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Combining Analyses,

Combining Optimizations

Clifford Noel Click, Jr.

Abstract

This thesis presents a framework for describing optimizations. It shows how to com-
bine two such frameworks and how to reason about the properties of the resulting frame-
work. The structure of the framework provides insight into when a combination yields
better results. Also presented is a simple iterative algorithm for solving these frameworks.
A framework is shown that combines Constant Propagation, Unreachable Code Elimina-
tion, Global Congruence Finding and Global Value Numbering. For these optimizations,

the iterative algorithm runs in O(n?) time.

This thesis then presents an O(n log n) algorithm for combining the same optimiza-
tions. This technique also finds many of the common subexpressions found by Partial Re-
dundancy Elimination. However, it requires a global code motion pass to make the opti-
mized code correct, also presented. The global code motion algorithm removes some
Partially Dead Code as a side-effect. An implementation demonstrates that the algorithm
has shorter compile times than repeated passes of the separate optimizations while produc-

ing run-time speedups of 4% — 7%.

While global analyses are stronger, peephole analyses can be unexpectedly powerful.
This thesis demonstrates parse-time peephole optimizations that find more than 95% of
the constants and common subexpressions found by the best combined analysis. Finding
constants and common subexpressions while parsing reduces peak intermediate represen-
tation size. This speeds up the later global analyses, reducing total compilation time by
10%. In conjunction with global code motion, these peephole optimizations generate ex-
cellent code very quickly, a useful feature for compilers that stress compilation speed over

code quality.
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Preface

My first introduction to compiler writing occurred in 1978 when, at the prompting of a
Byte magazine article, I implemented a tiny Pascal compiler. The compiler ran in 4K, took
two passes and included a peephole optimizer. While it was many years before I would

write another compiler, I still feel that compilers are “neat” programs.

In 1991, when I began studying compilers in earnest, I found that many forms of pro-
gram analysis share a common theme. In most data-flow analysis frameworks, program
variables are initialized to a special value, T. This special value represents an optimistic
assumption in the analysis. The analysis must do further work to prove the correctness of
the T choice. When I began my work on combining analyses, I used my intuition of the
optimistic assumption to guide me. It was clear that constant propagation used the opti-
mistic assumption and that I could formulate unreachable code elimination as an optimistic
data-flow framework. But the combination, called conditional constant propagation [49],
was strictly stronger. In essence, Wegman and Zadeck used the optimistic assumption
between two analyses as well as within each separate analysis. This work states this intui-
tion in a rigorous mathematical way, and then uses the mathematical formalism to derive a
framework for combining analyses. The framework is instantiated by combining condi-
tional constant propagation, global value numbering [2, 37, 36, 18], and many techniques
from hash table based value numbering optimizations [12, 13].



Chapter 1

Introduction

This thesis is about optimizing compilers. Optimizing compilers have existed since the
1950s, and have undergone steady, gradual improvement [3]. This thesis discusses the
compilation process and provides techniques for improving the code produced as well as

the speed of the compiler.

1.1 Background

Computers are machines; they follow their instructions precisely. Writing precisely
correct instructions is hard. People are fallible; programmers have difficulty understanding
large programs; and computers require a tremendous number of very limited instructions.
Therefore, programmers write programs in high-level languages, languages more easily
understood by a human. Computers do not understand high-level languages. They re-
quire compilers to translate high-level languages down to the very low-level machine lan-

guage they do understand.

This thesis is about optimizing compilers. Translation from a high-level to a low-leve!
language presents the compiler with myriad choices. An optimizing compiler tries to se-
lect a translation that makes reasonable use of machine resources. Early optimizing
compilers helped bring about the acceptance of high-level languages by generating low-
level code that was close to what an experienced programmer might generate. Indeed, the
first FORTRAN compiler surprised programmers with the quality of code it generated [3].



1.2 Compiler Optimizations

One obvious method for improving the translated code is to look for code fragments
with common patterns and replace them with more efficient code fragments. These are
called peephole optimizations because the compiler looks through a “peephole”, a very
small window, into the code [16, 42, 17, 23, 24]. However, peephole optimizations are
limited by their local view of the code. A stronger method involves global analysis, in
which the compiler first inspects the entire program before making changes.

A common global analysis is called data-flow analysis, in which the compiler studies
the flow of data around a program [12, 29, 30, 31, 45, 1]. The first data-flow analyses
carried bit vectors to every part of the program, modified the bits, and moved them on to
the next section. Bit-vector data-flow analyses require several passes over the program to
encode the facts they are discovering in the bits. Since different analyses give different
meanings to the bits, the compiler requires many passes to extract all the desired knowl-
edge. Thus bit-vector analysis runs a little slower and uses more memory than peephole

analysis. However, its global view allows the compiler to generate better code.

Data-flow analysis has moved beyond bit vectors to more complex sets [33]. Constant
propagation is a data-flow analysis in which the compiler attempts to discover which vari-
ables have known constant values in every program execution. In the code below, the

compiler tries to determine whether x is a constant.

x:i=1;

do {
xX:=2-x

} while (... );

On the first line, x is clearly 1. On the next line, the value for x flowing around the
loop backedge depends on any assignments to x in the loop body. The compiler can
(pessimistically) assume that the loop body will modify x to an arbitrary value, causing x’s
value to be unknown at the loop top. When the compiler detects the assignment in this
loop body, the value assigned to x is unknown; 2 minus any integer can be any integer.
However, if the loop body does not further modify x, then the pessimistic assumption is
not ideal. Since 2 minus 1 is 1, x is clearly constant. Instead, the compiler can (optimisti-
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cally) assume that x remains unchanged in the loop body, so that x’s value on the loop
backedge is 1. When the compiler inspects the loop body, it finds that the assignment
does not change x. The compiler’s assumption is justified; x is known to be constant.

In the modern version of constant propagation, the compiler makes the optimistic as-
sumption. [49] It assumes variables are constant and then tries to prove that assumption.
If it cannot, it falls back to the more pessimistic truth (i.e., the variable was not a con-

stant).

The results of analyses can affect each other. Knowing that a value is constant may let
the compiler remove some unreachable code, allowing it to find more constants. In the
code below, after the compiler first runs constant propagation, it knows x is always 1, but
the final value of y is unknown. However, the compiler does know that the test is always
false, so the test and the unreachable code “y := 3” can be removed. A second run of
constant propagation will correctly discover that y is always 2.

x:=1;

yi=2

if(x=1)
yi=3;

This occurs because the two optimizations, constant propagation and unreachable
code elimination, interact; they exhibit a phase-ordering problem [1]. The two separate
analyses make use of the optimistic assumption within themselves, but not between them-
selves. For example, constant propagation assumes all code is reachable; it never assumes
code is unreachable. Unreachable code elimination assumes that all tests are not con-
stants; it never assumes that some expression may compute a constant (it does understand
the two constant tests “if TRUE” and “if FALSE”). Unfortunately, these optimizations do
not both make their optimistic assumptions at the same time. In Conditional Constant
Propagation (CCP), both assumptions are made at the same time [49]. CCP combines
these two analyses optimistically; facts that simultaneously require both optimistic as-
sumptions are found. The combined analysis replaces both constant propagation and un-
reachable code elimination. CCP is stronger than repeating the separate analyses any

number of times; it removes the phase-ordering problem between them.
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Part of my work concerns combining optimizations. This thesis discusses under what
circumstances an optimization can be described with a monotone analysis framework.
Two analyses described with such frameworks can be combined. This thesis also dis-
cusses situations in which it is profitable to combine such optimizations and provides a

simple technique for solving the combined optimization.

1.3 Intermediate Representations

Compilers do not work directly on the high-level program text that people write.
They read it once and convert it to a form more suitable for a program to work with (after
all, compilers are just programs). This internal form is called an intermediate representa-
tion, because it lies between what the programmer wrote and what the machine under-
stands. The nature of the intermediate representation affects the speed and power of the

compiler.

A common intermediate representation in use today is the Control Flow Graph (CFG)
with basic blocks of quads [1]. A quad is a simple 3-address operator. It looks like an
expression of the form “a := b + ¢”. The four pieces include the two input variables b and
¢, the add operator, and the output variable a. Each quad represents the amount of work
a single machine instruction can do. A basic block is a section of code with no control
flow. The compiler converts the code in the basic block from the high-level language to
quads. A single high-level language statement may translate to many quads. The CFG is a
directed graph. The vertices represent basic blocks and the edges represent possible di-

rections of program control flow.

Quads are a powerful and flexible program representation. However, they have a
flaw: they record names instead of values. When the compiler wishes to determine if a is a
constant in “a := b + ¢”, it must first determine if b and ¢ are constants. The name b does
not tell the compiler what the program last assigned to b or where that last assignment oc-
curred. The compiler must carry information about assignments to b forward to all possi-
ble uses of . It must do the same for c, and for all variables. This requires carrying vec-

tors of information around, even to assignments that do not use b.
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A better method is to record use-def chains with each quad [32, 1]. Use-def chains
represent quick pointers from uses of a variable (like b) to the set of its last definitions.
The compiler can now quickly determine what happened to b in the instructions before “q
:= b + ¢” without carrying a large vector around. Use-def chains allow the formalism of a
number of different data-flow analyses with a single framework. As long as there is only a
single definition that can reach the quad, there is only one use-def chain for 5. However,
many definitions can reach the quad, each along a different path in the CFG. This requires
many use-def chains for b in just this one quad. When deciding what happened to b, the

compiler must merge the information from each use-def chain.

Instead of merging information about b just before every use of b, the compiler can
merge the information at points where different definitions of & meet. This leads to Static
Single Assignment (SSA) form, so called because each variable is assigned only once in
the program text [15]. Because each variable is assigned only once, we only need one
use-def chain per use of a variable. However, building SSA form is not trivial; program-
mers assign to the same variable many times. The compiler must rename the target vari-
able in each assignment to a new name; it must also rename the uses to be consistent with
the new names. Any time two CFG paths meet, the compiler needs a new name, even
when no assignment is evident. In the code below, the compiler renames x in the first as-
signment to xo and x in the second assignment to x;. In the use of x in the third statement,
neither of the names xo nor x, is correct. The compiler inserts a ¢-function assignment to

x, and renames the use to x,.!

ift..)x:=1; if(...)x:=1;
else x :=2; else x; :=2;

X := O Xo, X1);
oo Xuoe oo X20as

A ¢-function is a function whose value is equal to one of it’s inputs. Which input de-
pends on which CFG path reached the ¢-function. The compiler inserts ¢-functions at
places where the program merges two or more values with the same name. The 0-

' Adding ¢-functions increases the intermediate representation (IR) size. In theory, this can result in a quadratic in-
crease in the IR size. The compiler community’s practical experience to date is that this is not a problem.
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function is not an executable statement in the same sense that other assignments are;

rather, it gives a unique name to the merged value of x.

SSA form allows the convenient expression of a variety of data-flow analyses. Quick
access through use-def chains and the manifestation of merge points simplify a number of
problems. In addition, use-def chains and SSA form allow the old bit vector and integer
vector analyses to be replaced with sparse analyses. A sparse analysis does not carry a
vector of every interesting program datum to every instruction. Instead, it carries just the
information needed at an instruction to that instruction. For these reasons, this thesis will

make extensive use of SSA form.

The main results of this thesis are (1) a framework for expressing and combining
analyses, (2) a method for showing when this is profitable, (3) a sparse analysis combining
Conditional Constant Propagation [49] and Global Congruence Finding [2] in O(n log n)
time, and (4) an implementation with experimental results. Additionally, the thesis dis-
cusses a global code motion technique that, when used in conjunction with the combined
analysis, produces many of the effects of Partial Redundancy Elimination [36, 18] and
Global Value Numbering [37].

1.4 Organization

To make the presentation clearer, we will use integer arithmetic for all our examples.
All the results apply to floating-point arithmetic, subject to the usual caveats concerning
floating point. Floating-point arithmetic is neither distributive nor associative, and inter-
mediate results computed at compile time may be stored at a different precision than the

same results computed at run time.

This thesis has nine chapters. Chapter 2 states the optimistic assumption in a mathe-
matically rigorous way with examples. It then furnishes minimum requirements for any
optimistic analysis.

Chapter 3 defines a general data-flow framework. It uses the optimistic assumption to
demonstrate when two optimizations can be profitably combined. Constant propagation,
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unreachable code elimination, and global congruence finding are combined with a simple
O(n?) algorithm.

Chapter 4 presents a more efficient O(n log n) algorithm for combining these optimi-
zations. This combined algorithm also folds in various techniques from local value num-
bering.

For efficient analysis, quads contain use-def chains along with variable names. Chap-
ter 5 shows how to remove the redundant names, leaving only the use-def chains. It also
folds the CFG into the use-def chains, making a single level intermediate representation.

The resulting representation is compact and efficient.

Chapter 6 shows the results of the complete implementation. It compares program
improvement times for the combined algorithm versus the classic, separate pass approach.

The chapter also shows the compile times for the different approaches.

Chapter 7 presents a powerful global code motion algorithm. When used in conjunc-
tion with the intermediate representation in Chapter 5, the combined algorithm becomes
much stronger. Removing some control dependencies allows the combined algorithm to
mimic some of the effects of Partial Redundancy Elimination and Global Value Number-
ing.

Optimistic analysis must be global, but pessimistic analysis can be local (i.e., peep-
hole). Chapter 8 presents a strong peephole technique, one that gets within 95% of what
the best global technique does. This peephole optimization can occur during parsing if
SSA form is available. The chapter also presents a method for incrementally building SSA

form and experimental results for this technique.

Finally, Chapter 9 presents conclusions and directions for future research.



Chapter 2

The Optimistic Assumption

If all the arts aspire to the condition of music,
all the sciences aspire to the condition of mathematics.
— George Santayana (1863-1952)

Before a compiler can improve the code it generates, it must understand that code.
Compilers use many techniques for understanding cbde, but a common one is called data-
flow analysis. Data-flow analysis tracks the flow of data around a program at compile
time. The type of data depends on the desired analysis. Central to most data-flow analy-
ses is the idea of a set of facts. During analysis, this set of facts is propagated around the
program. Local program facts are added or removed as appropriate. When the analysis
ends, the facts in the set hold true about the program. It is fitting that we begin our jour-

ney into program analysis with a look at sets.

I will start by discussing what it takes to discover a set. Then I will talk about data-
flow frameworks in terms of discovering a set. The set view of data-flow analysis gives us
a better intuition of what it means to combine analyses. In this chapter we will briefly look
at a constant propagation framework. In the next chapter we will specify data-flow
frameworks for constant propagation, unreachable code elimination and global value num-
bering, and find that they can be easily combined. For each analysis (and the combination)

we will look at some small example programs.

Central to most data-flow frameworks is the concept of a lattice. Points of interest in
the program are associated with lattice elements. Analysis initializes program points to
some ideal lattice element, usually called “top” and represented as T. At this point, some
of the lattice values may conflict with the program. Analysis continues by strictly lowering
the lattice elements until all conflicts are removed. This stable configuration is called a

fixed point. If the analysis stops before reaching a fixed point, the current program point
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values are potentially incorrect. In essence, T represents an optimistic choice that must be

proven to be correct.

An alternative approach is to start all program points at the most pessimistic lattice
element, .L (pronounced “bottom™). At this point there are no conflicts, because .. means
that the compiler knows nothing about the run-time behavior of the program. Analysis
continues by raising lattice elements, based on the program and previously raised lattice
elements. If analysis stops before reaching a fixed point, the current program point values

are correct, but conservative — the analysis fails to discover some facts which hold true.

In many data-flow frameworks, there exist programs for which the pessimal approach
will never do as well as the optimistic approach. Such programs appear several times in
the test suite used by the author. This chapter explores the “optimistic assumption” and
why it is critical to the ability of an optimistic analysis to best a pessimistic analysis.

2.1 The Optimistic Assumption Defined

Enderton [19] defines a set as a collection of rules applied to some universe. Think of
the rules as assertions that all hold true when applied to the desired set. While these rules

can define a set, they do not tell how to construct the set.

We will restrict our rules to being monotonic with subset as the partial order relation.
Now we can view our restricted rules as functions, mappings from universe to universe.
Since all rules must hold true on the desired set, we will form a single mapping function

that applies all rules simultaneously and unions the resulting sets.

We can apply this mapping function until we reach a fixed point, a set of elements that,
when the mapping function is applied to the set, yields the same set back. There are two

ways to apply the mapping function to build a set:

1. Bottom-up: Start with the empty set. Apply the mapping function. Initially only
the base-cases, or zero-input rules, produce new elements out. Continue applying
the mapping function to the expanding set, until closure. Because our rules are

2 We could choose intersection instead of union, but this makes the appearance of the rules less intuitive.
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monotonic, elements are never removed. This method finds the Least Fixed Point
(Up).

2. Top-down: Start with the complete set, the set with every element in the uni-
verse. Apply all rules. Some elements will not be produced by any rule, and will
not be in the final conjuction. Continue applying the mapping function, removing
elements not produced by any rule, until closure. This finds the Greatest Fixed
Point (gfp).

In general, the top-down approach can yield a larger set. It never yields a smaller set. We
leave until Chapter 3 the proof that the top-down method finds the gfp.

Definition 1: We use the optimistic assumption when we find a set using the top-

down approach instead of the bottom-up approach.

The following two examples will make these ideas more concrete. The first example
defines sets that are equal for both approaches. The second example gives rules that de-

fine two different sets, depending on the approach.

Example 1: Let the universe be the set of natural numbers N, { 1,2,3,...}. We de-
scribe a set using these two rules: “f: 1 is in the set” and “g: if x is in the set, then x+2 is in
the set”, as shown in Figure 2.1. The boxed numbers exist in both sets (and are generated
by either approach); crossed-out numbers exist in neither set (and are not generated by
either approach). When we build the set using the bottom-up approach we apply f to
place 1 in the set. Then, we apply g to 1 and place 3 in the set, etc. Eventually we build
up the set of positive odd numbers. The top-down yields the same set. We start with all
positive integers, including 4, in the set. For 4 to remain in the set we require g'(4) = 2,
to be in the set. However, g(2) = 0 and 0 is not in our universe (or our set), so we must
remove 2, then 4, and all even numbers, from the set. Again we build the set of positive

fO s o e 26 0
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Bottom-up: {1,3,5,7,...}
}

y
v
Top-down: {1,3,5,7,...

Figure 2.1 Defining a setusing f() =1 and g(x) = x + 2
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odd numbers.

Alternatively we can think of these rules as being a map from N to N. For the top-
down case, we start with an initial set, So, of all the natural numbers. We then use the
rules to map So > S;. However, S) does not have 2 in the set because neither f nor g pro-
duces 2 when applied to any natural number. If we repeat the mapping, S; > S, then §,
contains neither 2 nor 4 (4 is missing because 2 is missing in §;). When we repeat to a

fixed point, we find the set of positive odd integers.

Example 2: We use the same universe, but we use the rules : “£ 1 is in the set” and
“g: if x is in the set, then x is in the set”. In Figure 2.2, we see that the top-down and
bottom-up approaches yield different sets. As in Example 1, boxed numbers exist in both
sets. Plain numbers exist only in the top-down set. Building the set by the bottom-up
method starts by using f to place I in the set. When we apply g to all elements of the set
(i.e., 1), we get only the element 1 and the set is trivially closed under f and g. However,
with the top-down approach, we initially fill the set from the universe. We can apply g to
any clement and thus find a rule for that element. The top-down approach yields a set

equal to the entire universe of natural numbers.

Again, we can view the rules as a map from N to N. For the top-down case we start
with an initial set, So, of all natural numbers. We then use the rules to map So > S;. Now,
however, §; is identical to S,. Rule g maps everything in S, into S;. We find the fixed
point immediately, and it is the set N. Unlike in example 1, the top-down and bottom-up
approaches give different sets in example 2.

The crucial difference between example 1 and example 2 is the cycle in rule &, which
defines an infinitely long path. If the rules and elements do not form infinitely long back-

82 8@3) 8@ &) 8(6) O

QOOOOO

Bottom-up: {1}
Top-down: {1,2,3,4,5,6,7,...}

Figure 2.2 Defining a set using f() = 1 and g(x) = x
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wards paths, then the two approaches always give the same final set. The bottom-up ap-
proach can never form an infinitely long backwards path. The bottom-up approach cannot
“prime the pump”; it cannot produce the elements needed to complete a cycle. The top-
down approach starts with the elements in any cycle all existing; their existence allows the
application of the rules in the cycle which in turn define the cycle’s elements. The key idea

of this section is:

Sets are different when rules and elements form infinitely long paths of dependencies.
As we will see in later sections, the rules and elements from our data-flow frameworks will
form cycles of dependencies at program loops. Thus a top-down analysis can yield more
facts than a bottom-up analysis when working with loops. This also implies that for loop-
free programs, pessimistic and optimistic analyses perform equally well.

2.2 Using the Optimistic Assumption

In the chapters that follow we will express various common forms of analysis as find-
ing sets of elements. We achieve the best answer (i.e., the sharpest analysis) when these
sets are as large as possible.’ In general there is not a unique largest set, a gfp, for any
given collection of rules. For our specific problems there will always be a gfp.*

We want to express the data-flow analysis constant propagation as the discovery of a
set of facts. To make this discussion clearer, we place the program in SSA form, so the
program assigns each variable once. We also convert any high-level language expressions

into collections of quads.

Definition 2: We define constant propagation as a method for finding a set of vari-

ables that are constant on all executions for a given program in SSA form.

? For some data-flow analyses, we will invert the usual sense of the set elements. For LIVE, elements of the universe
will be assertions that a particular variable is dead at a particular point in the program. The largest solution set
means that the most variables are dead over the most program points.

4 Actually, with MEET defined as the subset relation and with a class of functions 7. S > § (where S is a set from
above) where each f'e 7 applies some rules to § and returns S augmented with the elements so defined, then each f
is trivially monotonic and we have a gfp [46). However, it is difficult to define constant propagation using the sub-
set relation for MEET, so we will have to prove monotonicity on a function-by-function basis.
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Our universe is all the pairs (variable, integer) for each variable in the program and all
integers. We derive our rules directly from the program. For the quad “g := a + b;” we
get the rule:

WG, 5)= {(q,c. +c) if &= (.a,cl) and §=(b,c,)
() otherwise

This rule says that if the variable a is paired with some integer c; and b is paired with

¢z, then g can be paired with c; + ¢, To put it another way, if a is 2 and b is 3, then a + b

is 5. In the constant propagation lattice we treat:
T asall the pairs V i, (x, i),
co as the pair (x, co), and
1 as the empty set of pairs.

A variable y computes the constant 5 if the pair (y, 5) is in the final set. If all pairs
ces 3, =1), (3, 0), (3, 1), ... are in the final set, then y simultaneously computes all con-
stants; y’s value is undefined.

The bottom-up approach starts with quads of the form “x := 1;” (similar to the earlier f
rule, but specifically for variable x: “The pair (x,1) is in the set”). That approach then
applies rules (e.g., (%, §)) to existing pairs until closure is reached. The top-down ap-
proach starts with all (x, i) pairs and throws away pairs not produced by any rule. With-
out code loops, the rules cannot form cycles of dependencies, and the two approaches get

the same answer.

Since we are using SSA form, we have ¢-functions. ¢-functions are treated like + and
X (i.e., like any other simple program expression). For the quad “g := ¢(a, b);” we get the
rule:

. n (q,co) if x= (a,co) and y = (b, co)
h(x,y)= .
() otherwise

If the same quad resides in a loop, it has the form “b := ¢(a, b);”. The bottom-up ap-

proach finds nothing. There are no elements (b, co); there is nothing to prime the cycle of

dependencies. However, the top-down approach finds a (b, co) pair for every matching
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(a, co) pair. To put it another way, if a constant is assigned to a before the loop and we
only merge a with the copy of itself from the loop, then a will be a constant in the loop.

2.3 Some Observations about the Optimistic Assumption

A bottom-up analysis can be stopped prematurely; a top-down analysis cannot.
Both the bottom-up and top-down approaches will iterate until reaching a fixed-point.
However, the bottom-up approach can be stopped prematurely. Every element in the set
exists because of some rule; optimizations based on the information in the set will be cor-
rect (but conservative). Stopping the top-down approach before reaching the gfp means
that there are elements in the set that do not have a corresponding rule. Optimizations

using these elements can be incorrect.

Top-down analysis requires checking an arbitrarily large number of rules and
elements. In bottom-up analysis, adding a new element requires only the application of
some rule to some set of elements. If we constrain the rules to have a constant number of
inputs and to run in constant time, then adding any element requires only a constant
amount of time. However, for top-down analysis, checking to see if some element should
remain in the set may require checking all the rules and elements in some arbitrarily large
cycle of dependencies. For each of the analyses we will examine, it is possible to apply the
bottom-up approach using strictly local’ techniques. We limit our top-down analyses to
global, batch-oriented techniques.

Bottom-up methods can transform as they analyze. Because the solution set for
bottom-up analyses is always correct, transformations based on intermediate solutions are
valid. Every time analysis adds new elements to the solution set, transformations based on
the new elements can be performed immediately. For some analyses, we can directly rep-
resent the solution set with the intermediate representation. To add new elements to the
solution, we transform the program. We will present online versions of pessimistic analy-

5 Local is used in the mathematical (as opposed to the data-flow) sense. To determine if we can add any given ele-
ment, we will inspect a constant number of other clements that are a constant distance (1 pointer dereference)

away.
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ses in Chapter 7, in which we solve a pessimistic analysis by repeatedly transforming the
program,

Many published data-flow analyses use the optimistic assumption separately, but
do not use the optimistic assumption between analyses.® A combination of optimiza-
tions, taken as a single transformation, includes some optimistic analyses (each separate

phase) and some pessimistic analyses (information between phases).

