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ABSTRACT 

Optical Imaging Techniques for the Detection of Esophageal Neoplasia in Barrett’s 

Esophagus 

by 

Nadhi Thekkek 

The main objective of this research was to develop a two-stage optical imaging 

platform to improve detection of cancer in Barrett’s esophagus (BE).  BE caused by 

chronic reflux and patients with BE are at a higher risk for developing esophageal 

adenocarcinoma (EAC). However, neoplasia in BE is often unidentifiable under standard 

endoscopy, and studies have shown nearly half of early cancers can go unidentified by 

this method.  

Widefield imaging (resolves ~100 microns) allows efficient surveillance of large 

BE segments. Two widefield imaging techniques were identified to improve contrast 

between benign and abnormal lesions during an ex vivo 15 patient feasibility study. 

Cross-polarized imaging (CPI) reduced specular reflection and improved vascular 

contrast. Vital-dye fluorescence imaging (VFI) using topically-applied proflavine 

improved visualization of glandular pattern. Moreover, relevant pathologic features 

visible during VFI were seen in corresponding histology slides as well as high resolution 

images of the same sites. 

Based on these results, a cap-based Multispectral Digital Endoscope (MDE) was 

designed and built. The MDE can image in three different imaging modes: white light 
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imaging, CPI, and VFI. Modifications to a Pentax EPK-i video processor and a Pentax 

endoscope were made to incorporate these imaging modes into one system. A 21 patient 

in vivo pilot study with 65 pathologically correlated sites demonstrated the feasibility of 

using this system in vivo; image criteria were developed to classify neoplasia with a 

sensitivity and specificity of 100% and 76% respectively.  

High resolution imaging (resolves ~2-5 micron) may verify the disease presence 

in suspicious areas identified using widefield techniques. 2-NBDG, a fluorescent 

metabolic marker, was used as to identify neoplastic biopsies. In a study with 21 patients 

yielding 38 pathologically correlated biopsies and 158 image sites, 2-NBDG imaging 

allowed classification of cancerous biopsies with a sensitivity of 96% and specificity of 

90%. 

The unique contributions of these results is the development of a multimodal cap-

based endoscopic system to identify suspicious areas in BE, and using a metabolic 

marker to verify the presence of disease. This application extends beyond esophageal 

cancer detection and may be explored for cancer detection in other organ sites 

characterized by columnar epithelium.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Cancer accounts for more than 20% of deaths in many developed countries, and 

about 10% of deaths in developing countries 
1
. Esophageal adenocarcinoma (EAC) is a 

small but rapidly increasing part of this global burden. The disease has one of the fastest 

rising rates of incidence in the United States with an estimated 463% increase among 

males and a 335% increase among females since 1975 
2
. This is of particular concern, 

since the five-year survival for patients diagnosed with EAC is can be as low as 12% 
3
, a 

dismal outcome resulting primarily from late-stage disease detection. Though treating 

esophageal neoplasia at an early stage has been reported to increase five-year survival 

rates to as high as 81% , only a fraction of these cancers are detected early 
2
. 

EAC develops primarily in patients with Barrett’s esophagus (BE), a prevalent 

condition of the esophagus caused by chronic acid reflux have an increased risk of 

developing EAC. Therefore patients with BE undergo regular endoscopic surveillance in 

an attempt to identify and treat early lesions. Surveillance for dysplasia and cancer in BE 

involves bi-annual endoscopic examination with random four-quadrant biopsies taken 

every 1-2 cm along the entire BE segment 
4
. However, dysplasia in BE is often 

unidentifiable under standard white light endoscopy and studies have shown that as many 

as 43-57% of early cancers can go unidentified by the random biopsy protocol 
5
.  These 

limitations in the standard of care motivate the development of improved early detection 

strategies. 

Optical imaging can measure signal alterations associated with light scattering, 

light absorption and tissue autofluorescence, properties which are not apparent under 
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standard white light endoscopy 
6
. Various widefield optical imaging modalities that are 

capable of imaging these sources of endogenous contrast in real-time have been shown to 

improve the detection of neoplasia in BE 
7, 8

; unfortunately, the high rate of false-

positives associated with inflammation, the details of which will be reviewed further in 

Chapter 2, continues to be a major drawback 
7
.  

The relatively poor specificity of widefield imaging motivates the need for high-

resolution interrogation at the cellular level.  Recent advances in instrumentation have 

allowed real-time evaluation of sub-cellular morphology in vivo. Coupled with the 

appropriate contrast agent, high resolution imaging modalities have been shown to 

improve specificity 
9
. A limitation of high resolution imaging modalities is its small field 

of view (~1 mm x 1 mm); this constraint makes it difficult to survey the entire mucosal 

surface at risk during routine surveillance.  

Due to limitations such as these, there is an important need to explore additional 

imaging techniques to improve detection. A potential solution may be a multimodal 

approach, combining the benefits of widefield and high resolution instrumentation. At the 

same time, advances in exogenous contrast agents such as a vital-dye (proflavine 

hemisulfate) or a metabolic marker (2-NBDG) may further enhance signal differences 

associated with neoplasia to better facilitate detection. The work described in this thesis is 

motivated by the need for a contrast-enhanced multimodal imaging platform that can 

survey large areas to identify suspicious regions with high sensitivity and can then 

interrogate those regions with increased resolution to potentially improve specificity. 
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1.2 Specific Aims 

The overall goal of this dissertation was to develop contrast-enhanced multimodal 

optical imaging techniques to improve the detection of Barrett’s-associated neoplasia 

during widefield and high resolution imaging.  The specific aims achieved to accomplish 

this goal were to: 

 

1) Evaluate the use of a single contrast agent (proflavine) during widefield and 

high resolution imaging to characterize gastrointestinal conditions. Using a 

multispectral digital microscope and a high resolution microendoscope, 

endoscopic and surgical resection specimens from 15 consenting patients were 

imaged to characterize the signal associated with proflavine enhancement. Image 

criteria were developed based on histopathology gold standard to assess 

architectural and morphologic changes associated with neoplastic progression for 

future in vivo studies.  

 

2) Design, construct, and test a modular video endoscope capable of imaging 

proflavine in vivo at multiple spatial resolutions. Optical performance of the 

system was characterized by determining its resolution, field of view, and other 

performance indicators. A pilot study was conducted to assess system feasibility 

during in vivo Barrett’s surveillance. 
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3) Determine quantitative image criteria that aids the identification of neoplasia 

in widefield vital-dye fluorescence images obtained in vivo. Vital-dye 

fluorescence images from 65 pathologically correlated in vivo image sites. 

Texture, frequency content, and granulometry metrics were calculated and 

sequential feature selection was used to determine the optimal features for linear 

discriminant analysis. Histopathology was used as a gold standard for 

comparison.    

 

4)  Evaluate the use of 2-NBDG for identifying neoplasia and reducing false 

positives associated with inflammation. Biopsy specimens from 26 consenting 

patients were incubated with 2-NBDG and imaged using a benchtop confocal 

microscope. Image analysis was conducted to determine whether 2-NBDG 

associated contrast allowed for identification of neoplastic specimens. 

Histopathology was used as a gold standard for comparison.  

 

1.3 Chapter Summaries 

This dissertation describes the development of contrast-enhanced widefield and 

high resolution optical imaging techniques to improve the detection of Barrett’s-

associated neoplasia. Many previous works have used widefield imaging to detect lesions 

missed by the random biopsy method. In those studies, the primary sources of contrast 

were endogenous signal alterations associated with neoplastic areas which in some cases 

are indistinguishable from benign inflammatory lesions by standard endoscopy 
7, 8

. 

Additional studies have explored the use of high resolution imaging with both 
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intravenously and topically administered contrast agents 
9, 10

, but have been limited by 

their small field of view. This dissertation introduces the potential benefit of a vital-dye 

enhanced multimodal imaging platform to evaluate morphologic changes in the Barrett’s-

associated disease sequence. This work also details the instrumentation developed to 

measure those changes in vivo. Moreover, this dissertation extends the use of contrast 

agents not only to evaluate morphology at multiple spatial scales but also to take 

advantage of metabolic signatures that neoplastic cells present in an effort to understand 

the confounding effect of inflammation. A summary of each chapter follows.  

Chapter 2 summarizes the motivation for this work, including relevant cancer-

associated alterations in tissue, and current imaging approaches that have been explored 

to measure these changes. Current widefield and high resolution imaging approaches, 

some coupled with an appropriate contrast agent, can measure differences in glandular 

morphology, nuclear morphology, or vascular alterations associated with neoplasia. 

Advances in targeted contrast agents are further discussed. Studies that have explored 

these technologies are highlighted, as are the advantages and limitations of each.  

Chapter 3 describes a study evaluating the feasibility of a single agent, proflavine 

hemisulfate, as a contrast medium during both widefield and high resolution imaging to 

characterize morphologic changes associated with a variety of gastrointestinal conditions. 

Surgical specimens were obtained from 15 patients undergoing esophagectomy or 

colectomy procedures. Proflavine, a vital fluorescent dye which stains cell nuclei was 

applied topically. Specimens were imaged with a widefield multispectral microscope and 

a high resolution microendoscope and compared to histopathology. Relevant widefield 

and high resolution morphologic features characteristic to metaplasia, neoplasia, and 
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inflammation are described. This study provided the rationale for the development of an 

instrument that could acquire these measurements in vivo.  

Chapter 4 describes the development and testing of a multimodal digital 

endoscope (MDE). Specifically, this chapter details the design and implementation of 

two imaging modes, cross-polarized reflectance imaging and fluorescence imaging with 

vital-dye enhancement. This system was used to collect in vivo image data from 

esophageal tissue in order to identify suspicious lesions that may not be apparent during 

standard white light endoscopy. An ex vivo esophagectomy specimen with histologically-

verified neoplasia was used to identify pathologically relevant CPI and VFI image 

features. The criteria was verified in vivo during routine endoscopic surveillance of BE. 

Image data from various tissue types were evaluated to identify relevant pathologic 

features associated with neoplasia. This initial examination of widefield image criteria in 

vivo motivated to the 20 patient in vivo pilot study.    

 Chapter 5 describes the quantitative analysis of data obtained during in vivo 

endoscopic surveillance during a 20 patient pilot study, yielding 65 pathologically 

correlated images. Optimal image criteria were determined by sequential feature selection 

and linear discriminant analysis. Classification accuracy was assessed using 

histopathology as the gold standard.   

Chapter 6 describes a study evaluating 2-NBDG, a fluorescent metabolic marker, 

to help differentiate neoplasia from benign lesions. Surveillance biopsies from patients 

with varying pathologic grades of Barrett’s esophagus were incubated ex vivo at 37°C 

with 2-NBDG and imaged with a fluorescence confocal microscope. Forty-four biopsies 
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were obtained from twenty-six patients; 206 sites were imaged. Images were categorized 

as neoplastic (high grade dysplasia, esophageal adenocarcinoma) or metaplastic 

(intestinal metaplasia, low grade dysplasia) based on the degree of glandular 2-NBDG 

uptake. Classification accuracy was assessed using histopathology as the gold standard.   

Chapter 7 discusses the major conclusions of this work and elaborates on the 

implications on the advancing field of endoscopic surveillance. This research presented in 

this dissertation focuses on the development of optical imaging techniques that can be 

used for in vivo detection of esophageal precancers associated with EAC. These studies 

will provide information necessary to build a multi-faceted platform technology that can 

be used not only to detect precancer in Barrett’s, but also abnormalities in other organ 

sites lined with glandular epithelium.  

Chapter 7 also describes the future directions associated with instrument and contrast 

agent advances made in this dissertation. To summarize, a larger clinical trial is required 

to identify which widefield imaging mode achieves high sensitivity. Next, a study to 

assess the benefits of widefield imaging and high resolution imaging is necessary to 

compare the sensitivity and specificity of this multimodal platform to standard 

surveillance techniques. Furthermore, there exists a need to translate the use of 2-NBDG 

in vivo; necessary steps include identifying a medium for delivery and conducting 

delivery experiments in an appropriate animal model. These steps towards clinical 

translation are essential in assessing to what degree the technologies developed in this 

dissertation could improve disease management and ultimately, patient care.  
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CHAPTER 2:  BACKGROUND 

2.1 Motivation and significance  

The incidence of esophageal adenocarcinoma (EAC) is rapidly increasing; over 

the last 40 years, the incidence rate of EAC has risen by over 300% in the United States 

11
. This is of particular concern because the overall 5-year survival rate for patients 

diagnosed with EAC is only 12% 
3
. Although detecting and treating esophageal neoplasia 

at an early stage has been reported to increase 5-year survival to rates as high as 81% 
12

, 

current methods of early detection have significant limitations. As a result, more than 

60% of patients with EAC are diagnosed at a late stage, after local, regional, or distance 

metastases have occurred 
13

.   

EAC arises primarily in patients with Barrett’s esophagus (BE) 
14, 15

, which is a 

highly prevalent condition in which the squamous epithelium of the esophagus is 

replaced by intestinal metaplasia (IM) near the gastroesophageal (GE) junction 
16-18

. 

Because of this increased risk, patients with BE undergo regular surveillance endoscopy 

at designated intervals in an attempt to identify neoplastic lesions at an early stage 
4, 19

. 

Surveillance involves endoscopic examination with random four-quadrant biopsies taken 

every 1-2 cm of the Barrett’s segment 
4
.  

Despite surveillance efforts, routine biopsy protocols have been shown to miss up 

to 57% of neoplastic lesions in patients with BE 
5
. This is largely due to the fact that 

dysplasia or neoplasia may be focal, flat, and endoscopically indistinguishable from non-

neoplastic epithelium on routine white-light endoscopy (WLE). This ability to better 

delineate superficial mucosal changes associated with early neoplasia at a macroscopic 
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level, and subsequently, identify the subcellular changes associated with neoplastic 

progression would greatly enhance the yield and efficacy of current surveillance 

practices.  

2.4 Changes in Optical Properties 

In a standard white light endoscopic examination, the endoscopist views white 

light reflected from the surface of the esophagus; while visual examination of reflected 

white light can identify some changes in tissue morphology associated with neoplasia, it 

does not exploit the full range of changes in tissue optical properties which are associated 

with dysplasia and cancer. Neoplasia alters the light absorption and scattering properties 

of esophageal tissue 
20, 21

; in addition, neoplasia is associated with changes in the 

autofluorescence properties of esophageal tissue 
20, 22-24

. A number of new endoscopic 

approaches have been developed to more effectively probe neoplasia-related changes in 

optical properties to improve visualization of early neoplastic lesions.  For example, the 

color of illumination light can be optimized to better probe changes in tissue absorption 

and/or scattering. Autofluorescence endoscopy can be used to image changes in tissue 

fluorescence which are associated with neoplasia. Moreover, improving spatial resolution 

of endoscopic imaging can help reveal changes in cellular architecture and morphology 

associated with neoplasia. Finally, optically active contrast agents can be used to further 

improve image contrast and probe specific molecular and morphologic features of 

neoplastic tissue which may not be associated with changes in native optical properties.   

In this chapter, we first review changes in the optical properties of esophageal 

tissue associated with neoplasia, and then outline new endoscopic imaging approaches to 
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better use these changes to improve early detection of esophageal neoplasia. Finally, we 

discuss the use of targeted contrast agents to expand the range of molecular changes that 

can be imaged in vivo. 

2.4.1 Neoplasia-Associated Changes in Tissue Light Scattering and Absorption 

Light attenuation in esophageal tissue is governed by a combination of absorption 

and scattering.  In the visible region of the spectrum, the primary source of light 

absorption in esophageal tissue is hemoglobin. Esophageal neoplasia is associated with 

increased angiogenesis 
25

, and endoscopic imaging approaches to enhance vascular 

contrast may improve early detection
26, 27

. Oxy-hemoglobin has absorption peaks at 420 

nm, 542 nm, and 577 nm
20

; examining the tissue at these illumination wavelengths can 

enhance vascular contrast, with vasculature appearing visibly darker than the surrounding 

tissue due to the increase in light absorption
28

.  Neovascularization is an important 

quantifiable tool for distinguishing neoplasia from non-neoplastic Barrett’s epithelium. 

Irregular angiogenesis occurs within the lamina propria at various levels of the mucosal 

layer in high grade dysplasia and cancer. These features have been verified by analysis of 

microvessels and overexpression of relevant markers such as VEG-F and CD34 resulting 

in a statistically significant difference between the microvessel density in BE versus high 

grade dysplasia and cancer
26, 27

. 

Light scattering in tissue is a result of spatial fluctuations in the refractive index. 

In general, the scattering of stroma is significantly greater than that of the epithelium and 

is the dominant source of reflected white light from intact tissue.  Neoplasia is associated 

with a small decrease in stromal scattering attributed to degradation in collagen fibers 
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possibly due to proteases secreted by pre-neoplastic epithelial cells
25, 29, 30

. The 

attenuation of light in tissue is wavelength dependent, with longer red wavelengths able 

to penetrate more deeply than shorter blue wavelengths.  Thus, tuning the illumination 

wavelength provides some ability to control penetration depth, and highlight vascular 

contrast.   

2.4.2 Neoplasia-Associated Changes in Tissue Autofluorescence  

Some endogenous constituents of esophageal tissue can remit absorbed light in 

the form of fluorescence.  Endogenous fluorophores are found in both the epithelium and 

the stroma of esophageal tissue, and fluorescence imaging provides a way to monitor 

changes in the concentration and composition of these fluorophores. When esophageal 

tissue undergoes malignant transformation, endogenous fluorophores undergo 

alterations
31-33

, which can be probed via autofluorescence imaging (AFI), to detect 

abnormalities that may not be visible during standard white light endoscopy. Tuning the 

excitation wavelength provides a way to selectively probe various fluorophores which 

can then be quantified by measuring light intensity at specific emission wavelengths
33

. 

The primary fluorophores within the epithelium include mitochondrial NADH 

and FAD found in epithelial cells. Epithelial cells show cytoplasmic autofluorescence 

attributed to NADH using UV excitation wavelengths (~330-370 nm) and FAD using 

green excitation wavelengths (~510-550 nm)
34, 35

.  Levels of mitochondrial NADH
23

 and 

mitochondrial FAD increase due to dysplastic changes in the epithelium
36, 37

.  

Stromal fluorescence of esophageal tissue is predominantly associated with 

covalent collagen crosslinks, which are characterized by relatively high autofluorescence 

intensity across a broad range of UV, blue, and green excitation wavelengths
24

. 
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Esophageal neoplasia is associated with a loss of stromal autofluorescence, which has 

been attributed to a decrease in collagen crosslinking
25, 29, 30

. Finally, invasive esophageal 

cancers are often associated with porphyrin fluorescence, with maximal excitation near 

400 nm and emission in the red spectral region
20, 38, 39

. 

2.4.3 High-Resolution Imaging 

The spatial resolution of optical imaging is governed by diffraction, and with 

visible wavelengths of light, sub-cellular resolution imaging is possible. Typically, 

standard endoscopic imaging approaches do not achieve diffraction-limited resolution, 

however, recent advances in high resolution imaging techniques such as optical 

coherence tomography, endocytoscopy, and endomicroscopy afford the ability to image 

with sub-cellular resolution. Such approaches are often termed ‘optical biopsy,’ because 

they allow visualization of glandular and cellular alterations associated with neoplasia.  

