
RICE UNIVERSITY

Resistor Networks and Optimal Grids for the Numerical

Solution of Electrical Impedance Tomography with Partial

Boundary Measurements

by

Alexander Vasilyevich Mamonov

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Liliana Borcea, Noah G. Harding Professor, Chair,
Computational and Applied Mathematics

Danny C. Sorensen, Noah G. Harding Professor,
Computational and Applied Mathematics

William W. Symes, Noah G. Harding Professor,
Computational and Applied Mathematics

Dennis D. Cox, Professor,
Statistics

Houston, Texas

May 2010



Abstract

Resistor Networks and Optimal Grids for the

Numerical Solution of Electrical Impedance

Tomography with Partial Boundary Measurements

by

Alexander Vasilyevich Mamonov

The problem of Electrical Impedance Tomography (EIT) with partial boundary mea-

surements is to determine the electric conductivity inside a body from the simultane-

ous measurements of direct currents and voltages on a subset of its boundary. Even

in the case of full boundary measurements the non-linear inverse problem is known

to be exponentially ill-conditioned. Thus, any numerical method of solving the EIT

problem must employ some form of regularization. We propose to regularize the prob-

lem by using sparse representations of the unknown conductivity on adaptive finite

volume grids known as the optimal grids, that are computed as part of the problem.

Then the discretized partial data EIT problem can be reduced to solving the discrete

inverse problems for resistor networks. Two distinct approaches implementing this

strategy are presented.

The first approach uses the results for the EIT problem with full boundary mea-

surements, which rely on the use of resistor networks with circular graph topology.

The optimal grids for such networks are essentially one dimensional objects, which



iii

can be computed explicitly using discrete Fourier transform and rational interpolation

with continued fractions. We solve the partial data problem by reducing it to the full

data case using the theory of extremal quasiconformal (Teichmüller) mappings.

The second approach is based on resistor networks with the pyramidal graph

topology. Such network topology is better suited for the partial data problem, since

it allows for explicit treatment of the inaccessible part of the boundary. We present

a method of computing the optimal grids for the networks with general topology (in-

cluding pyramidal), which is based on the sensitivity analysis of both the continuum

and the discrete EIT problems. This is the first study of the optimal grids for the

case, where reduction to one dimension is not possible.

We present extensive numerical results for the two approaches. We demonstrate

both the optimal grids and the reconstructions of smooth and discontinuous conduc-

tivities in a variety of domains. The numerical results show several advantages of

our approaches compared to the traditional optimization-based methods. First, the

inversion based on resistor networks is orders of magnitude faster than any iterative

algorithm. Second, our approaches are able to correctly reconstruct both smooth

and discontinuous conductivities including those of very high contrast, which usually

present a challenge to the iterative or linearization-based inversion methods. Finally,

our method does not require any form of artificial regularization via penalty terms.

However, our method allows for such regularization to incorporate prior information

in the solution.
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Chapter 1

Introduction and background

This thesis is concerned with the numerical solution of the Electrical Impedance

Tomography (EIT) problem with partial data. We consider an approach based on

the theory of inverse problems for resistor networks, and the theory of optimal grids.

We begin in this chapter with an overview of the EIT problem. We discuss theoretical

results of existence, uniqueness and stability. Then we describe the ill-conditioned

nature of the problem. Numerical methods and discretization are discussed next,

followed by an example of how the theory of optimal grids provides a crucial link

between the discrete and continuum inverse problems.

1.1 Electrical Impedance Tomography: existence,

uniqueness and stability

The mathematical problem of Electrical Impedance Tomography is concerned with de-

termining the coefficient of an elliptic equation (the conductivity σ) inside a bounded

simply connected domain Ω ⊂ Rd, given simultaneous measurements of the Dirichlet

data (voltages) and the Neumann data (currents) on the boundary ∂Ω = B. Explic-

1
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itly, we have

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, (1.1)

u(x) = φ(x), x ∈ B, (1.2)

(Λσφ) (x) = σ(x)
∂u

∂ν
(x), x ∈ B, (1.3)

where u is the electric potential, ν in the unit outward normal, and Λσ is the Dirichlet-

to-Neumann (DtN) map. Equation (1.1) is understood in the weak sense, the poten-

tial u is in H1(Ω), the conductivity σ > 0 is in L∞(Ω), φ ∈ H1/2(B) is the Dirichlet

boundary data, and Λσ : H1/2(B) → H−1/2(B). We refer to the problem of finding σ

given the knowledge of Λσ as the continuum EIT. It is also known in the literature as

Impedance Computed Tomography, Impedance Imaging, or the Inverse Conductivity

problem. The above formulation was first given by Calderon in [22]. Substantial

progress has been made since then.

We consider the EIT problem in d = 2 spatial dimensions, however for complete-

ness we also present results of existence, uniqueness and stability for higher dimen-

sions. The EIT can also be formulated in terms of the Neumann-to-Dirichlet (NtD)

map, which maps boundary currents to boundary voltages. In theory, this formulation

is equivalent to the previous one. Working with the NtD map may be advantageous in

practice, because the NtD map is smoothing, acting from

{
J ∈ H−1/2(B) |

∫
B

JdS = 0

}

to H1/2(B). In this work we consider the DtN map only, since in two dimensions it

can be easily related to the NtD map using convex duality.

According to the definition of Hadamard [45] of a well-posed problem of mathe-

matical physics, it must satisfy three properties: existence, uniqueness, and stability

of the solution. We first review the existence and uniqueness results for the EIT.

--
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The first uniqueness results of Kohn and Vogelius [56] were local in nature, i.e. they

showed that Λσ uniquely determines piecewise analytic σ in dimensions two or higher,

and in domains with C∞ boundary. Independently, Druskin proved the injectivity

of the DtN map for piecewise constant conductivities with piecewise smooth inter-

faces of discontinuity in possibly unbounded domains [35]. He extended the results

to piecewise-analytic conductivities in [36]. The first global result was obtained by

Sylvester and Uhlmann in [81] for σ ∈ C∞(Ω), in three or more dimensions and

smooth boundary B. An improvement of the Sylvester and Uhlmann result and a

constructive reconstruction method based on scattering theory was given by Nachman

in [68], for σ ∈ C1,1(Ω) and B ∈ C1,1. The global result in two dimensions remained

open until another work of Nachman [69], that further relaxed the regularity condi-

tions to σ ∈ W 2,p(Ω), p > 1, and domains with Lipschitz boundary. The result was

consecutively improved in [20] to σ ∈ W 1,p(Ω), p > 2. Finally, the uniqueness ques-

tion in two dimensions was answered in the most general case of L∞ conductivities by

Astala and Päivärinta in [3]. The question of uniqueness in higher dimensions d ≥ 3

for L∞ conductivities is still open.

Note that the above uniqueness results are formulated for scalar-valued σ, i.e. for

isotropic conductive media. In anisotropic media the conductivity σ : Rd → Rd×d is

a symmetric positive-definite matrix valued function, which is not uniquely defined

by the DtN map [79, 4]. We limit our study to isotropic conductivities, but we show

that in the partial measurement settings certain numerical methods can introduce an

artificial anisotropy that should be taken into account.

The main difficulties in solving the EIT problem come from the stability issues.

In [1] Alessandrini constructs a simple example of a pair of discontinuous L∞(Ω)

conductivities σ1, σ2 such that ‖σ1 − σ2‖∞ = 1, but ‖Λσ1 − Λσ2‖H1/2(B)→H−1/2(B) can

be arbitrarily small, which shows that the problem is unstable for general L∞(Ω)

-
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conductivities. In the same paper Alessandrini obtains stability estimates in d ≥ 3

dimensions for σ ∈ W 2,∞(Ω) (see also [2, 61]). Stability in two spatial dimensions

d = 2 was shown by Liu in [60] for σ ∈ W 2,p(Ω), p > 1, which was improved in

Barcelo et. al. [8] to include σ in C1+α(Ω), α > 0. While the above results seem like

they make the EIT problem well posed, in practice they are not of much value. Let

us consider a typical stability estimate from [9, Theorem 1.1].

Theorem 1.1.1. Let Ω be Lipschitz domain in the plane. Let σ1, σ2 be two planar

conductivities satisfying

• Ellipticity:
∥∥∥1−σj

1+σj

∥∥∥
L∞(Ω)

< κ < 1, j = 1, 2,

• α-regularity: σj ∈ Cα(Ω) with α > 0 and with a priori bound ‖σj‖Cα < L,

j = 1, 2,

Then there exists a non-decreasing continuous function V : R → R with V (0) = 0,

such that

‖σ1 − σ2‖L∞(Ω) ≤ V
(
‖Λσ1 − Λσ2‖H1/2(B)→H−1/2(B)

)
, (1.4)

where V can be taken

V (ρ) = C |log(ρ)|−a , (1.5)

with positive constants C and a depending on α, κ, L.

First note, that a priori bounds on ellipticity of the differential operator and

regularity of the conductivity are required. Second, even if the conductivity is known

a priori to have the desired properties, the stability bound has a logarithmic modulus

of continuity V . Thus, a linear improvement of the misfit between σj requires an

exponential improvement of the misfit between the data Λσj
. In practice it means

that the quality of the solution with any numerical scheme will be severely restricted



5

by the errors in measuring Λσ, as well as by the round-off errors of the finite precision

arithmetic. In the work of Mandache [61] it is shown that the inconvenient feature of

logarithmic stability is indeed unavoidable for d ≥ 2 under any a priori assumption

of the form

‖σj‖Ck(Ω) ≤ E, j = 1, 2, (1.6)

for any E, and finite k = 0, 1, 2, . . ., i.e. no matter how much regularity we ask from

σj, the logarithmic stability bound is sharp.

The above stability estimates demonstrate that for all practical purposes the EIT

problem is ill-conditioned. Because of the logarithmic nature of stability bounds,

we expect the conditioning of the numerical approximations to the continuum EIT

problem to deteriorate exponentially fast as the size of discretization is increased.

Consequentially, the discrete problem has to be properly regularized. These questions

are addressed in chapter 2, where we describe a method of solution of the EIT problem

discretized on optimal grids.

1.2 Partial data EIT

In the partial data EIT problem we can measure potentials and currents only on parts

of the boundary. We write the mathematical formulation in compact form as follows

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (1.7)

u(x) = φ(x), x ∈ BD, (1.8)

au(x) + bσ(x)
∂u

∂ν
(x) = 0, x ∈ B\BD, (1.9)
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where the constants a and a in (1.9) provide us with the choice of enforcing either

a homogeneous Dirichlet (a = 1, b = 0) or Neumann (a = 0, b = 1) condition,

depending on whether the inaccessible part of the boundary is grounded or insulated.

The partial data EIT problem is then to find the conductivity σ given the partial

measurements of the current

(Λσφ)|BA
=

(
σ
∂u

∂ν

)∣∣∣∣
BA

, (1.10)

where BA ⊂ B is the accessible boundary. In this work we only consider the case

BA = BD, however in some of the theoretical studies of the partial data problem

other measurements are considered. When the accessible boundary coincides with

BD we refer to BI = B\BD as the inaccessible boundary.

It is worth mentioning that many of the works referenced in this section deal with

recovery of bounded potentials q of Schrödinger equation ∆u+ qu = 0, which can be

related to the conductivity σ in (1.7) by

q =
∆
√
σ√
σ
, (1.11)

assuming obvious regularity of σ.

Unlike the classical EIT problem with full data, which has been studied extensively

since the early 1980s starting with Calderon’s paper [22], most of the global results

about existence and uniqueness of the solutions of the partial data EIT were not

obtained until 2000s. Before that the existence and uniqueness of the solution to

the partial data EIT problem was known only for real-analytic [55] or piecewise real-

analytic [56] conductivities in three dimensions (see also [36]).

The first global result of existence and uniqueness was obtained in [21] for C2(Ω)
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conductivities, in a special setting where the potential is specified on the whole bound-

ary BD = B (which has to be a sphere in three or more dimensions), and BA is slightly

larger than half of B. The result was subsequently generalized to less restrictive mea-

surement settings in [53].

For two spatial dimensions the first global result for σ ∈ C3+ε(Ω), ε > 0 was

established in [48], however it required (B\BD) ⊂ BA (a = 1, b = 0), i.e. the current

is measured on a subset slightly larger than the grounded part of the boundary. For

realistic measurement setups it is more convenient to have the measurements of the

current on BD, which was considered in [47]. Below is a result from [47, Corollary

1.1] that establishes uniqueness of the solution to the partial data EIT problem for

the setting we are interested in: a = 1, b = 0, BA = BD.

Theorem 1.2.1. Let σj ∈ C3+ε(Ω), j = 1, 2, for some ε > 0 be non-negative func-

tions. Assume that

(Λσ1φ)|BA
= (Λσ2φ)|BA

,

for any φ ∈ H1/2(B), such that supp φ ⊂ BD. Then σ1 = σ2.

To the best of our knowledge, no stability results exist yet for the partial data

problem in the setting of the Theorem 1.2.1. Obviously, stability of the partial data

problem could not be better then logarithmic, as follows from the analysis of the full

data case. For the setting with BD = B, the estimate exists for the three dimensional

problem only with the modulus of continuity of log-log type (see [46]).

1.3 Numerical methods

Since the introduction of the EIT problem in [22] a lot of research has been dedicated

to the numerical solution of the problem. Non-linearity and severe ill-conditioning
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make such studies challenging. The existing approaches can be sorted into the fol-

lowing groups:

1. Non-iterative algorithms solving a linearized problem;

2. Iterative methods solving the non-linear problem;

3. Direct methods based on integral equations (non-linear problem);

4. Direct methods based on layer stripping (non-linear problem);

5. Optimal grid based methods (non-linear problem).

The first two groups of methods are general techniques, that can be applied to a

wide range of inverse problems. Linearization approaches search for the unknown

conductivity in the form σ = σ0 + δσ, with the inverse problem linearized around

a reference conductivity σ0 (usually a constant), and a perturbation δσ considered

to be small. Calderon proposed in [22] a linearization scheme, that uses complex

exponentials to obtain the Fourier transform of δσ. The implementation of his method

was given in [23, 52]. Other linearization based methods include one-step Newton

algorithms [24, 63, 64], and backprojection algorithms [7, 72]. The iterative methods

are usually formulated as an optimization problem with some form of least squares

functional and a regularization term added to account for the ill-conditioning of the

problem. Examples of output least squares algorithms are given in [10, 13, 12, 31, 32].

Equation-error methods are also used in an iterative framework [85, 57, 54].

The third and the fourth categories of methods solve the full non-linear problem,

but unlike the iterative methods require a finite number of steps to do so. The

constructive existence and uniqueness proofs of Nachman in d ≥ 3 dimensions [68],

and in d = 2 dimensions [69], reduce the non-linear EIT problem to two linear integral
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equations in a manner somewhat similar to Gel’fand-Levitan’s treatment of inverse

spectral problem [42]. These integral equations can be solved numerically using the

so-called ∂-method (dbar-method), which has been successfully implemented in [66,

65, 73, 74].

The layer stripping (peeling) methods determine the unknown conductivity on a

subset of Ω adjacent to the boundary, this subset is then stripped away, resulting in

an EIT problem on a smaller domain, for which the same step is applied again. Layer

stripping methods can be applied directly to a continuum problem [76, 80], or to a

discretized one [26].

Finally, the class of methods that we are most interested in are the algorithms

based on the use of optimal grids. The optimal grid approach can be used for solving

inverse PDE problems as described in the next section. At the core of the method is

the separation of the data fitting step and the reconstruction step. In the data fitting

step we solve a discrete inverse problem for a resistor network with a DtN map that

is obtained via a measurement operator applied to the continuum DtN map. The

discrete inverse problem can be solved using either an iterative or a layer stripping

method. In the next step, we use the solution of the discrete inverse problem to obtain

an approximation of the continuum one at the nodes of a special finite-difference

grid, known as an optimal grid. This approximation can be further improved using a

Newton-type iteration [15]. Thus, the optimal grid based methods can be viewed as

a combination of ideas from different classes of algorithms. The concept of optimal

grids is detailed in the next section.

Note that the methods that form the above mentioned groups are usually devel-

oped to solve the EIT problem with full boundary measurements. Depending on the

class of algorithms, it may be straightforward or difficult to use them in the partial

data setting. For example, the linearization or iterative schemes, being the most

-
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general approaches to inverse problems, are the easiest to generalize to solve partial

data problems. However, they tend to be inefficient. The linearization approach can

usually determine only small perturbations relative to the background conductivity,

and the iterative schemes require careful regularization. On the other hand, the direct

methods based on layer stripping or Nachman’s integral equations are more powerful,

but their generalization to partial data cases is non-trivial. In this work we explore

different approaches to generalizing the optimal grid reconstruction procedure of [15]

to partial data EIT problems.

1.4 Optimal grids for inverse problems

The similarities between the inverse problems in discrete and continuous settings

have been observed by a number of authors. For example, consider a one-dimensional

inverse spectral problem for the Sturm-Liouville equation

∂

∂z

(
σ(z)

∂u

∂z

)
− λσ(z)u(z) = 0, z ∈ [0, L],

u(0) = 1,

u(L) = 0,

(1.12)

with Dirichlet-to-Neumann map given by Fσ(λ) = − ∂u

∂z

∣∣∣∣
z=0

. The continuum inverse

spectral problem is to determine σ(z) for z ∈ [0, L], given the knowledge of Fσ as a

function of λ (this is equivalent to knowing the spectrum of the differential operator

in (1.12)). A constructive proof of existence and uniqueness of the solution of this

problem is due to Gel’fand and Levitan [42] (see also [59, 62]).

When discretized using a finite difference method on a staggered grid with a three
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point stencil, equation (1.12) takes the form

Tu = λu, (1.13)

where T is a Jacobi matrix (in an appropriately weighted inner product space), with

entries determined by

γj =
hj

σ̂j

=

∫ zj+1

zj

dz

σ(z)
, γ̂j = ĥjσ̂j =

∫ ẑj

ẑj−1

σ(z)dz. (1.14)

Here zj, ẑj are the primary and dual grid nodes, hj, ĥj are the primary and dual grid

steps, and σj, 1/σ̂j are the algebraic and harmonic averages of σ(z) respectively.