® Classic analysis have historically been pessimistic, presumably because proof of correctness is easier. In a bottom-
up analysis there is never a time when the information is incorrect.
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Chapter 3

Combining Analyses, Combining Optimizations

O that there might in England be
A duty on Hypocrisy,

A tax on humbug, an excise

On solemn plausibilities.

— Henry Luttrell (1765-1881)

3.1 Introduction

Modern optimizing compilers make several passes over a program's intermediate rep-
resentation in order to generate good code. Many of these optimizations exhibit a phase-
ordering problem. The compiler discovers different facts (and generates different code)
depending on the order in which it executes the optimizations. Getting the best code re-
quires iterating several optimizations until reaching a fixed point. This thesis shows that
by combining optimization passes, the compiler can discover more facts about the pro-

gram, providing more opportunities for optimization.

Wegman and Zadeck showed this in an ad hoc way in previous work — they pre-
sented an algorithm that combines two optimizations. [49] This thesis provides a more
formal basis for describing combinations and shows when and why these combinations
yield better results. We present a proof that a simple iterative technique can solve these
combined optimizations. Finally, we combine Conditional Constant Propagation [49] and
Value Numbering [2, 12, 13, 37] to get an optimization that is greater than the sum of its

parts.
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3.2 Overview

Before we describe our algorithms, we need to describe our programs. We represent a
program by a Control Flow Graph (CFG), where the edges denote flow of control and the
vertices are basic blocks. Basic blocks contain a set of assignment statements represented
as quads. Basic blocks end with a special final quad that may be a return, an if or empty
(fall through). We write program variables in lower case letters (e.g., x, y). All variables
are initialized to T, which is discussed in the next section. To simplify the presentation, we
restrict the program to integer arithmetic. The set of all integers is represented by Z.

Assignment statements (quads) have a single function on the right-hand side and a
variable on the left. The function op is of a small constant arity (i.e., x := a op b). Op may
be a constant or the identity function, and is limited to being a k-ary function. This is a
reasonable assumption for our application. We run the algorithm over a low-level com-

piler intermediate representation, with £ < 3. We call the set of op functions OP.

We assume the program was converted into Static Single Assignment (SSA)
form [15]. The original program assigns values to names at multiple definition points. In
the SSA form, each name corresponds to a single definition point. By convention, we
generate the new names of SSA form by adding subscripts to the original names. This
makes the relationship textually obvious to a human reader. Wherever two definitions of
the same original variable reach a merge point in the program's control flow, a ¢-function
is inserted in the SSA form. The ¢-function defines a unique name for the merged value.
This is written x; := ¢(xo, x2). The ¢-function assignments are treated like other quads;
only the quad’s function distinguishes the ¢. We give some sample code in SSA form in

Figure 3.1.
Normal SSA
intx:=1; intx,:=1;
do { do { xi :=¢(x0, x3);
if(x#1) if(x;#1)
x:=2; Xy = 2;

x3 := 0( x1, X2);

} while( pred() ); } while( pred() );

return x; return x;;

Figure 3.1 Sample code in SSA form
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After the renaming step, the program assigns every variable exactly once.” Since ex-
pressions only occur on the right-hand side of assignments, every expression is associated
with a variable. There is a one-to-one correlation between variables and expressions; the
variable name can be used as a direct map to the expression that defines it. In our imple-
mentation, we require this mapping to be fast.® Finally, we define N to be the number of
statements in the SSA form. In SSA form the number of ¢-functions inserted can be
quadratic in the size of the original code; the community's practical experience to date has

shown that it is usually sublinear in the size of the original code.

3.2.1 Monotone Analysis Frameworks
To combine several optimizations, we first describe them in a common monotone

analysis framework [14, 30, 45]. Briefly, a monotone analysis framework is:

1. Alattice of inferences we make about the program. These are described as a complete
lattice £ = {A, T, 1, N} with height d, where:
a) A is a set of inferences.
b) Tand L are distinguished elements of A, usually called “top” and “bottom” respec-

tively.
¢) N is the meet operator such that for any a, b € A,
anNna=a, (idempotent)
anb=bnNa, (commutative)

anbnNnc=@nb)nc, (associative)
anT=a,
anl=1,
d) dis the length of the longest chain in 2.
2. A set of monotone functions F with arity < k used to approximate the program, de-
fined as F < { f: £ — £ } containing the identity function 1 and closed under compo-

sition and pointwise meet.

" This is the property for which the term static single assignment is coined.

& In fact, our implementation replaces the variable name with a pointer to the expression that defines the variable.
Performing the mapping requires a single pointer lookup.
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3. A mapy:OP — F from program primitives to approximation functions. In general,
all the approximation functions are simple tables, mapping lattice elements to lattice
elements.” We do not directly map the CFG in the framework because some frame-
works do not maintain a correspondence with the CFG. This means our solutions are
not directly comparable to a meet over all paths (MOP) solution like that described by
Kam and Ullman [30]. Our value-numbering solution is such a framework.

We say thata = bifand onlyifa b =b,and a> b ifand onlyif a = b and a # b. Be-

cause the lattice is complete, M is closed on A.

The lattice height d is the largest n such that a sequence of elements x;, x, ..., X, in 4
form a chain: x; > xi for 1 < i < n. We require that £ have the finite descending chain

property — that is, d must be bounded by a constant. For the problems we will examine, d

will be quite small (usually 2 or 3).

We assume that we can compute f € F in time O(k), where % is the largest number of
inputs to any function in F. Since k < 3 in our implementation, we can compute £ in con-

stant time.

3.2.2 Monotone Analysis Problems

When we apply a monotone analysis framework to a specific program we get a
monotone analysis problem — a set of simultaneous equations derived directly from the
program. Variables in the equations correspond to points of interest in the program; each
expression in the program has its own variable. Associated with each variable is a single
inference. Program analysis substitutes approximation functions (chosen from F using )
for the actual program primitive functions and solves the equations over the approxima-
tion functions. (In effect, analysis “runs” an approximate version of the program.) By
design, the equations have a maximal solution called the Greatest Fixed Point (gfp) [14,
46]."°

® Some of our mappings take into account information from the CFG. Here we are taking some notational liberty by
defining the mapping from only OP to F. We correct this in our implementation by using an operator-level (instead
of basic block level) Program Dependence Graph (PDG) in SSA form [21, 38]. Such a representation does not
have a CFG or any basic blocks. Control information is encoded as inputs to functions like any other program vari-
able.

1 The properties described in Section 3.2.1 ensure the existence of a gfp [46]. These systems of equations can be
solved using many techniques. These techniques vary widely in efficiency. The more expensive techniques can
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Functions in F represent complete programs via composition. Monotonicity gives us
some special properties: the composition of monotonic functions is also monotonic. Also

the composition is a function onto .£:
VigeEF, fid >4 g:l—>L = fog:ld 4

To solve the set of equations, we set each variable to T and then repeatedly compute
and propagate local solutions. In effect, the variables “run downhill” to the solution. The
limit to k-ary approximation functions ensures that we can compute quickly and infre-
quently. The bound on chain length limits the number of forward, or downhill, steps to a
finite number. Monotonicity ensures that running downhill locally cannot improve the
global solution. This means that the first solution we find is also the best solution. We

will prove this formally in Section 3.4.

3.2.3 Combining Frameworks

Given any two frameworks, »# and &, a framework that combines them yields better
information if and only if their solutions interact. The solution to 4 must rely on the solu-
tion to &; similarly & must rely on the solution to ¢ If they are not interdependent, a

careful ordering produces the same answers as the combined framework.

To combine two frameworks, we combine the sets of equations from each framework.
The equations of #implicitly reference facts derived by the equations of &, and vice-versa.
We make explicit the implicit references to the equations from the other set. We must
prove that the combined equations are still monotonic and therefore represent a monotone
analysis framework. The combined framework still has a maximal solution; it may not be
equal to the combined maximal solution of the individual problems. If, in fact, it is identi-
cal to the combination of the individual solutions, we have gained nothing by combining

the frameworks (i.e., it was not profitable).

To demonstrate these ideas more clearly, we will work an extended example — com-
bining simple constant propagation and unreachable code elimination. These optimiza-
tions are well known and widely used. Wegman and Zadeck have shown an algorithm that

solve some systems of equations that the less efficient cannot. In general, the difference in cfficiency has led clas-
sical compilers to use the least expensive method that will solve a given problem.
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combines them, Conditional Constant Propagation (CCP) [49]. It is instructive to com-
pare their algorithm with our framework-based approach. As a final exercise, we combine
CCP with partition-based Global Value Numbering (GVN) [2, 37} to obtain a new opti-
mization strictly more powerful than the separate optimizations. The combination runs in
OWN? time. In Chapter 4, we derive a more complex algorithm which solves the problem
in time O(N log N).

In our technique, the equations are derived directly from the intermediate representa-
tion. For the purposes of this chapter, the intermediate representation is the equations.
We use a technique from abstract interpretation, and associate an approximation function
Y chosen from F with every primitive function in the program. Because we restrict the
form of the equations (see Section 3.2.1), we can find the maximal solution using an itera-
tive technique in time O(nk’d) where n is the number of equations to solve (often equal to
N, the number of statements in the program), k is largest number of inputs to any one

function, and d is the height of the lattice.

3.3 Simple Constant Propagation

Simple constant propagation looks for program expressions that compute the same
value on all executions of the program. It can be cast in a monotone analysis framework.
It conservatively approximates the program's control flow by assuming that all basic
blocks and all quads are executable. Thus, control flow has no explicit expression in the
data-flow equations. Each assignment defines an expression and a variable. The inference

the variable holds tells us whether the expression computes a constant,

For our inferences we use the standard constant propagation lattice ., with the ele-
ments Z U {T,L} as shown in Figure 3.3. Figure 3.3 also shows the meet operator, N,
The notation “(co = ¢1) ? ¢o : L means “if cy is equal to ¢; then ¢ else L. For every
primitive function in the program we need a corresponding monotonic function fe€ F. For
¢-functions, we use the meet operator. We extend the other primitives to handle T and L.
As an example look at +:ZXxZ —Z. The corresponding function is Jo 1L XL L.
Figure 3.2 defines f. by replacing op with +. The application Jop(T,L) is T instead of L,
meaning that applying a function (o undefined inputs yields undefined results (as opposed
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T

oo -Z,-LW

1

N:L XL DL,
N T Co 1
T T Co J_
C Cy (Co = C]) ? Co . 1 1
Ll L 1 L

Figure 3.3 The constant propagation lattice £, and meet operator

to unknown results)."" This embodies the idea that we do not propagate information until

all the facts are known.

For functions with zero elements we use a more precise (and more complex) exten-
sion. Multiply is extended in Figure 3.4 so that £.(0,.L) is O rather than L. This reflects the
fact that zero times anything is zero. As shown in the figure, the function results are mo-
notonically decreasing'? both left to right and top to bottom. Thus f+ is a monotonic func-

Jop 1L XL —> L,

T F T T
4] T Co Op € 1
LT L L

Figure 3.2 Extending functions to £,

"' Unknown values are values that cannot be discovered at compile time. There are many unknown values in a typical
program. The compiler must emit code to compute these values at run time. For undefined values, the compiler
can choose any value it wants.
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1
THT]T T T
ollT|o 0 0
allTIO| coxer | L
LITfo 1 1

Figure 3.4 Extending multiply to 2.

tion, but maintains information in more cases than the corresponding function without the
special case for zero.

In Figure 3.5 we generate the equations for a small program in SSA form. For every
variable x in the program, we have an equation defining V,. For the assignment “x, := 1,”
we generate the equation V,, = 1. In this case, “1” is a constant function from F. Because
V. is cumbersome, we will write x, instead. The different uses of x, will be obvious from

context,

For the ¢-functions we use the meet operator. The function # : Z X Z — Z returns 0 if
the inputs are equal, and 1 if the inputs are not equal. We extend # to f, as shown in
Figure 3.2. Assume that the loop controlling predicate pred() is beyond the ability of the
compiler to analyze, possibly a keyboard read. Solving the equations by inspection shows
that xo= 1, x; = 1 N x; and so x; cannot be higher than 1, x3=1 2 = 1, and thus x; = x; =

b = L. In short, no new constants are found.

SSA Program Equations
int xp := 1; X0 =1
do { X = ¢( X0, x3); X1 =XpMN X3
b= (x 1) b =fx,1)
if(b)
=2 |xn =2
xBi=00,x); [xm =xnNx
} while( pred() ); Xprea =L
return x;;

Figure 3.5 Simple constant propagation example

12 Two integers are incomparable in the lattice, thus 0 is neither greater than nor less than ¢ X c.
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3.4 Finding the Greatest Fixed Point

In this section we show that the iterative technique works on monotone analysis
frameworks. That is, we show that initializing a system of monotonic equations to T and
successively solving the equations eventually yields the gfp. We start with Tarski [46],
who proved that every monotone function f : £ — £ has a gfp in a complete lattice <.

Since f is monotone, successive applications of f to T descend monotonically:
TzfMz Mz -

Since the lattice is of bounded depth, a fixed point u = f%T) = £*!(T) is eventually
reached. We cannot have u > gfp because gfp is the greatest fixed point (and u is a fixed
point). Suppose we have the reverse situation, gfp > u. Then the applications of f must
form a descending chain that falls past the gfp. There must be some i such that --- £'(T) >
gfp = f*(T) ---. By the monotonicity of f we have fi(T) > gfp = F*'(T) = fgfp). Since
fgfp) = gfp we have f*'(T) = gfp, a contradiction. Therefore u = gfp, and successive
applications of fto T yield the gfp.

We now need to represent a system of monotonic equations as a simple monotonic
function f. We extend the lattice £ to tuples in lattice 2. We define .Z to be a lattice
whose elements are n-tuples of £ elements. We use the notation {xo, x1, ..., x,} = ¥ € £
to refer to a tuple of £ elements. We define £’s meet operator as element-wise meet over

4L elements:
XAY={x%NY, X1 NP1, ety Xa N Ya }

£ is a complete lattice with the finite descending chain property. We define
f :Z— Z as a monotonic function that is a collection of monotonic functions

fi+ £ — £ from the tuple lattice to the regular lattice:
F(E) = {folE), fi(R), oo fo (3) )

Therefore y = f (x) defines a system of monotonic equations:

Jo(X)
H(X)

Yo
N

In = f;u(i:)
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Each of the functions fy, fi, ..., fu takes an n-length tuple of £ elements. In the prob-
lems that we are solving, we require that only & (0 < k < n) elements from £ are actually
used. Thatis, f; takes as input a k-sized subset of ¥. Unfortunately the solution technique
of repeatedly applying f until a fixed point is reached is very inefficient. .Z has a lattice
height of O(nd), and each computation of f might take O(nk) work for a running time of
O(n*kd). The next section presents a more efficient technique based on evaluating the

single variable formulation (f; rather than £ ).

3.5 Efficient Solutions

To provide efficient solutions, we solve these equations ¥ = f (¥) with a simple itera-
tive worklist technique [27]. The sparseness of the equations makes the algorithm effi-

cient.

1. Initialize all equation variables x; to T.
2. Place all equations on a worklist w.
3. While wis not empty do:

a) Remove an equation “y; = £;(¥)” from worklist w.

b) Solve for y; using the values of other x; variables.

¢) Ify;#x;, then set x; to y; and place all equations that use x; back on w.
The f; functions are all monotonic. As the inputs to the functions drop in the lattice, the
defined variable can only go lower in the lattice. Because the lattice has height d, a vari-
able can drop (and change) at most d times. Each function (expression in the program) is
on the worklist once per time an input drops in the lattice, or O(kd) times. Each time a
function is removed from the worklist it takes time O(k) to evaluate. Total evaluation
time per function is O(k’d), and the total running time is O(nk’d).

For simple constant propagation, the number of equations » is the number of state-
ments N in the SSA form of the program. If %, the arity of the functions, is small and d is
2, the time bound simplifies to O(N). -
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3.6 Unreachable Code Elimination

We do the same analysis for unreachable code elimination that we did for simple con-
stant propagation. We seek to determine if any code in the program is not executable, ei-
ther because a control-flow test is based on a constant value or because no other code
jumps to it. Our inferences are to determine if a section of code is reachable, expressed as
a two-element lattice £, with elements {%, 2}. % is unreachable; 2 is reachable. We de-
fine the functions + and - like Boolean Or and And in Figure 3.6. During this analysis the
only constant facts available are literal constants. So we define # to return % if both in-

puts are textually equal and 2 otherwise.

XL > L, +: 4 XL L,

AR rllz| =
2|\ %| % 2% | R
Rl% | R RlIl= | R

Figure 3.6 Or, And defined over 4,

In Figure 3.7 we generate the equations for the same example as before. For readabil-
ity we define F as a synonym for 0 and T as any integer other than 0. The starting state-
ment S is clearly reachable. Statement S; is reachable if we can fall into it from S, or we
can reach the bottom of the loop (statement Sg) and the loop predicate is not always false.
We generate the remaining equations in a similar fashion. Our equations are compositions

of monotonic functions, and are monotonic.

SSA Program Equations

int xp := 1; So=2
do { x; ;= (X0, X3); | 81 =80+ S5 (pred # F)

b:= (x1 * 1), S2=58

if(b) S$3=25;

X i=2; S4=83-(bz¥F)

x3 = 0 x1, x2); Ss=8S4+8:-b#T)
} while( pred() ); Ss =S5
return x;; S7=86¢ (pred # T)

Figure 3.7 Unreachable code elimination example
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Because b and pred are not literal constants, all the tests must return 2. The solu-

tion is straightforward: everything is reachable.

If we look closely at this example we can see that when we run the program, x, gets
set to 1, the if's predicate b is always false, and the consequent of the if test (Ss) never
executes. Neither simple constant propagation nor unreachable code elimination discovers
these facts because each analysis needs a fact that can only be discovered by the other.

3.7 Combining Analyses

To improve the results of optimization we would like to combine these two analyses.
To do this, we need a framework that allows us to describe the combined system, to rea-
son about its properties, and to answer some critical questions. In particular we would
like to know: is the combined transformation correct — that is, does it retain the meaning-
preserving properties of the original separate transformations? Is this combination profit-
able — that is, can it discover facts and improve code in ways that the separate techniques

cannot?

If the combined framework is monotonic, then we know a gfp exists, and we can find
it efficiently. We combine analyses by unioning the set of equations and making explicit
the implicit references between the equations. Unioning equations makes a bigger set of

unrelated equations. However, the equations remain monotonic so this is safe.

However, if the analyses do not interact there is no profit in combining them. We
make the analyses interact by replacing implicit references with functions that take inputs
from one of the original frameworks and produce outputs in the other. The reachable
equations for S3 and S4 use the variable b, which we defined in the constant propagation
equations. Instead of testing b against a literal constant we test against an £, element. We
replace the # function with < : £, X Z — 4, defined in Figure 3.8. The < function is an
example of a function that mixes inputs and outputs between the frameworks. < takes an
input from the 4. framework (variable b) and returns a result in the £, framework

(reachability of the conditional statements).
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The meaning of < is easily determined. If we know the test is not a constant (i.e., L)
then both exit paths are reachable. Otherwise the test is a constant and only one exit path
is reachable. At first glance this function looks non-monotonic, but F and T are not com-

parable in £..
The important question to answer is:
Are the functions that represent interactions between frameworks monotonic?

If they are, then the combined framework is monotonic and we can use all the tools
developed to handle monotonic frameworks. If the original frameworks are monotonic
and these transfer functions are monotonic, then the combined framework is monotonic.
In combining two frameworks the implementor must prove this property. Fortunately,
reasoning about the monotonicity of these transfer functions is no harder than reasoning
about the original frameworks. We represent the transfer functions in our examples with

small tables. We determine the functions are monotonic by inspection.

[=]:dxL L S:dXZ— 4,

[=] L% R S{T|F|T|L
T rT T Flle | R|2%| R
c T]| ¢ T " % |\ % | R | R
1 T 1 Testing a predicate

Unreached code computes T
Figure 3.8 Mixed functions for the combined equations

3.7.1 Profitability of Combined Frameworks

The combined framework is only useful when it is profitable. It is profitable when the
&fp solution computes a value for a mixed function that is higher in the output lattice than
the implicit function that the mixed function replaced. If the mixed function's solution is
the same as the implicit function's, the equations using the mixed function have no better
results than when they use the implicit function. This means the combined solution fares
no better than when the implicit functions were used, which implies the combined solution

is no better than the individual solutions.
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If we have functions from framework <. to framework £, but not vice-versa, we have
a simple phase-ordering problem. We can solve the £, framework before the .2, frame-
work and achieve results equal to a combined framework. The combined framework is
only profitable if we also have functions from ., to £, and the combined gfp improves on

these mixed functions' results.

Back to our example: the value computed by unreachable code is undefined (T), so
each of the constant propagation equations gets an explicit reference to the appropriate
reachable variable. The reachable variable is used as an input to the monotonic infix func-
tion[ = ] : 4, X 4. — £, also defined in Figure 3.8.

Instead of one equation per statement we have two equations per statement. Each
equation has grown by, at most, a constant amount. So, the total size of all equations has

grown by a constant factor, and remains linear in the number of statements.

3.7.2 An Example

We give the complete new equations in Figure 3.9. Solving the equations is straight-
forward but tedious. We present a solution in Figure 3.10 using the iterative technique
given in Section 3.5. In this example the boxed terms represent y; in step 3b (the variable

Program Equations
intx:=1; So =2
Xo =[So=>1]
do{ x:=0¢(x,x); |S1 =8+8s (pred<T)
x =[5 = (Nl
bi=0g=1), S =8
b = [S2 = felx,1)]

if(b) S3 =5
%:=2 |84 =8-b<T)
X2 =[S=2]

X3 .= ¢(xl, x2); S5 = Ss+ 83 (b< F)
X3 =[Ss= (nNx)]

} while( pred() ); S =355
pred=1
return x;; 871 =85 (pred<F)

Figure 3.9 Combined example
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being computed).
The main points of interests are the interactions between the separate analyses in the

equations for xy, b, 3, x; and x;.
Time 0: x; (along with all other variables) is initialized to T or 7.
Time 4: x; meets xp and x; to get the value 1.
Time 6: b is a constant F.

Time 8: S, is left marked unreachable (%). Since S; did not change value, the

equation setting x; is never placed on the worklist.

Time 10: x; meets x; and x; to get the value 1. Since x; changed from T to 1, us-

ers of x; (including x,'s equation) go back on the worklist.

Time 14: x,'s original value remains unchanged.

Time_"_é'o Y| Si|x|[S|b]|S Sa |x2| S5 | x3 | S¢ | pred | §;
o [ztlz]t|alt|2|z|T|z]T]z] T |2
L leltlzltlaltlzlzltlel1l2z]l 1| 2
szl il zltlaltlalzltlalTtl2]l 1|2
s lelilaltlzlTl2lzltlalT]l2]l 1|
s lzlilelli lzlt]leleltlal1]l2]l 1|2
s lelilezlillal T lzlaltlalt]la] 1|2
6 |lzli|lzlilzllglzlzltlalT1]|l2] T |2
T flzlilzli|elFlalzlTl2lTl2]| T |2
s lelilzlilelrlelaltlzltlz!l 1|2
ollz|lilzli|lz|lFlela|TlalTl2z]| 1T |2
ollelilelilelrlelzltlelilz] 1|2
nllzlilzlilelrlelaltlelilal T |2
pllelilzlilelrlelzltlelil=zl 1] =
Blelilzlilzlrlelaltlelilz] 1 [ 2]
ullellilzlilelrlelaltlelil =] 1 |2

Figure 3.10 Solving the combined example
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The solution stabilizes. The combined analysis marks statement S unreachable and
knows x; is the constant 1. The individual analyses do not find these facts. Repeated
applications of these separate analyses cannot discover any more new facts because each
new application starts out with no more facts than the first analysis did. However the

combined framework does find these facts.

The conditional constant propagation algorithm of Wegman and Zadeck discovers
these facts [49]. The improved solution (more knowledge) derives from the interaction
made explicit in the equations. Specifically, the combined framework exposes unreachable
code precisely because the reachablity equations rely on an assumption made by the con-
stant propagation equations and vice-versa. The assumption is optimistic' in the sense
that it is not justified by the facts at hand, but must be proven correct. If the assumption is
not correct, the equations must be re-evaluated in light of the new (more pessimistic, but
more correct) information. However, if the assumption is correct, something new may be

discovered.

Thus the reason CCP is an improvement over simple constant propagation and un-
reachable code elimination is that there are interactions. If, in combining frameworks, no
implicit interactions are made explicit, the combined framework can not discover addi-
tional facts. In such a case the combined framework consists of two independent sets of

equations.

3.8 Global Value Numbering

We can formulate a monotone analysis framework for finding congruent expressions.

We define two expressions to be congruent [2] when:
o the two expressions are the same expression (reflexivity), or
e they compute equivalent functions on congruent inputs, or
¢ they compute the same constant, or

e one is an identity function on the other.

* Wegman and Zadeck coined the term oplimistic assumption.
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Identity functions arise from direct copies in the input language, from algebraic identities
(addition of zero), or from merging congruent values in ¢-functions."

Congruence is a relation that holds between pairs of expressions, so a program of size
N has O(N'?) inferences (and O(N'%) equations to solve). We can derive equations involv-
ing constant inferences, reachable inferences, and congruence inferences in a straightfor-
ward manner. The equations do interact, so there is a benefit in solving the combined

problem.