Optical contrast in high resolution imaging is governed by the same alterations in tissue 

absorption, scattering and fluorescence described above.  In addition, optically active 

contrast agents are often used to increase contrast for high resolution imaging.  

2.5 In Vivo Assessment of Imaging Technologies 

In the past decade, advances in imaging technologies have enabled 

gastroenterologists to optically image and interrogate Barrett’s-associated neoplasia with 

better contrast in vivo. The development of widefield imaging technologies affords 

clinicians a macroscopic view of the tissue, serving as a ‘red-flag technique’ for relevant 

abnormalities. High resolution technologies assess microscopic features of the tissue and, 

if coupled with an ideal source of contrast, may measure biochemical, molecular, and 
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vascular changes. Table 2-1 summarizes a number of different optical technologies 

currently under investigation, describes the advantages and disadvantages of each, and 

describes which stage they have reached in terms of clinical translation. Table 2-2 

summarizes the accuracy of the technologies that have been translated to clinical use and 

have been used in large scale clinical trials. 
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Table 2-1. Advantages and disadvantages of optical technologies for 

identification of neoplasia in Barrett’s esophagus 

Technology  Advantages  Disadvantages  Stage  

Standard WLE  Capable of scanning wide 

area, widely available 

outside of tertiary care 

centers, no exogenous 

contrast 

Limited 

sensitivity and 

specificity  

Commercially 

available  

High-definition 

WLE  

Capable of scanning wide 

area, increased image 

contrast, no exogenous 

contrast  

Performance 

evaluated in 

moderate-sized 

studies  

Commercially 

available  

Autofluorescence 

Imaging  

Capable of scanning wide 

area, consistently high 

sensitivity, no exogenous 

contrast  

High rate of false 

positives, 

Performance 

evaluated only in 

small pilot studies 

Commercially 

available  

Narrow Band 

Imaging  

Capable of scanning wide 

area, consistently high 

sensitivity, no exogenous 

contrast  

Performance 

evaluated in small 

pilot studies 

Commercially 

available  

Optical 

Coherence 

Tomography  

Resolves subsurface 

structure, no exogenous 

contrast  

Technology still 

under 

development  

Clinical 

Studies  

Endocytoscopy  Histology-like imaging,  

high specificity 

Low sensitivity, 

limited FOV, 

requires 

exogenous 

contrast  

Commercially 

available  

Confocal 

Microendoscopy 

Nuclear morphology can 

be viewed, high 

Limited FOV, 

high cost, uses IV 

exogenous 

Commercially 

available  
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sensitivity and specificity contrast  

High Resolution 

Microendoscopy  

Some nuclear 

morphology can be 

viewed , lower cost, 

adaptable to any 

endoscope  

Limited FOV, 

requires 

exogenous 

contrast, 

technology in 

development  

Clinical 

Studies  
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Table 2-2. Summary of performance of emerging optical technologies. 

 

Type of detection  Study Size  Sensitivity, 

Specificity  

Autofluorescence 

Imaging  

60 patients; 116 images 91%, 43%
7
 

Narrowband Imaging  63 patients; 175 images 94%, 76%
40

 

 51 patients; 204 images 100%, 98%
41

  

 21 patients; 75 images 89%, 95%
42

  

High Resolution 

Imaging  

(1-15µm resolution)  

  

Optical Coherence 

Tomography  

33 patients; 314 images 68%, 82%
43

  

 55 patients; 177 images 83%, 75%
44

  

Endocytoscopy  16 patients; 166 images 56%, 68% (425x)  

42%, 83% 

(1125x)
45

  

Confocal Imaging  63 patients; 433 images 93%, 98%
9
  

 38 patients; 296 images 75%, 90%
46

   

 

2.5.1 Narrow Band Imaging 
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 Narrow band imaging (NBI) is a widefield imaging technology that takes 

advantage of changes in light scattering and absorption in neoplastic tissue. Systems that 

implement NBI illuminate tissue with one or more narrowband wavelength ranges 

corresponding to hemoglobin absorption peaks. Reflected light in these bandwidths is 

recombined to create a digital image with enhanced vascular contrast. This approach can 

also enhance visualization of villous mucosal patterns due to lining of vessels in mucosal 

folds
28

. An example is shown in Figure 2-1.  

 

Figure 2-1. Endoscopic images from an area positive for esophageal 

adenocarcinoma. Abnormal areas (black arrows) can be seen in the high 

resolution white light image (A), and the narrow band image (B)
42

. In the 

narrow band image the irregular mucosal morphology is visible (black 

arrow). An abnormal area (black arrow) can be seen in the 

autofluorescence image (C) where areas with loss of fluorescence are 

indicated as purple regions in the pseudo-colored overlay
7
.  

 

For example, one NBI system combines information from three wavelength 

ranges; 400-430 nm (blue), 530-550 nm (green), and 600-620 nm (red). Higher relative 

intensity from the blue region is used to enhance surface level vasculature associated with 

neoplasia due to its shallow penetration depth. In a 63 patient study using this approach, 

researchers in Amsterdam used features such as mucosal morphology and vascular 

contrast to determine grade of disease. The presence and regularity of these patterns were 
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found to be essential for image evaluation. Out of the 175 areas, 52 were used as training 

material for endoscopists and the remaining 123 were used as a validation set. In the 

validation set, 94% of HGD images were noted to show irregular or disrupted 

villous/gyrous mucosal pattern, and 85% were noted to show irregular vascular patterns. 

Using these features and others, they developed a multi-step hierarchical classification 

system based on mucosal morphology including features such as type and regularity of 

mucosal patterns, regularity of vasculature patterns, and finally presence and type of 

abnormal blood vessels. Using this multistep evaluation, they determined the overall 

sensitivity and specificity to be 94% and 76%, respectively
40

. Similarly promising 

performance was also obtained using the same NBI system in a 51 patient study by 

Sharma and colleagues; sensitivity and specificity for detection of HGD were 100% and 

99%
41

.  

Of continued debate, however, is the question of how NBI compares to high-

definition white-light endoscopy (HD-WLE) using the current generation of endoscopes. 

This new generation of endoscopes offers markedly higher pixel densities and high-

definition images resulting in increased contrast in villous mucosal patterns, and a 

marked improvement in resolution
7, 47

 over standard WLE
8
. In a study with 65 patients, 

Wolfsen and colleagues, using a narrow band system where only two of the shorter 

wavelength-ranges associated with hemoglobin were used, observed that the combination 

of HD-WLE and NBI did find higher grades of dysplasia in 18% of the study patients 

using fewer biopsies than standard endoscopy. They also observed that out of 5 of the 

cases where HGD or EAC were detected, 3 were detected by HD-WLE as well. While 

results favored NBI, the study was not designed to determine the efficacy of one modality 



32 
 

 
 

over the other
42

. Another study by Curvers and colleagues observed that while expert 

endoscopists preferred the image contrast provided by NBI, this did not improve overall 

inter-observer agreement or accuracy when compared to HD-WLE
48, 49

. Larger-scale 

studies are needed to determine which is the more accurate technique. 

2.5.2 Autofluorescence Imaging 

Autofluorescence imaging can also increase contrast between non-neoplastic and 

neoplastic sites, as a result of the loss of autofluorescence associated with esophageal 

neoplasia.  Typically, tissue autofluorescence is excited in the blue region (λ ~395-475 

nm) and fluorescence emission is collected at longer wavelengths (>490 nm) to detect 

changes in fluorophores associated with malignant transformation. Because the intensity 

of autofluorescence can be low, this technique requires the use of highly sensitive CCDs 

to collect the autofluorescence signal. In recent systems, reflected light is also collected 

through a second CCD. Co-registered images can be used to compensate for changes in 

fluorescence intensity associated with variations in illumination and distance from the tip 

of the endoscope to the tissue, thereby further enhancing autofluorescence contrast. The 

resulting effect is pseudo-colored purple to highlight neoplastic lesions
7, 8

. An example is 

shown in Figure 2-1.  

 In a recent 60 patient study using a standard endoscope with an added AFI 

component, Kara was able to detect HGD in 22 patients, 14 of which were detected with 

AFI and WLE, and 6 of which were detected using AFI alone; thereby increasing the 

detection rate from 23% to 33% using AFI. Only one of the patients was diagnosed using 

four-quadrant biopsies alone 
7
. Results suggest that AFI may aid in the detection of 
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addition HGD sites; however it may not exclude the need for the standard four quadrant 

biopsies.  Sensitivity and specificity based on the 116 samples used for this study were 

91% and 43%, respectively. While no patient was diagnosed without AFI and four 

quadrant biopsies, they cite a high rate of false positives using AFI alone due in part to 

the loss of autofluorescence associated with acute inflammation
7
.     

While individually these enhanced endoscopic technologies have shown success, 

the high rate of false positives is a major drawback. To address this limitation, a 

combination of modalities is being explored to utilize the benefits of each, potentially 

increasing the accuracy of detection at the point of surveillance. Kara and colleagues 

conducted a 20 patient pilot study where HD-WLE and AFI were used initially to locate 

suspicious lesions. Once the lesions were identified an NBI scope was introduced for 

detailed inspection of vascular and mucosal patterns. They found that 40% of the HGD 

lesions were discovered with AFI alone. However, the false positive rate of the modality 

was 40% and the positive predictive value was 60%. Following NBI inspection, the false 

positive rate was reduced to 10%; achieving a positive predictive value of 85%
50

. A more 

recent study with one scope containing both modalities achieved similar results. In this 

study, AFI was able to detect more lesions than high resolution WLE alone, however the 

false positive rate remained a high 81%; following detailed inspective with NBI the rate 

was reduced to 26%
42

. In both cases however, random four-quadrant biopsies detected 

additional lesions that the optical modalities did not identify – indicating the need for 

further development of these and other technologies.  

2.5.3 High Resolution Imaging  
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Widefield imaging techniques, such as AFI and NBI, were developed to measure 

large surface areas of GI tissue. More recently, high resolution systems have been 

developed to achieve near diffraction-limited imaging from small fields of view. Four 

primary approaches have been pursued to increase spatial resolution. Optical coherence 

tomography (OCT) can image esophageal tissue with 10-15 micron resolution and a 

penetration depth of 1-2 mm.  Endocytoscopy can image surface level esophageal tissue 

with up to 1-2 micron resolution using the highest magnification setting. Confocal 

microscopy can image esophageal tissue with 1-2 micron spatial resolution with a 

penetration depth of 300-400 microns. High resolution microendoscopy can image 

surface level esophageal tissue with 4-5 micron spatial resolution. Recent clinical studies 

with these modalities highlight the benefits and limitations of high resolution imaging.  

Optical coherence tomography (OCT) uses variations in the time it takes light to 

be reflected from structures beneath the tissue surface to image sub-surface tissue 

structures as seen in Figure 2-2, in a manner analogous to ultrasound imaging. In a 55 

patient study, researchers determined that OCT could differentiate HGD and EAC from 

BE with a sensitivity of 83% and a specificity of 75%
43

. An advantage of OCT is that it 

relies on endogenous differences in light scattering to generate image contrast.  OCT may 

be a particularly useful tool in the detection and surveillance of sub-squamous BE 

because of its relatively great depth of penetration
51

. However, the technology is still 

under development 
52

 and further clinical studies are needed to assess performance in a 

wide variety of clinical settings.  
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Figure 2-2. OCT images of intestinal metaplasia (A), and of neoplasia (C, 

E) are shown with corresponding histology images shown below
43

. Dilated 

glands (C) and increased surface reflectivity (E) can be seen in the OCT 

images of neoplastic tissue.  Scale bars are 500 µm.  

 

Endocytoscopy uses a probe which is passed through the instrumentation channel of an 

endoscope to image with sub-cellular resolution. Essentially, high resolution epi-

reflectance microscopy is used with methylene blue contrast to highlight relevant nuclear 

features (Figure 2-3 first row). While models vary, there are generally two types each 

with different magnifications settings; one at 450x where the field of view can be as wide 

as 300x300 µm
2
 and a higher magnification setting of 1125x where the field of view as 

small as 120x120 µm
2
 is made visible

53
. A large study evaluating 166 sites in 16 patients 

with endocytoscopy by Pohl and colleagues reported a sensitivity and specificity of 42% 

and 83%, respectively
45

. While high specificity was encouraging, they did emphasize the 

need for an initial widefield surveillance technique to identify suspicious areas. This 

technology is certainly promising; however larger studies need to be performed.  
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Figure 2-3: Images representing intestinal metaplasia and neoplasia 

collected using endocytoscopy (A,B)
45

, confocal microendoscopy (C,D)
9
, 

and high resolution  microendoscopy (E,F)
54

. Topically applied methylene 

blue is used in endocytoscopy to highlight nuclear changes (A-B). In 

metaplasia (A), nuclei appear organized and regular; this is in stark 

contrast to neoplasia (B) where nuclei appear pleomorphic. Both images 

were taken using 1125x magnification. Confocal images were taken using 

intravenous fluorescein to enhance contrast of sub-epithelial capillaries 

(C-D). For intestinal metaplasia (C), confocal microendoscopy allows 

visualization of mucin-containing goblet cells (white arrow). For 

Barrett’s-associated neoplasia (B), cells are irregularly oriented (white 

arrow) and malignant invasion of the lamina propria can be seen (yellow 

arrow). Confocal images are 500x500 µm. High resolution 
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microendoscopy uses proflavine for contrast enhancement, highlighting 

changes in glandular and nuclear patterns (E-F). High resolution images 

are 750 µm in diameter.  

Confocal microendoscopy (CME) images subsurface tissue structure with high 

resolution by using a spatial filter to reduce the background signal produced by scattered 

out-of-focus light, producing images with 1-2 µm spatial resolution. While CME images 

can be generated either in reflectance mode or fluorescence mode, in the context of 

esophageal imaging, fluorescence CME has been primarily used. Since tissue 

autofluorescence is weak, typically fluorescent contrast agents are used to generate image 

contrast in CME. Kiesslich and researchers conducted a 63 patient study in Germany 

using an endoscope which incorporates both standard WLE and confocal microscopy; 

fluorescein (10%) was administered intravenously to generate vascular contrast. Sub-

epithelial capillaries located in the upper and deeper layers of the lamina propria were 

identified due to fluorescein contrast. Leakage of fluorescein due to irregular capillary 

formation indicated neoplastic areas (Figure 2-3, second row). Indeed due to these 

irregularities, neoplasia could be detected with a sensitivity and specificity of 94% and 

98% respectively
9
. In a prospective, randomized, double-blind, controlled, cross-over 

study with 39 patients using the same system, CME with targeted biopsy was shown to 

not only be accurate, but to nearly double the diagnostic yield of collected biopsies. In 

examining the biopsies identified by standard four-quadrant biopsies and the biopsies 

identified by CME, there was no statistically significant difference in detection of 

neoplasia between the two techniques
55

. However, although accuracy and diagnostic 

yield is impressive, the high cost may limit this technology to tertiary care centers.  
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A fiber-bundle, probe-based confocal system which can be passed through the 

instrument channel of any standard endoscope was used in a 38 patient study by Pohl and 

other researchers. A major benefit of this technology is its adaptability to existing 

endoscopes. This system also requires exogenous contrast; fluorescein was administered 

intravenously. The sensitivity and specificity of the two study endoscopists were 75% 

and 89% and 75% and 91%, respectively. They concluded that the confocal fiber probe 

showed a high negative predictive value for detecting unapparent neoplasia in BE, 

however sensitivity was not ideal
46

.  

An alternative approach to high resolution fluorescence imaging uses a coherent 

fiber bundle placed in direct contrast with the surface of tissue labeled with fluorescent 

dyes to yield high resolution images revealing sub-cellular structure (Figure 2-3, last 

row). This low-cost alternative to confocal imaging may be suited for large-scale 

surveillance outside of tertiary care centers. In a small pilot study of 9 patients, with 

topical proflavine for contrast enhancement of cell nuclei, researchers achieved a 

sensitivity and specificity of 87% and 85% using fluorescence microendoscopy
56

. 

2.5.4 Contrast Enhancement 

As optical imaging technology continues to advance, the concurrent development 

of appropriate contrast agents that target bio-markers of neoplasia is crucial.  Two general 

classes of optical contrast agents have been explored to improve image contrast: vital 

dyes and targeted contrast agents.  Absorbing or fluorescent dyes which have an affinity 

for specific tissue constituents have often been used to improve the ability to visualize 

specific features associated with neoplasia.  Often referred to as vital dyes, these stains 
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can help delineate features such as angiogenesis, leaky vasculature, and cell morphology.  

In contrast, targeted contrast agents use a high affinity probe molecule to target a specific 

molecular biomarker associated with neoplasia
57

. The probe molecule must be coupled to 

an optically active component, such as a fluorescent dye or scattering nanoparticle.  Here 

we briefly review the utility of both types of contrast agents for improved detection of 

esophageal neoplasia.  

Vital dyes can be utilized to better delineate morphologic changes associated with 

epithelial neoplasia. For example, the absorptive dye methylene blue localizes primarily 

in nuclei and can enhance visualization of nuclei when coupled with appropriate high 

resolution instrumentation. Using an endocytoscope, nuclear characteristics associated 

with neoplasia such as homogeneity, nuclear-to-cytoplasmic ratio, and organization can 

be resolved. However, since methylene blue dye has been known to induce oxidative 

damage of DNA when exposed to white light illumination
58

, the risks of the contrast 

agent need to be weighed against benefits to determine potential use.   

Fluorescent vital dyes may be advantageous due to the lack of interference with 

standard endoscopy. Fluorescein is a dye that is administered intravenously thus 

enhancing the view of vasculature in epithelial tissue. When coupled with confocal 

imaging, subsurface vasculature can be seen. The illumination and collection 

wavelengths of commercially available confocal systems correspond to fluorescein 

excitation (~490 nm) and emission (~520 nm) wavelengths
9, 46

. Acriflavine is another 

vital fluorescent dye that can be seen using similar excitation (~450 nm) and emission 

(~510 nm) wavelengths. Acriflavine stains cell nuclei, highlighting nuclear 



40 
 

 
 

characteristics such as size, shape, and spacing and has been used previously in vivo for 

GI imaging
59

. 

