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A Distribution-Free Model Order Estimation Technique using Entropy
by
Anand Ramachandran Kumar

Abstract

A new model order determination procedure using concepts of entropy is proposed; this
procedure (Entropy Method) makes few assumptions on the model and the allowable class of
inputs. Simulations were performed to determine the performance characteristics of the Entropy
Method on first order Autoregressive (AR) models (Gaussian and Exponential) and on a first
order nonlinear model. The Entropy Method performed well on Gaussian AR time series for large
values of first order coefficients; it performed very well on Exponential AR time series for most
choices of coefficients. It was further observed that this technique estimated the model order of
data with nonlinear dependence structure. The performace analysis revealed three limitations: the
method is not sensitive to low dependence, the technique requires a large sample size to estimate

the model order and the computational resources required are enormous.
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CHAPTER 1

Introduction

The model order is a measure of the complexity of the model, implying how many
parameters need to be estimated. Thus determinaton of the model order is the key to statistical
model identification. Model identification in turn is the first step to system identification. Linear,
time-invariant models are most commonly assumed; from a practical point of view this
assumption considerably reduces the complexity of the identification problem. The
Autoregressive (AR) model and the Moving Average (MA) model are two commonly assumed
lingar models. The Minimum AIC Estimate (MAICE) technique proposed by Akaike [1] and the
Minimum Description Length (MDL) criterion derived by Schwarz [17] are two well known
model order determination procedures; both of these techniques assume a linear model and the
methods fail, as will be shown, when this assumption is not true; Further analytical results for the
two methods are possible only when the time series elements are jointly normal. But linear
models (restricted to Gaussian inputs) are not appropriate in certain situations; for example, in the
analysis of spike trains from the Lateral Superior Olive (LSO) of a cat nonlinear models with
exponential inputs are appropriate [8].

This work proposes a new procedure - that makes few assumptions on the model and the
input - to determine the model order of a given sequence of observables (i.e., a time series) using

the concept of entropy.



CHAPTER 2

Background Material

2.1. Model Order Determination
Let {Y,} be a stochastic time series. We assume that this time series is derived from the

time series {X,,} with a transformation having the Markovian form

Yn=R¥n1, Yu-20 .0 Ynp) Xn, 6).
The input sequence {X,} is assumed to consist of statisticall)" independent, identically distributed
random variables. Clearly, under the above transformation Y, does not depend on Y; for all
i<n-p and i >n. p is thus defined to be the order of this assumed model. J{) is the assumed
functional relationship between {X,} and {Y,}. The components {0, ;}, i=1, 2,..., k of the vector
0 are defined to be parameters of the model. The parameters {05, ;} may be constants, implying a
stationary model, or may vary with time (index n), which result in a non-stationary time series

{Yx}. The number of model parameters (k) need not equal the model order @)

Perhaps the simplest example occurs when f{*) has a multi-linear form
Y,=0Y,  +6Y, o +..+ 0pYnp + X,,.

In the statistical literature, this model is termed an autoregressive (AR) model [4] and in the
signal processing literature an all pole model [10). The moving average (MA) and the
autoregressive moving average (ARMA) models are other commonly used linear models [4]. In

the AR model the number of model parameters equals the model order.

Usually, the observables consist only of the output time series {¥,}. If the characteristics of

the input {X,} (i.e., its amplitude distribution) are known, the signal processing problem is to



determine the characteristics of the transformation JSC). For example, under the linear assumption,
if p is known, the determination of the parameter vector 0 is an important problem in speech
signal processing. Another example is to make few assumptions on f{*) - define a membership
class - and determine the model order p and then the parameter vector 0. This latter problem is of

concern here; in particular, a linear form for f{*) will not be assumed.

The determination of p is dependent on the joint probability distribution of the observed
time series {Y,}. If (") is multi-linear and {X,} is normal then {Y¥,} is normal. This example is
one of the few for which the joint distribution of {Y,} is known. Even if ') is linear,
determination of this joint distribution when {X,} is non-Gaussian is difficult. When f°) is
nonlinear, the analytic situation is worse. There are very few nonlinear models used because
analysis is extremely difficult, if not impossible. The following input-output relationship is an

example of a nonlinear model that is of importance here.

Yy=0je" %1 4 e~ 0ery ... +0y, 1 S X, (2.1)

Whether linear or nonlinear models are to be studied, the model order determination
problem - given observation of the sequence {¥,}, determine the value of p - is the key to the
identification of the model. The model order is a measure of the complexity of the model,
implying how many parameters need to be estimated and defining the dimension of the joint
distribution of {Y,} necessary to capture its statistics. The well-known model order determination

procedures essentially assume a linear model. Primary among them are the MAICE and MDL

procedures.



Minimum AIC Estimate (MAICE):

The following information criterion was defined by Akaike [1]
AIC(6) = (-2) log(maximum likelihood) + 2.

The above criterion contains an estimate of minus twice the expected log likelihood of the model
whose parameters are determined by the method of maximum likelihood. The natural logarithm
is implied in the above definition. k is the number of parameters of the model that are
independently adjusted to obtain the estimate 6. In the context of model order determination the
estimate @ is the classical maximum likelihood estimate obtained by maximizing the conditional
density function py, .. ¥.160'1s -+ « - » Y| 0) over all vectors 0. The first term in the above criterion
decreases with £ and the second term increases. Therefore a minimum will occur. The value of &
that best fits the data results in the minimum value for AIC,; this value will be selected as the
model order that best fits the data. As remarked earlier the number of model parameters (k), in
general, is not equal to the model order (p ). The only way this technique can be used as a model
order determining method is to assume k=p. Clearly the method will fail when this assumption
is not true,

As mentioned earlier, rarely is the joint distribution of {Y,}, and hence the likelihood
function, known. In the linear, Gaussian case the equivalent quantity to be minimized in a p*

order AR model is [10]

2
log(V;) + F:

where V; is the i** normalized prediction error and N, is the effective number of data points used.
The effective width of the analysis window can be taken as the ratio of the energy under that
window relative to that under a rectangular window. For a Hanning window (the window used in

subsequent analysis), N, =0.374N (N is the actual number of data points).



Minimum Description Length (MDL):

This criterion [17] chooses the model which minimizes

(-2) log(maximum likelihood) + klogN.

In the above expression, N is the sample size and &£ denotes the number of parameters of the
model independently adjusted in obtaining the maximum likelihood estimate (as in MAICE). The
criterion is a Bayesian solution to the problem of selecting the model that is a posteriori most
probable. The observations are assumed to come from a Koopman-Darmois family which

essentially restricts the class of observations considered to those which arise from a linear model.

Performance of MAICE and MDL.:

To assess the characteristics of these model order determination procedures on data for
which they are intended (linear model with Gaussian input) and for which they have little
justification (linear model with non-Gaussian input and nonlinear model with non-Gaussian
input), a series of simulations were performed on first-order models. The performance measure
used was the model order selected in repeated simulations (runs). The results of simulations with
a first order Gaussian AR model (Table 2.1) indicate that the MAICE technique, for a first order
coefficient larger in magnitude than 0.1, chooses the correct order of the model in about 80
percent to 86 percent of the runs; the corresponding simulations for MDL indicate that the correct
model order was selected in greater than 99 percent of the runs. It is evident from the average

value and the standard deviation of the model order chosen that the MAICE technique tends to

overestimate the model order.



