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Abstract— In this paper, we analyze the outage probability of
a single user system with multiple antennas at the transmitter,
single antenna at the receiver, and finite rate feedback power
control. The optimum power control is complex and the analysis
is not tractable. Hence we propose a sub-optimal power alloca-
tion scheme, with very low computational complexity, which is
asymptotically optimum. Analyzing the proposed algorithm we
show that the diversity order can potentially be increased un-
boundedly by increasing the feedback rate and without increasing
number of transmit or receive antennas. We find a closed form
approximation to this diversity-like gain at large SNRs, as a
function of number of transmit antennas, number of quantization
levels, and average available SNR. Simulation results confirm the
validity of the analysis.

I. INTRODUCTION

Power control is a well established method to improve
communication performance in fading channels. Its efficacy
has been established in single [1, 2] and multiuser [3–6] chan-
nels. Even with the extensive research, performance of power
control with finite number of feedback bits remains unclear. In
this paper, we study the performance of power control in block
fading i.i.d. channels with quantized transmitter information.

For systems with closed loop power control, we show that
the outage probability has a finite diversity order unlike the
systems with complete Channel State Information at Trans-
mitter (CSIT). Figure 1 shows the performance of perfect
channel information at the transmitter versus no information
for a single transmit-receive antenna system; no CSIT case
has a diversity order of 1 while the system with full CSIT has
an exponential decay. More importantly, the diversity order of
the power-controlled system depends on both the number of
transmit antennas and the number of feedback bits.

Interestingly, fast feedback for power control contributes
to diversity much more than the number of antennas. For
example a system using space-time codes with 2 bits of SNR
feedback with 2 transmit and one receive antennas has a
diversity order of 30 (derivation is given in Section IV). Thus,
antenna diversity can be traded with feedback diversity. An
important point to note is that temporal power-control achieves
this diversity without coding over multiple fading blocks, and
hence the diversity order is not a result of coding over multiple
fading coefficients. The lower bound on the diversity order
is derived using a simple suboptimal power control scheme,

which allocates equal average power to each quantized bin.
We show that asymptotically, in number of feedback bits, the
equal power allocation achieves the same outage probability
as the optimal quantizer.

The results in this paper extend our prior analysis on the
utility of finite rate feedback in multiple antennas presented
in [7], where only 1-bit optimal quantizers were presented and
higher rate quantizers were found numerically. Furthermore,
it complements our results on finite rate feedback based
beamforming in multiple antenna systems [8], and will allow
a unified design of feedback channels in multiple antenna
systems.

The work in [9] is closest to our analysis. Using BER as
the metric, the authors derive optimal power control methods
for closed loop power control. The quantizer design procedure
in [9] is a modified Lloyd-Max algorithm. In contrast, we opt
for suboptimal procedures with an emphasis on characterizing
the performance of power control with finite rate information
about channel conditions.
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Fig. 1. Outage probability as a function of SNR with full and no channel state
information at the transmitter (CSIT) for a single transmit-receive antenna
system; receiver is assumed to have perfect channel information.

The rest of the paper is organized as follows. The problem
is formulated in Section II. The suboptimal solution is derived
in Section III, which is used to derive lower bounds on the
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diversity order in Section IV.

II. PROBLEM FORMULATION

We consider the independent and identically distributed
(i.i.d.) block fading channel model of [10]. For a multiple
antenna system with M transmit antennas and one receive
antenna, this model leads to the following complex baseband
representation of the received signal

y = hx + n,

where x is the M × 1 vector of transmitted signals, h is
1×M channel vector, and n is the additive noise. The channel
coefficient, h, is assumed to vary independently from block
to block and is assumed to have an arbitrary distribution
unless it is mentioned specifically. Furthermore, the block
fading assumption implies that h is constant for the whole
codeword. Additive noise, n, is assumed to be circularly
symmetric complex Gaussian distribution with zero mean
and unit variance. For simplicity, we use γ to represent the
magnitude squared of the channel vector, i.e., γ = ‖h‖2