Targeted contrast agents serve as beacons that signal specific molecular events 

associated with precancer formation. The benefit of targeted agents is the potential to 

achieve a high signal to background ratio by virtue of selective binding to a molecular 

target. Lu and researchers used a phage display library with ~2.8x10
9
 unique sequences 

to select a cancer-specific peptide. The library was biopanned against three cultured 

human esophageal cell types: adenocarcinoma, metaplasia, and normal to identify a 

peptide with specificity for the adenocarcinoma cell line. They used the selected peptide 

labeled with FITC to image Barrett’s associated neoplasia in vivo. The agent was 

topically applied and imaged with a concurrently developed prototype fluorescence 

endoscope. Initial results showed a significant increase in binding to Barrett’s-associated 

neoplasia over Barrett’s alone when imaged with widefield fluorescence imaging (Figure 

2-4)
10

. In a different study, Hsiung and colleagues fluorescently labeled a high affinity 

heptapeptide sequence selected with similar phage display techniques for the colon and 

were able to differentiate dysplastic from non-dysplastic colonic crypts using confocal 

imaging
60

. In both these of these cases, the topically applied contrast agent was incubated 

in vivo for a short period of time before the unbound agent was washed off to reduce 

non-specific signal. While the excitation and emission wavelengths of these agents 

correspond well with commercially available confocal endoscopes, another important 

advantage demonstrated by these studies is the ability to image these agents with both 

widefield fluorescence and CME.  
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Figure 2-4: In vivo localization of contrast agent localized to a neoplasia 

region visualized using widefield fluorescence endoscopy. White light 

endoscopic image (A) shows no evidence of lesion. Topical administration 

of peptide-targeted fluorescent dye reveals neoplastic area (B)
10

. Targeted 

neoplastic crypts seen with fluorescence microscopy (C) and 

corresponding histology (D) 
61

. 

2.6 Discussion 

 Recent advances in imaging technologies afford visualization of endogenous 

optical alterations associated with GI neoplasia. NBI shows contrast associated with light 

absorption due to hemoglobin. High sensitivity and specificity is cited in studies using 

this technology, however some indicate that there is no significant difference between 

contrast associated with NBI imaging and HD-WLE, which is becoming increasingly 
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available. Autofluorescence imaging measures the signal decrease associated with loss of 

stromal collagen fluorescence and increased fluorescence associated with porphyrin. 

Various studies evaluating AFI have cited high sensitivity, but a high rate of false 

positives. The combination of NBI and autofluorescence imaging may afford better 

sensitivity and specificity rates; NBI has shown to reduce the number of false positives 

identified by AFI from 81% to 26%
42

.   

High resolution imaging will also play a major role in improving detection, 

affording clinicians an ‘optical biopsy’ of epithelial tissue. Confocal imaging allows for 

optical sectioning of up to 250 µm deep and coupled with vital dyes such as fluorescein 

allows evaluation of vascular regularity. High sensitivity and specificity have been cited; 

however, high cost and the limited field of view remain concerns. Endocytoscopy allows 

for histology-like reflectance imaging where nuclei appear dark blue due to methylene 

blue contrast. The technology achieves high specificity however the dye has been shown 

to interfere with white light imaging and image quality has been an issue.  When 

combined with widefield imaging techniques, high resolution technologies may reduce 

false positive rates if coupled with the appropriate contrast agent.  

Unfortunately, despite all the advances in optical imaging methods, there are still 

lesions that are only detected by standard four quadrant biopsies. Improvements in 

contrast agents are also needed to facilitate better early detection. A number of contrast 

agents are commercially available, primarily vital dyes such as fluorescein and methylene 

blue. However, recent in vivo testing of optically labeled high affinity peptide and 

heptapeptide sequences has paved the way for molecule specific contrast agents for GI 

neoplasias
10, 60

. While advances have translated the use of vital dyes and contrast agents 
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in vivo, there are still many unanswered questions regarding their ultimate clinical role. 

What will be the ideal mechanism of delivery? How will the development of in vivo 

imaging technologies accommodate the use of new contrast agents?  And finally, will the 

addition of contrast agents create a multifaceted platform that can improve overall 

accuracy of surveillance? 

While these new imaging technologies may be appropriate for tertiary care 

centers, additional considerations are necessary as these technologies are disseminated 

more widely. A potential solution may be a lower cost technology such as the high 

resolution microscope or an adaptable technology such as the confocal miniprobe with 

topically applied contrast agents, both of which have been cited to achieve reasonably 

high sensitivity and specificity. Objective, quantitative algorithms will also be important 

since clinicians outside of tertiary care clinics may not be as familiar with optical 

characteristics of abnormal lesions detected with new technologies. Various groups have 

begun work in this area however larger trials will need to be conducted to determine 

effectiveness
44, 56

.  

At this point, larger scale studies are needed to test the combination of multi-

scale, multi-modal technologies against the current surveillance standard, and to test 

whether the use of contrast agent is advantageous. This multifaceted optical approach has 

the potential to improve surveillance in BE; once validated it has the potential to utilized 

for surveillance of neoplasia along the GI tract and can be further developed for 

screening.  
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CHAPTER 3: VITAL-DYE ENHANCED FLUORESCENCE IMAGING OF 

GASTROINTESTINAL MUCOSA: METAPLASIA, NEOPLASIA, 

INFLAMMATION 

3.1 Introduction 

In the surveillance of both Barrett’s esophagus (BE) and Inflammatory Bowel 

Disease (IBD), dysplasia is often focal, flat and indistinguishable from non-dysplastic 

mucosa
5, 62

. Current white-light endoscopic platforms lack the resolution required to 

accurately identify dysplasia. As a result, over half of such lesions can be missed 
5, 63, 64

.  

Confocal endomicroscopy has revolutionized endoscopy by offering sub-cellular 

images of gastrointestinal epithelium 
65-67

. However, the increase in spatial resolution 

comes at the expense of decreased field of view, leaving large areas unsurveyed. 

Therefore, there exists a need for multi-scale endoscopy platforms that use widefield 

imaging to better direct placement of high-resolution fluorescent imaging devices, 

including the recently described high-resolution microendoscope, an inexpensive 

(<$5000), probe-based  technology for imaging histologic features in vivo 
54, 68, 69

. 

Our goal in this ex vivo feasibility study was to evaluate the feasibility of a single 

topical contrast agent (0.01% proflavine hemisulfate) using a prototype multi-scale, 

fluorescence-based platform using both widefield and high-resolution imaging of the 

esophagus and colon. Resulting images were compared to standard H&E-stained 

histopathology to determine what morphologic features associated with metaplasia, 

neoplasia, and inflammation can be visualized using this novel approach. These criteria 
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may be used in future in vivo studies to determine its impact on diagnostic accuracy and 

margin determination. 

3.2 Materials and Methods 

3.2.1 Specimen Preparation and Imaging 

Patients at UT MD Anderson Cancer Center and Mount Sinai Medical Center 

undergoing endoscopic mucosal resection (EMR) or surgery for adenocarcinoma or 

intractable IBD gave written informed consent to participate. 

Immediately following resection, the mucosal surface of each specimen was 

rinsed with saline and imaged under white light illumination. Abnormal and normal areas 

were identified by the study pathologist based on appearance; borders of these regions 

were marked on the white light image. Proflavine hemisulfate (0.01% w/v), which has 

been shown to localize in cell nuclei
54, 70

, was applied to the mucosal surface for 30 

seconds. Excess proflavine was removed with dry gauze. 

Widefield fluorescence images of areas identified as grossly normal and abnormal 

were obtained using a multispectral digital microscope (MDM) 
71

.  High-resolution 

fluorescence images were subsequently obtained from areas imaged with the MDM using 

a high resolution microendoscope (HRME)
54, 68

. In an effort to reduce sampling error, a 

dot of India ink was placed at each area imaged with the HRME, fixed with acetic acid, 

and photographed. Since the ink spread to ~2-4 mm in diameter and the field of view of 

the HRME is 750 µm, the photograph guided the approximation of image sites on large 

resected specimens; necessary to facilitate registration between widefield imaging, high 

resolution imaging, and subsequent histopathologic evaluation.  
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The specimen was then fixed in formalin and submitted for standard 

histopathologic analysis; vertical cross-sections were examined to grade and verify 

presence of disease. The study pathologist, blinded to the image results, assigned 

diagnoses to histologic sections of inked areas using standard histologic criteria. 

3.2.2 Instrumentation 

The MDM, a surgical microscope modified for fluorescence imaging, has been 

described previously 
71

. In this study, widefield images were obtained at 450 nm 

excitation, and fluorescence was collected through a 515 nm long-pass filter.  The field of 

view of the MDM is 2.5 cm, with a spatial resolution of 50-100 um.  The average 

illumination intensity was 2.14 mW/cm
2
 and images were acquired with a 1 s integration 

time.   

 The HRME system has also been described 
68

.  Illumination was provided via a 

450 nm LED coupled to a coherent fiber-optic bundle. Fluorescence collected by the 

bundle while in contact with the tissue was delivered to a CCD camera through a 490 nm 

long pass filter. The field of view of the HRME is 750 µm in diameter and the spatial 

resolution is 4.5 microns.   

3.2.3 Image Assessment  

Fluorescence images were qualitatively compared to histology images.  Features 

evaluated in widefield images included the presence or absence of glandular epithelium 

in the esophagus (Barrett’s metaplasia), and the architectural characteristics of the colonic 

epithelium (shape, size, and spatial distribution of crypts, presence/absence of glandular 
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distortion).  Features evaluated in high-resolution images included nuclear size, density, 

orientation and homogeneity as well as the composition of the lamina propria. 

3.3 Results 

Resected specimens from 15 patients were evaluated, including; 9 EMRs and 2 

esophagectomies from patients with Barrett’s-associated neoplasia, 3 colectomies from 

patients with colorectal adenocarcinoma, and 3 colectomies from patients with IBD (2 

with ulcerative colitis and 1 with Crohn’s disease). Images were obtained from 36 

individual histologically-verified sites. Each figure shows a white light image, a 

widefield proflavine-fluorescence image, corresponding high resolution fluorescence 

image, and pathology. The inked area is approximated by a circle in each of the widefield 

proflavine-fluorescence images. 

Figure 3-1 shows images of esophageal mucosa.  The top region of the white light 

image (Figure 3-1A) depicts an area of normal esophageal squamous mucosa.  The 

corresponding area in the widefield proflavine-fluorescence image (Figure 3-1B) shows 

homogeneous fluorescence, with uniform intensity except for some apparent proflavine 

pooling in tissue folds (arrow).  A representative high-resolution image of the squamous 

region (Figure 3-1C) exhibits hexagonally-shaped cells with bright, small, round, evenly-

spaced nuclei, which were consistently observed. These features are apparent in the 

corresponding histology section of the epithelial surface (Figure 3-1D). 

During white light imaging, the glandular architecture of BE is difficult to 

visualize.  In contrast, during widefield proflavine-fluorescence imaging, the glandular 

architecture is easily appreciated (Figure 3-1B).  A high-resolution image (Figure 3-1E) 
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obtained from the circled area shows glands with central dark lumens, lined by evenly 

spaced cells with small, regular and polarized nuclei.  Similar features are seen in 

histologic sections from the corresponding area (Figure 3-1F), which include metaplastic 

columnar epithelium with intestinal-type goblet cells. 

 

Figure 3-1. White-light image of squamo-columnar junction is shown (A). 

Widefield proflavine-fluorescence image (B) shows glandular detail in the 

Barrett’s region. High-resolution fluorescence image of squamous mucosa 

is shown (C) with corresponding histopathology (D).  High-resolution 

image of BE from area, indicated in (B), shows large glands typical of 

intestinal metaplasia (E).  Corresponding histopathology is shown in (F).  

 

Figure 3-2 shows images of Barrett’s-associated neoplastic changes.  Figure 3-2A 

shows a standard, white-light image of an area of BE with high grade dysplasia (HGD) 
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and adenocarcinoma. In the corresponding widefield proflavine-fluorescence image 

(Figure 3-2B), glands appear irregular compared to the glands associated with BE.  Note 

the visible India ink (arrow).  The high-resolution image (Figure 3-2C) obtained from the 

circled area shows glands that are smaller, more irregular in shape and irregularly spaced, 

compared to the glands in non-neoplastic BE.  In addition, nuclei are more numerous, 

crowded, pleomorphic, and have lost polarity (arrow), mirroring the appearance of HGD 

and adenocarcinoma seen in the corresponding histologic section (Figure 3-2D). 

 

 

Figure 3-2. White-light image of Barrett’s-associated neoplasia is shown 

(A). Widefield proflavine-fluorescence image depicts irregular glands (B). 

High-resolution fluorescence image from area indicated in (B) shows 

areas of nuclear crowding (arrow) (C). Corresponding histopathology is 

shown (D).  

 

Figure 3-3 shows images of normal colonic mucosa.  Figure 3-3A depicts normal 

colonic mucosa under white light illumination. The glandular pattern of colonic mucosa 
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is more apparent with widefield proflavine-fluorescence imaging (Figure 3-3B).  The 

corresponding high-resolution image (Figure 3-3C) from the circled region is 

characterized by evenly distributed, round tubular structures of similar shape and 

diameter (yellow arrow) with basally oriented, small, fluorescent nuclei (white arrow), 

features that correlate well with the transverse histologic section from the same area 

(Figure 3-3D).   

 

Figure 3-3. White-light image normal colonic mucosa is shown (A). 

Widefield proflavine-fluorescence image shows evenly-spaced colonic 

crypts (B). High-resolution fluorescence image from area in (B) shows 

evenly spaced tubular structures (yellow arrow) and polarized nuclei at the 

crypt edges (white arrow) (C). Corresponding histopathology is shown 

(D). 

 

Figure 3-4 shows images from the edge of colonic dysplasia.  Under white light 

(Figure 3-4A) colonic ridges are visualized as well as the transition to an area of irregular 

growth.  With proflavine-enhanced widefield imaging (Figure 3-4B), dysplastic glandular 

structures appear larger than normal colonic crypts and are not as evenly spaced. In the 
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corresponding high-resolution fluorescence imaging (Figure 3-4C) of the circled area, 

glands appear elongated and irregular (yellow arrow) with apparent nuclear crowding 

(white arrow).  These features correspond to the dysplastic colonic mucosa in the 

histologic section (Figure 3-4D). 

 

Figure 3-4. White-light image dysplastic colonic mucosa is shown (A). 

Widefield proflavine-fluorescence image shows unevenly-spaced colonic 

crypts (B). The brightness of the lamina propria is variable (white boxes). 

High-resolution proflavine-fluorescence image from inked area indicated 

in (B) shows unevenly spaced tubular structures (yellow arrow) and areas 

of crowded nuclei (white arrow) (C). Corresponding histopathology is 

shown (D).  

 

Figure 3-5 shows images of severe dysplasia.  Under white light (Figure 3-5A), 

the surface of a lesion can be appreciated, but without much glandular detail.  In the 

corresponding widefield proflavine-fluorescence image (Figure 3-5B), barely-visible 

glands appear distorted.  High-resolution imaging (Figure 3-5C) of the region indicated 

by the circle reveals irregular and unevenly spaced glandular structures (yellow arrow) 
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composed of crowded cells with enlarged, fluorescent nuclei that are heterogeneously 

oriented (white arrow), features that correspond to the diagnosis of HGD seen in the 

corresponding histologic section (Figure 3-5D). 

 

Figure 3-5: White-light image of severely dysplastic colonic mucosa with 

sub-surface adenocarcinoma is shown (A). Widefield proflavine-

fluorescence image depicts irregularly shaped colonic crypts (B). High-

resolution fluorescence image from area indicated in (B) shows irregularly 

shaped, unevenly spaced tubular structures (yellow arrow) and areas of 

crowded nuclei (white arrow) (C). Corresponding histopathology is shown 

(D). 

 

Figure 3-6 shows images from an area of invasive adenocarcinoma.  A mass is 

visible under white light (Figure 3-6A) and poorly-formed glandular structures can be 

seen during widefield proflavine-fluorescence imaging (Figure 3-6B). The high-

resolution image (Figure 3-6C) of the circled area reveals highly irregular and uneven 

tubular structures lined by enlarged, fluorescent nuclei lacking orientation and polarity.  

The intervening stroma appears crowded, contributing to the visible increase in 
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fluorescence.  These features mirror the appearance of dysplastic glands amidst 

desmoplastic stromal reaction in the corresponding histologic section (Figure 3-6D), 

which are diagnostic of invasive colorectal adenocarcinoma. 

 

Figure 3-6. White-light image of invasive adenocarcinoma is shown (A). 

Widefield proflavine-fluorescence image from area indicated in (A) 

depicts loss of regular glandular architecture (B). High-resolution 

fluorescence image from area indicated in (B) shows areas of dense nuclei 

(C). Corresponding histopathology is shown (D). 

 

Figure 3-7 shows images depicting mildly-active IBD.  In the white-light image 

(Figure 3-7A) glandular detail is not easily appreciated. However, in the fluorescence 

images (Figure 3-7B and 3-7C), glands appear distorted and slightly more irregular in 

spacing than in normal colonic mucosa and in quiescent IBD (not shown).  The increase 

in glandular distortion, cryptitis (arrow), and the expanded lamina propria seen in the 

high-resolution image are consistent with the abnormalities seen in the corresponding 
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histologic section showing active colitis (Figure 3-7D). This patient was known to have 

ulcerative colitis clinically. 

 

Figure 3-7. White-light image of an area of mildy active IBD is shown 

(A). Widefield proflavine-fluorescence image from area indicated in (A) 

depicts an irregular glandular pattern (B). High-resolution fluorescence 

image from area indicated in (B) shows an increase in distorted glands 

with cryptitis (arrow) and expanded lamina propria (C).  Corresponding 

histopathology of active colitis is shown (D). 

 

Figure 3-8 shows an example of severely-active IBD.  In the white-light image 

(Figure 3-8A), the presence of inflammation and ulceration make glands difficult to 

visualize.  In the widefield proflavine-fluorescence image (Figure 3-8B) the glands 

appear irregular and disorganized. The high-resolution image obtained from the circled 

region (Figure 3-8C) shows a dense population of fluorescent inflammatory cells. These 

features correspond to the ulcer bed seen in the corresponding histologic section showing 

severe colitis (Figure 3-8D), with chronic inflammatory cells in the lamina propria and 
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extensive gland dropout.  This patient was known to have active Crohn’s disease 

clinically. 

 

Figure 3-8. White-light image of an area of severely active IBD with ulcer 

is shown (A). Widefield proflavine-fluorescence image from area 

indicated in (A) depicts glandular irregularity (B). High-resolution 

fluorescence image from area indicated in (B) shows a dense nuclear 

presence in the lamina propria (C). Corresponding histopathology of 

severe colitis is shown (D). 

 

 

Tables 3-1 to 3-3 summarize the morphologic features consistently observed in widefield 

and high-resolution imaging in Barrett’s-associated neoplasia, colonic neoplasia, and 

IBD.  Following application of proflavine, widefield fluorescence images consistently 

identify larger-scale architectural differences in glandular size, shape, and distribution, 

while high-resolution images consistently allows assessment of nuclear crowding. 
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Table 3-1: Image features present in proflavine-enhanced widefield and 

high resolution imaging of normal esophagus, Barrett’s metaplasia, 

dysplasia, and adenocarcinoma 
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Table 3-2: Image features present in proflavine-enhanced widefield and 

high resolution imaging of normal colon, dysplasia, and adenocarcinoma  

 

 

Table 3-3: Image features present in proflavine-enhanced widefield and 

high resolution imaging of mildly active inflammatory bowel disease 

(IBD) and severely active IBD. 
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3.4 Discussion 

This ex vivo pilot study demonstrates the technical feasibility of a new multi-scale 

imaging approach, in which sequential widefield and high-resolution fluorescence 

imaging is performed using a single fluorescent vital dye.  Results indicate that multi-

scale, proflavine-enhanced, fluorescence imaging can characterize glandular and cellular 

changes associated with metaplasia, neoplasia, and inflammation in gastrointestinal (GI) 

mucosa. Features visible with both modalities correlate well with those observed during 

standard histopathologic evaluation.  

