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ABSTRACT 

Compressive Phase Retrieval 

by 

Matthew L. Moravec 

In the phase retrieval problem, a signal must be recovered from the magnitude of 

its Fourier transform. The signal's compressibility can be used as prior knowledge to 

aid in its recovery. This knowledge also allows for recovery from fewer Fourier modulus 

measurements than the signal's bandwidth alone would dictate. We introduce a 

compressibility constraint for phase retrieval, define the number of measurements 

necessary for phase retrieval of sparse signals, and apply these concepts to terahertz 

imaging. 
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Chapter 1 

Introduction and Background 

In science and engineering, signals of interest are often structured in some way. Knowl­

edge of a signal's structure is used for a variety of signal acquisition and processing 

applications. For example, the bandwidth of a signal is used to determine appropri­

ate sampling rates, and properties of certain classes of signals allow for de-noising or 

detection. 

One way to characterize a signal's structure is how many large values it has when 

represented in an orthogonal basis \&. A compressible signal can be represented either 

exactly, or very well, by a linear combination of a few of the vectors from ty. In 

this thesis, we investigate how the compressibility of a signal can be applied to the 

phase retrieval problem to aid in signal recovery, and to recover signals from fewer 

measurements than are traditionally needed. This chapter gives a background of both 

compressive sensing and phase retrieval. In Chapter 2 we introduce a new compress­

ibility constraint for phase retrieval. In Chapter 3 we show how signal compressibility 

allows for phase retrieval with fewer measurements. In Chapter 4 we apply both of 

these concepts to terahertz imaging, and we conclude with Chapter 5. 

1.1 Compressive Sensing 

Traditionally, digital signal processing involves first uniformly sampling a signal and 

then processing it in some way that enhances it and/or prepares it for storage or 
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transmission. The sampling part of this process is governed by the signal's Nyquist 

rate. The sampling rate must be twice the bandwidth in order to accurately represent 

the signal. 

There are many scenarios in which the signal may have a large bandwidth, but 

not contain much information. A piecewise smooth signal may have high frequency 

components necessitating many samples, but can be represented well by a linear com­

bination of only a few wavelets. In digital photography an image field may be sampled 

at 10 million locations, but this information can be effectively stored with only 100 

thousand DCT or wavelet coefficients. Compressive sensing (CS) takes the logical 

step of exploiting a signal's structure to acquire it in less measurements, rather than 

the observe the whole thing and compress it later. As a model for structured signals, 

we first consider compressible signals that are fc-sparse in some orthogonal basis \I>. 

This means that when represented in the basis, the signal has only k non-zero co­

efficients, where k is much smaller than the signal length N. We are interested in 

recovering these signals exactly, with as few measurements as possible. The main re­

sult of CS is that such signals can be reconstructed perfectly with only 0(k\og(N/k)) 

measurements. 

The first half of CS is the definition of a special linear, nonadaptive measurement 

scheme. For a given fc-sparse signal x € M.N, the measurements can be represented 

mathematically as 

y = $x. (1.1) 

The matrix $ is of size M x N, with M < N. We would like this matrix to have the 

property that no two fc-sparse signals can result in having the same measurements 

y. Mathematically speaking, $ must be an injective mapping for fc-sparse signals. It 

has been shown that with high probability, random matrices of i.i.d Gaussian or ±1 
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entries satisfy this property for sufficiently large M [1, 2, 3]. A third type of $ matrix 

that also satisfies the property is a matrix formed from random rows of the discrete 

Fourier transform (DFT) matrix [2]. The measurements y would therefore merely 

be a random collection of the Fourier coefficients of x. Unlike with the Gaussian 

or ±1 matrices, the measurements y made with the random DFT matrix will be 

complex-valued. Although these $ matrices allow for CS measurements of signals 

that are fc-sparse in any orthogonal basis, we will focus on the canonical basis in our 

discussion of CS recovery. 

The second half of CS is recovering a signal x from the measurements y = $x. 

This is an ill-posed problem, since an infinite number of potential solutions all will 

admit the given measurements. However we will choose as x the one that has the 

sparsest representation. To find this we perform the optimization 

x = argmin ||a;||o s.t. y = $x. (1.2) 
X 

This optimization of the £Q pseudo-norm (||x||o is the number of non-zero elements of 

x) finds, among all signals that satisfy the linear measurements, the signal that has 

the fewest number of non-zero elements. Such an optimization is combinatorial and 

therefore impractical. Instead, we consider the optimization 

x = argmin ||:r||i s.t. y = $x, (1.3) 
X 

where the l\ norm of a signal is defined as the sum of the absolute values of its 

components: 

INIi = E N - f1-4) 
i 

This is a convex optimization that can be formulated as a linear program [4]. The 

attractive property of CS $ matrices is that this polynomial-time optimization pro­

cedure, under the CS measurement scheme, yields perfect recovery of fc-sparse signals 
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when $ takes 0(k\og(N/k)) measurements. If x is not sparse, but can be represented 

well by its k largest components in some basis, then the error of the reconstructed 

signal x is only a constant times the error between x and its fc-term approximation. 

If the i\ norm of the signal is given a priori, it can be used as a projection 

constraint in a projection onto convex sets (POCS) procedure [5]. Since the t\ ball and 

the hyperplane of potential solutions intersect at the optimal point x, this approach 

has the same accuracy as t\ optimization, but with less computational complexity. It 

also has similarities to methods currently used for phase retrieval. 

1.2 Phase Retrieval 

In many scientific fields, including crystallography, astronomy, and wavefront sensing, 

measurements of a complex-valued signal must be made with sensors that can only 

observe its intensity. These magnitude-only measurements are acceptable in instances 

like photography, since our eyes are only sensitive to the intensity of a light field. 

However in certain applications, the phase of a signal is very important information. 