Table 2.1
Performance of MAICE and MDL on First Order AR Time Series
Percentage of Correct Order Prediction
o Gaussian Exponential
MAICE MDL MAICE MDL
-0.1 | 85(1.30, 1.01) 97 (0.99,0.17) | 84(1.23,0.60) | 100 (1.00, 0.00)
-0.2 | 82(1.34,0.92) | 100 (1.00,0.00) | 85 (1.28, 0.74) | 100 (1.00, 0.00)
-0.3 | 85(1.32,0.98) | 100(1.00,0.00) | 90 (1.24, 0.98) | 100 (1.00, 0.00)
-0.4 | 83(1.31,0.81) | 100(1.00,0.00) | 93 (1.09, 0.35) | 100 (1.00, 0.00)
-0.5 | 81(1.33,0.79) | 100(1.00,0.00) | 88 (1.25, 0.78) | 100 (1.00, 0.00)
-0.6 | 80(1.44,1.12) | 100 (1.00,0.00) | 89 (1.17, 0.53) | 100 (1.00, 0.00)
-0.7 | 84(1.33,0.95) | 100(1.00,0.00) | 85 (1.20, 0.53) | 100 (1.00, 0.00)
-0.8 | 85(1.27,0.87) | 100(1.00,0.00) | 86 (1.25, 0.71) | 100 (1.00, 0.00)
-0.9 | 86(1.27,0.77) 99(1.01,0.10) | 88 (1.25,0.85) | 100 (1.00, 0.00)

(p (=0,) is the coefficient of the first order AR
time series. N = 6000. Percentages based on 100 simulations. The
numbers in brackets are the mean and standard deviation of the model
order chosen in the 100 runs)

For a non-Gaussian autoregressive time series there exists no framework to obtain an
explicit mathematical expression for the log likelihood function; one adhoc approach would be
to apply the Gaussian analysis to the non-Gaussian AR time series. The performance of MAICE
on a first order exponential autoregressive time series (Table 2.1) is marginally superior to the
Gaussian case for most choices of first order coefficients. It is evident from the average value and
the standard deviation of the model order chosen that the MAICE technique tends to overestimate
the model order. The corresponding results in Table 2.1 indicate that the MDL technique

performs as well on the exponential AR time series as on the Gaussian AR time series.

It is not clear how one could use these methods on data with a nonlinear dependence
structure. One approach would be to assume a Gaussian AR model and apply the above
technique. A first order time series with an exponential (nonlinear) dependence structure (see
equation (2.1)) was generated by the technique discussed by Johnson and Linebarger [7].
Independent, exponentially distributed random variables were used as the input to generate the

nonlinearly dependent time series. In the simulations p was unity and one of the parameters of



the model (0, ;) was held constant, while 01,1 was allowed to vary; in this manner the effect of
increasing nonlinear dependence on the performance of the techniques under analysis is more
easily seen (for then the dependence is directly related to 04, 1). The results of the simulations
have been tabulated in Table 2.2. The serial correlation coefficient, P (which is the first order
coefficient under the assumption of an AR model) for was computed for the data and has been
included in the table. The results of the simulations indicate that MAICE and MDL do very

poorly even on data with moderately large nonlinear dependence.

Table 2.2
Performance of MAICE and MDL on a Time Series with
First Order Nonlinear Dependence
0, o Percentage of Correct Order Prediction
MAICE MDL
002 | -0.12 81(1.32,0.79) 100 (1.00, 0.00)
.003 | -0.17 73 (1.43, 1.01) 98 (1.02,0.14)
006 { -0.30 7(2.29, 1.17) 70 (1.30, 0.46)
.009 { -0.40 0(2.22,0.76) 5(1.95,0.22)
012 | -0.51 0(2.33,0.62) 0 (2.00, 0.00)
015 | -0.59 0(2.92,1.14) 0(2.03, 0.22)
.02 -0.69 0 (3.59, 1.02) 0 (2.31, 0.46)

(p is the serial correlation coefficient. 8, , was
held constant at 195.4. N = 6000. Percentages based on 100 simulations.
The numbers in brackets are the mean and standard deviation of the
model order chosen in the 100 runs)

It is evident that the two model order determining techniques studied thus far - MAICE and
MDL - are appropriate only for data with linear dependence and are not suitable fo'r nonlinearly
dependent data. The dependence of these techniques on the prediction error explain their poor
performance on nonlinearly dependent data: the prediction error is completely determined by the
correlation matrix. Only in the case when {Y,} are jointly Gaussian is the time series completely
described by the first and second moments; in this restricted case, lack of linear correlation
implies statistical independence. There can be statistical dependence in a time series that is not

jointly Gaussian even in the absence of linear correlation. Thus, correlation is not a good measure



of nonlinear dependence; this results in the methods choosing incorrect model orders. One other
major drawback is that they can be used as model order determining techniques only if the

number of model parameters (k) is related to the model order (p) in a known manner.



2.2. Measures of Dependence

Quantities that characterize the strength of dependence between two random variables by a
numerical value are termed as measures of dependence. The applicability of these measures to
model order determination will be investigated in this section. The time series {¥,} has, by
definition, p** order Markovian dependence if and only if

PYyYum,Yea,..., Ol Yiets Yias o - o4 Y1) 22)
=PY| Y, Yea,.. ., Y;.,(yilyi—lvyi—b ey yi-p)-

Using Bayes rule one also obtains

PYyYepslYer, .., ¥ioOis Yicp-1 | Yicts +  + 5 Yicp)
PYopilYer oo, Yo Oiep=t [Yicts o 0y Yicp)

PYiYes..o, YipiOilYicls o o o3 Yip-1) =
Thus for a time series with p* order Markovian dependence we have

PY, Yepal Yty o YegOip Yicp-1 | Yicts « + + 5 Yicp)
ZPY Yty o Vg Qi Yicts + « 2 4 Yicp) PYeps 1Yy o Ve Oicpt Vit s Yicp).

Thus in model order determination one is essentially testing for independence of Y; and Yip
conditioned on {Y.,,..., Y. p}. Thus to determine model order one should check for the
independence of Y; and Y, conditioned on {¥.y, ..., Y; 1} for increasing values of /; the value
of / that results in independence is the model order.

We shall consider four measures of dependence between two random van’ableé, XandY,-
the correlation coefficient, correlation ratios, maximal correlation and mean square contingency.
Renyi [15] laid down seven postulates that a dependence measure should satisfy; they are (the
general dependence measure will be denoted by §(X, Y))

(i) 8(X, Y) is defined for any pair of random variables neither of which are constant

with probability one.
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(ii) O, Y)=8(,X).

(iii) 08X, V<1,

(iv) 8(X,Y)=0,if and only if X and Y are independent.

(v) 6(X, Y)=1, if there is a strict dependence between X and Y , 1.e., either X = g(¥) or
Y = fiX) where g() and f{*) are Borel-measurable functions.

(vi) If the Borel-measurable functions f) and g(*) map ! in a one-to-one way onto
itself, 8(AX), g(Y))= (X, Y).

(vii) If the joint distribution of X and Y is normal, then (X, )= |p(X, Y)| where
P(X, Y) is the correlation coefficient of X and Y.

(viii) In addition to the above seven postulates we require that the dependence measure
be computable for a given time series.

It should be noted that of the above mentioned properties, in the context of model order
determination, only (iv) and (viii) are essential while all others are desirable. The range of

(X, Y) need only be finite (not necessarily [0,1] as in (iii)).
The correlation coefficient, p(X, Y) is defined by [15]

&, 1) = EXD B0 E)
i War(X) Var(Y)

provided Var(X) and Var(Y) are finite and nonzero; E(-) denotes the expectation anc'l Var(*) is the
variance. This dependence measure satisfies only properties (ii), (iii), (vii) and (viii) in the above
list. This quantity is an inadequate measure of nonlinear dependence; for example suppose X is
uniformly distributed on (-1, 1) and ¥ = 5X3 - 3X then pP(X, Y) =0, implying independence (i.e.,
it does not satisfy (iv)).

The correlation ratio is defined by [15]
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O, 1)=max [Ox(1), 8y

where

oy (1) = WarETTR)
% War(Y)

provided Var(Y) exists and is nonzero. E(: | *) denotes conditional expectation, It does not satisfy
properties (i), (vii) and more importantly (iv); ©(X, ) is zero when (X, Y) is uniformly distributed
in a circle and hence suffers the same failing as the correlation coefficient, p(X, Y), i.e., it is not

an adequate measure of general dependence.

The maximal correlation, S(X, Y) is defined to be [15]
S, N = ‘}"}’ PUAX), &)

where f(*) and g(*) run over all Borel-measurable functions such that PUAX), g(Y)) makes sense,
ie., AX) and g(¥) have finite and nonzero variance. The maximal correlation is superior,
mathematically, to the other dependence measures (it satifies postulates (i) through (vii));
however, it is diffcult to obtain a mathematical expression for S(X, Y) even when one knows the
Jjoint distribution of the two random variables. The analytical situation is worse when the joint
distribution is not known. Therefore estimating this quantity for two random variables from a

time series will be difficult if not impossible.
Then mean square contingency of X and Y, with continuous joint distribution, is defined to

be [14]

(SIS

% o — 2
cn= [L R d"‘”’] ‘

The following quantity
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(80.699)
V1 +C(X, Y)?

is a dependence measure that satisfies all properties except (i) and (v); it is clear that this
dependence measure involves estimating probability density functions and, as will be discussed

in § 1.3, this is not desirable. Hence this measure does not satisfy property (viii).