The results of this study provide a rationale to evaluate this multi-scale 

surveillance technique in vivo; further studies are necessary to determine whether similar 

conclusions can be drawn during endoscopic imaging of proflavine.  Moreover, larger 

sample sizes are required to assess the sensitivity and specificity of this approach.  

Despite these limitations, this study suggests that multi-scale fluorescence imaging has 

the potential to address some of the limitations of existing widefield and high-resolution 

endoscopic platforms.  

 Existing widefield endoscopic imaging techniques are emerging as promising 

ways to improve early detection of precancerous lesions by scanning over a large surface 

area. For example, autofluorescence imaging detects changes in stromal fluorescence 

with high sensitivity; however, it is limited by low specificity
7, 8, 64

. Narrowband imaging 

detects differences in vascular density, however it only indirectly visualizes glandular 

architecture. In the imaging platform described here, widefield fluorescence imaging is 
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used to provide direct visualization of glandular morphology, providing valuable 

information on alterations that are visible in H&E-stained tissue sections. 

 The relatively poor specificity of widefield imaging motivates the need for high-

resolution interrogation at the cellular level.  Confocal imaging, using IV fluorescein to 

enhance imaging of vasculature, is the most accurate high-resolution imaging technique 

to date
9, 65

.  Though its use in vivo is well established, cost may prevent it from being 

used outside tertiary care centers. Its published accuracy requires IV administration of 

fluorescein, further complicating the potential for widespread use. High-resolution 

imaging with topical proflavine can achieve sub-cellular resolution with less expensive 

instrumentation 
54

.  Topical proflavine stains nuclei, allowing direct visualization of 

relevant histologic features (e.g., nuclear density) associated with neoplasia. Though 

other promising technologies such as endocytoscopy, a probe-based technology used in 

conjunction with methylene blue, also allow direct visualization of histologic features 
72, 

73
, by using the HRME with a fluorescent dye, imaging can be accomplished without 

having the dye interfere with standard white light imaging.  

Using proflavine as a contrast agent for both widefield and high-resolution 

techniques provides an advantage over existing platforms which require different contrast 

agents for sequential imaging (e.q., methylene blue chromoendoscopy followed by 

confocal microendoscopy with fluorescein) 
66

.  Proflavine is a component of acriflavine, 

which has been used in vivo in GI imaging studies 
59

.  It is a major component of triple 

dye, which is widely used as an antiseptic regimen in the care of newborn umbilical cords 

74
; our study concentration is ten times less than the concentration in triple dye.  These 
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precedents, coupled with promising initial results support future in vivo use of proflavine 

for multi-scale imaging of GI mucosa. 

Widefield fluorescence imaging of proflavine would enhance the ability of 

gastroenterologists to examine glandular architecture over large areas of the GI mucosa.  

Suspicious areas would then be interrogated further with high-resolution imaging using 

the same contrast agent to reveal sub-cellular changes associated with nuclear 

morphology. This multi-scale approach may increase sampling efficiency, enhance 

dysplasia detection and improve margin determination.  
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CHAPTER 4: MODULAR VIDEO ENDOSCOPY FOR IN VIVO DETECTION 

OF BARRETT’S-ASSOCIATED NEOPLASIA  

4.1 Introduction 

The incidence of esophageal adenocarcinoma (EAC) has dramatically increased 

over the last four decades; since 1975, there has been a 463% increase in men and a 

335% increase in women 
2
. This is of particular concern since EAC is associated with a 

very low five year survival rate (12%) due primarily to diagnosis at a late stage 
3
. When 

diagnosed early, the five year survival rate of EAC is 81%, but only a small fraction of 

esophageal cancers are detected at this stage 
12

.  

Patients with Barrett’s esophagus (BE), a condition caused by chronic acid 

damage to the esophagus over time, are known to be at an increased risk of developing 

EAC 
14, 75

. Because of the high likelihood of developing dysplasia and cancer, patients 

with BE are recommended to undergo regular surveillance at designated intervals 
76

. 

During the standard surveillance procedure, white light examination is used to scan the 

entire Barrett’s segment for visible abnormalities, such as nodules and ulcerations. Since 

many neoplastic lesions can appear flat and indistinguishable from non-dysplastic 

mucosa under white light imaging, random four quadrant biopsies are taken every 1-2 cm 

along the Barrett’s segment 
76

. Unfortunately, this method has been shown to miss as 

many as 57% of dysplasias and cancer 
5
. Thus, there is an important need for new 

techniques that may improve the early diagnosis of EAC and its precursors.  

In an attempt to improve image contrast and diagnostic yield, a number of 

widefield endoscopic imaging modalities have been developed. Autofluorescence 
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imaging (AFI) is sensitive to changes in stromal collagen fluorescence and increased 

epithelial thickness 
77

; neoplasia is associated with loss of detected autofluorescence 

intensity.  AFI has been shown to identify abnormal lesions with 91% sensitivity 
7, 8

. 

However, inflammatory lesions can also demonstrate loss of fluorescence and the 

specificity of AFI can be as low as 43% 
7
; other studies have also shown high rates of 

false positives associated with AFI 
42

. Narrowband reflectance imaging uses narrow 

bands of blue and green illumination to enhance vascular content, indirectly enhancing 

the appearance of the glandular pit pattern achieving a sensitivity range of 89-100% and 

achieving a specificity range of 76-98% for detecting neoplasia 
40, 41, 78

. Moreover, 

reported specificities for detecting BE are as low as 65% 
79

. Though both technologies 

enhance mucosal changes in different ways, signal differences have been shown to aid 

clinical interpretation of mucosal features 
8, 42

, however limitations associated with false 

positives reinforce the need for new imaging techniques.  

  Recent ex vivo studies suggest that two emerging widefield modalities have 

promise to improve the early recognition of esophageal neoplasia. In the first approach, 

cross polarized imaging (CPI), tissue is illuminated with linearly polarized white light 

and light re-emitted from the tissue surface is collected via a second linear polarizer 

whose axis of transmission is oriented orthogonally to that of the incident light. CPI 

preferentially collects light scattered from sub-surface tissue structures, thereby 

enhancing contrast of deeper blood vessels 
80

. CPI has been shown in various organ sites 

to improve the identification of epithelial neoplasia 
71, 81

, though has yet to be 

implemented for in vivo endoscopic imaging.  
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In the second approach, vital dye-enhanced fluorescence imaging (VFI), a 

fluorescent dye is used to enhance tissue fluorescence. Proflavine hemisulfate, a 

fluorescent contrast agent, stains cell nuclei, enabling observation of relevant changes in 

epithelial architecture associated with neoplastic progression. Ex vivo studies of VFI and 

proflavine staining in gastrointestinal tissues have shown that the agent allows the 

evaluation of glandular architecture during widefield imaging 
82

.  

While the utility of CPI and VFI have been demonstrated in other organ sites or 

using ex vivo specimens, evaluating their utility for in vivo esophageal cancer screening 

requires development of an upper GI endoscope capable of acquiring images in these 

modalities. Here, we describe the development and initial clinical evaluation of a 

multimodal digital endoscope (MVE) which incorporates WLI, CPI, and VFI modalities 

into one endoscope. We present images acquired with the MVE from an ex vivo 

esophageal specimen with pathologically confirmed disease, as well as in vivo images 

acquired during endoscopic assessment of a patient with Barrett’s-associated neoplasia.  

4.2 Materials and Methods 

4.2.1 INSTRUMENTATION 

The Modular Video Endoscope (MVE) shown in Fig. 4-1, was designed to 

acquire images in three different modalities: conventional white light imaging (WLI); 

cross-polarized imaging (CPI); and vital-dye fluorescence imaging (VFI). The MVE 

consists of a modified high definition (1280x1024 pixels) video processor (Pentax EPK-

i), a standard upper GI video endoscope (Pentax EG-29901), and stainless steel modules 

attached to the distal tip of the endoscope containing necessary optical filters for 
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implementation of CPI or VFI.  Each module is coupled to the distal tip with a medium 

sized, commercially-available endoscope cap (Barrx Medical Inc., Sunnyvale, CA, USA) 

shown in the right panel of Fig. 4-1. The custom-designed filter modules maintain use of 

the standard features of the endoscope during CPI and VFI imaging, including the 

forward water jet used for irrigation and the air/water nozzle used to clear debris from the 

field of view (FOV) of the CCD. The dimensions are shown in Fig. 4-2. In all three 

imaging modalities, the system is designed to be used at the standard working distance of 

the endoscope, ranging from 5 - 20 mm. A digital zoom feature allows additional 

magnification of up to 3x.  The field of view depends on both the working distance and 

the digital magnification; at a typical working distance of 10 mm, the FOV ranges from 

15 mm to 45 mm in diameter, with a resolution of approximately 50 microns. At the 

minimum working distance of 5 mm, the FOV ranges from 5 mm to 15 mm in diameter, 

with a resolution of approximately 25 microns. 
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Figure 4-1. Top diagram illustrates the placement of linear polarizers in 

front of illumination light guides and CCD for implementation of cross 

polarized imaging (CPI). The image to the right of the CPI diagram shows 

the distal end of the endoscope tip with the CPI filter module in place. The 

bottom diagram illustrates the placement of the long pass filter in front of 

the CCD for implementation of vital-dye fluorescence imaging (VFI). The 

image to the right of the VFI diagram shows the distal end of the 

endoscope tip with the VFI filter module in place. In VFI mode, the light 

guides emit blue light from the laser diode. The panel on the right shows 

the endoscope tip (top) and module assembly (bottom) using the silicone 

cap.  

 

4.2.1.1 Cross Polarized Imaging 

In CPI, tissue is illuminated with linearly polarized white light, and images are 

acquired through a second linear polarizer oriented to transmit only reflected light with 

its axis of polarization oriented orthogonally to that of the illumination light.  This serves 

both to reject specular reflection from the tissue surface, and enhance the appearance of 

sub-surface vasculature. The top row of Fig. 4-1 shows the module designed to adapt the 

standard endoscope for CPI imaging.   

 

Figure 4-2. Front face of module (a) and right cross sectional profile (b) 

shown with dimensions (mm).  Regions are labeled to indicate which 
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features on the endoscope tip the cuts correspond to. Black stars in (a) 

indicate extruded cuts created to accommodate illumination channels. 

Cross sectional profile (b) obtained from the dotted line in (a). Blue 

arrows indicate extruded cuts made for filters and epoxy.  The protrusion 

(white star) in (b) indicates the channel for forward water jet. The 

protrusion was implemented to aid in alignment of the module and the 

endoscope tip.  

 

To achieve CPI, white light from the endoscope light guides pass through linear 

polarizers (2.15 x 3.0 mm
2
) contained in the cap, one in front of each end of the 

bifurcated light guide (indicated by the stars in the CPI filter module image of Fig. 4-1); 

accommodating the illumination channels that exist in the Pentax video endoscope. The 

module holds another linear polarizer (4.6 x 4.8 mm
2
) in front of the CCD camera; the 

axis of this polarizer is oriented orthogonal to that of the illumination polarizers. These 

filters are fixed in the module using optically clear epoxy (Epo-Tek, Billerica, MA, 

USA). The filters are cut from HN22 polarizing sheets (Knight Optical Ltd., UK); the 

thickness of the film is 0.75 mm and the maximum transmission of two sheets 

orthogonally oriented is 0.001%. With the CPI module in place, at the center of the field 

of view the surface irradiance is approximately 3.6 mW/cm
2
 at 5 mm and approximately 

1.9 mW/cm
2
 at 10 mm; both typical working distances for imaging. 

4.2.1.2 Vital-Dye Fluorescence Imaging 

 

In VFI mode, tissue is illuminated with quasi-monochromatic light designed to 

excite fluorescence; a long-pass filter is placed in front of the CCD camera to reject 

specular reflection at the excitation wavelength and allow collection of resulting 

fluorescence.  The VFI module was designed specifically to image fluorescence 
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following topical application of the fluorescent antiseptic, proflavine hemisulfate which 

has been shown to localize in cell nuclei.  The agent has an absorption maximum at 450 

nm and an emission maximum at 515 nm.  The bottom row of Fig. 4-1 shows the module 

designed to adapt the standard endoscope for VFI imaging.   

To provide illumination during VFI, a 455 nm laser diode (Nichia Corporation, 

Tokyo, Japan) was installed in the Pentax EPK-i; light from the blue laser diode was 

coupled to the bifurcating light guide used during white light imaging, and a mechanical 

control on processor was used to switch between the two illumination modes.  A driver 

(Wavelength Electronics, Bozeman, Montana, USA) controls the input current to the 

laser diode and thus allows variation of the illumination intensity.  The module holds a 

custom-designed long pass filter (4.6 x 4.8 mm
2
) passing wavelengths greater than 500 

nm in front of the CCD for collection of proflavine fluorescence. The filters were cut 

from a custom-coated colored glass filter (Schott North America, Inc., Duryea, PA, 

USA); the thickness of the filter is 0.8 mm and the optical density (OD) at the 

illumination wavelength is 3.8. The filter was designed to have out-of-band rejection of at 

least OD 3 for light ranging from normal incidence to up to 70 degrees incidence, 

accommodating the angular FOV of the endoscope. The edges of the filter were coated 

black to minimize the effect of stray light on the image. The filters were installed using a 

medical grade, optically clear epoxy (#301-2FL, Epo-tek, Billerica, MA, USA). With the 

module and blue laser diode in place, at the center of the field of view the surface 

irradiance is approximately 14.9 mW/cm
2
 at 5 mm and approximately 7.5 mW/cm

2
 at 10 

mm; both typical working distances for imaging.  
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4.2.1.3 High Resolution Microendoscopy 

 

The MVE was designed to acquire widefield images in both CPI and VFI modes; 

in addition, it was designed to be compatible with a high resolution microendoscope 

capable of resolving subcellular detail in areas identified as suspicious during widefield 

imaging.  The high resolution microendoscope (HRME) has been previously described 
54, 

68, 69
 and has been used in vivo during endoscopy to visualize gastrointestinal pathology 

using proflavine contrast 
83

. In this system, the light from a 455 nm LED is coupled to a 

fiber-optic bundle for tissue illumination. The fluorescence from proflavine stained tissue 

is collected by the bundle while in contact with the tissue and is delivered to a CCD 

camera through a 550 nm nm bandpass filter with a cut on wavelength of ~500 nm. The 

field of view of the HRME is 720 microns in diameter and the spatial resolution is 4.5 

microns. 

 

 

4.2.1.4 Image Capture 

 

Image collection is achieved through a custom designed interface (Labview 2010, 

National Instruments, Austin, Texas, USA). The program displays the HD signal 

(1280x1024 pixels) via a DVI-to-USB capture card (Epiphan Systems, Ottawa, Ontario, 

Canada) and allows collection of both digital video and image frames. The interface also 

allows the user to adjust brightness and contrast where appropriate and to store 

information such as the date and time of procedure  



69 
 

 
 

 

4.2.1.5 Instrument Performance 

 

The system resolution was determined by capturing an image of a U.S. Air Force 

resolution target (Newport Corp, Irvine, CA, USA). To assess background 

autofluorescence, images were acquired in VFI mode from a 2 inch diameter non-

fluorescent frosted quartz disk (which approximates tissue reflectance) with settings that 

matched or exceeded those used for proflavine stained tissue. The measurements were 

used to verify the absence of excitation light leakage and assess the performance of the 

emission filter. 

 

4.2.2 PILOT STUDY  

The MVE was used to acquire images from clinically normal and abnormal areas 

of the esophagus in vivo during endoscopic surveillance and ex vivo immediately 

following surgical resection. Patients at Mount Sinai Medical Center were eligible to 

participate in the study if they met the following criteria: have or have had histologically 

confirmed Barrett’s metaplasia, and were undergoing either routine surveillance or 

endoscopic treatment for Barrett’s metaplasia or Barrett’s-associated dysplasia. A 

healthcare provider described the study to eligible patients.  Patients gave written 

informed consent prior to participation in the study. The study was reviewed and 

approved by the IRBs at Mount Sinai Medical Center and Rice University.   
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4.2.2.1 Ex Vivo Imaging Procedure 

 

The MVE was used first to acquire images of an esophagectomy specimen.  

Immediately following surgical resection, the mucosal surface of the specimen was rinsed 

with saline and imaged with a digital single-lens reflex (SLR) camera under white light 

illumination. Visually abnormal and normal sites were identified by the study pathologist 

based on appearance; borders of these regions were marked on the white light image.  

Areas identified by the pathologist as grossly normal and abnormal were imaged 

using all three widefield imaging modalities; images were first acquired using WLI,  then 

CPI, and then in VFI mode. The specimen was imaged ex vivo at a fixed working 

distance of 5 mm to allow for optimal correlation between image sites and subsequent 

pathologic assessment. Before VFI imaging, proflavine hemisulfate (0.01% w/v) was 

applied to the mucosal surface of the sample using a sterile cotton tip applicator. Excess 

proflavine was removed with dry gauze. Finally, high resolution images were acquired 

using the HRME from clinically normal and abnormal areas.  

In order to ensure the same FOV was imaged with each imaging modality, the 

distance from edge of the specimen, landmarks such as vessels, islands of squamous or 

columnar tissue, and the perimeter of the squamo-columnar junction were tracked as each 

widefield modality was used. To track high resolution imaging, widefield images were 

taken of the probe in contact with the mucosa, verifying that the images were obtained 

from the same FOV. In an effort to reduce sampling error, black or blue ink was placed at 

each area imaged, fixed with acetic acid, and photographed. Since the ink spread to 

approximately 2-4 mm in diameter, the photograph guided the approximation of image 



71 
 

 
 

sites on the resected specimens necessary to facilitate registration between widefield 

imaging, high resolution imaging, and subsequent histopathologic evaluation.  

The specimen was then fixed in formalin and submitted for standard 

histopathologic analysis; vertical cross-sections were examined to grade and verify 

presence of disease. The study pathologist, blinded to the image results, assigned 

diagnoses to histologic sections of inked areas using standard histologic criteria. 

4.2.2.2 In Vivo Imaging Procedure 

 

The MVE was next used in vivo to acquire images during endoscopic surveillance 

using three high definition imaging modalities: WLI, CPI, then VFI. After endoscopic 

surveillance using WLI, the scope was removed and the module for CPI was placed on 

the distal tip and the scope was reinserted. The scope was removed again after CPI, the 

VFI module was installed and the scope was inserted a third time. Following the third 

insertion, proflavine (5-10 mL) was administered via spray catheter (Olympus America, 

Center Valley, Pennsylvania, USA) on the epithelial surface and VFI images were 

acquired. Finally, the HRME probe was introduced via the instrument channel of the 

endoscope by the endoscopist and placed in gentle contact with the tissue surface. HRME 

images were obtained from sites considered clinically abnormal using widefield imaging. 

Additional HRME images were obtained from sites that were considered clinically 

normal by widefield modalities. Widefield imaging in all three modes and high resolution 

imaging was performed by a single endoscopist (S.A.). 