One such important application is when the signal in question is an object's diffrac­

tion pattern. With visual light, objects can be illuminated and then recovered with a 

lens and sensing media. When other parts of the electromagnetic spectrum are used 

for illumination, lenses must be prohibitively large or small. A microscopic collection 

of atoms cannot be imaged with visible light, whose wavelength is too large to resolve 

atoms, but may be illuminated by X-rays that have a much smaller wavelength [6]. 

Rather than use a tiny lens and exposure media, the X-rays pass through the speci­

men and are collected downstream with a CCD. The signal acquired is the specimen's 

diffraction pattern. Other useful applications involving diffraction patterns include 

a landscape aerially illuminated by a laser [7] and a mask illuminated by terahertz 



(a) (b) (c) 

Figure 1.1 : The phase of an object's Fourier transform is necessary if an inverse transform 
is to be performed. An (a) image of the earth is transformed into the frequency domain 
using the fast Fourier transform. It is then reconstructed using (b) magnitude only and (c) 
phase only information from the transform. 

(THz) rays [8, 9]. 

An object's diffraction pattern closely approximates the object or scene's Fourier 

transform. Sensors such as CCD's, and in some cases, THz receivers, can only observe 

the magnitude of the pattern. We wish to recover the object from its transform, but 

we cannot perform an inverse transform without the phase of the Fourier coefficients 

(see Figure 1.1). Phase retrieval is the process of recovering the phase of a signal's 

Fourier transform when given just the magnitude, thereby recovering the signal itself. 

In our discussion we consider two-dimensional signals, though all of the concepts 

extend to higher dimensions. 

1.2.1 The Phase Retrieval Problem 

For a complex-valued signal xa sampled to be of size N x N, phase retrieval can be 

defined mathematically as the search for the intersection of two signal constraint sets: 

• The Fourier Modulus Matching Constraint Set is the set of signals whose 
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Fourier transform modulus match the observed Fourier transform modulus of 

xa. 

SF = {x € C2N*2N s.t. | ^x | = | X a | } , (1.5) 

where \XA\ is the modulus of the Fourier transform of the signal xa. The 2-D 

discrete Fourier transform is defined as: 

2JV-12JV-1 

^ = X[u,v] 4 E E xlmMe-*^^. (1.6) 
m=0 n=0 

Because |Xa| is related to the autocorrelation xa via a Fourier transform, and 

because this autocorrelation is, in general, of size (2N — 1) x (2iV — 1), |Xa | 

must also be of size (2N — 1) x (2N — 1) to avoid aliasing. 

• The Non-Aliasing Constraint Set are signals of size 2N x 2N that are 

nonzero only in an N x N window. Such signals do not alias their autocor­

relations, and by extension, their Fourier transform modulus. We denote this 

constraint set SNA-

The intersection of these two sets contains signals of size 2N x 2N whose Fourier 

transform modulus is \X\, but are nonzero only in an N x N window, ensuring that 

their Fourier transform modulus was not aliased. Surprisingly, such a signal in the set 

intersection is equivalent to x&*, excepting a shift in space, flip about one of the axes, 

or a constant phase shift, since this information is irretrievably lost with the phase. 

This result is a consequence of the irreducibility of arbitrary complex polynomials in 

two or more dimensions [10]. 

*That is, the nonzero N x N portion of it is equivalent to x a . 



1.2.2 Phase Retrieval Methods 

The goal of phase retrieval is to find the intersection of the two sets. If the two 

sets were convex, alternatively projecting the two would find the nearest intersection. 

However, the set SF is non-convex, and the distance between the two sets has many-

local minima that projection algorithms could get stuck in. Despite this fact, Fienup 

discovered that projection methods could still reliably find the intersection and recover 

the original signal [11, 12]. He introduced several algorithms and evaluated their 

ability to recover real, positive-valued signals from their Fourier transform modulus: 

• The Error Reduction (ER) Algorithm starts with an initial value x^°\ 

usually chosen randomly, and iterates in the following way: 

x(n+l) = pcpFX(n) ( 1 7) 

The operation Pp projects the current iterate x^ onto the set Sp by taking the 

Fourier transform of x^, fixing the magnitudes to the known values while leav­

ing the phase unchanged, and taking the inverse Fourier transform of the result. 

The operation Pc projects the result of the Fourier projection onto the set S^A 

by setting to zero the values of the signal outside an iV x N window. At each 

step, the algorithm finds an iterate on the set SNA which is the same distance or 

closer to the set Sp than the previous iterate. This is a favorable property until 

a local minimimum between the sets is reached because the algorithm cannot 

move away from it. 

• The Hybrid Input-Output (HIO) Algorithm uses the same projections 

but applies feedback in an effort to keep from getting stuck in local minima. 

, + l . PFXW pixels of PFx^ in SNA x / N 

x{n+1) = { } (1.8) 
1 - /3Ppx^ pixels of Ppx^ not in SNA 
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The value of /5 is usually chosen to be between .9 and 1. While the algorithm is 

not guaranteed to minimize the distance between the two sets at each step, its 

feedback mechanism allows it to wander out of local minima in pursuit of the 

set intersection. 

Though it has been more than 20 years since Fienup introduced these algorithms, 

various projection methods are still the state of the art in phase retrieval [13]. New 

projection schemes such as the Difference Map [14] and Relaxed Averaged Alternating 

Reflections (RAAR) [15] continue to be developed. RAAR operates according to the 

iterative process 

£(n+l) 
^0(RCRF + I) + (1-P)PF x{n\ (1.9) 

where a reflection R(x) is defined as 2Px — x, and /3 is usually between .8 and 1. 