The correlation coefficient and correlation ratio measures are not appropriate for we are
interested, as is evident from our discussions in § 2.1, in determining the model order of a time
series with nonlinear dependence. The two dependence measures that are theoretically sound,
maximal correlation and mean square contingency, are not computationally feasible and hence
are not appropriate candidates for determining model order; the computational complexity is
increased by the fact that in determining model order we are testing for a conditional

independence between Y; and Y., (discussed earlier).
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2.3. Information Theory: Basics and Application to Model Order Determination

The discussion in § 2.1 suggests that MAICE and MDL are not adequate tools to determine
Markovian order when nonlinear dependence is present. The discussion in the previous section
indicates that the four measures of dependence - correlation coefficients, correlation ratios,
maximal correlation and mean square contingency - are not appropriate either. An informational
measure statistic of dependence was discussed by E. H. Linfoot [9]; this approach suggests a
information-theoretic basis for determining the Markovian order of dependence in a time series.
Nakahama et al. used the concept of entropy to determine Markovian order [11].

Let X be a discrete random variable, taking on the distinct values x;. with the probabilities

pe(k=12,.),ie.
Pr(X=x;) =p), where p; 2 0 and Y p,=1.
P

Here Pr(") denotes the probability of the event in the brackets. The entropy of X (which may also

called the entropy of the probability distribution of X) as defined by Shannon [18] is denoted to

be
HX) == 3 pxlog py,
k=1

provided the series on the right of the equation converges. When X has a continuous distribution

function (with a probability density function p(x)), the entropy is defined to be

HX) =~ [ p(x) log p() dx, (2:3)

provided the integral has a finite value; the integration is performed over the region for which the
probability density function is defined. Natural logarithm is implied in the above definition. To
the knowledge of the author there exists no continuous distribution, for which the above integral

is not finite. But in practice, the time series recorded may have a distribution that is not truly
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continuous (i.e., it may have impulses), although the stochastic process generating the time series
may have a continuous distribution and thus the above integral may not be finite for the

distribution associated with the time series. This definition is easily extended to a random vector

H(X) =~ [ p(x) log p(x) dx (24)
where X € R? and the integration is performed over %%, The above definition can also be viewed
as the joint entropy of the components of the random vector (i.e. random variables).

H(X) has the following properties [20]:

(i) H(X) can be positive, negative or zero.

For a Gaussian random vector X one has

4 1
H(X)=1og [(Zue>2 IKIZJ 2.5)

where K is the covariance matrix and |+| denotes the determinant. It is quite clear
that depending on the value of the determinant of the covariance matrix H(X) could
be positive, negative or zero.

(i) H(X) depends on the coordinate system.
Let H(X) denote the entropy of the random vector X. Suppose Y is the vector
obtained by an invertible transformation of the vector X. The entropy of Y is given
by .

H(Y) = H(X) - Ex{log |J(X/Y)|}.

J(X7Y) is the Jacobian of the transformation from X to Y and Ex{‘} denotes the
expectation operation with respect to the distribution of X,

(iii) H(X) is invariant to translation.

The Jacobian for an invertible translation transformation is unity and hence the
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entropy of a random vector is translation invariant.

The joint entropy of two random vectors, X and Y is defined to be
H(X, Y) =~ [ p(x, y) log (p(x, y))dxdy.

where p(*) is the joint distribution of the random vectors X and Y. Conditional entropy is defined

to be

H(X|Y) =~ [ p(x, y) log (p(x | y))dxdy. (2.6)
where p(* | ) is the conditional distribution of X given Y. The conditional entropy is related to the
Jjoint entropy by

HX|Y)=H(X, Y) - HQY). @27

The use of conditional entropy in model order determination depends on the theorem that

the conditional entropy equals H(X), if and only if the random vectors X and Y are statistically

independent. First suppose H(X | Y) = H(X). Thus,
~ [ P(x, y) log p(x | y)dvdy =~ [ p(x) log p(x)dx.
Using the definition of conditional densities, we have
= [ ptx, y) log p(x, y)dxdy + [p(y)log p)dy = - [ p(x) log p(x)a.

Combining terms one obtains

log [% J = 0 almost everywhere (a.e.)

implying p(x, y) =p(x)p(y) a.e., which means that X and Y are statistically independent.
Conversely, suppose that X and Y are statistically independent; then by definition p(x|y) = p(x).
Substituting into equation (2.6), one easily obtains H(X|Y)=H(X). Thus when X and Y are

statistically independent, equation (2.7) reduces to
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H(X, Y)=H(X) + H(Y). ' (2.8)

The concept of conditional entropy can be used to determine the model order of a time
series {Y1, Y3,..., Y,}. Applying the definition of Markov property of a time series (equation
(2.2)) to the expression for conditional entropy in equation (2.6) one obtains the following

equivalent definition of p** order Markovian dependence:
H(YilYl'—l: Yi—Z'“ X Yl)=H(YilYi—l:- ) Yt'—p)s

if and only if the model order is p. Thus for a time series with p'* order Markovian dependence

one has the following relationship
HYi|Yigy, Yip) =H(Y;| Yy, -+ +, Yipy) forevery 12 1. (2.9)

Now consider the difference H(Y;|Y;,..., Yi)) -HY;|Yy, ..., Yi,,) for m<!. From the

definition of conditional entropy (equation (2.6)) this difference equals

p(YI'IYt'—l»---’ YHII)
p(YilYi-l""’ Yi—l)

[pi..., Y log ay;--- d¥,

After some manipulations and using Jensen’s inequality [16] one obtains

HY Yoo, Yo)~HYi  Yieyy o ooy Yig)
Slog [p(ilYins ..., Y P(iys .., Yip)d¥y+ -+ d¥iy<O0.

This establishes the following inequalities
HY)2HY;|Yi ) 2 ... ZH(Y;| Yy Yip):

Thus following monotonic retationship holds for any time series {Y,} with a p* order Markovian

dependence
HY)2HY | Yiq) 2 . 2 HYG Yy, ..o, Vi) =HY Yy, ..y Yip)= - (2.10)

Thus the model order for the given time series, {¥,}, can be determined by computing the
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conditional entropy, H(Y;|Yyy, ..., Yip), for increasing values of m (starting with unity) and
the value of m for which the difference H(Y;|Y:y, ..., Yi)-HY{ Yy, ..., Yiyy) is zero for
all /2m is the model order. Note that one has to compute up to a (p+1)* order conditional

entropy to estimate the model order of a p -order time series.

We will now digress a little to view entropy as a measure of dependence in the framework
of the eight postulates discussed in § 2.2. Consider the quantity H(Y | X) — H(Y) as a measure of
dependence between the random variables X and Y. This quantity satisfies the postulates (i), (ii),
(iv) and (vi). It does not satisfy property (iii) but the quantity has a finite range and as mentioned
in § 2.2 this will suffice in the model order determination context. As will be seen in § 3.1 this
quantity can be computed without estimating explicitly fhe joint probability density. Thus the
crucial postulates (iv) and (viii) are satisfied. These two crucial postulates hold for the quantity
H(Y|X) — H(X) (for any vector X) as well and hence this information-theoretic quantity, as has
already been suggested, can be used to estimate the model order of a time series.

To use the conditional entropy, one must be concerned with the computational details. One
obvious approach is to estimate explicitly the probability density function, compute the joint
entropy, and obtain the conditional entropy from equation (2.7). Nakahama et al. defined the m™

order dependency D,, of the time series [11] {¥;} as

HY)~-HY;|Y;q, Yig,.. Yig)
= 7 . 2.11)

Dm
For all m, D,, takes on values in the interval {0,1]; this easily follows from the inequalities of

equation (2.10). From equations (2.10) and (2.11) the following inequality for D,, is obtained

DQSDIS ...... SDp=Dp§-l= .....

Clearly, when there is no dependence in the time series, H(Y;) = HY;|Yy, ..., Yi,,) and hence

Dy, is zero for all values of m. When the statistic AD,,, = D, — D,,_; is zero for all m > I+1, the
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D, is zero for all values of m. When the statistic ADpy =D,y ~ D,y is zero for all m 2 I4+1, the

least value of I gives the model order, p.