2.
The receiver is assumed to have perfect knowledge of the

channel. The receiver quantizes channel SNR, γ, using a
quantizer with L bins, resulting in a feedback codeword of
B = log2(L) bits. The receiver sends the generated feedback
codeword back to the transmitter using a noiseless and zero-
delay feedback channel. The transmitter then uses space-time
coding and performs power control, based on the received
feedback information, to transmit data. Our objective is to
design the quantizer used by the receiver, Q∗, and the power
allocation policy used by the transmitter, P ∗

t , such that the
outage probability is minimized for a given average transmit
power constraint. Outage probability [4, 11] is defined as the
probability with which the achievable mutual information falls
below a pre-specified threshold R,

Π(R,Pt) = Pr (I(X;Y |h) < R) , (1)

where I(X;Y |h) is the instantaneous mutual information
between the transmitted and received signals. If Gaussian
codebooks are used, the outage probability, Π(R,Pt), can be
rewritten as

Π(R,Pt) = Pr

(
log
(

1 +
Ptγ

Mσ2

)
< R

)
, (2)

where Pt is the transmitted power for the given feedback γt at
time t, and σ2 is the noise variance. Note that if γ �= 0 having
Pt = M(2R − 1)σ2/γ is enough for having zero outage [12].
For simplicity throughout the paper we use k for quantity
M(2R − 1)σ2, and define SNRn = MPav/k, where Pav is
the average available power.

The objective is to minimize outage probability Π(R,Pt)
subject to an average power constraint, i.e.,

(P ∗
t ,Q∗) = arg min

(Pt,Q):E(Pt)≤Pav

Π(R,Pt). (3)

Note that the expectation in (3) is a time average. Later we
will change this time average with expectation with respect to

the channel distribution. One needs a first order ergodicity in
order to make such a transition.

Caire et. al. in [2] showed that the solution to (3) is temporal
water-filling. Also it is shown in [2] that channel inversion
power allocation is a practical sub-optimal scheme, which
asymptotically converges to optimum solution at high SNRs.
In channel inversion power p = k/γ is allocated to each
channel state γ > γth. Threshold γth is set such that average
power constraint is met [12]. In our case we would like to
approximate this power allocation strategy with finite number
of power levels such that (3) is satisfied.

Recall that the quantizer is a set of thresh-
olds, {γi}L−1

i=1 , determining L quantization bins,
[0, γ1), [γ1, γ2), . . . , [γL−1,∞). Let bi, 1 ≤ i ≤ L, denote
the ith quantization bin. For each quantization bin bi,
there is a power level Pt(i) such that it guaranties reliable
communication. With channel inversion strategy we have
Pt(i) = k/γi−1, 2 ≤ i ≤ L. If we allocate power level
Pt(1) to the first bin, it only guarantees reliable channel for
γ > γ0, γ0 = k/Pt(1), and for γ < γ0 the power is wasted.
Therefore we solve the problem for two different approaches,
namely Pt(1) = 0 and Pt(1) �= 0, and choose the scheme
that yields a smaller probability of outage. Although not
trivial, simulation results show that for high SNRs, choosing
Pt(1) �= 0 always yields lower outage.

Let γ0 = γ1 when Pt(1) = 0 and γ0 = k/Pt(1) otherwise,
then system is in outage for γ < γ0, and probability of outage
in (3) can be expressed as

Π(R,Pt) = Pr(γ < γ0). (4)

In the subsequent section, we will derive a suboptimal quan-
tizer based on the asymptotic form of the optimal quantizer
using the dual problem of (3). The suboptimal solution is
computationally tractable, has an intuitive explanation and
will be used to derive lower bound on the diversity order
of quantized power control (equivalently it provides an upper
bound on the outage probability).

III. SUBOPTIMAL POWER CONTROL WITH EQUI-POWER

ALLOCATION

In this section, we will derive a sub-optimal power control
scheme, based on the asymptotic properties of the optimal
power control. The derivation of the sub-optimal power control
follows naturally from the dual1 of optimization problem (3)
given by

(P ∗
t ,Q∗) = arg min

Π(R,Pt)≤α
E(Pt). (5)

The expected value of power in (5) can be written as

E(Pt) = Pt(1)Fγ(0, γ1) + · · · + Pt(L)Fγ(γL−1,∞), (6)

where fγ(·) is the probability distribution of γ and
Fγ(α, β) =

∫ β

α
fγ(γ)dγ is the probability mass accumulated

in interval [α, β].

