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ABSTRACT

The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission
measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account
for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession
of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling
timescale. We refer to this scenario as a “nanoflare train” and explore a parameter space of heating and coronal loop
properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100%
of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes
are found for larger values of the ratio of the train duration ΔH to the post-train cooling and draining timescale ΔC ,
where ΔH depends on the number of heating events, the event duration and the time interval between successive
events (τC); (3) τC may be diagnosed from the width of the hot component of the emission measure provided that
the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient
to provide information about any timescale associated with heating—the length and density of the heated structure
must be measured for ΔH to be uniquely extracted from the ratio ΔH/ΔC .
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1. INTRODUCTION

It remains a difficult question whether the solar corona, at
temperatures exceeding a million degrees, is heated steadily
or impulsively. Any potential heating mechanism must explain
observed extreme ultraviolet (EUV) and X-ray emission, as
well as observed dynamical activity. We must understand the
mechanism, how it stores and releases energy, and how that
energy release affects the plasma and produces the emission, and
finally we must predict observable properties of coronal loops
(see Klimchuk 2006). Although we cannot directly observe
coronal heating, we can study the time dependence of the heating
which may give insight into the mechanism by which energy is
released.

Impulsive heating is characterized by short bursts of energy
release (which we refer to as nanoflares; see, for example, Cargill
& Klimchuk 1997) and a period of cooling between successive
heating events. If the cooling period is short then the plasma
will not cool much between heating events and the heating may
essentially be treated as steady (the limit of high-frequency
nanoflares), resulting in a more or less isothermal plasma
distribution. Contrariwise, if successive bursts are sufficiently
far apart then the plasma will cool significantly and, at any
particular time, plasma on different magnetic strands of a multi-
stranded loop may have a broad distribution of temperatures.
Thus, the temperature distribution of plasma, quantified by
the emission measure (EM), may help to distinguish between
different heating scenarios. We will focus on heating in active
region (AR) cores in the present work.

As shown in the first paper of this series (Bradshaw et al.
2012, hereafter referred to as Paper I), EMs in AR cores can
be characterized by the slope α (i.e., EM ∝ T α) between the
temperature of peak emission (typically around 3–5 MK) and
1 MK, with observed values ranging from 1.70 to 5.17 (Warren
et al. 2011; Winebarger et al. 2011; Tripathi et al. 2011; Warren
et al. 2012; Schmelz & Pathak 2012). This slope measures the

amount of warm plasma (T ≈ 1 MK) relative to the amount of
hot plasma (T > 3 MK). Further, the distribution falls off with
a very steep slope at temperatures above the EM peak; that is,
there is very little observable emission hotter than at the peak
because the EM of the plasma is low and because of strong
non-equilibrium ionization effects (Bradshaw & Cargill 2006;
Reale & Orlando 2008).

In Paper I we found that the large uncertainties in observed α
values yield as many as 77% or as few as zero observed active
region EMs that are consistent with low-frequency nanoflare
heating and that low-frequency nanoflares cannot explain the
upper range of observed EM slopes. Warren et al. (2011) found
that very high-frequency heating leads to hot, isothermal EMs,
which have not been observed. Warm emission is also present
in AR cores (e.g., Viall & Klimchuk 2011, 2012; Warren et al.
2012). The key to obtaining steeper slopes is to enhance the
amount of hot emission relative to the amount of warm emission,
but one must still account for the presence of warm emission.
Furthermore, the hot component of the EM is itself not generally
perfectly isothermal and can extend into temperature bins either
side of the peak. Increasing the frequency of heating events will
yield steeper EM slopes, but it cannot be increased so much
that the resulting EM is effectively isothermal, and the duration
of heating cannot be so long that no warm emission is ever
produced.

These requirements have led us to explore the possibility of
what we term “nanoflare trains,” which we define as nanoflares
that occur on a single magnetic strand and repeat at interme-
diate frequencies. An intermediate frequency is such that the
time interval between successive heating events is less than the
cooling timescale so that another nanoflare occurs on
the same strand before the loop cools fully, but is not so high that
the heating is effectively steady. The heating eventually ceases
so that the loop then cools and drains. Intermediate-frequency
heating can maintain the plasma at high temperature for longer
than low-frequency heating, which enhances the amount of hot
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emission relative to the amount of warm emission produced
when the plasma finally cools, and steepens the EM slope. These
nanoflare train properties can therefore satisfy the requirements
of yielding steeper slopes, ensuring that the hot component of
the EM has some intrinsic width by allowing a period of cool-
ing between successive heating events (e.g., Susino et al. 2010
found that EM peaks in ARs indicate conditions in which the
inter-event cadence is shorter or of the order of the plasma cool-
ing time), and accounting for the presence of warm plasma by
allowing the strands to cool fully following the cessation of
the nanoflare train. It is well known that warm plasma is over-
dense compared to hydrostatic equilibrium and cooling provides
a natural explanation for this observation (Warren et al. 2002;
Spadaro et al. 2003).

We note here that steep EM slopes can also be obtained in
a scenario of constant heating followed by full cooling and
draining when the heating is switched off. The longer the heating
is applied, the more hot emission relative to warm emission
and the steeper the EM slope. This scenario is equivalent to a
high-frequency nanoflare train (e.g., Warren et al. 2010). While
this scenario is feasible, it is not one that we favor for three
reasons: (1) it is difficult to imagine a scenario in which the
power delivered to the plasma remains constant and smooth;
even if it were continuous we may expect it to fluctuate which
could look like individual pulses—the very process of releasing
energy alters the properties of the magnetic field and the plasma;
(2) the hot component of the EM would appear much more
isothermal than it does; and (3) continual, small-scale bursts of
activity observed at the limits of current instrument resolution
support frequent, short timescale events. All feasible theories of
coronal heating to-date predict that individual magnetic strands
are heated in an impulsive manner. This includes both magnetic
reconnection-like processes and wave heating (Klimchuk 2006).

We will present the results of sixty numerical simulations of
nanoflare train heating, exploring a wide parameter space, in an
effort to explain the properties of observed EM distributions
and we will show that an observational bias in measured
α values may arise depending upon the EM reconstruction
method employed. In Section 2 we describe the numerical
aspects of this work and in Section 3 we present and discuss our
findings. We summarize our results, present our key conclusions
and discuss directions for future work in Section 4.