To compute the entropy terms in equation (2.11), histogram estimates of the joint density,

P ..., Yiy) (for different values m) were computed. The binwidth was chosen in the

following manner: binwidth = %, where ¢ was the standard deviation of the time series {Y,}
b

and n, was the number of bins used. The estimates of the corresponding joint entropies,
fI(Y,-, «+«» Yim) (for different values of m) were then computed from the density estimates in the
obvious way. The conditional entropy, ff(Y,-l YiYia, ..., Yip) (for different values of m) was
then obtained from the joint entropies using equation (2.7). The estimate of the m™-order

dependency, ﬁ,,,, was then computed using the formula in equation (2.11).

To test the hypotheses AD,, =0 and AD,,#0, the sampling distribution of this statistic
under the null hypothesis is required. Lacking an analytic expression for the general case, the
authors of the paper obtained the distribution for this statistic empirically. They estimated the
distribution for the statistic ADS = D3*— D, ,, where Dg* was the estimate of the m™-order
dependency of the set {Y;, ..., Yim1, Y£4,}, where Y£%, was drawn randomly from the original
time series {Y,} (this procedure is termed as shuffling). The assumption was that {¥#%} and
{Yis..., Yimu} are statisically independent and the expected value of
Pl Yty ooy Yimr, YR approximately equals p(Y;|¥iy,..., Yime). The shuffling was
repeated a number of times and the distribution of AD;," was estimated for each m. The model -
order was estimated for three distinct choices of binwidths corresponding to n,=2, 3 and 5. The
results of simulations performed by the authors indicate that, in some cases, the model order

estimated varied with the binwidth.

In the model order determining method of Nakahama et al. the chosen binwidths were

extremely crude; they used at most S bins on each axis to obtain the histogram estimates. The first
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25 to estimate the second order density estimate, p(Y;, Yiq) - were used in estimating the
probability density function. A second comment is that there were very few sample points in each
bin, particularly in the estimation of higher order probability density functions. To compute the
model order for a time series with a second order dependence one needs to compute D, for
m=1,2,3 and Dj requires the computation of a fourth order probability density function, i.e.,
P(Yi Yioy, Yig, Yi3). As in one of their more plentiful examples, if 4000 time series points were

used to estimate the fourth order probability density function with 5 bins along each axis; this

implies that there were, on an average, just 4(5)20 =7 points in each bin. The resulting heavily

oversmoothed density estimates were used in estimating the dependency and hence the model
order. Further it is not clear that the shuffling methods used in determining the null distribution
were very reliable. In addition to these limitations the dependency method did not have a firm
theoretical foundation. The paper did not include any performance analysis; for example, how
often did the method estimate the model order correctly in repeated simulations. Another aspect
of the procedure not covered in the paper is that of robustness, i.e., in what range of dependence
levels did the method estimate the model order efficiently. These criteria must be used to assess

the validity of any model order determining technique.
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CHAPTER 3

Estimating Model Order Using Entropy

3.1. Estimating Entropy

It is clear from Chapter 2 that information theory methods can be used in model order
determination. But the discussions on the dependency approach to model order determination
suggest that an explicit estimation of the probability density function is not desirable. Does a
procedure exist that estimates the joint entropy and hence the conditional entropy without
explicitly estimating the probability density function? To ensure that the procedure is applicable
to a wide variety of problems we also require that the statistic estimating the joint entropy not
require any knowledge, at least asymptotically, of the underlying distribution of the given time
series (i.e., a distribution-free statistic).

Suppose {Y,, n=1,..,N} is the given observed time series (of identically distributed
random variables). Let Y, have a continuous amplitude distribution function Py(*) and associated
probability density function py(*). From elementary probability theory we have

7,

Yf Py() dy=PHTY,) - PY,) : @0

where T is an operator whose domain and range comprises of elements of the time series; it maps

Y, to the smallest (in amplitude) random variable larger than Y, - TY, - and is mathematically

defined as

TY, e {Y,} and TY, =arg {’l,r‘l)l}l} ¥i—- Yn)}'

The following approximation to equation (3.1)
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Py(Yp)(TYy—Y,) = PUTY,)— Py(Y,)
holds when the difference TY,~Y, is small. When the empirical distribution function is

substituted into the right hand side, we obtain
1
py(Yy) (TY,~Y,) = N 3.2)

The entropy of py(°), given by equation (2.3), can be expressed as E [— log py(-)]; the entropy of

py(") can be estimated by the average value of — log py(). Using equation (3.2) the following

estimate of the entropy of py() results
N 1 N
H )= N dlog 4N [TY,-—Y,-] 3 3.3)
i=

This estimate is the average of the log of the distance between adjacent random variables in the

amplitude-ordered time series. This estimate is similar to that found in [21].

As there is no equivalent ordering of elements in N9, for d > 1, a more general setting for
the estimate in equation (3.3) must be obtained. The estimate in (3.3) can also be viewed in the
following manner: the random variables in the time series, {Y,} are placed on the real line, R!.
Consider an arbitrary random variable Y;; searching for the nearest larger random variable, TY;
on R! can be visualized as an unidirectional expanding sphere which stops expanding as soon as
the point TY; is encountered. The first order estimate is then the average of the logarithm of the
volume of the largest sphere centered at Y; that contains no random variable larger than itself,
This view of the first order entropy estimate provides some insight as to how higher order joint
entropy estimates can be obtained. The sample space points ¥; € 9 are created from the original

time series {Y,} in the following manner
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Yy (Yan Yawern
Yi=1{:1], Yo= | 1 [,y Yy,= . (3.4
Yy Yo Yan,

where Ny= [—1‘-\1’- J . The following relationship holds for the random vector ¥ € D c 94

,! Py(y) dV = Py(y)

where D is the volume over which integration is performed. Construct an expanding sphere (a
generalized sphere in N9 centered at an arbitrary data point, ¥;; expand the sphere until it
encounters another data point (this will be termed as the nearest neighbor of Y)) denoted as

Y; nn. Letting this open sphere correspond to the region D, the volume it encloses is Vi, nv. When

»

Vi, nw is small, the above integral can be approximated by
Py(y) = prY) Vi nn.
Using the empirical distribution function one obtains

1
pY(Y) Vi ay = Ny (3.5)

where Ny is the total number of sample space points, ¥; € RY, created from the observed time

series {Y,}. As in the first order entropy estimate the average value of — log py(*) would serve as

an estimate of the E [— log py(')], i.e., the joint entropy (see equation (2.4)) of the random

variables {Y; Y;_y, ..., Y;i_41}. Using equation (3.5) one obtains the following d*# order entropy
estimate
" 1 N;
AN = o X log [N,, Vi NN]. (3.6)
d (=]

As Ny= [%-J, N4 decreases with d; thus given a time series HY) will have to be estimated from
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fewer elements for larger values of d.

As discussed in § 2.3 (see discussion following equation (2.10)) the model order of the time
series, p, is given by the smallest value of ! for which the quantity H(Y;|Ywy,..., Yi)
—~HY|Yeps ooy Yig) is zero, If the I'"Morder conditional entropy is estimated by
A\ Yy, ..., Yi)) (=8~ A(Y)) then the model order is given by the value of m for
which the difference A(Y;| Yinooos Y -fl(Y,-l Yt ..oy Yim) (denoted by AH,,) satisfies
the null hypothesis for all m >/ and does not satisfy the null hypothesis for any m < /. To test the
hypotheses AH,,=0 and AH,, #0 the distribution of this statistic under null hypothesis is
required. As it was difficult to derive the distribution of AH,, analytically, a normal distribution
was assumed. With this assumption one requires only the bias and variance of AH,, to test it for

null hypothesis, With this goal in mind we now obtain the bias and variance of the entropy

estimate A (Y).
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3.2. Bias of Entropy Estimate
To obtain the bias of the first order entropy estimate, I?,(Y) one needs to obtain the bias of

Elog [TY,, - Y,,]. Consider

Elog [TY,, - Y,,] =E{E [log (TY,~Y,)| Y,,]}.