If we are given only the first N poles λk and residues yk of Fσ (i.e. the truncated

spectral measure of the differential operator in (1.12)), then we can solve a discrete

inverse spectral problem to find the matrix T with eigenvalues λk, k = 1, . . . , N and

first components of the eigenvectors equal to yk, k = 1, . . . , N , (see [25, 37]). This

can be done, for example using Lanczos’ method [25], or a discrete Gel’fand-Levitan’s

approach, as shown by Natterer in [70].

While the connection between the discrete and continuum problem exists in the

above sense, it is not enough by itself to construct a numerical method that gives

an approximation of the solution of the continuum inverse problem. The entries of

T depend on the averages of the unknown coefficient σ over cells of a grid, which is

unknown. This is where the concept of optimal grids comes in.

Optimal grids have been introduced in [6, 5, 50, 38] to obtain very fast (usually

exponential) convergence of the finite-difference approximations to Fσ(λ). The first

use of optimal grids in inversion was proposed in [14]. These grids are constructed

by solving the discrete inverse problem for a fixed reference conductivity σ1 (usually
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taken as σ1 ≡ 1), for which Fσ1 is known analytically (or can be computed). The

optimal grid spacings are then obtained from T1 using relations (1.14).

It was established in [16] that the optimal grids are essential to obtaining con-

vergence of the solution of discrete inverse spectral problem to the continuum one.

Explicitly, the solution of the discrete inverse problem converges to the true contin-

uum limit if and only if the discretization grid is asymptotically close to the optimal

one. This result motivated the use of the optimal grids in the numerical solution of

other inverse problems. For example, in [15] the optimal grids were used to solve

numerically the EIT problem with full boundary measurements. Our work extends

these results to the case of partial data measurements.



Chapter 2

EIT with resistor networks and

optimal grids

In this chapter we present a framework for solving the Electrical Impedance Tomog-

raphy problem numerically using resistor networks and optimal grids. The chapter

is organized as follows. First, a finite-volume discretization of the two-dimensional

EIT problem on a staggered grid is discussed, and how the resulting system of linear

equations resembles that of a resistor network. Properties of the networks with the

underlying graphs with topology of circular planar, including a discrete analogue of

the inverse problem, are presented in section 2.2. In section 2.3 a connection is made

between the discrete and continuum inverse problems, and the notion of optimal grids

is introduced. Finally, the optimal grids for the full data EIT in the unit disk are

studied in section 2.4.

13
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Figure 2.1: Vicinity of a primary node Pi,j in a staggered grid. The primary grid
lines are solid, and the dual grid lines are dashed. The primary grid nodes are × and
the dual grid nodes are ◦. We show the resistor along the primary edge (Pi,j+1, Pi,j)
as a rectangle and denote by � its intersection with the dual edge.

2.1 Finite volume discretization and resistor net-

works

The use of resistor networks for the numerical solution of EIT can be motivated in

the context of finite volume discretizations of (1.1)–(1.2) on staggered grids. Such

grids consist of intersecting primary and dual grid lines, which are allowed to be

curvilinear. We refer to the intersections of primary (dual) grid lines as the primary

(dual) grid nodes. The potential u is discretized at the primary grid nodes, while the

current fluxes σ∇u are discretized at the dual grid nodes.

We illustrate in figure 2.1 the vicinity of an interior primary grid node Pi,j. Let

Ci,j be the dual grid cell with boundary

∂Ci,j = Σi,j+ 1
2
∪ Σi+ 1

2
,j ∪ Σi,j− 1

2
∪ Σi− 1

2
,j, (2.1)

I I 
I I 
I I 

.. - - - -4- - - - ----9----
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

.. - - - -<?- - - - - ----t----
I I 
I I 
I I 
I I 
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the union of the four dual grid segments

Σi,j± 1
2

=
(
Pi− 1

2
,j± 1

2
, Pi+ 1

2
,j± 1

2

)
, Σi± 1

2
,j =

(
Pi± 1

2
,j− 1

2
, Pi± 1

2
,j+ 1

2

)
.

We integrate (1.1) over Ci,j, and use the divergence theorem to obtain the balance of

fluxes across the boundary ∂Ci,j

∫

Ci,j

∇ · (σ∇u)dV =




∫

Σ
i,j+1

2

+

∫

Σ
i+1

2 ,j

+

∫

Σ
i,j− 1

2

+

∫

Σ
i− 1

2 ,j


σ

∂u

∂ν
dS = 0. (2.2)

The linear algebraic system of equations for the discretized potential is obtained by

approximating the boundary integrals in (2.2) with a one-point quadrature rule, and

the normal derivatives in the integrands with a two point finite difference. We have

∫

Σ
i,j± 1

2

σ
∂u

∂ν
dS ≈ σ(Pi,j± 1

2
)
L(Σi,j± 1

2
)

L(Πi,j± 1
2
)
[u(Pi,j±1) − u(Pi,j)] , (2.3)

∫

Σ
i± 1

2 ,j

σ
∂u

∂ν
dS ≈ σ(Pi± 1

2
,j)
L(Σi± 1

2
,j)

L(Πi± 1
2
,j)

[u(Pi±1,j) − u(Pi,j)] , (2.4)

where Pi,j± 1
2

and Pi± 1
2
,j are the intersections of the primary grid segments

Πi,j± 1
2

= (Pi,j, Pi,j±1) , Πi± 1
2
,j = (Pi,j, Pi±1,j)

with the dual grid segments Σi,j± 1
2

and Σi± 1
2
,j, as shown in figure 2.1. The arc lengths

of the primary and dual grid segments are denoted by L(Π) and L(Σ), respectively.

The system of linear algebraic equations for the discretized potential ui,j ≈ u(Pi,j)
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is

γi,j+ 1
2
(ui,j+1 − ui,j) + γi+ 1

2
,j (ui+1,j − ui,j) + (2.5)

γi,j− 1
2
(ui,j−1 − ui,j) + γi− 1

2
,j (ui−1,j − ui,j) = 0,

where

γα,β = σ(Pα,β)γ(1)

α,β, (2.6)

(α, β) ∈
{(

i, j +
1

2

)
,

(
i+

1

2
, j

)
,

(
i, j − 1

2

)
,

(
i− 1

2
, j

)}
, (2.7)

and

γ(1)

α,β =
L(Σα,β)

L(Πα,β)
(2.8)

corresponds to the constant conductivity σ ≡ 1. Equation (2.6) can be viewed as

Kirchhoff’s node law for a certain resistor network with graph Γ = (Y,E) and the

conductance γ : E → R+. The set of graph vertices Y consists of the primary grid

nodes and the set of edges E is comprised of the primary grid segments Πα,β. For the

conductance we write γα,β = γ (Πα,β).

2.2 The inverse problem for resistor networks

At the core of our inversion method is the solution of the discrete inverse problem

of finding conductances in a resistor network from discrete measurements of the DtN

map. We begin in section 2.2.1 with a definition of a DtN map of a resistor network,

and a discrete inverse problem. We review the existence and uniqueness of its solution

in section 2.2.2. The connection between the continuum and discrete DtN maps is

given in section 2.2.3. Finally, we describe in section 2.2.4 the possible approaches to

the numerical solution of the discrete inverse problem.
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2.2.1 The DtN map of a resistor network

Let us formally define resistor networks, which may or may not correspond to the

discretization of an elliptic equation given in the previous section. A resistor network

is a pair (Γ, γ), where Γ = (Y,E) is a graph with vertices (nodes) Y and edges

E ⊂ Y × Y , and γ : E → R+ is a positive valued conductance function. The set Y

is the union of two disjoint sets YB and YI of boundary and interior vertices. The

decomposition Y = YI ∪ YB is needed in what follows to define a discrete analogue of

the DtN map. We let

n = |YB| (2.9)

be the number of boundary nodes, and use hereafter the symbol | · | to denote the

cardinality of finite sets.

Define a potential function u : Y → R and denote by uB and uI its restriction

to the boundary and interior nodes respectively. The potential satisfies Kirchhoff’s

node law 

KII KIB

KBI KBB






uI

uB


 =




0

JB


 , (2.10)

where JB ∈ Rn is the vector of currents through the boundary nodes, and K is the

symmetric Kirchhoff matrix

Kij =





−γ[(vi, vj)], if i 6= j and (vi, vj) ∈ E,

0, if i 6= j and (vi, vj) /∈ E,
∑

k:(vi,vk)∈E

γ[(vi, vk)], if i = j.

(2.11)

We write in (2.10) the block structure of K, using the notation KXZ for the block

with row indices in X ⊆ Y and column indices in Z ⊆ Y .
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The DtN map of the network is the matrix Λγ ∈ Rn×n that takes uB to JB. It

equals the Schur complement of KII

Λγ = KBB −KBIK
−1
II KIB, (2.12)

which is well defined for non singular KII . As long as the network has a connected

graph1, the invertability of KII follows from the discrete analogue of the maximum

principle, as shown in [26, 27, 28].

The discrete inverse problem is to find the conductance function γ given a network

with known graph Γ and DtN map Λγ. The solvability of the discrete inverse problem

depends on the topological properties of Γ, that we review below.

2.2.2 Solvability of the discrete inverse problem

In this work we study EIT in two dimensions, in simply connected domains Ω ⊂ R2.

By the Riemann mapping theorem, all such domains are conformally equivalent, so

we can identify Ω with the unit disk D in R2 or in C. Thus, it is natural to consider

networks with the so-called circular planar graphs Γ which can be embedded in the

plane, without self-intersections of the edges, in such a way that all interior nodes are

in the unit disk, and the boundary nodes are on the unit circle ∂D.

Following [26, 27, 28], we number the boundary nodes YB = {v1, . . . , vn} so that

they appear in a circular (clockwise or counterclockwise) order on ∂D. Consider a

pair (P ;Q) of subsets of YB, with P = {vi1 , . . . , vik}, Q = {vjk
, . . . , vj1} belonging to

disjoint arcs of ∂D. The pair is called circular if the nodes {vi1 , . . . , vik ; vjk
, . . . , vj1}

appear in circular order on ∂D.

1We say that the graph Γ = (Y,E) is connected when each pair of vertices in Y is connected by
at least one set of edges in E.
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A circular pair (P ;Q) is called connected, if there exist k disjoint paths αs con-

necting vis and vjs , s = 1, . . . , k. The boundary nodes are allowed in αs only as the

first and the last nodes (the paths must not touch the boundary). We let π(Γ) be the

set of all connected circular pairs, and we say that the graph is well connected if all

circular pairs are in π(Γ).

Once we define π(Γ) we can address the question of whether the discrete inverse

problem is uniquely solvable. This question is closely related to the topology of the

graph Γ. For circular planar graphs, the question was resolved in [27], using the

theory of critical networks.

Let Γ′ be the graph obtained by removing one edge in Γ = (Y,E). The edge can be

removed either by deletion or by contraction. Then, the network with graph Γ is called

critical if removing any edge breaks some connection in π(Γ) (i.e. π(Γ′) ⊂ π(Γ)).

It is shown in [27] that the discrete inverse problem for a network with given

circular planar graph has a unique solution if and only if it is critical and the data

matrix Λγ belongs to the set Dn of DtN maps of well connected networks. The set

Dn is defined in [27]. It consists of all symmetric matrices Λγ ∈ Rn×n satisfying the

conservation of currents condition

Λγ1 = 0, (2.13)

and whose circular minors are totally non-positive. A circular minor of Λγ is a

submatrix (Λγ)PQ with row indices in P and column indices in Q, where (P ;Q) is a

circular pair. The total non-positivity means that

det [−(Λγ)PQ] ≥ 0. (2.14)
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Equality in (2.14) occurs if and only if (P ;Q) /∈ π(Γ). Thus, in a well connected

network the inequality (2.14) is always strict.

2.2.3 From the continuum to the discrete DtN map

To connect the continuum EIT problem with discrete inverse problem for resistor

network, we relate the matrix valued DtN map Λγ of a network to the continuum

DtN map Λσ. We do so my means of linear measurement operators

Mn :
(
H1/2(B) → H−1/2(B)

)
→ Rn×n. (2.15)

Following [15, 44], we define the operators Mn with a set of n non-negative mea-

surement functions χj with disjoint supports on B. The measurement functions are

normalized by ∫

B

χj(x)dSx = 1, j = 1, . . . , n. (2.16)

We can think of them as modeling the support of electrodes attached to the boundary.

The symmetric matrix Mn(Λσ) has off-diagonal entries

(Mn(Λσ))i,j = 〈χi,Λσχj〉, i 6= j, (2.17)

where 〈·, ·〉 is the duality pairing between H1/2(B) and H−1/2(B), and the diagonal

entries are given by

(Mn(Λσ))i,i = −
∑

j 6=i

〈χi,Λσχj〉, i = 1, . . . , n, (2.18)

which ensures that Mn(Λσ) satisfies the conservation of current condition.

Alternatively, we can consider the pointwise measurements of the DtN map. For
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a sufficiently regular σ, the first order pseudodifferential operator Λσ can be written

in an integral form as

(Λσφ)(x) =

∫

B

Kσ(x, y)φ(y)dSy, x ∈ B, (2.19)

where Kσ(x, y) is a symmetric kernel continuous away from the diagonal [51]. The

pointwise measurement operator Mn is defined at the points xj ∈ B, j = 1, . . . , n, by

(Mn(Λσ))i,j =





Kσ(xi, xj), i 6= j,

− ∑
k 6=i

Kσ(xi, xk), i = j.
(2.20)

These definitions do not distinguish between the full or partial boundary mea-

surement setups. The partial data case corresponds to suppχj ⊂ BA for (2.17), or

xj ∈ BA for (2.20).

Other measurement operators that use more accurate electrode models, such as

the “complete electrode” model [75] can be used in principle. The crucial question

is whether the range of the operators belongs to the set Dn of DtN maps of well

connected networks. This is the case for the operators (2.20) and (2.17), as proved

in [51] and [15, 44], respectively. Then, we can write that

Λγ = Mn(Λσ), (2.21)

for some conductance γ, and conclude based on the results reviewed in section 2.2.2,

that there exists a unique network with given critical circular planar graph Γ and

DtN map Λγ [27, 30].
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2.2.4 Solving the discrete inverse problem

Given Mn(Λσ) ∈ Dn we would like to construct an efficient algorithm of solving the

discrete inverse problem (2.21). This can be done with at least two approaches.

The first approach is a direct layer peeling (invariant imbedding) method which

solves the nonlinear EIT problem in a finite number of algebraic operations. In this

work we use the networks with two different topologies of Γ. For the networks with

circular graphs the layer peeling algorithm is given in [26]. For pyramidal networks the

algorithm is presented in chapter 4. The layer peeling algorithm begins by determining

the conductances in the outermost layer adjacent to the boundary nodes. Then it

peels off the layer and proceeds inwards. The algorithm stops when the innermost

layer of resistors is reached. The advantage of layer peeling is that it is fast and

explicit. The disadvantage is that it quickly becomes unstable, as the number of

layers grows. This is a manifestation of the ill-conditioning of the discrete inverse

problem, which is expected given the instability of the continuum EIT.

The second approach is to solve the discrete EIT problem with non-linear, regu-

larized least squares, as in [17]. In general, it is unclear how to regularize the least

squares for network recovery using penalty terms, because we cannot speak of regu-

larity assumptions (such as total variation) in the discrete setting. We have recovered

in [17] networks with optimization using a Gauss-Newton iteration regularized with

the SVD truncation of the Jacobian. Adaptive SVD truncation of the Jacobian allows

the Gauss-Newton iteration to converge without the use of artificial penalty terms.

The advantage of optimization is that in general it allows the recovery of larger net-

works than layer peeling. The downside is the increased computational cost and the

possibility of the method being trapped in local minima.

All the computations in this work are with layer peeling, which we regularize by
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restricting n as follows. We solve a sequence of discrete inverse problems for increasing

n, until our layer peeling method fails to produce positive conductances. Then we set

n to the last but one value in the sequence, and accept as the solution of the inverse

problem the non-negative conductance obtained from (2.21).

2.3 From the discrete to the continuum inversion:

the optimal grids

Once we have determined the discrete conductance γ, the question is how to use

it to approximate the conductivity σ, the solution of the continuum EIT problem.

As shown in (2.6), we must also have information about the finite volumes grid to

approximate σ(Pα,β) from the knowledge of γα,β. This leads us to the construction

of the optimal grids, which are computed from the resistor networks with the same

graph and DtN map

Λγ(1) = Mn(Λ1). (2.22)

Here, Λ1 is the continuum DtN map for constant conductivity σ ≡ 1, and γ(1) is the

conductance (2.8).

Thus, the optimal grids are computed so that finite volumes discretizations com-

pute Λγ(1) exactly. Then, we can estimate the conductivity at points Pα,β, the inter-

sections of the primary and dual grid segments, by

σ(Pα,β) ≈ σ?(Pα,β) =
γα,β

γ(1)

α,β

. (2.23)

The reconstruction mapping Qn : Dn → S is defined on the set Dn of discrete DtN

maps, with values in S, the set of positive and bounded conductivities. It takes the

---
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measurements Mn (Λσ) to the piecewise linear interpolation of the values of σ? on

the optimal grid.

Finally, the images can be improved further using a Gauss-Newton iteration that

minimizes the objective function

O(σs) = ‖Qn [Mn (Λs
σ)] −Qn [Mn (Λσ)]‖2

2 (2.24)

over search conductivities σs ∈ S. Note that Qn is used here as a preconditioner

of the forward map Fn : S → Dn, which takes σs ∈ S to Mn (Λs
σ). How good a

preconditioner Qn is depends on the extrapolation properties of the optimal grids.

That is to say, how accurate does the finite volumes approximation of Mn (Λσ) remain

for a wide class of conductivity functions that include the constant σ ≡ 1. Illustrations

of the good extrapolation properties of optimal grids, for various measurement setups,

are in [16, 15, 44, 14, 18].

