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ABSTRACT

Symbiotic Transfer, Arbitrage, and Equilibrium
By
Dong Chul Won

We lay a unified foundation for a theory of general equilibrium by proving the
existence of an equilibrium for a grand model which covers all the well-known general
equilibrium models under the convexity and continuity assumptions. The grand model
allows an economy to have an extended list of commodities including assets which can be
traded on unlimited short sales. The conceptual framework we develop for the existence
problem is simple. Consider an economy consisting of two agents. If there were a
commodity bundle which is always desirable to one agent and always undesirable to the
other agent, the economy could not reach an equilibrium because they can increase their
utility through an indefinite give-and-take process. What we need for the existence of an
equilibrium is to exclude the presence of commodity bundles that can bring an economy
into this state of "economic symbiosis." We proceed further by taking the Closedness
Hypothesis that the utility possibility set is compact.

The finite dimensional findings do not hold for an economy with an infinite
dimensional commodity space so that we investigate under what circumstances the
Closedness Hypothesis holds. We develop sufficient conditions for the Closedness
Hypothesis to hold and prove the existence of an equilibrium of an infinite dimensional

economy under some spanning conditions on consumption sets.
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CHAPTER 1

Introduction

In the literature of general equilibrium theory, the main body of research was
conducted on the analysis of competitive equilibrium in the markets with real goods
whereas in the literature of asset pricing theory, most works were restricted to the markets
with financial assets. Asset pricing models have developed into their theoretical
underpinning the concept of arbitrage opportunity which cannot exist in equilibrium with
frictionless financial markets. In fact, the arbitrage concept has been used implicitly in a
general equilibrium model of the markets with real goods. The rationale is that in
equilibrium no economic agent can purchase a bundle of goods at no cost that would
increase the utility; otherwise, some agent could not accept the status quo. For example,
the absence of an arbitrage opportunity with a monotonic economy is represented by the
condition that a commodity bundle of nonnegative quantity should be nonnegatively priced.
One aspect of asset pricing models that distinguish themselves from the classical general
equilibrium model of an exchange economy is to allow the possibilities of trading negative
quantities of assets, i.e. short sales. If a list of commodities encompasses assets like bonds
and securities, it is not reasonable to restrict the consumption sets to the nonnegative
orthant of a Euclidean space. More generally speaking, it is not acceptable to put some
lower bound on the consumption sets of economies with an extended list of commodities
involving assets in the face of unrestricted short sales. The presence of assets has an
important impact on the existence of an equilibrium of an extended exchange economy.

Therefore, the classical existence theorems can not be applied to an extended economy.
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All the models of general equilibrium under the convexity and continuity
assumptions postulate either the compactness of the set of feasible allocations or the
existence of nonarbitrage prices common to all economic agents. Debreu (1962) is the
most general model of the former category whereas Werner (1987) represents the latter
one. The compactness postulation is related to the data of an economy but it lacks
economic intuition because it serves only as a technical basis for applying a fixed point
theorem or its variant. The second postulation is more acceptable but not clear as to where
the overall nonarbitrage prices come from,

The question arises if there is any desirable alternative to these postulations without
any additional cost. The answer is simple but general. Consider an economy consisting of
two agents. If there were a commodity bundle which is always desirable to one agent and
always undesirable to the other agent, the economy could not reach an equilibrium because
they can increase their utility indefinitely through a give-and-take process. What we need
for the existence of an equilibrium is to exclude the presence of commodity bundles that can
bring an economy into this state of "economic symbiosis." However, it is not difficult to
comprehend that such an economic symbiosis could not exist unless the economic behavior
of agents differs substantially. The condition which frees an economy from the symbiotic
state is well-expressed by the positive semi-independence of the recession cones of the sets
of commodity bundles at least as good as the initial endowments. We propose the absence
of economic symbiosis as a conceptual framework which gives coherence to the two
seemingly unrelated postulations mentioned above. Indeed, we will show each postulation
is looking at a different side of a ccin.

Since an equilibrium consumption is preferred to the initial endowment, we can
restrict a search for an equilibrium allocation to the set of rationally feasible allocations, i.e.
ones which are feasible and at the same time, preferred to the endowments for all agents.
We present the Trinity Principle that there exists an equivalence in a finite dimensional

setting between the existence of overall nonarbitrage prices, the compactness of the
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rationally feasible set, and the positive semi-independence of the recession cones of the
preferred sets for all agents. By applying the Trinity Principle, we lay a unified foundation
for a theory of general equilibrium of an extended economy. Indeed, we build a grand
model which covers both categories of general equilibrium models including Debreu (1962)
and Werner (1987). The model is so general that the rationally feasible set for the economy
may not be compact. Our strategy is to construct a new economy from the original
economy in such a way that the rationally feasible set for the new economy is compact and
to an equilibrium of the new economy there corresponds an equilibrium of the original
economy in a canonical way. But we give an example which is not covered by the grand
model and therefore, not by either Debreu (1962) or Werner (1987). It is possible to
proceed further by taking the Closedness Hypothesis which is introduced by Mas-Colell
(1986) since the hypothesis is satisfied with the new economy as well as the unconquered
example. Under the Closedness Hypothesis, we prove the existence of an equilibrium of a
finite dimensional economy when preferences are locally non-satiable. In addition, we
prove the genericity of local uniqueness of equilibria for an extended economy under the
regularity conditions.

The finite dimensional Trinity Principle is not extended to an economy with an infinite
dimensional commodity space so that we need to investigate under what circumstances the
Closedness Hypothesis holds. For an exchange economy in a positive cone of a normed
linear space, we impose the normality condition on the positive cone to restore the
boundedness of the feasible set. Similarly, for an extended economy we generalize both
the finite dimensional positive semi-independence postulation and the normality condition
of a positive cone. These conditions are sufficient for the Closedness Hypothesis to be
fulfilled provided the bounded set of allocations is compact with respect to the topology on
the possibility sets. As Cheng (1991) shows, infinite dimensional contingent claims
markets does not allow the boundedness of the rationally feasible set under the expected

utility hypothesis in general. Nevertheless, Cheng (1991) proves that the Closedness
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Hypothesis is fulfilled when there exists a single commodity in all states of the world.
Under natural conditions, we conjecture that the conclusion of Cheng holds for cases with
a finite number of commodities by providing intermediate results. Based on these
consequences, we prove the existence of an equilibrium of an infinite dimensional extended
economy under some spanning conditions.

The approach to the existence proof we take in both the finite and the infinite
dimensional settings is based on the Second Fundamental Theorem of welfare economics,
which utilizes the one-to-one correspondence between the Pareto frontier of utility
possibility sets and the simplex of the Euclidean space. This approach which was
pioneered by Negishi (1960) and Arrow and Hahn (1971) has been used by Bewley
(1969), Magill (1981) and Mas-Colell (1986) in the infinite dimensional setting. To obtain
some insight into the Trinity Principle, we present an illustrative example. This example is
simple but not completely covered by the existing literature.

Consider an one-period economy in which two markets (j = 1, 2) for contingent

claims to money are open at the outset and the claimed money is delivered to the holders at

the end of the period. Suppose that uncertainty of the future consists of states s, and s,
and that there are two agents (i = 1, 2) in the economy with probability beliefs r, and r,
over state s, with r; <r,, respectively. Let w, = (1, 0) and w, = (0, 1) be the endowments
of each agent. Assume that the first claim delivers one unit of money to the holder if s, is

realized at the end of the period and otherwise, nothing, and that the second claim delivers

nothing if s, is realized in the end of the period and otherwise, one unit of money. Agent i

is assumed to choose a portfolio of contingent claims (x!, x2) over R? to maximize the
expected utility U (x!, x?) = ru(x!) + ru(x?) for i = 1, 2, where u is a utility function of
wealth which is defined by

_[x ifx 20
“(")“{Zx ifx <0



The indifference curves and the recession cone of preferred sets are shown in Figure 1.
We denote by p; the price of the jth claim. Take the simple case with 7, =0 and r, =1 in
which the second consumer is interested in acquiring only the first claim whereas the first
consumer in acquiring only the second option. It is easy to find a portfolio which brings
the economy into an economic symbiosis and therefore prevents it from reaching an weak
optimum. Thus the economy cannot have an equilibrium.

We can now embark a complete analysis of the example. The demand

correspondences for the second claims are depicted in Figure 2 with respect to the relative

price p =p,/p,. It is easy to check that an economy w = {(1, 0), (0, 1)} has an

o 21 I ary ,
equilibrium if and only if 7— r 2575 x ie.r, < T+3r, In case with
2r, r dr,

Tor, <3 ; P ie. ry,> T+3r, the demand for one of the agents is not well-defined.

’
For p < 2—_%7—, agent 2 can increase his utility indefinitely through profitable arbitrage
2

operations of buying any multiple of a bundle (v!,v%) with v! >0 and pv! +v2 = 0.

’
Similarly, for p > 3 ; »» agent 1 can increase his utility indefinitely through profitable
i)

arbitrage operations of buying any multiple of a bundle (v!,v2) with v2 > 0 and pv! + 2 =
0.

The above example demonstrates some informative properties that shed light on the
problem of the existence of an equilibrium of extended economies. First, all preferred sets
for an agent have the same recession cone. It is shown in Lemma A2 of the appendix that
this property holds for any concave function. Second, the economy would have no weak
optimum and therefore no equilibrium if agents disagree too much over the realizations of
the future state of the world. We can consider a less extreme example than mentioned
above. If r, = 0.5 and r, > 0.8, the economy has no equilibrium as well as no optimal
allocation. That is only because the probabilistic dissidence over the contingencies leads to

a substantial discrepancy in the consumption behavior, which brings about economic
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symbiosis; there exists a portfolio which one agent always likes to dispose of and the other
agent always likes to take over. But this will not occur if the recession cones of preferred
sets for both agents are positively semi-independent. It is easy to check that their recession

4ry

cones are positively semi-independent if and only if r, < T+3ro Moreover, the set of
2

4r
rationally feasible allocations is compact if and only if 7, < 1—_,_;-’,— We note the case
2

4r
with r, = T_-#rz_ is not covered by either Debreu (1962) or Werner (1987) because the

nonarbitrage prices common to both agents does not exist. Nevertheless, we will
demonstrate this case is satisfied with the Closedness Hypothesis.