To simplify the right hand side of the above equation one needs the conditional distribution of
TY, given Y,; the following theorem from [13] which provides a link between the order statistics
of a set of independent and identically distributed random variables and a nonhomogeneous
Poisson process.
Let {N(#),t>0} be a Poisson process with intensity function A(z). Under the
condition that N(T) = k, the k occurence times T, < Ty < *** < T in the interval
(0,T] at which events occur are random variables having the same joint
distribution as if they were the order statistics corresponding to k independent

random variables Uy, ..., Uy having the common distribution function

[ M) ae
Py(u)=3——, 0Su<T. G.7)

[y ae

0

Under the assumption that the time series {¥,} is comprised of independent and identically
distributed random variables the probability density function of the difference, TY,~Y,=7
conditioned on Y,, is (by the above theorem) [19]

r»nx

- fl(a)da
Purxly)=Mx+y)e 7

Using the above conditional density function in the identity we have
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x4y
o - _f Ma) do

Elog [T, ~Y,) = [ prd) [logydceme * - dyds
—o0 0
X
Denote the integral !?»(oc) do. by A(x). Making the transformation y = A(x+y) — A(x) we obtain
0

Elog [TY,, - Y,,] = _[ Pr.(x) _[log [A" [y+A(x)] —x] e™dy.
- 00 0
Using a first order Taylor’s approximation about ¥ =0 for A"{(34A(x)) — x one obtains
Elog [TY,, - Y,,] = J' Pr.(x) flog 2| e dy.
—o 0 Ax)
Simplifying the above expression using results from [5] one obtains
Elog [TY,, - Y,,] == [ py(x) log Mx) dx—C. (3.8)

where C is Euler's constant.

If there are N points in the interval (0, 7] i.e., N(T)=N, then clearly A(T) = EN(T) =N (as
in the theorem we are concerned with a Poisson process conditioned on N(T) =N). Using this

result and equation (3.7) we have the following relation

Mx) =N py (x).

Using the above relation in equation (3.8) one gets
Elog (¥~ Y] =~ [ pr ) log py, o) di~log N~C.

Using the above result in equation (3.3) one obtains EI:II(Y)=H1(Y)—C. Thus

I?I(Y) = ﬁl(Y) + C is asymptotically an unbiased estimator of H f109)
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Simulations were performed to test the result that H\(Y) was a distribution-free statistic. A
time series with independent and identically distributed random variables was formed.
Simulations were performed for the Exponential, Laplacian, Normal, Rayleigh and Uniform
densities; the probability density functions and the mathematical expressions for the

corresponding first order entropies are included in Table 3.1.

Table 3.1
PQ) Hy(Y)
Exponential Ae~™, ys0 1 —loghA
Laplacian %— M, —cocy<oo 1-log [_g'_]
Normal L %‘;%:‘ —c<y<oo 1 log 2re)?)
orm '\/ﬁ?\, e ,: <)Yy 5 g

- Y 1o ]2

Rayleigh 22 e . ,» ¥>0 1+ ) [C log [Xz
. 1

Uniform AR log A

(C is Euler’s constant)

The results of the simulations are tabulated in Table 3.2. The table includes the theoretical value
of the entropy H(Y). The mean and the standard deviation of the entropy estimate H(Y) based on
100 repetitions are also included in the table. The estimate deviates no more than 6 percent from
the theoretical value for any distribution. From the table it is also clear that the performance of

the estimator I:II(Y) does not depend strongly on the probability density function.
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Table 3.2

()

Mean SD

Exponential 1 1.0000 | 0.9951 | 0.0285
Laplacian V2 | 13466 | 1.3441 | 0.0312

Py A | H(Y)

Normal 1 1.4189 | 1.4159 | 0.0241
Rayleigh V2w | 0.7162 | 0.7180 | 0.0253
Uniform V12 | 1.2425 | 1.2431 | 0.0169

(py() denotes the probability density function of ¥, € {¥,}; A is its parameter.
The Mean and SD (standard deviation) were computed on basis of 100
runs, N = 2000)

A similar analysis of the estimate of higher order (d > 1) entropy, HLY), (see equation
(3.6)) was difficult; hence the bias was estimated in an empirical manner, The bias was assumed
to be equal to that derived in one dimension. The estimate HY)=H/Y)+C is a natural
extension of the unbiased (asymptotically) estimator of the first order joint entropy, H,(Y). The
performance of this estimate was studied through simulations for the sample cases d=2, 3. I,
distance measure was used in computing the volume, Vi nv, in equation (3.6). The simulations
were performed on a time series with independent and identically distributed random variables;
the Exponential, Laplacian, Normal, Rayleigh and Uniform densities were considered. From
equation (2.9) one has, for a time series {Y,} with independent and identically distributed (i.i.d.)
random variables, HY) =d H\(Y,). ¥ € R? were constructed as described in § 3.1 (see equation
(3.4)) and hence the theoretical value of the joint entropy for d > 1 is known. The fesults of the
simulations are tabulated in Table 3.3. The mean and standard deviation of the entropy estimate
HAY) (based on 100 repetitions) indicate that the estimate deviates no greater than 6 percent from

the theoretical value.
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Table 3.3
Hy (Y H
PrO) A | Hp 2 Hy(Y) (M
Mean SD Mean SD
Exponential 1 2.0000 | 2.0124 | 0.0478 | 3.0000 | 3.0617 | 0.0630
Laplacian V2 | 2.6932 | 2.6897 | 0.0148 40398 | 4.0220 | 0.0537
Normal 1 2.8378 | 2.8348 | 0.0389 | 4.2567 | 4.2382 | 0.0433
Rayleigh V2it | 1.4324 | 1.4375 | 0.0366 2,1486 | 2.1431 | 0.0418
Uniform V12 | 2.4850 | 2.4983 | 0.0323 3.7275 | 3.7952 (| 0.0320

(py() denotes the probability density function of ¥, & {¥,}; Ais its parameter.
The Mean and SD (standard deviation) are based on 100 runs. N4=2000 for d=2, 3)

The results indicate that the conjectured bias was appropriate. Further, the simulations indicate

that the estimate does not depend strongly on the underlying distribution.
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3.3. Variance of Entropy Estimate

An analytical expression will now be obtained for the variance of the first order entropy

estimate, Hy(Y) for a time seres of independent random variables. Using the notation and

approach of determining the first moment of log [TY,, - Y,,] we have the following expression for

the second moment

2 e hoy —lf’k(a) do
E{log(TY,~Y,)t = fpy.(x>£ (log W’ Mxy)e *  dydx.

A first order Taylor approximation for A~}(y+A(x)) ~x about y =0 results in

2
E [log(m - Yn)] I pr.) [log [ v )H e dy.
Simplifying the above expression using results from [5] we obtain

—’;—2 +C2+2C [ pr(9logMx) de+ [ py,(x) [log ?»(x)]zdx

where C is the Euler’s constant. Using the above equation in conjunction with equation (3.8) and

simplifying one obtains the following expression for the variance of log [TY,l - Y,,]

Var{log [TY,, - Y,,]}= %2- + Var [log py_(x)].

We will assume that log [TY,-— Y,-] and log [TY,-— Y _,-] are independent and identically distributed

for all i j; this assumption is exact only when Y, is uniformly distributed. Using the above

result one has the following approximate variance of the first order entropy estimate H,(Y)

Varf,(Y) = —2 + —1:7 Var [log py(x)]. (.9)
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The expressions for the above variance expression for different distributions are given in

Table (3.4). ,
Table 3.4
py()

Exponential % + %
Laplacian gl-zv_ + -1—:,-
Normal -6-1327 + %
Rayleigh % + -%v-
Uniform %

The following the statistic was used to estimate the variance of H,(Y)

—_. 1 N 2 1 N 2

Var [Hl(Y)] =— Z logN [TY,-—Y;] —_—<— Z logN [TY,'—Y,'] . (3.10)

N g Na

Simulations were performed to demonstrate that the above statistic estimated the variance
expression obtained in equation (3.9). Simulations were performed on time series with
independent and identically distributed random variables for the Exponential, Laplacian, Normal,
Rayleigh and Uniform deasities; these densities are given in Table (3.1). The results of these

simulations are tabulated in Table (3.5).
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Table 3.5
) A | Vardym Var H,(¥)

Mean SD
Exponential 1 1.323%x 1073 | 1.307x1073 | 4.4x 105
Laplacian V2 | 1323x107 | 1.310% 1073 | 4.7x 1075
Normal 1 1.072x 1073 | 1.061x 1073 | 43x 1075
Rayleigh V2/r | 1.028x 1073 | 1.020x 1073 | 43x10°S
Uniform VI2 | 0.823x 1073 | 0.829% 1073 | 3.8 x 10~

(py(°) denotes the probability density function of ¥, € {Y,}; Ais its parameter.
The Mean and SD (standard deviation) were computed on basis of 100
runs. N = 2000)

The simulations indicate that the variance estimate of fI,(Y) deviates no more than 8 percent from

the theoretical value. Further, it is also clear that the performance of the variance estimate does
not depend strongly on the density function.