2. NUMERICAL MODELING

The current work presents the results of numerical calcula-
tions performed to investigate the feasibility of coronal loop
heating by nanoflare trains. The calculations were carried out
using the HYDRAD code (Bradshaw & Mason 2003; Bradshaw
& Klimchuk 2011; Paper I), which solves the one-dimensional
equations of hydrodynamics that describe the behavior of a
two-fluid plasma confined to an isolated magnetic strand. The
primary equations (conservation of mass, momentum, and en-
ergy) and associated assumptions are described in Bradshaw
& Klimchuk (2011). The particular details of the calculations
carried out here are summarized in Paper I, with the exception
of the implementation of heating by nanoflare trains, which we
will discuss now.

As in Paper I we assume that the heating arises from the
impulsive release of energy from the magnetic field and so
the total amount of energy available to heat the plasma must
be limited to the amount of free energy in the field. We
preferentially energize the electrons and make the assumption
that not all of the free energy is released from the field during a

Table 1
Average Magnetic Field Strength (〈B2〉1/2), Free Energy,

and Volumetric Heating Rate versus Loop Length

2L Bmin Bmax Bavg EB EH0

(Mm) (G) (G) (G) (erg cm−3) (erg cm−3 s−1)

40 83 189 136 66.23 0.03680
80 42 150 94 31.64 0.01760
160 18 89 51 9.31 0.00517

single heating event, but instead during a series of nanoflares: a
nanoflare train. The free magnetic energy density is given by

EB = (εBp)2

8π
, (1)

where Bp is the potential component of the field and ε pa-
rameterizes the level of stress such that Bs = εBp is the
stress component. We choose ε = 0.3 (Dahlburg et al. 2005;
Paper I). Mandrini et al. (2000) studied how the average values
of B and B2 depend on the length of the field line, 2L. Table 1
gives results for several observed ARs based on Equation (9) of
their paper.

Since Bmin and Bmax can vary quite substantially we have
assumed that Bp ≈ Bavg in our calculation of the free magnetic
energy density in the fifth column of Table 1. This is the
total energy available for release during the nanoflare train.
To determine the peak volumetric heating rate of energy release
EH0 for each nanoflare of the train we need to know the length
of the field line 2L (so that we can find Bavg and hence EB), the
number of nanoflares N comprising each train, and the duration
of each individual heating event τH .

We have chosen to explore a parameter space in which
2L = [40, 80, 160] Mm, N = [5, 10, 15, 20], and τH =
[60, 180, 300] s, and carry out three sets of 20 numerical
experiments; one set for each value of 2L. The range of τH was
decided by considering what constitutes an impulsive heating
event. The most straightforward way to define impulsive heating
is to set an upper limit to the timescale such that τH � ΔC , where
ΔC is the total cooling timescale (thermal, radiative, enthalpy-
driven) at the cessation of heating. Simulations of the secondary
instability of electric current sheets indicate heating timescales
of the order of 100 s, though this is highly variable depending on
the thickness of the sheet (Dahlburg et al. 2005). For the range of
loop lengths, temperatures and densities typically encountered
in ARs, ΔC is in the region of a few thousand seconds (Table 3).
We have set what we consider to be a reasonable limit to
impulsive heating of about 10% of this timescale and investigate
a range of τH within this limit. However, we note here that longer
duration heating may be appropriate for the very longest loops
(160 Mm) in our study and the consequences of increasing
τH for longer loops can easily be inferred from our results for
shorter loops. We chose the range values of N in order to create
nanoflare trains with total durations ΔH that are both shorter
and longer than ΔC , so that we could investigate in detail the
relationship between the amount of hot plasma (dependent on
ΔH ), the amount of cooling plasma (dependent on ΔC) and the
EM slope. Another factor in the choice of N is that the loop
lifetime should be consistent with observed lifetimes on the
order of hours. We have also chosen to keep EH0 constant for
each set of 20 experiments, so that we can focus on the influence
of N, τH , and τC (the time interval between successive events)
on α(where EM(T ) ∝ T α). Assuming that the free energy is
divided more or less equally among each of the individual
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Figure 1. Temporal heating profile of the nanoflare train for Run 21, where 2L = 80 Mm, N = 5, τH = 60 s, and τC = 60 s.

nanoflares and the temporal profile of the heating is triangular
(a linear rise and decay, e.g., Figure 1), the total energy release
per unit volume can be found from

EH = 1

2
NτHEH0. (2)

Setting EH = EB and choosing N = 20 and τH = 180 s, we
find the values of EH0 listed in the final column of Table 1.
This choice of EH0 ensures that for τH = 300 s and all N,
Bmin < B < Bmax (where B is the field strength implied by EH).

The loop geometry is semi-circular with a 2 × 104 K
chromosphere of depth 109 cm (several scale heights) at each
footpoint, providing a reservoir of mass and energy that will
be supplied to the corona upon heating. Figure 2 shows the
initial temperature and density profiles for the set of numerical
experiments where 2L = 80 Mm, which were found by
integrating the hydrostatic equations from footpoint to footpoint.
The initial conditions are energetically negligible compared with
the magnitude of energy released during the nanoflare train.

The forward modeling aspect of this work is described in
detail by Bradshaw & Klimchuk (2011) and in Paper I, though
we summarize the salient information here. A multi-stranded
loop is created such that each strand represents a one-second
interval of the entire heating and cooling cycle. For example,
if a heating and cooling cycle took 3600 s (1 hr) then our
model loop would consist of 3600 individual strands (e.g.,
Testa et al. 2005; Guarrasi et al. 2012). Since each of the
strands evolve independently we believe that this procedure
provides a reasonable representation of the average state of the
loop atmosphere when observed. The EM is then calculated
in two separate ways. We first calculate an EM that has no
dependence on instrumental or line-of-sight constraints by
directly evaluating the integral (EMC = ∫

n2dr). This is the
true, or model, EM. We can do this because we have access to
the values of density and temperature for each strand, calculated
by our numerical model, a luxury not available to observers. We
calculate the apex EM (to avoid footpoint/moss contamination)
and sum over all of the strands to find the total EM.