Our inferences are whether or not two expressions are congruent, expressed as a two-
element lattice £ with elements {=,% }. We overload the functions + and - to work with
4= elements in the usual way as shown in Figure 3.6. We write C,; for a variable that de-
termines whether expression x is congruent to expression y, x,, for the primitive function

at expression x, and x; for the ith input to x,,.

The basic congruence equation between expressions x and y looks like:

Cy= E=y)+ Reflexive
(Xop = Yop)* Cayy - Crays*+-Cay +  Equal functions on congruent inputs
(%0p =€0)* (Yop = o) + Both are the same constant
(Xop =+)- (11, =0) Cy + Add of a zero
(Xop =4): Cuyr * Cyy, + Add is commutative
(Xop =) Capz - Gy + Merge of congruent values

Other identities, i.e., multiply by 1

The program defines the function values so the function tests (e.g., Xop = +) Can be pre-
computed before we solve the general problem. The equations are still complex, but there
are a fixed number of special cases, one special case per kind of algebraic identity. The
number of inputs to the equation defining C,, is thus fixed by some constant k. All the
functions involved in the equation are monotonic, and the composition of these functions
is also monotonic. Thus we can use the algorithm in Section 3.5, and achieve a running
time of O(nk’d). Since n=N?and k and d are constants, running time is O(N'?).

¥ This is a slightly stronger notion of congruence than Alpern, Wegman and Zadeck use. They do not allow for
identity functions, merging congruent values or computed constants,
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We make Global Value Numbering interact with CCP by modifying the C;, equations
to use computed constants instead of textual constants, and noting that undefined values

can be congruent to anything. The new congruence equation looks like:

Cy= ... As before
V., =D+, =T)+ Either is undefined
Ve=Vy=co)+ Both compute same constant

(xop =4) (Vo =0)-Cy,y +  Add of a zero

These congruence equations clearly use values from the .2, lattice. We add mixed
functions for the reverse direction by defining the subtraction of congruent values to yield

0, and the compare of congruent values to yield T."

Since we have mixed functions going both to and from £ and .2, elements, we have
the opportunity to find more congruences, constants and unreachable code than can be

found with separate analyses. Figure 3.11 is an example of such code.

main()
{
intx:=1; /] x is the constant 1
int z := read(); /1 z is defined but unknown
inty:=z Il'y is congruent to z here
while( pred() ) { 1 some unknown predicate
if(y=2z) I if we know y and z are congruent
x:=2; /I then we do not destroy the constant at x
x:=2-x /l destroy easy congruence between x and 1
if(x21) 1! if we know x is a constant
yi=2; Il then we do not destroy the y-z congruence

}

printf("x is %d\n",x); // x is always 1 here

Figure 3.11 A subtle congruence, a little dead code

3.8.1 Interpreting the Results
Having solved our combined problem, we need to use the results. If the N2 C,y con-

gruences form an equivalence relation, we have a fairly obvious strategy: pick one expres-

15 1f, during the course of solving the equations, the subtract is of the constants 5 and 3 yiclding 2, and the constants
are considered congruent, then we have a conflict. Instead of choosing between 2 or 0 we leave the subtract ex-
pression at T. The situation is temporary as 5 and 3 cannot remain congruent. This is a good example of an incor-
rect intermediate state that a can legally occur in an optimistic analysis.
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sion from each partition to represent all the expressions in that partition. Build a new pro-
gram from the selected expressions (dropping unreachable code and using constants where
possible). However, partitions might contain expressions that are algebraic identities of
another expression in the same partition. These expressions cannot be selected to repre-
sent the partition because they have an input in the same partition; after replacing all uses
in the partition with uses of the representative, the identity will be a copy of itself,

In the presence of undefined variables, the resulting congruences do not have to form
an equivalence relation. This is because we define an expression x with V, = T as being
congruent to all other expressions. Such an expression x starts out being congruent to
both the constant 3 and the constant 4. If V, drops below T, the problem resolves itself as
the equations are solved. If V; remains at T (because x is undefined), the congruences
between x and 3 and 4 remain. This can lead to some unusual behavior. In the code in
Figure 3.12, both tests against x are the constant T. The analysis shows that both print
statements are always reached.

main()

{

int x; Il x is undefined
if(x=3) printf("x is 3\n");
if(x=4) printf("x is 4\n");

}

Figure 3.12 Using undefined variables

Most language standards fail to address this particular aspect of using an undefined
variable. We believe our interpretation is correct given the facts at hand. The analysis can
avoid the unusual behavior by looking for congruence relations that do not form equiva-
lence relations. The analysis can then break an arbitrary congruence (some C,, variable set
to#) and continue until reaching another (lower) fixed point. This process can continue
until an equivalence relation is formed. In the worst case, all congruences are broken, and
the result is clearly a trivial equivalence relation. Intuitively, this process of breaking con-
gruences is forcing the analysis to choose between having x congruent to 3 and x congru-

ent to 4.
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3.9 Summary

In this chapter, we have shown how to combine two code improvement techniques.
We assume that the original transformations can be encoded as monotone analysis frame-
works. In our model, we can combine two frameworks, reason about the monotonicity of
the combined framework, and solve the combined framework efficiently. Furthermore, the
structure of the combined framework shows when a combination can produce better re-
sults than repeated application of the original transformations, and, equally important,

when it cannot.

To illustrate these points, we showed how to combine constant propagation with un-
reachable code elimination to derive an algorithm with properties similar to the conditional
constant propagation algorithm presented by Wegman and Zadeck [49]. Because the
combined framework includes transfer functions that take constant values into unreachable
code framework and vice-versa, it can discover more constants and more unreachable

code than repeated applications of the original transformations.

Finally, we showed how to combine constant propagation, unreachable code elimina-
tion, and global value numbering. It is an open question as to what other frameworks can
be combined and are profitable to combine. The asymptotic complexity of the presented
analysis is O(N?). It can discover more facts than separate applications of the three

transformations.

In general, combining two frameworks is important when it removes a phase ordering
problem. The monotone analysis framework for the combined problem will run in O(nk*d)
time, where n is the number of equations, k is the arity of the functions used in the equa-

tions, and 4 is the height of the inference lattice.
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Chapter 4

An O(n log n) Conditional Constant Propagation and
Global Value Numbering Algorithm

Make haste, not waste
— anonymous?

4.1 Introduction

We have implemented an O(n log n) algorithm that combines the analysis portions of
Conditional Constant Propagation (CCP) [49], Global Value Numbering (GVN) [37],
and Global Congruence Finding [2]. We follow the analysis with a transformation that
replaces every set of congruent expressions with a single expression, removes dead and
unreachable code, and uses constants where possible. This transformation is followed by a
round of global code motion, to force expressions to dominate their uses. The global code

motion algorithm is discussed in Chapter 6.

The set of congruent expressions found by this algorithm overlap but do not cover
those found by Partial Redundancy Elimination (PRE) [36]. This algorithm finds value-
congruent expressions, but PRE finds some textually-congruent expressions that are not
value-congruent. In addition, the global code motion algorithm hoists loop-invariant code
more aggressively than PRE, occasionally lengthening execution paths. Thus, while the
combined algorithm with global code motion has many of the effects of PRE, it is not a

direct replacement for PRE.

The complexity of the combined algorithm is O(n log n) instead of the O(n?) algorithm
presented in Chapter 3. We have implemented it, and observed its behavior to be linear in
practice over a wide range of programs. Further, it is quite fast, being competitive with a
single run of all the above algorithms. The combined algorithm is much faster than the 2
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or 3 iterations of all the above algorithms that a compiler requires in practice to reach a

fixed point. We give timing and program improvement measurements in Chapter 5.

Our simple algorithm runs in time O(n?) because we have O(n?) variables and equa-
tions. The O(n log n) approach requires that our O(n?) equations and variables form an
equivalence relation. The solution to the equations must form an equivalence relation at
every major step and at the final answer. In our simple worklist algorithm, we solve
equations in an arbitrary order determined by the worklist. This arbitrary order may not
maintain an equivalence relation. However, if no uninitialized variables are being used
then the final answer will be an equivalence relation (even if the intermediate steps are
not). Portions of this algorithm deal with choosing an order for worklist processing that

maintains an equivalence relation.

If the programmer uses an undefined (uninitialized) variable,'® then the equations may
not form an equivalence relation in the final solution. This is because T is congruent to
both 3 and 4, while 3 and 4 are not congruent. This solution is beyond our partitioning
algorithm to represent, so we do not try: the algorithm breaks such congruences arbitrarily
until it can form an equivalence relation. The final answer is a conservative approximation
to the truth. We justify this by claiming that a programmer who relies on undefined vari-
ables is depending on undefined behavior; the language implementor (the compiler writer)
may choose any answer he desires. We cover this in more detail in Section 4.4.

4.1.1 Equivalence Relations

We have to work to ensure our partial solutions always form an equivalence relation.
We can do this by choosing a careful ordering during the worklist solution. However, if
we always have an equivalence relation for our partial solutions we can represent the so-

lution to many variables with a single solution for their partition.

We will start with Hopcroft's DFA minimization algorithm [28]. We present it here
because a thorough understanding of it is required for what follows. We then present
Alpern, Wegman and Zadeck’s extensions that transform Hopcroft’s algorithm into a
Global Congruence Finding algorithm [2]. This algorithm discovers all the congruences of

% Some languages initialize all variables to some known constant (like zero). From the compiler writer's point of
view, such variables are defined.
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the form: equal functions on congruent inputs. Next we add in elements from a constant
propagation lattice: T and L (no numbers yet). Any variable that computes T is congruent
to everything. We interleave T/L propagation with the splitting algorithm. We then add
the constants and constant congruences (e.g., anything that computes 2 is congruent to
everything else that computes 2). We also note that the subtract (compare, divide) of
congruent values is zero (equal, one). Next, we add in the trivial COPY or identity func-
tion congruences. Then we add the algebraic identities, such as x + 0 and x x 1. Finally,
we add in merge, or N, -of-congruent-values congruences; the merge of x and x is x.

At each step we prove a running time of O(n log n). Because of the number of modi-
fications, we will be showing changes to the algorithm underlined. Changes to the proof

we will handle by presenting replacement paragraphs.

4.1.2 Notation
We cover our intermediate representation in detail in Appendix A. For now, we treat

expressions in a program as Nodes in a graph. Variables in expressions become input
edges in the graph. We use a special Node, the REGION, to represent basic blocks. Nodes
have an input from the basic block (REGION) in which they reside. We treat this input like
| any other data input. The simplicity of our algorithm relies on this crucial detail: we treat
control dependences just like data dependences. The algorithm makes no distinction be-
tween them. As a pleasant side effect, the algorithm handles irreducible loops.

Nodes and program variables are equivalent here, and are named with lowercase italic
letters such as x and y. Partitions are sets of congruent Nodes and are named with upper-
case italic letters, X and Y. The partition of x is x.partition. X.any is any Node from par-
tition X.

A program is a set of Nodes with a distinguished START Node. Nodes and expressions
are equivalent here as well. The expression “x = y + z” defines the Node x to have an ADD
opcode and 2 inputs, from Nodes y and z. We denote the ADD opcode as x.opcode. We
denote the ith input to Node x as x[i]; these inputs amount to use-def chains. Thus, x[0] is

yand x[1] is z.
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We also have the set of def-use chains, denoted x.def_use. We further subdivide them
into def-use chains for each ordered input. Thus x.def _use, is the set of Nodes that use x

oninput0. Ify € x.def_use, then y[1] is x.

4.1.3 Implementation

In our implementation, each Node is a C++ object (i.e., a C structure). The opcode
field is the C++ class (implemented by the compiler as a hidden virtual function table
pointer). The C equivalent would be an enum field. We encode the inputs as an array of
pointers to Nodes; the opcode implicitly determines the size of the array. The inputs
double as the use-def chains; we do not maintain a separate use-def data structure. This

allows our algorithm to traverse use-def edges with a single array lookup.

We implement the def-use chains as a single large array of Node pointers. Each Node
holds an internal pointer and the length of a subarray. A mirror array holds the reverse
index number of each def-use pointer (i.e., the use-def iﬁf)ut number for which this def-use
pointer is the reverse of). We build this dense structure with two passes over the use-def
edges before running the combined optimization algorithm. It allows efficient iteration

over the def-use chains.

4.2 Hopcroft's Algorithm and Runtime Analysis

In this section we discover:

1. Two Nodes are congruent if they compute egual functions on ordered congruent

inputs.
We show Hopcroft’s algorithm here [28]. We modify the presentation slightly to bet-

ter fit our problem. In particular, we need to be very precise about where and when we
count work in the algorithm. As done in Alpern, Wegman, and Zadeck [2] we use a pro-
gram graph instead of a DFA. We use ordered edges instead of the usual DFA notation of
transition symbols from some alphabet. Instead of a final state, we will use the Program’s
START Node. The resulting algorithm partitions the program Nodes into congruence
classes. Two Nodes are congruent if they compute equal functions and if their ordered

inputs come from the same congruence class.
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Place all Nodes in partition X,
Split partition X by opcode.
Place all partitions on worklist.
While worklist is not empty, do
CAUSE_SPLITS( worklist );

We will use a helper function to split partitions. Its main purpose is to ensure that
when the algorithm splits a partition, the newly created partition is on the worklist if the
original partition is.

Partition SPLIT( Partition Z, Set g ) {
Remove g from Z,
Move g to a new partition, Z’.
If Zis on worklist then add Z’ to worklist.

Else add the smaller of Z and Z’ to worklist.
Return Z’.

We maintain the following invariants between calls to CAUSE_SPLITS:
e All partitions are well formed: every Node is in exactly 1 partition, each partition

has an accurate count of members, and no partition is empty.

e The worklist accurately reflects splitting that may need to occur: in any one parti-
tion X, for all inputs i, the set of partitions represented by {Vxe X, x[il.partition}
has at most one partition not on the worklist (i.e., there are not two Nodes in X
that get their ith inputs from different partitions, without at least one of those par-
titions being on the worklist).

1. CAUSE_SpLITS( worklist ) {

2 Remove a partition X from worklist.

3 V inputs i do {

4, Empty the set of touched partitions, touched.
S. V Nodes x in partition X do {

6 V Nodes y in x.def_use; do {

7 Add y.partition to touched.

8 Add y to the set y.partition.touched.

9, }

10, }

11. V partitions Z in fouched do {
12, If 1Z)  1Z.touched then do
13. SPLIT( Z, Ztouched )
14, Empty Z.touched.

15. }

16. }

17.}
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worklist |

Figure 4.1 Partition X causing partition Z to split

Crucial to the running time is the inverted sense of worklist. Worklist does not hold
partitions that need splitting. Instead, it holds partitions that have recently split and thus
may cause other partitions to split. In Figure 4.1, the algorithm just pulled partition X
from the worklist. Following the def-use edges back from the Nodes in X touches all the
Nodes in ¥, but only some in Z. In line 12, 111 will be equal to 1Y.fouched|, so Y does not
need splitting. Not so for Z, which splits along the dotted line. The smaller Z split goes

on the worklist.

In line 13 we see that if a Node is part of a partition that is already on the worklist, af-
ter splitting the partition, the Node will still be in a partition on the worklist. However, we
observe that a Node can be placed on the worklist at most O(log n) times (it may be part
of a splitting partition up to O(n) times). This is because SPLIT moves the smaller partition
onto the worklist. The Node is in a partition of at most 1/2 the size it was in the last time

it moved from off to on the worklist.

Each time we pull a partition from the worklist, we must do work proportional to all
the def-use edges (lines 3, 5 and 6). However, we take care not to do more than this
much work. Thus we spend work when we follow a partition's def-use edges. Through
careful use of data structures, we only do a constant amount of work per edge. The al-
gorithm visits each edge once per time the edge’s defining Node’s partition is pulled from
the worklist, or O(log n) times. There are O(n) edges; total running time is O(n log n).

We still must show that we only do a constant amount of work per def-use edge visit.
Clearly lines 7 and 8 execute once per edge and can be accomplished in O(1) time. In
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lines 12 and 14 at most 1 partition per edge is in fouched and each line can happen in O(1)
time. The total of all Nodes moved from one partition to another in line 13 cannot be
more than the number of Nodes visited in lines 7 and 8, and again the moving itself can

happen in constant time.

4.2.1 Implementation
We implement the partitions as structures with a doubly linked list of Nodes for mem-

bers; constant time list removal being required in line 13. The algorithm maintains a count
of members for the tests in SPLIT and line 12. We implemented the worklist and touched
sets as singly linked lists of partitions, with an extra flag bit to perform the constant-time
membership test needed in SPLIT and line 7. The X.touched set was also implemented as a

singly linked list, again with a member count for the line 8 test.

4.3 Adding Unreachable Code Elimination
In this section we discover:

1. Two Nodes are congruent if they compute equal functions on ordered congruent
inputs.
2. Two PHI Nodes are congruent if their ordered inputs are congruent, ignoring in-

puts from unreachable paths.

3. The type of each Node, as an element from the lattice {2 2}. Types are deter-
mined by function and input types.

Nodes hold lattice elements, called types, that represent an approximation to the set of

- values a Node can take at runtime. We refer to the type of a Node x with x.type. We are

adding in just the reachability lattice <, {#%, 2}. REGION, IF, JUMP, and START Nodes

compute values from this lattice. The integer lattice will be added in the next section. For

now, the remaining nodes compute a data value and will have their type fields set to L.

In Chapter 3 we represented reachability with a variable per statement. In this chapter
we present a more convenient method; reachability is computed per basic block and un-
reachable computations are ignored at PHI Nodes. We use REGION Nodes to represent
basic blocks; the type at a REGION Node determines whether the block is reachable or not.
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Two PHI Nodes are congruent if they have the same REGION Node input (occur in the
same basic block) and their ordered reachable inputs are congruent. In the code that fol-
lows, the unreachable inputs are ignored and the two PHI Nodes are congruent:

Xo:=Yyo:=read(); // Read some unknown value

if( False ) { /1 A condition that is never true
Xy i=2; /I Unreachable code
y:i=3 /] Unreachable code
}
Xz = O Xo, X1); /I Merge x, and an unreachable value

¥z = ¢ Yo, Y1); /I Merge y, and an unreachable value

Since unreachable values are ignored, the Nodes computing those values are useless.
A round of dead code elimination will remove them. This dead code elimination is incor-

porated in the transformation phase of the algorithm, presented in section 4.10.

We do not want any values from unreachable paths causing a partition of PHIs to split.
So we allow PHI Nodes to ignore inputs from unreachable paths when determining con-
gruence. In the algorithm CAUSE_SPLITS we insert a test between lines 6 and 7:

6. V Nodes y in x.def_use; do {

6.5 If y is not a PHI or input { is a live path into y then do {
7. Add y.partition to touched.

8. Add y to the set y.partition.touched.

8.5 }

9. }

4.3.1 Accounting for work during Conditional Constant Propagation

The sparse CCP algorithm of Wegman and Zadeck runs in linear time [49]. As pre-
sented in section 3.5, we count work by edge visits. The algorithm visits a use-def edge
once each time the defining Node drops in the lattice (once in our case). Each edge visit
causes a constant time evaluation of the using Node’s type. We may also have to do a
constant amount of work adding or removing the Node’s partition from the cprop work-
list.

The same work analysis will hold when we interleave the propagation and the parti-
tioning algorithms. The major difference will be the order of visitation: we will propagate
types within a partition until the partition stabilizes before we propagate types outside a
partition. In addition, we will split partitions by type, so within a partition (and between
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calls to PROPAGATE) all Nodes will have the same type. This will require us to have a lo-
cal constant propagation worklist per partition, implemented as a doubly linked list with a
bit flag for constant time membership tests. We refer to this local worklist for partition X
as X.cprop. When a Node falls in the lattice we put it in a fallen set. After propagation
stabilizes, we split the fallen set from the original partition.

1. PROPAGATE( cprop) {

2 While cprop is not empty do {

3 Remove a partition X from cprop.
4, While X.cprop is not empty do {

5. Remove a Node x from X.cprop.
6 Compute a new type for x,

7 If x’s type changed then do {

8

. Add x to fallen.
9. V Nodes y in x.def_use do
10. Add y to y.partition.cprop.
11. }
12, }
13. Let Ybe
14, If [fallen) # |X1 then SPLIT( X, fallen ) else X,
15. SPLIT_BY(Y).
16. }
17. }

4.3.2 The modified algorithm

Place all Nodes in partition X,

Split partition X by opcode.

Place all partitions on worklist.

Initialize all Nodes’ type to Z or L.

Place the START Node's partition on cprop.

Place the START Node on its local worklist.

Do until worklist and cprop are empty {
PROPAGATE( cprop );
If worklist is not empty, then

CAUSE_SPLITS( worklist );

We maintain the following invariants between and after iterations of PROPAGATE, with

the underlining indicating new invariants:

* All partitions are well formed: every Node is in exactly 1 partition, each partition
has an accurate count of members, and no partition is empty.

e The worklist accurately reflects splitting that may need to occur: in any one parti-
tion X, for all inputs i, the set of partitions represented by {Vxe X, x[i].partition}



45

has at most one partition not on the worklist (i.e., there are not two Nodes in X
that get their ith inputs from different partitions, without at least one of those par-

titions being on the worklist).

e Within a partition, all Nodes have the same type.
o The local ¢prop worklist accurately reflects type propagation that may need to oc-

cur: the type of every Node in the partition is its function on the current inputs. or

the Node is on the cprop worklist,

e All partitions with Nodes on their local cprop worklist are on the global cprop

worklist.

4.4 Adding in Constant Propagation
In this section we discover:
1. Two Nodes are congruent if they compute equal functions on ordered congruent
inputs.

2. Two PHI Nodes are congruent if their ordered inputs are congruent, ignoring in-

puts from unreachable paths.
3. The type of each Node, as an element from the {%, 2} lattice or the {T, Z, 1} lat-

tice. Types are determined by function and input types.

4. Two Nodes are congruent if either Node computes T.

We are adding in both the reachability lattice <, {7, 2} and the constant propagation
lattice £, {T, Z, L}. We treat them identically. Since the different values appear in dis-
joint kinds of Nodes, we use the same representation for both T and % We distinguish
them by the Node opcode. In this algorithm we never need to make this distinction.
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Figure 4.2 The modified equivalence relation

We want type T to be congruent to everything. We use a modified equivalence rela-
tion to represent these congruences. The implementation uses a real equivalence relation,
with a special partition named TOP. A Node is in TOP if and only if it computes T. When
determining if two Nodes are congruent we use a 2-step test: either one of the Nodes is in
TOP or both are in the same normal partition. In Figure 4.2, Nodes a and b are congruent
because they are both in partition X. Nodes a and c are congruent because ¢ is in TOP
and so computes T. Nodes a and 4 are not congruent, although ¢ and d are. Thus, the
congruence relation is not transitive. We maintain the invariant that within a partition,

every Node computes the same type.

In this limited framework, splitting a partition never causes a Node’s type to fall from
Tto L. We can solve this simple combined problem with a phase-order solution: propa-
gate all the types before finding congruences. However, we will be introducing mixing
functions in the next section where interactions between a Node’s type and partition are
possible. Thus in this section we will interleave constant propagation and congruence
finding (partition splitting). The extensions to support more complex approximation

functions will then be fairly simple.

Since Nodes that compute T are all congruent, we do not require an initial split by
function. Instead, as Nodes fall from the T lattice element and are removed from the TOP

partition, we will be require to split by function and inputs.

After we have lost the congruences due to T and split by type, we need to make our
partitions have a uniform function and preserve the worklist’s splitting invariant. There-
fore we will split the partitions again by opcode and inputs. We do this splitting only
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when a Node falls in the lattice, i.e., only once per Node. The splitting is done in time
proportional to the number of inputs to all Nodes involved. Since this happens only once
per Node, total time is O(E). The following code first splits by type, then if the partition is

not TOP, it also splits by opcode and inputs.

1. SpLIT_BY( Partition X ) {
2 Let P be the set of partitions returned by

3 SPLIT_BY_WHAT( X, An.(n.type) ).

4, V partitions Y in P do {

5. If Y.type is not T then do {

6 Let Q be the set of partitions returned by
7 SPLIT_BY_WHAT( Y, An.(n.opcode) ),
8 V partitions Z in Q do

9. V inputs i do

10. SPLIT_BY_WHAT( Z, An.(n[il.partition) ),
11, }

12. )

13. }

14,

15. SpLIT_BY_WHAT( Partition X, function What(Node) ) {
16. Let map be an empty mapping from the range of What to sets of Nodes.

17. V Nodes x in X do {

18. If What(x) ¢ map then do

19, Add the {What(x) — a new empty set of Nodes} mapping to map.
20. Add x to map{What(x)].

21, }

22, Let P be a set of Partitions.

23, V sets S except one in the range of map do

24. Add SPLIT( X, S)to P.

25, Add Xto P.
26. return P,
27. )

In the call to SPLIT_BY_WHAT in line 10, SPLIT_BY_WHAT( Z, An.(n[i].partition) ), it
is crucial that the splitting occurs before Nodes move into their new partitions. If we call
What(x) after we have moved some Nodes into their new partitions, What(x) will return
the new, not the old partition. This will break cycles of congruences occurring within the
original partition.

Note that Nodes with equal functions and congruent inputs will always compute the
same type. In order for them not to compute the same type, the congruent inputs must
not be computing the same type. By a simple induction argument, there must be a first

time when congruent inputs are not computing the same type. But we split partitions by
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type, so that all Nodes in a partition have the same type. For the inputs to be congruent
but with different types, one of the types must be T. However, data nodes with a T input
always compute T and so would be congruent in any case. The more interesting case of

PHI Nodes is discussed in the next section.

4.4.1 PHINodes and T
T propagates through all data computations, so if any data node has a T input, it com-
putes T. Only PHI and REGION Nodes can have a T input and not compute T.