1.2.3 Signal Constraints 

No matter how sophisticated present and future projection algorithms may be, all 

are subject to the fact that the problem is a non-convex optimization. Fienup and 

other's methods are only reliable if the set SNA is further constrained, thus reducing 

the search space. In his seminal work, Fienup considers the recovery of only the real, 

positive signals [12]. A positivity constraint greatly reduces the size of the set SNA 

and makes the search considerably easier. Other constraints used to further constrain 

the set include histogram matching and number of nontrivial (usually nonzero) pixels 

[16]. In this thesis we will examine, in particular, a Strict Support Constraint 

Set. This constraint set, denoted Ss, is the intersection of SNA with signals that are 

nonzero on the same support as the original signal. For phase retrieval of complex 

signals derived from an X-ray diffraction pattern, it is possible to assume and apply 
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a positivity constraint to the imaginary part of the signal [17]. However, for phase 

retrieval of general complex signals, it has been observed that for reliable recovery 

the strict support constraint must be used [18], whether it be known in advance or 

discovered [19]. 
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Chapter 2 

Compressive Phase Retrieval 

Needing to know or discover a signal's support for phase retrieval of complex signals is 

often too much to ask, so our aim is to develop a more realistic—and hopefully more 

effective—signal prior for phase retrieval. Our key insight is that many natural signals 

are compressible in an orthogonal basis \P, meaning that they can be represented 

either exactly or very well by a linear combination of only k <C N x N vectors in 

the basis ty. For example, most images are compressible in a wavelet basis. This 

property is what enables image compression techniques like JPEG and JPEG 2000. 

Other images, such as a starry sky, are compressible in the canonical basis (\& is the 

identity matrix). 

2.1 tv Compressibility Constraint 

Rather than assume that we know the support of x&, the signal to be recovered, 

we instead assume that the signal is compressible and that we know its iv norm in 

the basis \I>. To leverage this information for phase retrieval we introduce a new 

compressibility constraint: 

The £p Compressibility Constraint Set, denoted Sp, limits the search space 

SNA to be the subset in which the signals have the same £p norm when represented 

in the basis \I> as that of the original signal: 

Sp = {x e SNA s.t. ||*_1x||p = H^-^allp} , 
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where the £p norm is defined as 

HP=(£WPJ • (2.1) 
When p = 2, the constraint set considers signals with the same amount of energy 

as the original signal. For p — 1, the constraint set Sp=i is the subset of SNA where 

the signals have the same t\ norm in the basis ^ as the original signal x&. For the 

limiting case of p = 0 (£o is technically not a norm), the set Sp=0 is the subset of S^A 

where the signals have the same number of nonzero coefficients as xa in the basis \I/. 

In the specific case where ^ is the canonical basis, Sp=o is equivalent to the existing 

number of nontrivial pixels constraint set [16]. In this chapter we demonstrate which 

of these values give Sp favorable properties in comparison to Ss, the best known 

constraint set for phase retrieval of complex-valued signals. 

Using Sp as a constraint requires specific projection operations in conjunction with 

an algorithm like ER. ER works by projecting between the Fourier modulus set and 

the constraint set, reducing at each step (n = 1,2,3,...) the distance between them: 

WPcPpxl"* - PPxW\\2 

E = Pv^ih • ( } 

PF$") is the Fourier projection operator. The projection onto a constraint set is 

denoted Pcx^n\ It finds the signal in the constraint set that is closest to x^n\ For 

SNA, it sets to zero all pixel values outside an N x N window. Additional constraints 

perform another projection: 

Ss it also zeros out any signal values outside of the prescribed support. For Sp=i 

the projection is accomplished by uniformly adding or subtracting a constant value 

to the magnitudes of the entries of ^>_1x until ||\I>-1:r||i reaches the desired value [5]. 

For p — 0, only the prescribed number of nonzero coefficients are kept while the rest 

are set to zero, and for p = 2 the signal is normalized to have the same energy as x&. 
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To visually demonstrate the effectiveness of Sp on a compressible signal, we test 

it on an image that has 4096 pixels, all nonzero, but has only 300 nonzero coefficients 

with \I> being the Daubechies-6 wavelet basis (Figure 2.1). The magnitude of its 

Fourier transform is recorded, as is the t\ norm of its wavelet coefficients. For both 

Sp=i and Ss, ER is performed with multiple starting points, followed by several 

hundred iterations of HIO on the result with the smallest E value. With Sp=\, the 

algorithms recover the signal exactly, while with Ss they cannot. 

2.2 Geometric Analysis of Compressibility Constraint 

To more rigorously compare Sp to Ss, we consider the propensity of each set to 

introduce local minima in the distance between it and the Fourier modulus constraint 

set SF- We reason that the fewer local minima exist between the sets, the more 

effective the constraint will be for any projection algorithm. In order to analyze these 

properties, we examine the density of global minima among all minima through a 

Monte Carlo approach. For a range of signal sizes and number of nonzero elements, 

we generate multiple complex-valued signals. For each signal, a random starting 

value is chosen and then the ER algorithm finds the nearest minimum in the distance 

between SF and the constraint set to be examined. The proportion of the times this 

local minimum is a global minimum (E is sufficiently close to zero) is recorded. By 

comparing this global minimum ratio in tests on Ss and Sp, we can determine which 

constraint gives the best geometrical setting for recovering compressible signals. 

2.2.1 Signals Sparse in Space 

We first evaluate the sets' global minimum properties using compressible signals that 

are sparse in the canonical basis (i.e., there are only a few nonzero values). For 
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i+7¥l 

(a) (b) 

(c) (d) 

Figure 2.1 : (a) The 64 x 64 image (zero-padded to be 128 x 128) has all pixels of nonzero 
value, but is composed of only 300 Daubechies-6 wavelets, (b) The magnitude of its Fourier 
transform is recorded, (c) Sp=i is used to recover the signal exactly, but (d) the support 
constraint is ineffective. (For (c) and (d), only the 64 x 64 nonzero portion of the recovered 
signal is shown) 
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a given signal length we vary k, the number of nonzero elements, and determine 

over 2000 trials what the global minimum ratio is for the distance between the Sp 

and Ss/Sp (Figure 2.2). Ss has the highest, and therefore most favorable, ratio of 

global minima. The ratio for Sp=\ is good considering it only uses the l\ norm as a 

constraint, while Ss requires the exact support. It is surprising that 5^=1 does better 

than Sp=o, because it would seem that for a signal with only a few nonzero elements, 

using that information as prior information (using 5p=o) would help recover the signal 

more than just knowing its i\ norm. However, the l\ ball being convex and the £0 

ball being highly non-convex may explain why p — 1 introduces less local minima 

and is therefore preferable to p = 0. This may also explain why Sp=2 does not do 

much better than the basic non-aliasing set SNA- Unlike for p=0 or 1, the £2 ball is 

very smooth. At the point of its intersection with Sp, there will be many more local 

minima in the distance between the two sets than compared to the compressibility 

constraint with the other p values. 