We also calculate a synthetic EM along the line of sight
that Hinode/EIS would see if it were to observe loops in

Table 2
The 30 Spectral Lines Used to Compute the Synthetic

Hinode/EIS Emission Measure

Ion Wavelength log10 T Ion Wavelength log10 T

Mg v 276.579 5.45 Fe xii 192.394 6.20
Mg vi 268.991 5.65 Fe xii 195.119 6.20
Mg vi 270.391 5.65 Fe xiii 202.044 6.25
Si vii 275.354 5.80 Fe xiii 203.828 6.25
Mg vii 278.404 5.80 Fe xiv 264.790 6.30
Mg vii 280.745 5.80 Fe xiv 270.522 6.30
Fe ix 188.497 5.85 Fe xiv 274.204 6.30
Fe ix 197.865 5.85 Fe xv 284.163 6.35
Si ix 258.082 6.05 S xiii 256.685 6.40
Fe x 184.357 6.05 Fe xvi 262.976 6.45
Fe xi 180.408 6.15 Ca xiv 193.866 6.55
Fe xi 188.232 6.15 Ca xv 200.972 6.65
Si x 258.371 6.15 Ca xvi 208.604 6.70
Si x 261.044 6.15 Ca xvii 192.853 6.75
S x 264.231 6.15 Fe xvii 269.494 6.75

an AR that were identical to our model loops. We use the
Pottasch method (Pottasch 1963; Jordan et al. 1987; Tripathi
et al. 2011) and construct an apex EM for each strand (summed
to find the total EM) from 30 spectral lines chosen from
published observational studies. These lines are formed across
a wide range of temperatures and are listed in Table 2. The
forward-modeling procedure by which the line intensities were
synthesized using the concept of a virtual detector is described
in detail in Section 3 of Bradshaw & Klimchuk (2011) and
summarized in the Appendix. A set of EM-loci curves can then
be derived by dividing each line intensity by the contribution
function (calculated from atomic data provided by the Chianti
database: Dere et al. 1997, 2009). Following Pottasch (1963)
the values for the EM assigned to each line are estimated by
assuming that the contribution function is a square function
having a constant value over a temperature range of width
Δ log T = 0.3. We have used a density of 109 cm−3 in the
contribution functions because we showed in Paper I that this
value brings density sensitive lines into better agreement with
their neighbors.
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Figure 2. Initial hydrostatic temperature and density profiles for the set of numerical experiments where 2L = 80 Mm.

The EM derived in this manner is subject to some of the same
constraints as a real observed loop and can be compared to pub-
lished EMs derived from observational studies. By calculating
these two EMs, we can see what features of the true EM are
reliably reproduced in the synthetic one and what information
about the state of the plasma is lost. We can then establish a
level of confidence in the information that we extract from an
observed EM. Testa et al. (2012) have carried out an extensive
study of this important issue by comparing known model EMs
from a 3D model of a quiet Sun region, with EMs derived by
tracing different lines of sight through the computational do-
main and treating the summed emission as though it were real
data. They used the Extreme-ultraviolet Imaging Spectrometer
(Hinode/EIS) response functions to calculate synthetic spec-
tra and the Atmospheric Imaging Assembly (SDO-AIA)
response functions to calculate synthetic intensities for its wave-
length channels. The EMs were then constructed using the
Monte Carlo Markov Chain (MCMC) method. They found that
the EMs derived from EIS synthetic data were able to reproduce
some characteristics of the model distributions, but showed dif-
ferences when structures with significantly different density in-

tersected the line of sight. The EMs derived from AIA synthetic
data were much less accurate. We calculate synthetic EIS spectra
in a similar manner as Testa et al. (2012), by taking lines of sight
through the apex of our target loop. We are primarily interested
in AR cores and if these can be observed directly from above
at disk center then it is reasonable to suppose that they are the
densest structures along the line of sight, and therefore should
determine the magnitude of the EM. However, we appreciate
that this is an important observational issue that deserves atten-
tion if EMs are to be used as a diagnostic of timescale related to
coronal heating and we base our estimates of the uncertainties
associated with the EM slope derived from observations on the
recent work of Guennou et al. (2012a, 2012b, 2013).

3. RESULTS

We performed 60 numerical experiments for nanoflare train
heating within the parameter space described in Section 2. The
results of these experiments are summarized in Table 3. As an
example consider Run 21, for which the temporal profile of
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Figure 3. Results for Run 21. Upper left panel: time evolution of the average electron and ion temperatures. Upper right panel: time evolution of the average coronal
electron density. Averages are calculated over the upper 10% of the loop, centered on the apex. Lower panel: model emission measure (diamonds) and the emission
measure derived from synthetic Hinode/EIS data (plus signs). Pixel 42 indicates the apex pixel on the model detector.

the energy release by a nanoflare train is shown in Figure 1.
The nanoflare train consists of N = 5 separate heating events
of period τH = 60 s each, with an interval of τC = 60 s
between each event. The total heating time ΔH is the time
from the onset of the first heating event until the cessation
of the final heating event. The total cooling time ΔC is the
time from the end of the final heating event until the electron
temperature falls below 105 K. The temporal evolution of the
average coronal electron and ion temperatures, and the average
electron density, are shown in the upper two panels of Figure 3.
The model and synthetic observed EMs derived from the results
of Run 21 are shown in the lower panel of Figure 3, where
the diamonds are the model values and the plus signs are the
synthetic quantities derived using the Pottasch method. EM-loci
curves are shown as dotted lines. The EM peaks at a temperature
Tpeak in the region of 106.35 K. A linear regression applied to the
model and synthetic quantities between Tpeak and 106 K yields
slopes of αmodel = 1.23 and αobserved = 0.88. The quantity in
brackets that accompanies each slope in Table 3 is the one-sigma
uncertainty estimate of the slope (found with the standard IDL
procedure LINFIT). It is important to remember that the same
atomic physics quantities are used to infer the EM from the
synthetic line intensities as are used to derive the intensities
from the model. In the case of actual observations, the adopted
atomic physics quantities are likely to be different from the
true quantities, so the uncertainties in the slope are much larger
(Guennou et al. 2012a, 2012b, 2013).

Based on the results presented in Table 3, we can make a
number of observations concerning the relationship between

the parameters that we have explored and the EM slopes that we
have found. For each set of 20 runs, where 2L remains fixed,
it can be seen that steeper slopes are obtained with increasing
N when τH and τC are fixed. In the case of Runs [8, 20] for
N = 20 we find αobserved > 4, which is significantly steeper
than any of the EM slopes we found in our previous investigation
of low-frequency nanoflares. This indicates, as expected from
the discussion in Section 1, that sustaining the emission close
to the temperature of peak EM for an extended period is an
important element of obtaining slopes that are comparable to
the upper-range of those that have been observed.

We also find that when considering pairs of Runs where only
τH varies (e.g., [1, 13], [2, 14],...,[8, 20]), the slope is always
steeper for the run with longer τH , with no exceptions. Nonethe-
less, longer heating timescales for the individual nanoflares of
the train are not sufficient by themselves to guarantee steeper
EM slopes. Consider the group of Runs [4, 8, 12, 16, 20] for all
of which N = 20. Run 4 has the shallowest slope and Run 20
the steepest slope, which may fit with expectations. However,
Run 8 has a significantly steeper slope than both Runs 12 and
16. It is clear that adjusting τH by itself is not sufficient to guar-
antee slopes toward the upper-range of those observed and in
consequence we may conclude that the slope of the EM is not
sufficient by itself to constrain τH .