There is only one part of the inversion algorithm outlined above that is sensitive

to the measurement setup. It is the definition of the optimal grid, and therefore

of the reconstruction mapping Qn. The optimization (2.24) was studied in detail

in [15, 44] and is not presented here. An important observation is that we can

incorporate various types of prior information in (2.24), for example via the addition

of penalty terms. Thus, our approach is compatible with all traditional regularization

techniques, such as Tikhonov [83, 84] or total variation regularizations.
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2.4 Optimal grids for the full data EIT in the unit

disk

One of the two approaches to the numerical solution of the partial data EIT presented

in this work is based on the construction of optimal grids for the full data problem

in the unit disk. Tensor product discretization of the full data problem in D leads

to circular resistor networks that are reviewed in section 2.4.1. The discretization

itself is outlined in section 2.4.2. The optimal grids are computed for the constant

reference conductivity σ ≡ 1, which leads to layered circular networks discussed in

sections 2.4.3–2.4.4. The inverse problem for layered networks can be solved using

rational interpolation, and in the case σ ≡ 1 an explicit solution can be obtained

whose properties are presented in section 2.4.5.

2.4.1 Circular resistor networks

Following [15, 44] we consider networks with a special topology, as illustrated in figure

2.2. These networks are called in [26] circular resistor networks, and are denoted by

C(l, n). The notation indicates that the network has l layers with n resistors in each

layer. These resistors may be aligned along the radius (radial resistors), or they may

be transversal to the radius (angular resistors). The layers of radial and angular

resistors alternate, with the innermost layer being radial.

It is shown in [15, 44] that the graph of C(l, n) is critical if and only if n is odd

and l = (n − 1)/2. This is why we consider in here circular resistor networks of

the form C ((n− 1)/2, n), with odd n. In what follows, it is convenient to use an

integer parameter m and a binary m1/2 ∈ {0, 1}, such that the number of layers

is l = 2m + m1/2 + 1, where m1/2 determines if the outer layer in C(l, n) is radial
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C(4, 9) C(5, 11)

Figure 2.2: Circular resistor networks C(l, n) with critical graphs: l = (n − 1)/2.
Interior nodes are •, boundary nodes are ×.

(m1/2 = 0) or circular (m1/2 = 1). For the conductances in a circular network we use

notation γj,k, j = 1, . . . ,m+ 1, k = 1, . . . , n, for the conductances of radial resistors,

and γ̂j,k, j = 2 − m1/2, . . . ,m + 1, k = 1, . . . , n, for the conductances of angular

resistors.

2.4.2 Tensor product discretization in the unit disk

Let us consider equation (1.1) in the unit disk D = {(r, θ) | r ∈ (0, 1], θ ∈ [0, 2π]} in

polar coordinates

1

r

∂

∂r

(
rσ(r, θ)

∂

∂r
u

)
+

1

r2

∂

∂θ

(
σ(r, θ)

∂

∂θ
u

)
= 0. (2.25)

The continuum EIT problem for (2.25) with full boundary measurements has the

important property of rotational invariance for layered conductivities σ(r, θ) = σ(r),

which of course includes the case σ ≡ 1. To maintain this rotational invariance in the

discrete setting, the measurements of the DtN map must be centered at equidistant
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points on ∂D. Explicitly, the measurement functions χj(θ) are angular translations

of the same function χ(θ),

χk(θ) = χ(θ − θk), (2.26)

such that suppχ ⊂ (θ̂0, θ̂1), where θk = 2π(k − 1)/n and θ̂k = 2π(k − 1/2)/n are the

primary and dual boundary grid nodes respectively, for k = 1, . . . , n.

Then, the problem simplifies for layered conductivities, because when taking

Fourier transforms in θ, the problem becomes one dimensional. The same simpli-

fication can be made in the discrete seting, by taking the discrete Fourier transform,

provided that we have a tensor product discretization grid with the boundary nodes

given above. The placement of the radial nodes in this tensor product grid is obtained

as we describe below.

The radial component of the grid is staggered and the primary radii rj and the

dual radii r̂j are ordered as

1 = r1 = r̂1 > r2 > r̂2 > . . . > rm+1 > r̂m+1 > rm+2 > 0, for m1/2 = 0, (2.27)

1 = r̂1 = r1 > r̂2 > r2 > . . . > rm+1 > r̂m+2 > rm+2 > 0, for m1/2 = 1. (2.28)

To determine these radii, we must solve a discrete EIT problem to get γ(1), γ̂(1) from

(2.22). The method of solution is similar to that of finding γ, γ̂ from (2.21).

Consistent with the notation in (2.27) and (2.28), the general formulas (2.6) be-

come

γj,k = σ(r̂j+m1/2
, θk)

r̂j+m1/2
hθ

rj − rj+1

, j = 1, . . . ,m+ 1, (2.29)

γ̂j,k = σ(rj, θ̂k)
r̂j+m1/2−1 − r̂j+m1/2

rjhθ

, j = 2 −m1/2, . . . ,m+ 1, (2.30)
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where hθ = 2π/n is the angular grid step and k = 1, . . . , n. We refer to these equations

as the averaging formulas.

Since the family of measurement functions χk(θ) is chosen to be rotationally in-

variant, the matrix Mn(Λ1) is circulant. Thus, in the case σ ≡ 1, the solution γ(1)

j,k,

γ̂(1)

j,k of (2.22) does not depend on the angular index k, and the resulting optimal grid

is indeed a tensor product grid. Once the conductances γ(1)

j , γ̂(1)

j are known, the radii

of the optimal grid are obtained sequentially from equations (2.29)–(2.30), starting

from the boundary with r1 = r̂1 = 1. We obtain

rj+1 = rj − hθr̂j+m1/2
/γ(1)

j , j = 1, . . . ,m+ 1, (2.31)

r̂j+1 = r̂j − hθrj+1−m1/2
γ̂(1)

j+1−m1/2
, j = 1, . . . ,m+m1/2. (2.32)

Note that the averaging formulas (2.29)–(2.30) correspond to the discretization of

the forward problem. However, we use them for the conductances γj,k and γ̂j,k that

solve the discrete inverse problem. These conductances are not the same as in the

forward problem, unless we use a grid that makes the averaging formulas exact. The

results in [15, 44] show that the optimal grids that make the averaging formulas exact

in the case σ ≡ 1, also give a good approximation for a wider class of conductivities.

Note also that formulas (2.29)–(2.30) and (2.31)–(2.32) are not the only possible

relations that can be used to determine the grid from γ(1)

j , γ̂(1)

j . In fact a different set

of relations was used in [15, 44]. We refer to these relations as log-averaging, and give

their definition in the following sections.

Finally, there are alternative choices of the measurement operator. In particular,

in the case of layered conductivities, there exists a measurement operator that leads

to an explicit solution of the discrete EIT problem [11], which can then be used to

prove certain properties of the optimal grids, as we show next.
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2.4.3 Alternative measurements for the layered problem

Let us consider in more detail the case of layered conductivity σ(r, θ) = σ(r). From the

rotational symmetry of the layered problem it follows that eikθ are the eigenfunctions

of the DtN map

Λσe
ikθ = Rσ(k)eikθ, k ∈ Z, (2.33)

where the eigenvalues Rσ(k) = Rσ(−k) > 0 are given in terms of the admittance

function Rσ, which can be extended to the whole complex plane in terms of the

spectral measure of the differential operator (2.25). A trivial calculation in the case

σ ≡ 1 shows that

R1(λ) = |λ|. (2.34)

Thus, we can formally write

Λ1 =

√
− ∂2

∂θ2
. (2.35)

In what follows it is convenient to define βσ(λ) = Rσ(λ)/|λ|.

Our goal is to derive a discrete analogue of (2.35), which is possible if we in-

troduce the measurement operator M∗
n defined below. Instead of using a single set

of measurement functions χk, we consider two families ζk and ηj, where ζk are the

eigenfunctions of Λσ, and ηj are the indicator functions of intervals (θ̂j, θ̂j+1). Then

the vector of measured currents J (k) is given by

J (k)

j =

∫ 2π

0

ηj(θ) (Λσζk) (θ)dθ = βσ(k)

2π
n

(j+1/2)∫

2π
n

(j−1/2)

|k|eikθdθ, (2.36)

where j = 1, . . . , n and k = −(n− 1)/2, . . . , (n− 1)/2.

Let ζ (k)

j = ζk(θj) = ei 2πkj
n be the components of the vector of boundary potential at

the primary grid nodes. The action of the measurement operator M∗
n(Λσ) on vectors
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ζ (k) is

M∗
n(Λσ)ζ (k) = J (k). (2.37)

Rewriting (2.36) we observe that

J (k)

j = 2βσ(k)

∣∣∣∣sin
(
πk

n

)∣∣∣∣ e
i 2πkj

n . (2.38)

Using notation ω(n)

k = 2| sin(πk/n)| we finally arrive at

M∗
n(Λσ)ζ (k) = βσ(k)ω(n)

k ζ (k), k = −n− 1

2
, . . . ,

n− 1

2
. (2.39)

Consider a symmetric circulant matrix ∆(n) ∈ Rn×n given by

∆(n) =




−2 1 0 . . . . . . 0 1

1 −2 1 0 . . . 0 0

0 1 −2
. . . . . .

...
...

... 0
. . . . . . . . . 0

...

...
...

. . . . . . −2 1 0

0 0 . . . 0 1 −2 1

1 0 . . . . . . 0 1 −2




. (2.40)

Up to a scaling factor 1/h2
θ (2.40) is a finite difference discretization of the second

derivative on a three point stencil at equidistant nodes θk. Since ∆(n) is circulant, its

eigenvectors are ζ (k) and its eigenvalues λk are the discrete Fourier transform of its

first column [29, 43]

λk = −2 + ei 2πk
n + e−i 2πk

n = −
(
ω(n)

k

)2
. (2.41)
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Combining (2.39) with (2.41) it is easy to observe that (2.39) for σ ≡ 1 (β1 ≡ 1) is a

discrete analogue of (2.35)

M∗
n(Λ1) =

√
−∆(n). (2.42)

Note that while (2.42) is a direct analogue of (2.35), it is not clear that there

exist a network with a DtN map M∗
n(Λ1), since the results of [51, 15, 44] are only

applicable to measurements (2.20) and (2.17). We show below that (2.42) is indeed

compatible with a layered resistor network, which can be recovered using rational

interpolation.

2.4.4 Layered networks and rational interpolation

A layered resistor network is a network, in which the values of conductances do not

depend on angular index, i.e. γj,s = γj, γ̂j,s = γ̂j. Let us for now consider a critical

circular network with m1/2 = 0, therefore n = 4m+ 3. The Kirchhoff law is

γj−1(uj,s − uj−1,s) + γj(uj,s − uj+1,s) + γ̂j(2uj,s − uj,s+1 − uj,s−1) = 0, (2.43)

where j = 2, . . . ,m + 1, s = 1, . . . , n, um+2 = 0, the Dirichlet boundary condition is

u1,s = φs, and the boundary currents are given by Js = γ1(u1,s −u2,s). The difference

operator in the third term of (2.43) is nothing but −∆(n). Since the eigenvectors of

M∗
n(Λ1) and ∆(n) are the same, we can do a discrete Fourier transform of (2.43),

uj,s =

(n−1)/2∑

k=−(n−1)/2

a(k)

j ei 2πks
n , (2.44)

and obtain from (2.42)

γj−1(a
(k)

j − a(k)

j−1) + γj(a
(k)

j − a(k)

j+1) +
(
ω(n)

k

)2
γ̂ja

(k)

j = 0. (2.45)
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Let b(k)

j = γj(a
(k)

j − a(k)

j+1), then the boundary current is b(k)

1 , and we may write

λk =
b
(k)
1

a
(k)
1

, if we normalize a(k)

1 = 1. From the definition of b(k)

j and from (2.45) we

derive

a(k)

j = a(k)

j+1 +
1

γj

b(k)

j , (2.46)

b(k)

j = b(k)

j+1 +
(
ω(n)

k

)2
γ̂j+1a

(k)

j+1, (2.47)

which gives us the expansion

b(k)

j

a(k)

j

=
1

1

γj

+
1

γ̂j+1

(
ω(n)

k

)2
+
b(k)

j+1

a(k)

j+1

, (2.48)

which we can apply recursively to obtain the expression for the eigenvalues of the

DtN map of a layered network

λk = R(n)
(
ω(n)

k

)
=

1

1

γ1

+
1

γ̂2

(
ω(n)

k

)2
+ . . .+

1

1

γm

+
1

γ̂m+1

(
ω(n)

k

)2
+ γm+1

. (2.49)

By analogy to the continuum case, we call R(n)(λ) the discrete admittance function.

Recall that equation (2.49) holds for m1/2 = 0. In the case m1/2 = 1 the discrete
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admittance takes the form

R(n)(λ) = γ̂1λ
2 +

1

1

γ1

+
1

γ̂2λ2 + . . .+
1

1

γm

+
1

γ̂m+1λ2 + γm+1

. (2.50)

Equations (2.49) and (2.50) hold for any layered resistor network with, not just

for the network corresponding to M∗
n(Λ1), which we are interested in. The discrete

admittance R(n) is related to continuum one via the rational interpolation, which has

the form

R(n)
(
ω(n)

k

)
= ω(n)

k βσ(k), k = 1, . . . , (n− 1)/2. (2.51)

It follows from the results of [49] that the rational interpolation problem (2.51) admits

a solution of the form (2.49) or (2.50) with positive coefficients γj, γ̂j. Thus, M∗
n(Λσ)

is indeed DtN map of a resistor network. Moreover, in the case σ ≡ 1

R(n)
(
ω(n)

k

)
= ω(n)

k

the conductances admit an analytic expression

γ(1)

j = tan

(
π(2m+ 3 − 2j)

n

)
, j = 1, . . . ,m+ 1, (2.52)

γ̂(1)

j = cot

(
π(2m+ 4 − 2j)

n

)
, j = 2 −m1/2, . . . ,m+ 1, (2.53)

as shown in [11]. These expressions allow us to establish the properties of the optimal

grids, as we show in the next section.
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2.4.5 Properties of optimal grids

To study the properties of the optimal grids it is easier to work with the log-averaging

formulas used in [15, 44] instead of the averaging formulas (2.29)–(2.30). The log-

averaging formulas are

γj,k = σ(r̂j+m1/2
, θk)

hθ

log
(

rj

rj+1

), j = 1, . . . ,m+ 1, k = 1, . . . , n, (2.54)

γ̂j,k = σ(rj, θ̂k)

log

(
r̂j+m1/2−1

r̂j+m1/2

)

hθ

, j = 2 −m1/2, . . . ,m+ 1, k = 1, . . . , n.(2.55)

The radii of the optimal grid take the form

rj+1 = exp


−hθ

j∑

s=1

1

γ(1)
s


 , j = 1, . . . ,m+ 1 (2.56)

r̂j+m1/2
= exp


−hθ

j∑

s=2−m1/2

γ̂(1)

s


 , j = 2 −m1/2, . . . ,m+ 1. (2.57)

We show in figure 2.3 the radial optimal grids corresponding to the measurement

operators Mn(Λ1) and M∗
n(Λ1) and two choices of averaging formulas: (2.29)–(2.30)

and (2.56)–(2.57). We observe that the grids obtained from the same averaging

formulas but different measurement operators are almost indistinguishable. There is

a slight difference between the grids given by the two averaging formulas, but this

difference is mostly near the origin r = 0. We have observed from extensive numerical

experiments, for a variety of grid sizes, that the optimal grids are robust with respect

to the choice of measurement operator and averaging formulas.

The grids presented in figure 2.3 share two common properties. First, they are

indeed staggered with interlacing primary and dual nodes. Second, they are refined
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0 0.2 0.4 0.6 0.8 1
r

Figure 2.3: Radial optimal grids for different choices of averaging formulas and mea-
surement operators (n = 31). Top two grids (red) correspond to M∗

n(Λ1), bottom two
grids (blue) correspond to Mn(Λ1). Log-averaging formulas (2.56)–(2.57): primary
×, dual ◦. Averaging formulas (2.31)–(2.32): primary F, dual �.

near the boundary of the unit disk r = 1, where the DtN map is measured. The

gradual refinement towards the boundary accounts for the loss of resolution of the EIT

problem inside the domain. These properties were observed in numerical experiments

in [15, 44]. We prove them in below using the analytic expressions (2.52)–(2.53).

Lemma 2.4.1. The optimal grid given by (2.52)–(2.53), (2.56)–(2.57) satisfies the

interlacing conditions (2.27)–(2.28).

Proof. Note, that the conductances (2.52)–(2.53) form a monotone interlacing se-

quence in the sense of

(
γ̂(1)

1

)
<

1

γ(1)

1

< γ̂(1)

2 <
1

γ(1)

2

< . . . < γ̂(1)

m+1 <
1

γ(1)

m+1

. (2.58)

)( 0 )( 0 )( 0 )( 0 X 0 X OXO 

a * a * a * a 

)( 0 )( 0 )( 0 )( 0 )( 0 )( 

a * a * a * 
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Summing (2.58) we can perform transformations

−hθ

j∑

s=1

1

γ(1)
s

> −hθ

j∑

s=1

γ̂(1)

s+1 > −hθ

j∑

s=1

1

γ(1)

s+1

, (2.59)

−hθ

j∑

s=1

1

γ(1)
s

> −hθ

j+1∑

s=2

γ̂(1)

s − hθm1/2γ̂
(1)

1 > −hθ

j+1∑

s=2

1

γ(1)
s

− hθm1/2γ̂
(1)

1 , (2.60)

−hθ

j∑

s=1

1

γ(1)
s

> −hθ

j+1∑

s=2−m1/2

γ̂(1)

s > −hθ

j+1∑

s=2

1

γ(1)
s

− hθ
1

γ(1)

1

, (2.61)

which become after the exponentiation the interlacing condition

rj+1 > r̂j+2 > rj+2. (2.62)

An argument similar to the proof of lemma 2.4.1 can be used to show grid refine-

ment property
rj

rj+1

<
rj+1

rj+2

.