With a naive evaluation order between constant propagation steps and splitting steps,
it is possible to reach the problematic situation shown in Figure 4.3: one partition with 3
PHIs using the same REGION. x; merges input 1 from partition X, y; merges input 1 from ¥
and z; merges input 1 from TOP. Suppose we remove partition X from the worklist and
we follow its def-use chains. We will only touch x;. When we split x; from y; we must
decide what to do with z;. Since Nodes in TOP are congruent to Nodes in both X and Y,
we would like z3 to be congruent to both x; and y; (equal functions on congruent input

rule). Unfortunately, this is beyond our framework to represent.

Figure 4.3 Splitting with “top”

We prevent this problem by propagating Ts before we split partitions. By postponing
splitting until types are resolved, we avoid the issue. It is not possible to bring in a T value
along a reachable path to a PHI without using an uninitialized variable. It is still possible
to bring a T value along an unreachable path, but PHI Nodes ignore unreachable inputs.

The problematic situation can still arise if we must bring a T into a PHI Node (and the
problem is only interesting if the path bringing the T in is reachable). This can only occur
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when the program actually uses an undefined value.'” We arbitrarily break a congruence
and stick z; with ys. Since the semantics of using an undefined value are undefined,
breaking a congruence is a safe and conservative solution. It is not, however, the optimal
solution. The problematic code, in SSA form, follows:

int xo, yo, Zo; I X0, Yo, 2o are all undefined here
if( pred() ) { I/ Some unknown predicate
t :=read(); /l Assign t with a keyboard read
X1 Y1, 2% =1, /I Make x, y, and z all congruent
} else {
Xz :=read(); /I Assign x and y with different values
¥z = read(); /l z is lefi undefined
}
X3 = O( Xy, X2); /I Merge x| and x,
¥3 = (Y1, y2); /l Merge y, and y,
23 =21, 20); Il Merge z, and zy; 2o has type T

The TOP partition itself never needs to be split because some inputs changed partitions
(it will be split when Nodes drop from T to some non-T type). Nodes in the TOP partition
are congruent because they compute T, irrespective of whether they also compute the

same function on congruent inputs. This leads us to modify CAUSE_SPLITS again:

6. V Nodes y in x.def_use; do {

6.1 Let Y be y.partition.

6.5 If Y is not TOP and (y is not a PHI or input { is a live path into y) then {
7. Add Y to touched.

8. Add y to the set Y.rouched.

8.5 }

9. }

4.4.2 The modified algorithm
We can now place all Nodes in the same initial partition, and rely on splitting work
done by PROPAGATE to do the splitting by opcode. The modified main loop is now:

Place all Nodes in partition X.
Initialize all Nodes’ type to Z or T.
Place the START Node’s partition on cprop.
Place the START Node on its local worklist.
Do until worklist and cprop are empty {
PROPAGATE( cprop );
If worklist is not empty, then
CAUSE_SpLITS( worklist );

}

7 The problem appeared at least a dozen times in the 52 routines I tested.
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4.5 Allowing Constants and Congruences to Interact
In this section we discover the following facts about a program:

1. Two Nodes are congruent if they compute equal functions on ordered congruent
inputs.

2. Two PHI Nodes are congruent if their ordered inputs are congruent, ignoring in-
puts from unreachable paths.

3. The type of each Node, as an element from the {%, 2} lattice or the {T, Z, 1} lat-
tice. Types are determined by function and input types.

4. Two Nodes are congruent if either Node computes T or they both compute the

same constant.

Any two Nodes that compute the same constant are congruent, regardless of how they
compute that constant. In addition to the integer constants, we can extend the type lattice
in many directions. We present just the integer constants, but our implementation includes
ranges of integer constants with strides, floating-point and double precision constants, and
code address labels. These extra types do not require changes to the algorithm. The only

changes required are in the approximation functions (meet, etc.).

Partitions of constants should not be split simply because their Nodes have unequal
functions or incongruent inputs. We need to change CAUSE_SPLITS to reflect this:

6.5 If y.type is neither T nor constant and
(y is not a PHI or input i is a live path into y) then do {

After propagation stabilizes, we split by types. Then SPLIT_BY splits by function and in-
puts. Again we do not want to split partitions of constants, so we modify SPLIT_BY:
5. If Y.type is below T and all constants then do {

Nodes that fall from constants to L (or other non-constant types such as ranges) are han-
dled in the PROPAGATE code when the fallen set is passed to SPLIT_BY.
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4.6 Subtract and Compare

So far we allow constants to affect congruences (by not splitting partitions of con-
stants, even when they have different functions or inputs). Here we allow mixing of in-
formation in the reverse direction: the subtraction of congruent values is zero. The same
behavior is applied to compare and T."® This inference is fundamentally different than the
previous inferences, because we are allowing a congruence inference to affect a constant
inference. If we lose that congruence inference by splitting a partition which is being used
on both inputs to a SUB Node then we need to reevaluate the SUB Node’s type.

Since at least one of the two inputs to the SUB Node must end up on the worklist, we
will be visiting the SUB Nodes during the course of a future splitting operation. Thus,
during splitting operations we can place each Node visited along a def-use chain on the
local cprop worklist. This requires only a constant amount of work (put on worklist, take
off worklist, and check the type) per Node, an amount of work we already pay for just to
follow the def-use chain. This requires an extra visit for every Node involved in a split.

Instead, we only require SUB and COMPARE Nodes to have an extra visit:

6.1 Let Y be y.partition.
6.2 If y.type is constant and y has opcode SUB or COMPARE then do
6.3 Add y to Y.cprop.

One final difficulty: when we propagate constants through the TOP partition, it is
possible to bring unequal constants into a SUB Node still within TOP. As shown in
Figure 4.4, the approximation function for SUB has a dilemma; it can either subtract con-

gruent inputs and compute 0, or it can subtract constant inputs for a constant result.

In this case the two inputs to SUB can never be congruent in the final answer. We can
show this with an induction proof; there is never a first time that two Nodes compute une-
qual constants while remaining congruent. They will eventually be split. SUB should sub-
tract the constants. We give C++ code for a subtract Node’s approximation function be-

low:

' We can also define x/x to be 1. This defines 0/0 as 1, a questionable choice. Discovering x/x to be 1 is unlikely to
significantly impact many programs.



SubNode::Compute() {

const Type *t1 := inl—type; Il Quick access to input type

const Type *12 := in2—type; 1 Quick access to input type

if(¢1 = Type_Top Il 12 = Type_Top ) Il If either input is undefined
type := Type_Top; /I ...then 50 is the result

else if( 11—is_con() && 12—is_con() ) /1 If both inputs are constants
type := Type(tI—get_con() - 12— get_con()); //...then compute the result

else if( inl—part = in2—part ) 1l If the inputs are congruent
type .= Type_0; /I ...then the result is 0

else /I Otherwise, the result is not
type .= Type_Bottom; Il ...a compile-time constant

Partition TOP

®» @
Sup>

Figure 4.4 Does SUB compute 0 or 1?

4.7 Adding the Identity Function Congruences

In this section we show how the algorithm can find these facts:

1. Two Nodes are congruent if they compute equal functions on ordered congruent

inputs.

2. Two PHI Nodes are congruent if their ordered inputs are congruent, ignoring in-

puts from unreachable paths.

3. The type of each Node, as an element from the {%, 2} lattice or the {T, Z, L} lat-

tice. Types are determined by function and input types.

4. Two Nodes are congruent if either Node computes T or they both compute the

same constant.

5. Two Nodes are congruent if one is a COPY of the other.,

We allow Nodes to be copies of one another by using the identity function or COPY

opcode. These arise from program assignments, compiler temporaries, register-to-register

moves and the like. They are also a stepping stone to more complex algebraic identities

likex+0Qand xx 1.
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4.7.1 Leaders and Followers
We introduce a notion of Leaders and Followers."” Partition Leaders are nodes in a

partition that directly compute a value. Followers are congruent to some Leader through
a string of algebraic identities; initially we only allow CoPY. We keep Leaders and Fol-
lowers in the same partition in separate sets. We refer to just the Follower Nodes of par-
tition X as X. Follower, and the Leader Nodes as X.Leader. In the TOP and constant par-
titions the distinction is not important since the type congruences subsume the identity
congruences. In these partitions, the algorithm treats all Nodes as Leaders.

When Nodes fall from T or constants to non-constants, the distinction becomes impor-
tant. We do an initial split of the Nodes into Leaders and Followers. Afterwards, Nodes
can make the Follower = Leader transition only once and each transition is done in con-
stant time, so all transitions take no more than O(n) time. However, we must account for
the transition tests more carefully. For our initial case, COPYs remain as Followers and all
others become Leaders when they first fall from T/constant to non-constant types. This

requires a constant-time test once per Node, or O(n) time.

Previously, when we walked the def-use chains in CAUSE_SPLITS, we were trying to
discover if we touched only some of a partition’s Nodes. We now want to know if we
touch only some of a partition’s Leaders. If we touch all the Leaders (and any number of
Followers), then the Followers will follow the Leaders and the partition does not need
splitting. In Figure 4.5 we do not need to split partition ¥, despite only some of ¥’s Nodes

being reached from def-use chains out of X.

When we follow the def-use chains of Nodes in X, we need to follow edges leaving
both Leader and Follower Nodes in X. However, we do not want to cause splitting be-
cause we touched some Followers. Followers remain congruent by some algebraic iden-
tity (regardless of the equal-functions-on-congruent-inputs rule). We split the set of def-
use edges into a set of edges leading to Followers and a set of edges leading to Leaders.

¥ No relation to Tarjan's disjoint-set Union-Find algorithm.
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worklist |

Figure 4.5 No splitting required in partition Y.

4.7.2 The Race

Previously when we split a partition in two, we placed the smaller piece on the work-
list. This choosing of the smaller piece is critical to the O(n log n) running time. It limits
Nodes to being in partitions of at most 1/2 the size they were in the last time the Nodes
moved onto the worklist. We must count size correctly, counting both Leaders and Fol-
lowers. After touching only some Leaders, we must determine whether the touched
Leaders plus their Followers is larger or smaller than the untouched Leaders and remain-
ing Followers. This requires that we discover how many Followers are behind each

Leader.

When we split, the Nodes moving into the split must all be touched to change their
partition. The piece with the smaller number of Leaders may have up to O(n) Followers,
and touching them all would be disastrously slow. Instead we must only move Nodes
from the smaller piece into the new partition. Previously, we did work proportional to the
number of Leaders touched, which was always at least as large as the smaller split. We

still must do no more work than the smaller split.

We must discover which piece of the split is smaller without visiting the entire parti-
tion. To do this, we hold a race. We walk the def-use chains back from the Leaders in the
two original sets, counting Followers. We alternate, counting a Node first from one side,
then the other. When one side runs out of Followers, we declare it the winner. We touch
every Node in the smaller piece once and touch an equal number of Nodes in the larger
piece. We end up touching no more than twice the Nodes in the smaller piece. In Figure
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worklis

9 P;lartition Y

Figure 4.6 Racing the halves of partition Y.

4.6, the right hand side of ¥ wins the race (and is the smaller of the two splits), despite the

left hand side having only one Leader.

Considering only the COPY identities, we can hardly justify the race notion. We could
remove the CopY Nodes with a single pass over the program graph, mapping uses of
Copys into uses of the CoPys’ inputs. However, when we have a more complex notion of
when something is a Follower and when it is not, the race idea elegantly solves the prob-

lem of determining who follows which Leader.

The race code itself maintains some state so that it can alternate a breadth-first search
between two subgraphs. The initial sets represent Leader Nodes not yet visited. While
we have already spent time proportional to Igl (and so we can spend it again in line 2), we
cannot spend time proportional to IX.Leader-gl. This means we cannot enumerate set 4 in
line 2. We use a doubly linked list to implement X.Leader. In time O(lgl) we visit and re-
move g from X.Leader and call the result 4. This result is used in line 8. We can regen-

erate the X. Leader set by pasting g and h together.

The unwalked sets represent Nodes whose Follower def-use edges are not yet walked.
The first Node of an unwalked set is partially walked, with index def-use edges already
visited. Walked Nodes have all Followers that were following them moved into either
walked or unwalked. Because the Follower Nodes will form DAGs and cycles (instead of
just the simple trees possible now) we need a flag to determine if we have already visited a
Node.
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1. Partition SPLIT( Partition X, Set g ) {

2 Let i be X.Leader - g.

3 Make new empty Sets unwalked,, unwalked,.

4 Make new empty Sets walked,, walked,.

5. Let index; and index; be 0.

6. Forever do {

7 If STEP(g, unwalked,, walked,, index,) then Let winner be 1; break loop;
8 If STEP(h, unwalked,, walked,, index,) then Let winner be 2; break loop;
9 }

10. Clear flags from unwalked,, walked,, unwalked,, walked,.

11. Subtract walked,,inner from X,

12, Move walked,ianer to a new partition, X’

13. If X is on worklist then add X' to worklist.

14, Else add the smaller of X and X’ to worklist.

15. return X',

16. }

18. Boolean STEP( Set initial, Set unwalked, Set walked, index ) {
19, If initial is not empty then do {

20. Move any Node from initial to unwalked.
21. Return False.

22, }

23, While unwalked is not empty do {

24, Let n be the first Node in unwalked.

25. While index < In.F.def_usel then do {

26. Let m be n.F.def_use[index).

27. Add 1 to index.

28. If m is not flagged then do {

29, Flag m.

30. Add m to unwalked not as first Node,
31. Return False.

32. }

33. }

34, Move n to walked.

35. Reset index to 0.

36. }

37. return True.

38. }

4.7.3 Counting work
During splitting we do work proportional to the larger of: the number of Leaders

touched and the smaller of the split pieces. Previously we linked these two quantities.
Now however, we may have many Followers in a partition with few Leaders. We must
count work for the two quantities separately.

When we split, we can do no more than work proportional to the smaller partition.

The smaller split may be much larger than the number of Leaders touched, but this does
not matter. Instead we rely on the argument that each time the algorithm involves a Node
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in a split, the Node ends up in a partition of at most 1/2 the size it used to be. Thus the
algorithm cannot involve a Node in a split more than O(log n) times, for a total splitting

cost of O(n log n).

When we run the race, we cannot spend time on def-use edges that do not lead to
Followers (e.g., edges that leave the partition). Tﬁis is because we cannot use more than a
constant amount of time to find the next Follower during each step of the race, but there
may be O(n) def-use edges from a single Leader to Nodes in other partitions. This re-
quires us to segregate our def-use edges into edges that lead to Followers in this partition

and edges that lead to other Nodes.

4.7.4 Implementation

Our implementation stores the def-use edges in a subarray, with the base and length
kept in each Node. We keep the array sorted with Follower edges first, then Leader
edges. We also keep the length of the Follower edge set; we compute the Leader edge set
size from the difference. We use the notation x.def _use to represent the set of def-use
edges for a Node x, x.L.def_use for edges leading to Leaders, x.F.def_use to represent
edges leading to Followers of x, and x.other.def _use for edges leading to Followers in
other partitions. This last set is empty right now, but later this set will hold edges leading
from constants to algebraic 1-constant-input identities such as the ADD of 0. Each Node

has a constant time test to determine if it is a Follower (for now, the test is “x.opcode =

CorY”).

4.7.5 The modified algorithm
Because of the number of changes, we present the complete altered routines in Figure

4.7. As before, changes are underlined.
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1. PROPAGATE( cprop ) {

2 While cprop is not empty do {

3 Remove a partition X from cprop.

4 Let oldtype be X.type.

S While X.cprop is not empty do {

6. Remove a Node x from X.cprop.
7 Compute a new type for x.

8 If x’s type changed then do {

9 Add x to fallen.

10 V Nodes y in x.def_use do
11 Add y to y.partition.cprop.

12. }

13. }

14, Let Ybe

15. If fallenl # X1 then SPLIT( X, fallen ) else X,

16. If oldtype was T or constant then do

17. ¥ Nodes y in Y do

18. If y is not a constant and y is a Follower then do {
19, Move y to Y. Follower.

20. Segregate the def-use chains leading to y into I/F edges,

21. 1
22. SPLIT_BY(Y).

26. CAUSE_SPLITS( worklist ) {
27. Remove a partition X from worklist.
28. V inputs i do {

29, Empty the set of touched partitions, rouched.

30. V Nodes x in partition X.Leader+X.Follower do {

31. V Nodes y in x.L.def use; do {

32, Let Y be y.partition.

33. If y.type is constant and y has opcode SUB or COMPARE then do
34, Add y to Y.cprop.

3s. If y.rype is neither T nor constant and

36. (v is not a PHI or input { is a live path into y) then do {
37. Add Y to touched.

38. Add y to the set Y.touched.

39. }

40. }

41, }

42, V partitions Z in touched do {

43. If 1Z.Leader! #1Z.touched) then do

44, SPLIT( Z, Z.touched )

45, Empty Z.touched.

46. }

47. }

48. }

Figure 4.7 The algorithm, modified to handle Leaders and Followers
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4.8 The Algebraic, 1-Constant Identities: x + 0 and x x 1

In this section we discover:

1. Two Nodes are congruent if they compute equal functions on ordered congruent
inputs.

2. Two PaI Nodes are congruent if their ordered inputs are congruent, ignoring in-
puts from unreachable paths.

3. The type of each Node, as an element from the {%, 2} lattice or the {T, Z, 1} lat-
tice. Types are determined by function and input types.

4. Two Nodes are congruent if either Node computes T or they both compute the

same constant.
5. Two Nodes are congruent if one is an algebraic, 1-constant identity on the other.

Algebraic, 1-constant identities are identities such as x + 0, x - 0, x X 1, x + 1,
x or 0. x and OxFFFFFFFF, MIN(x, MAXINT), MAX(x. MININT), and the like.
We allow Nodes to be congruent if one is an algebraic, 1-constant identity on the

other. Algebraic, 1-constant identities are 2-input functions where when one input is a

special constant (determined on a per-opcode basis) then the function is an identity on the
other input. If y is an algebraic identity of x then at least 1 input to y must be from x's

partition (later we allow more).

We do not require the special constants (commonly 0 or 1) to be literal constants.
They may be computed or congruent to 0 or 1. In particular, x + T is congruent to x, since
T is congruent to 0; also x + T computes T and so is congruent in any case. These congru-
ences remain until the algebraic identity breaks when we lose the constant.

We have two new problems to support these congruences. The first is that we can
lose the congruence. This implies that a Node can make the Follower = Leader transi-
tion. The algorithm has to adjust the lists and sets accordingly. The other problem is de-
tecting when a Node needs to make that transition.

We only need to check for Follower Nodes losing their special constant when that in-
put falls in the lattice. This check is a constant amount of work, which we are already
paying for because we need to check the Node’s type as well. We make a small change to

PROPAGATE:
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6. Remove a Node x from X.cprop.
6.1 If x is a Follower and is not an identity then do ...
7. Compute a new type for x.

Once we decide to make x a Leader we need to move it from the Follower set to the
Leader set, update the def-use edges leading up to it and check for possible splitting. We
add the set of Nodes that changed from Follower to Leader to the fallen set. This set
contains Nodes that do not have the same type or opcode as the other Leaders in partition

X.

4, Let oldtype be X.type.

4.1 Let oldopcode be X.opcode.

5. While X.cprop is not empty do {

6. Remove a Node x from X.cprop.

6.1 If x is a Follower and is not an identity then do {

6.2 If x.opcade is not oldopcode then add x to the fallen set

6.3 Move x from X, Follower to X Leader.

6.4 Make all inputs to x from inside X no longer be F.def use edges.
6.9 1

7. Compute a new type for x.

Adding X to worklist here handles any possible splitting problems. We have an edge
internal to X leading to the new Leader x. The algorithm would touch x when it follows
the def-use edges inside X. Touching x but not the other Leaders of X will split X. How-
ever, X could be quite large; placing all of X on the worklist will destroy our counting ar-
gument (Nodes enter the worklist in a partition of 1/2 the size they last entered the work-
list). Instead, we only place those Nodes that dropped in the lattice on the worklist. Since
Nodes can only drop twice, this adds 2 extra times a Node can come off the worklist.
Thus a Node can exit the worklist at most O(2 + log n) times. Since we do all constant
propagation possible before returning to splitting-on-inputs, any Nodes that need to make
the Follower to Leader transition get the opportunity to do so before we need to split
them by inputs. We need one more change to PROPAGATE:

16.  If oldtype was T or constant then do
16.5 Add Y to worklist
17. V Nodes y in Y do
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4.9 The Algebraic 2-Congruent-Input Identities: PHI and MAX

In this section we discover:

1. Two Nodes are congruent if they compute equal functions on ordered congruent
inputs.

2. Two PHI Nodes are congruent if their ordered inputs are congruent, ignoring in-
puts from unreachable paths.

3. The type of each Node, as an element from the {%, 2} lattice or the {T,z, 1} lat-
tice. Types are determined by function and input types.

4. Two Nodes are congruent if either Node computes T or they both compute the
same constant.

5. Two Nodes are congruent if one is an algebraic, 1-constant identity on the other.

6. Two Nodes are congruent if one is an algebraic, 2-congruent-input identity on the

other. Algebraic, 2-congruent-input identities include meet (or PHI or 1), MAX,

and MIN,
We allow the meet (max, min) of two congruent values to be congruent to both val-
ues. This is of special importance to the PHI functions, where we observe many of these

identities in practice.

If x is congruent to y and “z = ¢(x, y)” then z is congruent to both x and y. This 3-way
congruence depends on x and y remaining congruent. When the x-y congruence breaks, so
must the x-z and y-z congruences. Since z has more than 1 input from the same partition,
we can build up large complex structures, including cycles, of PHI functions that remain
congruent. We observe these in practice for any program with more than a moderate

amount of control flow, so they must be handled efficiently.

Our greatest difficulty comes when we split partitions. The very act of splitting a
partition will break these congruences, turning these Nodes from Followers to Leaders
and setting off another wave of splitting. In Figure 4.8, ¢, needs to go with the left parti-
tion, and ¢; and ¢4 belong with the right partition. The node ¢, can go with either half, as
long as we convert it from a Follower to a Leader. One of the two splits will go on the
worklist, and ¢, will be touched along a def-use edge from that split. Eventually, ¢, will
be split again to finally end up in its own partition.



62

Figure 4.8 Splitting with PHIs

Our splitting race here is crucial to our run time. We start at the three Leader Nodes,
and work our way back into a partition of arbitrary size. The first time a side reaches a
PHI, we move it in with that side. If the other side reaches the same PHI, we (only once
per Node) convert it to a Leader. If only one side reaches the PHI, we leave it as a Fol-
lower. We do not need to know ahead of time which Follower PHI’s (or how many) will
go with which Leaders. The race alleviates us from having to maintain that information.
The run-time analysis of the race is unchanged; we do no more work than twice the num-

ber of Nodes in the smaller split.

We give C++ code for a PHI Node’s Follower-determination function below. A PHI
remains a Follower if all live inputs come from the same partition. We return either a
pointer to the PHI Node if it is not a Follower or some input Node in the same partition.

Node *PhiNode::Identity() {

RegionNode *region := control, /I Handy access to the controlling REGION
Node *n_part := NULL,; /l Some Node being Followed
for(inti:=1; i< use_cnt; i++) { I/l For all inputs do...

/! If the matching control (CFG path) is reachable do...
if( (*region)[il—type = Type_Reach ) {
Node *in := (*this)[i]; /l Handy access to the data input
if( !n_part ) n_part := (*this)[i]; // First input partition found
else if( n_part—part # in—part ) /| Check that all inputs are congruent
return this; Il Incongruent inputs, NOT a Follower
}
)
!l Note: If n_part is NULL here, all input paths are dead, the PHI computes

Il Type_Top, is in the TOP partition and is not being split here!
return n_part; Il Congruent inputs, a Follower

We give C++ code for a MAX Node’s approximation function below:
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MaxNode::Compute() {

const Type *11 := inl—type, I Quick access to input type

const Type *12 := in2—type; I Quick access to input type

if(11 =Type_Top 112 =Type_Top) /I If either input is undefined
type := Type_Top; 1l ...then so is the result

else if( 11—is_con() && r2—is_con() ) // If both inputs are constants
type := Type(max(tI—con, 12—con));// ...then compute the result

else If( inl—part = in2—part ) /l If the inputs are congruent
type :=t1; I ...then the result has same type

else /I Otherwise, the result is not
type = Type_Bottom; /I a compile-time constant

The PHI approximation function is similar, except that the primitive operation is lattice

meet instead of maximum and we ignore dead input paths.

4.9.1 Losing Some Congruences

Unfortunately, our algorithm as presented loses some congruences amongst PHI
Nodes. In Figure 4.8, ¢, can go with either half. However, if there are more PHIs with
the same shape as ¢, they all need to go to the same side as ¢,. The race selects sides arbi-
trarily. Thus two Nodes with ¢,’s shape can be split, despite their being congruent.

We can repair this at the expense of our asymptotic running time. After the race is
over, we can move all the PHIs that are making the Follower = Leader transition into the
larger partition. We also need to move everything that can be reached from such PHIs into
the larger partition. In the worst case, this can be nearly everything in the smaller parti-
tion. When this happens we will have touched a large number of Nodes (up to half the
partition), but the final size of the smaller partition might be a single Node. For a particu-
larly bad sequence of partition splitting, this can cause Node visitations quadratic in the

number of PHI Nodes.