Further examination of Table 3 yields a connection between
the time interval τC before the next nanoflare of the train and
the EM slope. If we consider pairs of runs for which N and
τH are fixed, then a pattern emerges. Runs [4, 8] and [16, 20]
both show steeper slopes for longer τC . The pattern persists

5



The Astrophysical Journal, 764:193 (12pp), 2013 February 20 Reep, Bradshaw, & Klimchuk

Table 3
The Results of 60 Numerical Experiments for Heating by Nanoflare Trains

Run No. 2L N τH τC ΔH ΔC
ΔH
ΔC

log10 Tpeak αmodel αobserved

1 40 5 60 60 540 2203 .245 6.45 1.07 (±0.10) 0.91 (±0.20)
2 40 10 60 60 1140 1949 .585 6.55 1.61 (±0.11) 1.55 (±0.29)
3 40 15 60 60 1740 1866 .932 6.55 1.94 (±0.28) 1.93 (±0.35)
4 40 20 60 60 2340 1823 1.28 6.55 2.18 (±0.40) 2.24 (±0.40)
5 40 5 60 300 1500 4198 .357 6.35 1.92 (±0.34) 1.61 (±0.25)
6 40 10 60 300 3300 3844 .858 6.35 2.78 (±0.82) 2.93 (±0.36)
7 40 15 60 300 5100 3776 1.35 6.35 3.30 (±1.08) 3.74 (±0.41)
8 40 20 60 300 6900 3771 1.83 6.35 3.59 (±1.26) 4.26 (±0.44)
9 40 5 180 180 1620 3767 .430 6.55 1.90 (±0.18) 1.98 (±0.35)
10 40 10 180 180 3420 3453 .990 6.55 2.49 (±0.42) 2.76 (±0.47)
11 40 15 180 180 5220 3429 1.52 6.55 2.84 (±0.52) 3.28 (±0.54)
12 40 20 180 180 7020 3436 2.04 6.55 3.07 (±0.59) 3.65 (±0.59)
13 40 5 300 60 1740 3453 .504 6.65 1.99 (±0.16) 1.68 (±0.20)
14 40 10 300 60 3540 3292 1.08 6.65 2.54 (±0.33) 2.41 (±0.25)
15 40 15 300 60 5340 3270 1.63 6.65 2.87 (±0.41) 2.81 (±0.28)
16 40 20 300 60 7140 3284 2.17 6.65 3.06 (±0.49) 3.07 (±0.31)
17 40 5 300 300 2700 3530 .765 6.55 2.43 (±0.30) 2.64 (±0.43)
18 40 10 300 300 5700 3448 1.65 6.55 3.08 (±0.52) 3.59 (±0.54)
19 40 15 300 300 8700 3446 2.52 6.55 3.42 (±0.63) 4.15 (±0.59)
20 40 20 300 300 11700 3457 3.38 6.55 3.65 (±0.72) 4.56 (±0.63)
21 80 5 60 60 540 4333 .125 6.35 1.23 (±0.06) 0.88 (±0.12)
22 80 10 60 60 1140 3939 .289 6.65 1.11 (±0.12) 1.49 (±0.17)
23 80 15 60 60 1740 3699 .470 6.65 1.53 (±0.07) 1.77 (±0.22)
24 80 20 60 60 2340 3538 .661 6.65 1.77 (±0.14) 1.97 (±0.26)
25 80 5 60 300 1500 4198 .357 6.45 1.29 (±0.06) 1.15 (±0.13)
26 80 10 60 300 3300 3844 .858 6.45 2.16 (±0.36) 2.10 (±0.22)
27 80 15 60 300 5100 3776 1.35 6.45 2.57 (±0.59) 2.76 (±0.30)
28 80 20 60 300 6900 3771 1.83 6.45 2.84 (±0.73) 3.26 (±0.35)
29 80 5 180 180 1620 3767 .430 6.55 1.61 (±0.04) 1.81 (±0.22)
30 80 10 180 180 3420 3453 .990 6.65 2.15 (±0.16) 2.24 (±0.21)
31 80 15 180 180 5220 3429 1.52 6.65 2.49 (±0.28) 2.69 (±0.26)
32 80 20 180 180 7020 3436 2.04 6.65 2.72 (±0.35) 3.00 (±0.30)
33 80 5 300 60 1740 3453 .504 6.65 1.66 (±0.07) 1.38 (±0.13)
34 80 10 300 60 3540 3292 1.08 6.65 2.09 (±0.23) 2.03 (±0.15)
35 80 15 300 60 5340 3270 1.63 6.65 2.30 (±0.35) 2.40 (±0.17)
36 80 20 300 60 7140 3284 2.17 6.65 2.44 (±0.43) 2.65 (±0.19)
37 80 5 300 300 2700 3530 .765 6.55 1.99 (±0.18) 2.20 (±0.30)
38 80 10 300 300 5700 3448 1.65 6.65 2.57 (±0.31) 2.82 (±0.28)
39 80 15 300 300 8700 3446 2.52 6.65 2.88 (±0.42) 3.26 (±0.33)
40 80 20 300 300 11700 3457 3.38 6.65 3.07 (±0.49) 3.57 (±0.37)
41 160 5 60 60 540 6612 .082 6.35 0.79 (±0.07) 1.18 (±0.65)
42 160 10 60 60 1140 6585 .173 6.45 1.27 (±0.14) 1.27 (±0.21)
43 160 15 60 60 1740 6577 .265 6.65 1.09 (±0.15) 1.61 (±0.21)
44 160 20 60 60 2340 6579 .356 6.65 1.41 (±0.11) 1.82 (±0.21)
45 160 5 60 300 1500 6006 .250 6.35 0.96 (±0.07) 1.22 (±0.67)
46 160 10 60 300 3300 6099 .541 6.45 1.62 (±0.11) 1.50 (±0.23)
47 160 15 60 300 5100 6112 .834 6.45 2.05 (±0.29) 2.04 (±0.26)
48 160 20 60 300 6900 6082 1.13 6.45 2.35 (±0.43) 2.46 (±0.29)
49 160 5 180 180 1620 6718 .241 6.55 1.32 (±0.14) 1.63 (±0.21)
50 160 10 180 180 3420 6567 .521 6.65 1.78 (±0.06) 2.11 (±0.24)
51 160 15 180 180 5220 6434 .811 6.65 2.12 (±0.15) 2.25 (±0.19)
52 160 20 180 180 7020 6425 1.09 6.65 2.35 (±0.21) 2.55 (±0.22)
53 160 5 300 60 1740 6762 .257 6.65 1.37 (±0.14) 1.94 (±0.21)
54 160 10 300 60 3540 6463 .548 6.65 1.86 (±0.07) 1.64 (±0.13)
55 160 15 300 60 5340 6344 .842 6.65 2.13 (±0.15) 2.02 (±0.13)
56 160 20 300 60 7140 6282 1.14 6.65 2.30 (±0.24) 2.28 (±0.15)
57 160 5 300 300 2700 6606 .409 6.65 1.55 (±0.09) 2.02 (±0.23)
58 160 10 300 300 5700 6530 .873 6.65 2.22 (±0.14) 2.38 (±0.20)
59 160 15 300 300 8700 6471 1.34 6.65 2.56 (±0.25) 2.81 (±0.25)
60 160 20 300 300 11700 6490 1.80 6.65 2.79 (±0.32) 3.12 (±0.28)