D 



Chapter 3

Partial data EIT with conformal

and quasiconformal mappings

In this chapter we extend the inversion approach outlined in chapter 2 to the case of

partial boundary measurements. The optimal grids introduced there for full boundary

measurements are based on the rotational symmetry of the continuum problem for

constant σ. For partial boundary measurements there is no rotational symmetry in

the problem, so it is not immediately clear what class of grids should we look for, and

how to construct them so that they have good approximation properties in some class

of conductivity functions. Our main result in this chapter is that the grids can be

constructed with an approach based on extremal quasiconformal mappings [77] that

transform the problem with partial measurements to a problem with full boundary

measurements. The results presented in this chapter were published in [18].

The chapter is organized as follows. We begin in section 3.1 with the study of

the behavior of the EIT problem under the differentiable coordinate transformations,

including conformal ones that preserve the isotropy of the conductivity. A more

general class of quasiconformal mappings is discussed in section 3.2. We conclude the

37
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chapter with section 3.3, where we present numerical results for both the conformal

and the extremal quasiconformal mappings.

3.1 Coordinate transformations and the EIT

Let us consider how the circular resistor networks described in section 2.4 can be used

in the case of partial boundary measurements. In particular, we would like to extend

the reconstruction mapping Qn(Λγ) to the partial data case. The other steps in the

inversion method are the same as in the full boundary measurement case, as discussed

in section 2.3. Here we focus our attention solely on Qn(Λγ), for Λγ measured on the

accessible boundary BA ⊂ B.

The key idea is to map the partial data discrete EIT problem to the problem

with measurements at equidistant points all around the boundary, where we already

know how to define the optimal grids. Both problems are solved in D, so we consider

diffeomorphisms of the unit disk to itself.

Denote such a diffeomorphism by F and its inverse by G. If u solves (1.1), then

ũ(x) = u(F (x)) satisfies a similar equation with conductivity σ̃ given by

σ̃(x) =
G′(y)σ(y) (G′(y))T

|detG′(y)|

∣∣∣∣∣∣∣
y=F (x)

, (3.1)

where G′ denotes the Jacobian of G. The conductivity σ̃ in (3.1) is the push forward

of σ by G, and it is denoted by G∗(σ). Note that if G′(y) (G′(y))T 6= I, then σ̃ is a

symmetric positive definite tensor provided detG′(y) 6= 0. Thus, in general the push

forward of an isotropic conductivity is anisotropic.

To write the transformed DtN map, we use the restrictions of diffeomorphisms G
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and F to the boundary g = G|B and f = F |B. Then, the push forward of the DtN

map g∗Λσ is

((g∗Λσ)ψ) (θ) = (Λσ(ψ ◦ g))(τ)|τ=f(θ) , θ ∈ [0, 2π), (3.2)

for ψ ∈ H1/2(B). As shown in [79], the DtN map is invariant under the push forward

in the following sense

g∗Λσ = ΛG∗σ. (3.3)

This invariance tells us that given a diffeomorphism F , its boundary restriction f =

F |B, their respective inverses G and g, and the DtN map Λσ, we can compute the

push forward of the DtN map, solve the inverse problem for g∗Λσ to obtain σ̃, and

then map it back using the inverse of (3.2). We will use the discrete analogue of this

fact to transform the discrete measurements Λγ of Λσ on BA to discrete measurements

at the equidistant points θk, from which we can estimate σ̃ with the method described

in section 2.3.

Note however that the EIT problem is uniquely solvable only for isotropic con-

ductivities. Anisotropic conductivities can be determined from the DtN map only

up to a boundary-preserving diffeomorphism [79]. To overcome this ambiguity we

propose two distinct approaches described in the next sections. The first approach is

based on conformal mappings, which preserve the isotropy of the conductivity, at the

expense of rigid placement of the measurement points in BA. The second approach

uses extremal quasiconformal mappings, that minimize the artificial anisotropy of

the reconstructed conductivity introduced by a general placement of the boundary

measurement points in BA.
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3.1.1 Conformal mappings and inversion grids

To ensure that the push forward (3.1) of the isotropic σ is isotropic itself, the mapping

must satisfy G′
(
(G′)T

)
= I or, equivalently, F ′

(
(F ′)T

)
= I. It means that F is

conformal and the resulting conductivity is

G∗(σ) = σ ◦ F. (3.4)

Since all conformal mappings of the unit disk to itself belong to the family of Möbius

transforms [58], F must be of the form

F (z) = eiω z − a

1 − az
, z ∈ D, ω ∈ [0, 2π), a ∈ C, |a| < 1, (3.5)

where we associate R2 with the complex plane C.

It remains to determine the constant parameters ω and a in (3.5). Let the acces-

sible boundary BA be the circular segment

BA =
{
eiτ | τ ∈ [−β, β]

}
, (3.6)

with β ∈ (0, π). The inaccessible boundary is BI = B\BA. The restriction of (3.5) to

B is denoted by

f(θ) = F (eiθ). (3.7)

It maps the boundary grid nodes θk, θ̂k defined in section 2.4.2 to the transformed grid

nodes τk, τ̂k in BA, for k = 1, . . . , n. We assume point-like measurements (χk have very

small support), so that we can map any primary interval (θk, θk+1) to BI . Specifically,

we take the interval (θ(n+1)/2, θ(n+3)/2) shown in figure 3.1. Let α = π(1 − 1/n), then
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α = θn+1

2

−α = θn+3

2

β = τ n+1

2

−β = τ n+3

2

Figure 3.1: The optimal grid with n = 15 under the conformal mapping F , with
β = 3π/4. Left: the optimal grid; right: the image of the optimal grid under F .
Primary grid lines are solid black, dual grid lines are dotted black. Boundary grid
nodes: primary ×, dual ◦. Accessible boundary is solid red.

the condition

f
(
(θ(n+1)/2, θ(n+3)/2)

)
= BI (3.8)

becomes F (e±iα) = e±iβ and the parameters of the Möbius transform are

a =
cosα− cos β

1 − cos(α+ β)
, ω = 0. (3.9)

We show in figure 3.1 the transformation 1 of the optimal grid, which we name

the conformal mapping grid. Note that by enforcing the condition (3.8), we have

exhausted all degrees of freedom of the Möbius transform, and thus, we have no

control over the placement of the boundary grid nodes τk, τ̂k. The resulting grid is

refined towards the middle of the accessible boundary, and it is very sparse near the

inaccessible boundary. This behavior persists as we increase the number n of primary

boundary points, as we now explain.

1The grid is obtained with the log-averaging formulas and the measurement operator M∗

n
.
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3.1.2 The limit distribution of boundary nodes in conformal

mapping grids

To describe the asymptotic distribution of the boundary nodes under the conformal

mappings, it is convenient to renumber τk, τ̂k. We define τ̃l = f(π + lπ/n), l =

−n+ 1, . . . , n, so that when l is odd, τ̃l is a primary node and when l is even, it is a

dual node. Then, we obtain after substituting (3.9) in (3.5), that

cos ξl = lim
n→∞

cos τ̃l =
l2 − 1 + (l2 + 1) cosβ

l2 + 1 + (l2 − 1) cos β
, (3.10)

sin ξl = lim
n→∞

sin τ̃l =
2l sin β

l2 + 1 + (l2 − 1) cos β
. (3.11)

This limit distribution has a unique accumulation point at τ = 0, as l → ∞.

We illustrate the asymptotic behavior of the grid in figure 3.2. We observe that

already for n = 37 the leftmost 13 nodes τ̃l are very close to their limit values ξl,

l = −6, . . . , 6. That is, as we increase n, there will be no further angular refinement

of the grid in that region.

Note that as n→ ∞ and therefore α→ π, the parameter a defined by (3.9) tends

to −1. Thus, the only pole 1/a of the Möbius transform (3.5) approaches −1 ∈ B,

and the mapping F degenerates in D.

The limiting behavior of the optimal grid under conformal automorphisms of D

may suggest that the conformal mapping approach is not useful for solving the partial

data EIT problem. After all, it is natural to expect the inversion grid to provide a

converging scheme for the solution of the forward problem, for which grid refinement

is a necessary condition. However, the instability of the EIT problem implies that

we cannot improve the resolution of the reconstructions by simply taking more mea-
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β = ξ−1

−β = ξ1

π = ξ0

ξ−2

ξ2

ξ−3

ξ3

ξ−4

ξ4

ξ−5

ξ5

ξ−6

ξ6

Figure 3.2: Limiting behavior (n = 37) of the image of the optimal grid under F ,
with β = 3π/4. Primary grid lines are solid, dual grid lines are dotted. Boundary grid
nodes: primary τk are ×, dual τ̂k are ◦. Limiting nodes ξl = lim

n→∞
τ̃l for l = −6, . . . , 6

are 5.

surement points. Put otherwise, the limit n → ∞ is not practically important in

this problem. The numerical results in section 3.3 demonstrate that the conformal

mapping approach gives reasonable reconstructions of the conductivity σ.

3.2 Quasiconformal mappings and anisotropy

So far we have identified two features of the conformal mapping grids, that may

present problems for inversion. First, once the number of boundary grid nodes n and

the size of the inaccessible boundary are fixed, we have no control over the positioning

of the boundary grid nodes τk, where the measurements are made. Second, the grid

does not refine asymptotically as n → ∞. This is because the group of conformal

automorphisms of the unit disk is too rigid. A more general approach would be to

use a richer family of transforms at a price of introducing some anisotropy in the
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reconstruction. A suitable family of mappings that allows the control of the artificial

anisotropy of the reconstruction consists of quasiconformal mappings.

A quasiconformal mapping W (z) is defined as a diffeomorphism that obeys the

Beltrami equation

∂W

∂z
= µ(z)

∂W

∂z
, (3.12)

where the Beltrami coefficient µ(z) is a complex valued measurable function satisfying

‖µ‖∞ = ess sup|µ(z)| < 1. (3.13)

The Beltrami coefficient, also known as the complex dilatation µ(z) provides a mea-

sure of how much the mapping W differs from a conformal one. A conformal mapping

corresponds to µ(z) ≡ 0, in which case (3.12) reduces to the Cauchy-Riemann equa-

tion. Here we consider quasiconformal self mappings of the unit disk, so (3.12) and

(3.13) hold for z ∈ D.

Now let us describe the connection between the dilatation of the quasiconformal

mapping and the anisotropy of the push-forward of an isotropic conductivity. Let σ̃(z)

be an anisotropic conductivity with eigenvalues λ1(z) ≥ λ2(z) > 0. Its anisotropy at

z is defined by

κ(σ̃, z) =

√
L(z) − 1√
L(z) + 1

, (3.14)

where L(z) = λ1(z)/λ2(z), and

κ(σ̃) = sup
z
κ(σ̃, z) (3.15)

is the maximum anisotropy. The relation between the Beltrami coefficient of a quasi-

conformal mapping and the anisotropy of the push forward of an isotropic conduc-
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tivity by the mapping is given by the following result. 2

Lemma 3.2.1. Let W (x, y) = [u(x, y), v(x, y)]T be a quasi-conformal diffeomorphism,

with the complex form W (z) = u(z) + iv(z), z = x+ iy, and the Beltrami coefficient

µ(z). If σ is an isotropic conductivity, then

κ(W∗(σ), z) = |µ(z)|. (3.16)

Proof. Since only the ratio of the eigenvalues Lmatters for determining the anisotropy,

we can consider only the part H = W ′(W ′)T of the definition of the push forward.

W ′ =



ux uy

vx vy


 , H =




u2
x + u2

y uxvx + uyvy

uxvx + uyvy v2
x + v2

y


 . (3.17)

The eigenvalues λ1, λ2 of H satisfy

λ1 + λ2 = TrH = u2
x + u2

y + v2
x + v2

y, (3.18)

λ1λ2 = detH = (detW ′)2 = (uxvy − uyvx)
2. (3.19)

From (3.12) and the definition of complex derivatives
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
we derive

µ =

∂W
∂z

∂W
∂z̄

=
(ux + vy) + i(vx − uy)

(ux − vy) + i(vx + uy)
, (3.20)

so that

|µ| =

√
u2

x + u2
y + v2

x + v2
y + 2(uxvy − uyvx)

u2
x + u2

y + v2
x + v2

y − 2(uxvy − uyvx)
. (3.21)

2This result is probably known, but we could not find a proof in the literature.
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Comparing (3.21) to (3.18) and (3.19) we can write

|µ| =

√
λ1 + λ2 + 2

√
λ1λ2

λ1 + λ2 − 2
√
λ1λ2

=

√
(
√
λ1 +

√
λ2)2

(
√
λ1 −

√
λ2)2

(3.22)

=

√
λ1 +

√
λ2√

λ1 −
√
λ2

=

√
λ1

λ2
+ 1

√
λ1

λ2
− 1

=

√
L− 1√
L+ 1

, (3.23)

which completes the proof.

It follows immediately that the L∞ norm of the dilatation gives us a measure of

the maximum anisotropy introduced by W to an isotropic conductivity

κ (W∗(σ)) = ‖µ‖∞. (3.24)

Since the true unknown conductivity is isotropic, we would like to minimize the

amount of anisotropy introduced into the reconstruction by the mapping W . This

leads us to the extremal quasiconformal mappings, which minimize the maximum

anisotropy ‖µ‖∞ under some constraints. In our case the constraints come in the

form of prescribing the boundary value f = W |B, which gives us control over the

positioning of the measurement points τk = f(θk).

3.2.1 Extremal quasiconformal mappings

It is known [77] that for sufficiently regular boundary values, there exists a unique

extremal quasiconformal mapping that is a Teichmüller mapping, i.e. its Beltrami

coefficient satisfies

µ(z) = ‖µ‖∞
φ(z)

|φ(z)| , (3.25)

D 
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for some holomorphic function φ(z) in D. Using this in (3.16), we obtain that the

push forward of an isotropic conductivity by a Teichmüller mapping has a uniform

anisotropy throughout D.

Similar to (3.25), we can define the dilatation of W−1 in terms of a holomorphic

function ψ. Then, according to [71], we can decompose a Teichmüller mapping W

into

W = Ψ−1 ◦ AK ◦ Φ, (3.26)

where

Φ(z) =

∫ √
φ(z)dz, Ψ(ζ) =

∫ √
ψ(ζ)dζ, (3.27)

and AK is affine. The mappings Φ and Ψ are conformal away from zeros of φ and

ψ respectively. The only source of anisotropy in decomposition (3.26) is the affine

mapping AK , that we take to be

AK(x+ iy) = Kx+ iy, x, y ∈ R, (3.28)

where the constant parameter K > 0 determines the anisotropy

κ (W∗(σ)) = ‖µ‖∞ =

∣∣∣∣
K − 1

K + 1

∣∣∣∣ . (3.29)

To obtain the terms Φ and Ψ in the decomposition (3.26) of the Teichmüller

mapping, we use the constraints on the boundary values f = W |B. Since we work

with point-like boundary measurements, it is only important to have control over the

behavior of the Teichmüller mapping at the measurement points eiθk . This leads us to

consider the extremal polygonal quasiconformal mappings. A polygon in this context

is a unit disk D with n distinguished points on B, called the vertices of the polygon
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Φ AK Ψ−1

Figure 3.3: Teichmüller mapping decomposed into conformal mappings Φ and Ψ,
and an affine transform AK , K = 3/4. The poles of φ and ψ and their images under
Φ and Ψ are F, the zeros of φ and ψ and their images under Φ and Ψ are �.

(in our case eiθk).

The extremal polygonal quasiconformal mapping W takes the boundary points

eiθk to prescribed points eiτk , while minimizing the maximum dilatation. According

to [78], the integrals Φ and Ψ in its decomposition map the unit disk conformally onto

polygons comprised of a number of rectangular strips. But conformal mappings of

the unit disk to polygons are Schwartz-Christoffel mappings [34], given by the general

formula

S(z) = a+ b

∫ z N∏

q=1

(
1 − ζ

zq

)αq−1

dζ, (3.30)

where a, b ∈ C are constants, N is the number of vertices of a polygon, zq ∈ B are the

pre-images of the vertices and παq are the interior angles of the polygon. Moreover,

for the polygons comprised of rectangular strips αq ∈ {1/2, 3/2}.

Comparing the definitions (3.27) of Φ and Ψ with (3.30) we observe that φ and ψ

are rational functions with first order poles at vertices with angle π/2 and first order

zeros at vertices with angle 3π/2. This behavior is illustrated in detail in figure 3.3,

along with the behavior of each mapping in the decomposition (3.26). Note that we

construct the mappings Φ, Ψ so that they are symmetric with respect to the real axis.

This is done to maintain the symmetry of the optimal grid under W .

We have established that in order to map the unit disk to a polygon comprised
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Figure 3.4: The optimal grid with n = 15 under the quasiconformal Teichmüller
mappings W with different K. Left: K = 0.8; right: K = 0.66. Primary grid lines
are solid black, dual grid lines are dotted black. Boundary grid nodes: primary ×,
dual ◦. Accessible boundary is solid red.

of several rectangular strips it is necessary for φ and ψ to have zeros and poles on B.

In what follows we construct φ and ψ so that the zeros are at the dual grid nodes

and the poles are at the primary grid nodes. Such construction gives us an extremal

mapping, since according to [71], every Teichmüller mapping of the form (3.26) is

extremal for the boundary values that it induces.

3.2.2 Teichmüller mappings and inversion grids

We illustrate the behavior of the optimal grids under the extremal quasiconformal

mappings in figure 3.4. The number n of boundary primary grid nodes and the size of

the accessible boundary are the same as for the conformal mapping example in figure

3.1, so that we can compare the two approaches. Similar to the conformal mapping

case, we map the primary boundary grid interval (θ(n+1)/2, θ(n+3)/2) to the inaccessible

boundary.