1The duality of (3) and (5) is discussed more in detail in [13]
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To describe L power levels, Pt(1), . . . , Pt(L), we need
to define L − 1 thresholds, γ1, . . . , γL−1. From (4) and (5)
one can conclude that the constraint on the outage in (5) is
equivalent to fixing γ0, or equivalently the largest power level,
Pt(1). Thus, the dual problem in (5) can be converted into an
unconstrained problem with (L−1) unknown power levels and
(L−1) thresholds. The solution to (5) needs to satisfy the first
order derivative condition, �∇Pt

Eγ [Pt] = 0, which leads to the
following system of nonlinear equations

fγ(γ1)

γ0
− Fγ(γ1, γ2)

γ2
1

− fγ(γ1)

γ1
= 0

fγ(γ2)

γ1
− Fγ(γ2, γ3)

γ2
2

− fγ(γ2)

γ2
= 0 (7)

...
...

fγ(γL−1)

γL−2
− Fγ(γL−1,∞)

γ2
L−1

− fγ(γL−1)

γL−1
= 0.

Solution to the system of nonlinear equations in (7) gives
the optimum power control scheme along with correspond-
ing optimal thresholds, {γi}L−1

i=1 , through channel inversion
relation. This solution provides a common language between
transmitter and receiver. On one hand γ′

is define the quantizer
at the receiver, and on the other hand corresponding Pt(i)′s
determine the power allocation strategy at the transmitter.

Consider the ith equation in (7) (1 ≤ i ≤ L − 1, with
γL = ∞), that is,

1
γi−1

fγ(γi) − 1
γ2

i

Fγ(γi, γi+1) − 1
γi

fγ(γi) = 0. (8)

We can rewrite (8) as,
1
γi

(γi+1 − γi)fγ(γi) =
1

γi+1
F (γi+1, γi+2)

Pt(i)(γi+1 − γi)fγ(γi) = Pt(i + 1)F (γi+1, γi+2). (9)

As number of bits in feedback, B = log2(L), approaches
infinity, the length of quantization bins, (γi, γi+1), approaches
zero, and hence by mean value theorem, we can further
simplify (9) when B → ∞ as

Pt(i)F (γi, γi+1) ≈ Pt(i + 1)F (γi+1, γi+2). (10)

The term Pt(i)F (γi, γi+1) is the average power allocated to
the ith bin. Thus from (10), it follows that an approximation
to the optimal power allocation is to allocate equal average
power to each quantization bin. From the above discussion, it
follows that the equal allocation power control is asymptoti-
cally optimum in the feedback rate B. The above approximate
solution (10) can now be used in the primal problem (3) to
find what the average power in each bin should be. Solution
to (3) is on the boundary of constraint set, i.e., at the optimum
point, P ∗

t , we have E(P ∗
t ) = Pav . More precisely, at P ∗

t we
have

P ∗
t (1)F (0, γ∗

1 ) + · · · + P ∗
t (L)F (γ∗

L−1,∞) = Pav. (11)

Combining (11) with (10) we get,

P ∗
t (i)F (γ∗

i−1, γ
∗
i ) =

Pav

L
, ∀ i, 1 ≤ i ≤ L, (12)

with γ∗
L = ∞ (and γ∗

0 = 0), then for i = L in (12) we have

P ∗
t (L)F (γ∗

L−1,∞) =
Pav

L
. (13)

Also by channel inversion power allocation we have
γ∗

i−1 = k/P ∗
t (i) for 0 < i < L. Hence equation (13) is

a function of P ∗
t (L) (or γ∗

L−1) only and we can solve (13)
for P ∗

t (L) (or γ∗
L−1). Replacing the value for γ∗

L−1 in (12)
for i = L − 1, we end up with an equation with a single
variable P ∗

t (L − 1) (and corresponding threshold γ∗
L−2). By

recursively repeating the same procedure, we can obtain all
the power levels, {P ∗

t (i)}L
i=1.