when we include Runs [9–12] in our analysis, which have
intermediate heating timescales (e.g., compare Runs [8, 12] and
[12, 16]). Longer time intervals between successive nanoflares
consistently yield steeper slopes. This relationship between τC

and αobserved suggests that while sustaining the emission close
to the temperature of the peak EM via larger N and τH is
generally necessary for obtaining steeper slopes, the interval
τC between individual nanoflares is also an important parameter
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Figure 4. Ratio ΔH /ΔC vs. αmodel and αobserved for 2L = 40 Mm. The diamond
signs plot the true (model) emission measure calculations and the plus signs plot
the emission measure derived from synthetic Hinode/EIS data. The vertical line
indicates the upper limit to αobserved that can be explained with low-frequency
nanoflares.

when it is shorter than the characteristic cooling timescale of
the plasma. This may partly be explained by comparing Runs
[8, 16], [28, 36], and [48, 56], where each pair of runs has
N = 20, τH = [60, 300] s, and τC = [300, 60] s. The run with
the shorter τH and longer τC of the pair always has the steeper
slope but also a lower log10 Tpeak and smaller Δ log10 T between
the EM peak and 1 MK. This may have the effect of steepening
the slope, because the gradient is inversely proportional to
Δ log10 T . We also expect increasing τC to effectively smear
out the EM in temperature, as found by Susino et al. (2010)
who studied the effects of both uniform and localized heating
in steady and impulsive regimes. They found that extended
τC (250–2000 s) produced large oscillations in the coronal
temperature and significant smearing of the EM across a broad
temperature range, but we confine ourselves to generally shorter
timescales for τC (�300 s) and expect any smearing of the EM
to primarily affect the hot component. We discuss a method by
which τC might be diagnosed from this effect toward the end of
this section.

The total duration of the nanoflare train is given by ΔH =
NτH + (N − 1)τC and the cooling time ΔC following cessation
of the final nanoflare was measured from the numerical results.
The quantity ΔH /ΔC , which is the ratio of “hot” strands
(e.g., those affected by the nanoflare train) to cooler strands
(e.g., those undergoing final cooling and draining), is useful
for parameterizing the relationship between [N, τH , τC] and
αobserved. Figure 4 shows the set of ΔH /ΔC plotted against the
values of α calculated from the model and synthetic EMs.
The vertical line at α = 2.6 in the figure delineates the
boundary between slopes that are consistent with low-frequency
nanoflares (α � 2.6) and those that are not (α > 2.6). The
general trend that emerges is for larger values of ΔH /ΔC to yield
steeper EM slopes. Figure 4 also shows that slopes shallower
than 2.6 may be consistent with both low-frequency nanoflares
and nanoflare trains with relatively low N. The case of low-
frequency nanoflares is essentially the limit N = 1. We can now
understand why increasing τC leads to steeper EM slopes; longer
τC increases ΔH relative to ΔC . One further trend that emerges
in Figure 4 is for an increasing discrepancy between αmodel and

Figure 5. Ratio ΔH /ΔC vs. αmodel and αobserved for 2L = 80 and 160 Mm.

αobserved as the slope steepens, where the slope of the EM derived
from synthetic Hinode/EIS data increasingly overestimates the
slope of the model EM. Since we have followed a forward
modeling procedure to calculate αobserved, this suggests that the
slopes found from EMs derived from real observational data
might be subject to the same bias that underlies this discrepancy,
leading to an overestimate of slopes at the upper range.

We now turn to considering the effect of changing 2L on
the slopes obtained within our chosen nanoflare train parameter
space. Comparing triplets of runs for which N, τH , and τC remain
fixed and only 2L varies, e.g., Runs [4, 24, 44], we find that
αobserved is consistently shallower for longer loops. Figure 5
shows the ΔH /ΔC versus α plots for 2L = [80, 160] Mm
where it becomes clear that the range of α is more restricted
with increasing loop length. The steepest slopes for 2L =
[80, 160] Mm are αobserved = [3.57, 3.12]. Figure 5 also
shows that an increasing proportion of the slopes yielded by
nanoflare trains are consistent with the range of slopes yielded
by low-frequency nanoflares. This is particularly evident for
2L = 160 Mm, where all but two values of αobserved are below
2.6. We can also see that the discrepancy between the slopes
of the model EM and the EM from synthetic Hinode/EIS data
persists for longer loops as the slope steepens. A comparison

7



The Astrophysical Journal, 764:193 (12pp), 2013 February 20 Reep, Bradshaw, & Klimchuk

Figure 6. Results for Run 40.

of the data points in Figures 4 and 5 shows that this property
does not appear related to ΔH /ΔC because ΔH/ΔC ≈ 3.5 in
Figure 4 yields a larger difference between αmodel and αobserved
than ΔH/ΔC ≈ 3.5 in the upper panel of Figure 5.

We now discuss the physical reason for the dependence of the
EM slope on the parameter ΔH/ΔC . Returning to Figure 3 for
Run 21 (N = 5, τH = 60 s, τC = 60 s) we see from the upper
panels that the coronal density does not reach its peak until
significantly after the nanoflare train has ended. Consequently,
each strand of the loop is well into its final cooling phase at the
time of peak EM and the data points from the temperature of
peak EM to 1 MK are dominated by these cooling strands, which
means that there is no significant contribution to the EM from
the hot strands that are undergoing nanoflare train heating. The
slope is therefore subject to the analytical limit αmax determined
in Paper I.