The grids for two different values of the affine stretching constant K are presented
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in figure 3.4, with the larger value of K corresponding to less artificial anisotropy. For

K = 0.8 we already observe that the clustering of the boundary grid nodes around 1

is much less pronounced then for the conformal mapping grid. As we decrease K to

0.66 the grid nodes move further away from the middle of BA towards the inaccessible

boundary. One should keep in mind that although the distribution of the grid nodes

becomes more uniform for smaller values of K, the conductivity reconstructed on such

grid would have a larger amount of artificial anisotropy, as shown in the numerical

examples in the next section.

3.3 Numerical results

In this section we present numerical results for the reconstructions of smooth and

piecewise constant conductivities. We begin in section 3.3.1 with the outline of the

inversion method. Then, we describe our numerical implementation of the inversion

method in section 3.3.2. The numerical results are in sections 3.3.3 and 3.3.4.

3.3.1 The inversion method

What we mean by inversion method, is the computation of the reconstruction Qn(Λγ)

from the discrete measurements Λγ = Mn(Λσ) made at the accessible boundary BA.

This reconstruction can be viewed as an image of the unknown conductivity σ, as

we show below with numerical simulations. The computation of the reconstruction is

summarized in the algorithm below.

Algorithm 3.3.1. To compute the reconstruction σ? = Qn (Mn(Λσ)) perform the

following steps:

(1) Compute the discrete DtN maps Λγ = Mn(Λσ) and Λγ(1) = Mn(Λ1) using the
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measurement operator Mn defined in section 2.2.3. This implies choosing the

odd number n of boundary measurements and the distribution of measurement

points eiτk ∈ BA, for k = 1, . . . , n.

(2) Solve the discrete EIT problem for the circular resistor network with discrete

DtN map Λγ computed at step 1. This gives the conductances γj,k and γ̂j,k of

the resistors.

(3) Solve the discrete EIT problem for the circular resistor network with DtN map

Λγ(1) computed at step 1, for the uniform conductivity σ(1) ≡ 1. This gives the

conductances γ(1)

j,k and γ̂(1)

j,k.

(4) Compute the extremal quasiconformal mapping T that takes the uniformly dis-

tributed points eiθk ∈ B to the measurement points eiτk ∈ BA,

eiτk = T (eiθk), k = 1, . . . , n. (3.31)

Use this mapping to compute the grid nodes T (r̂je
iθk) and T (rje

iθ̂k), where rj, r̂j

are the radii of the rotationally symmetric optimal grid, and θk = 2π(k − 1)/n,

θ̂k = 2π(k − 1/2)/n are the equidistant angular grid nodes. In the particular

case of τk distributed as in section 3.1.1, the mapping T is a conformal one.

(5) The reconstruction

σ? = Qn [Mn(Λσ)] ∈ S (3.32)

is given by the piecewise linear interpolation of the following values at the trans-
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formed grid nodes

σ?
(
T (r̂j+m1/2

eiθk)
)

= γj,k/γ
(1)

j,k, j = 1, . . . ,m+ 1, (3.33)

σ?
(
T (rje

iθ̂k)
)

= γ̂j,k/γ̂
(1)

j,k, j = 2 −m1/2, . . . ,m+ 1, (3.34)

where k=1,. . . ,n.

3.3.2 Numerical implementation

In step 1 of the inversion algorithm we choose the number n of boundary nodes. The

choice of n is studied in [15, 44], and it is related to the amount of noise present in the

measured data. Recall that the theory of discrete inverse problems for networks with

circular planar graphs described in section 2.4.1 provides an exact relation between

the number of boundary nodes and the number of layers of a uniquely recoverable

network. The discrete EIT problem is exponentially ill-conditioned, loosing roughly

one digit of accuracy for each layer recovered. Hence the number of layers that can

be stably recovered is limited by the noise level in the data, thus limiting n. A simple

heuristic was proposed in [15, 44] to determine n by solving a sequence of discrete

inverse problems for increasing n, until the layer peeling method [26] fails to produce

positive conductances. In the numerical examples below n = 21 (m = 4, m1/2 = 1),

and it is well below the heuristic limit, which guarantees a stable solution of the

discrete inverse problem.

We use measurement functions χk with small supports, so the size of the inaccessi-

ble boundary is slightly smaller than the image of the primary grid cell
(
θ(n+1)/2, θ(n+3)/2

)

that is mapped to BI according to (3.8). We take χk(θ) as the indicator functions

of intervals centered around the primary boundary grid nodes eiθk and occupying

10% of the corresponding dual boundary grid interval. They are transformed to
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χ̃k(τ) = χk(g(τ)) by the boundary restriction g of the inverse of T . We indicate with

small red squares the end points of the supports of χ̃k(τ) in figures 3.6–3.10. Note

that the measurements Mn(Λ1) and Mn(Λσ) in steps 2 and 3 of the algorithm are

computed using transformed functions χ̃k(τ). The continuum DtN maps Λ1 and Λσ

are approximated with a finite difference scheme on a fine tensor product grid with

300 uniformly spaced nodes in angle and 100 uniformly spaced nodes in radius.

We solve the discrete inverse problems in steps 2 and 3 of the algorithm using

the layer peeling method introduced in [26]. Being a direct method, the layer peeling

is extremely fast, which makes our inversion algorithm computationally inexpensive.

In fact, recovering all conductances in a network with layer peeling is faster than

computing the Jacobian of the discrete DtN map with respect to the conductances.

Thus, the layer peeling recovers the whole network faster than one iteration of any

gradient-based optimization method, which may take hundreds of iterations to con-

verge considering the ill-conditioning of the problem.

Note that since the transformed measurement functions χ̃k(τ) are not rotationally

symmetric in the sense of (2.26), the conductances γ(1)

j,k and γ̂(1)

j,k obtained in step 3

depend on the angular index k, even though the conductivity σ(1) ≡ 1 is rotationally

invariant.

The Teichmüller mapping T in step 4 is computed using the decomposition (3.26)

for a fixed value of the affine stretching constant K. Choosing K is a tradeoff between

the resolution and the distortion of the reconstruction, as shown in the numerical

examples below. The conformal mappings Φ and Ψ in decomposition (3.26) are

computed numerically using the Schwartz-Christoffel toolbox [33]. In case K = 1 the

mapping T is conformal, so we can use (3.5), with the parameters given by (3.9) to

obtain T = F .

Recall from the numerical results in section 2.4.5 that the optimal grid depends
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Figure 3.5: The conductivities used in the numerical experiments. Left: smooth
conductivity sigX ; right: piecewise constant chest phantom phantom1.

weakly on the choice of averaging formulas and of the measurement operator. In

all the numerical results presented below, we use the radii rj, r̂j that correspond to

log-averaging formulas and the measurement operator M∗
n, for which these radii are

computed exactly.

To compare the reconstructions for partial measurements with those for full bound-

ary measurements, we present numerical results for the same conductivity functions

considered in [15, 44]. They are shown in figure 3.5. The first one is a smooth con-

ductivity (sigX ), given by the superposition of two Gaussians. The second one is

piecewise constant (phantom1 ), and it models a chest phantom [67].

It appears from the examples of optimal grids in figures 3.1 and 3.4, that the

reconstructions will have better resolution near the accessible boundary. To explore

this phenomenon, we rotate the accessible boundary (and therefore the grid) by ω0

to move the high resolution region around the domain. Note that both sigX and

1.2 1.4 1.6 0.5 1.5 2 
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phantom1 have axes of symmetry. We specifically choose ω0 so that the axis of

symmetry of the grid z = teiω0 , t ∈ R, is neither collinear with nor orthogonal to the

axis of symmetry of σ.

For each reconstruction we compute the pointwise relative error for every z ∈ D

using the formula

E(z) =

∣∣∣∣
σ?(z)

σ(z)
− 1

∣∣∣∣ . (3.35)

The mean relative error is

[E] =

∫
H
E(z)dz∫
H
dz

· 100%, (3.36)

where H is the convex hull of the optimal grid nodes, where the reconstruction σ?(z)

is defined. We give [E] in the top right corner of every reconstruction plot.

3.3.3 Reconstructions of smooth conductivity

We begin with reconstructions of the smooth conductivity sigX. In figure 3.6 we show

reconstructions for two different values of ω0, which demonstrate how the resolution

of our method depends on the relative position of the accessible boundary and the

features of the conductivity. We refer to the two distinct features of the hammer-like

conductivity sigX as the “head” and the “handle”.

For ω0 = 3π/10 the region of high resolution is close to the head feature for

both the conformal and quasiconformal mapping reconstructions. As expected, the

conformal mapping reconstruction looses quickly resolution away from the middle

of the accessible boundary. The quasiconformal reconstruction has a more uniform

resolution throughout the domain. However, we observe that the quasiconformal

reconstruction is somewhat distorted compared to the true conductivity, which is
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Figure 3.6: Reconstructions of the smooth conductivity sigX, β = 3π/4, n = 21.
Top row: ω0 = 3π/10; bottom row: ω0 = −π/10. Left column: conformal mapping;
right column: quasiconformal mapping, K = 0.7. BA is solid red. Percentages: mean
relative errors [E].

the reason why it has a slightly larger mean relative error. We believe that this

is a manifestation of the artificial anisotropy that is implicitly introduced by the

quasiconformal mapping. Such distortions are observed for all reconstructions that
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Figure 3.7: Pointwise relative error E(z) for the reconstructions of the smooth
conductivity sigX given in figure 3.6. Percentages: mean relative errors [E].

we consider, both for the smooth and piecewise constant conductivities.

In the case ω0 = −π/10 the difference between the conformal and the quasi-

conformal reconstructions becomes more pronounced. The middle of the accessible

boundary is away from both features of the conductivity, so the conformal mapping
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reconstruction is very coarse. The quasiconformal mapping reconstruction captures

both features much better. However, similar to the case ω0 = 3π/10, we observe some

distortion in the reconstruction, especially where the handle is connected to the head,

which leads to a larger relative error compared to the conformal case.

The distribution of the relative error throughout D for all four reconstructions of

the smooth conductivity sigX is given in figure 3.7. As expected, in the conformal

case the error is small close to the middle of BA. The error in the quasiconformal case

is concentrated around the features of the conductivity, which shows that the main

source of error is the distortion.

3.3.4 Reconstructions of piecewise constant conductivity

Let us now consider the reconstructions of the piecewise constant chest phantom.

Unlike in the smooth conductivity case, we study the behavior of the reconstructions

not only for different values of ω0, but also for different choices of β. We refer to the

low and high conductivity features of the phantom as the “lungs” and the “heart”

respectively.

We show in figure 3.8 the reconstructions for ω0 = −π/10, and two sizes of the

accessible boundary corresponding to β = 4π/3 and β = 2π/3, respectively. The

middle of the accessible boundary is located close to the bottom of the right lung, and

so the conformal mapping reconstruction captures the right lung quite well. However,

the left lung is basically indistinguishable, and both the position and the conductivity

value of the heart are captured poorly. The quasiconformal mapping reconstruction

does a better job of imaging both the right lung and the heart, and even the left lung

can be distinguished as a separate feature. This behavior becomes more pronounced

as the accessible boundary is shrunk further.
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Figure 3.8: Reconstructions of piecewise constant conductivity phantom1, ω0 =
−π/10, n = 21. Top row: β = 3π/4, K = 0.7; bottom row: β = 2π/3, K = 0.63.
Left column: conformal mapping; right column: quasiconformal mapping. BA is solid
red. Percentages: mean relative errors [E].

The choice of ω0 in figures 3.9 and 3.10 allows us to focus the reconstruction on

the lungs and the heart respectively. We notice again that the conformal mapping

reconstruction captures the geometry and the magnitude of the conductivity features
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Figure 3.9: Reconstructions of piecewise constant conductivity phantom1, ω0 =
3π/10, n = 21. Top row: β = 3π/4, K = 0.7; bottom row: β = 2π/3, K = 0.63. Left
column: conformal mapping; right column: quasiconformal mapping. BA is solid red.
Percentages: mean relative errors [E].

in its high resolution region very well. None of the two approaches has a clear ad-

vantage over the other in terms of the relative error. Overall, the relative errors are

higher for the reconstructions of the piecewise constant chest phantom than those for
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Figure 3.10: Reconstructions of piecewise constant conductivity phantom1, ω0 =
−2π/5, n = 21. Top row: β = 3π/4, K = 0.7; bottom row: β = 2π/3, K = 0.63.
Left column: conformal mapping; right column: quasiconformal mapping. BA is solid
red. Percentages: mean relative errors [E].

the smooth conductivity reconstruction. This is in part due to a behavior similar to

Gibbs phenomenon, which can be clearly observed in the quasiconformal reconstruc-

tion with β = 2π/3, K = 0.63 in figure 3.8. It manifests itself as a couple of spurious
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oscillations to the left from the right lung.

We can now conclude that both the conformal and quasiconformal approaches can

be useful in different situations. If we have some a priori information on where the

features of interest of the conductivity may be located, and if we have enough control

over where the DtN map is measured, we can lump the measurements at the points

prescribed by a conformal mapping, choosing the middle of the accessible boundary

close to the suspected location of the features of interest. When no a priori infor-

mation is available, or the accessible boundary is small, the quasiconformal approach

is superior to the conformal one, because it has a better resolution throughout the

domain.



Chapter 4

Partial data EIT with pyramidal

networks and sensitivity grids

Even with the use of conformal and quasiconformal mappings, the construction of

the optimal grids in chapter 3 remains essentially one dimensional, since it reduces

the problem to the full data setting, where the optimal grid is tensor product.

The numerical experiments in section 3.3 show a trade-off between having undis-

torted images and resolution distributed throughout Ω. To eliminate distortions, the

transformed conductivity should remain isotropic, which means that the coordinate

transformation must be conformal. However, the resulting grids have poor refinement

properties, with node accumulation in the vicinity of the center of BA, and very poor

resolution of the images in the remainder of Ω. The conformal mappings also require

a rigid placement of the measurement points on BA. The extremal quasiconformal

grids achieve a more uniform resolution in Ω, and allow the arbitrary placement of

the measurement points on BA. However, they induce artifacts in the images because

the transformed conductivity is anisotropic.

In this chapter we propose to use instead networks with pyramidal graphs that can

63
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be embedded in Ω, while keeping the boundary points in BA.We do so by introducing

the truly two dimensional optimal sensitivity grids, that are based on the sensitivity

analysis of both the continuum and the discrete EIT problems. The results presented

in this chapter were published in [19].

The chapter is organized as follows. In section 4.1 we present the theory of inverse

problems for pyramidal networks. The sensitivity grids are introduced in section 4.2.

We conclude the chapter with the numerical experiments in section 4.3.

4.1 The inverse problem for pyramidal networks

Unlike the networks with circular topology, for which the layer peeling algorithm was

developed in [26], no such algorithm is to be found in the literature for the pyramidal

networks. We show that these networks are indeed recoverable in section 4.1.1, and

in section 4.1.2 we develop a layer peeling algorithm.

4.1.1 Criticality of pyramidal networks

The pyramidal networks are also known in the literature under the name standard,

since they can be chosen to be the representatives of certain classes of networks

equivalent under Y − ∆ transformations [27]. Keeping the same notation as in the

previous chapters, we denote the graphs of the pyramidal networks with n boundary

nodes by Γn, and illustrate how they look in figure 4.1, for even and odd n. Hereafter,

we refer to the edges of the graphs as “vertical” or “horizontal” according to their

orientation in figure 4.1.

To use the pyramidal networks for inversion, we need to establish that they are

uniquely recoverable from the DtN map, which is equivalent to showing that the

graphs Γn are critical. It is mentioned in [27, Proposition 7.3], without proof, that
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v1

v2

v3 v4

v5

v6 v1

v2

v3

v4

v5

v6

v7

Figure 4.1: Pyramidal (standard) graphs Γn. Left: n = 6; right: n = 7. Boundary
nodes vj, j = 1, . . . , n are ×, interior nodes are ◦.

the networks Γn, n ≥ 2 are critical. Below we give the proof for the case of even n.

The extension of the proof to odd n is straightforward.

Lemma 4.1.1. Pyramidal networks with graphs Γn, n = 2m, m ∈ N are critical.

Proof. Our proof is based on the observation that the pyramidal graphs have a self

similarity property. If we remove (peel) the layer of edges of Γn that emanate from

the boundary nodes, the resulting graph is Γn−2. The number of layers that we can

peel until no edges are left is m, and it is related to the number of boundary nodes

as n = 2m.

To prove that the network is critical we must construct for every edge e ∈ E a

circular pair (Pe;Qe) ∈ π(Γn), such that the connection between Pe and Qe is broken

when e is removed (deleted) from Γn. We do so in two steps. First, we show that

circular pairs (P ;Q) of maximal size |P | = |Q| = m are uniquely connected. Then, we

demonstrate how to construct such a pair, whose unique connection passes through

a given edge e. Therefore, the deletion of e must break the connection.

Unique connectivity of maximal circular pairs: We show by induction over

n = 2m that any circular pair (P ;Q) of maximal size |P | = |Q| = m is uniquely

. 

. 
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v1

v2 v3

v4 v1

v2 v3

v4

Figure 4.2: Unique connections for maximal circular pairs (P ;Q) for induction base
case n = 4. Nodes in P are ◦, nodes in Q are ×.

connected through Γn. Since

|P | + |Q| = 2m = n = |YB|,

we have YB = P ∪Q and we can write, without loss of generality,

P = {vs+1, . . . , vs+m}, Q = {vs+m+1, . . . , v2m, v1, . . . , vs}, (4.1)

for some integer s satisfying 1 < s ≤ m. The induction step is 4, so we consider

two base cases: n = 2 and n = 4. The case n = 2 is trivial, because Γ2 is a single

resistor connecting the two boundary nodes v1 and v2. In the case n = 4 there exist

two maximal circular pairs (up to swapping P and Q) P = {v2, v3}, Q = {v1, v4},

and P = {v3, v4}, Q = {v1, v2}. The unique connections are illustrated in figure 4.2.