A similar analysis of the variance of higher order (d > 1) entropy estimates, HAY) (equation
(3.6)) was difficult; hénce the following empirical variance estimate - a straight forward extension

of equation (3.10) - was used.

—_ 1 Ny 2 1 Ni 2
Varki == 3, [logNa V] = |34 ogha Vi - G.1)

i=1

where L, distance measure was used in computing the volume Vi, nw. Simulations were performed
on a time series with independent and identically distributed random variables; the Exponential,
Laplacian, Normal, Rayleigh and Uniform densities were considered. The siml;lations were
performed for the sample cases d=2,3. The variance was estimated with the expression in
equation (3.1i). The results of the simulations are tabulated in Table (3.6) The results of the

simulations were compared with the following extension of the theoretical result of equation (3.9)

- 2
VarfLY) = -6-’1‘—\,; + 7;: Var [log py(y)]. (3.12)

When Y; € 9t? created from the time series (as described in 4, equation (3.4)) are independent and
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identically distributed the above equation reduces to

Varﬁd(n = 6_11:124 + ﬁdd- Var [log py(y)].

The numerical values of the above expression for the corresponding simulations are also included
in Table (3.6) and a comparison with the variance estimate indicates that they are not
significantly different. The results indicate that the theoretical variance results obtained for the
first order entropy estimate, H,(Y), although difficult to derive analytically, extend to higher order

entropy estimates.

Table 3.6
Var ﬁz Y) “7;1"72(}’) Var il3 Y) V_G-;I:I:;(Y)
PYO) A x 10‘(-‘ x 10'(3

Mean SD Mean SD

x103 | x10°5 x1073 | x10°5
Exponential 1 1.822 1.822 8.7 2.323 2.317 9.4
Laplacian V2 1.822 1.803 8.3 2.323 2.224 8.2
Normal 1 1.322 1.295 6.0 1.573 1.476 7.5
Rayleigh NUn 1.234 1.233 5.9 1.439 1.419 7.7
Uniform V12 0.823 0.838 47 0.823 0.860 6.3

(py(") denotes the probability density function of ¥, e {Y,}; Ais its parameter.
The Mean and SD (standard deviation) are based on 100 runs. N,=2000 ford=2, 3)
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34. Estimating Model Order

The model order of any given time series will be estimated by the procedure outlined in
§ 3.1; the quantity AH, will be computed for increasing values values of /. AH; will then be tested
for the null hypothesis. As AH, is the difference between the /**-order and the (/+1)"-order
conditional entropies and the /“*-order conditional entropy can be written as the difference

between the (+1)*-order and /*"-order joint entropies one obtains

AH; == H1p(¥) +2 Ay (¥) - FKY). (3.13)
where I:I,(Y) is as defined in equation (3.3) for /=1 and in equation (3.6) for [ > 2. Using results
of § 3.2 one easily sees that AH is an unbiased (asymptotically) estimator of the difference in the
I*".order and (+1)"-order conditional entropies. With the assumption that ﬁd,(Y) and ﬁd, are
statistically independent (this was verified through simulations) for any d, =d, we obtain (using

equation (3.13))
VarAH, = VarHy,y(Y) + 4 Varfly, (Y) + VarH/(Y) (3.14)

where ‘E(') is as defined in equation (3.10) for d=1 and in equation (3.11) for d > 2. With the
foregoing assumptions AH; satisfies the null hypothesis if it lies in the range [-2 B, 2 B] where
B=+VaraH,

To assess the characteristics of the new model order determination procedur}a a series of
simulations were performed on data with a first order dependence structure. The performance
measure used was the model order selected in repeated simulations (runs). The results of
simulations with a first order Gaussian AR model are tabulated in Table 3.7; for a first order
coefficient larger in magnitude than 0.5 the entropy method selects the correct model order in
greater than 90 percent of the runs. The entropy method is clearly not very sensitive to low levels

of dependence in a time series whose elements are jointly normal.



34

Table 3.7
Performance of Entropy Method on First Order AR Time Series
Percentage of Comrect Order Prediction
P Gaussian Exponential
-0.1 0 (0.02, 0.20) 29 (0.31, 0.48)
-0.2 2(0.02,0.14) 95 (0.99, 0.22)
-0.3 7 (0.07,0.26) 99 (1.01, 0.10)
-0.4 37 (0.41,0.53) 96 (1.04, 0.20)
-0.5 90 (0.98, 0.32) 94 (1.06, 0.24)
-0.6 93 (1.07, 0.26) 94 (1.06, 0.24)
-0.7 97 (1.03,0.17) 96 (1.04, 0.20)
-0.8 96 (1.04, 0.20) 98 (1.02, 0.14)
-0.9 95 (1.05, 0.22) 96 (1.04, 0.20)

(p (=0,) is the coefficient of the first order AR
time series. N = 6000. Percentages based on 100 simulations. The
numbers in brackets are the mean and standard deviation of the model
order chosen in the 100 runs)

The results of the performance of the three techniques (MAICE, MDL and Entropy Method)
on Gaussian AR time series are plotted in figure 3.1b; the percentage of correct model order
prediction is plotted against the magnitude of first order coefficient (the values are taken from
Table 2.1 and Table 3.7). Clearly the performance of the Entropy method on a first order
Guassian AR time series is superior to the performance of MAICE technique for first order
coefficients larger in magnitude than 0.5; the trend is reversed for values of coefficients smaller in
magnitude than 0.5. The MDL technique selects the model order far more accurately than the
Entropy method for small values of coefficients (less in magnitude than 0.5) and the two methods
have comparable performance levels for larger values of coefficients.

The Entropy method performs very well on an Exponential AR time series; for a first order
coefficient larger in magnitude than 0.1 the method selects the mode! order correctly in greater
than 94 percent of the runs (the results are tabulated in Table 3.7). The method is far more
sensitive to small values of coefficients in an Exponential AR time series than in a Gaussian AR

time series.
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Figure 3.1a: Performance of MAICE, MDL and Entropy Method
(EM) on Gaussian AR time series. The percentage of correct model
order selected (based on 100 runs) is plotted against the magnitude
of the first order coefficient, p; the percentages and the correspond-
ing first order coefficients are as in Table 2.1 (for MAICE and MDL)

and in Table 3.7 (for Entropy Method).
The results of the performance of the three techniques (MAICE, MDL and Entropy Method)

on Exponential AR time series are plotted in figure 3.1b; the percentage of correct model order
prediction is plotted against the magnitude of first order coefficient (the values are taken from
Table 2.1 and Table 3.7). It is evident that the Entropy Method and the MDL techniques have

similar performance levels on an Exponential AR time series; these two methods select the model
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order more accurately than the MAICE technique.
The performance of the Entropy Method on data with a nonlinear dependence structure was
studied through simulations. A first order time series with an exponential (nonlinear) dependence

structure (see equation (2.1)) was generated by the technique discussed by Johnson and

110

B MDL ]
EM

MAICE

Percentage of Correct Order Prediction

lel

Figure 3.1b: Performance of MAICE, MDL and Entropy Method
(EM) on Exponential AR time series. The percentage of correct
model order selected (based on 100 runs) is plotted against the mag-
nitude of the first order coefficient, p; the percentages and the
corresponding first order coefficients are as in Table 2.1 (for MAICE
and MDL) and in Table 3.7 (for Entropy Method). -
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Linebarger [7]. The method has been outlined in § 2.1. The results of the simulations have been
tabulated in Table 3.8. The serial correlation coefficient, p (which is the first order coefficient
under the assumption of an AR model), was computed for the data and has been included in the
table. The results indicate that the Entropy Method selects the correct model order higher than 96
percent for moderately large to large dependence. The Entropy Method is not very sensitive to

dependence levels corresponding to 0y,120.002

Table 3.8
Performance of Entropy Method on a Time Series with
First Order Nonlinear Dependence
0,1 p Percentage of Correct Order Prediction
002 | -0.12 35 (0.41, 0.55)
003 | -0.17 81(0.87,0.42)
006 | -0.30 98 (1.02, 0.14)
.009 | -0.40 97 (1.03,0.17)
012 | -0.51 96 (1.04, 0.20)
015 | -0.59 96 (1.04, 0.20)
02 -0.69 96 (1.04, 0.20)

(p is the serial correlation coefficient. 8, , was
held constant at 195.4. N = 6000. Percentages based on 100 simulations.
The numbers in brackets are the mean and standard deviation of the
model order chosen in the 100 runs)

The results of the performance of the three techniques (MAICE, MDL and Entropy Method)
on Exponential AR time series are plotted in figure 3.1c; the percentage of correct model order
prediction is plotted against the magnitude of first order coefficient (the values are taken from
Table 2.2 and Table 3.8). It is evident that the performance of the Entropy Method i;nproves with
increasing nonlinear dependence, whereas the performance of MAICE and MDL depreciates with
increasing dependence (nonlinear); MAICE and MDL do poorly even on data with moderately
large nonlinear dependence.