We develop the idea of this example into a theoretical basis by which we can
reinterpret and extend all the well-known cases under quite general conditions. Indeed, the
Trinity Principle allows us to put the general equilibrium literature concerning a finite
dimensional commodity space into a simple perspective. Debreu (1959, 1962) proves the
existence of an equilibrium of a production economy via the well-chosen truncation in such
a way that an equilibrium of the well-truncated economy or the limit of a proper sequence
of equilibria for a sequence of well-truncated economies is in fact an equilibrium of the
original economy. The truncation argument is made possible on the basis of the
compactness of the set of feasible allocations. To verify the compactness argument is one
of the major steps in proving the existence of an equilibrium. In order to guarantee the
compactness of the feasible set, Debreu (1959, 1962) imposes on consumption sets and
aggregate production sets the positive semi-independence of their recession cones or its
variant condition. But as for extended economies, the positive semi-independence
restrictions on the possibility sets are unwarranted in general because of the possibilities of
unrestricted short sales. It seems to be natural to direct our concerns toward preferences in
order to find the conditions relevant to the existence of an equilibrium of an extended
economy. Hart (1974) integrates the asset pricing models pioneered by Lintner (1965) and

Sharpe (1964) into the framework of general equilibrium theory and suggests necessary
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conditions and sufficient conditions for the existence of an equilibrium. The conditions
used in Hart (1974), which are more or less technical are concerned with the properties of
preferences and expectations of agents about the markets to be held in the future but they do
not explicitly reflect the importance of arbiirage concept to its fullest extent. Werner (1987)
provides a new approach to the general equilibrium model of an extended economy by
articulating the role of arbitrage opportunities. But it leaves something to be desired in two
respects. Werner gives no systematic treatment to the relationship between the data of an
economy and the postulation that there exists a price system that admits no arbitrage
opportunities for all agents. Secondly the preferences of agents are assumed to have the
same recession cone for all preferred sets, which is not compatible with convex preferences
in general.

In the context of regular economies, the model of Balasko (1988) is the same as
ours except for his hypothesis that the preferences are bounded from below, which has the
same effect on the existence problem as the lower boundedness of consumption sets. He
took the hypothesis to be 'not essential but merely convenient.'! But we show the absence
of economic symbiosis is required to verify the properness of the projection mapping when
preferences are not bounded from below.

This paper consists of six chapters. In the second chapter, we present The Trinity
Principle and work out its applications. The third chapter is devoted to analyzing optimality
in terms of cones generated by preferred sets and the price supportability. We suggest a
condition which brings out the equivalence between optima and weak optima. The
existence of a quasi-equilibrium of a finite dimensional economy is given under the
Closedness Hypothesis in chapter 4. The genericity of local uniqueness of equilibria for an
extended economy is proved in chapter 5. In the sixth chapter, we propose the conditions
which bring about the boundedness of the feasible set of an infinite dimensional economy
by extending the counterparts of well-established cases. Some spanning conditions are

introduced which are necessary for the price supportability of optima for an extended
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economy in a normed linear space. In addition, we provide an appendix reviewing
mathematical concepts and technical lemmas related to convex sets, recession cones and a
topological vector space. The appendix is self-contained about the lemmas involving the
recession cones used in this paper.

We introduce some mathematical notations and definitions. A set C in a topological
vector space E is a cone if Ax € C for all xe C and A > 0. A cone C may not contain the
origin. A convex cone C is pointed if (C U {0}) n (-C U {0}) = {0}. Let Cj be a
nonempty cone in an affine space Yj for each j=1,...,d. A set of cones {Cj} is positively

d .
semi-independent if X € Cj U {0} forevery jand Y ¥ =0 implies X;= Oforallj. LetI
J=1

be a nonempty convex subset of E. A vector x € E is called a direction of recession of I'if
y+Axe I'forallye I'and A 2 0. The set of all directions of recession of I'is called the
recession cone of I', denoted by 0*I". A set L(I') = (-0*I") N 0*"is called the linearity
space of I'. The closure and the interior of a set I'in E is denoted by cl I"and int I,

respectively. Let Y be an affine space in E which contains I.  We denote by int,(I') the

interior of I"with respect to Y. If the underlying affine space Y is clear in the context, we
omit the subscript Y. We denote by C the product IT,C; of subsets C; of a vector space

and by a bold face y a generic element (y,,..., y,,) in C with y;in C;. Let Sk1 denote a

unit sphere of R’.
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CHAPTER 2

Economic Symbiosis and Equilibrium

2.1 The Trinity Principle

We consider an extended exchange economy with / commodities consisting of

securities as well as real goods, which is composed of m consumers indexed by i.

Consumer i is assumed to have a preference relation <; on a consumption set X; and the
endowment w; in X;. In this paper we make the preferences of consumers fixed. An

exchange economy is defined by an m-tuple of endowment vectors, w = (w;,..., w, ). We

make the following assumptions for each i.

a,: The setX; is a nonempty closed convex subset of R’.

a,: The ordering <; on X; is continuous, convex, and complete.

All assumptions are standard so that they are well-understood with no additional comment.
We notice that no bound needs to be imposed on X; in the condition a, because a list of
commodities may include securities. The unbounded consumption sets is relevant to a case
with no restrictions on short sales of securities or contingent claims and the varied

consumption sets among consumers is concerned with the possibilities of asymmetric

participation in financial markets. It is well-known that under the conditions a, and a,, the
preferences admit a representation by a continuous quasi-concave utility function u,. In the

sequel, we will sometimes use the utility function u; instead of <, Since £; is continuous

and convex, the level set
Px)={ye R': ux) Su®))
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is closed and convex for each x € X;. The recession cone 0*P(x) contains a

nondecreasing direction of utility because y € 0*P(x) implies u,(x) S u,(z + Ay) forall A
20 and zin X; which leaves consumer i indifferent to x. In particular, the preferences <;
are monotonic if 0*P(x) = Ri forallxin X, If a commodity bundle y is such that u,(x) <
ux +Ay) for somexe X; and all A >0, y is called a desirable direction for i at x and if y
is desirable at all x € X,, y is called a strongly desirable direction. If y is desirable at x for
i, we have y € 0*P,(x) by the corollary of Lemma A1 in Appendix. The recession cone
0*P(x) is decomposed as follows;
0*P(x) = L(P(x)) U K, (x),

where K (x) denotes the complement of the linearity space L(P(x)) in 0*P,(x). Obviously,
K (x) is a pointed convex cone for every x in X; which does not contain the origin. We
denote 0"P,(w,), L(P(w))) and K (w)) by 0*P, L, and K|, respectively. One interesting
case is that all level sets P,(x) have the same recession cone for consumer i, which implies

K (x) is identified with K; for all x € X;. In particular, Lemma A2 in Appendix shows that

convex preferences represented by a concave utility function admit the same recession cone

for all the level sets. Werner (1987) uses the following condition.

N The recession cones 0*P,(x) are the same for all xe X; and K ; is not empty for all i.

In a pure asset pricing model, an arbitrage portfolio is any bundle of securities that
gives an arbitrage opportunity to an investor and furthermore, monetary gain is supposed to
be always beneficial to the investor. However, we should be careful about defining an
arbitrage opportunity in a general equilibrium model because the choice of a commodity

bundle directly affects the budget constraint as well as the utility level of a consumer. A

bundle in 0*P,(x) is a candidate for an arbitrage opportunity in a general equilibrium model

because the choice of bundles in 0*P(x) does not directly decrease the utility. We will

borrow an idea from Werner (1987) in defining a nonarbitrage price system. Lety be a
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vector in K;. The vector y is a useful commodity bundle in the sense that it is a

nondecreasing direction of utility for consumer i. Under the condition (1), K is the set of
useful commodity bundles. A price system p admits no arbitrage opportunity for consumer
i if every y in K has a positive value, i.e. py >0. LetS;= {p eR': py >0forall yin K;}
be the set of nonarbitrage prices for agent i and S = {p e Rf : py >0 for all y in the union of

all K;’s } the set of economy-wide nonarbitrage prices.

Werner (1987) add the following assumption for the existence of an equilibrium.

(2)  The set S is not empty.

However, no relationship was explained between the condition (2) and the primitive factors
of an economy. How are they related ? We present a proposition from which we can

deduce a satisfactory answer to this question.

Proposition 1. (The Trinity Principle) Let [Cj} be a set of d closed convex sets in
R! with the nonempty pointed cone 0*C)\{(0) and CJ(-) aset {p eR!:py >0 forall y in

O+Cj\[O] } for each j. Then the following statements are equivalent.
@) { 0+Cj] is positively semi-independent.

(ii) The intersection C? of all CJO 's is not empty.

d
(iii) AsetB(w)={xe R¥:3x,=wand x;e C, for all j} is convex and compact for a
= i€ i

vector w in R’
Proof) First, we will show the equivalence between (i) and (ii). Suppose that {O+Cj} is

not positively semi-independent. Then there is a set of d vectors x; € O+Cj, not all zero,

d
such that ), x;= 0. Without loss of generality, we may assume x; # 0. It implies px, >0
Jj=1

d d
forallp eC?. But we have p Y X;=pxy + p px; = 0, which implies there is j # 1 such
Jj=1 j=2

d
that px; < 0. Thusp ¢ Clp, which leads to contradiction. Let C* denote the sum Y, O*Cj.
Jj=1

It is clear that C* is a convex cone. We claim C* is pointed. Suppose that it is not
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pointed. Then there is a nonzero vector x such that both x and -x are in C*. Let X; and Z

d
be vectors in 0+C such that x = ‘2, Xjs and -x = Z . By definition, we obtain ) (xj +
j"l j"'l J=1

zj) = 0. Since [O*Cj] is positively semi-independent, we have (x; + z) = 0forallj. By
the pointedness of each 0+C we have X;=2; =0 and therefore x = 0, which leads to a

contradiction. Hence C* is a pointed convex cone. Since O*Cj contains the origin, each
O+Cj is a subset of C*. Then Lemma 3A in the appendix implies CJO is not empty because

each 0+Cj is a subset of a pointed convex cone C*.

Now prove the equivalence between (i) and (iii). The convexity and closedness of

B(w) are clear. Suppose B(w) is not bounded. Pick a sequence (x,) with Z IIx ql = o0
asn — ooand put 3, = 2‘, llxjnll. Since (x,) diverges to oo, without loss of generality we
Jj=1

d
may assume ¥, > 0 for all n. Put b‘jn = xjn/'yn. Since Z||5j,,|| = 1 for all n, (é'jn) is
Jj=1

bounded for each j, implying it has a subsequence converging to a vector 8 By Lemma

Al, the vector 6 isin O*C Since 2‘, Il5|l = 1, there exists an index j with a nonzero 6
J=1

On the other hand, we derive the following equalities from the fact that x, is in B(w)
d d d
6=lim ¥ 8, =Ilim } w/y, =0.
2 ,~§1 o ,}:1 i
It contradicts the positive semi-independence of {0*C, ] Conversely, suppose that there

exists a set of vectors 6 not all zero, such that }:, 6 0 and 5 € O*C for all j. For any x
J._

in B(w), we have X+ /18]. € Cj and Z (xj + M)‘j) = w for all A > 0, which leads to a
j=1

contradiction. Q.ED.