Our implementation does not include this repair, does not recover these lost congru-
ences, and remains O(n log n) asymptotically. A casual inspection of the optimized output
did not reveal any obvious missed common subexpressions. In our test suite, we consis-
tently found more common subexpressions than the classical technigues against which we
compared. We do not believe these lost congruences occur very often in practice. While
the repaired algorithm is not asymptotically as fast, we believe its actual running time will

be essentially the same.
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4.10 Using the Results

As my advisor is fond of saying, “Knowledge does not make code run faster.” We
need to make use of the analysis. When the algorithm stops, we have a partitioning over
our Nodes. All Nodes in a partition are congruent and compute the same value. The al-
gorithm replaces such Nodes by a single representative (Leader) from the partition. Fur-
ther, Nodes in the same partition compute the same Type and, if the Type is a constant,
the representative Node can be a load-immediate of the constant. Finally we note that all

unreachable code will be of type T.

We pre-order walk the program graph from the exit, following the use-def chains. For
every visited Node, we make sure the corresponding partition has a representative (O(N)
time), creating one if necessary. We also make the representative Nodes’ use-def chains
point to other representatives (O(E) time). Then the graph formed by the representatives
becomes our new program graph. We discard the old graph. We walk the representa-
tive’s use-def chains, so we do not walk the inputs to computations that compute con-
stants (instead, we walk the inputs to the load-immediate Node, i.e., none). Since we
walked the final program graph’s use-def chains, the replacements contain no dead code;

dead code is implicitly removed.

4.11 Summary
We have an O(n log n) algorithm for finding:

1. constants
2. unreachable code
3. global structural equivalencies
4. algebraic identities

It is optimistic, so it finds those algebraic identities that depend on structural equiva-
lences that depend on constants that depend on algebraic identities. In particular, in
Figure 3.11 we discover that the print statement always prints 1.
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We implemented the algorithm and tested it on a large body of FORTRAN and C

codes. In practice it is fast and runs in essentially linear time. A complete listing of run
times and program improvements is in Chapter 5.
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Chapter 5

Experimental Data

An unexamined idea, to paraphrase Socrates, is not worth having;
and a society whose ideas are never explored for possible error may
eventually find its foundations insecure.

— Mark van Doren (1894-1973)

5.1 Experimental Method

We converted a large test suite into a low-level intermediate language, ILOC [8, 6].
The 1LOC produced by translation is very naive and is intended to be optimized. We then
performed several machine-independent optimizations at the ILOC level. We ran the re-
sulting ILOC on a simulator to collect execution cycle counts for the ILOC virtual machine.

All applications ran to completion on the simulator and produced correct results.

The combined algorithm was implemented by the author. The classic optimization

phases were implemented by members of the Massively Scalar Compiler Project at Rice.

5.2 Executing 1LOC

ILOC is a virtual assembly language for a virtual machine. The current simulator de-
fines a machine with an infinite register set and 1 cycle latencies for all operations, includ-
ing LOADs, STOREs and JUMPs. A single register can not be used for both integer and
floating-point operations (conversion operators exist). While the simulator can execute an
unlimited number of data-independent data operations in 1 cycle, we limited our output to
1 operation per cycle. ILOC is based on a load-store architecture; there are no memory
operations other than LOAD and STORE. LOADs and STOREs allow base+offset and

base+index addressing. Adds and subtracts also have an immediate operand form. All
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immediate operands are 32 bits long. ILOC includes the usual assortment of logical, arith-

metic and floating-point operations.

The simulator is implemented by translating ILOC files into a simple form of C. The C
code is then compiled on the target system using a standard C compiler, linked against ei-
ther the FORTRAN or C libraries and executed as a native program. The executed code
contains annotations that collect statistics on the number of times each ILOC routine is
called, the dynamic number of each operation type executed and the dynamic cycle count.
The statistics are printed to stderr as the program executes. We use UNIX redirection to

capture the statistics in a separate file from the program output.

5.2.1 Quality of the simulation

The simulated ILOC clearly represents an unrealistic machine model. We argue that
while the simulation is overly simplistic, it makes measuring the separate effects of optimi-
zations possible. We are looking at machine-independent optimizations. Were we to in-
clude memory hierarchy effects, with long and variable latencies to memory and a fixed

number of functional units, we would obscure the effects we are trying to measure.

A production compiler clearly must deal with these issues. Building a high quality
back end is outside the scope of this thesis. We did not want the bad effects from a naive

back end obscuring the effects we are trying to measure.

5.3 The Test Suite

The test suite consists of a dozen applications with a total of 52 procedures. The pro-
cedures and their static instruction sizes are given in Figure 5.1. All the applications are
written in FORTRAN, except for cplex. Cplex is a large constraint solver written in C.
Doduc, tomcatv, matrix300 and fpppp are from the Spec89 benchmark suite. Ma-
trix300 performs various matrix multiplies. Since our machine model does not include a
memory hierarchy (single cycle LOAD latencies), we are not interested in memory access
patterns of the inner loops. Thus we choose matrix300 over matrix1000 for faster test-
ing times, even cutting the matrix size down to 50. The remaining procedures come from

the Forsythe, Malcom and Moler suite of routines. [20]
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Application Routine| Static Application Routine { Static
Instructions Instructions
doduc x21y21 113] [cplex xload 120
doduc hmoy 162| (cplex xaddrow 434
doduc si 166] [cplex chpivot 655
doduc coeray 370] [cplex xielem 1,560
doduc dcoera 544] [fmin fmin 438
doduc drigl 612 |fpppp fmtgen 601
doduc colbur 775| |fpppp fmtset 704
doduc integr 844| |fpppp gamgen 835
doduc ihbtr 919| |fpppp efill 1,200
doduc cardeb 938| (fpppp twldrv 15,605
doduc heat 1,059] [fpppp fpppp 22,479
doduc inideb 1,081 |matrix300 saxpy 94
doduc yeh 1,084 |matrix300 sgemv 285
doduc orgpar 1,490/ |matrix300 sgemm 646
doduc subb 1,537 |rkf45 1kf45 169
doduc repvid 1,644/ Irkf45 fehl 505
doduc drepvi 1,839] (rkf45 rkfs 1,027
doduc saturr 1,861] [seval seval 174
doduc bilan 2,014] [seval spline 1,054
doduc supp 2,035/ |solve solve 291
doduc inithx 2,476| [solve decomp 855
doduc debico 2,762| [svd svd 2,289
doduc prophy 2,843| |tomcatv main 2,600
doduc pastem 3,500] [urand urand 235
doduc debflu 3,941| |zeroin zeroin 336
doduc ddeflu 4,397
doduc paroi 4,436
doduc iniset 6,061
doduc deseco 11,719

Figure 5.1 The test suite

5.4 Comparing the Combined Algorithm

We compared the combined algorithm to a set of optimizations, run in reasonable
combinations. In each case, we ran all codes through the optimizations and simulator,
collecting statistics on the total number of operations executed. The optimizations are
each implemented as a separate UNIX filter. The filters convert the ILOC code to text
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form between each pass. We report both the raw cycle counts and speedups over unop-

timized code. We performed the following optimizations:

clean: Clean removes empty basic blocks (branches to branches) and turns long

chains of basic blocks into single large blocks.

coalesce: Many of the optimizations insert extraneous copy operations (e.g., common
subexpression elimination). Also, an easy algorithm for coming out of SSA form inserts a
large number of extra copies. We coalesced them using techniques from graph coloring

register allocators [5, 10].

combine: This phase combines logically adjacent instructions into more powerful in-
structions. This is commonly used to build addressing expressions for LOADs and STOREs.
It also performs a variety of peephole optimizations, such as removing two negates in a

row.

combo: The combined algorithm, as discussed in Chapter 4. This phase includes in-
ternally the effects of dead as part of the transformation step. Combo also includes a
round of combine, coalesce and clean after the analysis.”® The internal implementations
are slightly different from the UNIX filters. We looked for places where the test suite
used the differing idioms and changed one implementation or the other to match.*

cprop: Conditional constant propagation is an implementation of Wegman and
Zadeck’s algorithm [49]. It simultaneously removes unreachable code and replaces com-
putations of constants with load-immediates of constants. It is optimistic in the sense that
if a variable computing a constant allows a code section to be unreachable, and that be-
cause the code section is unreachable the variable computes a constant, cprop will dis-
cover this. After constant propagation, cprop runs a pass to fold algebraic identities that

use constants, such as x x 1 and x + 0, into simple copy operations.

» Normally we avoid such duplication of efforts. Unfortunately, we needed these passes to reasonably study combo
before the separate Unix filter versions became available.

% Differing implementations were a source of much confusion in getting comparable results. Compiler writers often
extend published algorithms in minor ways, to find more common subexpressions or more constants. We were of-
ten faced with the choice of upgrading our implementation or upgrading the Unix filters (leading to a sort of com-
piler writer's one-up-manship).
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dead: Dead code elimination removes code that cannot affect the output, even if exe-
cuted. This algorithm starts at the program exit and walks the use-def chains to find all
operations that define a value used by output operations or that affect the final resul. Op-
erations not visited in the walk do not affect the output and are removed. Our implemen-

tation is based on the work of Cytron, et. al. [15]

gval: Global value numbering implements Alpern, Wegman, and Zadeck’s global con-
gruence finding algorithm [2]. Instead of using dominance information, available expres-
sions (AVAIL) information is used to remove redundant computations. AVAIL is

stronger than dominance, so more computations are removed [41].

parse: Usually used to test ILOC parsing, this pass includes a flag to split control-
dependent basic blocks. This has the effect of creating basic blocks for loop landing pads

and partially redundant expressions.

partial: Partial Redundancy Elimination is an implementation of Morel and Renvoise’s
algorithm for removing partially redundant expressions, as modified by Drescher and Sta-
del [36, 18]. It also hoists code out of loops, if that code is not control dependent inside
the loop. Since it is a global algorithm, it also performs local common subexpression
elimination. Unfortunately, the algorithm has no understanding of algebraic identities and

relies solely on lexical equivalence.

shape: This phase reassociates and redistributes integer expressions allowing other
optimizations to find more loop invariant code [7]. This is important for addressing ex-
pressions inside loops, where the rapidly varying innermost index may cause portions of a
complex address to be recomputed on each iteration. Reassociation can allow all the in-
variant parts to be hoisted, leaving behind only an expression of the form

“base-+indexxstride” in the loop.

valnum: Valnum performs local value numbering with a hash table [13]. This
method handles algebraic identities such as x + 0 or copy operations, commutativity, con-
stant folding, and equal-functions-on-equal-inputs congruences, all within a single basic
block.
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Optimizations not performed include strength reduction, any sort of loop transforma-
tions (unrolling, interchange, peeling, loop unswitching), software pipelining, blocking for
cache, scalar replacement, and register allocation. Scalar replacement and register alloca-
tion both change the address computations. They can speed up or slow down the simu-
lated ILOC run-time. Strength reduction and loop unswitching both have strong effects on
the amount of code executed in loops. The remaining optimizations have little effect on

our simple virtual machine.

5.5 The Experiments

Combo, the combined algorithm, combines cprop (conditional constant propagation)
with value numbering. If the global schedule is enforced (computations must remain in
their original basic block) then the value numbering effects are equal to valnum (local
value numbering) only. If the global schedule is ignored, the value numbering effects are

similar to a combined gval, partial, and valnum. We tested both ways.

Combo always ends with a round of dead code elimination (as part of using the
analysis results). We always followed any set of the classic optimizations with a round of

dead.

Most of the phases use SSA form internally with a naive translation out of SSA at the
end. Thus, most optimizations insert a large number of copies. We followed with a round
of coalesce to remove the copies. This tends to empty some basic blocks (those blocks
with only copies). We also used parse to split control-dependent blocks (combo, with the
global schedule ignored, has the same effect), and some of those blocks go unused. We

ran a round of clean to remove the empty blocks.

Combo and shape split complex ILOC instructions, such as LOAD from base+index
into a simple ADD and a LOAD. This allows more common subexpressions to be found.

However, a round of combine is required to reform the single LOAD instruction.

The global version of combo requires a round of global code motion to recover some
serial order. This global code motion pushes operations down, to make them as control
dependent as possible, without pushing them into loops. This heuristic both hoists loop
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invariant code and, we hope, moves operations into less frequently executed paths.
Shape, as part of exposing more common subexpressions, pushes operations down as far
as possible (even into loops). Partial tends to reverse this, by hoisting code out of loops.
However, partial is more conservative than combo, in that it will not hoist a control-
dependent operation out of a loop (because that would lengthen a path that never takes a
rare condition inside the loop). Thus both combo and the shape/partial pair perform

some amount of global code motion.
Our experiments all follow this general strategy:

1. Convert from FORTRAN or C to naive ILOC.
2. Optionally run shape.
3. Run either combo or some combination of parse, gval, partial, cprop and val-
num.
4. Clean up with combine, dead, coalesce, and clean.
5. Translate the ILOC to C with the simulator, then compile and link.
6. Run the compiled application, collecting statistics.
Variations on this strategy are outlined below in each experiment.

5.5.1 The “best code, reasonable compile times” strategy

We compared the global version of combo against parse, gval, partial, cprop, com-
bine, dead, coalesce, and clean, as shown in Figure 5.2. This represents a strategy of
compiling for the best possible code, with reasonable compile times. We expect combo to
do well for two reasons: combo’s global code motion will move code into control-
dependent regions, thus removing it from some execution paths, and combo’s analysis is
better than repeating gval, partial, and cprop to a fixed point (see Chapter 3). We report

in Figure 5.3 run times as a speedup over the unoptimized code.

W—{parﬁal cprop
combineHdeadHcoalesce)—{clean]
l combo }

Figure 5.2 Optimization strategy for “best code, reasonable compile times"
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The total improvement over all applications is 2.2%. The average improvement per

procedure is 4.7%. The average improvement is greater than the overall improvement be-

cause some long-running routines (such as saxpy) compiled to essentially identical code.

This shows that both approaches do well with simple control flow and nested loops.?2

The routines saturr and fmin lose cycles compared to the phase-oriented approach
because of combo’s global code motion heuristic. Combo hoists control-dependent code

out of loops. In these cases, the controlling condition never comes true so the combo

version ends up executing the code when the original program does not.

Speedup over unoptimized code Speedup over unoptimized code
best, | combo, | Cycles % best, | combo, { Cycles %
Routine 1-pass | global saved | speedup Routine | 1-pass | global saved | speedup
debflu 4,02 5.29] 215,110 23.9%]|urand 221 2.26 13 2.3%
pastem 3.09 3.79) 132,774 18.4%| {svd 2.84 291 104 2.3%
prophy 591 7.14] 111,365 17.2%]| |decomp 2.67 2,73 14 22%
paroi 4.01 4.80[ 105,450 16.5%| |drigl 3.42 3.49 6,015 2.0%
rkfs 2.25 2.66 10,230 15.4%| |xload 2.61 2.65 67,774 1.7%
gamgen 4.59 543 24,418 15.4%| [colbur 246 2,50 12,363 1.6%
ddeflu 2.96 340] 192,590 13.0%| |efill 213 2.16 24,314 1.2%
yeh 1.88 2.08 37,107 9.8%] |tomcatv 5.29 5.35) 2,894,200 1.2%
bilan 5.40 5.98 56,471 9.7%| [sgemm 243 2.46 103 1.2%
debico 577 6.39] 51,116 9.6%| |fehl 2.84 2.87 1,320 1.0%
deseco 477 5.28] 230,245 9.6%( |xaddrow 237 2.39] 142,088 0.9%
integr 4.03 441 37,134 8.7%| |si 2.05 2.06 56,712 0.6%
cardeb 4.81 5.25 15,355 8.4%| |xielem 2.52 2.53 56,484 0.3%
coeray 1.79 1.95] 135,120 8.3%] |fmtset 3.50 3.51 2l 02%
sgemv 3.11 3.36] 40,800 7.6%| |supp 1.89 1.90 3,162 0.1%
inithx 4.09 4.36 177 6.4%( |iniset 3.00 3.00 35 0.1%
rkf45 233 2.49 100 6.3%| |fpppp 4,31 4,31 11,988 0.0%
dcoera 1.85 1,97 60,437 6.2%| [saxpy 3.56 3.56 0 0.0%
twldrv 3.56 3.79| 4,980,067 6.1%| [subb 1.89 1.89 0 0.0%
spline 3.97 422 55 5.9%| [x21y21 3.4 3.44 0 00%
heat 227 241 35,154 5.7%| |chpivot 2.65 2.63] -36,396] -0.9%
inideb 5.02 5.30 48 5.3%| |zeroin 1.98 1.95 -10|  -14%
orgpar 3.08 3.25 1,293 5.2%| |ihbtr 2.52 246 -1,674] -2.3%
drepvi 3.04 3.200 35,330 4.9%] |seval 2.30 225 2 -24%
fmtgen 2.46 258 47272 4.9%| |hmoy 4,52 437 -13)  -34%
repvid 3.91 4.08] 21,390 4.2%| |fmin 1.95 1.88 320 -3.7%
solve 2.98 3.07 10 2.9%| [saturr 227 2.12 -4,092| -6.9%

Figure 5.3 Best code, reasonable compile times

Z More precisely, we should say that this shows that both approaches do well with saxpy, a simple and heavily stud-

ied kernel.
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Debflu and pastem do better for precisely the same reason. They both contain nested
loops and complex control flow. The partial pass will not hoist the control-dependent
code, while combo’s more aggressive global code motion will. These examples highlight
the difference between PRE’s safe and conservative approach and our code motion heu-

ristic. Often our heuristic wins, but not always.

5.5.2 The “best code at any cost” strategy

We compared the global version of combo against parse, gval, partial, cprop, com-
bine, dead, coalesce, and clean in Figure 5.4. The entire set of classic phases was then
repeated. This represents a strategy of compiling for the best possible code, without re-
gard to compile times. We report run times as a speedup over the unoptimized code in

Figure 5.5.

M—@—{parﬁaﬂ—{cpro@—{dead}
7

Figure 5.4 Optimization strategy for “best code at any cost"

combine de@—{coalescej—{cle@

l combo }

The total improvement over all applications is 2.0%. The average improvement per
procedure is 3.0%. As expected, the cycle counts for the repeated phases get closer, but
do not reach, the cycle counts for the combined optimization. The average improvement
per procedure is only 3.0% instead of 4.7%. Since repeating phases lowers the cycle

count, the phase-ordering predicted by theory really occurs in practice.



Speedup over unoptimized code Speedup over unoptimized code
best, | combo, | Cycles % best, | combo, [ Cycles %
Routine | repeat | global saved _|speedup| | Routine | repeat | global | saved |speedup
debflu 4.40 5.29] 137,734 16.8%| |orgpar 3.20 3.25 368 1.5%
rkfs 2.25 2.66 10,230| 15.4%| [repvid 4.02 4.08 6,696 14%
gamgen 4.82 543 16,813 11.1%| |drepvi 3.15 3.20 9,245 13%
pastem 3.41 3.79 65,289 10.0%| |drigl 3.45 3.49 3,425 1.1%
ddeflu 3.06 340 141,715] 9.9%| [tomcatv 5.29 5.35(2,621,479] 1.1%
yeh 1.88 2,08 37,107 9.8%]| |xaddrow 2,37 2.39] 154,572 0.9%
prophy 6.47 7.14 55,428 9.4%| (xielem 251 2,53 169,019f 0.8%
coeray 1.79 1.95( 135,120 8.3%] |decomp 2.72 2.73 4  0.6%
sgemv 3.11 3.36 40,400 7.5%| [si 2.05 206 56,712 0.6%
x21y21 3.18 3.44] 101,283 7.5%| |inithx 4.35 4.36 71 03%
rkf45 233 249 100 6.3%]| |fmtset 3.50 3.51 2l 02%
dcoera 1.85 1.97 60,437)  6.2%] |supp 1.89 1.90 3,162 0.1%
twldrv 3.56 3.79] 4,867,646 6.0%| |sgemm 2.46 2.46 2l 0.0%
spline 3.97 4,22 55| 5.9%| [fpppp 431 4.31 5,994, 0.0%
heat 227 241 35,154 5.7%| |iniset 3.00 3.00 6| 0.0%
seval 2.12 2.25 5|  5.6%| |fehl 2.87 2.87 0 0.0%
paroi 4.56 4.80 28,305 5.1%) [saxpy 3.56 3.56 0 0.0%
ihbtr 2.34 2.46 3,720 4.8%]| |subb 1.89 1.89 0 0.0%
fmtgen 247 2.58 40,832 4.2%| |fmin 1.89 1.88 6| -0.7%
solve 295 3.07 14|  4.0%)| |chpivot 2.65 2.63] -36,306] -0.9%
bilan 5.76 5.98 20,720 3.8%| |zeroin 1.98 1.95 -100  -1.4%
deseco 5.08 5.28 84,360 3.7%| |inideb 5.38 5.30 -12( -1.4%
debico 6.15 6.39 18,414} 3.7%| |integr 4.48 441 -5,601] -1.5%
svd 2.84 291 109) 2.4%)| |efill 2.19 2.16| -28,983| -1.5%
urand 2.21 2.26 13 2.3%| |hmoy 452 4.37 -131 -3.4%
colbur 245 2.50 14,794 1.9%| |cardeb 5.60 525 -10,545] -6.7%
xload 2.61 2.65 67,774,  1.7%| {saturr 2.28 212 4464 -7.6%

Figure 5.5 Best code at any cost

5.5.3 The “Reassociate, then best code, reasonable compile times” strategy

We ran shape first, to reassociate all integer expressions. We then compared the
global version of combo against parse, gval, partial, cprop, combine, dead, coalesce,
and clean in Figure 5.6. This represents a strategy of compiling for the best possible code

partial

cprop
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combine)—{dead }-a&oalesca_{clean)

Figure 5.6 Strategy for “Reassociate, then best code, reasonable compile times"
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with reasonable compile times. We report run times as a speedup over the unoptimized

code in Figure 5.7.

Running shape and partial together simulates the global code motion performed by

combo. Shape does forward propagation of expressions, pushing computations into
more control-dependent regions (in an attempt to get more grist for the value-numbering
optimizations). Partial will hoist code out of loops as a side effect of suppressing partially

redundant computations.

The total improvement over all applications is 2.2%. The average improvement per
procedure is 7.8%. In general, reassociating improves all the speedups. However, the
relative speedups (between combo and the phase-oriented approach) become more erratic.

Speedup over unoptimized code Speedup over unoptimized code
shape, | shape, | Cycles % shape, | shape, Cycles %
Routine 1-pass | combo | saved | speedup || Routine | 1-pass | combo saved speedup
prophy 4.57) 6.69] 264,209 31.7%||yeh 1.97 2.08 19,630 54%
debflu 3.89] 534} 251,802 27.1%||fehl 2.80 2.96 7,392 5.4%
paroi 371 5.03] 181,485 26.3%||colbur 233 2.46 43,102 5.4%
pastem 290, 3.91] 198,682 25.8%]|fmtgen 2,49 2.62 48,588 51%
bilan 4.57) 5971 160,626 23.4%]||spline 4.44 4.64 36 4.3%
gamgen 7.10] 9.22]  23,584] 23.0%|]si 2.16 220 170,136 1.8%
ihbtr 214 271 17,672 21.0%||xload 2.61 2.65 67,774 1.7%
debico 5.53] 6.95| 112,716] 20.4%|{urand 2.20 224 9 1.6%
deseco 4281 531 519,030 19.4%||sgemm 2.66 2.69 94 1.2%
integr 3521 436 93,929 19.3%||xaddrow 2.37 239| 140,024 0.8%
inithx 3.67] 4.50 570 18.4%||fmtset 3.95 3.97 4 0.4%
inideb 514 6.24 155  17.7%)] |iniset 3.58 3.60 182 0.4%
drigl 297) 347 50,045 14.4%||xielem 2.53 2.54 65,601 0.3%
ddeflu 285 3.33] 221431 14.4%||sgemv 4.16 4.17 1,200 0.3%
svd 2931 335 555 12.6%]]|tomcatvy 6.58 6.60 573,922 0.3%
repvid 3.86) 4.39 62,496 12.2%| |chpivot 2.63 2.63 3,660 0.1%
decomp 263 291 61 9.4%| | fpppp 4.31 431 0 0.0%
cardeb 522 5.76 15,725 9.3%] |tkf45 249 249 0 0.0%
rkfs 2421 266 5,630 9.1%| [saxpy 4,54 4.54 0 0.0%
heat 228] 249 49,662 8.1%| [subb 1.89 1.89 0 0.0%
coeray 1.81] 1.95| 119,344 7.4%||x21y21 3.71 371 0 0.0%
orgpar 335 3.62 1,663 7.2%| |supp 1.90 1.90 -3,162 -0.1%
solve 282 3.02 24 6.6%| |zeroin 1.97 1.95 -8 -1.1%
hmoy 423 4.52 26 6.5%| |fmin 1.93 1.88 =22 -2.5%
twldrv 3.52| 3.76] 5,177,515 6.3%]| |seval 2.39 227 -4 -5.0%
drepvi 293 312 44,695 6.0%]| |efill 1.81 1.711  -126,050 -5.5%
dcoera 1.86] 1.97 54,147 5.6%| {saturr 2.24 2.12 -3,348 -5.6%

Figure 5.7 Reassociate, then best code, reasonable compile times
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5.5.4 The “Reassociate, then best code at any cost” strategy

We ran shape first, to reassociate all integer expressions. We then compared the
global version of combo against parse, gval, partial, cprop, combine, dead, coalesce,
and clean, as shown in Figure 5.8. The entire set of classic phases was repeated. This
represents a strategy of compiling for the best possible code, without regard to compile
times. We report run times as a speedup over the unoptimized code in Figure 5.9.