Regardless of the constraint, signals that have more nonzero elements introduce 

more local minima in the search. When using a support constraint Ss, this occurs 

because the signal space increases. The same applies for Sp=o. However, for 5p=i, 

the number of nonzero elements has no effect on the size of the signal space, which 

is dictated by the £\ norm value. Rather than changing the size of the search space, 

the signal having more nonzero values places it on a less "pointy" location on the £\ 

ball. The intersection of this location on the ball with Sp obviously has more local 

minima in its vicinity. In contrast, a very sparse signal is located on one of the points 

of the ball, and the intersection of it with Sp is much more favorable. 

Keeping k constant and varying N has a minimal effect on phase retrieval recovery 

(Figure 2.3). This is because if the number of nonzero pixels remains the same, then 
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changing the overall signal size has no effect on Ss or Sp=o. For Sp=\, increasing the 

signal size has only a slightly adverse effect on the number of local minima if k is held 

constant. 

2.2.2 Signals Sparse in ^ 

When signals are sparse in another basis, such as wavelets, the compressibility con­

straint excels. As the number of nonzero coefficients increases, the number of nonzero 

pixels increases at a much quicker rate than before, and the performance of Ss corre­

spondingly degrades. However, 5^=1 is affected by the number of nonzero coefficients, 

and not necessarily nonzero pixels. As a result, it is much more effective than Ss 

when the number of significant coefficients in the basis ^ is small but the number 

of nonzero pixels is large. To examine the limiting case where each vector in the 

basis \I> is entirely nonzero, we create a basis with vectors drawn from a Gaussian 

distribution, and then orthogonalize it. Ss is useless for recovering signals generated 

from this basis because every pixel value is nonzero and the constraint does not limit 

SMA at all, but Sp=i performs as well as if the signals were sparse in space. 

In contrast to Ss, the compressibility constraint performs well regardless of the 

basis ty. However, it is not entirely unaffected by different bases. Sp=o and 5^=1 

have most favorable phase retrieval geometries for signals that are sparse in space, 

or are formed by a randomly generated basis. The next best basis for recovery is 

Haar wavelets, followed by Daubechies-6 wavelets. Unlike with Ss, the performance 

clearly has nothing to do with the number of nonzero pixel values, for the best two 

cases are opposite extremes. Instead, the performance appears to be related to the 

degree of \I>'s coherence with, or similarity to, the Fourier basis. Spikes, followed 

by random vectors, are most incoherent with the Fourier basis, followed by Haar and 
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Daubechies-6 wavelets. Likewise, signals that are sparse in space or in a random basis 

perform best, followed by wavelets. 

2.2.3 Non-Sparse Compressible Signals 

In reality, compressible signals are never exactly sparse. Rather, if the magnitude 

of their coefficients in \I> were sorted, the values would closely follow an exponential 

decay. To test the compressibility constraint on this signal class, we generate signals in 

which the magnitudes of the Daubechies-6 wavelet coefficients cti have an exponential 

decay: 
1 

Oii = — • 

We evaluate the performance of Sp=i for different values of n. The larger n is, the 

more quickly the coefficients decay, and the closer the signal is to being truly sparse. 

As shown in Figure 2.4, the performance is best for larger values of n, but gracefully 

degrades as n decreases. In all cases Ss and Sp==0 are totally ineffective because all of 

the wavelet coefficients, and pixel values, are nonzero. 

2.3 Benefits of the Compressibility Constraint 

There are many sophisticated phase retrieval algorithms in existence, and we have not 

provided a new one. Instead, we propose a new kind of constraint. For compressible 

signals, the constraint set based on the £P norm of a signal is effective for phase 

retrieval of complex-valued signals. In particular, the geometry of Sp with p — 1 

introduces fewer local minima in the distance between it and SF than does Ss or 

other values of p when ^ is a wide-band basis such as wavelets. In such cases, Sp=i is 

even more effective than Ss for phase retrieval. As a result, existing and future phase 

retrieval methods can perform compressive phase retrieval (CPR) by leveraging the 
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Figure 2.2 : For 8 x 8 signals that are (a) sparse in space, Ss offers the best hope of 
recovering the signal, followed by Sp=i, and then Sp=o. For signals that are sparse in a wide­
band basis such as (b) Haar wavelets and (c) Daubechies-6 wavelets, Sp=\ is most effective 
at signal recovery, (d) If each vector of \£ is generated randomly and is entirely nonzero, 
Sp=i and Sp=o are the only effective constraints. In all cases, Sp=2 is only marginally more 
effective than using SNA without an additional signal constraint. 
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Figure 2.3 : For a constant sparsity, changing the signal size N x N has little effect on the 
ability to perform phase retrieval. 

Figure 2.4 : 5p=i performs best when its coefficients in the basis * (in this case, Daubechies-
6 wavelets) decay quickly. As the decay moves from i~4 to i~l, the performance degrades 
but is still acceptable. The signal size is 8 x 8 . 
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a priori information of a compressible signal's £p norm to better their performance. 

In practice, the knowledge (either exactly or approximately) of a signal's £p norm 

will not always be available. However, the search for a signal's tv norm would be a 

one-dimensional scan, unlike searching for a signal's support. 