Figure 2 compares the performances of systems with quan-
tized feedback (optimal, and equal allocation power control),
and a system with perfect CSIRT, as a function of SNR. A
single transmit and single receive antenna system is consid-
ered, and the feedback rate is B = log2(3) bits/code-block.
Note that the performance of optimal and equi-power schemes
are not distinguishable in Figure 2 indicating that equal power
allocation performs very close to optimum for the range of
simulated SNRs.
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Fig. 2. Outage for log2(3) bits of feedback for optimal, equal allocation
power control, and perfect CSIRT with respect to SNR for a system with single
antenna at transmitter and receiver, and transmission rate of R=2 b/s/Hz

IV. LOWER BOUND ON DIVERSITY ORDER

Figure 3 shows the performance of optimal and equal
power allocation for a system with two transmit and single
receive antennas with respect to SNR. Figure 3 reveals that
as the number of bits in feedback increases, the slope of
probability of outage with respect to SNR increases as well.
This observation suggests a diversity order gain via feedback,
without increasing the number of transmit antennas. In this
section we capture this phenomenon by analyzing the behavior
of proposed sub-optimum equal power allocation quantizer.

Throughout this section we assume that there are M trans-
mit and single receive antennas, and equal power quantizer
is used at both ends. The analysis is carried on for large
values of SNR. Also channel realization, h, is assumed to
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Fig. 3. Outage probability as a function of SNR for a system with 1, log2(3),
and 2 bits of feedback, 2 transmit antennas, and rate R=2 bit/s/Hz.

be a 1 × M complex Gaussian random vector with identity
covariance matrix, i.e., h ∼ CN (0, I). Therefore, γ = |h|2 is
chi-squared with 2M degrees of freedom and its probability
density function is given by

fγ(γ) =
γM−1e−γ

Γ(M)
. (14)

Replacing (14) in (4) we get

Π(R,Pt) =
∫ γ0

0

fγ(γ)dγ

= 1 −
M−1∑
i=0

γi
0

i!
e−γ0 , (15)

where 0! = 1. As stated in (15) probability of outage is a
function of γ0, which in turn is a function of very first power
level, Pt(1); power levels Pt(i)’s, 1 ≤ i ≤ L, are solutions
to (12). Hence in order to analyze the outage probability,
we need to analyze the solution of (12) as a function of
received SNR, number of quantization bins, L, and number of
transmit antennas, M . Lemma 4.1 shows the relation between
outage probability, Π(R,Pt), and the quantizer, Q. Theorem
4.3 demonstrates the relation between quantization thresholds,
γi’s, and average power constraint (or available SNR).

Lemma 4.1: For a system with M transmit antennas, prob-
ability of outage is proportional to γM

0 .
Proof: [4.1] For simplicity let F (·) be defined as

F (γ) =
∫

fγ(γ)dγ

= −
M−1∑
i=0

γi

i!
e−γ . (16)

Using (16) we can rewrite the outage probability in (15) as

Π(R,Pt) = F (γ0) + 1. (17)

At high SNRn, or equivalently low probability of outage,
γ0 → 0, hence we can replace F (γ0) by its Taylor expansion

around origin, i.e.,

F (γ0) ≈ −1 + γM
0 . (18)

Note that fγ(γ) has a zero at origin with multiplicity of M−1.
Replacing (18) in (17) yields the desired result.

Corollary 4.2 (Single antenna case): In a single antenna
system Π(R,Pt) ≈ γ0.

Proof: Proof is immediate by setting M = 1 in
Lemma 4.1.
Lemma 4.1 shows the relation between probability of outage
and γ0. In order to complete the analysis, we need to have γ0

as a function of available SNRn and number of quantization
bins, L (or equivalently feedback rate B = log2(L)). Theorem
4.3 provides us with this relation.