We note that the duality between (i) and (ii) in Proposition 1 still holds for a case where Cj
is a closed convex set with a pointed 0+Cj\L(Cj) for all j. In many applications, we are
concerned about the pointedness of 0+Cj\L(Cj). The economic application of the Trinity

Principle is as follows: the set Cj can be considered the set of consumptions preferred to

the endowment or the negative of the production set, C° the set of nonarbitrage prices for
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the economy, and the set B(w) the feasible set with the total endowment w which contains
consumptions preferred to the endowments for all consumers. The Principle has been
partially incarnated in the literature of general equilibrium theory. By taking advantage of

these interpretations, we can lay down a unified foundation for the theory of general

equilibrium.
2.2. Classical Models

In the classical works including Debreu (1959, 1962) and Arrow and Hahn (1971),
restrictions were imposed on consumption sets or production sets rather than on
preferences in order to guarantee the compactness of the set of feasible allocations. Since

Debreu (1959) is a special case of Debreu (1962), we focus on the latter work. Let [Yf] be

a set of k production sets in R* and Y their sum which is assumed to be closed. Here we
confine our concern to the case where Y is convex. Let L be the linearity space of 07(-Y)

and LbL the orthogonal complement of L in R'. Clearly, a set Loi N Y has the pointed
recession cone LbL N 0*Y. Let X be the sum of m individual consumption sets X;. Debreu

(1962) assumes that 0*X is pointed and that 0*X and 0*(-Y) are positively semi-

independent. Lemma A3 of the appendix implies that 0*X is pointed if and only if every
0*X, is pointed and {0*X,} is positively semi-independent. Since 0*X and 0%(-Y) are

positively semi-independent, so is a set {(0*X)), Lé N 0*(-Y)}. By Proposition 1, the

feasible set A(w) = {(x,y) € X x (LZ)L NY) :ﬁ X; = 'an w; +y) is compact. Since P(x)
i=1 i=1

is a closed convex subset of X; for all x in X, 0*P,(x) is a subset of 0*X; for all i, leading

to the positive semi-independence of {(0*P(x)), 0*(-Y)\Ly} for all x; in X;. Thus as a

duality of the positive semi-independence of the recession cones, ‘nonarbitrage prices’ for

all agents always exist and A(w) is compact. Roughly speaking, Debreu (1962) sets the

model under the weakest restrictions on the possibility sets in that the absence of

nonarbitrage prices for the possibility sets may occur in light of the Trinity Principle. But
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we will go further than Debreu (1962) by applying arbitrage arguments for preferences

rather than for the possibility sets.

Keeping in mind the impossibility of social free production, Arrow and Hahn
(1971) assumes that if ﬁyi 2 0 with y;in Y, then y = 0. Under this assumption, they
j=1

prove that the feasible production set A,(w) = {ye ¥ :ﬁ y; 2 -w} is compact via long
i=1

argument. But under a more general assumption that ﬁ v; 2 0 with v; in 0*Y; implies v =
j=1

0, we can easily prove the compactness of A, by the same argument as in the second part

of the proof for Proposition 1. If consumptions are restricted to the nonnegative quantities,

the feasible set A,(w) = {(x,y) € X XY :f‘,xi < ﬁ(w‘- +¥,) } is compact. By the Trinity
i=1 i=1

Principle, we obtain the nonempty set S of nonarbitrage prices for the economy.
2.3. Models with Possibly Unbounded Sets

For extended economies, the positive semi-independence restrictions on the
possibility sets are unwarranted in general. For example, no restrictions on short sales in
contingent claims markets lead to the unbounded consumption sets. It seems to be natural
to investigate the properties of preferences rather than of the possibility sets to ensure the
existence of equilibrium in a general equilibrium model of extended economies. Based on

the Trinity Principle, we will analyze the conditions (1) and (2) of Werner (1987) and
generalize his results in our context. By the assumption (1), we have 0*P; = 0*P(x) and

L; = L(P(x)) for all x in X;. Denote by L;L the orthogonal complement of L; in R’

Clearly, P(x) N L;L has the recession cone L;L N 0*P,; for all x; in X;. Define a feasible set

Aw)={xe X :f’, (w; - x;) = 0} for an economy w in X. We know the condition (2) is
i=1

equivalent to the positive semi-independence of {K;}. Thus [Lii N 07P;} is positively

semi-independent and by Proposition 1, a set H,': 1(P‘-(w‘-) N L;L) N A(w) is compact. It is
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possible to relax the conditions (1) and (2) in some direction by imposing the positive semi-
independence condition only on the initial positions as follows;
(3)  Each 0*P; is pointed with the nonempty K; and {0*P,} is positively semi-

independent.

At the cost of excluding the case that 0*P; has the nontrivial linearity space, we have

dropped the assumption that every preferred set has the same recession cone for each agent.
We denote by £2(w) the set of rationally feasible allocations,i.e. £2(w) = 1’1‘,: 1P‘.(w‘.) N

A(w). Under the conditions a,, a, and (3), the triple equivalence between the positive

semi-independence of {K;}, the compactness of £2(w) and the existence of no arbitrage

prices for all agents is restored.
2.4. A Grand Model

We construct a model which includes as special cases both the examples in 2.2, and

in 2.3, Consider a production economy which consists of k& producers with production

possibility sets Yf along with the consumption sector which satisfies the conditions a, and
a,. We keep the notations used in (1.1) and (1.2). Let E = ((X,, <;, w)), (nif), Y) denote
the production economy, where nifis the share of profit of the jth producer owned by the

ith consumer and Y is the total production set which is closed and convex. Let M; be the

intersection of L(P(x))'s for all x in X; which is prefered to w;, and M;L the orthogonal
complement of M; in R'. Consider an economy E-L = (X; N Mii, _<_ii, w}), (nif), Ynm LbL)
which is the projection economy of E in the following sense. The set ¥ N LE)L is the
projection of Y onto Lé and X; N M‘.i the projection of X; onto M‘.i for each i. Finally, SEL

is the restriction of <; to X; N M;L and w‘.1 is the projection of w; onto M;L, i.e. there exists

a vector w,-2 in M; such that w; = w‘.l + w?. Since w} =w; + (w,! - w;) and w} -w; €
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0*P,(w)), we have w,-1 € X;Nn M;.L for all i. Let By = 0*(-Y)\L, and B; = 0*P (w)\WM, for

each i. We pause to give the precise definition of economic symbiosis.

Definition 1. We say an economy [E allows an economic symbiosis if a set of cones

{(B;), By} is not positively semi-independent.

We make the following assumption.
(490  Aneconomy [E does not allow an economic symbiosis.

The condition (4) includes both Werner’s two assumptions and the condition (3) as a
special case. Since 0'Y N LbL is the recession cone of Y N LZ)L and 0*P,(w)) N M;.L is the

recession cone of P (w;) N M;.L for each i, a set of cones {(0*P,(w)) N M;.L), 0tY N LE)L} is

positively semi-independent under the condition (4). By the Trinity Principle, the rationally
feasible set of E- is compact. Let LL(x) be the intersection of [[L;L(xi)}, Lé] where

L;.L(xi) denotes the orthogonal complement of L(P(x;)) in R'. We will postpone the proof

of the existence of equilibrium of the projection economy until chapter 4. Under the

condition (4), we propose that an equilibrium of the original economy is related to that of
the projection economy in a canonical way.

Proposition 2. Assume ((x,.l ), y*, p) is an equilibrium of the projection economy [E-+
with p € L4(x) N §*! under the condition (4). Then ((x;*), y*, p) is an equilibrium of the

original economy [E where x;* = xi1 + w‘-2 forall i.

Proof) (Feasibility) By definition, we obtain the equalities
m * ® m 1 2 " m 1 * m 2 m 1 2 m
.lei -y ='21(xi +w;) -y =('21x‘- -y )+_le‘- =_21(w‘- +w,-)=‘21w‘-.
= I= = = = =

k
(Utility maximization) In equilibrium, we have px‘-1 = pw‘.l + Znijpyf* foralli. Letz; be
f=1

a vector in X; such that z; >, x‘.1 for all i. Then the projection z‘-1 of z; onto Mil isin X; N
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M;L by the same reasoning as in verifying w,-l e X,NM ‘i and it satisfies uy(z;) = u,-(z})
under the condition (4). Since z‘-1 > x} for all i, we obtain pz‘-l > px} by the equilibrium

conditions for the projection economy. On the other hand, we have u,(x;*) = u,-(x}) and p
4 . . . 1 1
€ L‘. (x) N S*1 which leads to a relation pz; = pz; > px; =px;*. In other words, z; >;
k
x* implies pz; > pw! + .py X for all i,
{* implies pz; > pw; f>=:ln,,pyf
(Profit maximization) Lety be a vector in Y. Then the projection y! of y onto LbL isinY N

LbL. Suppose that py > py* . Since p € Lé implies py = py!, we have py! > py*,
contradicting the profit maximization for the projection economy. Q.ED.

From now on, we will restrict our analysis to an exchange economy simply because
the result can be directly extended to the case of a production economy. Thus the sets

A(w), Q(w), and LL(x) are understood in the context of an exchange economy.



20

CHAPTER 3

The Positive Semi-Independence and Optimality

We will characterize the optima in terms of the cones generated by the upper level

sets of preferences. For each point x in X;, we define two sets

Gx)={ve E:ux+ av) >u(x) for some x>0},

and
F(x)={ve E:ufx+av) 2u(x) forsome a>0 }.

We call each vector v in G(x) a locally desirable direction for i at x. Both G(x) and F(x)

turn out to be cones. It is easy to check that P,(x) is in a set x + ¢l G,(x). We add the
following assumption for each i.

a;: Forallx e X; and € > 0, there is some z € X; such that llz- x|l <€ and

x <; z (local non-satiation).
From now on, the condition a, will be used along with a; and a,. The following lemma
explains the properties of these sets.
Lemma 1. (i) For some &> 0, u,(x + av) > u(x) implies u,(x + pv) > u;(x) forall 0 <
p < a. (ii) Both G(x) and F (x) are convex cones for each i. Furthermore a set G(x) is a

pointed cone.
Proof) (i) It is clear that u,(x + uv) =u{(1 - (/a))x + (W) (x + av)} > u(x) because

of the convexity and local non-satiation of preferences.
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(i) We will prove the arguments only for G (x) because the same reasoning applies to the

case with F(x). Letv be a locally desirable direction for i atx such that u,(x + av) >
ux) for some &> 0. Then we have
ux + ow) =uf{x+(fA)(Av)} > uyx) forall 1> 0,

implying G(x) is a cone. Pick two locally desirable directions v, and v, atx such that
ux + oy, ) > ux), for some a;, >0,h=1,2. Let @ =max{e,, &,}. By (i), we have
u(x + ov,) > u,(x) for h= 1, 2. Without loss of generality, we may assume u,(x + av,) 2
u(x + av,). For any 0 < u < 1, the convexity of preferences yields a relation

u{x + auvy + (1 - 1))} = w,{ulx + ov)) + (1 - (x + ovy)} 2 ux + avy) > uy(x),
implying uv, + (1 - )v, € G,(x). It remains to show the pointedness of G(x). On the
contrary, suppose G(x) is not pointed. Then there is a locally desirable direction v in
G,(x) such that -v is a locally desirable direction at the same time. For some o> 0, we
have u;(x + aw)) > u,(x) and u(x - av) > u,(x). But u(x) = u,{(1/2)(x + o) +

(1/2)(x - ow)} > u(x), which is impossible. O.E.D.