Evidently the Entropy Method performs poorly on a Gaussian AR model for small first

order coefficients. This poor performance is due to the low sensitivity of the conditional entropy

of Gaussian AR time series to first order coefficients; applying the expression for joint entropy
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Figure 3.1c: Performance of MAICE, MDL and Entropy Method
(EM) on time series with nonlinear dependence structure. The per-
centage of correct model order selected (based on 100 runs) is plot-
ted against the magnitude of the serial correlation coefficient, p; the
percentages and the corresponding first order coefficients are as in
Table 2.2 (for MAICE and MDL) and in Table 3.8 (for Entropy

Method).

(equation (2.5)) in equation (2.7) one obtains the expression for conditional entropy of a random

variable X given the random variable Y, H(X | Y), and hence the expression for H(X |Y) — H(X) as
% log(1 — p?) (p is the serial correlation coefficient). H(X|Y) — H(X) is plotted against p in figure

3.2; the low sensitivity of this difference to the coefficient is evident from the figure, The
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HX|Y) - HX)

-2

Ipl

Figure 3.2: H(X|Y) - H(X) is plotted against the serial correlation
coefficient, p for a first order Gaussian AR time senes,

HX|Y)~ HOO = 5 log(1 ~ p2).
Entropy Method performs well on first order Exponential AR time series; the method is sensitive
to low levels of dependence. The performance of the method on time series with nonlinearly
dependence structure is good for moderately large to large dependence; the method is not

sensitive to low dependence levels.
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3.5. Size of Data required for analjrsis

Simulations were performed on first order Exponential AR time series to determine the
minimum length of the time series (value of N) that is required to obtain a performance level
comparable to that for N=6000 (see Table 3.8). The simulations were performed for

N =100, 1000, 2000 and 3000. The results are tabulated in Table 3.9,

Table 3.9
Percentage of Correct Order Prediction
P N=100 | N=1000 | N=2000 | N=3000 | N=6000
-0.1 0 1 2 10 29
-0.2 1 15 42 73 95
-0.3 0 41 83 99 99
-0.4 2 79 100 98 96
-0.5 4 97 96 99 94
-0.6 16 99 100 98 94
-0.7 28 97 97 97 96
-0.8 55 94 97 93 98
-0.9 78 93 94 92 96

(p is the coefficient of the first order Exponential AR time
series. Percentages based on 100 simulations.)

From Table 3.9 it is evident that one needs over 3000 elements in the time series to estimate the
model order with a performance level comparable to that for N = 6000; this is the amount of data
required for a time series with first order dependence. The situation is likely to get worse for
time series with higher model orders. This observation is not surprising for three reasons: firstly

estimating the model order of a p“-order time series involves estimating the (p+2)*-order joint

f

elements in R Thus one would have to estimate the (p+2)* joint entropy from only ;—1_:_,—2—

entropy (see § 2.3). The second reason is that an N-element time series results in only

elements. The third reason could be termed as the "curse of dimensionality", whereby the number
of elements required to fill a unit volume in space increases exponentially with dimension. Thus

the Entropy Method is a data-intensive model order determining
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3.6. Computational Complexity

The unbiased (asymptotically) first order entropy H;(Y) is obtained by first computing the
estimate H((Y) and then adjusting for the bias. The quantity H,(Y) (see equation (3.3)) is
computed by sorting the given time series by magnitude and then averaging the logarithm of the
difference between ajacent elements (of this amplitude-ordered time series). Most of the
computational complexity is associated with amplitude-ordering the time series; if an efficient

sorting algorithm, for example quicksort, is used the complexity is of the order O(NlogN).

The key to computing the d**-order entropy, H(Y) (d > 1) is computing the L, distance to
the nearest neighbor of each of the elements in R4 (see equation (3.6)). If a brute force approach
(of computing the distances to all other points and then taking the minimum of these distances) is
used to locate the nearest neighbor the order of computational complexity (in terms of number of
distances that have to be computed) is O(d N2). Thus for N,4=2000 the complexity is of the order
106, Thus the time required for computing H(Y) is large and hence the computational resources
required is enormous. The computational requirement is further increased by the fact that, as

discussed in § 3.5, the Entropy Method is data-intensive.
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3.7. Estimating entropy of quantized data

The recording of data is constrained by the fact that computing machines have finite
precision; hence the recorded variable of a time series is the quantized value (see figure 3.3a) of
the true variable (which may be, for example, amplitude or time). The quantization process can
be modeled as passing the time series {Y,}, through a finite time integrator, then sampling its
output (see figure 3.3b); this model is appropriate for determining the probability density function

of the quantized data. The impulse response of this integrator, ha(y), is given by

10 A
hAcv>=[ sy=

0 elsewhere

The output of the finite time integrator is sampled every A seconds resulting in the discrete

random variable ¥” that takes on the values Y, with probability Pn; Pn is given by

= [pycy) @ hO)|_,

where py(°) is probability density function of the input to the integrator and ® denotes

convolution. Simplifying one obtains

-| [ pr(@) haty - o) dor
[0 y=nA

Yy
= ( | pro) do
[ y-A y=ni

nA
= [ pyo)do.
(n-1A

Applying the Mean Value Theorem one obtains

Pa=A4 py(nt) (3.15)
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Figure 3.3: Panel a describes the quantization process of passing the time series
{Y,} through an Analog to Digital (A/D) converter; {Y’,} is the output of the
A/D converter and Y’, is the quantized value of ¥,. Panel b is a block diagram
modeling the quantization procedure. The probability density function of the

time series {Y,}, py(y), is passed through a finite time integrator whose impulse

response is given by

1 0sy<A
ha0) = [0 elsewhere’

The output of the integrator is sampled every A seconds and the resulting density

function py(y) is an impulse train; the weight of the n impulse is thus given by

nA
Pn= _[ py(y) dy . Panel ¢ describes the dithering process; {D,} are independent
(n-1)A

and identically distributed random variables from a uniform distribution denoted
by pp(y) added to ¥, to yield ¥”, Panel d is a block diagram modeling the
dithering: the input, py(y), passes through a filter whose impulse response is

Pp(y). The output of the filter is py<(y), the amplitude density of Y”,. The specific

case of pp(y) given by
po)= {8 2 2

0 elsewhere

is illustrated.
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where py(n A) is a number between the maximum and minimum of py(y) in the interval

((n-1)A, nA). Thus the output of the sampler has the following probability density function
PrO)=2pid(y-Y)
:

where p; is as defined in equation (3.15) and 84") denotes the impulse function,

As remarked in § 2.3 the definitions of entropy for a random variable in equation (2,3) and
for a random vector in equation (2.4) are not valid for a discrete distribution (the integrals in the
corresponding equations are not finite for such distributions) and hence the model order
determination technique developed cannot be applied to such a time series (i.e., {Y.}). We will

assume that the binwidth, A was, appropriately chosen to prevent aliasing [12]: A must be less
than —;— Jmax (fmax is the highest frequency component in py(y)) to prevent aliasing. The original

distribution, py(y), can be recovered from this impulse train by dithering the quantized values
(i.e., the output of the A/D converter in figure 3.3a); this dithering is performed by adding an
independent random variable to each quantized value. The simplest form of dithering is achieved
by adding independent and identically distributed random variables from an uniform distribution,
{D,}, to the quantized values, {Y’,} (see figure 3.3c); this is essentially convolving the
probability density ﬁncﬁon, pr(y) with the uniform probability density function or, equivalently,
one could model it as passing the discrete random variable, with probability density function
Pr{(y), through a low pass filter (see figure 3.3d); this model is appropriate for determining the
probability density function (and hence the entropy) of the dithered random variables. The low

pass filter (or the uniform probability density function) is given by

0 elsewhere

The entropy of the output of this low pass filter will be computed to determine the value of  that
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results in this entropy estimate equalling the entropy estimate of the input to the integrator. The

output of the low pass filter is given in figure 3.3d; the first order entropy of the output Hy(Y”) is

thus given by

Hl(Y" =—Z 8 Y”,' logY”,-
i
where Y”; = % pi; substituting for p; from equation (3.15) one obtains

H\(Y")=~ 3 A py(it) log [i;_ ﬁy(iA)J.