20 

Chapter 3 

Compressive Sensing Phase Retrieval 

In many data acquisition and processing problems, the measurement process is time 

consuming or expensive. For example, high-frequency and ultra wide-band radar is 

beginning to test the limits of analog to digital conversion. Sensors for THz elec­

tromagnetic frequencies cost many times more than those for the visible spectrum. 

Magnetic resonance imaging (MM) scans can take over an hour. The irony of these 

situations is that in each case the wide-band signals involved are undeniably struc­

tured, yet aside from general bandwidth considerations, no assumptions about this 

structure are exploited to ease the sensing process. CS takes the logical step of mak­

ing measurements that directly take a signal's structure into account. CS takes only 

as many measurements as the structure dictates. By structured, we mean that the 

signal has only a few non-zero coefficients when represented in terms of some basis, 

or can be approximated well by a few coefficients. CS has already seen practical 

success such as a camera with a single pixel, [20] reduction in MRI scan time, [21] 

and analog-to-digital conversion [22]. 

Several types of measurement schemes have been shown to capture the information 

necessary for CS. They all involve random projections—taking the inner product of 

the signal with random vectors such as Gaussian vectors, ±1 Bernoulli/Rademacher 

vectors, or randomly selected rows from the DFT matrix. Since random DFT co­

efficients qualify as CS measurements, it would seem that the benefits of CS can 

apply when we have access to an object's diffraction pattern, since it closely approxi-
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mates the image of an object's Fourier Transform. Taking the object's structure into 

account, we can recover the object from just its randomly sub-sampled diffraction 

pattern, rather than the entire pattern [8]. We refer to recovering signals from fewer 

Fourier magnitude measurements as compressive sensing phase retrieval (CSPR). 

3.1 Sufficient Measurements for a Band-Limited Signal 

As discussed in Chapter 2, it is known that a signal's Fourier transform modulus, over-

sampled by a factor of two in each dimension, is sufficient information to uniquely 

recover the signal. The theory behind this uniqueness of recovered results has been de­

veloped by Hayes [10]. Observing the magnitude (squared) of a signal's Fourier trans­

form is equivalent to observing its autocorrelation, since they are Fourier transform 

pairs. Knowing a signal's autocorrelation is equivalent to knowing the z-transform 

of its autocorrelation. This polynomial is the product of the signal's z-transform 

with the transform of its time-reversed version. Therefore if a signal's ^-transform is 

irreducible, then it is the only signal that will yield its autocorrelation (excepting a 

shifted or flipped version, since the absolute position and orientation of the signal is 

irretrievably lost with the phase). Virtually all polynomials in two or more dimen­

sions are irreducible, since the set of reducible polynomials is a set of measure zero 

[23]. Therefore if a candidate recovered signal has finite support and has the same 

autocorrelation as the original signal, then it is indeed the correctly recovered original 

signal. 

Hayes also explains the conditions needed to guarantee that a recovered signal 

has the same autocorrelation as the original signal [10]. In examining sufficient con­

ditions to guarantee that two signals' autocorrelations are equivalent, he comes to the 

conclusion that a signal in two or more dimensions is uniquely specified by its twice 
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over-sampled DFT magnitude. 

3.2 Sufficient Measurements for a Sparse Signal 

For a band-limited signal, the number of measurements needed to guarantee unique­

ness in PR is a function of the bandwidth: the Fourier magnitude must be sampled 

twice as much in each dimension as the bandwidth of the original. However we know 

more about the signal than this. We know that natural signals will probably have a 

relatively small number of significant coefficients in a sparsifying basis, compared to 

the total size of the signal. CS intuition says that if only a few pieces of information 

of the signal suffice to represent it well, then only a few measurements should be 

needed to capture this information. We have access to linear measurements of the 

signal's autocorrelation, as the intensity (the magnitude-squared) of a signal's Fourier 

transform is equivalent to the Fourier transform of its autocorrelation. Each Fourier 

magnitude measurement is a linear projection of the signal's autocorrelation onto a 

complex sinusoid. The good news is that a random collection of these projections is 

sufficient to specify a sparse autocorrelation, which is sufficient to uniquely specify 

the signal. 

Lemma 3.1 

Suppose x[ni, n2] is a two-dimensional sequence of complex-numbers of support N x 

N, and x has a z-transform that, except for trivial factors, is irreducible and non-

symmetric. Then x[n] is uniquely specified by its Fourier transform magnitude, and 

a 2N x 2N point DFT is sufficient for this unique specification. 

Proof 3.1 Hayes proves that sequences of real numbers are uniquely specified by their 

DFT magnitude, as a consequence of their z-transforms being irreducible [10]. These 

arguments also follow for complex sequences as long as their z-transforms are also 
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irreducible. Hayes notes that the irreducible requirement is not strict in two or more 

dimensions for complex signals, since reducible polynomials correspond to a set of 

measure zero [23]. • 

This means that if x G CNxN has an irreducible z-transform and there exists an 

x G CNxN such that \Tx\ = \Fx\ on a 2N x 2N lattice, then x and x are equivalent. 

Since the autocorrelation is a Fourier transform pair with a signal's Fourier transform 

intensity, Lemma 3.1 implies that a signal's autocorrelation is sufficient to uniquely 

specify it. 

Since an arbitrary complex signal is specified by its autocorrelation, we must now 

consider how many measurements of the signal's autocorrelation are needed to specify 

it. We consider the case in which the input signal is fc-sparse. 

Theorem 3.1 

Suppose x[ni,n2] G <CNxN is k-sparse and has an irreducible z-transform. Then with 

probability of at least 1 - 0(N~4p/a) for some fixed p > 0, ^k2 \og(AN2/k2) random 

Fourier magnitude measurements of x are sufficient to uniquely specify it. 

Proof 3.2 The autocorrelation of x is of size 2N x 2N, which is AN2 total pixels. 