The following proposition shows that Pareto optimality is nicely characterized in terms of

the cones introduced above.

Lemma 2. If a feasible allocation x is optimal, then a set of cones {G(x,)} is positively
semi-independent. If a set of cones {F,(x;,)} is positively semi-independent, then the

. . m . .
allocation x is optimal. Furthermore, a sum G(x) = ), G(x,) is a pointed convex cone
i=1

provided x is an optimum.
Proof) Let x be an optimum. Suppose {G(x;)} is not positively semi-independent.

Then there exist a vector v; in G;(x)U(0} for all i, not all zero, such that f’; v; = 0. For
i=1

each i with a nonzero v;, there exists a number ¢; > 0 such that u,(x; + o;v;) > u(x). Let
o= min{¢;}. By Lemma 1 (i), we have u(x; + av;) > u,(x) for all i. However, we

m m m m . e . R
obtain ¥ x; + Yov;= Y x;= Y, w;, contradicting the optimality of x. Let us prove the
i=1 i=1 i=1 i=1
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second argument. Suppose that x is not optimal. Pick an allocation y that Pareto

dominates x. Then for some i, u (y;) > u(x,). The consumption vector y; can be

decomposed as y; = x; + (y; - X)), implying y; - x; € F,(x;) for such an i. However the

relation f‘,(y‘- - x;) = 0 contradicts the positive semi-independence of {F(x,)}. Since each
i=1

G,(x)) is pointed and {G(x;)} is positive semi-independent, the same argument as in

proving Proposition 1 implies that G(x) is pointed. Q.ED.

Let D(x) be a set {p eR!: py = 0 for all y in the union of all G,(x)). We remark that
LL(x) o D(x). Indeed, we will locate an equilibrium price system in D(x) in proving the
existence of an equilibrium. Assume that x is an optimum. By the supporting hyperplane

theorem, we have the nonempty D(x) because G(x) is a pointed convex cone. Hence any
vector p in D(x) supports G(x,) + x; atx;, implying it supports P,(x;) since P,(x) is in a

set x + ¢l G;(x;). We have the following proposition as a corollary to Lemma 2.

Proposition 3. For an optimum x, D(x) N $*! is not empty.

We recall that a pair (x, p) with p # 0 and x in Q(w) is a quasi-equilibrium of the

economy w if for each i, pw; = px; and py 2 px; whenever y 2; x;. Proposition 3 says that
every optimum x is a quasi-equilibrium of the economy x with respect to some nonzero
prices.

In a monotonic economy, it is easy to check the equivalence between optimality and
weak optimality. Mas-Colell (1985) uses the following price-dependent hypothesis to
restore the equivalence under a, - a,.

The allocation x and the price system p are such that

px; > inf {pz: z e X;} for all i.
Instead, we make the following assumption to show that an individually rational weak

optimum is an optimum.
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a,: Let x be an allocation in £Xw) with u(x;) > u,(w)) for all i. Then for each i,

there exists an allocation y in A(w) such that u,(y,) > u,(x).

Under the condition a,, it is always possible to find an income transfer to consumer i from

the rest of an economy that makes him better off, when an economy is in a state of
individual rationality. If an allocation x in £2(w) is not weakly optimal, such an income
transfer is always possible. What is required by a, is that in a weakly optimal state of an
economy, a reallocation can be implemented in such a way that consumer i gets better off at
a cost of deteriorating the rest of an economy even to a state in which some consumer j is
worse off than the initial welfare uj(wj). The condition a4 can be considered a reflection of
an economic trade-off between the conflicting goals to be achieved by scarce means, which

is common to the process of making economic decisions. We take some cases for which

a4 holds. Suppose all consumption sets X; are affine subspaces of R!. The assumption a,

is satisfied provided there exists a set of strongly desirable directions (v,) such that each v;
- - m

can be positively spanned by the rest of directions, i.e. v; = 3, a,v; for some ;2 0. In
J#i

cases that X; is not an affine space, the same condition applies when a weakly optimal

consumption occurs in the boundary of a consumption set for all consumers. The positive

spanning condition is fulfilled if consumption patterns are not too much different from each
other. We remark that the assumption a, always holds if preferences are monotonic with

X;= Ri for all i or if all consumers have the same consumption set which is an affine
subspace of R!. We have the following lemma.
Lemma 3. Under the assumptions a, - a,, every weak optimum in £2(w) is optimal.

Proof) Let z be a weakly optimal allocation in £2(w). Suppose it is not optimal. We can

pick an allocation x which Pareto dominates z. First we consider the case as simple as

possible in which u,(z,) = u,(x,) and u,(z;) < u,(x,) for alli > 1. Assumption a, enables



us to pick an allocation y in A(w) such that u,(y;) > u,(x,). Without loss of generalitzy‘t

we may assume that u,(y,) <uyx,) foralli> 1. Letz(e)=oy +(1-a)xfor0sa<1.

By the convexity of preferences, we have u,(z,(@)) > u,(x,) and for i > 1, u(z(e)) >

u,(y) for all 0 < & < 1. By the continuity of utility functions, we can choose a positive

number a* sufficiently close to 0 such that u,(z;) = u,(x,) < u,(z,(a*)) and uyz,) <
m

uz{(o*) for all i 2 2. Indeed, we have S z (@) =a* Sy, +(1-a%)$x, = S w,.
i=1 i=1 i=1 i=1

We can construct such an allocation in more complex cases in the same way. The
existence of an allocation z(a*) contradicts the weak optimality of z. Q.ED.
If a, is assumed and allocations are restricted to be individually rational in the context, we

will use optimality and weak optimality interchangeably.
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CHAPTER 4

The Existence of an Equilibrium

We normalize a utility function for each i such that u(w;) = 0. Define a mapping U

: 2(w) = R™ by U(x) = (4;(xy)s..., 4,,(x,)) and introduce the augmented utility
possibility set W= {v e RZ’ : 0 < U(x) for some x in £2(w)} following Cheng (1991). In

chapter 2, we have showed the rationally feasible set for the projection economy is compact
in the grand model. It implies the set W for the projection economy is compact.

Specifically, Figure 3 shows that W is compact for the economy in the example with
4r

. 1
25T +73r,

in chapter 1, which is not covered by the grand model. These results can be

incorporated into the Closedness Hypothesis introduced by Mas-Colell (1986).

Closedness Hypothesis. The set W is bounded and for a sequence (x,) in

Q(w) with x;, < x;,,,) for alli and n, there exists x in £(w) such that x;, <; x

for all i and n.

It is obvious under the Closedness Hypothesis that the set W is compact. We note that
U(x) is nonnegative for all x in Q(w). If w is optimal, then it is already a quasi-

equilibrium allocation with a supporting price system by Proposition 3. In order to avoid

triviality, we will assume w is not weakly optimal. Let A= {se RT : ":’, §; = 1}. For
=1

each s € A, define a mapping f(s) =max {a¢e R: ase W }. Since W has the nonempty

interior, we obtain f(s) > 0 on A. Let ¥(w) denote the set of optimal allocations in £2(w).



Figure 3

For an allocation x = {(xll, xf), (x;. xg)] indicated on the dotted parallelogram, it is always

possible to find a bounded allocation y =[(yi, yi), (y;, yi)] located on the inner

parallelogram which is at least as good as x to each agent.

26
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The following lemma shows that to each point of the upper part of the boundary of W

corresponds an optimal allocation in ¥/(w).

Lemma 4. To all s in A, there corresponds a weakly optimal allocation x € ¥(w) such
that u(x,) = f(s)s; for all i, The mappingf: 4 — R_ is continuous.

Proof) Let v be a point in W such that f{s)s = v for some s € A. By definition, there
exists an allocation z e 2(w) such that v S U(z). If v = U(2), it is easy to check that z
is weakly optimal. However, the case with v; < u,(z;) for some i is impossible by the same
argument in Lemma 3.

Let s, — sin A, We must show that f(s,) — f(s). There exist sequences (v,) in A
and (x,) in ¥(w) such that f(s,)s, = v, = U(x,). Since f(s,) is bounded, it has a
subsequence f(s,,) — «, implying f(s,.)s,,- — as. Then there exists an optimal allocation
x such that U(x) = as. Since {f(s,-)} is a subsequence of {f(s,)}, it is true that liminf
f(s,) < a < limsup f(s,). Suppose liminf f(s,) < . Since s,.— s, there exists a
sufficiently large number N such that U(xy) = f(sp)sy < as = lim f(s,,)s,. = U(x),
contradicting the weak optimality of both x, and x. Analogously, we can prove that

limsup f(s,) = a. In conclusion, we have lim f(s,) = f(s). Q.E.D.

We are ready to prove the existence of a quasi-equilibrium of an economy w by the Negishi

approach.

Theorem 1. Under assumptions a,-a,, an economy w has a quasi-equilibrium if the

Closedness Hypothesis is satisfied.

Proof) For a point s € 4, we can choose an optimal allocation x(s) from ¥(w) such that
U(x(s)) = f(s)s by Lemma 4. We denote by p(s) the set D(x) N S*1, Obviously, p(s) is

convex and by Proposition 3, non-empty. Define a correspondence @ : 4 — R™ by

dXs) = {e € R™: there exists p € p(s) such that e; = p(w; - x,(s)) for each i}.
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A point in @(s) defines a vector of values of excess demands for each supporting price

R m
system. The set &(s) is non-empty, compact, and convex. We note that > e; = 0 for
i=1

each e € @(s) because of Walras' law, and that 0 € &(s) if and only if x(s) is a quasi-
equilibrium.

Now show that the correspondence @: A — R™ is upper hemicontinuous. Let s,
— sand e, € &(s) with e, — e. It is enough to show that e € @s). For each n, we can
pick x, from ‘¥(w) satisfying f(s,)s, = U(x,) for all »n and p, from p(s,) such that ¢;, =
p,(w; - x;,) for all i and n. By the continuity of f and U, we have U(x(s)) =f(s)s. On the
other hand, (p,) has a subsequence, denoted by the same notation, converging to a point p,
because (p,) is bounded. Suppose p does not support x(s). Then for some i, there exists
u(z) > u,(x(s)) such that pz < px,(s). By the continuity of preferences, we obtain u,(z) >
u x;) and p,z <p,x, for sufficiently large n. It contradicts the fact that p, supports x,,,
implying p € p(s). Obviously, p,(w; - x;,) = e. We conclude that ¢ € &(s) and therefore,

the mapping @ is upper hemicontinuous.