In the limit as A — 0 and § — 0 and % —>K (K is a constant) we have a Riemman integral

H\(Y")=~ [ py(y) logpy(y) dy — logK.

Thus by choosing 5= A the entropy of ¥” is an unbiased estimator of the true entropy (i.e., the
entropy of the input to the intergrator). This theory will be used to estimate the first order entropy

in the next section.
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3.8. Application: Estimating the model order of spike trains from Cat LSO Units

Of particular interest is the application of entropy methods to estimate the model order of
spike trains from the Lateral Superior Olive (LSO). Point Process theory provides a mathematical
model for these spike trains [19]; one of the more common approaches is based on the fact that
the intensity of the Point process completely characterizes the statistics of the process. In the
present context of model order determination the interval between successive events is treated as
a time series. It has been shown [7] that the input-output relationship of a system generating
inter-event intervals is derivable from the intensity of the desired Point process. It has also been
shown [7] that this system is nonlinear for most interesting cases. The nonlinear mode! described

by equation (2.1) is similar to the models that are used to describe the spike trains [8].

The procedure of recording the spike trains from the LSO involves a quantization of the
time axis. The low pass filtering, discussed in § 3.7, was provided by small, random perturbations
of the values of the time series. The quantization binwidth for the data under consideration was
1 ps; thus the appropriate range for the random perturbations is [— 0.5x1075, 0.5x1079] .

The pérformance of the information-theoretic model order estimator on 13 recordings of
spike trains from the LSO is tabulated in Table (3.10); the serial correlation coefficients for these
recordings is also included in the table. The largest stationary contiguous portion of the
recordings was used in estimating the model order; the details of the procedure used to locate this

stationary block are discussed in [8].



Table 3.10
Unit Stimulus Characteristics N p Model Order

Freq Level Predicted

(kHz) | (dB re threshold)
t108-1c.r2 10.0 19 11776 | -0.19 0
t129-1b.r3 15.5 39 12096 | -0.24 0
t171-1A.12 11.5 25 11520 | -0.73 1
t176-1E.r2 15.0 30 11072 | -0.23 0
t177-1F.r2 15.5 25 12608 | -0.33 1
t179-1A.12 15.5 25 10688 | -0.37 1
t182-1C.r11 11.0 33 9472 | -0.16 0
t182-1C.r2 11.0 30 12096 | -0.29 1
t182-1C.r22 11.0 40 14592 | -0.28 0
t184-1A.r6 14.0 18 8192 | -0.24 0
t184-1A.17 14.0 8 8448 | -0.16 0
t186-1Lr2 31.5 30 28288 | -0.35 1
t186-1L.r3 1.0 0 11456 | -0.24 0

(p is the serial correlation coefficient; N is the number of
inter-spike intervals used in estimating the model order; Freq denotes
the stimulus frequency which was equal to the Characteristic frequency

of the cell.)
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The method of conditional mean [6] estimates the model order of all the L.SO data records

to be greater than or equal to unity. Thus the Entropy Me:hod is not as st nsitive a technique as

the conditional mean method. It has been shown [8] that the nonlinear dependence structure of

equation (2.1) is appropriate for the LSO data. The performance of the Entropy Method on the

LSO data is consistent with its performance on time series with the nonlinear dependence

structure under discussion; the results in Table 3.8 indicate that the model order prediction of the

Entropy Method is reliable for serial correlation coefficients larger in magnitude than 0.3 which is

the trend observed in Table 3.10.
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CHAPTER 4

Conclusions

The search for a new method to estimate the model order was primarily motivated by the
fact that the existing techniques (i.e., MAICE and MDL) are strongly tied to the assumptions
made about the model (linear) and the allowable class of inputs (Gaussian). The Entropy Method
does not suffer these limitations as the joint entropy estimate is a distribution-free statistic,
However this procedure is insensitive to low dependence levels and is data-intensive. Further the
computational resources required are enormous. The fact that the Entropy Method is data-
intensive and requires enormous computational resources limits the utility of this technique; it is
not feasible to use this technique on time series with large model orders. Thus there is a trade-off
in terms of the assumptions made about the model and the performance characteristics of any
model order determination technique. This suggests that there probably exists no one "ideal"
method that works well on any time series with no assumptions on the model. The Entropy
Method should be used in conjunction with other techniques in estimating model order of any
given set of observables.

The Entropy Method uses a distribution-free statistic to estimate the Jjoint entropy; this does
not imply that the model order determining technique is distribution-free. As was discussed in
§ 3.4 the conditional entropy, H(X |Y) is not very sensitive to the first order coefficient (see figure
3.3) for a Gaussian distribution; this is a limitation imposed by the theory. This theoretical
limitation is reflected in the performance of the Entropy Method; the low sensitivity in the
performance is comparable to the low sensitivity predicted by the theory. The performance of the
Entropy Method on the Exponential AR time series seems to indicate that the theory does not

impose such sensitivity constraints for the exponential distribution; this result could not be
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verified; as discussed in § 2.1, the joint distribution of the eiements of a time series is known only
in the Gaussian case. The performance on time series with nonlinear dependence lies between the
performance on the Gaussian and Exponential AR time series. The low sensitivity observed in the
performance of the Entropy Method on time series with nonlinear dependence could be due to

theoretical limitations or could be a result of the technique itself,

Bentley [2] suggests an algorithm to determine the nearest neighbour in R? (d > 1); this
algorithm has a O(Nog?®N,) computational complexity as opposed to the brute force approach
(see § 3.6) which has a O(N2) complexity. But Bentley himself points out, in a subsequent
publication [3], that it is not clear that there is a search structure that implements this algorithm
for d 2 3. But if this algorithm could be implemented it would result in considerable savings of
computational resources; but for a given time series (i.e., N is fixed) this algorithm could result in
savings only to certain dimensions (the critical value of d is given, approximately, by solving
Nog#'N,=N2) and for higher dimensions the algorithm is worse than the brute force approach,
For example consider N = 10000: Bentley’s algorithm could result in savings only for d < 6. Thus
even for such a large time series the potential reduction of computational effort is only to the
sixth dimension; the situation is worse for smaller time series. In any case it is worth taking a

closer look to see if Bentley’s algorithm could be implemented.

The manner in which the data points in R? (for d > 1) were created (see § 3.1) resulted in
the number of elements in R?, for a given time series, (Ny= [%’-J) decreasing with increasing d;

this, as was discussed § 3.5, is one of the reasons responsible for making the Entropy Method
data-intensive. The data points in R? (for d > 1) can also be created in the following manner:
choose all sets of d-adjacent elements in the time series as data points in % Thus a time series
with N elements would yield N —d +1 elements in 0%, This method of creating data points in %t¢

has the potential to considerably reduce the size of data required for analysis; a detailed study
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should be made to determine if the Entropy Method, with elements in R created in the manner

just described, is an effective model order estimator.

In § 3.7 a box-car was used to reconstruct the true probability density function of the time
series from the given quantized values of the time series; this results in a crude estimate of py(y).
One could choose larger values of 8 (> A) to obtain smoother estimates. One could also obtain
smoother estimates of the true density by dithering the quantized data with independent random
variables drawn from a triangular distribution, of width 20, thereby approximating the true
density via linear interpolation . In all these cases one would have to obtain a mathematical

expression for the deviation from the entropy of py(y); this may not easy in some cases.

Given a time series, which technique estimates the model order correctly? To answer this
question one must be well informed on the strengths and limitations of the different techniques.
This stresses the importance of simulations in studying the performance of the different
techniques. This performance analysis should cover a variety of dependence structures; the study
should include the performance of the technique on varied degrees of dependence. Sensitivity and
computational complexity are a couple of performance characteristics that should be studied. For
example, a detailed performance analysis of the Entropy Method has been made only on time
series with a first order dependence structure; further the study covered only a specific type of
nonlinear dependence structure. Thus a careful analysis of a technique should. be made to

determine its applicability to a specific problem.
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