Since x is fc-sparse, the autocorrelation is at most A;2-sparse. Due to the Uniform 

Uncertainty Principle of a random Fourier ensemble [3], only M = ^k2\og(AN2/k2) 

random Fourier measurements are needed to specify a fc2-sparse signal of size AN2, 

with the probability stated above in the theorem. This means that, with overwhelm­

ing probability, if autocorrelation Rx matches Rx at M random Fourier locations, and 

both Rx and Rx are A;2-sparse, then Rx = Rx. From Lemma 3.1, this implies that x 

and x are equivalent. • 
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This approach redefines the number of Fourier magnitude measurements needed to 

capture the information in a signal and is significant because it scales with the signal's 

structure, rather than its bandwidth. The theorem applies to signals that are sparse 

in space. It does not apply to signals that are sparse in a general basis \& because 

their autocorrelation would not be A;2-sparse in another basis, but rather in the frame 

formed by convolving all of the atoms of \P with themselves. However, in Section 

3.4 we provide numerical evidence that suggests that the results apply in practice to 

other sparsifying bases, such as wavelets. We also show that in practice the order 

of measurements needed scales more like k\og(N2/k) than k2\og(N2/k2). This may 

be partially explained with the fact that a A;-sparse signal will have at most a k2-

sparse autocorrelation, and would have a much sparser autocorrelation if the non-zero 

elements were connected. For example, the autocorrelation will be (2k — l)-sparse if 

the non-zero elements form a line. 

In order to recover the signal from fewer, but still sufficient, number of measure­

ments, we must perform an inverse operation that is ill-posed. We would like to find a 

fc2-sparse solution that matches the given random Fourier measurements. This could 

be accomplished via the optimization 

x = argmin ||x||o s.t. \y\ — \$x\. (3.1) 
X 

As with CS, such an optimization would be combinatorial in its complexity and 

therefore infeasible. We turn to CS for inspiration to instead find our solution via the 

optimization 

x = argmin \\x\\i s.t. \y\ = \$x\. (3.2) 
X 

The problem for us is that while £\ minimization is a convex optimization for CS, it 

is a non-convex optimization for CSPR due to the non-convex feasible solution set. 
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Rather than perform this intractable optimization, we turn to the projection strategy 

of phase retrieval algorithms. As we show in Section 3.4 we have found that this 

method is effective in recovering sparse solutions with a number of measurements 

that supports what we have proven to be sufficient. 

3.3 CSPR Recovery 

We know how many Fourier modulus measurements suffice to recover a fc-sparse signal 

xa, so our task is to find a fc-sparse signal that matches the measurements. According 

to our theorem, this will recover the original signal exactly. As with phase retrieval 

of band-limited signals from all of the Fourier measurements, we use a projection 

strategy. Mathematically, we again search for the intersection of two sets. 

The first is the Sub-sampled Fourier Modulus Set, the set of signals whose 

Fourier transform modulus match the observed Fourier transform modulus of x& at a 

sub-sampled set of locations: 

SFA = {xe C2N*2N s.t.\X(u)\ = \Xa(u)\,u € A c Q} , 

where A is the set of frequency locations, chosen randomly from the entire set Q. 

As with regular phase retrieval, the second set is the non-aliasing set SNA- We 

consider several additional sets that further limit it: a strict support set Ss, and a 

compressibility constraint set Sp for p values 0 ,1 , and 2. In our analysis of the various 

constraints we consider both how they perform in finding a signal in their intersection 

with SpA, and if the signal they recover is A;-sparse or not. 

Using the same method of local minima analysis as in Chapter 2, we test the 

constraints for a signal size of 64 pixels, 6 of them nonzero, while varying M, the 

number of measurements used for SpA (see Figure 3.1). We first consider signals 
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that are sparse in space. Ss has the fewest local minima in the distance between it 

and SpA, followed by 5^=1 and S^o- The rates of convergence drop as the number 

of measurements drop and the set SpA increases in size. There is a critical point 

around M = 100 where the intersection is impossible to find, and below this point 

the compressibility constraints can recover signals again. For values of M less than 

100, 5P=2 and the anti-aliasing constraint S^A both intersect SpA with few local 

minima between them. 

While all of the signal constraints intersect favorably with SpA for certain values 

of M, not all of the constraints recover fc-sparse signals. For values of M less than 

100, it is easy to find the intersection of SFA with SNA, but none of the signals in 

the intersection are fc-sparse, and therefore none are a correct recovery. This is to be 

expected because the anti-aliasing set does not constrain the search space at all, and 

while there may only be one 6-sparse signal matching the measurements, there are 

infinitely more non-sparse signals in SNA that also match the measurements. Sp=o, on 

the other hand, does restrict the search over fc-sparse signals. 5s restricts the search 

to fc-sparse signals with the same nonzero locations as the original signal. As a result, 

both retrieve A;-sparse signals every time they intersect with SFA for M greater than 

50. Sp=i also retrieves only A;-sparse signals every time it correspondingly intersects 

SFA • The result is surprising because it is only placing a restriction on the t\ norm 

of the signals and not on the number of nonzero elements. Not only does it recover 

sparse signals just like SV^Q, it does so at a significantly higher rate. As with phase 

retrieval with all of the measurements, this is likely because it is a convex set, in 

contrast to S^o-

When \I/ is the Haar wavelet basis, the various properties of the sets are the same, 

with one exception. The exact support constraint set Ss performs much worse, and 
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the number of measurements needed for the correct recovery is higher. The fact 

that the signal is 6-sparse in Haar wavelets means that many more than 6 pixels 

are nonzero. Because there are more nonzero pixels, the support constraint requires 

more measurements. Sp=o and Sp=i both correctly recover signals that are fc-sparse 

in wavelets, needing the same number of measurements to do so as when the signals 

were sparse in space. This suggests that the CSPR theorem, which has only been 

proven for signals sparse in the canonical basis, also applies to signals sparse in other 

bases. In the case of Daubechies-6 wavelets, all signals generated have all nonzero 

pixel values, so only the compressibility constraints can recover them. 