Now, examine Figure 6 for Run 40 (N = 20, τH = 300 s,
τC = 300 s), which is at the opposite extreme to Run 21 for
the set of runs where 2L = 80 Mm. It can be seen from
the upper panels that the coronal density now reaches and
maintains its peak during the nanoflare train, which means that
we can expect a significant contribution to the EM from the
heated strands. The EM shown in the lower panel confirms
our expectation. The temperature of the hot strands varies
between 3.5 MK and 5 MK, with an average of 4.25 MK,
and the peak of the EM is substantially enhanced between
106.6 K and 106.7 K and log10

(
4.25 × 106

) = 6.62. The
temperature variation allowed by τC during the nanoflare train
is Δ log10 T = log10(5 × 106) − log10(3.5 × 106) = 0.15 and,
since the EM is binned in temperature intervals of 0.1 dex,
this is sufficient for the neighboring bins of the peak to also

be populated. In consequence, the hot component of the EM
is not quite isothermal and it may be possible to diagnose
the parameter τC from its width (as we show later in this
section). The EM in the region of the peak is therefore strongly
enhanced relative to the part of the EM that is due primarily
to the cooling (post-nanoflare train) strands. Compare this with
Figure 3 in which no significant enhancement is apparent. It is
straightforward to see that a linear regression applied between
the temperature of peak EM and 1 MK in Figure 6 will yield
a steeper slope than the same analysis carried out for the EM
shown in Figure 3.

As long as τC < ΔC , the EM of the cool component is set
by ΔC and the EM of the hot component is set by ΔH , which
in turn depends on N, τH , and τC (ΔH = NτH + (N − 1)τC).
A longer timescale ΔH means that a greater proportion of the
total number of loop strands are at some stage of the nanoflare
train. This enhances the part of the EM that is determined by
the nanoflare train relative to the part that is cooling following
the cessation of the train. From the perspective of an individual
strand, the plasma spends more time in the hot state and this
translates into a larger EM. We can steepen the EM slope by
changing N, τH or τC to increase ΔH , but ΔC is essentially out
of our control because it depends primarily on the length of the
loop. If τC > ΔC , the situation reverts to that of low-frequency
nanoflares where the slopes are shallower.

We can now understand why longer loops tend to yield
shallower EM slopes between the temperature of peak EM and
1 MK. The cooling time ΔC tends to be greater for longer loops
and for the fixed range of ΔH that we consider, the ratio ΔH /ΔC is
generally smaller. Following the interpretation described above;
a smaller proportion of the total number of strands will now be
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Figure 7. Emission measure distributions for Runs 20 (upper panel) and 60
(lower panel).

at some stage of the nanoflare train and so the hot part of the
EM will not be so enhanced relative to the post-train part of the
EM. Figure 7 shows the EMs for Runs 20 (2L = 40 Mm) and
60 (2L = 160 Mm), where N = 20, τH = 300 s, τC = 300 s
in both cases. It can be seen that the hot part of the EM is
greatly enhanced relative to the cool part in Run 20, whereas
the enhancement isn’t so pronounced in Run 60. In the case of
Run 60, the most extreme of the 2L = 160 Mm set of Runs,
the ratio ΔH /ΔC = 1.80 compared to values over 3 for shorter
loops. The enhanced hot part of the EM clearly leads to steeper
slopes and, therefore, in order to obtain steeper slopes for longer
loops the quantity ΔH must be increased relative to ΔC .

Table 4 shows the distribution of observed EM slopes
coolward of the peak, 1.70 � α � 5.17 (Table 3 of
Paper I), where the uncertainty in the slope Δα = ±1.0 (Guen-
nou et al. 2012a, 2012b; Paper I). Given our predicted range of
0.88 � αobserved � 4.56 and the range of uncertainty, we can see
that the nanoflare train heating scenario is consistent with 86%
to 100% of the observed range of EM slopes. This may be com-
pared with 0% to 77% in the low-frequency nanoflare scenario
found in Paper I. We encourage the gathering of many more
observational measurements of EM slopes from large-scale sur-
veys of ARs in order to improve these statistical estimates. Fur-
thermore, EM reconstructions applied to a far larger set of real
observational data, such as would be obtained from large-scale
surveys, would directly address the question of the ubiquity of

Table 4
Distribution of Observed Emission Measure Slopes Coolward of the Peak

α − Δα α α + Δα

α � 1.0 3 0 0
1.0 < α � 1.5 5 0 0
1.5 < α � 2.0 3 3 0
2.0 < α � 2.5 6 5 0
2.5 < α � 3.0 2 3 3
3.0 < α � 3.5 2 6 5
3.5 < α � 4.0 1 2 3
4.0 < α � 4.5 0 2 6
4.5 < α � 5.0 0 1 2
α > 5.0 0 0 3

100% 100% 86%

a hot component to the EM and thereby provide direct evidence
either for or against the heating scenario described here.

Given a sufficiently large sample of EM observations it may
be possible to estimate τC from the characteristic width of the
hot component in the following way. The cooling timescales by
thermal conduction and radiation are given by

τcond = 4 × 10−10 nL2

T 5/2
and τrad = 3kB

χnT b−1
, (3)

where χ and b are given by piece-wise power-law fits to the
curve of the radiative loss rate as a function of temperature (e.g.,
Klimchuk et al. 2008), and the ratio of these cooling timescales
is given by

τcond

τrad
= (

9.66 × 105) χ (nL)2 T b−7/2, (4)

which can be calculated from an observed EM where T =
Tpeak if L and n are known. The temperature and density
range during the nanoflare train in Figure 6, together with
the loop length 2L = 40 Mm and the values of χ and b
given by Klimchuk et al. (2008), yields τcond/τrad = 0.03.
We conclude that thermal conduction is the dominant cooling
mechanism during the interval τC , in this example, and therefore
primarily responsible for setting the width of the hot component.
Using the temperature evolution in the case of non-evaporative
conductive cooling (since the density does not change much
during relatively long trains) given by Antiochos & Sturrock
(1976)

T (t) = T0

(
1 +

t

τcond

)β

, (5)

where β = −2/5, we find

dT

dt
= βT

τcond + t
. (6)

We can approximate the width of the hot component ΔT by the
change in temperature during the interval τC :

ΔT

τC

≈ βT

τcond + τC

. (7)

Since the temperature is usually binned in units of log10 T we
can write

Δ log10 T ≈ βτC

(ln 10) (τcond + τC)
. (8)
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The quantity Δ log10 T < 0 because the plasma is cooling.
Finally, the interval τC can be found in terms of the approximate
width of the hot component from

τC ≈ τcond

(
β

(ln 10)
(
Δ log10 T

) − 1

)−1

. (9)

When τC � τcond we note from Equation (8) that Δ log10 T =
−2/5(ln 10), which sets an upper limit to the component of the
width of the hot part of the EM that can be due to cooling
by thermal conduction. To diagnose τC in this regime using
Equation (9), temperature bins that are substantially narrower
than this limit of |Δ log10 T | ≈ 0.17 dex are required and we
conclude that the typical bin width of 0.1 dex is too coarse to be
useful.