Since @Xs) is compact, we can pick a positive number f3 satisfying ﬁ le,|< B for
i=1
allee d(s). LetTbeaset (te R™: § t;=0and ﬁ ] < B }. It contains all dXs).
i=1 i=1

Define a mapping r : AT — A by
m
r(s, 1) = (1/_21 (8; + )5y + 1) s (5, + 2,07,
=
where (s; + £)* = max(0, 5; + ¢,) for all i, The mapping r is well-defined because

f‘, (s;+1)+2 ﬁ (s;+t)=1+ ﬁ t; = 1. Define a correspondence @, : AxT — AxT by
i=1 i=1 i=1

D(s, 1) = (r(s, 1), D(s)). Then @, is upper hemicontinuous and @D,(s, ¢) is non-empty,
compact, and convex for all (s, £) in AXT. By Kakutani's fixed point theorem, @, has a
fixed point (s*, £*), i. e. D, (s*, *) = (s*, r*). Thus for all i,

m
S5 = (5% + 1Y, (57 + 174
i=1

and there exists p* in p(s*) and x* with U(x*) = f{s*)s* such that



29
8% = p* (w; - x*) for all .

To show that p* is a quasi-equilibrium is equivalent to proving that * = 0. If s;* = 0 for
some i, it implies #(x;*) = 0 and #* < 0. Since p* supports x;*, we have
1 =p* (w; -x;*) 20, yielding £* = 0. If sj* > ( for some j, we have (sj* + rj"‘)+ =

(s + %) >0, yielding 3, (s,* +1,*)* = 3 (s* + £*) = 1. Then
h=1 j

m
Koo (5 o g RYE kg k)T =gk gk etk =
s = (5% +1 )/h§=;1(sh Rt =5 gk e 1* = 0, Q.E.D.

Let S be the union of D(x)'s for all x in ¥(w). Then a quasi-equilibrium (x, p) is an

equilibrium under the following minimum wealth constraint,
MWC pw; >inf pX; forallpincl (S N Sy,

Otherwise, z >, x; implies px; = pz. Pick y in X; such that pw; > py. For some small o >
0, we have ay + (1-a)z >; x; by the continuity of preferences. Since p(ay + (1-2)z) <

px; it contradicts the hypothesis. As a corollary of Proposition 2 and Theorem 1, we

prove the existence of an equilibrium for the grand model in 2.4.

Corollary. Under the assumptions a,-a, and MWC, a symbiosis-free economy w has

an equilibrium.
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CHAPTER 5§

Regular Economies

We demonstrate in this chapter that the properties of regular economies investigated
in Debreu (1972) for the bounded consumption sets are preserved in the case of the

unbounded consumption sets under some natural conditions. We need to adapt the

assumptions stated in the previous chapter to regular economies such that X; = R' and 7

satisfies the following regularity conditions for all i=1,...,m.

a,. (@) uis C? (partial derivatives up to the second order exist and are continuous),
(i) Du;(x)# 0 forall i and x in R* (local non-satiation).

(i) v'D2u,(x)v <0 for all nonzero vectors v in R! with Du,(x)v = 0 (strict quasi-

concavity).

The condition a,” implies a cone 0*P (x) has the nonempty interior and the trivial linearity

space for all x in R\ We add the following assumption.

a,”. Every economy w in R™ is free from an economic symbiosis.

By Proposition 1, the condition a,” implies every economy w in R™ has the compact
rationally feasible set. A sufficient condition for a,’ to be fulfilled is the unions k{? Ki(x)
X€

forall i are positively semi-independent.

For the endowment w; in R and given prices p € ™1, consumer i is faced with the

problem

max u/z) st. p(z-w) 0.
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We define mappings f; , f“2 for each i, and f; and f as follows

£iG 1 P) = Du(x) - wp,
foWyu X D) = - PO W),

£i(p) =2p and f, = i'z”;l &} - wh.

where we denotes by x! a subvector of a vector x with the first coordinate deleted. If x; is

determined by fi(x,-, M; p) =0 and f;(w,., x;, p) = 0 for some positive u;, then x;
represents a demand of consumer i for the endowment w; and prices p. We put Jj = (f;);:l

forj=1,2,Y=R¥ xR xS"1 and T = R™*m*!, For a mapping f:Y— T defined by

f=(f}»r fy), We introduce a set

E={(w,x, u,p)e Y:f(w,x, u,p) =0},

where U denotes the m-tuple (/.t‘-)‘.'zl. The set E turns out to be an equilibrium manifold.

We presents more notations;

&, = (&} Of7) € RIS &, = (8yor 6f7) € R

5, € R; &, € R*Y 6f = (8fypees Ofy) €T.

The assumption a,” will lead to the compactness of a set of equilibria for a compact set of

economies, which is equivalent to the properness of the projection mapping 7 : E — R,

Proposition 4. Under a,” and a,’, the set E is a submanifold of Y of dimension m! and

the projection mapping 7 : E — R is proper.
Proof) The set E is an inverse image f1(0). First we will show the mapping f has 0 as a

regular value, which is equivalent to showing the surjectivity of the linear mappings Df(y)
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for all y in £1(0). Then the regular value theorem says that -1(0) is a submanifold of

dimension ml. Suppose a vector §f inT solves the homogeneous linear system of

equations
(5) Df(w, x, W, p) =0 for a pair (w, x, U, p)e f10).

In particular, we have the following subsystems; for each i

(5-1) fyp - 01,41 =0,

(5-2) 8D (x) - &sp + &,[01,,1 =0,
and

(5-3) &fip =0,

where [0 ] is a (! - 1)x/ matrix with the identity matrix I, of order/- 1.

It is immediately obtained from (5-1) that &f; = 0 and 8f2 = 0 for each i. Then (5-2) and

(5-3) combined with a,” yield Q’fl = () for each i. Substituting those results into the system
(5) results in df; = 0. Thus Jf = O is a unique solution to (5) for all (w, x, u, p)e F1(0),
which leads to the surjectivity of Df on f1(0).

Let F be a compact set in R'™ and (w,, x,, U, D,) asequence in & ‘1(F). We
have to show that z “1(F) is compact, which is equivalent to showing that W X, 1o D)
has a subsequence convergent to a point in z "I(F). Since F is compact, (w,) has a

subsequence converging to a point w in R/, Without any loss, we may assume that the

sequence (w,) itself is convergent. We put o, = § lx; . Suppose that (x,) does not have
i=1

a convergent subsequence. Since lim o, = oo, without loss of generality we can assume
that o, > 0 for all n. Put §; =x; /e, for each i. Since (§;,) is bounded, it has a

subsequence, denoted by the same notation, converging to a vector &; in R. Let w;* be a
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point in R such that u(w;*) <min {uw,,)}. In fact, for each i we have &; e 0*P(w;*)

by Lemma Al because P,(w;*) D the union of P(w,,) over n O (x;). Itis clear that

lim ( 2 lx; /e, = 1 and for some i, §; # 0. But we obtain
i=1

limg, x;, - Widle, = 21 ¢ =0.

It contradicts the condition a,’. Thus (x,) has a subsequence converging to a vector x in
R'™, Again we may assume that (x,) itself is convergent. Clearly (Duy(x;,)) converges to
a vector Du(x;) which is nonzero by a,” (ii). Since (Du/(x;,)) and (p,) is bounded, (1,,)
is bounded, too. Thus (p,) and (;,) have subsequences converging to points p and y; >

0, respectively. Since fis continuous, the limit point (w, x, K, p) is in n-Y(F). Q.E.D.

The existence of an equilibrium for every economy w in R'™ under a,’ and a,’ is
immediate from Theorem 1 and the remarks following the assumption a,, because every
consumer has a consumption set R\. By applying Sard’s theorem and the inverse function

theorem, we have the genericity of local uniqueness of equilibria.

Theorem 2. Under the conditions a,” and a,’, there exists an equilibrium for every

economy and there exists an open dense subset © of R/ with the null complement such

that every economy in © has a finite number of equilibria.

Balasko (1988) investigates the existence of an equilibrium in the same framework except
for that he hypothesizes that the preferences are bounded from below, which has the same
effect as imposing a lower bound on consumption sets. In the book, the hypothesis is
taken to be ‘not essential but merely convenient’ in proving the properness of the projection
mapping on an equilibrium manifold. Rather, we have shown that the nonexistence of
economic symbiosis is essential to verifying the properness of the projection mapping

when preferences are not bounded-below.
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CHAPTER 6

Infinite Dimensional Markets

6.1. The Price Support of Weak Optima

A need for an infinite dimensional commodity space arises when we are interested
in an economy operating in a continuous time, an infinite time horizon or facing infinite
states of the world in the future. In this chapter, we consider an economy with infinite
dimensional consumption sets which may not be bounded from below. An example is an
economy with infinite contingent claims markets in which unlimited short sales are
allowed. We assume all consumption sets X; are subsets of a normed linear space E. Ina
real world, every agent does not have the same opportunity to participate in securities

markets. In order to encompass cases with asymmetric participation, we allow

consumption sets to vary with agents. Let X = :Sn‘_,X ; We make the following
i=1

assumptions on consumption sets.

b,. AllX; are closed, convex sets with the non-empty relative interior in a closed

subspace T; of E such that E = ﬁ T, and T; has a closed subspace Z; with

i=1

X=Z2,®Z,®... ®Z_,i.e. Xis their topological direct sum.

In case that all X; are closed subspaces, the above conditions are interpreted as follows.

The space E can be considered a set of portfolios that can be spanned by potentially feasible

m
portfolios for all consumers. Thus the condition E = 3 X; is natural. Every vector space
i=1

can be written as an algebraic sum of its subspaces. The real restriction is the closedness of
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subspaces Z; spanning X. The closedness assumption trivially holds if there exists a set

X; which is so big that it has a finite dimensional complemented subspace because every

finite dimensional subspace is closed in E. It is easy to find examples satisfying the

closedness condition in Hilbert spaces because Hilbert spaces allow complemented

subspaces. For example, let X be a Hilbert space with a direct sumX =2, ©Z;® ... ®

Z,. Then a set of closed subspaces X; containing Z; satisfies the condition. We provide
the price supportability of weakly optimal allocations in an infinite dimensional commodity

space.

Proposition 5. Under the assumptions a,-a, and b,, a weak optimum x can be

supported by some continuous linear functional p in E*, i.e. py 2 px; whenever y 2, x; for

all i.

Proof) It is well known that there exists a subspace Y; of T; such that T; =Z; +Y; and
Z;NY; = {0}. Define the projection mapping ¢, : T; = Z; by ¢,(x) =z where x =z +y
with ze Z;and y € Y, The mapping ¢, is open. In fact, ¢(V) is open in Z; for an open

set VinT; since (V) = (V+Y)NZ; with V + Y, openin T, Let x be a weakly optimal

allocation for an economy w. Put P = 'En‘, int Py(x;,) and V,; = @(int P(x,)). First, we
i=1

will show that P has the non-¢mpty interior in E. Since int P,(x; ) is open in T}, V, is open

. . m . .
in Z,. Itis sufficient to show that Y V; has the non-empty interior. Let ;: E — Z; be the
i=1

canonical projection mapping for each i. Under the assumption b,, 7; is continuous by

Lemma A6 in Appendix. Thus 7r‘?l(V,-) isopenin E. PuwtZ;= :Sn_‘, Z,. Since ﬂ}l(Vi) =
Ji

)

V,+Z foreachiand )’f V= '[":\1 V. +2), )'5 V. is open. Therefore we conclude that
i=1 i=1

the interior of P is not empty.

m
Weclaim ) w;e P. Otherwise, there exists an allocation y such that x; <; y; for
i=1

all i and fn_‘, w; = S"; ;- It contradicts the weak optimality of x. Since f w; & int P, the
i=1 i=1 i=1
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separating hyperplane theorem guarantees the existence of a nonzero linear functional p in

E* such that

m

p(2w)<pz forallze P.

i=1

Thus we obtain p('zn‘, w;) <pz forall ze cl P. Since cl P> f‘, P,(x;) under as, in
i=l i=l
particular we have p( f‘, x)Sp(y+ f‘, X;) whenever y € Pj(xj) for all i, or px; < pz forall
i=1 i#j

ze Pj(xj). O.E.D.