In order to ensure the images in all modalities were taken at the same site, three 

pieces of information were recorded during the procedure: clinical landmarks indicated 



72 
 

 
 

by the endoscopist (such as Barrett’s borders, islands, ulceration, or bleeding), endoscope 

depth and quadrant, and time stamps during the procedure (upper right hand corner of 

every video). Post-procedure, videos were evaluated frame by frame to ensure images 

from the same site were extracted from each modality. All extracted image frames 

associated with each image site were reviewed by researchers (NT, ML, SA, RRK). 

4.2.2.3 Endoscopic Image Criteria 

 

The entire segment of Barrett’s was scanned for apparent abnormalities with each 

image modality, using image criteria  developed from previous ex vivo imaging studies 
54, 

82
.  CPI images were considered suspicious if they demonstrated increased and abnormal 

vascularization, with crowding and branching of blood vessels, or if there were areas of 

glandular effacement. VFI images were considered suspicious if they demonstrated 

alterations in glandular architecture or glandular effacement.  HRME images were 

considered abnormal if they exhibited enlarged, crowded, and pleomorphic nuclei. 

Images were also considered abnormal if they revealed overlapping glands that were 

heterogeneous in size and shape with irregular luminal spacing. Many abnormal areas 

also exhibited loss of overall glandular architecture 
54, 82

. 

After imaging, biopsies were obtained from areas deemed suspicious in any of the 

imaging modes. Then, standard four quadrant biopsies were taken every 1-2 cm of the BE 

segment. Images acquired from suspicious sites were compared to the histologic 

evaluation of the biopsy from the same site. In addition, biopsies of non-neoplastic 

regions containing Barrett’s were obtained as controls. 
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4.3 Results 

4.3.1 INSTRUMENT PERFORMANCE 

 

At the minimum working distance of 5 mm, the system can resolve a line spacing 

of at least 24.8 µm (group 4, element 3). At a typical working distance of 10 mm, the 

system can resolve a line spacing of at least 49.5 µm (group 3, element 3); the 

performance was unchanged with the incorporation of the imaging modules. The ratio of 

signal from proflavine-stained tissue to frosted quartz imaged using the same settings, 

was always greater than 10:1. 

 

4.3.2 PILOT STUDY 

 

4.3.2.1 Ex Vivo: MVE Images of Esophagectomy Specimen 

 

The MVE was used to acquire images from 5 sites on a single esophagectomy 

specimen. Histopathology results were available from all 5 sites; two were diagnosed as 

non-neoplastic Barrett’s, two were diagnosed as adenocarcinoma, and one site was 

diagnosed as carditis. Figures 4-3 and 4-4 show representative images of neoplastic and 

non-neoplastic tissue from this specimen. Figure 4-3 compares images of BE (top row) 

and adenocarcinoma (bottom row) in WLI and CPI modes. As expected, CPI images 

show reduced specular reflection (black arrows) and enhanced vascular contrast. In 

images of Barrett’s metaplasia, vessels are better visualized in the cross polarized image 
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when compared to the same areas in the white light image (white boxes). In the images 

showing adenocarcinoma, not only are the vessels better visualized, but the increase in 

vasculature and vessel branching associated with neoplasia is more readily apparent 

(white box).  

 

Figure 4-3. Top row shows (a) white light image and (b) cross polarized 

images of Barrett’s metaplasia. Bottom row shows (c) white light image 

and (d) cross polarized image of intramucosal carcinoma. Black arrows 

show areas where specular reflection appears reduced in the CPI image. 

White boxes in the CPI image indicate areas where vessel branching is 

enhanced, when compared to same areas in the WLI. Images were 

acquired from an ex vivo esophageal specimen.  

 

 Figure 4-4 shows images acquired from BE (top row) and adenocarcinoma 

(bottom row) in WLI and VFI modes.  The VFI image of Barrett’s metaplasia allows 
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visualization of regular appearing glandular architecture (white box). The edges of the 

glands are discernible and the pattern appears consistent throughout the region. The 

corresponding HRME image shows nuclear staining primarily at gland edges indicating 

polarized nuclei, which is characteristic of non-neoplastic Barrett’s metaplasia 
54, 82

. This 

feature can also be seen in the corresponding vertical histology cross section, which 

shows Barrett’s metaplasia.  

The VFI image of adenocarcinoma allows visualization of partly effaced (yellow 

box) and completely effaced (white box) glandular architecture. The gland edges are no 

longer clearly discernible. The HRME image shows nuclear crowding, small and 

irregularly shaped glands (yellow arrows), loss of nuclear polarity within the glands 

(yellow box), and absence of glands in some areas (white box). These features are 

mirrored in the corresponding vertical histology cross section, which shows 

adenocarcinoma.  
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Figure 4-4. Top row shows (a) white light image, (b) vital-dye 

fluorescence image and (c) high resolution fluorescence image of 

proflavine-stained Barrett’s metaplasia. The white box in the VFI image 

(b) indicates a region where glandular architecture is clearly visible. 

Bottom row shows (e) white light image, (f) vital-dye fluorescence image 

and (g) high resolution fluorescence image of proflavine-stained 

intramucosal carcinoma. In the VFI image (f), the yellow box indicates 

partial glandular effacement and white boxes indicate complete 

effacement. In the HRME image (g), yellow arrows indicate small 

irregularly shaped glands, and yellow box  indicates a gland with disrupted 

edges. The white box indicates an area of nuclear crowding. 

Corresponding histologic cross sections are shown (d,f). Note the ink on 

the surface of each histologic section, verifying that the section was taken 

from the imaged area. Images were acquired from an ex vivo esophageal 

specimen.  

 

 

 

4.3.2.2 In Vivo: MDE Images Obtained During Endoscopy 

 

 In vivo imaging was conducted on one patient. During the endoscopic procedure 

using the MVE, three sites were imaged using all four modalities and biopsied. Two sites 

were diagnosed as non-neoplastic Barrett’s (BE) and one was diagnosed as 

adenocarcinoma.   

Figure 4-5 shows representative images from a site diagnosed as BE. In Figure 4-

5(A), the white light image shows glandular architecture with some vascular detail. The 

CPI image in Figure 4-5(B) again shows enhanced vascular contrast. Indeed, both larger 

vessels and smaller vessels that were not visible during WLI become clear (white box). In 

the VFI image shown in Figure 4-5(C), glands are present throughout the examined area. 

Gland borders appear wide and there is little interruption between the border edges. High 

resolution imaging with the HRME through the instrument channel of the endoscope in 
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Figure 4-5(D) allows for a magnified view of the features seen in VFI. Gland border 

edges appear regular (yellow boxes), and appear similar throughout the field of view. 

Nuclei within these regions appear polarized towards the gland edges. These features, 

along with intestinal-type goblet cells are apparent in the corresponding vertical histology 

cross section in Figure 4-5(E), showing Barrett’s metaplasia which is negative for 

dysplasia.  

 

 

Figure 4-5.  In vivo images of an area of Barrett’s metaplasia in (a) white 

light, (b) cross-polarized, (c) vital-dye fluorescence, and (d) high 

resolution imaging modes. The white box in the CPI image indicate areas 

where appearance of vessel branching is enhanced. The yellow boxes in 

the HRME image (d) show regular gland edges, and indicate gland borders 
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where nuclei are primarily polarized towards the edge. Corresponding 

histopathology cross section is shown (e).  

 

Figure 4-6 shows images from a site diagnosed as adenocarcinoma. In Figure 4-

6(A), the WLI shows a flat, non-ulcerated lesion with both vascular and glandular 

abnormalities; in the CPI image of the same area (Figure 4-6B) the pattern of vessel 

branching can more easily be assessed when compared to WLI (white box). VFI of the 

same area (Figure 4-6C) shows glands that appear partly effaced in some regions (white 

boxes) and completely effaced in others (yellow boxes). Proflavine staining is 

heterogeneous throughout the area. The HRME image (Figure 4-6D) reveals crowded 

glandular structures with irregular gland borders (yellow boxes), nuclear crowding both 

within the glands and outside of the glands (white box). Nuclei also appear pleomorphic. 

The histologic section presented in Figure 4-6(E) was diagnosed as adenocarcinoma. 
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Figure 4-6. In vivo images of an area of adenocarcinoma in (a) white light, 

(b) cross-polarized, (c) vital-dye fluorescence, and (d) high resolution 

imaging modes. The white boxes in the CPI image (b) indicate areas 

where appearance of vessel branching is enhanced, when compared to the 

white light image (a). In the VFI image (c), the  white boxes indicates 

partial glandular effacement and yellow boxes indicate complete 

effacement. The yellow boxes in the HRME image show irregular gland 

edges, and the white box indicates a border where nuclei appear crowded. 

Corresponding histopathology cross section is shown (e). Areas of LGD, 

HGD, and ACA are indicated by black boxes in (e).   

 

 

4.4 Discussion 

In summary, we reported the technical development and initial ex vivo and in 

vivo evaluation of a multimodal endoscopic imaging system which is capable of high 
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definition white light imaging, cross polarized reflectance imaging, vital-dye enhanced 

fluorescence imaging. We showed technical compatibility with a previously reported 

high resolution microendoscope imaging system, demonstrating the potential for the 

multimodal endoscope to be used in conjunction with probe-based microendoscopic 

technologies. CPI and VFI are novel endoscopic modalities, which probe important 

mucosal features; CPI enhances vasculature while VFI highlights changes in glandular 

architecture. Additionally, HRME imaging allows higher resolution examination of 

glandular morphology, including nuclear characteristics such as pleomorphism and 

crowding. We have demonstrated the feasibility of these modalities by imaging areas of 

Barrett’s metaplasia and associated neoplasia on an esophagectomy specimen. We 

verified that the key image features of neoplastic and non-neoplastic tissue were also 

observed during an in vivo surveillance procedure. Results suggest that key pathologic 

features seen in CPI, VFI, and HRME imaging are not easily visible during standard 

endoscopic white light imaging and therefore may be useful in future in vivo studies for 

discriminating dysplasia and cancer from Barrett’s metaplasia.  

In this study, we find that CPI improves visualization of vasculature without 

significantly altering the white light appearance of the image. A number of groups have 

used vascular contrast enhancement to improve disease detection. Groner et al. used cross 

polarization to improve visualization of microcirculation 
80

. Roblyer et al. used CPI to 

probe the diffusely reflecting light predominately coming from deep mucosal layers 
71, 84

. 

Though vascular contrast enhancement can be valuable, an inherent trade-off of CPI is 

the loss of surface architecture due to the rejection of photons reflected off the tissue 

surface. Moreover, as the spatial resolution of white light imaging continues to improve 
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through the development of higher definition endoscopes, we must evaluate whether or 

not CPI would add a significant amount of information over those improvements. 

Regardless, a larger study is necessary to understand whether the trade-off which 

enhances the ability to visualize deeper blood vessels would improve overall accuracy. 

VFI with proflavine contrast improves visualization of glandular architecture by 

providing contrast to epithelial cell nuclei. This is particularly important since glandular 

architecture changes during the progression to neoplasia 
85

. Previous studies using other 

modalities have shown that the assessment of such features can improve Barrett’s 

surveillance 
40

.  Narrowband imaging reveals some glandular features, which have been 

documented and have been used to identify neoplasia with high sensitivity 
40, 41

, but low 

specificity in identifying Barrett’s metaplasia 
79

. Since VFI uses a nuclear stain it 

provides a more direct assessment of glandular architecture. The added benefit of using 

VFI is the potential for implementing high resolution imaging at the same time, thus 

providing the ability to monitor nuclear changes at two different scales. For instance, the 

histology section presented in Fig. 4-6(E) was diagnosed as adenocarcinoma, however 

the histologically verified presence of both LGD and HGD within the regions indicated 

by black boxes in Fig. 4- 6 (E), may be contributing to the overall heterogeneity in the 

VFI image (Figure 4-6C). A situation like this may prompt the endoscopist to use the 

HRME probe on a number of sites within the area imaged by VFI to understand the 

differences in proflavine signal and help determine, for example, the area to biopsy.   

The HRME allows more detailed interrogation of glandular architecture and 

allows examination of features such as nuclear size, shape, distribution, and crowding. 

Previous studies have shown that these features can be consistently identified in HRME 
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images and correlate with the appearance observed in H&E stained histologic sections 
54, 

68, 82
. Moreover image processing algorithms have been developed for quantitative 

analysis of digital HRME images; initial pilot studies show high sensitivity and 

specificity for identifying neoplastic lesions 
56

, suggesting the potential to use HRME 

imaging together with algorithm-assisted identification of early cancers and high grade 

dysplasia.  

Proflavine is the principal component of acriflavine, which has been used during 

in vivo fluorescence imaging in Europe and Australia without any adverse effects noted 

59
. Indeed, this investigational in vivo human study of confocal microscopy for 

gastrointestinal cancers, use topical acriflavine at 0.05% concentration, five times more 

than what is used for VFI and HRME imaging. Moreover, the agent has been clinically 

used as an antibacterial agent. In neonatal care, Triple dye, a combination of brilliant 

green, proflavine hemisulfate, and gentian violet is routinely used as a topical 

antibacterial agent on the umbilical stump of newborn babies 
74

, with a recent review of 

the practice categorizing toxicity as rare 
86

. In this pilot study, proflavine concentration is 

significantly lower than that of the proflavine concentration in commercial triple dye, 

0.11% (w/v) (Kerr Triple Dye, Vista Pharm, Birmingham, Alabama, USA).  

Though each of the presented modalities appears to improve the visualization of 

relevant mucosal changes, additional studies are needed to determine the overall 

effectiveness in vivo of each modality. Indeed, larger in vivo studies are needed to assess 

1) the sensitivity and specificity for detection of neoplasia for each modality and 2) 

whether or not this represents an improvement compared to white light examination and 

standard four quadrant biopsies. Thus the development of an instrument that can easily 
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implement these modalities in vivo is particularly useful. Testing each modality 

individually will help determine which imaging technique would be most useful to 

clinicians for in vivo surveillance; the result would be a potential candidate for 

widespread clinical testing. In the future, additional studies looking at both qualitative 

and quantitative image features are needed to investigate which are most relevant for 

endoscopic image interpretation.  

The module-based imaging technique presented here allows the testing of new 

imaging modalities to quickly determine feasibility. This modular concept can be adapted 

to any video endoscope for the upper or lower gastrointestinal tract, thereby extending its 

utility for the detection of additional gastrointestinal abnormalities such as colon and 

gastric cancers. Past widefield fluorescence imaging studies using contrast agents have 

not fully taken advantage of recent CCD advances, potentially limiting what mucosal 

features can be resolved. By using a filter module to image, we can maintain the benefits 

of the high definition CCD (1280 by 1024 pixels) while enabling the examination of 

different optical markers of disease. Moreover, this dual-scale platform can be adapted to 

measure other molecular targets that have been used in the gastrointestinal tract with 

similar excitation and emission properties such as 2-NBDG 
87

 or other targeted 

fluorescence contrast agents 
10, 61

. Furthermore, signal associated with these fluorescent 

contrast agents can be quantified and used to aid in subjective image interpretation 
56, 87

, 

thereby further increasing its potential as a surveillance tool. 
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CHAPTER 5: QUANTITATIVE EVALUATION OF IN VIVO VITAL-DYE 

FLUORESCENCE ENDOSCOPIC IMAGING FOR THE DETECTION OF 

BARRETT’S ASSOCIATED NEOPLASIA  

5.1 Introduction 

The incidence of esophageal adenocarcinoma (EAC) has increased 335% in 

women and 463% in men during the past 3 decades 
2
. This is of particular concern 

because EAC is associated with a low five-year survival rate, primarily due to late stage 

diagnosis 
3
. However, when detected before metastases occur and treated appropriately, 

five-year survival rates has been shown to be as high as 81% 
12

.  

 Barrett’s esophagus (BE) is a condition of the esophagus caused by chronic acid 

reflux 
14, 75

. Individuals with BE are at an increased risk for developing esophageal 

dysplasia and cancer; because of this increased risk, individuals with BE are 

recommended to undergo endoscopic surveillance at regular intervals 
76

. Surveillance 

typically includes white light videoendoscopy,  with biopsy of visually abnormal areas.  

Unfortunately some neoplasias are flat and often undistinguishable from BE, thus routine 

surveillance also includes random four quadrant biopsies every 1-2 cm of the Barrett’s 

segment 
76

. However, endoscopic surveillance protocols often fail to detect early lesions; 

some studies estimate that as many as 57% can be missed 
5
. Thus, there is an important 

need to develop improved surveillance techniques that can detect early neoplastic areas 

with great efficiency.  

 A number of widefield imaging modalities have been proposed to improve the 

efficacy of white light videoendoscopy for detection of early neoplastic changes in the 

esophagus. For example, narrowband improves visualization of vascular changes 
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associated neoplasia 
40

. Fluorescence imaging can identify areas with loss of 

autofluorescence, also associated with early neoplasia 
77

. However, early clinical studies 

indicate that narrowband imaging has poor specificity for detecting BE 
79

, while 

autofluorescence imaging is associated with poor specificity for detecting neoplasia 
7, 8

. 

The poor specificity of autofluorescence imaging is thought to be due to false positives 

associated with benign inflammation 
42

. 

 The use of exogenous fluorescent contrast agents that enhance the contrast 

between neoplastic and non-neoplastic tissue has the potential to improve efficacy of 

fluorescence-based endoscopic surveillance protocols. Fluorescence imaging with vital-

dyes such as proflavine hemisulfate have been shown to improve visualization of 

mucosal architecture in the esophagus and colon 
82

. Widefield imaging with proflavine 

contrast enhances visualization of glandular architecture in Barrett’s metaplasia as well 

has glandular effacement which is a hallmark Barrett’s-associated neoplasia.  

  A modular video endoscope (MVE) capable of in vivo vital-dye fluorescence 

imaging has recently been developed 
88

.  Initial in vivo images acquired with the system 

suggest that vital-dye fluorescence images enhance the ability to identify regions of 

glandular effacement 
88

.  Suspicious areas identified in this manner can then be 

interrogated with higher spatial resolution 
54, 83

, potentially enabling a widefield and 

confirmatory high resolution protocol for endoscopic surveillance. Here, we describe 

results from a 14 patient pilot study using the MVE. Images of 65 sites were analyzed to 

identify relevant quantitative image features that could be used to classify tissue as 

neoplastic or non-neoplastic. Results show that granulometry features, average length of 

gland segments, and frequency content aid in the classification of neoplasia. 
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5.2 Methods 

5.2.1 INSTRUMENTATION 

The Modular Video Endoscope (MVE) has been described in detail, previously 

[ref]. Briefly, it consists of a modified high definition (1280x1024 pixels) video processor 

(Pentax EPK-i) and a standard upper endoscope (Pentax EG-29901), modified to enable 

both HD white light imaging and vital-dye fluorescence imaging (VFI). For tissue 

illumination in VFI mode, a 455 nm laser diode (Nichia Corporation, Tokyo, Japan) was 

coupled to the bifurcating endoscope light guide used for white light illumination. The 

diode is controlled using a laser diode driver (Wavelength Electronics, Bozeman, 

Montana, USA), which controls the input current, thus controlling the illumination 

intensity.  A mechanical control on the processor is used to switch between white light 

and laser illumination when necessary. A stainless steel filter module containing 

necessary optical filters for vital-dye fluorescence imaging is attached to the endoscope 

distal tip with a medium sized, commercially-available endoscope cap (Barrx Medical 

Inc., Sunnyvale, CA, USA). The filter module holds a custom-designed long pass filter in 

front of the endoscope CCD. The filter (4.6 x 4.8 x 0.8 mm) transmits wavelengths longer 

than 500 nm, enabling collection of fluorescent light. The MVE filters are designed for 

use with proflavine, a topically applied fluorescent dye which stains cell nuclei. 