The total improvement over all applications is 1.7%. The average improvement per
procedure is 4.4%. Again, shape improves the cycle counts on the whole. Repeating the
classic optimization passes brings the cycle counts closer to what we get with combo.

parse gvaalarﬁachprop)—@

combo

comb@—{dead)—{coalescej—ﬁleanj

Figure 5.8 Optimization strategy for “best code at any cost"
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Speedup over unoptimized code Speedup over unoptimized code
shape, | shape, | Cycles % shape, | shape, [ Cycles %
Routine | repeat | combo saved [speedup| | Routine| repeat | combo| saved [speedup
debflu 4.39 534 146,720| 17.8%| |inithx 4.38) 4.50 700 2.7%
ihbtr 2.25 27 13,394 16.7%| |orgpar 3520 362 553 2.5%
inideb 5.34 6.24 122 14.5%| |decomp 2.851 291 11| 1.8%
drigl 297 347 50,045 14.4%| si 2.16) 2.20] 170,136/ 1.8%
debico 6.02 6.95 68,076 13.4%| [xload 2,61 265 67,774 1.7%
pastem 343 3.91 80,366 12.3%| |efill 169 L.71) 39,772 1.6%
prophy 5.88 6.69 78,444 12.1%| |urand 2200 224 9 1.6%
ddeflu 2.98 3.33] 154,091 10.5%| |xielem 2.50)  2.54] 303,931 1.5%
rkfs 2.38 2.66 6,502 10.4%] |xaddrow 2.37) 239 152,508] 0.9%
bilan 5.39 5.97 56,6101 9.7%| |fmtset 395 397 4 0.4%
paroi 4.57 5.03 51,245 9.2%)| |iniset 3.58] 3.60 153 0.3%
repvid 3.99 439 45,0121  9.1%] |supp 1.89] 1.90 3,162 0.1%
heat 229 249 48,546] 8.0%| [sgemv 417 4.17 400 0.1%
deseco 4.92 531 172,790 7.4%| |chpivot 263 2.63 3,750 0.1%
cocray 1.81 195 119,344| 7.4%| (rkf45 249 249 0 0.0%
svd 3.12 335 283 6.8%| |saxpy 454 4.54 0] 0.0%
hmoy 4.23 4.52 26| 6.5%| |subb 1.89) 1.89 0 0.0%
twldrv 3.54 3.76| 4,652,841 5.7%| |x21y21 371 371 0 0.0%
dcoera 1.86 1.97 54,147 5.6%]| |tomcatv 6.60 6.60] -10,714| 0.0%
fehl 2.80 2.96 7,392 5.4%| {fpppp 431 4.31 -5,994| 0.0%
gamgen 8.77 9.22 3,986 4.8%| [sgemm 2,69 2.69 -8 -0.1%
colbur 2.35 2.46 35,887 4.5%| |zeroin 1.95) 1.95 -1l -0.1%
fmtgen 251 2,62 40,393 4.2%| |integr 438 4.36 -2,086] -0.5%
seval 2.20 227 3] 3.4%| |fmin 1.89 1.88 6] -0.7%
drepvi 3.02 3.12 24,530 3.4%| |solve 3.05f 3.02 4] -12%
spline 4,49 4.64 28| 3.4%| |cardeb 584 5.76 -2,035] -1.3%
yeh 2.01 2.08 11,868 3.3%]| [saturr 226 2.12 -3,720] -6.2%

Figure 5.9 Reassociate, then best code at any cost

5.5.5 The “best simple” strategy

We compared the local version of combo against parse, valnum, cprop, combine,
dead, coalesce, and clean. The local version of combo only finds common subexpres-
sions within a single basic block, in addition to global constants and unreachable code.
This represents a strategy of compiling using well known and simple to implement tech-
niques. We report run times as a speedup over the unoptimized code in Figure 5.10.
Note that no global code motion is done, in particular, loop invariant code is not hoisted.

The total improvement over all applications is 11.8%. The average improvement per
procedure is 2.6%. We studied the differences, and determined that most of the differ-

ences were due to the inconsistent implementation of valnum. As an example, valnum
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would not find two LOADs of the same address with no intervening STORE to be common

subexpressions. There are numerous other missing identities, most of which are being cor-

rected in a new version of valnum. Instead of a completely different implementation,

combo relies on a simple command-line flag to switch between local and global value-

numbering. Thus combo implements the same identities with the same code.

Speedup over unoptimized code Speedup over unoptimized code
best, | combo, Cycles % best, { combo, | Cycles %
Routine simple | local saved speedup | |[Routine simple | local saved | speedup
fpppp 3.31 4.31| 8,121,870} 23.2%] |inideb 3.81 3.86 14 1.2%
gamgen 3.73 4.58 36,413 18.6%| |urand 2.20 2.22 4 0.7%
twldrv 3.03 3.61) 15,336,646 16.1%| |xielem 2.31 2.32| 138,652 0.6%
tomcatv 3.51 4.01{ 45,755,765 12.5%| |xaddrow 2.26 227 90,065 0.5%
fitset 2.54 2.86 164] 11.1%] [rkfs 213 2.14 334 0.5%
yeh 1.82 2.01 37,324 9.5%| |debflu 3.33 3.34 4,976 0.5%
coeray 1.77 1.93 135,120 8.2%| |drigl 2.76 2.77 1,670 0.4%
debico 4.24 4.58 53,906 7.5%| |supp 1.89 1.89 3,162 0.1%
fmtgen 2.15 2.31 74,166 6.7%| |chpivot 248 248 42 0.0%
si 1.70 1.82 793,948 6.6% |fehl 249 2.49 0 0.0%
sgemv 2.70 2.89 40,000]  6.5%| |saturr 233 2.33 0 0.0%
rkf45 2.33 2.49 100 6.3%] {saxpy 332 3.32 0 0.0%
dcoera 1.83 1.94 60,437 6.1%| |subb 1.89 1.89 0 0.0%
seval 1.80 1.91 6 5.7%| |x21y21 2.63 2.63 0 0.0%
solve 2.73 2.87 18]  4.8%]j |xload 2.55 2.55 0 0.0%
heat 1.91 2.01 34,410, 4.7%| |sgemm 2.10 2.10 -8 -0.1%
deseco 345 3.60 143,117  4.3%)] |bilan 3.99 395 -7,631 -1.0%
spline 3.69 3.85 42|  4.2%| |paroi 341 3.36] -11,840 -1.6%
svd 227 2.34 165 2.9%]| |cardeb 3.65 3.57) -4,995 2.1%
ddeflu 2.67 2.74 44,173 2.7%| |prophy 3.93 3.85| -20,147 2.1%
colbur 2.21 2.26 19,950 2.3%| |efill 1.79 1.75| -62,717 -2.7%
pastem 2.11 2,16 24,091 2.3%| |repvid 2,57 2.50] -23,064 -3.0%
fiin 1.57 1.61 24 2.2%| |integr 3.13 299 -26,136 -4.8%
inithx 3.16 3.22 76 2.1%| |ihbtr 2.13 201 -4,644 -5.5%
decomp 220 224 15 1.9%]| |hmoy 3.85 3.64 -26 -5.9%
zeroin 1.52 1.54 14 1.5%] |orgpar 2.49 234 -2,037 -6.6%
drepvi 247 2.50 12,690 1.4%l| [iniset 2.01 1.82 -8,961] -10.6%

Figure 5.10 Best simple

5.6 The Compile-Time Numbers

One of a compiler writer’s concerns is compile time, the time it takes to compile code.

Programmers doing development work will use a compiler many times a day and expect
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the compiler to be fast. The pragmatic compiler writer must consider the running time of

an optimization pass versus its expected gain on the compiled programs.

We measured the time to run the optimizations and perform the transformations of all
the phases. We expect a real compiler implementation to keep a single intermediate repre-
sentation between all passes; it would not convert to text between each pass. When we
measured compile times we ignored time to parse the input, print the output, and pipe the
text form from one process to the next. In the combo pass, our timings do not include the

internal clean, combine and coalesce phases.

All timing runs are on an IBM RS/6000 Model 540, with 64M of memory. The test
machine was lightly loaded (all other users logged off) and had no other running jobs.
Each pass was timed running on each input file, with the output piped to /dev/null. We
ran the pass on the input once to load disk pages and processor cache, then timed and av-

eraged the next three runs. We measured wall-clock time.

Most of the classic passes have been carefully engineered to run fast, while still
being written in a readable and maintainable style. Further speed improvements are cer-

tainly possible; often a single pass over the intermediate representation can serve for sev-

eral analysis phases.

5.6.1 Combo timings

We looked at the time to run combo and correlated it with the static instruction count.
In the “Parse, Combo” column of Figure 5.11, we show the times to run combo when we
do parse-time optimizations, discussed in Chapter 7, beforehand. The parse-time optimi-
zations are integrated pessimistic versions of the constant propagation, unreachable code
elimination and global value numbering. Doing some optimization at parse-time reduces
the size of the intermediate representation run against combo, which improves combo’s

running time.
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Optimization time vs size

Lines of| Combo | Lines/ | Parse, Lines of | Combo| Lines/| Parse,
Routine ILOC | Time [second|Combo| |Routine | ILOC | Time {second|Combo
fpppp 22,479 6.25| 3,597| 2.62| |cardeb 938| 0.36| 2,635 0.16
twidrv 15,605 14.41] 1,083 6.77] |ihbtr 919 0.39) 2,338 0.24
deseco 11,719  5.56( 2,109] 1.98f {decomp 855 0.73] 1,179f 0.34
iniset 6,061f 11.85 511 2.15] |integr 844 041 2,074] 0.21
paroi 4,436( 2.03] 2,184] 0.85| |gamgen 835 048] 1,747 0.20
ddeflu 4,397 220 2,002 1.07] |colbur 7751 0.54| 1,433} 0.20
debflu 3,941 1.68] 2,340[ 0.85] |fmtset 704| 0.26] 2,750 0.15
pastem 3,500 1.66] 2,105 0.78| |chpivot 655] 093] 701 030
prophy 2,843 146; 1,950 0.47| |sgemm 646 0.50/ 1,287 0.28
debico 2,762] 111 2,493 0.49| |drigl 612 0.24] 2,519 0.14
tomcatv 2,600 1.89[ 1,376 0.67 |fmtgen 601y 0.42] 1,431} 0.22
inithx 2,476 1.22( 2,033 0.67] |dcoera 544 0.22] 2462 0.17
svd 2,289 2.52 909] 0.89| |fehl 505 0.32] 1,573 0.18
supp 2,035 0.94] 2,176 0.48| |fmin 438] 0.58] 762] 0.13
bilan 2,014 0.84] 2,412 0.33] |xaddrow 434 045] 956 0.16
saturr 1,861 1.20{ 1,548 0.38] |coeray 370 0.19] 1,965] 0.11
drepvi 1,839 094 1,950 0.31| |zeroin 336) 0.33| 1,034] 0.14
repvid 1,644 095 1,732 0.35] |solve 291} 0.20[ 1,438 0.09
xielem 1,560{ 2.58] 605 0.73| [sgemv 285 0.20] 1,397 o0.11
subb 1,537f 0.46| 3,378 0.35| |urand 235 0.15] 1,599( 0.09
orgpar 1,490 0.66] 2,258 0.32| |seval 174] 0.19] 926/ 0.08
efill 1,200 1.84 653 0.97| |rkf45 169 0.06] 2,683] 0.05
yeh 1,084 093] 1,172 0.32] |si 166/ 0.15] 1,129] 0.07
inideb 1,081] 0.37] 2,898 0.20( |hmoy 162| 0.06] 2,571 0.04
heat 1,059 0.70; 1,509 0.31] |xload 120 0.08] 1,579] 0.05
spline 1,054 037 2,826] 0.19 |x21y21 113] 0.07| 1,646] 0.05
rkfs 1,027 256 401f 0.45] [saxpy 94 0.07{ 1,362 0.04

Figure 5.11 Optimization time vs. size
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Optimization time vs size
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We fit a power curve to the data with a good correlation coefficient. The equations
indicate that our optimization times are slightly sub-linear. This is an excellent result. We
can expect optimization time of large programs (e.g., whole program analysis) to remain

reasonable.

5.6.2 Combined algorithm vs. Classical approach

We compare the compile times between the combo algorithm and the sum of gval,
partial, cprop and dead, as shown in Figure 5.12. We also look at repeating the classical
passes one extra time. Combo is competitive with one pass each of gval, partial, cprop
and dead, taking 1% less time across all files. Combo is faster by 51% when the classic
phases are repeated. Combo is faster than the classic passes on the big files and slower on
the small files, indicating that it has a higher startup cost but a lower running-time con-

stant.
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Optimization times Optimization times
Combo| best % best % Combo| best % best %
Routine | Time | 1-pass |speedup| repeat | speedup | [Routine | Time | 1-pass [speedup]| repeat speedup
debflu 1.68 4.23| 60%| 845 80%] [heat 0.70) 040 -77%| 079 12%

twldrv 14.41) 30.61] 53%| 61.21 76%| |drepvi 0.94] 053] -79%] 1.05| 10%
ddeflu 220 399 45% 7.99 73%| |debico 1.11f 0.60] -86%] 1.19 7%
deseco 556 9.84] 44%| 19.67 72%| |coeray 0.19; 0.10] -88%| 0.20 6%
prophy 146] 1.68 13%| 3.36 57%| |repvid 095 049] -92%| 0.99 4%
inideb 0.37] 0.41 8%| 0.81 54%| |sgemv 020 0.10] -97%| 0.21 1%
rkf45 0.06| 0.07 5%| 0.13 53%i |colbur 0.54 027 -98%| 0.55 1%
paroi 203 190 -7%| 3.79 46%| |gamgen 048 023} -108%| 046 -4%
subb 046; 042 -8%] 0.84] 46%]|x21y21 0.07 0.03] -129%| 0.06] -14%
inithx 122 111 9%| 2.23 45%| {tomcatv 1.891 0.82] -130%| 1.64] -15%
fpppp 6.25 5.56] -12%| 11.13 44%] |fmtgen 0.42( 0.18] -133%| 0.36| -17%
dcoera 0.22) 0191 -16%| 0.38] 42%||saturr 1.20] 0.51 -136%| 1.02] -18%
orgpar 0.66 0.56 -17%| 1.13 41%| |decomp 0.73] 0.29] -147%| 0.59 -24%

drigl 024 021 -18%| 0.41 41%| |saxpy 0.07] 0.03| -159%| 0.05 -29%
pastem 1.66; 135 -23%| 2.71 39%| |urand 0.15) 0.06| -159%| 0.11] -30%
yeh 0931 072 -29%| 143 35%| |iniset 11.85] 4.41) -169%| 8.82| -34%
sgemm 0.50] 039 -30%| 0.77 35%| |svd 2,52 092 -174%| 1.84| -37%
hmoy 0.06] 0.05) -35%| 0.09 33%| |solve 0.20{f 0.07| -176%| 0.15| -38%

fmtset 0.26( 0.18] -40%| 0.37 30%| {zeroin 033 0.12| -179%| 0.23[ -39%
xload 0.08f 0.05 -43%| 0.11 29%| |xielem 2581 092 -180%| 1.84] -40%
spline 0.37] 026 -43%| 0.52 28%| [xaddrow | 045 0.16 -184%| 032 -42%
cardeb 0.36] 025 -44%) 049 28%| |chpivot 0.93( 0.32] -195%| 0.63] -47%

integr 0411 026 -57%| 0.52 22%| |seval 0.19] 0.06] -232%| 0.11] -66%
supp 094 058 -61%| 1.16 19%| |si 0.15) 0.04] -239%| 0.09] -70%
ihbtr 039 0.231 -68% 047 16%| | fmin 0.58) 0.16 -252%| 0.33| -76%
fehl 0.32] 0.19| -69%| 0.38 16%| |efill 1.84] 043| -324%| 0.87| -112%
bilan 0.84) 049 -69%| 0.99 15%| [rkfs 2.56] 0.57) -349%| 1.14| -125%

Figure 5.12 Optimization times

5.6.3 Combined algorithm vs. Classical approach, with parsing

We looked at the compile times between the combo algorithm using parse-time analy-
sis and the sum of gval, partial, cprop and dead. With our Unix filter design, each pass
had to reparse its input. We counted parse-times only once for all passes. Combo with
parsing is faster than one pass each of gval, partial, cprop and dead, taking 42% less
time across all files. Nearly all of this can be attributed to the parsing technology. ILOC is
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a syntactically simple language, allowing combo to sport a simple hand-coded parser. The
classic phases are using a lex/yacc coded parser.
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Chapter 6

Optimizing Without the Global Schedule

When they began looking at the problem it rapidly became clear
that it was not going to be easy to treat it optimally. At that point I
proposed that they should produce a program for a 704 with an un-
limited number of index registers, and that later sections would
...make index register assignments so as to minimize the transfers of
items between the store and the index registers.

— John Backus on the separation of concerns in the Fortran I
compiler, “History of Fortran 1, II, and IIl”, History of Program-
ming Languages Conference, 1978

We believe that optimizing compilers should treat the machine-independent optimiza-
tions (e.g., conditional constant propagation, global value numbering) and scheduling
separately. We argue that modern microprocessors with superscalar or VLIW execution
already require global code motion. Removing the schedule from the machine-
independent optimizations allows stronger optimizations using simpler algorithms. Pre-
serving a legal schedule is one of the prime sources of complexity in algorithms like
PRE [36, 18] or global congruence finding [2, 41].

6.1 Removing the Control Dependence

Nodes in our intermediate representation have a control field. Section A.2.3 discusses
viewing the control field as a use-def chain linking the Node to the basic block controlling
the Node’s execution. This implementation of control dependence is identical to the other
data dependences in the program: it is represented simply as a Node pointer. When we
say control dependence, we mean a dependence on some controlling Node. This is not
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the notion of control dependence discussed by Ferrante, Ottenstein and Warren in their

paper “The Program Dependence Graph and Its Use in Optimization” [21].

We can remove the control dependence for any given Node simply by replacing the
pointer value with the special value NULL. This operation only makes sense for Nodes
that represent data computations. PHI, IF, JUMP and SToP Nodes all require the control
input for semantic correctness. REGION Nodes require several control inputs (one per
CFG input to the basic block they represent). Almost all other Nodes can live without a
control dependence.” A data computation without a control dependence does not exactly
reside in any particular basic block. Its correct behavior depends solely on the remaining
data dependences. It, and the Nodes that depend on it or on which it depends, exists in a

“sea” of Nodes, with little control structure.

The “sea” of Nodes is useful for optimization, but does not represent any traditional
intermediate representation such as a CFG. We need a way to serialize the graph and get
back the control dependences. We do this with a simple global code motion algorithm.

The job of the global code motion algorithm then is to build a CFG and populate the
basic blocks with all the “free-floating” Nodes. It must preserve any existing control de-
pendences (divides, subroutine calls and other possibly faulting operations keep their con-
trol dependences) and all data dependences. Beyond that, the scheduler has some flexibil-
ity. We use a simple heuristic: place code outside as many loops as possible, then on as

few execution paths as possible.

6.2 Improving Optimizations

Removing the control dependences allows the combined optimization algorithm, with
no other changes, to find global congruences. When the control dependences are intact,
distinct control inputs from otherwise identical computations will force combe to treat the
computations as being different. For example, in Figure 6.1 below the computation of
a + b is partially redundant. With the control dependences removed, the two ADD Nodes

that implement the two expressions are identical (and congruent).

 The exceptions are Nodes which can cause exceptions: loads, stores, division, subroutine calls, etc. Stores also
require the control input to handle the example shown in Section 6.4.
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a:=..

b=

if( pred() ) {
x:==a+b,
z2:=x+0;

}

yi=a+b;

Figure 6.1 Some code to optimize

Partial Redundancy Elimination (PRE) [36, 18] finds expressions that are redundant
or partially redundant and replaces them with a single computation only when no execu-
tion paths are lengthened. The combined algorithm treats all congruent expressions as
being redundant, removing all but one. The combined algorithm will remove every con-
gruent expression that PRE removes. However, PRE will also remove redundant textually
equivalent expressions that are not congruent. Also, the combined algorithm only solves
half the problem PRE solves. The congruent expressions still have no control dependence,

and require global code motion to place them correctly.

Global Value Numbering (GVN) [37] finds global congruences by using expression
rank to hoist expressions as early as possible, then using a hash-based technique (bottom-
up technique) to form partitions of congruent expressions. This hoisting allows GVN to
find congruent expressions from different program paths. Again, the combined algorithm
will find all these congruences because it uses a top-down congruence finding technique
instead of a bottom up one, and because it also understands the algebraic identities used
with hash-based techniques. In Figure 6.1, both GVN and the combined algorithm find z
congruent to both x and y, while PRE does not.

6.3 Finding a New Global Schedule

The job of the global code motion algorithm is to build a CFG and populate the basic
blocks with all the “free-floating” Nodes. It must preserve all existing control and data
dependences. Beyond that, the scheduler has some flexibility. We use a simple heuristic:
place code outside as many loops as possible, and then place it on as few execution paths

as possible.

We use the following basic strategy:
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Trace the control-carrying edges in the graph and build a CFG.

Find the CFG dominator tree.

Find loops and arrange them in a loop tree.

Schedule (select basic blocks for) all Nodes early, based on existing control and
data dependences. We place Nodes in the first block where they are dominated by
their inputs. This schedule has a lot of speculative code, with extremely long live
ranges.

Schedule all Nodes late. We place Nodes at the last block where they dominate all
their uses.

Between the early schedule and the late schedule we have a safe range to place
computations. We choose the block that is in the shallowest loop nest possible,
and then is as control dependent as possible.

cover these points in more detail in the sections that follow. We will use the loop

in Figure 6.2 as a running example. The code on the left is the original program. On the

right is

the resulting graph (possibly after optimization). As before, shadowed boxes are

basic blocks, rounded boxes are Nodes, dark lines represent control flow edges, and thin

lines represent data-flow (data dependency) edges.

Start:

loop:

- (_ start Ji((0 ) a(read0)
lg = 0 A
a :=read()
REGION

[ m{_PHI
iy i=¢(lo, i) b ADD
bi=a+1
=L +b .
Ci=ihxX2 LZ_)
cc:=i <10
branch ne loop MUL )

|

loop back control

loop exit control loop exit data

Figure 6.2 A loop, and the resulting graph to be scheduled
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6.3.1 Finding the CFG

Because we did not build a Program Dependence Graph (PDG) [21], we can easily
find the CFG in the optimized graph. IF, JUMP, and STOP Nodes all have a single control
input. REGION Nodes have several, but all their inputs are control inputs. We walk the
graph along the control edges, starting from the STOP Node. Each REGION Node starts a
basic block, as does the START Node. Each IF, JUMP, or STOP Node ends a basic block.
An IF Node starts two new basic blocks, a JUMP Node one. When we find two REGION
Nodes in a row, we make a basic block for each and insert a JUMP Node between them.
We keep a mapping between each REGION Node and the basic block it defines.

We do this by walking the control edges of the CFG. At each block end we find (or
make) the RegionNode that marks the block’s beginning. We then create the basic block.
For each incoming control input to the RegionNode, we recursively make an incoming
basic block and then make a corresponding incoming control edge in the CFG. We start

by calling EndBlock () with the STOP Node:

EndBlock( Node *end ) { // Find the block ended by Node end
if( end—visit ) return; 1/l Already visited this basic block
end—visit := TRUE; I Mark as visited
Node *start .= end—control,; /! Find the control source for end

if( start—Name = RegionNode::Name ) { // If the block will not start with a Region
RegionNode *r := new RegionNode; // Make a new RegionNode

r—inl := start; /I Its one input is the original control src
end—control :=r; /l The block-ending Node use the new ctrl
start:=r, /l Now we have a Region to start the blk

}.
Block *b := new Block( start, end); [/ Make a basic block, using the Region

start—block ;= b; !l Record RegionNode’s block in the Region
int max := start—incnt(); Il Input count to the RegionNode
for(int i :=1; i<max; i++) { 11 For all control inputs to the Region
Node *c := (*start)[i]; 1/ Get ith control input
Node *d := (c—Name = ProjNode::Name) ? (*c)[1] : c; // Skip thru Projections
if( d->Name = RegionNode::Name I /I Back-to-back RegionNodes
(d—Name = IfNode::Name && max > 2) ) {// or control-dependent block
d = new JumpNode( ¢ ); /I New block ending
Node *p := new ProjNode(d); // Projection from the Jump
(*starp)i] := p; I/ Get control from the Jump’s projection
)
EndBlock(d ), /I Recurse on the incoming block ender

AddCFGEdge( d—control-block, b );// Add CFG edge from d’s block to block b
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This algorithm makes a simple DFS over the program graph. It visits 2 Nodes for
each basic block in the final CFG, so takes time linear in the CFG size. After running on
our example program fragment, we have the CFG and graph given in Figure 6.3. REGION
and JUMP Nodes have been inserted to complete the first and third basic blocks. The con-

trol-flow related Nodes are shown with the corresponding basic block.

IF

loop back control

REGION —I loop exit data
loop exit control

Figure 6.3 Our loop example, after finding the CFG

6.3.2 Dominators and Loops

With the CFG in hand, we find the dominator tree by running Lengauer and Tarjan’s
fast dominator finding algorithm [35]. We find loops using a slightly modified version of
Tarjan’s “Testing flow graph reducibility” [44]. Chris Vick has an excellent write-up of
the modifications and on building the loop tree [47]. We used his algorithm directly, and
only mention the high points here.

1. The CFG is visited in a pre-order Depth First Search (DFS).

2. Any edge going from a high pre-order to a lower pre-order is a loop back-edge.
3. All blocks on a path from the loop exit to the loop header are in the loop.
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4. Inner loops are joined into outer loops using Union-Find techniques [43].