Now, the subgraphs Γj of Γn, for j = 2, 4, . . . , n − 2, are obtained by repeated

peeling of the layers of edges adjacent to the boundary, and subsequent relabeling of

the nodes adjacent to the peeled edges as boundary nodes. In particular, we obtain

Γn−4 by peeling two layers from Γn.

The inductive hypothesis says that every maximal circular pair (P ′;Q′) of Γn−4 is

connected by a unique set of disjoint paths in Γn−4. To show that the maximal pair

(4.1) of Γn is uniquely connected through the graph Γn, we must show that (P ;Q)

M I I k M I I Q 
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Γn−4
v1

vs−1

vs

vs+1

vs+2

vm vm+1

vs+m−1

vs+m

vs+m+1

vs+m+2

v2m
w1

ws−1

ws

ws+m−3

ws+m−2

w2m−4

Figure 4.3: Induction step from Γn−4 to Γn: connection between (P ;Q) and (P ′;Q′).
Nodes in P and P ′ are ◦, nodes in Q and Q′ are ×. Edges not in the connection are
dashed, edges in the connection are thick solid. Narrow solid lines bound Γn−4 (not
actual edges).

must be connected to a maximal pair (P ′;Q′) of Γn−4, which we denote by

P ′ = {ws, ws+1, . . . , ws+m−3}, Q′ = {ws+m−2, . . . , w2m−4, w1, . . . , ws−1}. (4.2)

Furthermore, the connection is unique. The construction is illustrated in figure 4.3,

and we distinguish two cases.

The case 1 < s < m: The connection is constructed starting with v1, v2m ∈ Q. Since

these nodes are connected to Γn by horizontal edges only, these edges must be added

to the connecting paths. Moreover, the paths must continue along horizontal edges

to w1 and w2m−4, because if we take vertical edges, we reach the boundary nodes

v2, v2m−1, that we are not allowed to touch.

Next, we observe that there is a unique way of connecting v2 and v2m−1 to w2 and

w2m−5, which is also by horizontal edges. Indeed, if we added the vertical edges to

the paths, the paths would intersect with the horizontal edges added at the previous

step. Similarly, we build the paths connecting the nodes from Q to Q′, until we reach

vs and vs+m+1. Arguing as before, all the edges must be horizontal.
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It remains to connect the nodes in P . We start from vm, vm+1 ∈ P , and since

they are not allowed to be connected by a common horizontal edge, we add two

vertical edges to the paths. The next two edges must also be vertical, otherwise the

paths would either intersect, or touch the boundary at vm−1 or vm+2. We repeat this

argument for other nodes in P until we reach vs+1 and vs+m. For each of the nodes

vs+1 ∈ P and vs+m ∈ P we add one vertical edge, at which point they meet with the

horizontal edges added for vs ∈ Q and vs+m+1 ∈ Q, which completes the paths for

these two pairs of nodes.

Thus, we have constructed the paths between vs+1 ∈ P and vs ∈ Q, and between

vs+m ∈ P and vs+m+1 ∈ Q, while the remaining nodes in P and Q are connected by

a unique set of paths (horizontal for Q, vertical for P ) to the nodes in P ′ and Q′.

Invoking the induction hypothesis for the maximal pair (P ′;Q′) in Γn−4, we conclude

that (P ;Q) is connected by a unique set of paths through Γn, for 1 < s < m.

The case s = m: Arguing as above, the nodes of P = {vm+1, . . . , v2m} and

Q = {v1, . . . , vm} are connected to P ′ and Q′ by horizontal edges, since v1 ∈ Q

and v2m ∈ P . A circular pair (P ′;Q′) has the form P ′ = {wm−1, . . . , w2m−4},

Q′ = {w1, . . . , wm−2}, and vm ∈ Q is connected to vm+1 ∈ P by a common hori-

zontal edge. Then, the result follows by the induction hypothesis for the maximal

pair (P ′;Q′) in Γn−4.

Connection through a given edge: To complete the proof we need to show how to

construct a maximal circular pair (Pe;Qe) for any given edge e, such that the unique

connection passes through e. First, consider a horizontal edge e. As we showed

above for P = {vm+1, . . . , v2m} and Q = {v1, . . . , vm}, the unique connection passes

through all horizontal edges of Γn. Thus, the deletion of any horizontal edge breaks

the connection.
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ql

p

qr
e
b

t

p

q

Figure 4.4: Left: two circular subsets of boundary nodes to choose from. Nodes in
an even subset are 5, nodes in the odd subset are �. Right: construction of (Pe, Qe),
nodes in Pe are ◦, nodes in Qe are ×.

Let e = (t, b) be a vertical edge with end nodes t (top) and b (bottom). We follow

the vertical edges from t up to the boundary node p, that we add to Pe. We also

consider a horizontal line of edges passing through node b. We denote the boundary

end nodes of this line by ql ∈ B (left one) and qr ∈ B (right one), as shown in the

left plot in figure 4.4.

Consider a subgraph of Γn consisting of its upper part lying on and above the

horizontal line of edges connecting ql and qr. This subgraph is itself pyramidal with

an even number of boundary nodes. Thus, one of the two subsets of boundary nodes

lying either between p and qr, or between ql and p, must have an even number of

nodes (zero is considered even). We choose the subset with even number of nodes

and let q be either qr or ql depending on which subset we chose. Then, we add q to

Qe.

The rest of Pe and Qe is populated as follows. Consider the two circular subsets

of boundary nodes between p and q, and between q and p. Both subsets have an even

number of nodes. Half of the nodes in each subset we add to Pe, and another half we

add to Qe, depending on whether the node is closest to p or q, respectively. This is

illustrated in figure 4.4.

Now, we have constructed the maximal pair (Pe;Qe), which must be connected

11------0 

T T 
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by a unique set of m disjoint paths, as proved at step 1. Moreover, the path from p

to q must consist of the following two segments: the line of vertical edges from b to

p (this includes e), and the line of horizontal edges from b to q. Indeed, since p ∈ Pe,

the construction of the unique path (step 1) shows that it should be connected to P ′
e

by vertical edges, which in turn is also connected to P ′′
e by vertical edges, and so on.

Here we use the notation at step 1, with P ′
e the set of m− 2 points on the boundary

of Γn−4, and P ′′
e the set of m− 4 points on the boundary of Γn−8.

A similar argument for q ∈ Qe shows that its segment of the path consists of the

horizontal edges. By the construction of p and q, these two path segments intersect

at b. Finally, since the connection for (Pe;Qe) is unique, and the path between p ∈ Pe

and q ∈ Qe contains e ∈ E, deleting e from Γn breaks the connection, which completes

the proof.

4.1.2 Layer peeling for pyramidal networks

Now, let us show how to solve the inverse problem for the networks with pyramidal

graphs Γn = (Y,E), with a direct (layer peeling) algorithm that determines the

conductance γ : E → R+ in a finite number of algebraic operations.

The layer peeling algorithms for circular networks [26] is based on a concept of

special solutions, which are the potentials arising from special choices of boundary

data. These potentials limit the current flow to a certain subset of edges of a network,

so that the conductance of these edges can be recovered. The edges are then “peeled”,

and the method proceeds deeper into the network, until the conductance of all edges

is recovered. We use the same ideas to derive a layer peeling algorithm for pyramidal

networks. Here we consider the networks with an even number n of boundary nodes.

The extension to odd n is possible.

D 
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Algorithm 4.1.2. To determine the conductance γ of the pyramidal network (Γn, γ),

with given DtN map Λγ ∈ Dn, take the following steps:

(1) To compute the conductances of horizontal and vertical edges emanating from

the boundary node vp, for each p = 1, . . . , 2m, define the following sets:

Z = {v1, . . . , vp−1, vp+1, . . . , vm}, C = {vm+2, . . . , v2m}, H = {v1, . . . , vp} and

V = {vp, . . . , vm+1}, in the case p ≤ m.

Z = {vm+1, . . . , vp−1, vp+1, . . . , v2m}, C = {v1, . . . , vm−1}, H = {vp, . . . , v2m}

and V = {vm, . . . , vp}, for m+ 1 ≤ p ≤ 2m.

(2) Compute the conductance γ(ep,h) of the horizontal edge emanating from vp, using

γ(ep,h) =

(
Λ

(n)
p,H − Λ

(n)
p,C

(
Λ

(n)
Z,C

)−1

Λ
(n)
Z,H

)
1H , (4.3)

where 1H is a column vector of ones of size |H|.

Compute also the conductance γ(ep,v) of the vertical edge emanating from vp

γ(ep,v) =

(
Λ

(n)
p,V − Λ

(n)
p,C

(
Λ

(n)
Z,C

)−1

Λ
(n)
Z,V

)
1V . (4.4)

(3) Once γ(ep,h), γ(ep,v) have been computed, peel the outer layer from Γn to obtain

the subgraph Γn−2 with the set S = {w1, . . . , w2m−2} of boundary nodes. As-

semble the blocks KS KSB, KBS, KBB of the Kirchhoff matrix of (Γn, γ), and

compute the updated DtN map Λ(n−2) of the network (Γn−2, γ), as follows

Λ(n−2) = −KS −KSB P T
(
P (Λ(n) −KBB) P T

)−1
P KBS. (4.5)

Here P ∈ R(n−2)×n is a projection operator: PP T = In−2.
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(4) If m = 1 terminate. Otherwise, decrease m by 1, update n = 2m and go back

to step 1.

The algorithm has two essential parts. First, the steps 1 and 2 are designed to

restrict the current flow to the edges ep,h and ep,v emanating from the boundary node

vp. The potential drop on these edges is set to one and therefore, the conductance

computed at step 2 is the current through vp. Second, we peel the recovered layer in

step 3, and compute the DtN map for the smaller network with graph Γn−2. Recur-

sive application of these two operations recovers the whole network. The theoretical

justification of the algorithm is in the following theorem.

Theorem 4.1.3. The conductance γ of a pyramidal network (Γn, γ), with n = 2m,

m ∈ N, is uniquely recoverable from its DtN map Λ
(n)
γ by Algorithm 4.1.2.

Proof. The outline of the proof is as follows. First, we show that special solutions

corresponding to the excitations defined at steps 1 and 2 of the algorithm, if they

exist, give a unit potential drop on the edges emanating from the boundary node vp.

Then, we show the existence of such solutions. Finally, we establish formula (4.5) for

the updated DtN map.

Special solutions with unit potential drop: Recall that YB = {v1, . . . , v2m} is

the set of boundary nodes of Γn, and S = {w1, . . . , w2m−2} is the set of boundary

nodes of Γn−2. This is the subgraph of Γn obtained by peeling the edges emanating

from the nodes in YB. Let ep,h = (vp, wp), ep,v = (vp, wp−1) be the horizontal and

vertical edges emanating from vp ∈ YB.

We construct the special solutions u(p,h) and u(p,v) so that the potential drop on

ep,h and ep,v is one, and we can recover γ (ep,h) and γ (ep,v) from the measured current

J
(h)
p and J

(v)
p , respectively. The behavior of the special solutions is illustrated in figure

4.5.
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Γn−2
J1 = 0

Jp−1 = 0

Jp = γ (ep,h)

Jp+1 = 0

Jm = 0

w1

wp−1

wp

wm−1

φm+2

φ2m

Γn−2
J1 = 0

Jp−1 = 0

Jp = γ (ep,v )

Jp+1 = 0

Jm = 0

w1

wp−1

wp

wm−1

φm+2

φ2m

Figure 4.5: Special solutions. Left: special solution for γ (ep,h); right: special solution
for γ (ep,v). Nodes with zero potential are ◦, nodes with unit potential are ×. Edges
to be peeled are thick solid. Narrow solid lines bound Γn−2 (not actual edges).

Consider first the case 1 ≤ p ≤ m, and begin the construction of the special solu-

tion u(p,h) by setting the boundary conditions. The boundary conditions are stated in

terms of the following subsets of YB: H = {v1, . . . , vp}, Z = {v1, . . . , vp−1, vp+1, . . . , vm},

F = {vp+1, . . . , vm+1} and C = {vm+2, . . . , v2m}. If we denote by φ the boundary po-

tential, then its restriction to C, denoted by φC , is determined from the combination

of Dirichlet and Neumann data





φH = 1,

φF = 0,

JZ = 0.

(4.6)

This is shown later in the proof, where we establish the existence of special solutions.

Now, let us denote by ψ the restriction of the potential to S. The current at the

boundary node vj is given by

Jj = γ (ej,h) (φj − ψj) + γ (ej,v) (φj − ψj−1), (4.7)

for all nodes in YB, except v1 and v2m, where only the first term is present. This is

because there is only one horizontal edge emanating from each of these two nodes.
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We show by induction that u(p,h), the potential drop on ep,h is one, and the drop on

ep,v is zero. Thus, according to (4.7),

γ (ep,h) = J (h)
p . (4.8)

Let us first show that ψp−1 = 1. Since v1 ∈ Z ∩H, equation (4.7) for j = 1 gives

0 = J
(h)
1 = γ (e1,h) (1 − ψ1), therefore ψ1 = 1.

Next, we proceed by induction in j = 2, . . . , p−1, vj ∈ Z∩H. Suppose that ψj−1 = 1,

then (4.7) becomes

0 = γ (ej,h) (1 − ψj),

which becomes ψp−1 = 1 for j = p− 1.

Now we use another induction argument to show that ψp = 0. Since vm ∈ Z ∩ F

and vm+1 ∈ F , equation (4.7) for j = m gives

0 = J (h)
m = γ (em,h) (φm − φm+1) + γ (em,v) (φm − ψm−1) = −γ (em,v)ψm−1,

thus ψm−1 = 0. We proceed by induction in j = m− 1, . . . , p+ 1, where vj ∈ Z ∩ F .

Suppose that ψj = 0, then (4.7) gives

0 = γ (ej,v) (0 − ψj−1),

and if we set j = p + 1, we get ψp = 0. We have just established that ψp−1 = 1,

ψp = 0, and since φp = 1, (4.8) holds.

To determine γ (ep,v) we construct a special solution u(p,v) in a similar manner.

The sets Z and C are the same as for u(p,h), while V = {vp, . . . , vm+1} and F =
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{v1, . . . , vp−1}. The boundary conditions are determined by (4.6), with H replaced

by V . An induction argument similar to the one above, shows that the potential drop

on ep,h is zero, and the drop on ep,v is one. Thus,

γ (ep,v) = J (v)
p . (4.9)

Existence of special solutions: We now establish the existence of solutions with

boundary conditions (4.6), by converting them to Dirichlet conditions, for which

existence and uniqueness is known [27]. Since conditions on φH and φF are Dirichlet,

we need to convert JZ = 0 to a Dirichlet condition on φC , C = YB \ (H ∪ F ). We

rewrite JZ = 0 using the DtN map as

0 = Λ
(n)
Z,FφF + Λ

(n)
Z,HφH + Λ

(n)
Z,CφC , (4.10)

which is combined with (4.6) to get

φC = −
(
Λ

(n)
Z,C

)−1

ΛZ,H1H , (4.11)

where 1H is a column vector of ones of size |H|. Thus, the question of existence of

the special solution is equivalent to det Λ
(n)
Z,C 6= 0.

To show the invertability of Λ
(n)
Z,C , we use the result from [27, Theorem 4.2], which

says that for a circular pair (P ;Q) with |P | = |Q| = k, the condition (−1)k det ΛP,Q >

0 is satisfied if and only if (P ;Q) is connected through the network, otherwise

det ΛP,Q = 0. We demonstrate that (Z;C) ∈ π(Γn) by constructing the connection

explicitly, as shown in figure 4.6.

For j = 1, . . . , p− 1 we connect vj ∈ Z and v2m−j+1 ∈ C with paths of horizontal
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v1

vp−1

vp

vp+1

vm

wp

wm−1

vm+2

v2m−p+1

v2m−p+2

v2m

Figure 4.6: Connection for (Z;C). Nodes in Z are ◦, nodes in C are ×. The paths
are thick solid lines, edges not in the paths are narrow solid lines. Nodes at the
intersections of vertical and horizontal path segments are ∇.

edges. For j = p+1, . . . ,m we connect vj ∈ Z and v2m−j+2 ∈ C with paths consisting

of one vertical edge ej,v = (vj, wj−1) and a path of horizontal edges connecting wj−1

and v2m−j+2.

Recall that so far we considered the case 1 ≤ p ≤ m. The case m+ 1 ≤ p ≤ 2m is

similar. In fact, since Γn is symmetric with respect to the vertical axis, the argument

becomes identical to the previous one if we relabel the boundary nodes vj → v2m−j+1,

j = 1, . . . , 2m. This exhausts all possible vp ∈ B, and we can finally obtain the

formulas (4.3)–(4.4) by substituting (4.11) into

Jp = Λ
(n)
p,HφH + Λ

(n)
p,CφC , and Jp = Λ

(n)
p,V φV + Λ

(n)
p,CφC .

DtN map update formula: Once we know the conductances of the edges emanating

from YB, we peel the outer layer and reduce the inverse problem to the one for the

smaller network (Γn−2, γ). It remains to derive the DtN map Λ(n−2) ∈ R(n−2)×(n−2) of

this network.

We rewrite equation (2.12) using the specific structure of the DtN map of (Γn, γ).

The graph Γn consists of m layers of nodes. Each layer is a set of boundary nodes of

0-----

- u 

- T T - n 
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Γ2j, j = 1, . . . ,m. The layer j is connected by paths of length one only to the two

adjacent layers j − 1 and j + 1 (except for j = 1,m). Thus, the Kirchhoff matrix K

of (Γn, γ) has a block tridiagonal structure

K =




K11 K12 0 · · · 0

K21 K22 K23 · · · 0

0 K32
. . . . . .

...

...
...

. . . KSS KSB

0 0 · · · KBS KBB




=



KII KIB

KBI KBB


 . (4.12)

Here Kjj ∈ R2j×2j, j = 1, . . . ,m, are the diagonal blocks with Km−1,m−1 = KSS,

Km,m = KBB. Furthermore, Kj,j+1 ∈ R2j×(2j+2), Kj,j+1 = KT
j+1,j, j = 1, . . . ,m − 1,

are the off-diagonal blocks corresponding to connections between the layers j and

j + 1.