3.4 CSPR Accuracy 

As seen in the previous section, we find that with CSPR there exists a critical point in 

the number of measurements, above which converged signals are accurately recovered. 

For different signal sizes and sparsity rates, we record the number of measurements 

M needed for consistent (95%) exact recovery of 100 converged solutions. We hold 

iV constant and vary k, and also hold k constant and vary N, in order to empirically 

understand the dependence of the number of measurements on these values. We 

compare these results with those found via regular CS if the phases were known, 

using the SPGL1 solver [24]. 

For convergent solutions we find that the number of measurements needed does 

not appear to follow a k2 \og(N2/k2) trend but appears to be closer to k \og(N2/k), as 

Figure 3.2 shows. When the signal size is held constant, the number of measurements 

needed increases linearly. The slope is the same as for CS with the known phases, 

though more measurements are needed for CSPR. When k is held constant, the 

number of measurements follows a sub-linear trend, just as CS does, though more 



28 

i 
I 80 

i 
• * 

_̂ —~~-—~~— . . . . . 

— 8 f t 

-^V1 
-*-Sp,p=0 
_,_._Sp,p,2 

-*-SNA 

100 150 200 
M 

- s s 
- V 

- s p . 
^ s , 
~ p 

M 
P-0 

P=2 

-»-SNA 

«^y K ? ) V ^ W V > V * * * * V 

(a) (b) 

(c) 

^^•vv / 
igjjjijjs»ji*_ 

(e) (f) 

Figure 3.1 : The percentage of global minima among all minima in the distance between SF 
and various constraint sets varies with the number of measurements used, (a) For signals 
that are sparse in space, Ss has the highest density of global minima and is very effective for 
phase retrieval, followed by Sp=i and Sp=o- For more wide-band bases such as (c) Haar or (e) 
Daubechies-6 wavelets, the compressibihty constraints outperform the support constraint. 
The compressibility constraints intersect favorably with Sp, and the signals they recover 
are, without fail, sparse (and correct). As long as the number of measurements is above 
a critical point, signals are accurately recovered whether they are sparse in (b) space, (d) 
Haar wavelets, or (f) Daubechies-6 wavelets. 
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Figure 3.2 : For a given signal size NxN and sparsity level k, enough trials of CSPR are 
performed (with the compressibility constraint Sp=i) on randomly generated signals until 
100 convergent solutions have been found. The number of measurements M recorded is 
the smallest value needed so that at least 95 are perfectly reconstructed. In (a) we hold 
NxN constant at 64 and vary k. The number of measurements needed increases linearly, 
whether the signal is sparse in the canonical basis (I) or the 2D Haar wavelet basis (W). In 
(b) we hold k constant at 5 non-zero elements (in the canonical basis) and vary the signal 
size. The increase in the number of measurements needed is approximately linear when 
plotted on a log scale, and thus it is approximately logarithmic. In each case the number 
of measurements needed has a trend similar to that of CS with the phases known, though 
clearly more measurements are required. 
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measurements are needed than CS would need if the phases were known. 

Both of these findings support the CSPR theorem result regarding the number 

of Fourier modulus measurements sufficient to specify signals that are fc-sparse in 

space. In addition, we also demonstrate in Figure 3.2 that the result appears to hold 

for signals that are sparse in another basis. When the signal size is held constant, 

roughly the same number of measurements are needed to recover signals of varying 

sparsity, whether they are sparse in space or in wavelets. These empirical findings 

are significant because they suggest that random Fourier modulus measurements may 

have the CS quality of capturing the information in a signal regardless of the basis in 

which it may be sparse. 



31 

Chapter 4 

Compressive Phase Retrieval in Practice 

4.1 THz Imaging 

The ability to use compressibility to aid in phase retrieval, and perform it with less 

measurements, improves the recovery of any signal from its diffraction pattern. A 

particular area of application we investigate is THz imaging. With uses in aerospace, 

homeland security, medical imaging, and quality control of packaged goods, time-

domain THz imaging systems have proven valuable in numerous fields. These systems 

are generally limited by slow image acquisition rates [25]. In the fastest example of 

raster-scan THz imaging reported to date, a 400 x 400 pixel image takes as long as 

6 minutes to acquire [26]. Recent developments using more sophisticated image pro­

cessing approaches, such as the Radon transform [27, 28] and interferometric imaging 

[29], have shown preliminary successes but also face similar limitations in speed, res­

olution and/or hardware requirements. Applying compressive phase retrieval allows 

for THz imaging with less measurements, and hence shorter acquisition time. 

Our imaging system consists of a pulsed THz transmitter and receiver, both based 

on photoconductive antennas, and two lenses, one of which approximately collimates 

the THz beam while the other focuses the beam (see Figure 4.1). The object mask, 

placed in between the two lenses, scatters the THz waves. The focusing lens forms 

the Fourier transform of the object mask at its focal plane. The receiver, mounted on 

a translation stage, performs a raster scan in the focal plane, over an area of 64 x 64 
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mm, at 1 mm intervals. We place a circular aperture (1 mm in diameter) in front 

of the receiver antenna so that it only samples a small area of the Fourier pattern, 

rather than relying on the 6 mm receiver aperture [30]. The object mask is made of 

opaque copper tape on a transparent plastic plate. In our experiments, our object 

mask is a T-shaped hole, 15 mm by height and by width. 

At each detector position, an entire time-domain THz waveform is measured. If 

the object is exactly 6 cm from the focusing lens, it is possible to observe both the 

magnitude and phase of the diffraction pattern in the Fourier plane. We compute the 

power spectrum of each waveform, and select the spectral amplitude and phase at a 

particular wavelength (A = 2 mm) to obtain a (complex) pixel value. In this way, 

we can assemble a 64 x 64 Fourier diffraction pattern. Direct 2D Fourier inversion of 

this signal can reconstruct the object. 