5. Loops are formed into a loop tree as they are discovered. Nested loops are deep
in the tree. The root represents the whole program. The first level down from the
root are the outermost loops.

6. Irreducible loops are handled by allowing a set of loop header blocks (instead of a
single loop header block) for each loop.

The dominator tree and loop tree give us a handle on expected execution times of ba-
sic blocks. We use this information in deciding where to place Nodes in the following
sections. The running time of these algorithms is nearly linear in the size of the CFG. In
practice, they can be computed quite quickly. We show the dominator and loop trees for

our running example in Figure 6.4.
A
B
C I
CFG

Figure 6.4 CFG, dominator tree, and loop tree for our example

A I-—> AC | nest=0
B IZZ B nest=1
C

Dominator Loop
Tree Tree

6.3.3 Schedule early

Our first scheduling pass greedily places Nodes as early as possible. We place Nodes
in the first block where they are dominated by their inputs. The only exception is Nodes
that are “pinned” into a particular block because of control dependences. These include
REGION Nodes (obviously; they map 1-to-1 with the basic blocks), PHI Nodes (these, too,
are tightly tied to a particular block), Ir, JUMP, and STOP Nodes (these end specific
blocks), and any faulting instruction. This schedule has a lot of speculative code, with ex-

tremely long live ranges.

We make a post-order DFS over the inputs, starting at Nodes that already have a
control dependence (“pinned” Nodes). After scheduling all inputs to a Node, we schedule
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the Node itself. We place the Node in the same block as its deepest dominator-tree depth
input. If all input definitions dominate the Node’s uses, then this block is the earliest cor-
rect location for the Node.

The code that selects Nodes with control dependences and starts a DFS from them is

straightforward; we only show the DFS code here. We use the control field both as a visit
flag for the DFS and as the block indicator for a Node. We move a Node to a block by

setting the control field.
void Schedule_Early( Node *n ) {
int max := n—incnt(); /I Get number of inputs to n
for(int i ;= 1; i<max; i++) { !l For all inputs do...
Node *in := (*n)[i]; /1 Get the ith input
if( lin—control ) /! If it has not been scheduled
Schedule_Early(in); /! ...then schedule it
}
if( n—control ) return; /I Exit if we were a root
Block *b := (*n){1]—-scontrol—block; I/l Get block of Ist input
for( i :=2; i<max; i++) { /I For all remaining inputs
Block *inb := (*n)[i]—control—block; 1l Get block of ith input
if( b—dom_depth < inb—dom_depth ) Il If ith input is deeper
b :=inb; I/ ...then select deepest input block
}
n—control ;= b—yregion; /I Set control dependence

}

One final problem: it is easy (and occurs in practice) to write a program where the in-
puts do not dominate all the uses. Figure 6.5 uses x in block 5 and defines it in block 4.
The dominator building algorithm assumes all execution paths are possible; thus it may be
possible to use x without ever defining it. When we find the block of the ADD Node in
line 5, we discover the deepest input comes from the assignment to x in block 4 (the other
input, sum,, comes from the PHI in block 3). Placing the ADD Node in block 4 is Clearly
wrong; block 4 does not dominate block 5.
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1. intfirst ;= TRUE, x, sumg := 0;
2. while(pred()) {

3. sumy = ¢ sumy, sum, );

3.2 if( first)

4, {first ;== FALSE; x:=...; }
S. sumy = sum, + x;

6. }

Dominator
Tree

Figure 6.5 x’s definition does not dominate its use

Our solution is to leave in some “extra” PHI Nodes, inserted by the classic SSA trans-
lation [15]. We show the same code in Figure 6.6, but with the extra PHI Nodes visible.
In essence, we treat the declaration of x, in line 1 as a binding® to the undefined type T.
This value is then merged with other values assigned to x, requiring PHI Nodes for the
merging. These PHI Nodes dominate the use of x in line 5.

1. intfirst ;= TRUE, xo:=T, sump :=0;
2. while( pred()) {

3. sumy := ¢( sumo, sumy );

3.1 X=X, X3);

3.2 if(first)

4, { first :=FALSE; x; := ...; )
5 X3 .= ¢( X1y X2);

5.1 sumy = sum, + xs;

6. )

Figure 6.6 Now x’s definitions dominate its uses
This problem can arise outside of loops as well. In Figure 6.7, the PHI Node on line 4
is critical. With the Phi Node removed, the computation of f(x) on line 6 will be scheduled

early, in the block on line 3. However, the block in line 3 does not dominate the block in
line 6. In fact, there is no single block where the inputs to f dominate its uses, and thus no

% Since we are in SSA form every variable is assigned only once; we can treat assignment like binding.
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legal schedule. The PHI Node tells us that it is all right; the programmer wrote code such
that it appears that we can reach f without first computing its inputs.

intxg:=T,;
if( sometime() )
X1 = ...

Xz := ¢{ X0, X1 );
if( sometime_later() )
y = L)

AL~

Figure 6.7 The PHI Node on line 4 is critical.

These PHI Nodes cannot be optimized away. They hold critical information on where the
programmer has assured us that values will be available. In our framework, the optimiza-
tion that would remove this PHI Node is the one where we make use of the following
identity: x = ¢( x, T). We ignore this identity.

C ST?RT ) (10) a(read 1

JuMP :oLor)L ADD )b [% )

| /

(_Rm

REGION
loop exit control loop exit data

Figure 6.8 Our loop example, after scheduling early

In Figure 6.8 of our running example, scheduling early places the add “b := a + 1”
outside the loop, but it places the multiply “c := i, X 2” in the loop. The PHI Node is
pinned into the block. The add “i; := i, + b” uses the PHI, so it cannot be scheduled before
the PHI. Similarly, the multiply and the compare use the add, so they cannot be placed
before the loop. The constants are all hoisted to the start of the program.
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6.3.4 Schedule late
We place Nodes at the lowest common ancestor (LCA) in the dominator tree of all
uses. Finding the LCA could take O(n) time for each Node, but in practice it is a small
constant. We use a post-order DFS over uses, starting from the “pinned” Nodes. After
visiting (and scheduling late) all of a Node’s children, we schedule the Node itself. Before
scheduling, it is in the earliest legal block; the LCA of its uses represents the latest legal
block. The earliest block dominates the latest block (guaranteed by the PHI Nodes we did
not remove). There is a line in the dominator tree from the latest to the earliest block; this
represents a safe range where we can place the Node. We can place the Node in any
block on this line. We choose the lowest (most control dependent) position in the shal-

lowest loop nest.

For most Nodes, uses occur in the same block as the Node itself. For PHI Nodes,
however, the use occurs in the previous block of the corresponding control edge. In
Figure 6.7 then, the use of xo occurs in the block on line 2 (not in block 4, where the ¢ is)

and the use of x; occurs in the block on line 3.

As before, the code that selects Nodes with control dependences and starts a DFS
from them is straightforward; we only show the DFS code here. Since the control field
now holds useful information (earliest legal block for this Node) we require an explicit

DFS visit flag.



void Schedule_Late( Node *n ) {
if( n—visit ) return;

96

Il Already visited? Skip

n—yvisit := TRUE; 1l Set visit flag
int max ;= n—use_cnt(); Il Get number of uses of n
for(int i := 0; i<max; i++) { /! For all uses do...

Node *out := n—outputs[i]; /! Get the ith use

if( lout—pinned() ) N If it is not pinned

Schedule_Late(in); Il ...then schedule it

}
if( n—»pinned() ) return;
Block *lca := NULL;
for(i:=0; i<max; i++) { !/l For all uses do...
Node *out := n—outputs[i]; /! Get the ith use
Block *outh := out—control—block; // Get block of ith use
if( out—Name = PhiNode::Name ) { // Use is a PhiNode?
/I This loop could be removed (and the code made asymptotically faster)
/1 by using complex data structures. In practice it is never a bottleneck,
for(intj:=1;j < out—incnt(); j4+ )
if( Fout)[jl=n) /I Find control path of use of n
/I Find the block that the use is in
lca := Find_LCA( lca, (*out—control)[j]-scontrol—block );

Il Exit if we were a root
1/l Least common ancestor in dom tree

} else
lca := Find_LCA(lca, outb); /! Find the LCA
}

...use the LCA and current (early) control edge to pick a Node’s final position

}

We use a simple linear search to find the least common ancestor in the dominator tree.

Block *Find_LCA( Block *a, Block *b ) {
if( !a ) return b;
while( a—dom_depth < b—dom_depth )
a := a—immediate_dominator;
while( b—dom_depth < a—dom_depth )
b := b—»immediate_dominator;
while(a# b) {
a = a->immediate_dominator;
b = b—»immediate_dominator;

}
return a; /! Return the LCA

1/l Least Common Ancestor

/l Trivial case

/I While a is deeper than b

/1 ...go up the dominator tree
/l While b is deeper than a

/1 ...g80 up the dominator tree
1/l While not equal

/1 ...go up the dominator tree
11 ...g0 up the dominator tree

6.3.5 Selecting a Block

We may have to choose among many blocks in the safe range for a Node. The heuris-
tic we use is to pick the lowest (most control dependent) position in the shallowest loop
nest. This primarily moves computations out of loops. A secondary concern is to move

code off of frequently executed paths into if statements.
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When we select a Node’s final position, we affect other Nodes’ latest legal position.

In Figure 6.9, when the Node “b := a + 1” is scheduled before the loop, the latest legal

position for “1” is also before the loop. To handle this interaction, we select Nodes’ final

positions while we find the latest legal position. Here is the code to select a Node’s final
position:

-.find LCA, the latest legal position for this Node. We already have the early block,
Block *best := Ica; /I The best place for n
while( Ica # n—control ) { /I While not at earliest block do ...

if{ lca—loop—nest < best—loop—snest ) /I Shallower loop nest?
best .= lca; /1 Save deepest block at shallower nest

lca ;= lca—immediate_dominator, // Walk up the dominator tree

}

n—control := best—region; /I Set control dependence

}

The final schedule for our running example is in Figure 6.9. The MUL Node’s only use
was after the loop. Late scheduling starts at the LCA of all uses (the last block in the pro-
gram), and searches up the dominator tree for a shallower loop nest. In this case, the last

START uO a |read 1
Start: | ip:=0

Jump ih L()J u\DD ) b a :=read()

c =1
b=a+c¢
Co:=10

(_RecioN |
T PHl ji .
—

(73 ADD ? loop: iy =0 do, &)
p

i2:=i1+b

ce > cci=ih<Cp
branch ne loo
IE loop back control |
: y
REGION =2
I . ! C.= iz Xy
oop exit contro
P c MUL
loop exit data

Figure 6.9 Our loop example, after scheduling late
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block is at nesting level 0 and is chosen over the original block (nesting level 1). After the
multiply is placed after the loop, the only use of the constant 2 is also after the loop, so it
is scheduled there as well. The compare is used by the IF Node, so it cannot be scheduled
after the loop. Similarly the add is used by both the compare and the PHI Node.

6.4 Scheduling Strategies

The time to run the scheduler varied between 1/15th and 1/24th of the time it took to
parse the code. Even on the largest files, scheduling time was a small fraction of a second.
Given the relatively low cost of this scheduler, we believe it is worthwhile to explore
global code motion further. An in-depth study is outside the scope of this research, but

we present an idea here.

One of the problems with this scheduler is that it will hoist a common expression to
cover all uses, even if this lengthens some paths. For some of our test cases, this was the
major cause of lost performance. A more clever scheduler could split Nodes, then sched-
ule them so that no computation occurred on any path unless it was eventually used (i.e.,
place computations where they are very busy). In the CFG of Figure 6.10, the combined
algorithm removes two redundant copies of “a + b”. This forces the scheduler to cover all

uses, lengthening the enclosed path.

I

Figure 6.10 A path is lengthened.

a+b|

By splitting the computation the scheduler increases the total code size, but shortens

one path length. A better schedule is shown in Figure 6.11.
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a+b

Figure 6.11 Splitting “a + b” allows a better schedule.

 —

e ————————

________

For loop-free code the splitting scheduler makes no partially dead code. Partially
dead code is dead on some paths and not others. Splitting expressions allows the sched-
uler to cover all uses without lengthening any path. Partial Dead Code Elimina-
tion (PDCE) [34] shortens execution time by moving expressions that are dead on some
paths and not others to those paths in which the expression is used. For loop-free code, a
splitting scheduler will place partially dead expressions only on the paths that use them.
The effect is similar to PDCE; the new global schedule has no partially dead expressions.

With loops, our scheduler can create partially dead code. Loop-invariant conditional
expressions are hoisted before the loop, under the assumption that they will be used many
times. As long as they are used at least once, this heuristic is not worse than leaving the
code in the loop, and it can be much better. We could make a more informed choice if we

had more information on the loop bounds or the frequency with which the conditional is
taken.
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Chapter 7

Parse-time Optimizations

7.1 Introduction

With a minor change to the parser, we can do optimization while parsing. Parse-time
optimizations remove simple constant computations and common subexpressions early on,
before the slower global optimizations. This reduces the peak memory required by the

optimizer and speeds the global optimizations that follow.

Parse-time optimizations must be pessimistic (as opposed to optimistic), because we
do not know what the not-yet-parsed program will do. They do not find as many con-
stants or common subexpressions as the global techniques, particularly around loops. For

this reason they are not a replacement for optimistic transformations.

Our pessimistic analysis requires only use-def information, which we can gather as we
parse the code. The compiler looks at (and changes) a fixed-size region of the intermedi-
ate representation. Code outside the region is not affected by the transformation; code
inside the region is transformed without knowledge of what is outside the region. Thus
our pessimistic analysis is also a local, or peephole, analysis. Optimistic transformations
require def-use information, generally not available during parsing, and global analysis (see
Section 2.3).

7.2 The Parser Design

The parser needs to build use-def information incrementally, because the peephole op-
timizations require it. Use-def information, in turn, relies on SSA form. So we want our
parser to build SSA form incrementally. We begin with building use-def information on
the fly.
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7.2.1 Incremental Use-Def Chain Building

The actual parsing and syntax checking are not interesting here. For this exposition,
our input is ILOC, the virtual machine language described in Chapter 5. However, any
parser can use the techniques described. Use-def building only becomes involved after the
parser has discovered a simple expression, such as a := b + c. The parser needs to create
an ADD Node for the expression, then fill in the input fields (b and ¢) and make the result

accessible by way of a somehow.

The parser maintains a map from names to the Nodes that compute values. This map
is often called a symbol table. When a name occurs in an expression, the parser uses the
map to find the definition for that name. When a name is defined in an expression, the
parser replaces the previous definition with the new definition. When a name goes out of
scope (because some lexical entity, such as a function body, ends), the name is removed
from the mapping. The exact design of this mapping will vary, depending on the language
being parsed and the parser designer. For our purposes, we assume we can convert a
name to Node in constant time. In our implementation, we map names to unique integer

indices. We then index into a simple array of pointers to Nodes.
\:; /N
\

|
[
i i \
b

symbol

table a ¢

Figure 7.1 Building use-def chains for the expression a := & + ¢

In Figure 7.1, we show our parser building an ADD Node and updating the mapping
for name a. The mappings are shown with dashed lines. First the parser builds the ADD
Node, using the tools outlined in Appendix A. Next, the parser maps the names b and ¢ to
Nodes. Pointers to these Nodes are inserted in the ADD Node, effectively creating use-def
chains. Finally, the mapping is altered to make a map to the ADD Node, destroying any

previous mapping for a.
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This sequence resembles classic value-numbering over a basic block and works well
for straight-line code [1]. The amount of work to do per expression parsed is minimal;
two symbol table lookups (hash table lookups), one Node creation (test and bump the
Arena pointer, initialize internal fields), two stores of use-def chain pointers in the Node,
and one symbol table alteration (hash table lookup). When we have to handle control

flow, however, this approach shows some weakness.

7.2.2 Control Flow and Incremental ¢-Function Insertion

Although Static Single Assignment is often associated with the methods that create it
or the number of ¢-functions inserted, it is a property of programs. We use a method that
does not result in minimal or pruned SSA form. Our method inserts asymptotically more
¢-functions than the published SSA building algorithms. In practice, our technique is fast
and efficient. What is more important, the method is incremental so we can use the SSA

form while parsing.

When we reach a point where control flow splits (a conditional branch), we make a
copy of the current mapping in effect. We use the separate copies when parsing down the
different control flow paths. At points where control flow merges, we need to insert a ¢-
function for every name that merges different values. We show a simple example in
Figure 7.2. We clone the mapping at the conditional expression. Along the left-hand path
we use and update the mapping when we build the ADD Node. At the merge point we

' N - )
' N6l faf]
| symbol table,

before split

copzed table

symbol table,
Iu ﬂl after merging

a; := ¢(ay, ao)

Figure 7.2 Incrementally building SSA in the presence of control flow
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compare the original and the copied maps. b’s value remains the same in both; no ¢ is re-
quired. We changed the mapping for a, so we must insert a PHI Node. After merging we

delete the copied map and continue with the (now updated) original map.

7.2.3 Labels and Loops

At loop entry points, and at labels we may need to merge mappings without having
seen all the control flow paths leading to the merge point. A very conservative solution
would be to assume all values are changed and insert a ¢-function for every value. How-
ever, values may be defined in a loop and carried around by an as-yet-unparsed control
flow edge. Such values would not be in our conservative merge, since they were not in

the original mapping.

Instead, we keep a copy of the current name to value mapping at the loop head or la-
bel, as in Figure 7.3. As control flow paths that lead to the label are parsed, we merge the
associated mappings. For the fall-through path below the label we make an empty map-
ping. If we reference some name that is not in the (new, empty) mapping, we need to
come up with a value. We assume the value will be modified by the unparsed control flow
edges, insert a ¢-function at the loop head’s mapping, and also insert the same ¢-function
mapping in the current map, as in Figure 7.4. Later references to the same name will map

to the same ¢-function, as in Figure 7.5.

symbol table,

direction ‘
of parsing before label

Figure 7.3 Incrementally building SSA; before the label
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n old table,
b updated

new table,
b added

direction ‘
of parsing

-

] old table,
b unchanged

direction ‘
of parsing

n new table,
.n_ b upda[ed

Figure 7.5 Incrementally building SSA; after defining b

Our conservative approach requires us to insert many extra ¢-functions beyond what
minimal SSA form would insert. For loops, peephole optimization immediately removes
most of the extras. For labels, the ¢-functions cannot be peephole optimized until the label
can no longer be reached. The remaining extra ¢-functions are removed during the course

of global optimization.

The simplicity of our approach allows us to write tight, fast code. Our constant of
proportionality is very low. In practice, this technique is competitive with the asymptoti-
cally better approaches. It also allows the peephole optimizer to use SSA form incremen-
tally.

7.3 The Peephole Optimizer

A simple peephole optimizer does all our parse-time optimizations. The power of this
approach depends heavily on having use-def chains. The peephole optimizer looks at a
fixed size instruction “window”, but the window looks over logically adjacent instructions,
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not sequential instructions. Thus we can optimize the current instruction with instructions

far away in the program text.

Another way we strengthen our optimizer is by dropping the global schedule, dis-
cussed in Chapter 6. This allows us to perform optimizations across basic block bounda-

ries, an unusual feature for a peephole optimizer.

7.3.1 The Parser-Optimizer Interface

We want to interleave parsing and optimization with a minimum of fuss. To do this,
we need to design our parser with optimization in mind. In addition, we need to supply
the optimizer with enough information for it to get the job done. The optimizer needs
use-def information and the existing program graph and nothing more. The optimizer, on
the other hand, cannot modify the program wholesale. The parser needs to maintain

mappings between the names being parsed and the program being produced.

The interface between the parser and the optimizer is just a single function call; Peep-
hole. After the parser has parsed an expression and built a Node, but before it maps the
new Node to a name, it calls Peephole. Peephole attempts to replace the recently built
Node with an existing one or a simpler one. Peephole returns a replacement Node for the

parser, returning the original one if it cannot optimize.

l
|
|
symbol |
b

|
I
ale [ To] Ta]

Figure 7.6 Incrementally building SSA in the presence of control flow

In Figure 7.6, the expression “a := b + ¢” has been parsed and inserted in the program

graph. The parser then

1. parses the common expression “d := b + ¢”,
2. builds an ADD Node with the appropriate inputs,
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3. calls Peephole on the ADD Node, and
4. creates a mapping from the name d to the Node returned by Peephole.

7.3.2 Peephole
We give the code for Peephole in Figure 7.7. Peephole relies heavily on virtual func-

tions to compute constants, to find identities and to use the hash table.
There are many possible optimizations; we give code for only these few:

Removing copies: We use the original value instead of the copy, making the copy in-

struction dead.

Adding two constants: Anytime the inputs to a primitive are all constants, the primi-

tive can be evaluated at compile time to yield a constant result.

Adding a zero: Several primitives have an identity element that converts the primitive

into a copy.

Value-numbering: This finds instances of the same expression and replaces them with
copies. The method used is a hash-table lookup where the key is computed from
the inputs and the opcode. Because we have removed the control edge, we will
find common subexpressions globally. We then require the global code motion

Node *Peephole( Node *n ) {
Node *tmp;
n—Compute();
if( n—type—constant() )
tmp := new ConNode( n—type—>get_constant() );
else {
tmp = n—lIdentity();
if(tmp=n){
imp .= hash_table_lookup( n);
i€ temp ) {
hash_table_insert( n );
return n;
}

}
}

delete n;
return imp;

Figure 7.7 Peephole optimization
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pass to generate correct code.

Subtracting equal inputs: Subtracting (comparing) the results of the same instruc-
tion is always zero (equal). Similarly, merging equal inputs in ¢-functions always

yields that input.

In practice, we find that array addressing expressions are a rich source of common
subexpressions. Because FORTRAN allows a generic lower array bound, we commonly
find code that subtracts a lower bound of zero from an index before scaling. All these op-

timizations interact, so that finding one can lead to finding more.

7.3.3 Control-Based Optimizations

Having control as an explicit edge means we can use control in our optimizations.
REGION Nodes with only 1 control input are an identity on that input. This allows Peep-
hole to fold up a long string of basic blocks into one large one. An IF instruction with a
constant test produces control out of only one of two edges. The “live” control edge is an
identity function of the IF's input control. For the “dead” control edge, we use the special
type Top. REGION and PHI Nodes ignore the Top input and merge control and data from
_ only the live paths.

7.4 Experimental Data

We ran the optimizer with and without the global optimizations, to compare the qual-
ity of just thé peephole optimizer (and global code motion algorithm) against a stronger
global analysis. Our test suite and experimental method are the same as in Chapter 5.

We also measured optimization time with and without the peephole pass. Across all
applications, peephole optimization followed by global analysis took 108.8 seconds.
Global analysis alone took 116.1 seconds. Using the peephole pass saved 6.3% on total

compile times.

7.4.1 Peephole vs. global optimizations

We ran the peephole optimizer and compared it to the combo pass. The total im-
provement was -1.9%, and the average improvement was -0.8%. As the numbers in
Figure 7.8 show, the peephole optimizer does very well. Global analysis gets only a few
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percentage points more improvement. Rather suprisingly, this means that most constants

and common subexpressions are easy to find.

Speedup over unoptimized code Speedup over unoptimized code
combo, | combo, | Cycles % combo, | combo, [ Cycles %
Routine | global | parse | saved [speedup||Routine | global parse saved speedup
cardeb 525 5.25 0 0.0%]]supp 1.90 1.90 0 0.0%
coeray 1.95 1.95 0| 0.0%||urand 2.26 2.26 0 0.0%
colbur 2,50 2.50 0 0.0%|[|x21y21 3.44 344 0 0.0%
dcoera 1.97 1.97 0 0.0%||xaddrow 2.39 2.39 0 0.0%
drepvi 3.20 3.20 0 0.0%||xload 2.65 2.65 0 0.0%
drigl 3.49 349 0 0.0%|;yeh 2.08 2.08 0 0.0%
feh! 2.87 2.87 0] 0.0%]|[gamgen 543 543 -1 0.0%
fmin 1.88 1.88 0 0.0%||xiclem 2.53 2.53 -2,767 0.0%
fmtgen 258 2.58 0  0.0%|{inithx 4.36 4.36 -3 -0.1%
fmtset 3.51 3.51 0| 0.0%||debico 6.38 6.39 -558 -0.1%
fpppp 4311 431 0 0.0%]|zeroin 1.95 1.95 -1 -0.1%
heat 241 2.41 0 0.0%||twldrv 3.78|... 3.79| -170,568 -0.2%
hmoy 4.37 437 0] 0.0%]|chpivot 2.61 2.63] -22,263 -0.5%
iniset 3.00 3.00 0| 0.0%||debflu 5.25 5.29 -5,394 -0.8%
integr 441 4.41 0| 0.0%]]deseco 5.24 528 -17,575 -0.8%
orgpar 3.25 3.25 0 0.0%)||paroi 4,76 4.80 -4,810 -0.9%
repvid 4.08 4.08 0 0.0%||inideb 522 5.30 -13 -1.5%
rkf45 2.49 249 0| 0.0%]|solve 3.02 3.07 -6 -1.8%
rkfs 2.66 2.66 0| 0.0%||bilan 5.85 5.98] -12,025 -2.3%
saturr 212 212 0 0.0%]|decomp 2.67 273 -15 -2.4%
saxpy 3.56 3.56 0 0.0%||ddeflu 3.30 340 -37,555 -2.9%
seval 2.25 2,25 0 0.0%||tomcatv 5.18 5.35]-7,805,918 -3.2%
sgemm 246 246 0 0.0%]|ihbtr 2.38 246 -2,418 -3.3%
sgemv 3.36] 3.36 0  0.0%||prophy 6.90 7.14] -18,786 -3.5%
si 2.06 2.06 0| 0.0%||svd 2.81 291 -158 -3.6%
spline 4221 422 0 0.0%]|pastem 3.57 3.79] -36,260 -6.2%
subb 1.89 1.89 0f  0.0%]||efill 2.04 2,16] -118,983 -6.2%

Figure 7.8 Peephole vs global optimizations

7.5 Summary

We found that most constants and common subexpressions are easy to find; they can
be found using a simple peephole analysis technique. This peephole analysis was done at
parse-time, lowering total compilation time by over 6%. To do strong peephole analysis
at parse-time requires SSA form and use-def chains. We implemented a parser that builds
SSA form and use-def chains incrementally, while parsing.
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Chapter 8

Summary and Future Directions

8.1 Future Directions

The combined algorithm is powerful, but not so powerful that it can not be extended
again. Currently, the constant propagation lattice supports floating-point and double pre-
cision constants, integer ranges with a stride and code address (label) constants (useful for
tracking indirect jumps and function calls). We could enhance the lattice to support
propagation of pointer constants, as a first step in doing pointer analysis. We could also
enhance the congruence finding portion, by using dominance information or by allowing

Nodes to be congruent within an affine function.