The compactness requirement for the feasible set of an economy is problematic in an
infinite dimensional economy in general. Before proceeding with it, we introduce some
concepts and notations of a vector space with the order structure. By an ordered normed
linear space E, we mean a normed linear space together with a reflexive, transitive, anti-

symmetric relation < on E, satisfying the following additional properties: (a) if x <y and «
€ R_then ax < ay, (b) if x <y and 0 < z then x + 2 <y +z. We define the positive cone

E*={xe E:0<y]}. Forexample, let (£, F, i) be a Lebesgue measure space and Lp(.Q,
F, w) the space of p-th power integrable functions on (£2, F, i) for 1 <p < oo, If the
underlying measure space (£2, F, W) is clear from the context, we write Lp for Lp(.Q, F,

). The ordering on Lp(.Q, F, w) is defined pointwise, i.e. f < g if f(w) < g(w) almost
everywhere for f and g in Lp(.Q, F, u). Then L; = {fe Lp(.Q, F, u): 0 < f(w) almost

everywhere }.

To contrast with an extended economy an economy with consumption sets in a
positive cone, we call it a positive economy. For an economy w on an infinite dimensional
space E, the boundedness problem of £2(w) is very delicate because without extra
conditions on E*, £Xw) may not be bounded even if consumption sets are restricted to E*.

The following example which is due to Krasnosel’skii (1964) and Mas-Colell and Zame
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(1991) is conflicting to the finite dimensional perspective because every economy in the

nonnegative orthant of a finite dimensional Euclidean space has the bounded feasible set.

Example 1. Let E = C([0, 1]), the space of continuously differentiable functions on [0,

1], with the norm

llxdl = maxbe(#)! + maxbe()!

and pointwise ordering. In an economy with two consumers having consumption sets X,

=X, = E* and endowments w, and w, in E*, the feasible set
{(x, %) 1%, 20,x, 20and x; +x; Sw; +w,)

is not norm-bounded. For there exist arbitrarily small functions with arbitrarily large

derivatives.

This example can arise because there exist two positive vectors in the positive cone of
C1([0, 1]) with certain length which may be added up to a vector arbitrarily close to zero.
This phenomenon does not seem to be natural in terms of economic intuition because every
aggregation of sizable positive quantities in a real economy is bounded away from zero.
Fortunately, the boundedness of the feasible set for a positive economy is restored if that
counter-intuitive addup is assumed away. We need to put some restrictions on a positive
cone. A cone C in a normed linear space E is normal if there exists a number 6> 0 such
that Ilx; + x,ll 2 & for all x; and x, in C with llx Il = Ilx,ll = 1. A norm Il Il in the space E is
semi-monotonic if x <y implies llxll < Nyl for all x, y in E* and some constant N. When
the normality is imposed on a positive cone, it simply requires that a sum of two positive
vectors with a unit length be bounded away from zero. So the normality of a positive cone
is a natural condition in light of economic aggregation. Moreover, we have the following

consequences, which are quoted from Krasnosel’skii (1964) or Peressini (1967).
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Lemma 5. Let E be an ordered linear space with a norm Il Il. Then the following
statements are equivalent.

(i) The positive cone E* is normal.

(ii) The norm |l I} is semi-monotonic.

(iii) The set {xe E:0<x <y} for a vector y in E* is norm-bounded.

Thus the normality of a positive cone of normed linear spaces with order structures is
necessary and sufficient for the feasible sets for a positive economy to be bounded. If E is
a normed lattice, the norm in E is semi-monotonic by definition and therefore, the positive
cone is normal. In particular, the positive cone in the Lebesgue spaces L, is normal. Since
the normality is sufficient and necessary conditions for the boundedness of £2(w) in a
positive economy, the lattice structure in a Banach space seems to be a little stronger
condition than being required as far as the boundedness of Xw) is concerned.

We provide an existence theorem for an extended economy. The proof is very
similar to the one for a finite dimensional case except for applying some theorems specific
to infinite dimensional spaces like Alaouglou’s theorem, which is well demonstrated in

Magill (1981), Mas-Colell (1986) or Cheng (1991).

Theorem 3. Under a,-a,, and b,, an economy w has an equilibrium

provided the Closedness Hypothesis is satisfied.

There are two cases for which the Closedness Hypothesis holds; £2(w) is bounded or
unbounded. If £Xw) is not bounded, it is very difficult to verify the hypothesis in general.
But Cheng (1991) shows that if preferences can be represented by the expected utility, the
Closedness Hypothesis is fulfilled for an economy in Lp(.Q, F, p) with a single commodity
in each state of the world. For expository convenience, we will analyze the case with the

bounded £2(w) in 6.2 and the case with the unbounded £2(w) modelled on the expected

utility assumption in 6.3.
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6.2. The Bounded (w)

We consider a normed linear space E with a normal positive cone E*. For a positive
economy of infinite dimension, the Closedness Hypothesis comes true crucially depending
on the topology of the space E. A sufficient condition for the Closedness Hypothesis to
hold is the compactness of £Xw) with respect to the topology on E. But the topology on E
should be sensible from the economic point of view. Under the normality of E*, Q(w) is
always compact in the weak* topology because £2(w) is closed and bounded. For
reflexive spaces, £2(w) is compact in the weak topology because the weak* topology
coincides with the weak topology. In particular, £2(w) for a positive economy on L,
spaces with 1< p < oo is weakly compact because these are reflexive with the normal
positive cone. For more details about the compactness of £2(w) for a positive economy,
we refer to Mas-Colell (1986).

It is easy to guess the situation will worsen for an extended economy. First of all,
we may ask which conditions guarantee the boundedness of £2(w) in an extended
economy. There is nothing special about an extended economy compared to a positive one
as far as the Closedness Hypothesis is concerned if the boundedness of £2(w) is restored
in an extended economy. In the following we will examine the conditions under which
£2(w) is bounded in an extended economy. We provide some conditions on cones in E,

which is similar to the normality.

Definition 2. A cone C in a normed linear space with a norm |l Il is strictly pointed if

there exists a number 6> 0 such that iz, + z,ll 2 d max{liz,ll, llz,ll} for all z,, z, € C.

It is easy to check that the positive cone E* is normal if and only if it is strictly pointed. But
the strict pointedness condition is more restrictive than the normality condition in general
because the former requires every convex combination of two vectors with unit length and

with smaller length, respectively, be bounded away from zero. The following example
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borrowed from Krasnosel'skii et al (1989) shows that there exists a strictly pointed cone

with the nonempty interior even if the positive cone has empty interior.

Example 2. Consider a closed convex cone in /,

C={x=(a;, 0 ..):020and Z2 02+ 02 +... ).

This cone has the nonempty interior in l,. Letx = (@, 0, ...) andy = (B, B,, ...) be

two vectors in C. Then we have Ilxll < V2e, and liyll < V2, which leads to

1 1
e+ 3112 04 + By 2 7= (Il +lyil}2 o5 max (Il ).

It implies that C is strictly pointed.

We claim that if a cone C is strictly pointed, then for a positive integer k there exists

k
0" > 0 such that 11} z; || 2 6" max({liz,ll,..., liz;ll} for all z;e C. It will be sufficient to
i=1

show the claim is true only for k = 3 because it is possible to induce the general case. For

k =3, we have
lzy + z, + z;3ll 2 S max(liz,ll, llzy + z3ll} = 6 max{liz;ll, & max{liz,l, liz3ll} }

for some & > 0, by the strict pointedness of C. If § 2 1, it leads to
omax {liz,ll, dmax (liz,ll, llz5ll} } = dmax {liz,ll, max{liz,ll, liz3ll} } = dmax {liz, I, liz,ll, llz5ll}.

If 0< 6 <1, we obtains
omax {llz,ll, dmax {liz,ll, liz5ll} } = 52max[llzlll/5, liz,ll, liz4l1}2 ymax[llzlll, liz,l, lz,1}.

For all z;€ C with f‘, lix; ll # 0, put y; = z/max{lizll,..., llz,i}. Then C is strictly pointed
i=1
k
if and only if there exists a number & >0, such that I}, y; || 2 &" for all y; € C with llyll =
i=1

1 for some i and Ilyjll <1forj#i.

For a convex cone C in E, let R(z, € C) denote a set {x € E™ . ﬁ x;€ B(z, &) N
i=1
Candx; e Cforalli}and R(z; C) aset {x € E™: ?_‘,x‘- =zand x; € C for all i} for some
i=1

zin E and €2 0. The strict pointedness condition leads to the following lemma.
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Lemma 6. Let C be a convex cone in E. Then the cone C is strictly pointed if and only if
R(z, & C) is norm-bounded for any z € C and € > 0. Suppose that C has the nonempty
relative interior with respect to some affine subspace. Then it is strictly pointed if and only
if R(z; C) is norm-bounded for any z in the relative interior of C.

Proof) On the contrary, suppose that R(z, € C) is not bounded. Then there exists a

sequence (x,) in R(z, & C) with ﬁ lIx; )l = eo. Put §, =§ kx;,ll. Since f‘,xme B(z,
i=1 i=1 i=1
&), we have I3 x, /8, Il > 0. Since max {lix, /8 I} 2 1/m forall n, it contradicts the
i=1

strict pointedness of C. Conversely, suppose C is not strictly pointed. Then there exist

sequences (x,) in C with lix; Il = 1 for some i and (y,) with lly Il — 0 such that f’, X, =
i=1

¥, For notational convenience, we assume llx, Il =1 for all n. Since C is a convex cone,

y, isin C for all n. Pick a sequence (4,) of positive numbers with A,— oo such that

. m .
IA,y, |l = 0. For some nonzero z in C, we have A,x,,+z+ E’zl"x"" =2y, + 2 Since

C is a convex cone, 4,x,, +2, A x; foralli>2 and Ay, + z are in C for all n. But

A,y )l = 0 implies A,y, + z € B(z, €) N C for sufficiently large n. It contradicts the

boundedness of R(z, € C) because in particular, /lnxl n+2— 0o with Axy, +zinC.