The custom-designed filter module maintains use of the forward water jet used for 

irrigation and the air/water nozzle used to clear debris in the field of view of the CCD. 

The MVE was designed for the standard working distance of the upper endoscope, 

ranging from 5 - 20 mm. The field of view depends on both the working distance and the 
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digital magnification; at a typical working distance of 10 mm, the FOV ranges from 14 

mm to 45 mm in diameter, with a resolution of 50 microns.  

 

5.2.1.2 High Resolution Microendoscope 

 

The MVE is compatible with a high resolution microendoscope (HRME) which 

has been described previously 
68, 69

. The HRME acquires high resolution fluorescence 

images with a field of view of 720 microns in diameter and a lateral spatial resolution of 

4.5 microns. The HRME is also designed for use with proflavine; fluorescence is excited 

using a 455 nm LED and collected through 550 nm bandpass filter with a cut on 

wavelength of approximately 500 nm.  

 

5.2.2 PILOT STUDY 

The MVE and HRME were used to collect videos and images of clinically 

abnormal and normal areas of the esophagus from study participants. Patients at Mount 

Sinai Medical Center were eligible to participate in the study if they met the following 

criteria: have or have had histologically confirmed Barrett’s metaplasia, and were 

undergoing either routine surveillance or endoscopic treatment for Barrett’s metaplasia or 

Barrett’s-associated dysplasia. A healthcare provider or a clinical research coordinator 

described the study to eligible patients.  Patients gave written informed consent prior to 

participation in the study. The study was reviewed and approved by the IRBs at Mount 

Sinai Medical Center and Rice University.   

 



88 
 

 
 

5.2.2.1 Endoscopic Imaging Procedure  

 

The MVE was used in vivo to evaluate Barrett’s epithelium in two different 

imaging modes, white light imaging (WLI) and vital-dye fluorescence imaging (VFI). 

During white light evaluation, the endoscopist noted the location and recorded videos and 

images from any areas that appeared suspicious for neoplasia and at least one area that 

appeared non-neoplastic. After WLI, the scope was removed and the VFI filter module 

was attached to the distal tip for fluorescence imaging. The scope was reinserted and 

proflavine contrast agent (5-10 mL) was administered via spray catheter (Olympus 

America, Center Valley, Pennsylvania, USA) on the epithelium. Following proflavine 

application, the laser light was switched on for observation of proflavine fluorescence. 

Any areas that were imaged in WLI mode were imaged in VFI mode; the location of any 

additional areas that appeared abnormal in only VFI mode were documented as well and 

VFI video and images were acquired from these sites.  

Following widefield imaging, the HRME was introduced via the instrument 

channel of the MVE. HRME images were obtained from the clinically abnormal and 

normal sites imaged and identified with WLI and VFI. At each site, the HRME probe was 

placed in gentle contact with the mucosal surface.  Widefield imaging with the MVE, and 

high resolution imaging with the HRME were conducted by a single endoscopist (S.A.). 

Following the imaging procedure, biopsies were obtained from each of the clinically 

abnormal and clinically normal areas that were imaged. In addition to study biopsies, 

four-quadrant biopsies were obtained as standard of care. Images obtained from biopsied 

areas were compared to the histologic evaluation of the biopsy from the same area. 
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Additionally, biopsies of non-neoplastic regions of Barrett’s were obtained as controls. 

An expert GI pathologist who was blinded to the image results read the pathology.  

 

 

 

5.2.3 QUALITATIVE IMAGE ANALYSIS 

At the time of the procedure, white light images were interpreted using standard 

criteria 
76

 and were considered abnormal if a nodule was present or if there was apparent 

hypervascularization 
76

. Vital-dye fluorescence images were considered abnormal if there 

was a nodule present, if there were glandular alterations, or if there was some degree of 

glandular effacement 
82

. HRME images were interpreted using previously developed 

criteria and were considered abnormal if they exhibited enlarged, crowded, and 

pleomorphic nuclei 
54, 82

. Images were also considered abnormal if they revealed 

overlapping glands that were heterogeneous in size and shape with irregular luminal 

spacing, or if they exhibited loss of overall glandular architecture 
54, 82

. 

 

5.2.4 QUANTITATIVE IMAGE ANALYSIS 

Digital images and videos were reviewed for quality control. Images of Barrett’s 

and Barrett’s-associated neoplasia were included in the final evaluation only if a 250x250 

pixel region of interest (ROI) within the image was clear of debris, was in focus, and did 

not contain movement artifact.  

 The diagnostic potential of various quantitative image features was explored 

(Table 1). For each image ROI, 49 features were computed. First order statistical features 
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(variance, standard deviation, etc) were computed based on individual pixel values. To 

explore textural image features, a grey-level co-occurrence matrix with pixel offsets (1-6) 

were first computed for each ROI. Then features such as correlation, contrast, energy, 

and homogeneity were computed from each GLCM 
56, 89

. To explore spatial frequency 

features, a two-dimensional Fourier transform was used to calculate the power spectrum 

for each ROI. The resulting energy spectrum was divided up into 10 individual frequency 

ranges, where the contribution from each component represents the frequency content 

from a corresponding spatial range 
90, 91

. To explore epithelial thickness, granulometry, 

which assesses the size distribution of elements in each ROI, was used to calculate the 

surface area as a function of disk size 
92-94

. The plot of the surface area as a function of 

disk size characterizes the relative distribution of different sized disks within each ROI; 

statistical features (skewness, kurtosis, etc) of this distribution were computed. To 

explore glandular edges, two non-experts, blinded to the pathology results, segmented 

gland edges for each ROI in ImageJ (ImageJ 1.47D). A morphometric function in Matlab 

(Matlab R2011b) was used to reduce segmented edges to a single pixel perimeter. From 

this binary mask, the following statistical features were computed for each ROI: the 

number of long segments, the average length of the long segments, and the standard 

deviation of the length of the long segments.  

 A Student’s t-test was used to determine whether there was a statistically 

significant difference (p <0.05) in the mean value of each of these 49 parameters for 

neoplastic and non-neoplastic Barrett’s. Step-wise linear discriminant analysis was used 

to classify images as non-neoplastic (BE/LGD) or neoplastic (HGD/EAC) using only the 

image features where the differences in the means were statistically significant as inputs. 
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The diagnostic algorithm was developed using leave-one-patient-out cross validation; for 

each fold, the imaged sites from all but one patient were used as a training set to develop 

the algorithm, this algorithm was then applied to all the image sites from the held out 

patient. This cycle was repeated for each individual patient. Histologic diagnosis was 

used as the gold standard. In each fold, a sequential forward selection algorithm was used 

to identify the best performing subset of up to 3 metrics to classify the image data. As the 

number of features increased, performance was monitored by noting whether the area 

under the receiver operator characteristic curve increased.  
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Table 5-1: Description of features calculated for each image 

Metric (# of features) Description 

First order statistical 

values (6) 

Mean, standard deviation, variance, entropy, skewness, kurtosis 

GLCM*-related features 

(24):  

Correlation (6),  

Energy (6),  

Homogeneity (6),  

Contrast (6) 

Correlation: Pixel neighborhood correlation in the GLCM (Offsets 1-6),  

Energy: Sum of squared elements in the GLCM (Offsets 1-6),  

Homogeneity: Measure of how close GLCM elements are to the GLCM 

diagonal (Offsets 1-6),  

Contrast: Intensity contrast between pixel and offset pixel over entire 

ROI (Offsets 1-6) 

Frequency Content (10) Fraction of power spectral density in 10 equally spaced partitions of the 

power spectrum 

Granulometry (6) Skewness and kurtosis of size distribution of disks in an ROI (for disks 

with radii of 1-100 pixels), Most prominent disk size in an ROI (for 

disks with radii of 1-100 pixels), Most prominent large disk size in an 

ROI (for disks with a radii between 50 - 100 pixels), Surface area of 

most prominent disk size in an ROI, Surface area of most prominent 

large disk size in an ROI (for disks with a radii between 50-100 pixels) 

Edge-based 

Morphometry (3) 

Sum of long segments, Average length of long segments, Standard 

deviation of the length of long segments 

 

*Gray-level co-occurrence matrix 
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5.3 Results 

A total of 20 patients were consented and underwent the study procedure. Images 

were obtained from 72 sites in 14 patients with biopsy confirmed Barrett’s metaplasia or 

Barrett’s- associated neoplasia. After quality control, 65 sites in 14 patients were 

available for analysis. Of these sites 16 sites (from 8 of the 14 patients) were diagnosed 

as Barrett’s-associated neoplasia, and 49 (from 9 of the 14 patients) were diagnosed as 

Barrett’s metaplasia (Table 5-2).   

 

Table 5-2: Patient Data Summary 

 

 

Figure 5-1 shows representative images from Barrett’s metaplasia acquired during 

in vivo endosopic surveillance using WLI, VFI, and HRME imaging modalities. In 

Figure 1, WLI shows a clear distinction between squamous epithelium and Barrett’s 

metaplasia (labeled), however glandular details are not easily discernible. In the VFI 

image, glandular architecture is visible. Specifically, the gland edges are distinct and the 

glandular pattern appears uniform throughout the indicated region (box). The 

corresponding HRME image shows thick glandular borders (white arrows), consistent 
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with the features visible in the VFI image. Additionally, the HRME image shows small, 

evenly-spaced nuclei (yellow arrows). These features, along with intestinal-type goblet 

cells are visible in the corresponding histology cross section, showing Barrett’s 

metaplasia and low grade dysplasia.  

 

Figure 5-1. (a) White light endoscopic image, (b) vital-dye fluorescence 

endoscopic image, and (c) high resolution microendoscope image which 

were all read endoscopically as non-neoplasia. Shown in (d) is the 

histology section of the same site. Biopsy was diagnosed as Barrett’s 

metaplasia with low grade dysplasia. White box in (a) and in (b) indicates 

area from where the biopsy was taken. White arrows in (c) indicate thick 

epithelial border. Yellow arrows in (c) show examples of small nuclei.  

 

 

Figure 5-2 shows representative images from high grade dysplasia acquired 

during in vivo endoscopic surveillance using WLI, VFI, and HRME imaging modalities. 
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In the white light image, glandular architecture appears uniform throughout the image 

and there is no apparent indication of increased vasculazation. There is an area (box) that 

appears slightly raised. In the VFI image of the same area (box), some distorted glandular 

architecture is apparent. Glands appear thin and irregular (left arrow); glandular 

effacement is also present (right arrow). The corresponding HRME image shows 

irregularly sized glands (white arrow) as well as nuclear crowing (yellow circle) 

throughout the image. These features are also visible in the corresponding histologic 

cross-section taken from that image site; the H&E image was read as high grade 

dysplasia.  

     

Figure 5-2. (a) White light endoscopic image, (b) vital-dye fluorescence 

endoscopic image, and (c) high resolution microendoscope image which 

were all considered endoscopically suspicious for neoplasia. Shown in (d) 

is a histology section of the same site. Biopsy was diagnosed as Barrett’s-

associated high grade dysplasia. White box in (a) and (b) indicates area 
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from where the biopsy was taken. White arrows in (b) indicate irregular 

and effaced glands. White arrows in (c) indicate examples of glands with 

irregular borders. Yellow circle in (c) indicates an example of area with 

nuclear crowding. 

 

Figure 5-3 shows representative images from adenocarcinoma acquired during in 

vivo endosopic surveillance using WLI, VFI, and HRME imaging modalities. In the 

white light image, a nodule is visible (box); areas of hyper-vascularization are also 

apparent (star).  In the corresponding VFI image, glandular effacement is observed 

throughout the same neoplastic region (box). In the HRME image obtained from the 

nodule, thick brush borders associated with metaplasia are not present and crowded 

pleomorphic nuclei are prominent (circle).  These features are visible in the 

corresponding histology cross section from that image site showing Barrett’s-associated 

high grade dysplasia and adenocarcinoma.  
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Figure 5-3. (a) White light endoscopic image, (b) vital-dye fluorescence 

endoscopic image, and (c) high resolution microendoscope image were all 

endoscopically suspicious for neoplasia. Shown in (c) is the histology 

section of the same site. Biopsy was diagnosed as Barrett’s-associated 

adenocarcinoma. White box in (a) and (b) indicates the nodule from which 

the biopsy was taken. Star in (a) indicates hyper-vascularization. White 

arrow in (b) indicates glandular effacement. Yellow circle in (c) indicates 

nuclear crowding.  

 

Figure 5-4 demonstrates an instance where the WLI image shows areas of 

hypervascularization (arrows), prompting a false positive read. The VFI image from the 

same area shows characteristic metaplastic patterns where gland edges are easily 

discernible. The corresponding HRME image verifies this observation. The histology 

cross section from this image site was read as Barrett’s metaplasia. 

      

Figure 5-4. (a) White light endoscopic image of an area endoscopically 

suspicious for neoplasia. (b) Vital-dye fluorescence endoscopic image of 

the same area and (c) corresponding high resolution microendoscope 

image were both read endoscopically as non-neoplasia. Shown in (c) is 
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histology section of the same site. Biopsy was diagnosed as Barrett’s 

metaplasia. White box in (a) and (b) indicates the area from which the 

biopsy was taken. Black arrows in (a) indicates areas of apparent hyper-

vascularization. White arrows in (c) indicate examples of thick epithelial 

borders, which are characteristic of HRME metaplasia images. 

 

Figure 5-5(a) shows a scatter plot of the posterior probability values for each site 

based on a two class linear classifier developed using leave-one-out cross validation. The 

sites are organized by diagnosis. Figure 5-5(b) shows the resulting receiver operator 

characteristic (ROC) curve; at the Q-point, the sensitivity is 88% and the specificity is 

86% with an area under the ROC curve of 0.86. Table 5-4 shows the percentage of data 

points in each diagnostic category that were categorized correctly.  

Table 5-3. Image analysis features with statistically significant differences 

in mean values for non-neoplastic and neoplastic tissue sites (p-value < 

0.05) 

Metric p-value 

Frequency content in first partition of the 

power spectrum 

0.016 

Skewness of size distribution of disks in an 

ROI (for disks with radii of 1-100 pixels) 

0.023 

Frequency content in the seventh partition of 

the power spectrum 

0.025 

Kurtosis of size distribution of disks in an 

ROI (for disks with radii of 1-100 pixels) 

0.034 

Surface area of most prominent disk size in 

an ROI 

0.034 

Average length of long segments 0.036 
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Differences in the mean values of six of the 49 image features for neoplastic and 

non-neoplastic tissue were found to be statistically significant (p<0.05). Table 3 lists 

these features ranked by p-value. Step-wise linear discriminant analysis was performed 

using these features as inputs.  Leave-one-patient-out cross validation was used; the 

features selected in each cross-valdiation fold were tracked to those selected most 

frequently. Most frequently selected features include: average length of gland segments 

in an ROI (100%), skewness of size distribution of disks in an ROI (57%), and frequency 

content in the first partition of the power spectrum (79%). 

 

Figure 5-5(a) shows a scatter plot of the posterior probability values for each site 

based on a two class linear classifier developed. Figure 5-5(b) shows the resulting 

receiver operator characteristic (ROC) curve; at the Q-point, the sensitivity is 88% and 

the specificity is 86% with an area under the ROC curve of 0.86. Table 5-4 shows the 

percentage of data points in each diagnostic category that were categorized correctly.  
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Figure 5-5. Scatter plot (a) shows posterior probability of neoplasia 

organized by diagnostic category. Corresponding receiver operator 

characteristic curve is shown (b). At the Q-point, the sensitivity and 

specificity are 88% and 86%, respectively; the area under the curve is 

0.86.  

 

Table 5-4. Percentage of sites in each diagnostic category which are 

classified correctly  

 

 

5.4 Discussion 

In summary, we report results from an in vivo study of VFI; images from 65 sites 

in 14 patients were collected and analyzed to assess the classification potential of VFI 

using quantitative image features. Three quantitative image features were found to 
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consistently aid in the identification of neoplasia. The first feature is the skewness of the 

distribution of disk sizes, which we hypothesize characterizes the presence of glandular 

structure within each ROI.  Results indicate that, as glandular structure is lost, the 

skewness of this distribution decreases. The second feature is the average perimeter of 

glands; gland perimeters were typically longer in metaplastic lesions than in neoplastic 

lesions. The third feature is the frequency content in the first partition of the power 

spectrum; the low frequency content is higher in neoplastic images, again likely 

corresponding to loss of glandular structure. Linear discriminant analysis using a 

combination of these three features resulted in sensitivity and specificity of 88% and 86% 

respectively, with an AUC of 0.86.  

We examined possible factors that resulted in images being incorrectly classified.  

Of the 49 images classified as neoplastic, 12 were falsely positive when histology was 

considered the gold standard.  Images of these 12 sites showed many of the same image 

characteristics as truly neoplastic lesions, primarily loss of clearly discernible glands. 

There are number of factors that may have contributed to this. Many of the study 

participants had recently undergone an endoscopic procedure including biopsy and had 

come to Mt. Sinai for further assessment and treatment.  Recent biopsy and resulting re-

epithelialization may also be associated with lack of glandular structure. Regenerative 

mucosa was shown to substantially contribute to false positives in a study evaluating 

fluorescence induced by a different contrast agent 
95

. In the future it will be important to 

characterize the differences associated recently biopsied sites in order to improve 

specificity. 
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Two of the 16 sites with a histologic diagnosis of neoplasia were falsely negative 

by VFI.  These sites were both histologically diagnosed as high grade dysplasia, without 

adenocarcinoma; one corresponded to a focal dysplasia. While the VFI image of both of 

these sites shows some glandular structure, the glands appear more fragmented when 

compared to metaplasia. Larger studies are needed to determine whether image 

characteristics seen in these false negatives are consistent in a significant number of 

HGDs. 

This in vivo pilot study marks an important step in clinical translation of vital-dye 

fluorescence endoscopy. There are many advantages to VFI; video endoscopes can be 

easily modified to achieve VFI, contrast is provided by a topically applied dye and VFI 

image results can be quantified. However, our study has a number of limitations that need 

to be addressed. This study was conducted retrospectively in a small population with a 

high prevalence of disease; larger studies are needed to assess overall accuracy and  

determine whether VFI improves the detection rate for neoplasia when compared to white 

light endoscopic surveillance and standard four-quadrant biopsies in both high and low 

prevalence populations.  At the same time, the role of high resolution imaging in 

improving overall diagnostic accuracy should be further investigated; VFI should be 

tested in conjunction with high resolution imaging modalities such as confocal 

microendscopy and high resolution microendscopy to determine how the addition of 

higher resolution imaging might improve overall detection of neoplastic lesions.  