Using (4.12) we rewrite (2.12) as

Λ(n) = KBB −KBS

(
K−1

II

)
SS
KSB. (4.13)

We can also relate the potential φ at the boundary YB of Γn to the potential ψ at the

boundary S of Γn−2 via

KBSψ = (Λ(n) −KBB)φ. (4.14)

Recall that the matrix of the DtN map is defined as the current response for boundary

potential excitations that are the columns of an identity matrix. Thus, we rewrite

(4.14) in matrix form with an identity matrix Ψ = In−2 and an unknown Φ ∈ Rn×(n−2),
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to obtain an overdetermined matrix equation

KBS = (Λ(n) −KBB)Φ, (4.15)

that we now show to be solvable.

Note that once we recover the conductance for the edges emanating from YB, we

know the blocks KBS and KBB of the Kirchhoff matrix K. Let M = (Λ(n) −KBB),

and obtain from (4.13) that

M = −KBS

(
K−1

II

)
SS
KSB. (4.16)

To show that (4.15) is solvable, we need to show that M is full rank. We do so by

considering a block LDU decomposition of KII . Since KII is block tridiagonal, it

admits a decomposition

KII =




I 0

L1 I
. . .

. . . . . . 0

Lm−2 I







D1 0

0 D2
. . .

. . . . . . 0

0 Dm−1







I U1

0 I
. . .

. . . . . . Um−2

0 I




, (4.17)

where all blocks Dj, j = 1, . . . ,m − 1, are non-singular, because KII is invertible.

If we denote the diagonal blocks of K−1
II by Zj, j = 1, . . . ,m − 1, it can be shown

[39, 40, 82] that they satisfy

Zm−1 = D−1
m−1, (4.18)

Zj = D−1
j + UjZj+1Lj, j = m− 2, . . . , 1. (4.19)
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Of particular interest to us is (4.18), which gives Zm−1 = D−1
m−1 =

(
K−1

II

)
SS

, hence
(
K−1

II

)
SS

is invertible. Since Γn is connected, the blocks KBS and KSB are full rank.

This establishes that M is of full rank.

We can now solve equation (4.15). Let P ∈ R(n−2)×n be a full rank projector, so

that PP T = In−2. Then, if we search for Φ in the form Φ = P T Φ̂, we obtain from

(4.15) that

PKBS = PMP T Φ̂, (4.20)

Φ = P T (PMP T )−1PKBS. (4.21)

The final step in deriving Λ(n−2) is to write the Kirchhoff law for the nodes in S.

If G = YI\S, then

KSGuG + (KS +KG)ψ +KSBφ = 0, (4.22)

where we split KSS in two parts KSS = KS +KG, corresponding to the edges connect-

ing S to YB and S to G, respectively. The DtN map of (Γn−2, γ) is then the current

from S to B, given by

JSB = −KSψ −KSBφ,

which we rewrite in matrix form using Ψ = In−2 and (4.21), to obtain (4.5).

4.2 Optimal grids for pyramidal networks

The construction of the optimal grids presented below is based on an observation

that the full knowledge of the optimal grid is not required for inversion. Indeed, to

compute the reconstruction using (2.23) we only need to know the intersections Pα,β

of the primary and dual grid segments. Our approach is to estimate these points

D 



80

from the sensitivity analysis of both the continuum and the discrete EIT problems.

The analysis is presented in sections (4.2.1) –(4.2.2). Then, the general definition of

the grids is given in section (4.2.3). Finally, a particular case of grids for pyramidal

networks in considered in section (4.2.4).

4.2.1 Kernel of the DtN map

We begin the sensitivity analysis with the derivation of the expression of the kernel

of the DtN map. We need the Dirichlet Green’s function G(x, y), the solution of

∇x · (σ(x)∇xG(x, y)) = −δ(x− y), x ∈ Ω, (4.23)

with homogeneous Dirichlet boundary condition

G(x, y)|x∈B = 0, (4.24)

where y ∈ Ω is the source location.

Our numerical simulations are for domain Ω = D the unit disk, and Ω = R2
− the

lower half plane, respectively. In both cases we can write G(x, y) explicitly [41] when

σ ≡ 1, as needed in the computation of the optimal grids. For Ω = D we have [41]

GD(x, y) =
1

2π
(− log |x− y| + log |y| (|x− ỹ|)) , (4.25)

where ỹ = y/|y|2 and | · | is the Euclidean norm. When Ω = R2
−,

GR
2
−
(x, y) =

1

2π
(− log |x− y| + log |x− ŷ|) , (4.26)

for ŷ = (I − 2e2e
T
2 )y, I the 2 × 2 identity matrix, and e2 = (0, 1)T .
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Consider a general σ that we assume regular enough to admit the integral rep-

resentation (2.19) of the DtN map, and let us derive the expression of the kernel

Kσ(x, y) in terms of G(x, y). Combining Green’s second identity

∫

Ω

(f∇ · (σ∇g) − g∇ · (σ∇f)) dV =

∫

B

σ

(
f
∂g

∂ν
− g

∂f

∂ν

)
dS (4.27)

for f = u(x), g = G(x, y), with (4.23), (4.24), (1.1) and (1.2) we obtain

u(y) = −
∫

B

σ(x)φ(x)ν(x) · ∇xG(x, y)dSx, y ∈ Ω. (4.28)

Then, we can write, formally,

σ(y)
∂u

∂ν

∣∣∣∣
y∈B

= −
∫

B

σ(y)σ(x) (ν(x) · ∇x) (ν(y) · ∇y)G(x, y)φ(x)dSx, (4.29)

and obtain

Kσ(x, y) = −σ(x)σ(y) (ν(x) · ∇x) (ν(y) · ∇y)G(x, y), x, y ∈ B. (4.30)

Note that although G(x, y) is not defined for y ∈ B, equation (4.30) contains the

normal derivative of G(x, y) with respect to y, which is well defined.

Differentiating (4.25) and (4.26) we obtain the kernel K1(x, y) of the DtN map for

Laplace’s equation in the unit disk and in the half plane, respectively. The Jacobian

of ỹ is given by

Dy(ỹ) =
I

|y|2 − 2yyT

|y|4 , (4.31)

which allows us to compute

(ν(y) · ∇)GD(x, y) =
1

2π

(
1 + 2y · (x̃− y)

)
, |y| = 1. (4.32)
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The second differentiation in conjunction with (4.31), (4.30) and |x| = |y| = 1 gives

K1(x, y) = − 1

π|x− y|2 . (4.33)

The expression of the kernel in the case Ω = R2
− is exactly the same. Moreover, for-

mula (4.33) is valid for any region conformally equivalent to the unit disk. This follows

from the invariance of the DtN map under conformal coordinate transformations [79].

The behavior of the kernel Kσ(x, y) for general σ is similar to (4.33) in the sense

that away from the diagonal x = y, it admits the representation [51]

Kσ(x, y) = − k(x, y)

π|x− y|2 . (4.34)

Here k(x, y) is a symmetric, positive continuous function on B × B, that does not

vanish on the diagonal.

4.2.2 Sensitivity functions

Given the kernel of the DtN map, we can now perform the sensitivity analysis with

respect to the changes in σ. Since (4.30) gives Kσ(x, y) in terms of the Green’s

function, we compute first the sensitivity of G(x, y).

Let G(x, y) + δG(x, y) be the Green’s function corresponding to the perturbed

conductivity σ+ δσ. To compute the sensitivity of G, it suffices to assume very small

perturbations δσ and approximate δG(x, y) by the solution of the linearized equation

∇x · (σ(x)∇xδG(x, y)) = −∇x · (δσ(x)∇xG(x, y)) , x ∈ Ω, (4.35)

δG(x, y) = 0, x ∈ B.
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We have

δG(x, y) =

∫

Ω

G(x, s)∇s · (δσ(s)∇sG(s, y)) ds,

= −
∫

Ω

δσ(s)∇sG(x, s) · ∇sG(s, y)ds, (4.36)

where we integrated by parts.

Next, let us use linearization in equation (4.30) to write the perturbation δKσ(x, y)

of the kernel

δKσ(x, y) =

(
δσ(x)

σ(x)
+
δσ(y)

σ(y)

)
Kσ(x, y) − σ(x)σ(y)

∂

∂νx

∂

∂νy

δG(x, y). (4.37)

Assuming that δσ|B = 0, we obtain from (4.37) and (4.36) that

δKσ(x, y) =

∫

Ω

δσ(s)DKσ(s;x, y)ds, (4.38)

with Jacobian

DKσ(s;x, y) = σ(x)σ(y)

(
∇s

∂

∂νx

G(x, s)

)
·
(
∇s

∂

∂νy

G(s, y)

)
, s ∈ Ω. (4.39)

Moreover, in the case σ ≡ 1 used to compute the grids, we have

∇s
∂

∂νx

G(x, s) =
1

π|x− s|2
(
I − 2

(x− s)(x− s)T

|x− s|2
)
ν(x), (4.40)

∇s
∂

∂νy

G(s, y) =
1

π|y − s|2
(
I − 2

(y − s)(y − s)T

|y − s|2
)
ν(y). (4.41)

Now, let us derive similar sensitivity formulas for the discrete setting. Given the

decomposition (2.10) of the Kirchhoff matrix, we note that the discrete equivalent of
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the Green’s function is

G = −K−1
II KIB. (4.42)

Denote by γk the conductances in our critical network, for k = 1, . . . , g, and g =

n(n − 1)/2. Note that the discrete DtN map Λγ ∈ Rn×n has precisely g degrees of

freedom, since it is symmetric, and its diagonal is determined by the conservation

of currents. Thus, the critical network, which is uniquely recoverable from Λγ, has

as many conductances as the number of degrees of freedom of Λγ. We obtain by

differentiating (2.12) with respect to γk that

∂Λγ

∂γk

=

[
GT I

]
∂K

∂γk



G

I


 . (4.43)

But K is linear in γ, so the partial derivative ∂K
∂γk

is just the Kirchhoff matrix of a

network with all the conductances being zero, except for γk = 1.

We denote by vec(M) the operation of stacking the entries in the strict upper

triangular part of a matrix M ∈ Rn×n in a vector of size g. Then, we can form the

Jacobian matrix DγΛγ ∈ Rg×g, with entries given by

(DγΛγ)jk =

(
vec

(
∂Λγ

∂γk

))

j

. (4.44)

As the last step before defining the sensitivity functions, let us observe that the

measurement operator Mn can be viewed as acting on the kernel of the DtN map.

This is obvious for the pointwise measurements (2.20), and for measurements (2.17)
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we have

(Mn(DKσ))ij (s) =





∫
B×B

χi(x)DKσ(s;x, y)χj(y)dxdy, i 6= j,

− ∑
k 6=i

∫
B×B

χi(x)DKσ(s;x, y)χk(y)dxdy, i = j.
(4.45)

Definition The sensitivity function of the conductance γk with respect to the changes

in the conductivity σ is the kth component of the vector function

(Dσγ) (s) =
(
DγΛγ|Λγ=Mn(Λσ)

)−1

vec (Mn(DKσ)(s)) , s ∈ Ω, (4.46)

that we denote by (Dσγk)(s), k = 1, . . . , g.

We are particularly interested in the sensitivity functions D1γk corresponding to

σ ≡ 1. They are used to define the optimal grid, as explained next.

4.2.3 Definition of sensitivity grids

Given the sensitivity functions (4.46), we define the points

Sα,β = arg maxs∈Ω(Dσγk(α,β))(s), (4.47)

where the solution γk(α,β) of the discrete inverse problem is most sensitive to changes

in the continuum conductivity σ. Here k is an indexing operator that stacks all the

conductances in a vector in Rg. If the maximum in (4.47) is attained at multiple

points in Ω, we define Sα,β as the arithmetic average of those points. We use the

points Sα,β in (2.23), instead of the intersections Pα,β of the unknown grid lines, and

we call the grids with nodes Sα,β the sensitivity grids.

Let us now illustrate the relationship between the points Sα,β and Pα,β in the case
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of full boundary measurements, where we computed the optimal grid nodes explicitly

in section 2.4.4. We show in figure 4.7 the optimal grids and the sensitivity functions

for the circular networks. Note that the sensitivity functions of the conductances

of various edges are mostly contained in the corresponding cells of the optimal grid.

Moreover, the maxima Sα,β (the yellow squares in figure 4.7) are almost indistinguish-

able from Pα,β (the black circles in the figure).

4.2.4 Sensitivity grids for pyramidal networks

One can use the definition above to obtain sensitivity grids from any critical resistor

network. However, not all network topologies give grids with good approximation

properties. In particular, the numerical results in section 4.3 show that the pyramidal

networks work better than the circular ones, for the partial data problem.

Note from figure 4.1 that in the pyramidal networks, the nodes v1 and vn which

delimit the accessible boundary BA, are separated by n− 2 interior nodes connected

by the bottommost n − 1 horizontal edges that we associate with the inaccessible

boundary BI . Thus, the number of nodes associated with BA and BI grow at the

same rate as n increases. In comparisson, all the boundary nodes of the circular

networks are mapped to the accessible boundary conformally or quasiconformally.

The conformal mappings preserve the isotropy of the conductivity, but give grids

with poor resolution away from the center of BA. The quasiconformal grids have

better resolution at the price of distortions in the reconstruction, due to the induced

anisotropy of the conductivity. We believe that because the pyramidal networks allow

the simultaneous growth of the sets of nodes in associated with BA and BI , they are

better suited for partial data EIT. This is supported by the numerical results in

section 4.3.
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Figure 4.7: Sensitivity functions in D corresponding to the circular network and
a tensor product optimal grid. Top left: circular network with 8 layers, n = 17,
boundary nodes are ×, sensitivities are computed for the edges R1–R4 and C1–C4
(bold). Left to right, top to bottom: sensitivity functions for the radial (R1–R4)
and angular (C1–C4) conductances. Optimal grid lines: primary are solid, dual are
dotted. Nodes Pα,β are yellow �, Sα,β are black •.
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Figure 4.8: Sensitivity functions in D for the pyramidal network with m = 4, n = 8.
The edges corresponding to each sensitivity function are indexed by (t, l, j), where
t ∈ {h, v} is the type of the edge (horizontal/vertical), l is the layer number and j is
the index of the edge in the layer. θj are ×, β = 0.52π.
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Figure 4.9: Sensitivity grids in D for Γ16. Left: β = 0.52; right: β = 0.65. Blue �

correspond to vertical edges, red F correspond to horizontal edges, θj are black ×.

We illustrate in figure 4.8 the sensitivity functions D1γk in the unit disk D, for

the pyramidal network with m = 4 layers and n = 8 boundary nodes. We use the

notation (t, l, j) to index the edges of Γn. Here t ∈ {h, v} describes the type of the

edge (horizontal/vertical), and l = 1, . . . ,m determines the layer to which the edge

belongs (l = m is the outermost layer). The edges in layer l are indexed by j, with

j = 1, . . . , 2l − 1 for t = h, and j = 1, . . . , 2l − 2 for t = v.

The supports of the measurement functions χj, used in (2.17) to define Mn(Λ1),

are centered at uniformly spaced points θj ∈ ∂D, j = 1, . . . , n, on the accessible

boundary BA = {θ | θ ∈ (−β, β)}. Note that θj are symmetric with respect to the

middle θ = 0 of the accessible boundary. This implies that Mn(Λ1) is symmetric with

respect to relabeling vj → v2m−j+1, j = 1, . . . , 2m, and so are the conductances. Thus,

we only show in figure 4.8 the sensitivity functions for one half of the conductances

in each layer l. The other half can be obtained from the symmetry θ → −θ.

The sensitivity functions D1γk(s) shown in figure 4.8 have singularities near the
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supports of χj. Once we “regularize” them, by setting them to zero in the vicinity of

the singularities, we observe the well defined peaks that allow us to determine Sα,β.

In figure 4.9 we show the grids obtained from the maxima of the regularized

sensitivity function for two different sizes of the accessible boundary. While there

is some grid refinement towards BA, the grids remain remarkably uniform deeper

inside the domain. Note also that the neighboring points Sα,β form very regular

quadrilaterals, that are close to being rectangular. This is what is typically expected

from grids with good approximation properties.

4.3 Numerical results

In this section we present the numerical results with pyramidal networks and sensi-

tivity grids. The reconstruction algorithm is discussed in section 4.3.1. It is followed

by a description of the numerical experiments in section 4.3.2. The reconstructions

are presented for the unit disk and for the half plane in sections 4.3.3 and 4.3.4, re-

spectively. In the case of the unit disk, we compare the reconstructions with those

obtained in section 3.3 using the conformal and quasiconformal mappings.

4.3.1 The inversion method

The algorithm that computes the reconstruction Qn (Mn(Λσ)) with the pyramidal

networks and sensitivity grids is somewhat similar to that from section 3.3.1.

Algorithm 4.3.1. To compute the reconstruction σ? = Qn (Mn(Λσ)) perform the

following steps:

(1) Let β be the size of the accessible boundary, and n the number of measurement

functions χj, j = 1, . . . , n. Let Mn(Λσ) be the measurements for the unknown
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conductivity. Compute Mn(Λ1) for the constant reference conductivity σ ≡ 1.

(2) Solve the discrete inverse problem (2.22) using algorithm 4.1.2, to obtain the

conductances γ(1)

α,β.

(3) Use the solution of the discrete inverse problem from the previous step to com-

pute the sensitivity functions D1γ
(1)

α,β as in (4.46). Compute the maxima Sα,β of

the regularized sensitivity functions.

(4) Solve the discrete inverse problem (2.21) using algorithm 4.1.2, to obtain the

conductances γα,β.

(5) Compute the reconstruction σ? as the piecewise linear interpolation of the fol-

lowing quantities

σ?(Sα,β) =
γα,β

γ(1)

α,β

. (4.48)

We implement the piecewise linear interpolation of (4.48) by computing the De-

launay triangulation of Sα,β. Then, the reconstruction is defined on the union T of

triangles in the triangulation. In the case of the unit disk, we remove from T the

triangles that have all three vertices at points Sα,β corresponding to the bottommost

chain of horizontal resistors in Γn. For each triangle in T , the vertex values of σ? are

interpolated by a linear function.