Let F be the affine subspace of E with respect to which C has the nonempty relative
interior. Pick a nonzero vector v in the relative interior of C such that B(v, ) " Fisin C

for some £> 0. Then for sufficiently large n, v - 4.y, € B(v, €) N F where B(v, €) is an

open ball in E with the radius € centered at v. The conclusion comes from putting z =v -

Ay, in the previous argument. Q.E.D.

One immediate consequence of the above lemma is that £2(w) is bounded if consumption
sets are subsets of a set y + C where y € E and C is a strictly pointed convex cone which

has the nonempty relative interior with respect to the affine subspace F. This is a
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generalization of the boundedness of £2(w) for a positive economy to an economy with
consumption sets bounded below by some strictly pointed cone.

We consider imposing some conditions on preferences. We recall the properness

condition of preferences which is due to Mas-Colell (1986). A preference <; is proper at x

€ X; if there exists an open convex cone V such that (x - V) N P(x) is empty. We propose

some conditions on preferences which is similar to the normality of a cone. For some
nonnegative number £, we denote a set {x € P,(x)) : Ilxll 2 k} by Pf(x,.).

Definition 3. A preference <; is normal at x in X; if there exists numbers 6> 0 and k >

0 such that llz, + z,ll 2 §max{liz,ll, liz,ll} for all z;, z, € Pf(x‘-).

The normality of preferences is well defined in the sense that if <; is normal at x, it is
normal at any consumption in P,(x). Itis a proper generalization of two well-known cases
to an extended economy on an infinite dimensional space. First, it is innocuous on finite
dimensional consumption sets because it holds whenever indifference curves does not
contain non-trivial affine subspaces. Also by definition, preferences in a normal positive

cone of normed linear spaces are normal. We introduce the following condition

b,. For each i, every vector v;in 0*P(w,) satisfies the relation

;,nf 1 /lv‘-+zll — 00as A — oo,
2€ "(W‘-)

This condition turns out to encompass the normality as well as the properness property of

preferences.

Lemma 7. The assumption b, holds true under one of the following conditions; (i) <;is
normal at w; or (ii) under the MWC condition, <; is proper at w; with the half-line free

indifference curve through w;.

+ . .
Proof) Let <; be normal at w; and v;e€ 0*P,(w;). Suppose zelpif('wi) WA, +zIlis

bounded as 4,— oo, It implies there exists (z,) in P(w,) with llz, | — co such that Il 4 v,
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+z, Il is bounded. But we have Il A,v; +z, Il + llwl 2 | A,v; +w) +z|l which

contradicts the normality of <; because
I4,v; + wjll = oo and llz, Il = oo with A,v; + w; and z,, in P/(w)).

By the properness of <; at w;, there exists a continuous linear functional p
supporting P(w)) at w;, i.e. pw;<pzforall ze P(w,). Since the indifference curve
through w; has no half-lines, we have w; <; w; + Av, for all v;e 0*P,(w;) and A > 0.
Suppose pw; =p(w; + Av;) for some A > 0. Under the MWC condition, there exists a
point y such that py < pw,. Forall0 < <1, we obtain ap(w; + Av) + (1 - &)py < pw;,.
But all & < 1 sufficiently close to 1 implies w; <; a(w; + /'Lvi) + (1 - &)y, which leads to
contradiction. We conclude that pv; > 0 for all v; e 0*P,(w,). Without loss of generality,
we may assume lipll < 1. For any 4 >0 and z in P(w,), we have p(w; + Av)) < p(z + Av)).
As p(w; + Av;) = oo with 4 — oo, so does p(y + Av;) — oo. On the other hand, we have

pO + Av) <liplllly + Av it < lly + Av)ll,
implying lly + Avll — oo with A — oo, Q.E.D.

For some v; e 0*P/w,) and A >0, let I'(v; A) be the smallest closed cone containing the
set Av; + P(w,). If <; is either normal or proper at w;, then there exists A > 0 by Lemma 7

such that Av; + P,(w)) is away from the origin. Thus for such an A >0, I'(v; A) is a
pointed closed cone. Fix v; and put I'(v) = Ar;o I(v; ).

Lemma 8. Under the condition b,, the cone I'(v,) coincides with the recession cone
+
0*P,(w)).

Proof) We recall the definition of asymptotic cones of a set in a finite dimensional space
in Debreu (1959). Let C‘-"(wi) be the closure of the cone generated by Pi"(wi), implying

C:‘(w‘-) is a cone, too. The asymptotic cone of P,(w,) is defined in Debreu (1959) by a
cone M5 Cik(wi). It is easy to check that this cone is in fact the recession cone because

P(w)) is a closed convex set. Thus 0*P,(w)) =5 Cik(w,-). By assumption, for each &
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. .. . k
there exists a positive number /'tk such that s };}(fwi)m,‘v,. +zll 2 k. Thus we have C;(w)) ©

A+ Pyw)) since v; € 0P (w,) implies P (w) > A4,v; + P(w;). It implies Cf(wi) o
I'yv; A,), which yields 0*Py(w;) D I'(v)). Conversely, let ve I(v)). Then for a
sequence A, — oo, there exist sequences (x,) in P(w)), (&) with @, 20 and (r,) in a
closed ball B(g,) = {x € E: Ixll < g,} with & — 0 such that v = & (A,v; + x,) + r,. By
assumption, we have lI4,v; + x,l — oo with 4, — eo, which implies o, — co. By Lemma
Al in Appendix, we obtain v € 0*P(w,) since 0, (A,v; + x;) — v with A +x; in

Pw). Q.ED.

We impose the last condition on preferences at an aggregate level.

b,. There exists a number 6> 0 and an m-tuple (A% of nonnegative numbers such

k .
that I, z; || 2 dmax(liz;ll,..., liz ]I} for all z; € T'(v;; Ah).
i=1

The condition b, can be considered the aggregate normality condition of preferences

because the sum ﬁ Iv; AY is strictly pointed. On the other hand, due to Lemma 8 a
i=1

cone I}(v;; A% can be considered an approximation of the recession cone 0*P,(w) so that

b, may be interpreted as an asymptotic version of (3). Theses consequences lead to the

boundedness of the feasible set for an extended economy in an infinite dimensional setting.

Proposition 6. For each i, assume that X; is a subset of a normed linear space E. Then
under a;, a, and b,, the set £2(w) is convex, closed and bounded if by is satisfied.
Proof) That £2(w) is convex and closed is immediate. Under b,, there exists 6> 0 and

. k .
an m-tuple (') such that 11}, z; || 2 6 max{lizyll,..., llz,/l} for all z;& I'y(v; A'). PutC =
i=1

'§n:1" (v AHand z = 'En)(l"v‘- +w,;). Since C is a strictly pointed convex cone, R(z; C) is
i=1 i=1

bounded by Lemma 6, which implies £2(w) is bounded. Q.E.D.
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As remarked before, in an extended economy £2(w) is always compact in the weak*
topology under a,-a, and b,-b, since £2(w) is bounded and closed. Moreover for
reflexive spaces, the set £2(w) is compact in the weak topology because the weak*

topology coincides with the weak topology. In particular, £2(w) for an extended economy

on Lp spaces with 1< p < oo is weakly compact.

6.3. The Unbounded 2(w)

All possible states of the world are represented by a measure space (£2, F). For
each state, there are / commodities in each state in (£2, F). We assume each agent has the
same probability assessments over the state of the world which are represented by a
probability measure u. Let Lp(.Q, F, )} be the commodity space for 1 < p < oo, The
individual trading opportunities for contingent commodities may differ with the
exogenously imposed constraint on each agent, which can be generated by some

institutional arrangements or individual trading capability. Such an asymmetry of trading

opportunities is represented by the consumption set X; which is a subspace of Lp(.Q, F,

W, A realization x(s) in a state s in (£2, F) of a random vector x represents a commodity

vector contingent on s. We assume preferences are represented by the expected utility

function v; which has a von Neumann-Morgenstern utility function u; on R'. Thus the

utility function v; : Lp(.Q, F, u)} = R is defined by vi(x) = ] u;(x(s))du(s). We impose
the following assumptions on u;.

¢;. 4;: R — R is strictly concave and have no satiation point.

¢,. Let K, be the recession cone of u;. A set of cones {K;) is positively semi-

independent.
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For /=1 and 1 <p < oo, under the above assumptions Cheng (1991) shows that £2(w)
may not be bounded if the endowment w is not weakly optimal and the marginal utility of
income is bounded from above for some agent i. But he verifies the Closedness
Hypothesis under the expected utility assumption for / = 1, which seems to need
complicated arguments. In fact, the set W is bounded. For a finite number /, we show
through simple geometric intuition that the Closedness Hypothesis is fulfilled in a special

case where the aggregate endowment is constant.

Lemma 9. Assume that each X; contains a non-zero constant. Let w; be a vector in X ;
for all i. Under the condition c,, the augmented utility possibility set W is bounded.

Furthermore, if 'En_‘, w,(s) = a for all s in (L2, F) with a vector a in R!, the Closedness
i=1

Hypothesis holds under ¢, and c,.

Proof) Let (x,) be a sequence in 2(w) with x;, <; Xin1) for all i and n. We define a

hyperplane Hby H = {y € Lp(.Q, F,u: f ¥(s)du(s) = 0}. Since a unit random variable

lisnotin H, Lp(.Q, F, p) can be written as a direct sum of H and <b>, i.e. Lp(.Q, F,w=
H & <1>, where <1> denotes a one-dimensional subspace of Lp(.Q, F, u) spanned by a
vector 1. Thus for all 7 and i, a random vector x;, is uniquely decomposed into x;, = z;, +
Ain

that w;=y; + k;. Thus we have f‘, (z; + 4;) = § (y; + ). By the uniqueness of the
i=1 i=1

with z, in #' and A, in R’. Similarly there exists a pair of y;in H' and k; in R such

decomposition, we obtain

m m m m
>z,=2Xy and Y A, = ¥ K;foralln.
i=1 i=1 i=1 i=1

On the other hand, individual rationality and Jensen's inequality lead to

fuwis)au(s) < ux, ())ducs) < w2, ()duts) + A,,) = u(A,,) for all n.
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Since u,(A,,) is bounded below, for each i there exists a vector ¢; in R! such that u,(c) <

u,( | z;,()du(s) + 4;,) = uA;,) for all n. Thus by the assumption c,, (4,,) is bounded

forallisince $' A, = $ « foralln, implying W is bounded.
j i=1

i=1

Let (4,,) itself denote a subsequence converging to a vector 4; in R Xf ﬁ wi(s) =

i=

a for all s in (£2, F), we have ﬁ A, = a. Since U(x,,(s)) is increasing, we obtain U L7
i=1

< U4, for all n and furthermore, f‘, A; = a Thus the Closedness Hypothesis is satisfied.
i=1
Q.E.D.