Theorem 4.3 (main result): In a system with M transmit
antennas and an L level quantized feedback with equal power
allocation power control,

γ0 ≈ 1
SNR1+M+M2+···+ML−1 (19)

for large values of SNRn/ML.
Proof: [4.3] We use recursive argument in the proof to

find γi’s. We start from the very last bin. Total power allocated
to the last bin, given by (12), only depends on γL−1. Hence
it can be solved for γL−1 as a function of average SNR,
number of transmit antennas, and number of quantization bins.
Having γL−1 we replace it in the relation for total power at
the (L − 1)st bin to obtain γL−2 and so on. In particular

Pt(L)
∫ ∞

γL−1

fγ(γ)dγ =
Pav

L
or

F (∞) − F (γL−1) =
SNRn

ML
γL−1. (20)

In obtaining (20) we used the fact that Pt(L) = k/γL−1

and the definition of SNRn = MPav/k given in section II.
When SNRn/ML → ∞, γi → 0 for all 1 ≤ i ≤ L − 1.
Therefore in (20) we can replace F (γL−1) by its equivalent
Taylor expansion given by (18). Doing so we get

1 − γM
L−1

M !
=

SNRn

ML
γL−1. (21)

We denote SNRn/ML by s for simplicity. Also let
x = γL−1/

M
√

M !. Hence we can rewrite the left hand side
of (21) as

1 − xM ≈ 1 − x. (22)

Using the above approximation we can rewrite (21), for large
values of s, as

1 − γL−1/
M
√

M ! ≈ sγL−1 or

γL−1 ≈ 1
s + 1

M√
M !

≈ 1
s
. (23)

Now for the next level using equal power allocation, we get

F (γL−1) − F (γL−2) = sγL−2. (24)
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Replacing F (·) with its equivalent at (18) and with algebraic
manipulation of the resultant relation we get

γM
L−1

M !
= γL−2(s −

γM−1
L−2

M !
). (25)

Noting that γM−1
L−2 /M ! is negligible at high SNRs, (25) can be

rewritten as

γL−2 ≈ 1
M !s

γM
L−1

≈ 1
M !s1+M

. (26)

Repeating the above procedure L − 1 times and replacing
s = SNRn/ML, we get

γ0 ≈ 1
(M !)1+M+···+ML−2(SNRn

ML )1+M+···+ML−1 . (27)

Note that the analysis is asymptotic on SNRn/ML. Hence
one should be careful when using the above formulation to
analyze the behavior of the system with respect to number of
transmit antennas, M , or the feedback rate, B = log2(L).

Corollary 4.4 (Outage): For a system satisfying the as-
sumptions of theorem 4.3,

Π(R,Pt) ≈ 1(
SNR1+M+···+ML−1

n

)M
. (28)

Proof: [4.4] Combining lemma 4.1 with the result of
theorem 4.3 we get

Π(R, Pt) ≈ γM
0

≈
(

(ML)1+M+···+ML−1

(M !)1+M+···+ML−2SNR1+M+···+ML−1
n

)M

(29)

Corollary 4.5 (Single antenna case): For a system with
single antenna at transmitter and receiver

Π(R,Pt) ≈ 1
SNRL

n

. (30)

Proof: [4.5] Proof is immediate by replacing M = 1 in
(29).

Figure 4 shows the probability of outage for systems with
finite rate feedback (optimum power allocation and equal
power allocation strategies) along with the derived bound
given in (29). As figure 4 shows, the derived bound captures
the slope of outage probability for large values of SNR very
accurately.

V. CONCLUSIONS

In this paper, we characterized an interesting high SNR
behavior of power control schemes which relies on finite
number of feedback bits. Namely, unlike the case of perfect
CSIT, systems with quantized CSIT have finite diversity. This
diversity-like gain is analyzed and a closed form approxima-
tion at high SNR is found for general case as a function of
number of transmit antennas and feedback rate. Results were
confirmed with simulation and numerical techniques.
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Fig. 4. Shows the bound on diversity order for L=3, and 4 with optimum
and equal power allocation schemes for a system with 2 transmit antennas,
and rate R=2 bit/s/Hz.
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