Finally, this study demonstrates the potential for quantitative features to aid in 

interpretation of widefield images.  Subjective interpretation of endoscopic imaging is 

variable and highly dependent on clinician experience 
96

. Quantifying image features 
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provides a means for objective interpretation, and may also be helpful in guiding the 

endoscopist’s index of suspicion regarding the presence or absence of neoplasia within a 

lesion. In order to optimize potential benefit of this technique, quantitative results must 

be automated and presented in real-time during endoscopy, allowing endoscopists to use 

quantitative features to make informed, real-time decisions regarding patient care.   
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CHAPTER 6: PRE-CLINICAL EVALUATION OF FLUORESCENT 

DEOXYGLUCOSE AS A TOPICAL CONTRAST AGENT FOR THE 

DETECTION OF BARRETT’S-ASSOCIATED NEOPLASIA DURING 

CONFOCAL IMAGING 

6.1 Introduction 

The incidence of esophageal adenocarcinoma (EAC) is rapidly rising in the 

United States, with an estimated 300-400% increase over the past 3 decades 
97, 98

.  This 

increased incidence is particularly worrisome, given that the overall five-year-survival 

rate for patients diagnosed with EAC is a dismal 12% 
3
, an outcome resulting from 

detection of late-stage disease. Indeed, more than 60% of patients with EAC are 

diagnosed with local, regional, and distant metastases 
13

.  Detecting and treating 

esophageal neoplasia at an early stage has been reported to increase five-year survival to 

rates as high as 81% 
12

; however, current surveillance methods have considerable 

limitations.   

EAC arises primarily in patients with Barrett’s esophagus (BE) 
14, 15

, a highly 

prevalent condition caused by chronic esophageal reflux
99

. In patients with BE, the 

squamous epithelium of the esophagus near the gastroesophageal junction is replaced by 

specialized columnar epithelium 
16-18

 known as intestinal metaplasia (IM).  BE/IM is of 

clinical importance because it is a risk factor for EAC.  Because of this increased risk, 

patients with BE undergo regular surveillance at designated intervals according to level 

of dysplasia in an attempt to identify neoplastic lesions at an early, treatable stage 
4, 19

.  

The current standard of endoscopic surveillance involves random four-quadrant biopsies 

taken every 1-2 cm along the BE segment 
4
.  However, dysplasia within BE is often 
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unidentifiable under standard white light endoscopy and as many as 43-57% of early 

cancers can go undetected by this method 
5
.  Thus, there is a pressing need to improve the 

clinician’s ability to visualize neoplastic lesions during endoscopy.  Improving the ability 

to discriminate high grade dysplasia (HGD) and early EAC from IM and low grade 

dysplasia (LGD) could significantly impact clinical decision-making.  The diagnosis of 

either HGD or EAC prompts endoscopic based therapy or surgical resection 
100-102

, while 

diagnosis of either IM or LGD warrants continued surveillance 
4
.   

Various optical imaging techniques are being explored to improve current 

surveillance strategies 
9, 20, 42

. Widefield endoscopic optical imaging techniques, such as 

autofluorescence 
7
 and narrowband imaging 

41
, have shown high sensitivity but 

suboptimal specificity, largely due to the confounding effect of inflammation.  Moreover, 

the lack of spatial resolution prevents cellular-level interrogation of suspicious areas, 

motivating the need for high resolution imaging technologies, which may aid in reducing 

false positives. 

Confocal endomicroscopy is thought to achieve the highest sensitivity and 

specificity of any high-resolution modality to date 
9, 46

. This technology is most 

commonly coupled with intravenously administered fluorescein. Unfortunately, 

fluorescein is a non-specific contrast agent with diffuse uptake in both normal as well as 

neoplastic mucosa.  While it permits the visualization of subcellular epithelial changes 

and the subepithelial vasculature, it does not specifically target neoplastic epithelium. 

Moreover, the number of cases needed to train endoscopists to interpret these images and 

characterize the morphologic features of neoplasia interpretation is high 
103

.  The 

increased availability and utilization of confocal endoscopy necessitates the need for 
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novel, safe, easily-applied contrast agents that can be used to increase the diagnostic 

accuracy of endoscopic surveillance.  

Several molecular-specific, optically active contrast agents have been developed 

to enhance the optical detection of neoplasia in a variety of organ sites using confocal 

microendoscopy 
60, 104

. Topical application of a fluorescently labeled deoxyglucose, 2-

NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), was 

recently shown to improve visualization of early oral neoplasia. The application of 2-

NBDG was shown to increase fluorescence contrast in specimens with neoplasia, relative 

to that available with autofluorescence 
105

. The staining method was based on 

experiments by O’Neil and colleagues in cancer cell lines 
106

. The increase in 2-NBDG 

uptake is associated with increased rates of glucose metabolism in cancer cells relative to 

normal cells 
106

, thought to be due to over-expression of glucose transporters (GLUTs) 

and increased activity of hexokinase enzymes 
107

. The deoxyglucose is actively 

transported into the cell by the GLUTs and is phosphorylated by the hexokinase enzyme 

108
. The phosphorylated deoxyglucose molecule is then selectively entrapped within the 

cell cytoplasm, resulting in increased contrast during fluorescence imaging 
109, 110

, with 

peak excitation at 475 nm and peak emission at 550 nm. When coupled with the 

appropriate imaging technology, 2-NBDG can be a useful marker for detecting areas with 

increased levels of cellular metabolism associated with the over-expression of GLUTs. 

An increase in expression of GLUTs has been reported in many epithelial cancers, 

including EAC 
111, 112

.  GLUTs are currently targeted in cancer imaging using a 

radioactively-labeled glucose analog (
18

FDG) during positron emission tomography 

(PET) 
113

.  PET is routinely used to stage potentially operable patients with EAC 
114

. 
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However, there are obstacles to using PET for routine surveillance, including a high 

number of false positives associated with inflammation 
115-117

, patient exposure to 

radiation, and a relatively poor spatial resolution. Indeed, PET is used to evaluate 

increased uptake over a large field of view and cannot delineate neoplasia occurring at 

microscopic level.  Optical molecular imaging using a fluorescently labeled 

deoxyglucose, a contrast agent with similar mechanism of uptake as 
18

FDG 
118

, has the 

potential to address these limitations when used as an adjunct to endoscopic surveillance 

with confocal endomicroscopy. When coupled with confocal imaging, 2-NBDG could 

potentially permit the simultaneous characterization of the morphologic and metabolic 

features of neoplasia.  

The goal of this study was to carry out a pre-clinical pilot study to evaluate the 

feasibility of topical 2-NBDG as a contrast agent for the evaluation of Barrett’s-

associated neoplasia. Fluorescently labeled deoxyglucose (2-NBDG) was topically 

applied ex vivo to fresh esophageal biopsy specimens.  Samples were imaged using 

confocal fluorescence microscopy, and resulting fluorescence images were evaluated to 

assess the contrast between metaplastic (IM/LGD) and neoplastic (HGD/EAC) mucosa.  

Results of this pre-clinical study provide preliminary data to guide future translation to in 

vivo confocal endoscopic imaging in patients with BE.  

6.2 Materials and Methods 

6.2.1 Patient Enrollment and Data Collection 

Patients who participated in this study had been previously diagnosed with BE, 

BE with dysplasia, or BE with EAC and were scheduled for endoscopic examination. 
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This study was reviewed and approved by the Institutional Review Boards at Rice 

University, the University of Texas M.D. Anderson Cancer Center, and the Mount Sinai 

Medical Center. All patients gave written informed consent to participate in the study.  

For each patient, up to 4 research biopsies were obtained from the 

gastroesophageal junction, 1 biopsy for every 1-2 cm of BE segment. The endoscopist 

noted whether the esophageal mucosa was intact or ulcerated at the site of each biopsy.  

Biopsies were excluded if they were too small to process for imaging, were too small for 

histologic processing, or if the epithelial layer was not present for assessment after 

histologic staining.  

Immediately following forceps removal, biopsies were incubated in 100 μL of a 

210 µM solution of 2-NBDG (Invitrogen, Carlsbad, CA, USA) in isotonic PBS for 40 

minutes at 37° C. Following incubation, specimens were washed in isotonic PBS on a 

shaker three times at 4°C for 10 minutes each to remove any excess 2-NBDG. PBS was 

replaced after each washing step. The tissue was then placed between two cover slips and 

imaged en face on a confocal microscope (LSM Meta 510, Zeiss, Inc., Germany). 

Fluorescence images were obtained at 488 nm laser excitation, with a 488 nm dichroic 

and a bandpass emission filter (520-580 nm) with a 20X objective. Images were acquired 

at different sites across the entire epithelial surface of each biopsy, resulting in 2-10 

images acquired from different sites within each biopsy. At each site, the focal plane was 

located between 16 and 23 microns below the surface of the biopsy specimen. 

Differential interference contrast (DIC) images were obtained from the same 500x500 

µm field of view as the confocal fluorescence images to provide a guide to tissue 

morphology. All the fluorescence images used for analysis were taken at the same laser 
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power and gain settings. The use of a benchtop confocal system allows the ability to 

control these settings, necessary during this initial pre-clinical evaluation of 2-NBDG in 

BE. 

Following confocal imaging, biopsy specimens were fixed in formalin and 

submitted for standard histologic evaluation; the diagnosis of the research biopsy was 

considered the gold standard in this study. Pathology slides were reviewed by a single GI 

pathologist with expertise in BE and EAC. The pathologist who reviewed the biopsy was 

blinded from the interpretation of confocal images. Pathologic diagnosis of IM, LGD, 

HGD and/or EAC was determined using previously defined standard criteria 
4
, which 

included loss of goblet cells, increased cellular atypia and glandular irregularity during 

neoplastic progression, among others. The presence of chronic and/or acute inflammation 

was based on the presence of lymphocytes/plasma cells in the lamina propria or 

neutrophils within the glandular epithelium, respectively 
119

.  When present, the degree of 

chronic inflammation was graded (mild, moderate, marked).   

6.2.2 Qualitative Image Evaluation 

All confocal fluorescence images were analyzed visually by two investigators 

(N.T. and D.M.) to identify key morphologic and architectural features visualized by 

fluorescence contrast associated with 2-NBDG uptake, which correspond to features 

present in H&E-stained histology. These include architectural features such as 

complexity of glandular architecture, glandular density, and glandular arrangement, as 

well as cytologic features such as the presence/absence of goblet cells, nuclear crowding, 

and nuclear enlargement.  
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Initial review of images indicated distinct 2-NBDG staining patterns for EAC samples 

depending on whether or not the tumor appeared ulcerated at the time of endoscopy.  

Therefore, images from samples diagnosed as HGD/EAC were divided into two sub-

groups based on endoscopic tumor appearance (intact mucosa, ulcerated surface).  

Images categorized as ulcerated EAC were excluded from further quantitative analysis, 

due to the clinicians’ ability to easily visualize these lesions during endoscopy.  

6.2.3 Quantitative Image Evaluation  

  Due to the low-risk of progression associated with LGD, and the known high 

inter-observer variability in histologic diagnosis of LGD 
4
, for quantitative evaluation 

both IM and LGD were grouped as metaplasia, and both HGD and EAC were grouped as 

neoplasia. This classification is consistent with the current confocal endoscopic grading 

system and is the most relevant to clinical utility for disease management 
9
. 

GLUT over-expression and activity are known to be significantly elevated in 

HGD/EAC 
111

, therefore specimens diagnosed as such may exhibit increased uptake of 2-

NBDG relative to IM/LGD. To determine whether the intensity of 2-NBDG fluorescence 

correlated with histopathologic diagnosis, two quantitative image features were 

calculated.  First, the mean glandular intensity (MGI), which included fluorescence only 

from glands, was calculated for each site imaged. Glands were segmented by a single 

observer, blinded to histopathologic diagnosis. Second, the mean fluorescence intensity 

(MFI) of the entire field of view, including fluorescence from both glands and the lamina 

propria, was calculated for each site imaged. The average MGI and MFI were calculated 

for all sites with the same histopathologic diagnosis and compared. One-way unbalanced 
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ANOVA was performed to determine whether differences in the mean value of calculated 

features between each pathologic category were significant. 

6.2.4 Diagnostic Algorithm  

Linear discriminant analysis was used to develop an algorithm to classify samples 

as neoplastic (HGD/EAC) or non-neoplastic (IM/LGD) based on each of the two 

quantitative image features using histologic diagnosis as the gold standard.  Due to the 

exploratory nature of this study, the same data set was used to train the algorithm and test 

its performance. For each input feature, a receiver operator characteristic (ROC) curve 

was constructed and the associated area under the curve (AUC) was calculated.  

Performance of the algorithm was assessed on a per-site basis; in addition, quantitative 

features from each site within a biopsy were averaged together in order to assess 

algorithm performance on a per biopsy basis.     

6.3 Results 

A total of 206 sites were imaged from 44 biopsies, as described in Table 6-1; 34 biopsies 

were obtained from UT MD Anderson Cancer Center and 10 biopsies were obtained from 

Mount Sinai Medical Center. 
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Table 6-I: Patient Data Summary 

 

 

6.3.1 Qualitative Image Evaluation  

Figures 6-1 to 6-3 show representative endoscopic images, 2-NBDG stained 

confocal fluorescence images, and corresponding H&E histology from specimens with 

intact and ulcerated surfaces. Figure 6-1A shows a representative endoscopic image of 

BE with intact mucosa (non-ulcerated). Figure 6-1B shows a representative confocal 

fluorescence image of a biopsy from that area incubated with 2-NBDG.  While uptake of 

the contrast agent is minimal, glands are still visible due to uptake of the contrast agent in 

epithelial cell cytoplasm. Goblet cells and nuclei appear to take up less 2-NBDG in 

comparison, making them appear dark. These features are indicated in the magnified 

confocal image (Figure 6-1D). The diagnosis of IM was verified by histopathology from 

the same biopsy (Figure 6-1C).  
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Fig. 6-1. Representative endoscopic image (A), confocal fluorescence 

images (B, D) and histologic images (C) of samples diagnosed as IM/LGD 

are shown. Relevant features such as goblet cells and nuclei are indicated.  

 

Figure 6-2A shows an endoscopic image of mucosa diagnosed as HGD with intact 

mucosa (non-ulcerated). Figure 6-2B shows a confocal fluorescence image of a biopsy 

from that area incubated with 2-NBDG; uptake of the contrast agent is higher than in the 

specimen diagnosed as IM (shown in previous Figure 6-1B), resulting in increased 

glandular fluorescence intensity.  Irregularly shaped glands and an increased density of 

glands are visible in the confocal fluorescence image, with strong uptake of 2-NBDG 

making the glandular patterns clear. Incomplete glands and nuclei are indicated in the 

magnified confocal image (Figure 6-2D). Visible cytologic changes include a decrease in 



114 
 

 
 

goblet cell density and enlargement of nuclei. The diagnosis of HGD was verified by 

histology (Figure 6-2C). 

 

Fig. 6-2. Representative endoscopic image (A), confocal 

fluorescence images (B, D) and histologic images (C) of samples 

diagnosed as HGD with intact mucosal surface are shown. Relevant 

features such nuclei and incomplete glands are indicated. There is no 

apparent lesion or ulceration indicating neoplasia in endoscopy 

image; however, biopsy-confirmed neoplasia is present and 

neoplastic features are visible in the confocal image.  

 

Figure 6-3A shows an endoscopic image of ulcerated mucosa diagnosed as carcinoma. 

Figure 6-3B shows a confocal fluorescence image of a biopsy from that area incubated 

with 2-NBDG.  Cells appear to take up the contrast agent, resulting in high fluorescence 

intensity; however, due to the lack of recognizable glandular structure, it is difficult to 
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differentiate tumor cells from stromal invasion. The lack of glandular structure and the 

diagnosis of ulcerated EAC were verified on the corresponding histology section (Figure  

6-3C). 

 

 

Fig. 6-3. Representative endoscopic image (A), confocal fluorescence 

images (B, D) and histologic images (C) of samples diagnosed as EAC 

with ulcerated mucosal surface are shown.  Relevant features such as 

tumor cells, blood vessels, and the ulcerated surface are indicated. 

Apparent tumor and ulcerated surface visible during surveillance 

endoscopy is verified with biopsy-confirmed invasive cancer with surface 

ulceration.  
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Figures 6-4A, C, and E, show representative images of 2-NBDG stained tissue 

from IM/LGD with zero to mild levels of inflammation, IM/LGD with moderate to 

marked inflammation, and HGD/EAC with moderate to marked inflammation. All 

specimens were obtained from areas with endoscopically-intact mucosal surfaces.  

Corresponding histology is also shown (Figure 6-4B, D, and F). While fluorescence 

intensity associated with 2-NBDG uptake is minimal in the sample diagnosed with 

IM/LGD with zero to mild levels inflammation (Figure 6-4A), the 2-NBDG uptake 

within the gland enhances the visibility of mucin within goblet cells, making them appear 

dark in contrast. A representative goblet cell is indicated by the white arrow.  Dark nuclei 

are made apparent by the uptake of the agent in the surrounding cytoplasm and are 

identified by their smaller size and position within the gland; they are not as dark as 

goblet cells. 

Figure 6-4C shows a representative confocal image of IM/LGD with moderate to 

marked inflammation. The pattern of glandular uptake is similar to that of IM/LGD with 

mild inflammation; the image shows characteristic crypts with dark goblet cells 

associated with IM/LGD. However, the presence of inflammatory cells in the lamina 

propria is associated with increased 2-NBDG and increased fluorescence intensity, 

characterized by the bright areas between the glands. 

Figure 6-4E shows a representative confocal fluorescence image of HGD/EAC 

with moderate to marked inflammation. Glandular uptake of 2-NBDG is significantly 

higher than is found with IM/LGD, resulting in increasingly bright glands. The 

particularly high intensity associated with these glands allows visualization of glandular 

irregularity and disruption –hallmarks of HGD and early EAC. Glands are crowded, 
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irregular, and fragmented and goblet cells are not visible. Uptake of 2-NBDG is visible in 

areas of lamina propria, making visible a few scattered fibers, most likely representing 

disrupted muscularis mucosa. Among the patients diagnosed as HGD/EAC with intact 

mucosa, the majority were graded as having moderate to marked levels of chronic 

inflammation (53/55); thus, the impact of lower levels of inflammation on 2-NBDG 

uptake could not be evaluated.  
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Fig. 6-4. Representative confocal fluorescence images of samples 

diagnosed as (A) IM/LGD with zero to mild levels of chronic 

inflammation, (B) IM/LGD with moderate to marked levels of chronic 

inflammation, (C) HGD/EAC with moderate to marked levels of chronic 

inflammation, and corresponding histopathology (D-F). The presence of 

moderate-marked inflammation is associated with increased fluorescence 
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in the lamina propria, while the presence of neoplasia is associated with 

increased glandular fluorescence.   