In the regime where τcond/τrad > 1 radiative cooling domi-
nates during the interval τC . Using the temperature evolution in
the case of radiative cooling given by Cargill et al. (1995)

T (t) = T0

(
1 − (1 − b)

t

τrad

)1/1−b

(10)

and following a similar analysis to that presented for cooling by
thermal conduction, we find

Δ log10 T ≈ τC

(ln 10) ((1 − b) τC − τrad)
(11)

and

τC ≈ τrad

(
(1 − b) − 1

(ln 10)
(
Δ log10 T

)
)−1

. (12)

When (1 − b)τC � τrad we note from Equation (11) that
Δ log10 T is a positive quantity and yet we require it to be
negative for cooling. The only way to satisfy this constraint is to
ensure that (1 − b)τC < τrad and this implies τC < τrad/(1 − b),
which sets the upper limit to the inter-nanoflare timescale τC that
can be diagnosed using Equation (12). For example, b = −1/2
is commonly used in analytical approximations to the radiative
loss curve in the range log10 T > 5.0 (Bradshaw & Cargill
2010) and this sets the limit τC → 2τrad/3 as Δ log10 T → ∞.
In this regime, we conclude that temperature bins of 0.1 dex
may be adequate depending upon the relative values of τC and
τrad. Following a different approach, it may also be possible to
constrain the parameter space of N, τH , and τC from time-series
studies of AR emission across a range of temperatures, such as
those carried out by Viall & Klimchuk (2011, 2012).

Figures 4 and 5 show that αobserved and αmodel diverge as
the EM slope steepens, such that the slope of the EM derived
from synthetic Hinode/EIS data increasingly overestimates the
slope of the model EM (although in many cases each slope
value falls within the error bars of the other one). This is
particularly noticeable for α > 3. It may be attributed to the
estimate of the electron density used in the contribution function
G(n, T) to derive the loci curves (EM(T ) ∝ I/G(n, T )).
The line intensities in our forward model are computed using
contribution functions that are density dependent. However,
when calculating the EM using the Pottasch method the line
intensities are divided by contribution functions that are no
longer density dependent (assuming a fixed value of n =
109 cm−3). The hotter strands have the highest densities,
but fixing the contribution function density at 109 cm−3 for

density sensitive lines leads to an underestimate of the true
contribution function and an overestimate of the EM at higher
temperatures. The density sensitive lines therefore introduce a
bias toward steeper slopes. To mitigate this effect we recommend
that density measurements accompany EM calculations, which
provides another good reason for measuring n in addition to
needing it for estimates of ΔC .

The shape of G(n, T) can also play a role in the discrepancy
between the model and predicted slopes because the Pottasch
method assumes that G(n, T) is constant in the range Δ log10 T =
±0.15 to either side of the peak formation temperature of the
emission line, and zero everywhere else. The constant value
is equal to the average of the actual G(n, T) in this range. If
two emission lines with the same peak formation temperature
have G(n, T)’s with appreciably different shape (e.g., one is
substantially narrower than the other) then this could also
affect the more density sensitive lines, leading to a discrepancy
between the model and predicted values.

4. SUMMARY AND CONCLUSIONS

We have run a series of numerical experiments to explore
coronal loop heating by nanoflare trains with the intention of
extending our previous study, presented in Paper I, of heating
by low-frequency nanoflares. The aim of the present study is
to determine whether nanoflare trains are able to overcome the
intrinsic limit to the EM slopes (from the EM peak to 1 MK)
that we demonstrated in our previous work (see also Mulu-
Moore et al. 2011) so that observationally measured slopes
of α > 2.6 can be explained. By constructing EMs from
synthetic Hinode/EIS data, using spectral lines formed over
a wide range of temperatures, we predict slopes in the range
0.88 � αobserved � 4.56 for the nanoflare train heating scenario
encapsulated by the extent of the parameter space that we have
chosen for our study.

Though we have not attempted to match any specific obser-
vations in the work presented here, we have reached a set of
conclusions concerning the broad properties that the nanoflare
trains must possess to be consistent with observations. A number
of our runs yield temperatures of the peak EM that are proba-
bly too low to agree with the observed range in AR cores; for
example, Runs [5–8, 21, 41, 45] have log10 Tpeak = 6.35. We
may therefore exclude the particular combination of parameter
values that led to this result for our fixed value of EH0, which
are in general: small N, short τH , and long τC . Stronger heat-
ing would boost log10 Tpeak into the required range, but must of
course remain consistent with the free magnetic energy.

In the case of loops of fixed length 2L we find steeper
EM slopes with increasing N, τH , and τC . For fixed EH0 the
parameters N and τH determine the total energy released during
the nanoflare train and τC determines the width of the hot
component of the EM. We have parameterized the relationship
between [N, τH , τC] and αobserved using the single parameter
ΔH /ΔC , which is the ratio of the number of strands in some stage
of nanoflare train heating to the number of strands undergoing
cooling and draining following the cessation of the nanoflare
train (Figures 4 and 5). We found that the general trend is for
αobserved to increase with ΔH /ΔC . The physical reason for this is
that the EM of the cool component is set by ΔC and the EM of
the hot component is set by ΔH = NτH + (N − 1)τC . A longer
timescale ΔH means that a greater proportion of the total number
of loop strands are in some stage of heating. This enhances the
part of the EM that is determined by the heating relative to the
part that is cooling and draining.
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In the case where 2L is allowed to vary we find it relatively
easy to obtain slopes consistent with the upper-range of those
observed for shorter loops (e.g., 2L = 40 Mm; Figure 4),
within the parameter space of nanoflare train properties that we
explored. The range of slopes for longer loops (2L � 80 Mm)
that we found within this parameter space are largely consistent
with low-frequency nanoflares. All but two values of αobserved
are consistent with low-frequency nanoflares in the case of
2L = 160 Mm. However, we also know from our investigations
that obtaining steeper slopes for longer loops is a matter of
allowing the ratio ΔH /ΔC , and therefore the quantity ΔH , to
increase. Given an observationally measured EM slope of ≈3,
Figures 4 and 5 show that the expected ratio ΔH/ΔC ≈ 1.5–2.0
but we cannot determine ΔH uniquely from this information
alone. However, given the length and density (from spectral
line ratios) of the structure, it is possible to estimate ΔC as the
radiative and enthalpy-driven cooling timescale (e.g., Bradshaw
& Cargill 2010) from the temperature of peak EM (a known
quantity from the EM plots). Alternatively, it may be possible to
measure ΔC by following the cooling structure via emission from
recombining ions or successively cooler wavelength channels.
We urge observers to include such estimates (2L, n, and/or
ΔC) along with all measurements of EM slopes, in order that
possible heating scenarios may be more rigorously tested against
observational data.