4.3.2 Implementation details

Similar to the reconstructions with circular networks and (quasi-)conformal mappings,

we begin by choosing the number n of measurement functions, which is the same as the

number of boundary nodes of the pyramidal network. Note that in comparison with

the critical circular networks, for which the number of layers is roughly one quarter of

---



92

n, the pyramidal networks have a number of layers which is roughly n/2, which makes

the layer peeling procedure less stable. Most of the numerical experiments presented

below use the pyramidal networks with n = 16, only for the less stable high contrast

case we set n = 14. The circular networks used for comparison have n = 17, since

they are only recoverable for odd n.

For the reconstructions in the unit disk we use the same test conductivity functions

as in section 3.3.2 (see figure 3.5). The high contrast conductivity used in section

4.3.3.3 is simply

σ(r, θ) =





1, θ ∈
[

π
2
, 3π

2

]
,

C0, θ ∈
(
0, π

2

)
∪

(
3π
2
, 2π

)
,

(4.49)

where C0 is the contrast factor.

The rotation parameter ω0 is the same as in section 3.3.2. The integral in the

mean relative error (3.36) is computed over the set T , as defined in the previous

section.

4.3.3 Reconstructions in the unit disk

We present below the reconstructions in D for the smooth and piecewise constant

conductivities of low and high contrasts. The reconstructions are computed for two

sizes of the accessible boundary, β = 0.52π (slightly more than half of ∂D) and

β = 0.65π (almost two thirds of ∂D).

4.3.3.1 Reconstructions of smooth conductivity.

We begin in figure 4.10 with the reconstructions of the smooth conductivity, for

ω0 = 6π/10 and ω0 = 3π/10. Both reconstructions capture the features of the

conductivity without visible distortions of the geometry. There is a slight loss of
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Figure 4.10: Reconstructions of smooth conductivity sigX with m = 8, n = 16. Top
row: ω0 = 6π/10; bottom row: ω0 = 3π/10. Left column: β = 0.52π; right column:
β = 0.65π. Sensitivity grid nodes are •, θj are ×, BA is solid red. Percentages: mean
relative errors [E].

contrast in the case ω0 = 3π/10, however the overall error [E] is still less than 5%.

In figure 4.11 we compare the reconstructions on the sensitivity grids with those

obtained using a method of extremal quasiconformal mappings. We observe in figure
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Figure 4.11: Comparison of reconstructions of smooth conductivity sigX, ω0 =
−π/10. Top row: β = 0.52π; bottom row: β = 0.65π. Left column: reconstructions
with pyramidal networks and sensitivity grids with m = 8, n = 16; middle column:
conformal mapping reconstructions with n = 17; right column: quasiconformal map-
ping reconstructions with n = 17, K = 0.52(top), 0.65(bottom).

4.11 that in the case β = 0.52π, both the conformal and quasiconformal reconstruc-

tions have a mean relative error that is three times larger than that of the recon-

struction on the sensitivity grid. As we expand BA to β = 0.65π, the quasiconformal

solution shows some improvement, but it still has a larger error [E]. Thus, the ap-

proach with pyramidal networks and sensitivity grids is superior, because it gives a

uniform resolution, and it does not introduce any distortions.
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Figure 4.12: Reconstructions of piecewise constant conductivity phantom1 with
m = 8, n = 16. Top row: ω0 = 4π/10; bottom row: ω0 = π/10. Left column:
β = 0.52π; right column: β = 0.65π. Sensitivity grid nodes are •, θj are ×, BA is
solid red. Percentages: mean relative errors [E].

4.3.3.2 Reconstructions of piecewise constant conductivity.

Let us now consider reconstructions of the piecewise constant chest phantom. We

refer to the low and high conductivity regions of the phantom as the lungs and the

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 

-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 

-0.8 -0.8 

-1 -1 
-1 -0.5 0 0.5 -1 -0.5 0 0.5 

0.5 1.5 2 0.5 1.5 2 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 

-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 

-0.8 -0.8 

-1 -1 
-1 -0.5 0 0.5 -1 -0.5 0 0.5 

0.5 1.5 2 0.5 1.5 2 



96

Figure 4.13: Comparison of reconstructions of piecewise constant conductivity phan-
tom1, ω0 = −3π/10. Top row: β = 0.52π; bottom row: β = 0.65π. Left column:
reconstructions with pyramidal networks and sensitivity grids with m = 8, n = 16;
middle column: conformal mapping reconstructions with n = 17; right column: qua-
siconformal mapping reconstructions with n = 17, K = 0.52(top), 0.65(bottom).

heart, respectively. In figure 4.12, we show the reconstructions for ω0 = 4π/10 and

ω0 = π/10.

We observe that the reconstructions have a much larger error [E] compared to

those for the smooth conductivity sigX. This is a manifestation of Gibbs phenomenon.

In figure 4.12, this phenomenon is more pronounced in the case ω0 = π/10, especially

for β = 0.52π, where we observe three overshoots near the right lung.
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extremal quasiconformal mappings. Similar to the case of smooth conductivity, the

reconstructions on the sensitivity grids are superior, with a mean relative error that

is half of the error of the conformal and quasiconformal reconstructions.

4.3.3.3 High contrast reconstructions

An advantage of the reconstruction mapping based on resistor networks is that it is

obtained from the full non-linear inverse problem, without artificial regularization,

aside from limiting the size of the networks. Thus, it avoids the problems of many

other approaches, that often struggle to recover high contrast features of σ(x). The

numerical results in this section show that our reconstructions capture contrasts that

are orders of magnitude larger than those recoverable by traditional approaches.

In the top row of figure 4.14 we present reconstructions of the piecewise constant

conductivity 4.49, with exceptionally large contrast C0 = 104. The mean relative

error does not give a clear estimate of the quality of the reconstruction for such a

large contrast, so we use the pointwise relative error E(z) instead, which we show in

the bottom row of figure 4.14.

Our method is able to capture both the location of the interface of discontinuity

and the values of the conductivity on both sides of the interface. While the relative

error is large near the interface due to the spurious oscillations, away from the interface

the error is less than 5%. Note that these reconstructions are achieved without any

special assumptions on the conductivity, which shows the versatility of the method.

4.3.4 Reconstructions in the half plane

We already mentioned in section 4.2.4 that the pyramidal networks are better suited

for the partial data EIT problem, because of the fixed ratio of the number of nodes
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Figure 4.14: Reconstructions of high contrast piecewise constant conductivity with
m = 7, n = 14, ω0 = −11π/20. Top row: reconstructions; bottom row: pointwise
relative error E(z). Left column: β = 0.52; right column: β = 0.65. Sensitivity grid
nodes are •, θj are ×, BA is solid red.

associated with the accessible and inaccessible parts of the boundary. The sensitivity

grids obtained from these networks have good approximation properties for order one

ratios of the accessible and inaccessible boundary, as illustrated with the numerical
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Figure 4.15: Optimal grids in the half plane. Left: sensitivity grid computed directly
(n = 14); right: sensitivity grid mapped conformally from the unit disk (n = 16). Blue
� correspond to vertical edges, red F correspond to horizontal edges, measurement
points xj are black ×.

results above. When this ratio approaches infinity, we are basically in the full bound-

ary measurement case, where the circular networks are more appropriate. Here we

discuss the other limit, where the ratio tends to zero. This limit arises when consid-

ering the EIT problem in the lower half plane R2
−, with measurements limited to a

finite segment of the horizontal axis.

Let BA = [−1, 1] be the accessible boundary, and let the “measurement points”

xj ∈ BA be the centers of the supports of the measurement functions χj(x). If we

attempt to compute the sensitivity grid for an arbitrarily chosen distribution of xj, it

will likely have poor properties for inversion. See for example the grid shown in the

left plot in figure 4.15. To get a good grid, in this limit case of zero ratio of accessible

to inaccessible boundary, we use conformal mappings. We map conformally a grid

that has good properties in one domain (e.g. the unit disk with measurements at

points θj, uniformly distributed on half of the boundary) to the half plane, with

* a * * * a * a a 

* 
a a 

* * * * 
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Figure 4.16: Reconstruction in the half plane with m = 8, n = 16. Top row: smooth
conductivity σg; bottom row: piecewise constant conductivity σl. Left column: true
conductivities; right column: reconstructions. Grid nodes are •, xj are black ×,
percentages are [E].

measurements in BA.

The grid in the right plot in figure 4.15 is obtained with the conformal fractional
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linear transform w : D → R2
− given by

w(z) = ih
z̄ − 1

z̄ + 1
, h = tan

(
π − β

2

)
, (4.50)

for which the distribution of xj is

xj = h cot

(
π − θj

2

)
, j = 1, . . . , n. (4.51)

We observe that the distribution of the nodes of the resulting grid is very regular, and

there is greater penetration depth compared to that of the grid computed directly

from the regularized sensitivity functions. The numerical reconstructions in figure

4.16 are obtained with the conformally mapped grid.

Similar to the study in D, we reconstruct both a smooth and a piecewise constant

conductivity in R2
−. The smooth conductivity σg consists of a single inclusion in the

homogeneous background medium modeled by a Gaussian. The piecewise constant

conductivity σl has three horizontal layers. Both test conductivities are shown in the

left column in figure 4.16. The reconstructions are shown in the right column.

As in the case of the unit disk, we observe a much smaller error [E] for the

reconstruction of a smooth conductivity compared to that of the reconstruction of

the piecewise constant σl. While both the position and the magnitude of the Gaussian

inclusion are determined with high precision, the magnitude of the middle layer of σl

is somewhat overestimated, and there are also two symmetric overshoots in the top

layer. However, the overall quality of the reconstruction is comparable to what we

observe in the unit disk, which shows that our method is versatile with respect to the

choice of the domain.



Chapter 5

Conclusions and future work

In this thesis we developed two distinct approaches to the numerical solution of the

EIT problem with partial boundary measurements in two dimensions. Both ap-

proaches extend the method of numerical solution of the full data EIT presented in

[15, 44]. The method relies on a model reduction technique that encodes the infor-

mation about the unknown conductivity function in a few parameters. The reduced

models are well connected, critical resistor networks that are consistent with discrete

measurements of the DtN map of the continuum problem, and are uniquely deter-

mined by them. The resistor networks arise in finite volume discretizations of the

elliptic equation for the electric potential on staggered grids. A special choice of the

grids, the so-called optimal grids, is used to connect the solution of the discrete in-

verse problem for resistor network to the numerical approximation of the solution of

the continuum EIT. The optimal grids are computed as a part of the inverse prob-

lem, so that they solve exactly the discrete inverse problem for a reference constant

conductivity.

The construction of the optimal grids for the full data EIT in [15, 44] is based

on the rotational symmetry of the problem for the constant conductivity in the unit
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disk. Thus, the grids are essentially one dimensional, since they are tensor products of

uniform angular grids and non-uniform adaptive radial grids. In the partial data EIT

the rotational symmetry is broken, so a different approach must be taken. Our main

contribution in chapter 3 is the construction of the optimal grids for the partial data

problem that uses the theory of extremal quasiconformal (Teichmüller) mappings.

The idea is to map the problem with partial measurements on the accessible boundary

to the problem with equidistantly distributed measurements on the entire boundary.

Thus, the problem is reduced to the full data case that we can solve using the method

from [15, 44].

We perform in chapter 3 extensive numerical and analytical studies, and we make

the following crucial observations about the aforementioned approach. First, there

is a direct connection between the coordinate transformations and the anisotropy

of the conductivity. The only family of mappings that preserve the isotropy of the

transformed conductivity are the conformal mappings. Second, the properties of

the mappings inside the domain have a strong influence on the boundary behavior

and vice versa. This is important, since the boundary behavior of the coordinate

transformations determines the placement of the measurements.

Enforcing the conformality of the mapping leads to clustering of the measurements

around the midpoint of the accessible boundary. This in turn leads to poor resolution

of the reconstructions away from the middle of the accessible boundary. If we relax the

conformal requirement, we need to consider the quasiconformal mappings, that lead

to anisotropic transformed conductivities. Since the anisotropy is an artifact of the

method, we minimize it by using the extremal quasiconformal mappings. The grids

obtained using Teichmüller mappings exhibit a much more uniform resolution than

those obtained with the conformal mappings. They are also more flexible with respect

to positioning of the measurements on the boundary. However, the numerical results
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demonstrate that the reconstructions on such grids somewhat distort the features

of the conductivity. We attribute such behavior to the presence of the artificial

anisotropy.

Our motivation for an alternative approach to the partial data problem comes from

the realization that the problems of the reconstructions with conformal and extremal

quasiconformal mappings are due to the essentially one dimensional structure of the

optimal grids, and the inadequate topology of the reduced models, the circular resistor

networks, for the partial measurements setup. In chapter 4 we study the pyramidal

networks, that are much better suited for the partial data problem. Our contribution

to the study of discrete inverse problem is the proof of criticality of the pyramidal

networks, and the construction of a fast direct layer peeling algorithm, that solves

the discrete inverse problem for pyramidal networks in a finite number of algebraic

operations.

The use of pyramidal networks brings a significant difficulty. Namely, the problem

of finding the optimal grid for pyramidal network cannot be reduced to one dimension.

We solve this difficulty by introducing a novel approach to computing the truly two

dimensional optimal grids, using the sensitivity analysis of both the continuum and

the discrete EIT problems. Explicitly, the optimal grid nodes are computed as the

maxima of the sensitivity functions of the solutions of the inverse discrete problem

with respect to the changes of the continuum conductivity. Such an approach is

indeed very flexible. It provides a unified framework for computing the optimal grids,

that is independent of the choice of the domain and the topology of the network. The

numerical experiments with the reconstructions in both the unit disk and the half

plane support this observation. Another important property of the sensitivity grids

observed in the numerics is that they combine the advantages of both the conformal

and quasiconformal grids in the circular case without having the drawbacks of either
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of them. The sensitivity grids provide both uniform resolution and the absence of

distortions in the reconstructions.

Our methods compare favorably to more traditional approaches to the numerical

solution of the EIT. First, our methods do not rely on any form of artificial regular-

ization aside from limiting the size of the networks and the number of measurements.

This helps to avoid the artifacts in the reconstructions due to arbitrary choices of

penalty functionals and parameters. Second, our methods do not require any prior

information on the conductivity. No assumptions on regularity or location of the

features are necessary. Third, the use of layer peeling algorithm for the solution of

the discrete inverse problem makes the reconstruction extremely fast. In fact, solving

the whole discrete inverse problem is faster than evaluating a single Jacobian for the

problem of comparable discretization size. Thus, our method is faster than one iter-

ation of any optimization based approach. Finally, since the reconstruction is based

on the solution of the full non-linear problem, we are able to recover the contrasts

in the conductivities that are orders of magnitude higher than those attainable via

linearization or optimization based methods.

5.1 Future work

The results obtained in this thesis can be extended and improved in several ways.

The list below summarizes possible topics of future work.

Partial data EIT with measurements on disjoint subsets of the accessible

boundary. In this thesis we considered the partial measurements on the connected

subsets of the boundary. However, in many practical applications the measurements

are made on several disjoint subsets of the boundary. For example, in geophysical

exploration cross-well tomography is used, where the measurements are made simul-
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taneously in two parallel wells. As our studies show, the topology of the underlying

discrete problem is of crucial importance for the study of partial data problems. Thus,

the first step in solving the two-sided inverse problem would be finding an appropriate

resistor network topology.

Non-stationary inverse problem. Although we associated the problem of finding

the coefficient of an elliptic equation from the DtN map with the EIT problem, similar

mathematical formulations also arise in other physical settings. For example, equation

(1.1) describes the pressure of a stationary flow in porous medium with permeability

σ governed by Darci’s law. However, the problem of hydrological imaging differs from

EIT due to the large time scales required for the flow to become stationary. Thus, it

makes sense to study the time dependent parabolic equation instead of the stationary

elliptic one.

Compatibility of three dimensional data with circular planar networks.

The study of the two dimensional EIT in this thesis was possible due to the results

on the compatibility of the measured data with the discrete models. In fact, the

two dimensional DtN maps are almost completely characterized for both the discrete

and continuum settings [51, 27]. No such characterization exists in three dimensions.

The study of conditions under which the measured three dimensional DtN map may

be compatible with planar networks would be the first step towards the inversion in

three dimensions.

Three-dimensional EIT with resistor networks. The research on the applica-

tions of resistor networks to the numerical solution of EIT [15, 44, 18, 19] was made

possible due to the theory of discrete inverse problems developed by Morrow, Inger-

man and others in [26, 27, 28, 49]. Unfortunately, the theory is only applicable to the

circular planar graphs, that restricts its use to two spatial dimensions. However, it

seems that the crucial concept of criticality of resistor networks can be generalized to
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networks with non-planar graphs, which may provide the opportunities for the study

of the three dimensional problem. It should be mentioned that if the networks of suit-

able topology are found, the optimal grids can be constructed using the sensitivity

approach that we developed here.

Extensions of the approach based on discrete models and optimal grids

to other inverse problems. The use of resistor network models and the optimal

grids for EIT was motivated by an earlier success of a similar approach to the inverse

spectral problem in one dimension [14, 16]. In this thesis we have overcame one

of the difficulties that limited this approach to the cases where the optimal grids

must be computed from one dimensional arguments. The sensitivity grid approach

effectively eliminates all such constraints. However, if one wishes to generalize the

methods developed here to other inverse problems, it is still required to build the

appropriate discrete models that admit a well-defined solution of the discrete inverse

problem. This may present substantial difficulties, since the discrete inverse problems

may have rather elaborate structure, as can be seen in the case of resistor networks

with circular planar graphs.
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[3] K. Astala and L. Päivärinta. Calderón’s inverse conductivity problem in the
plane. Annals of Mathematics-Second Series, 163(1):265–300, 2006.
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