c#L767.

[33] https://github.com/beagleboard/linux/blob/4.1/drivers/tty/serial/

8250/8250_omap.c#L1420.

[34] https://github.com/beagleboard/linux/blob/4.1/drivers/gpio/

gpio-omap.c#L1319.

[35] M. S. Inc., “https://www.msoon.com/.”

[36] “Linux Kernel i915 Driver Memory Corruption Vulnerability.” https://tools.

cisco.com/security/center/viewAlert.x?alertId=16920.

https://www.kernel.org/doc/Documentation/power/runtime_pm.txt
https://www.kernel.org/doc/Documentation/power/runtime_pm.txt
https://review.cyanogenmod.org/#/c/139054
https://github.com/beagleboard/linux/blob/4.1/drivers/mmc/host/omap_hsmmc.c#L767
https://github.com/beagleboard/linux/blob/4.1/drivers/mmc/host/omap_hsmmc.c#L767
https://github.com/beagleboard/linux/blob/4.1/drivers/tty/serial/8250/8250_omap.c#L1420
https://github.com/beagleboard/linux/blob/4.1/drivers/tty/serial/8250/8250_omap.c#L1420
https://github.com/beagleboard/linux/blob/4.1/drivers/gpio/gpio-omap.c#L1319
https://github.com/beagleboard/linux/blob/4.1/drivers/gpio/gpio-omap.c#L1319
https://tools.cisco.com/security/center/viewAlert.x?alertId=16920
https://tools.cisco.com/security/center/viewAlert.x?alertId=16920

60

[37] M. F. Spear, T. Roeder, O. Hodson, G. C. Hunt, and S. Levi, “Solving the start-

ing problem: device drivers as self-describing artifacts,” in Proc. The European

Conf. Computer Systems (EuroSys), 2006.

[38] L. Ryzhyk, I. Kuz, and G. Heiser, “Formalising device driver interfaces,” in Pro-

ceedings of the 4th workshop on Programming languages and operating systems,

p. 10, ACM, 2007.

[39] A. Schüpbach, A. Baumann, T. Roscoe, and S. Peter, “A declarative language

approach to device configuration,” ACM Transactions on Computer Systems

(TOCS), vol. 30, no. 1, p. 5, 2012.

[40] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified device driver reuse

and improved system dependability via virtual machines,” in Proc. USENIX

OSDI, 2004.

[41] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers in

linux.,” in USENIX Annual Technical Conference, 2010.

[42] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming device drivers,” in

Proc. The European Conf. Computer Systems (EuroSys), 2009.

[43] L. Ryzhyk, J. Keys, B. Mirla, A. Raghunath, M. Vij, and G. Heiser, “Improved

device driver reliability through hardware verification reuse,” in Proc. ACM AS-

PLOS, 2011.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Background
	Device and their power-saving modes
	PM context management
	Moving functions out of drivers

	Motivations
	Analysis methodology
	Driver-based suspend/resume functions are expensive
	suspend/resume functions account for significant SLoC count
	suspend/resume functions account for significant maintenance efforts

	Device-independent Context Management
	Design overview
	Reentrancy
	Generic suspend/resume logic
	Generic logic contains common PM activities
	Device-specific PM activities remain in device drivers:

	Device-specific knowledge representation

	Implementation
	Evaluation
	Evaluation setup
	Effective power management
	Reduced device driver complexity
	Latency
	Limitations

	Related Work
	Moving things out of driver
	Representing device knowledge
	Move drivers out of kernel
	Driver fault tolerance and correctness

	Concluding Remarks
	Bibliography