4.2 CPR Recovery from the Entire Diffraction Pat tern 

In the more realistic scenario where the object to be measured is not exactly one 

focal length distance away from the focusing lens, the acquired Fourier data will have 

the correct Fourier magnitude but a distorted phase. We can no longer use the phase 

data to simply perform an inverse Fourier transform and reconstruct the image, so we 

attempt to recover it via PR. As Figure 4.2(a) shows, the signal cannot be recovered 

with the basic non-aliasing constraint SNA- Knowing what the true object is, we can 

make a strict support constraint. Using this constraint Ss with the measured Fourier 

modulus, we can recover the object via the RAAR phase retrieval algorithm (Figure 

4.2(b),(c)). 

In our experiment, the signal to be recovered is highly compressible in space, as 

there are only a few significant pixels values (see Figure 4.3). As described in Chapter 
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Figure 4.1 : (a) The THz Fourier imaging setup. An approximately collimated beam from 
the THz transmitter illuminates an object, placed one focal length away from the focusing 
lens. The THz receiver raster-scans and samples the Fourier transform of the object on the 
focal plane. In the event that the receiver is not exactly one focal length away from the 
lens, the phase is distorted, (b) The observed diffraction pattern. 
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(c) (d) 

Figure 4.2 : From the observed THz diffraction pattern, (a) PR is unsuccessful at recovering 
the signal with only the non-aliasing constraint SNA- (b) An exact support constraint Ss 
is needed (c) to recover the signal. With the t\ norm calculated from the result, (d) the 
signal can be recovered using the Sp=i compressibility constraint. 
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Figure 4.3 : When sorted, the magnitudes of the "T" signal used in our experiments have 
a sharp decay, indicating the signal is highly compressible. 

2, such a signal can be recovered using a compressibility constraint, instead of the 

exact support constraint. Rather than use the object's support to aid in recovering 

it, we use its l\ norm. For our experiment, we calculate the i\ norm value obtained 

from the recovery via Ss, and use it in Sp=i to reconstruct the signal (Figure 4.2(d)). 

The fact that the signals recovered via Ss and Sp=i are nearly identical is remarkable, 

given that one was given the exact support of the actual signal as prior information, 

while the other had only the i\ norm as a constraint. 

We derive the value of the signal's l\ norm by recovering the signal first with SS-

In most applications, one will not have the luxury of having the exact value of the 

norm of the signal to be recovered. However, even if the value of the actual signal's 

£i norm is not known exactly, having a good estimate suffices if the signal is sparse 

enough. Figure 4.4 shows the signal recovered with the true t\ norm as a constraint, 
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along with signals recovered with other norm values used as constraints. A large 

range of values can be used to obtain acceptable results. 

These reconstruction results demonstrate the applicability of our imaging scheme 

not only to pulsed THz imaging systems but also to continuous-wave systems, in which 

phase information is typically not available. The latest research on THz CW imag­

ing requires high-power sources (>10 mW), such as quantum-cascade lasers (QCLs) 

operating at low temperature (~ 30K), because the focal-plane microbolometer array 

used for imaging has low sensitivity at THz frequencies [31]. In contrast, our Fourier 

imaging technique can use a single-pixel THz detector with much higher sensitivity 

to enable imaging with a low-power CW source. 

4.3 CSPR Recovery from a Sub-sampled Diffraction Pat tern 

The compressibility of a THz signal not only allows for phase retrieval recovery when 

the phase is distorted, but also recovery from less measurements. We reconstruct the 

signal with varying numbers of measurements, randomly sub-sampled from the entire 

Fourier modulus set. As Figure 4.5 shows, signal quality remains high for as low as 

600 measurements, at which point it seriously degrades. Because none of the signals 

exactly converged, we cannot accurately compare the error between them directly. 

Rather, we calculate the error between their Fourier transform modulus and the true 

Fourier transform modulus. The error decreases with a corresponding increase in 

measurements (Figure 4.6). 

Using less measurements with THz imaging system designs can significantly re­

duce the image acquisition time. Traditional imaging systems scan point by point 

in the space domain. By application of the CSPR theorem, only 0(k2\og(AN2/k2)) 

locations in the frequency (modulus) domain need to be scanned if the signal is sparse 
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Figure 4.4 : CPR is performed using the true l\ norm value of 1.4662, along with a range 
of other norm values. 
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Figure 4.5 : The results ofCSPR with varying levels ofM Fourier modulus measurements, 
randomly selected from the entire diffraction pattern. 
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Figure 4.6 : The percent error of the Fourier modulus of the recovered result, compared 
to the full diffraction pattern, decreases as the number of measurements increases. 

in space and has k nonzero values (empirical evidence from Chapter 3 suggests that 

the measurements scales according to k, and the basis need not be canonical). Be­

cause a scanner must stop at every location to make a measurement, taking fewer 

measurements will result in less scan time. In addition, the scanner does not have to 

travel as far, either. The path length traveled by a scanner to k2 random points on 

an n x N square lattice is, on average, .9dkN [32]. For k <C N, this is a significant 

improvement over the N2 distance required for a full raster scan. 
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Chapter 5 

Conclusion 

The compressibility of a signal is prior knowledge that can be used effectively to aid in 

the recovery of signals from just the magnitude of their Fourier transform. Compared 

to existing prior signal constraints in PR, such as an exact support constraint, a 

compressibility constraint is more general, but is as powerful. In the context of PR 

of signals compressible in a wavelets basis, the signal's compressibility is a better 

constraint for PR than even exact support. Compressibility can also be effectively 

leveraged to recover a signal from a number of measurements that scales with its 

structure, rather than its bandwidth. Mathematical theory, empirical support, and 

the use of our concepts on a THz imaging problem show that compressive phase 

retrieval can positively impact any scientific application involving a signal's Fourier 

transform modulus. 
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