We provide two remarks about the above lemma. In the proof of the Closedness
Hypothesis in the lemma, we chose an allocation located in a finite dimensional subspace
which Pareto dominates the original allocation by projecting it onto the subspace along the
hyperplane H. In that special case, the closedness result is robust to the choice of the

topologies in the sense that every Hausdorff vector space topology is identical in a finite

dimensional subspace. Second, the recession cones of U;'s are positive semi-independent
since U, is strictly concave and all agents has the same belief u. But as shown in Cheng
(1991), the feasible set £2(w) may not be bounded. Thus the positive semi-independence
of the recession cones of preferences may not lead to the boundedness of £2(w) in an

infinite dimensional economy, which cannot happen in a finite dimensional economy.

We conjecture that the Closedness Hypothesis holds for a finite / > 1 in every

economy under ¢; and ¢,. The following example is a variant of the security market
model in Kreps (1979).
Example 3. Consider an economy that endures in two dates, = 0, 1. A probability

space (L2, F, u) represent states of the world at date 1 as well as a unanimously held

subjective probability assessment concerning the state of the world. There is a single
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consumption good, the numeraire, and agents are interested in certain consumption at date

zero and state contingent consumption at date 1 which is a random variable on (2, F). We

take L,(£2, F, p) as the space of contingent commodities. Let a subspace X; of L,(£2, F,

1) denote the consumption set for agent i. Thus we consider consumption bundles of the

form (A,x) in RxX,;. Here (4, x) represents A units of consumption at date zero and x(s)

units of consumption at date 1 if the state is s. Let a vector (¥, w,) in RxX; denote the

endowment of agent i. A price system p for contingent commodities is a continuous linear

functional on L,(£2, F, ). We assume agent i chooses an optimal pair (4, ,x; ) which

maximizes the expected utility

vi(d, x) = | u (A, x(s))du(s) subject to A +px < %, +pw, x € X,

where ; : RXR — R is a von Neumann-Morgenstern utility function. The expected utility
presupposes that u; and 4 are sufficiently well behaved so that all integrals of the indicated

form exists and are finite. Under the assumptions ¢,-c, and by, this economy has an

equilibrium if our conjecture about the Closedness Hypothesis is realized.
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APPENDIX

Review of Convex Sets and Cones

Let I''be a convex subset of a topological vector space E. It is immediate from the
definition of the recession cone that 0*I" contains the origin of E and that for convex
subsets I'} and I, of R, I, o I'; implies 0*I, o 0*I'}. Extensive discussion about the
recession cone in R! is found in Rockafellar (1970). Lemma A1 and A2 are available in
Rockafellar (1970) in case for a finite dimensional vector space, which presents their
proofs as a consequence of applying preliminary results. We provide alternative proofs
which can be directly induced from definitions and furthermore, hold in a topological
vector space. Those lemmas address the useful properties of the recession cone which find

repeated application in this paper.

Lemma Al. Suppose I'is a non-empty closed convex set in E. Then 0*I"is closed, and

it consists of all possible limits of sequences (x,/A,) withx, e I", A, >0, and A,, — oo,

Proof) Let x be a point in I"and (y,) a sequence in 0*I" that converges to a vector v in
R!. By definition, x + Ay, € I' for any A 20 and n. The sequence (x + Ay,) converges to x
+Av in I"because I'"is closed, which implies v € 0*TI".

Lety e 07T, xeI'and (A,) be a sequence of positive numbers with A — oo, For
each n, there is x, in I such that x, = x + A,y. Or we have, y = (x,-x) / A, which implies
that y is the limit of a sequence (x,/A,). Conversely, let (x,/A,) be a sequence converging
to a vector vin E with x, €Y, A >0, and A, — oo, It s clear that if I"is non-empty, I
and the translation b + I’'with bin R' have the same recession cone. Thus without loss of

generality, we may assume that 0 e I". Let x be a point in I"and A any nonnegative
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number. By convexity of T, we have (Ax, /A, +x)/2 = (MA,)(x, +x)/2 + (1 -

MA,)(x/2) € T for sufficiently large n with /A, < 1, which implies that Ax /A, +x e T.

Since I'is closed, Av + xe 'forallA20and xeT. O.E.D.
We have the following corollary as an immediate application of Lemma A1l.

Corollary. Let I"be a non-empty closed convex set in R’. (i) I'is bounded if and only

if 0tI" = {0}. (ii) Let v be avectorin E. If z+ Av e I'for some zeI" and all A 2 0, then
ve(tr.

The following lemma shows that a concave function has a simple property in terms of the

recession cones of the level sets.

Lemma A2, Suppose that f(x) is a concave function which is continuous on a convex
subset I'of E. Then the level set P(x) = {y € I': f{y) 2f(x)} has the same recession cone

forallxe I.

Proof) Since f{x) is concave, P(x) is convex for all x € I'. If f(x) is constant for all x €

I, the lemma is trivially true. Thus we may assume that there are points x; and x, in I’
such that f(x,) < f(x,). Clearly, P(x,) D P(x,), which implies 0*P(x,) © 0*P(x,). Letve
0*P(x,). We have only to show that f(y+Av) 2 f(y) forally € P(x,) and A 20. Lety e
P(x,). Then by the concavity of f,

5  flox, + (1-a)(y+Av)} 2 of(x; + {(1-a)/a}Av) + (1-a)f(y) for all o € (0,1],
Since x, + {(1-a)/o}Av € P(x,),

6) of(x; + {(1-o)/o}Av) + (1-0)f(y) 2 of(x,) + (1-a)f(y) for all o € (0,1]
As o — 0, the left-hand side of (5) converges to f{y + Av) by the continuity of f while the

right-hand side of (6) converges to f(y), which leads to f{y + Av) 2 f(y). Q.ED.
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It is known in Kannai (1977) that every quasi-concave function with the identical recession
cone for all level sets is not concavifiable. We provide conic relationships between a finite

set of closed convex sets and their sum.

Lemma A3. Let { Cj] be a set of d closed convex sets in R and C the sum of these sets

C;. Then 0*C is pointed if and only if every 0+Cj is pointed and { 0+Cj} is positively semi-

independent.
Proof). We claim C is a closed convex set provided that every 0+Cj is pointed and
{ O+Cj] is positively semi-independent. Pick a sequence (y,) in C converging to a point y

d
in R’. Then there exists a sequence (x,) in C such thaty, = ¥ Xjn for all n. By the same
Jj=1

reasoning as in proving the second equivalence of Proposition 1, (x,) is bounded,

implying it has a convergent subsequence. Let x be the limit of the convergent

d
subsequence. Obviously, we havey = Y, X; and therefore y € C. Since C is closed and
Jj=1

convex, the recession cone 0*C is closed and 0*C = d0*C. Let 0*C be pointed. Then a set

of d cones 0*C is positively semi-independent. Since each 0+Cj is a subset of 0*C, the

conclusion is immediate.
Suppose 0*C is not pointed. It means a set of d cones 0*C is not positively semi-

d
independent. Then by Proposition 1, aset (x€ R%: 3 x; = w and x; € C for all j}is not
<1

d
bounded for a vector w in R’ Pick a sequence (x,) with lejnll — 00 asn — oo and let
J=1
d

(zj,,) be a sequence in C such that Zyin € C,, for each k and hglzhj" = Xy We have
d d d d

lej,,/d = h}_‘, (X 2,/d)=wld and } z,,/d e C, for each h, n because C,, is convex. It
j:: =1 j:l j=l

d
implies a set {x € R :%xj = w/d and X; € Cj for all j}is not bounded. It contradicts the
J=

results of Proposition 1. Q.E.D.
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The following lemma is a consequence of applying the supporting hyperplane

theorem to the pointed cone. We refers to Werner (1987) for detailed proof.

Lemma A4. If C is a pointed convex cone in R, there exists p € R! such that px >0 for
allx e K.

A vector x in a convex set I'in R! is an extreme point if for y and z in Iand A € [0,
1], x = Ay + (1-A)z implies either x =y or x = z. A closed convex set I' is strongly convex

if every boundary point of I'is an extreme point. Let ¥ be a subspace of R of positive

dimension. For any nonzero p € Y, the subspace Tp ={ve Y:pv=0} is called the
hyperplane perpendicular to p. The set Hp = {ve Y:pv 20] is the halfspace above T,
The vector p is said to supports a convex set I" at x if Hp +x D T,orpI'2px. If py > px

forall y e I, y # x, we say that p supports strictly.
Let I'be a closed convex set in Y with the non-empty int,(I") and Y* a subspace of

R! which is a translate of Y. For a point x in the boundary oI"of I', we define a set
N(x)={pe Y : psupports I"'at x }.

Let C(N(x)) be the cone generated by N(x) and we call it the normal cone to I" at x.

Clearly, it is non-empty due to the supporting hyperplane theorem, and closed and convex.

We denote by C(I') the union of C(N(x)) over x in oI,

Lemma AS. Let I'be a closed convex set in an affine space Y with the non-empty
inty(I. Then (0*1N% N Y is a subset of C(I).

Proof) Let p e (0*N? N Y'. If px=0 for all x € I, p supports I" at some point z € oI’
by the supporting hyperplane theorem, which implies p € C(I'). Suppose that px < 0 for
some x € I. We claim that a set I'(p) = I'n {x € X: px <0} is a compact convex set.
Convexity and closedness of I'(p) is immediate. Suppose that it is not bounded. By the
corollary of Lemma Al, there exists a nonzero direction of recession v in 0*I'(p). Since

Ip) is a subset of I, we have v € 0*I, which yields
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p(x +Av) <0 for a point x € I'(p) and all A 2 0.

It implies pv < 0, which is a contradiction. By applying the supporting hyperplane theorem
to the compact convex set I'(p), we show that p supports I'(p), and therefore I', at some

point in dI. Q.E.D.

Corollary. Suppose that I'is a closed and strongly convex set in an affine space ¥ with
the non-empty inty(I). Then C(IN = (0*N°N Y,

Proof) According to Lemma A5, we have only to show that C(I) is a subset of (0*1)°
N Y!. By the supporting hyperplane theorem, there exists p in ¥* which supports I' at
some xe dI. Since I'is strongly convex with the non-empty relative interior, x + (0*I"' "

I = x. Thus p strictly supports x + 0*I"at x, which implies p e (0*° N Y*. Q.ED.

We introduce basic materials about topological vector spaces that fit our needs. Let
M be a closed subspace of a topological vector space E. If there exists a closed subspace N
of E such that E=N + M and N " M = {0}, then M is said to be complemented in X. In
this case, we write E =N @ M and call it the direct sum of M and N. A linear mapping 7 :
E — E is called a projection mapping in X if 72 = 7. A metric d on a vector space E is
invariant if d(x + z, y + z) = d(x, y) for all x, y, zin E. A topological vector space E is an
F-space if its topology is induced by a complete invariant metric d. If E is a locally convex
F-space, it is an Frechet space. Banach spaces and Hilbert spaces are examples of Frechet

spaces. The following lemma reveals important properties of an F-space.

Lemma A6. If E is an F-space with E = N @ M, the projection mapping 7: E — E with

range M and null space N is continuous.

Proof) See p 126 in Rudin (1973).
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