6.3.2 Quantitative Image Evaluation 

Figure 6-5 demonstrates gland selection for MGI calculation. Figure 6-6A shows 

the mean and standard deviation of the MGI of each site as a function of histologic 

diagnosis and grade of inflammation. On average, the MGI is lowest for sites with 

IM/LGD with zero to mild levels of inflammation (42.3 ± 17.0), and is highest for sites 

with HGD/EAC (84.0 ± 10.2). Figure 6-6B shows a corresponding scatter-plot of the 

MGI for each site; the MGI of the majority of the sites diagnosed as HGD/EAC are 

greater than for a majority of the sites diagnosed as IM/LGD, irrespective of the presence 

or degree of inflammation. Differences in the overall MGI of biopsies histologically 

categorized as IM/LGD and HGD/EAC were found to be significantly different 

(p<0.001). The ability of high resolution imaging to separate glandular changes from 

changes in the lamina propria is particularly useful.  

The mean and standard deviation of the MFI feature, which includes both glands 

and lamina propria, was 29.3±9.3 for IM/LGD with zero to mild levels of inflammation, 

67.0 ± 35.7 for IM/LGD with moderate to marked levels of inflammation, and 53.0 ± 

13.9 for HGD/EAC with mild to marked levels of inflammation. Due to the inflamed 

lamina propria, there is considerable overlap in the distribution of the MFI for sites 

diagnoses as IM/LGD with moderate to marked inflammation and sites diagnosed as 

HGD/EAC. Differences in the overall MFI of biopsies histologically categorized as 

IM/LGD and HGD/EAC were not found to be significantly different.  
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Fig. 6-5. Demonstration of gland selection for mean glandular intensity 

(MGI) calculation on a confocal image of Barrett’s metaplasia stained 

with 2-NBDG. MGI is the average of x, where x is the average intensity of 

each gland. 
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Fig. 6-6. (A) Plot showing mean glandular fluorescence intensity ± one 

standard deviation, separated according to histologic diagnosis and 

presence/grade of inflammation: IM/LGD with zero-mild chronic 

inflammation; IM/LGD with moderated-marked chronic inflammation; 

and HGD/EAC with zero-marked chronic inflammation.  (B) Scatter-plot 

showing mean glandular fluorescence intensity for each site according to 

histologic diagnosis and presence/grade of inflammation. Samples with 

acute inflammation present are indicated by “+” symbols; samples with no 

acute inflammation present are indicated by “o” symbols.  n = the number 

of images evaluated per category.  

 

Diagnostic algorithms were developed to classify samples as neoplastic or 

metaplastic based on each of these two quantitative features; algorithms based on the 
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MGI gave best performance relative to the gold standard of histopathology.  Figure 6-7 

shows the resulting ROC curves for this feature, with accuracy calculated on a per-site or 

per-biopsy basis.  At the Q-point, the algorithm based on MGI has a sensitivity of 96% 

and a specificity of 90% calculated per site (AUC = 0.97), and a sensitivity of 100% and 

a specificity of 93% calculated per biopsy (AUC = 0.96).  

 

Fig. 6-7. ROC curve for algorithm discriminating samples with HGD/EAC 

from samples with IM/LGD based on mean glandular fluorescence 

intensity. Results are shown for a per-site and a per-biopsy analysis using 

histology as the gold standard.    

 

6.4 Discussion 

This prospective, pre-clinical study evaluates the potential of fluorescent 

deoxyglucose as a topical contrast agent for adjuvant confocal microscopic examination 

of Barrett’s esophagus.  Our results suggest that topical 2-NBDG provides quantifiable 
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image features that can be used to discriminate neoplastic sites from metaplastic sites 

with high sensitivity and specificity. By combining high-resolution morphologic 

information provided by confocal microscopy with the metabolic information provided 

by 2-NBDG, this imaging method offers the ability to visualize and quantify key 

pathologic features to differentiate neoplasia. While glandular staining can be 

heterogeneous, likely due to pathologic heterogeneity known to be present in individual 

biopsy fragments 
120

, the effect appears to mitigated when the mean glandular intensity is 

used as a classifying feature. Indeed, the ability to delineate glandular uptake of 2-NBDG 

from the surrounding lamina propria provides the critical advantage of differentiating 

neoplasia from inflammation, a significant confounder with other imaging technologies.  

Emerging targeted, optically labeled contrast agents such as antibodies, peptides, 

or aptamers can be advantageous over commonly used non-targeted agents, such as 

fluorescein, due to the specificity towards known markers of neoplasia. However, due to 

the size of the targeted agents (kDa range), it may be difficult to achieve relevant 

penetration depth using topical delivery. An advantage of 2-NBDG is its low molecular 

weight (330 Da); thus it may have the potential to penetrate deeper through tissue 
57

. This 

is especially useful since confocal imaging has the ability to image sub-surface cell 

layers. Moreover, due to its small size, 2-NBDG has the potential to overcome difficulties 

associated with tissue clearance; agent not taken up by the cells can be removed through 

simple washing steps.  

Like 
18

FDG PET, 2-NBDG imaging provides a tool to assess tissue metabolic 

activity 
118

.  Despite its benefits, 
18

FDG PET is typically only used for disease staging 

and monitoring 
121

. Moreover, false positives associated with inflammation are common 
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115
. While duplicating many of the benefits of 

18
FDG PET, the use of 2-NBDG during 

optical imaging offers additional advantages. The spatial resolution of optical imaging is 

limited by diffraction and can thus be used to visualize the location of 2-NBDG uptake.  

This can aid in determining whether the signal comes from inflammatory cells in the 

lamina propria or neoplastic cells of the glands. These advantages support the broader use 

of metabolic monitoring during endoscopic surveillance. Finally, due to the long history 

of safe use of intravenous 
18

FDG 
122, 123

 and the limited amounts (3-5 ml) of 2-NBDG 

required for topical application in the esophagus, the use of this contrast agent should be 

readily translatable to clinical application. 

This ex vivo study highlights the potential benefits of using 2-NBDG to image 

and quantify signal contrast associated with neoplasia and serves as an important step 

towards eventual clinical translation. However, further clinical studies are necessary to 

determine whether similar conclusions can be drawn during in vivo imaging. In this 

study, tissue samples were incubated with 2-NBDG post excision to allow the uptake of 

the agent. An in vivo study will be necessary to determine whether topical application 

will require an incubation time similar to that used in the ex vivo study. If so, an optimal 

medium for application, such as a paste or a gel, will need to be explored. Furthermore, 

larger sample sizes are necessary to assess clinical utility. In such a study, the effects of 

acute inflammation on the glandular mean intensity could be further evaluated and the 

differences between low grade and high grade dysplasia could be explored in more detail. 

Despite these limitations, this study demonstrates the potential benefits of optically 

monitoring metabolic activity to identify neoplasia. 
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Results of this ex vivo pre-clinical study provide preliminary data to guide future 

translation to in vivo confocal endoscopic surveillance in patients with BE. Advances in 

widefield imaging have given endoscopists the ability to detect areas suspicious of 

neoplasia with high sensitivity but limited specificity. Topically applied 2-NBDG 

coupled with appropriate high resolution imaging techniques could be used to further 

optically sample those areas and rule out false positives based on relevant cellular and 

biochemical changes associated with neoplastic progression. Objective visualization of 

relevant biochemical changes provides clinicians with an added dimension of 

information, thus appropriate decisions regarding diagnosis and treatment can be made. 

Since these features are quantifiable, there exists the potential to develop computer-aided 

analysis software for real-time endoscopic interpretation. This information may increase 

sampling efficiency, enhance the detection of neoplasia and improve margin 

determination during surveillance.  
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CHAPTER 7: CONCLUSION  

7.1 Summary and Research Contributions 

Widefield optical imaging allows scanning of large epithelial surface areas for 

lesions suspicious of neoplasia. The technology can be used in conjunction with existing, 

highly specific, high resolution technologies  
9, 54, 59

 in order to eventually implement a 

two-step detection process, widefield identification of suspicious areas and high 

resolution verification of disease 
124, 125

. While both widefield and high resolution optical 

imaging platforms have been used to probe various endogenous tissue features associated 

with disease progression 
7, 24

,  both have more recently been used to probe exogenous 

contrast agent dyes in order to increase the visibility of important disease biomarkers 
82, 

126
.  

The pathologic disease progression from Barrett’s metaplasia to associated 

adenocarcinoma is well-documented making it an ideal candidate for testing new imaging 

techniques. To date, various widefield imaging techniques have been tested for in vivo 

Barrett’s surveillance 
7, 40, 77, 79

, however, these individual techniques have yet to achieve 

the accuracy needed to be incorporated into standard of care 
127

. While these endoscopic 

technologies have significantly advanced optical imaging in vivo, there remains a need 

for an imaging platform which utilizes both widefield and high resolution imaging for 

Barrett’s surveillance.  This dissertation describes the development and testing of new 

widefield and high resolution imaging techniques for the optical detection of Barrett’s 

associated neoplasia.  

Chapter 3 describes the first research contribution of this dissertation, the 

development of vital-dye fluorescence imaging (VFI) with proflavine hemisulfate 



127 
 

 
 

contrast, a fluorescent dye which binds to DNA. Our goal in this ex vivo 15-patient pilot 

study was to evaluate the feasibility of a single topical contrast agent using a benchtop 

fluorescence-based platform for both widefield and high resolution imaging of the 

gastrointestinal tract. This approach elucidated the clinically relevant features that can be 

visualized using two different imaging scales, highlighting the benefit of first examining 

glandular architecture and then probing nuclear morphology. Results from this study 

demonstrated the diagnostically relevant image features found in VFI. Widefield 

fluorescence imaging was used to resolve features on the order of 50-100 microns with a 

field of view of approximately 2 cm in diameter. This mode of imaging coupled with 

proflavine contrast enhanced visualization of glandular architecture when compared to 

white light imaging. In metaplasia, glandular edges were enhanced, and a distinct 

glandular pattern appeared throughout a given region of interest. The spatial distribution 

of glands appeared regular and there was little distortion or crowding of the pattern. In 

high grade dysplasia, partial effacement of the glands was visible and heterogeneous 

staining was present. In adenocarcinoma, glandular architecture often became completely 

effaced with little to no visible gland edges.  

High resolution imaging was used to resolve features on the order of 4-5 microns 

with a field of view of approximately 750 microns in diameter. HRME imaging has 

previously been shown to improve visualization of both glandular and nuclear 

morphology. Indeed, in this ex vivo study, HRME of metaplastic epithelium showed 

evenly distributed glands, clear epithelial borders, where the nuclei were polarized 

towards the outer edges. In neoplasia, glands appear heteregenous and unevenly 

distributed with various levels of glandular dropout associated with the increased 
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progression to neoplasia. In HRME images, nuclear crowing is also an important visible 

indicator of neoplasia.  

These results led to the second research contribution of this dissertation; the 

design, construction, and implementation of the module-based video endoscope (MVE), 

an endoscope which can image in three widefield imaging modes and that can 

accommodate the existing HRME imaging probe via endoscope instrument channel for 

high resolution imaging. The MVE can collect white light, cross-polarized reflectance, 

and vital-dye fluorescence in vivo. At a typical working distance of 10 mm, the field of 

view is adjustable due to a digital zoom function and can vary between 14 mm and 45 

mm in diameter. At this working distance the system can easily resolve blood vessels and 

glandular architecture (50 microns).  

To implement cross-polarized imaging (CPI), a stainless steel filter module 

designed to work with the Pentax high definition upper endoscope was used to hold 

necessary optical filters. White light from the existing xenon arc lamp passes through 

linear polarizers contained in the module, one in front of each end of the bifurcated light 

guide.  This module holds another orthogonally oriented linear polarizer in front the CCD 

to achieve CPI. Though cross polarized imaging has been demonstrated in other organ 

sites 
80, 84

, this is the first in vivo implementation of cross-polarized imaging through an 

endoscope. 

To implement vital-dye fluorescence imaging (VFI), a custom 455 nm laser 

illumination system was implemented to achieve sufficient excitation to image proflavine 

fluorescence. The quasi-monochromatic illumination light excites proflavine contrast, 

and emitted fluorescence is collected through a custom-designed long pass filter held by a 
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second stainless steel filter module. This filter was designed to accommodate the angular 

FOV of the endoscope (up to 70 degrees). Fluorescence imaging has been demonstrated 

to probe endogenous contrast 
7, 8

 and exogenous contrast 
82

 in Barrett’s, but this is a 

unique instance where widefield endoscopic fluorescence imaging has been achieved 

through a replaceable filter module and the first instance where widefield proflavine 

fluorescence was measured in vivo in the gastrointestinal tract.  

Results show that CPI enhances vessel architecture while VFI enhances glandular 

architecture when compared to white light imaging; this was demonstrated during in vivo 

endoscopic imaging. In neoplasia, CPI images show an increase in vessel density and 

VFI images show an increase in glandular effacement when compared to non-neoplastic 

images. Moreover, the changes in glandular architecture seen in widefield VFI images 

were further visualized during high resolution imaging of the same agent. For in vivo 

HRME images, both glandular and nuclear morphology can be assessed.  

The third contribution of this dissertation was the development of a classification 

algorithm for the identification of neoplasia in MVE images obtained endoscopically. In 

a 14 patient pilot study, 65 pathologically correlated images of metaplasia and neoplasia 

were obtained. Step-wise linear discriminant analysis was used to classify images as 

metaplasia (BE/LGD) or neoplasia (HGD/EAC) using quantitative image features. The 

diagnostic algorithm,  developed using leave-one-out cross validation, classified 

neoplasia with a sensitivity and specificity of 88% and 86% respectively, with an area 

under the receiver operator characteristic curve of 0.86. This contribution is unique due to 

its focus on quantitatively evaluating widefield images of esophageal mucosa stained 

with proflavine.  
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The final contribution of this dissertation is the evaluation of an additional 

contrast agent for the identification of neoplasia in Barrett’s. Chapter 6 examines 2-

NBDG, a fluorescent deoxyglucose, a well-documented optical indicator of cellular 

metabolism that has been shown to aid in identifying neoplasia in the oral cavity 
105

. The 

excitation and emission wavelengths of 2-NBDG closely correspond to those of 

proflavine, making it a candidate for future in vivo surveillance using the MVE and the 

HRME. The study presented here focuses on high resolution evaluation of the agent, a 

necessary step towards eventual widefield examination. A total of 206 sites were images 

from 44 biopsies. Each biopsy was incubated with 2-NBDG for 30 minutes at 37ºC and 

imaged using benchtop confocal microscope. Qualitatively, confocal images of 2-NBDG 

stained biopsies highlights the glandular pattern. Nuclei and characteristic goblet cells 

appear dark, whereas cell cytoplasm appears bright due to accumulation of 2-NBDG. 

Diagnostic algorithms were used to classify image sites as neoplasia. By using the mean 

glandular intensity of each image, the algorithm could classify neoplasia with a 

sensitivity of 96% and specificity of 90% with an area under the receiver operator 

characteristic curve of 0.97. This is the first pre-clinical evaluation of 2-NBDG as a 

topical contrast agent for the detection of Barrett’s-associated neoplasia using confocal 

imaging.  

7.2 Future Research Directions 

Various steps are needed to translate the technology developed in this dissertation 

from research-based pilot studies to clinical care. Based on the research presented here, 

there are important instrumentation modifications, clinical studies, and laboratory 

experiments that are needed to determine whether or not these research contributions can 
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influence the current clinical paradigm for cancer detection. By executing these steps, 

there exists the potential to further develop a multimodal/dual-scale imaging platform 

that can probe various exogenous contrast agents.    

 Firstly, while the instrumentation designed and constructed here was an important 

first-step towards in vivo endoscopic fluorescence imaging, the limitations associated 

with the number of scope insertions (two to achieve white light imaging and VFI) were 

not anticipated. In order to promote widescale use of the MVE, the endoscope must 

achieve the same imaging results using one scope insertion. Moreover, the endoscopist 

should be able to switch easily between white light and VFI imaging modalities. Without 

this improvement, adoption of this technique in community surveillance centers may not 

be easily achievable. By exciting proflavine with a shorter wavelength (~405 nm) we can 

take advantage of long pass filter with a shorter cut-on (~435 nm) wavelength; the benefit 

of this long pass filter is that it can be used to image in white light mode as well, reducing 

the number of insertions for widefield examination. However, appropriately designed 

experiments are needed to determine whether sufficient proflavine excitation can be 

achieved at this wavelength and if the use of a long pass filter during white light imaging 

affects the interpretation of mucosal features.  

 Secondly, large-scale statistically significant clinical studies are needed to 

understand the benefits of VFI. Moreover, understanding the effectiveness of the 

widefield/high-resolution detection scheme is an important step to understanding how 

essential the role of each play in surveillance. For this to happen, two different studies 

need to be conducted. Since confocal imaging has emerged as a high performing high 

resolution imaging technology 
9
, and the HRME has emerged as a potential cost-effective 



132 
 

 
 

alternative 
54, 56

, the first is a statistically significant study comparing the sensitivity and 

specificity of the WLI/VFI/confocal detection scheme to the WLI/VFI/HRME detection 

scheme. Once the optimal high resolution technology is determined, the second study 

needed is a randomized clinical trial to compare that platform to the current standard of 

care.  

In addition to what WLI/VFI/HRME can do to improve the detection of new 

neoplastic lesions, there is also the potential for the technology to aid in endoscopic 

margin determination. The advent of a variety of new imaging techniques and 

surveillance programs has the potential to improve the detection of adenocarcinoma at 

early stages. As technology improves early detection of neoplastic lesions, endoscopic 

treatments are becoming available. By introducing VFI technology that elucidates 

changes in glandular architecture, the technology could be used for margin determination, 

though additional in vivo studies are needed to assess the potential in this area. 

VFI imaging was designed to not only image proflavine contrast but also to image 

additional contrast agents that may aid in identifying neoplasia such as 2-NBDG. We 

tested 2-NBDG as an alternative contrast agent, however there are more steps needed for 

clinical translation of the agent. In order eventually conduct widefield and high resolution 

fluorescence imaging of 2-NBDG in vivo, short term animal toxicity studies are needed 

to obtain an FDA exemption to use 2-NBDG for IRB approved in vivo research 

protocols. Additionally, medium of delivery must be explored due to the necessary 

incubation step.  
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In addition to 2-NBDG, due to the development of the MVE the opportunity 

exists to test additional highly specific contrast agents developed for the esophagus such 

as a recently described, fluorescently-labeled,  high affinity peptide 
10, 128

. The 

development of this system also motivates the development of new contrast agents. 

Biomarkers such as EGFR have been shown to increase in certain subsets of patients with 

Barrett’s 
129

. By identifying these patients early using optical contrast agents targeting 

these biomarkers, we can potentially personalize their care at the point of surveillance.  

The future of endoscopic surveillance will be multifaceted and a potential solution 

will require not only larger scale clinical studies but cost analysis to understand the 

overall effectiveness compared to existing practice. This dissertation emphasizes the 

importance of a solution involving a two-step detection process using both widefield and 

high resolution imaging and the importance of developing topical contrast agents that will 

work with the proposed platform. The steps laid out in this chapter are necessary to move 

the platform from research into clinical practice. Once these steps are taken, we can 

evaluate how to transition this technology beyond the high-risk Barrett’s patient 

population and into screening and evaluating other endoscopically accessible cancers.  
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