We have found that the properties of 86% to 100% of AR
cores can be consistent with heating in the form of nanoflare
trains, where we have assumed that not all of the free magnetic
energy is released at once, but rather in a series of individual
nanoflares that we refer to as a train. However, there are
alternative scenarios. In one example, all of the energy available
for heating may be released and the magnetic stress then builds
up again in the interval between nanoflares. In a modeling sense
this is similar to the scenario that we have explored here, but
with a smaller amount of free energy in the field before the
onset of heating because it only has to supply a single event
before recharging. The parameter τC then becomes a recharging
timescale for the magnetic field. Suppose that the storage of
energy in the field is a consequence of the field lines becoming
twisted and tangled due to convective motions on the surface
and the energy is released when some critical condition is
satisfied (e.g., the angle between neighboring field lines exceeds
some critical value: Parker 1988; Dahlburg et al. 2005). If the
surface motions do not vary too strongly then it is reasonable
to suppose that the energy stored in the magnetic field, and
ultimately released, be proportional to the recharging timescale.
We cannot predict when reconnection will occur, but we can
place constraints on this timescale. It cannot be so short that the
heating is effectively steady, because this would give rise to a
more or less isothermal EM. Conversely, for EM slopes greater
than about 2.6 it cannot exceed a cooling timescale because this
would be the limit of low-frequency nanoflare heating in which
slopes are constrained to a range of values less than 2.6. The
recharging timescale must be of just the right length such that
the width of the hot component of the EM is consistent with
what is observed.

Previous studies of the relationship between the EM and the
timescales related to the heating mechanism have led to findings
that are consistent with ours, though for conceptually somewhat
different scenarios. For example, Testa et al. (2005) explored
a parameter space of heating pulses with timescales that are
longer (300–1100 s) than those we have chosen, though the
total duration of heating is similar, and with the energy release

localized at the loop footpoints. When the spatial scale of heating
is sufficiently small a thermal instability arises, leading to an
ongoing cycle of heating and cooling which gives rise to the
warm component of the EM in their study. Their cooler loops
reach similar temperatures (T = 106.48 K) to some of ours,
but their hotter loops reach significantly higher temperatures
(T = 107 K) due to stronger heating, and they adopted a loop
length of 2L = 200 Mm that is some 40 Mm longer than our
upper limit. They find EM slopes approaching 5.0, which are
steeper than the slopes we find for our 2L = 160 Mm loops
but, as we have already discussed, extending ΔH relative to
ΔC (consistent with estimates of the free magnetic energy) will
result in steeper EM slopes. In the case of Testa et al. (2005) their
EM slopes are determined by the relative lengths of the heating
and cooling phases of the cycle that are ultimately governed
by the timescales associated with the evolution of the thermal
instability.

It is abundantly clear that different sets of observational
data to complement EM slope and related measurements are
required to help constrain the timescales on which the AR
heating mechanism operates, and ideally to help constrain the
mechanism itself. One such data set may include the findings
of Ugarte-Urra & Warren (2012), which indicate that AR
variability evolves over time as do the relative contributions
to the EM of hot and warm plasma. This suggests that the
frequency of heating may also change, with older ARs heated
by higher-frequency events, and provides a likely explanation
for why Warren et al. (2011) found that high-frequency heating
was most consistent with their observations, whereas others
have found that low-frequency heating is most appropriate in
other cases (e.g., Paper I). An alternative data set may be found
in the temperature-dependent pattern of red- and blueshifts
that are observed in ARs. An extension to the work presented
here will be an analysis of the Doppler shifts as a function of
temperature associated with low-frequency and nanoflare train
heating in order to determine whether they are consistent with
the patterns of flows that are observed in ARs, and to investigate
their potential to provide additional constraints on the parameter
space of heating properties. This will be the subject of the next
paper in this series.
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APPENDIX

SPECTRAL LINE SYNTHESIS

The calculation of the total (wavelength integrated) intensity
of a line in instrument units (DN pixel−1 s−1) is described in
detail by Bradshaw & Klimchuk (2011) and summarized for
convenience here:

I = IR(λ) × G(λ, n, T ) × 〈EM〉, (A1)

where IR(λ) is the instrument response function (units:
DN pixel−1 photon−1 sr cm2), which is the product of the effec-
tive area, plate scale, and gain of the instrument. The Hinode/
EIS response functions are available in the SolarSoft package.
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G(λ, n, T ) is the contribution function, defined as:

G(λ, n, T ) = 0.83 × Ab(Y ) × Yi × ε(λ, n, T )

4π × (hc/λ)
, (A2)

where 0.83 is the proton:electron ratio, Ab(Y ) is the abundance
(relative to hydrogen) of element Y, Yi is the population fraction
of charge state i of element Y, ε(λ, n, T ) is the emissivity of
the line (units: erg s−1 cm3) calculated using the EMISS_CALC
function (Chianti: Dere et al. 1997, 2009), and hc/λ is the photon
energy (units: erg).

〈EM〉 is the spatially averaged column EM in the pixel (units:
cm−5):

〈EM〉 = EMpix

Apix
, (A3)

where EMpix = n2
edV is the EM in the pixel and Apix is the pixel

area. It is straightforward to see how the EM can be calculated
from the line intensity, given the contribution function and the
instrument response.

The intensity per unit wavelength of the spectral line is
given by convolving the total intensity with the line broadening
function:

Iλ = I√
πσ 2

exp

(
− (λ − λ0 − Δλ)2

σ 2

)
, (A4)

where λ0 is the rest wavelength of the line and Δλ is the Doppler
shift due to the line-of-sight component of the bulk flow, given
by Δλ = (λ0/c)v. The total line width, σ , is determined by the
thermal width and the instrument width:

σ 2 = 2

3
σ 2

th + 0.36σ 2
ins, (A5)

where σth = (λ0/c)vth and suitable values for σins are
60 mÅ (EIS short-wavelength channel) and 67 mÅ (EIS long-
wavelength channel). In calculating the spectral line profile one
must be careful to ensure that I = ∫

Iλdλ.
The line profiles, given by Equation (A4), from each cell

of the numerical grid are then added to the total for the
appropriate detector pixel(s). The correct pixel is determined
by projecting each grid cell onto a single row of detector pixels
and establishing what proportion of the emission from the grid
cell falls onto each pixel (see Figure 1 of Bradshaw & Klimchuk
2011). This procedure is repeated for all of the spectral lines of

interest, for all of the grid cells of the strand, and for every strand
comprising the loop. The result is then a prediction of the total
emission along the loop, due to the contributions from the many
sub-resolution strands at different stages of evolution, as would
be measured by a particular observing instrument.
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