8.1.1 Improving Memory Analysis

Right now the memory analysis is very weak: the analysis lumps all arrays and vari-
ables into one simple state. We could clearly generate a more precise (and larger) pro-
gram graph by breaking this state up into pieces. We would generate one STORE for each
chunk of memory not dynamically allocated. These would all be produced by the START
Node, and sliced out by the appropriate PROJECTION. LOADs and STORES to specific
STORES would have a dependence to the right PROJECTION. The analysis can handle alias-
ing by forcing many STOREs to mingle in a UNION Node. LOADs from the UNION would
be affected by any STORE to the component parts, but not by unrelated STOREs. After a
STORE to a2 UNION (perhaps required because of an aliased address), the combined STORES
would again be split apart to allow more precise analysis to follow.

8.1.2 Incremental Dominators and the PDG
Currently, our REGION Nodes connect to one another in the style of a CFG. The con-
trol edges correspond closely with the edges in a CFG, so that constructing a CFG from

the program graph is a simple exercise. A more powerful representation is an operator-
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level PDG [21]. Here, control edges denote control dependence, a stronger notion than
the edges in a CFG. We could use PDG-like control edges instead of CFG-like control
edges to find more constants and congruences.

if(x) theng:=1,

elseq:=2;
if(x)thenb =1,
else b:=2;

Here a and b clearly compute the same value. However, using the CFG notion of
control edges our intermediate representation will not discover this. Basically, the name a
is mapped to a ¢-function merging 1 and 2, depending on a test of x in the first IF Node.
The name b is equivalent, except that the ¢-function depends on the second IF Node. The
two IF Nodes are not equivalent; the first IF takes control from above and the second If

takes control from the merge point below the first IF.

Control dependence would allow the merged control below the first IF to be equiva-
lent to the control above the first IF. The two IF Nodes would take in congruent inputs
(same control, same test of x) and have equivalent opcodes. Analysis would find that they

are congruent. Likewise the two ¢-functions will then be found congruent.

Building a PDG requires dominator information. To build the PDG in a combined al-
gorithm would require some type of incremental dominator algorithm. Control edges are
dead until proven reachable in the combined algorithm. As the algorithm finds control
flow-like edges to be reachable, the edges are (in essence) inserted into the CFG. The
CFG’s dominator tree would then need updating, possibly breaking some congruences

based on dominator information.

The advantage of building a PDG is the discovery of more congruences. The disad-
vantage is that serialization is more difficult. Some recent work has been done on serializ-

ing an operator-level PDG, but not in time for this work [40].

8.1.3 Loops and Induction Variables
One of the more powerful optimizations relies on discovering periodicity in the pro-
gram. Induction variable elimination and strength reduction take advantage of regular re-

curring patterns of computation. Our optimizations work on a Node (conditional constant
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propagation) or between two Nodes (congruence finding) but not on whole loops. We

would like to discover a way to fold entire loops into our analysis.

Currently, the congruence finding algorithm works around loops and will find congru-
ences between equivalent induction variables. However, it will not discover induction
variables related by an affine function. We could enhance our congruence finding by al-
lowing two Nodes to be affine-congruent if they are congruent within an affine function.
In each partition we would choose a base Node. Other Nodes would be related to the
base Node by an affine function kept for each Node during analysis.

Under the old congruences, two Nodes compute the same value if they are in the same
partition. In different partitions we cannot make any claim about whether they never have
the same value. If two Nodes are affine-congruent, then we can state whether they defi-
nitely compute the same value (same scale and offset) or never compute the same value
(same scale and different offset) or we can make no claim (different scale and offset).
With this analysis the combined algorithm would find congruences between induction

variables related by an affine function.

8.1.4 Commutativity

Two expressions “a + b” and “b + a” should be congruent. Our current combined al-
gorithm does not find them congruent, because the inputs to addition are treated as being
ordered. We partially alleviate this by placing all inputs in some canonical order during
our parse-time optimizations. However, sorting the inputs does not handle the more gen-
eral problem of discovering “a + b” and “d + ¢” to be congruent knowing that a and ¢ are
congruent, as are b and d. Ordering the inputs requires that we know the a,¢ and b,d con-
gruences before we look for the (a + b),(d + ¢) congruence. We can construct an example
where the congruences are linked; to discover one requires discovering the other and vice-
versa. To avoid this phase-ordering problem we need to extend the combined algorithm

to discover these congruences optimistically.
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8.2 Summary

We defined what it means to use the optimistic assumption: discover the facts in our
analysis in a top-down, instead of a bottom-up, fashion. Assume the best; all expressions
are undefined (instead of constant or unknown), all code is unreachable, and all expres-
sions are congruent. Then prove what is actually a constant, reachable or not congruent,
Similar to an inductive proof, you get to use the facts you assumed until proven otherwise.
In the presence of cycles in the analysised dependences, using the optimistic assumption

can allow you to find more facts.

We used the optimistic assumption in defining a very general framework for combining
optimizations. We showed a simple method to finding the optimistic solution to an analy-
sis in the framework. We showed how to mix, or combine, analyses, and under what
conditions the combined analysis would remain solvable and profitable. We then com-
bined Conditional Constant Propagation and Value Numbering. Because Value Number-

ing introduces an O(n®) number of equations, our solution time was also O(n?).

We then introduced a more complex algorithm that finds the solution to the combined
Conditional Constant Propagation and Value Numbering in O(n log n) time. The com-
bined algorithm is based on Hopcroft’s DFA minimization algorithm, then extended by
Alpern, Wegman and Zadeck to find congruences in program graphs. We extended the
algorithm again to propagate constants while finding congruences. We then introduced

other forms of congruences: those caused by constants and algebraic identities.

We ran a series of experiments to determine (1) if the combined algorithm improved
program run times over compiling with a series of separate phases and (2) if the combined
algorithm ran fast enough to be competitive. We discovered that the combined algorithm
improved some codes by as much as 30%, while almost never slowing down any code.
The combined algorithm was competitive in compile times as well, running about 1%
faster than a single pass of the separate pieces when counting optimization time alone. If
more separate optimization passes are desired (to get improved running times) the com-
bined algorithm becomes significantly faster. When we counted both parse-times and
compile-times, the combined algorithm was also significantly faster.
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By dropping the control edges from data computing Nodes, we allowed the combined
algorithm to discover global congruences. However, Nodes without control edges exist in
a “sea of Nodes”, with no obvious serial order. To serialize the program graph, we must
find a global schedule. We presented an algorithm for globally scheduling the program
graph. We first discover the CFG, dominators and loops. We then schedule early, hoist-
ing code out of loops but making much speculative code and long live ranges. We then
schedule late, making code more control dependent as long as it does not go into any
loop. This scheduling is extremely fast and often hoists more code out of loops than Par-

tial Redundancy Elimination.

Because our intermediate representation has explicit use-def chains, we can perform
strong peephole optimizations on it. Peephole optimizations are a form of pessimistic
analysis and cannot find as many constants and congruences as analyses using the optimis-
tic assumption. Nonetheless, our peephole optimization finds most constants and congru-
ences. Since we can find use-def chains while we parse, we perform peephole optimiza-
tions while parsing. This speeds total compile time (parsing plus global optimization) by
6% and lowers peak memory. To find use-def chains while we parse, we presented a

method of building SSA form incrementally.

Finally we looked at a number of ways to improve the analysis. We can extend the
memory analysis to handle statically declared arrays and variables. We can use control
dependences as in the PDG. We can allow expressions to be congruent modulo an affine

function, allowing the combined algorithm to find induction variables.

We have shown that analyses can be combined, and that they can be profitably com-
bined. We have shown an O(n log n) algorithm for combining Conditional Constant
Propagation and Global Value Numbering. We ran experiments to prove that this combi-

nation runs fast in practice and improves program runtimes.
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Appendix A

Engineering

A designer knows he has achieved perfection not when there is
nothing left to add, but when there is nothing left to take away.
— Antoine de Saint-Exup'ery (1900 -1944)"

A.1 Introduction

Intermediate representations do not exist in a vacuum. They are the stepping stone
from what the programmer wrote to what the machine understands. Intermediate repre-
sentations must bridge a large semantic gap (for example, from FORTRAN 90 vector op-
erations to a 3-address add in some machine code). During the translation from a high-
level language to machine code, an optimizing compiler repeatedly analyzes and trans-
forms the intermediate representation. As compiler users we want these analyses and
transformations to be fast and correct. As compiler writers we want optimizations to be
simple to write, easy to understand, and easy to change. Our goal is a representation that

is simple and lightweight while allowing easy expression of fast optimizations.

This chapter discusses the intermediate representation used in the compiler that im-
plements the analyses discussed in earlier chapters. The intermediate representation is a
graph-based, object-oriented structure, similar to an operator-level Program Dependence
Graph or Gated Single Assignment form [4, 21, 26, 38]. The final form contains all the
information required to execute the program. What is more important, the graph form
explicitly contains use-def information. Analyses can use this information directly without
having to calculate it. Transformations modify the use-def information directly without
requiring separate steps to modify the intermediate representation and the use-def infor-

' The French author, best known for his classic children's book “The Little Prince”, was also an aircraft designer.
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mation. The graph form is a simple single-tiered structure instead of a two tiered Control-
Flow Graph containing basic blocks (tier 1) of instructions (tier 2). This single tier sim-
plifies the design and implementation of the combined algorithm.

A.1.1 Optimizations in the Front End

One of the reasons for having the intermediate representation contain use-def informa-
tion is that we can perform low-level pessimistic optimizations while we are parsing the
high-level input. These low-level optimizations (such as value numbering and constant
propagation) reduce the intermediate representation size, speeding later global optimistic
analyses. As we show in Chapter 7, these parse-time transformations by themselves do

almost as well as the global versions, but with significantly less compile-time cost.

Our pessimistic analysis requires use-def information and SSA form. We gather use-
def information and incrementally build SSA form as we parse the code. The compiler
looks at (and changes) a fixed-size region of the interriiédiate representation. The trans-
formation does not effect code outside the region. The analysis transforms code inside the

region without knowledge of what is outside the region.

A.1.2 Overview

In Section A.2, we introduce objects that make up our intermediate representation. In
Section A.3, we use C++'s inheritance to give more structure to our instructions and to
speed up their creation and deletion. In Section A.4, we drop the CFG altogether, replac-
ing it with instructions that deal with control. In Section A.5, we discuss how we handle a
variety of problematic instruction features, including subroutines, memory, and I/O. In
Section A.6 we look at related work, contrasting our intermediate representation with
other published representations. The rest of this chapter will demonstrate the intermediate

representation using concrete C++ code and the design decisions that lead us here.

A.2 Object-Oriented Intermediate Representation Design

The intermediate representation uses a simple 3-address, load/store, infinite register

virtual machine to represent programs. Internally we represent a virtual machine instruc-
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tion as an instance of a C-++ class inheriting from the Node class. Each different kind of

instruction will use a different class derived from Node.

Instances of class Node contain almost no data; instruction-specific information is in
classes that inherit from Node. We show a slice of the Node class hierarchy in Figure A.1.
Nodel, Node2, Node3, and NodeX define 1-input, 2-input, 3-input and many-input Nodes
respectively. AddNodes define instances of algebraic rings, including the additive identity,
commutativity, and associativity. The IntAddNode class merely provides the additive

- identity element (integer 0) and a unique string name used in printing (“iADD”), and in-
herits all other behaviors.? Finally, a 3-address integer add (“iADD rl17 r99 =>
r101”)is an instance of class IntAddNode.

Nodel Node2 Node3 NodeX

SubNode AddNode MulNode CallNode

IntAddNode FloatAddNode  AndNode

Figure A.1 Part of the class Node hierarchy

A.2.1 Node class Concrete Implementation

Class Node, shown in Figure A.2, holds only the virtual function pointer and basic
block pointer for the object. We represent basic blocks as another kind of Node, de-
scribed in Section A.4. In Chapter 6, we show that often we can do without the control
field for our semantics and optimizations. Only during the final scheduling phases do we
need to know in what basic block an instruction resides. Notice that the Node object does
not contain an opcode field of any sort. The virtual function pointer is unique to each
class; we will use it as the instruction’s opcode. If we need to perform an opcode-specific

function, we will use a virtual function call.

 FloatAddNode uses a compile-time switch to determine if floating-point arithmetic is associative and distributive.
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@——> virtual pointer

@—1—> control
class Node {
public:
Node *control; !l Basic block this instruction resides in
Node( Node *control ); Il Constructor
virtual const char *Name(); // Printable name
virtual ...; Il Various other virtual function calls
b

Figure A.2 Object layout and code for class Node

A.2.2 Single Pointer Use-def Edges

Instructions in a typical intermediate representation contain a list of virtual machine
registers that the instruction reads or modifies. To find the instructions that produce the
value being used in this instruction requires use-def information. Use-def information is
useful for many optimizations. Storing it in our Nodes along with the used machine regis-
ters is somewhat redundant. Just the register number is nearly enough information to
build use-def chains. However, many instructions modify machine registers; no single de-
fining instruction may exist. To correct this problem we put our program in static single
assignment form. SSA form requires ¢-functions, which are treated like other Nodes.

With every use being defined by a single instruction, our use-def chains can just be a
pointer to the concrete representation of the defining instruction. With use-def informa-
tion we no longer need machine registers, so we will not include them. Class Node2,
shown in Figure A.3, is the class of 2-input, I-result instructions. It inherits the virtual
function pointer and basic block pointer from Node and adds 2 use-def pointers. Node2

also defines virtual functions for accessing these pointers.

Note that our use-def edges consist of just the single pointer. We do not require more
complex edge structures, such as linked lists. This simplicity makes edge manipulations

very fast.

A.2.3 Control-Flow Dependence

The control field points to a special kind of Node that defines the conditions under
which the Node executes. These control-defining Nodes represent basic blocks in a CFG,
and are described more fully in Section A.4. Here we focus on the control input itself,
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@——> virtual pointer
@——>control
®——>input 0
®—>input |
class Node2 : public Node { 1l Class of 2-input, I-result instructions
public:
Node *in1, *in2; /1 2 input pointers for the 2 uses
Node2( Node *c, Node *in1, Node *in2 );
int usecnt() { return 2; } /! This instruction uses 2 inputs
Node *&operator[]; I Access to the 2 inputs

h

Node *&Node2::operator[] (int idx)

{
switch(idx ) {

case 0: return inl;
case 1: return in2;
default: error();

Figure A.3 Object layout and code for class Node2

Like the other inputs, the control input is a use-def edge, pointing to the basic block to
which this Node belongs. Data dependences are used to serialize Nodes within the same
basic block; the intermediate representation does not contain a fixed schedule. Note that
basic blocks do not have any def-use pointers back to the instructions within their block.
We use a simple topological sort to order Nodes in a block before printing.

A.3 Engineering Concerns

We need to handle many varieties of instructions, some require more inputs or con-
stant fields. PHI Nodes might have any number of inputs, a NEGATE instruction has only
one, and a CON instruction (which defines a simple integer constant) needs to hold the
value of the constant being defined and has no other inputs. To handle all these differ-
ences we make each instruction a separate class, all inheriting from the base class Node.

Figure A.4 illustrates some inherited classes.
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class AddNode : public Node2 { // Class of Nodes that add in an algebraic ring
public:

virtual ... 1l Virtual functions for different flavors of addition
B
class ConNode : public Node {  // Class of Nodes that define integer constants

public;
virtual const char *Name() { return “iLDI"; }
int constant; /l The constant so defined

b
class PhiNode : public NodeX {  // Phi-functions have any number of inputs
public:

virtual const char *Name() { return “PhiNode”; }

virtual ...

b
Figure A.4 Definitions for the new Node classes

A.3.1 Virtual Support Functions

We do the local value-numbering optimization using a hash table. We hash the Nodes
by opcode and inputs. The opcode is really the class virtual function table pointer, which
C++ does not hand us directly. So instead we use the address of the virtual NAME() func-
tion, which is unique to each class that defines an opcode. The hash function depends on
the number of inputs, so we make it virtual and define it in the base Node, Node2, Node3
and NodeX functions. To make the hash table lookup work, we must also be able to
compare instructions. Differently classed instructions have different hash functions and
different compare semantics. For example: addition is commutative; two ADD instructions
are equal if their inputs match in any order. Code for virtual hash and compare functions

is presented in Figure A.5.

class Node { /! Base Node class
/I As before
virtual int hash() !l The no-input hash function,
{ return (int)Name+(int)control; }
class Node2 : public Node { I/ Class of 2 input, I result instructions
/I Previous class definition...
virtual int hash() /l 2-input hash function
{ return Node::hash()+(int)in1+(int)in2; }
|5
class Node3 : public Node { /I Class of 3 input, 1 result instructions
/I Previous class definition...
virtual int hash() /1 3-input hash function

{ return Node::hash()+(int)in1+(int)in2+(int)in3; }
B
Figure A.S Virtual hash functions
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Other common behaviors are also defined as virtual functions. In particular, algebraic
identities (add of zero, multiply by 1) are handled this way. A call to the virtual IDENTITY,
shown in Figure A.6, returns a Node equivalent to the one passed in. This same function

is also used by the combined algorithm.

class Node { /] Base Node class
1l As before
virtual Node *Identity(); !l Return a pre-existing equivalent Node, if any

4
Node *IntAddNode::Identity() {  // Integer-add-specific implementation
if( in1—Name = ConNode::Name && ((ConNode*)in1)—con = 0)
return inl; /I Add of a zero is just the other input
return this; /I Not add of a zero

Figure A.6 Virtual identity finder

A.3.2 Types and Constant Propagation
Most operations, when passed constants, produce constant results. We capture this
idea with a COMPUTE call. COMPUTE looks at the operation and its inputs and determines

a Node’s type.

We treat a type as a set of values. We are interested in the set of values an instruction
might take on during execution. We use a set of types arranged in a lattice. Our lattice is
rich, allowing us to find ranges (with strides), simple pointers, and floating-point constants
along with the usual integer constants. Figure A.7 shows the lattice structure. The double
and single precision floating-point constants may be turned off with a compile-time flag.

Double constant Float constant
Integer

TORE Control
STQ lattice

Any double Any ﬂoat

1

Figure A.7 Lattice structure
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T

...,[- -20],[1 10] |OOOl |1 10| [2:2:0}, ... .

. M 1. ... Original
expansion

o 2] 1:0:1), [0:0:1), (19 . Expanded

o [£2:0:2], [-1:1:2], [0:2:2], [1:3: once

eoor [-2:-2:0], {-1:-1:0], [0:0:0], [1:140], [2:2:0], ...
voor [-2:-1:10, [-1:0:1],  [0:1:1], [1:2:11, [2:3:1],. ... } Expanded

vy [-2:0:2], [-1:1:2], [0:2:2], [1:3:2], [2:4:2], ... twice
[-2°1:2%-1:1) Integer
bottom

Figure A.8 Integer lattice structure

We show the integer lattice in detail in Figure A.8. The notation [low:high:stride] de-
notes all integers between low and high inclusive, stepping in units of stride. The
[low:high:stride] tuples are always kept normalized, with stride > 0, low < high, low +
stride X k = high for some integer k. Each tuple is repeated once in each expansion sec-
tion. The expansion sections essentially count the number of times the range has increased
to include more integers. When the expansion count gets too high, the tuple falls to
“integer bottom," the tuple [-2*:2*-1:1]. Only a few lattice edges are shown.

During testing we discovered that the optimizer uses only a few types for most pro-
grams. We hash-cons the type objects, allowing only one instance of each unique type
object. This allows for rapid equality testing (pointer equality is equivalent to structural
equality). Instead of storing a type object in each Node, we store a pointer to the type
object. Since there are few unique type objects they can be large and complex. Figure
A.9 shows the class hierarchy for the class Type; Figure A.10 shows the corresponding

C++ code.
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Type

TypeDoubleConst ~ TypeFloatConst TypeStore  Typelnteger

Figure A.9 Class hierarchy for the class Type

class Node { /! Basic Node class
const Type *type; /I Computed type for this Node
virtual void Compute(); /I Compute a Type based on inputs
vee /! As before

h

class Type { /I Class of Type objects

const enum TYPES basetype { // Basic type indicator
Top, Control, I_O, Store, Float, FloatConst, Double, DoubleConst, Integer };
/1 Virtual function to find the lattice meet for any two Types
virtual const Type *meet( const Type *t ) const;
/I Functions to hash-cons, print, efc.

b

class TypeDoubleConst : public Type {
const double d; !/l The double precision constant
/' Virtual function to find the lattice meet; this is always a TypeDoubleConst
virtual const Type *meet( const Type *t ) const;

Figure A.10 Code sample for the class Type

A.3.3 Faster Memory Allocation

Each time we make a new instruction we call the default operator new to get storage
space. This in turn calls malloc and can be fairly time consuming. In addition, the peep-
hole optimizations frequently delete a newly created object, requiring a call to free. We
speed up these frequent operations by replacing the class specific operator new and delete
for class Node. Our replacement operators use an arena [25]. Arenas hold heap-
allocated objects with similar lifetimes. When the lifetime ends, we delete the arena free-

ing all the contained objects in a fast operation. The code is given in Figure A.11.

Allocation checks for sufficient room in the arena. If sufficient room is not available,
another chunk of memory is added to the arena. If the object fits, the current high water
mark?® is returned for the object's address. The high water mark is then bumped by the

% The high water mark is the address one past the last used byte in a memory chunk.
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class Arena { Il Arenas are linked lists of large chunks of heap
enum { size = 10000 }; /I Chunk size in bytes
Arcna *next; /I Next chunk
char bin[size]; 1/l This chunk

Arena( Arena *next ) : next(next) {}  // New Arena, plug in at head of linked list
~Arena() { if( next ) delete next; ) /l Recursively delete all chunks

b

class Node { /] Base Node class
static Arena *arena; /] Arena to store instructions in
static char *hwm, *max, *old; // High water mark, limit in Arena
static void grow(); /l Grow Arena size

void *operator new( size_tx) // Allocate a new Node of given size

{ if( hwm+x > max ) Node::grow(); old ;= hwm; hwm := hwm-+x; return old; }

void operator delete( void *ptr) // Delete a Node

{ if(ptr=old ) hwm := old; } // Check for deleting recently allocated space
o I/ Other member functions

h
Arena *Node::arena ;= NULL; Il No initial Arena

char *Node::hwm := NULL; /I First allocation attempt fails
char *Node::max := NULL,; /I ... and makes initial Arena
void Node::grow() /I Get more memory in the Arena

arena := new Arena(arena); // Grow the arena
hwm ;= &arena—bin[0]; /l Update the high water mark
max := &arena—bin[Arena::size]; // Cache the end of the chunk as well

}
Figure A.11 Fast allocation with arenas

object size. The common case (the object fits) amounts to an inlined test and increment of

the high water marker.

Deallocation is normally a no-op (all objects are deleted at once when the arena is de-
leted). In our case, we check to see if we just allocated the deleted memory. If it was, the
delete code pushes back the high water marker, reclaiming the space for the next alloca-

tion.

A.3.4 Control Flow Issues

The overall design of our intermediate representation is now clear. Each instruction is
a self-contained C++ object. The object contains all the information required to determine
how the instruction interacts with the program around it. The major field in an instruction
is the opcode, represented as the virtual function table pointer. An object's class deter-
mines how instructions propagate constants, handle algebraic identities, and find congru-
ences with other instructions. To make the intermediate representation understand a new
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kind of operation, we need only to define a new class. The new class can inherit data
fields for the instruction's inputs, and needs to supply functions for algebraic identities and
hash table support. We do not need to make any changes to the peephole or value-
numbering code itself. Finally, we made instruction creation and deletion very fast.

So far, we have avoided many issues concerning control, basic blocks and CFGs. Our
focus has been on the instructions within a basic block. Yet control flow is an integral
part of any program representation. CFGs have a two-layered structure. This two-
layered structure is reflected in most analysis algorithms: the algorithm runs over the
blocks of a CFG and then it does something to each block. In the next section we look at
how we can remove this distinction and simplify the combined algorithm. The cost is a

requirement for our global code motion algorithm.

A.4 Two Tiers to One

Our representation has two distinct levels. At the top level, the CFG contains basic
blocks. At the bottom level, each basic block contains instructions. In the past, this dis-
tinction has been useful for separation of concerns. CEGs deal with control flow and basic
blocks deal with data flow. We handle both kinds of dependences with the same mecha-

nism, removing this distinction to simplify our representation.

Let us start with the instructions. Abstractly, consider each instruction to be a node in
a graph. Each input to the instruction represents an edge from the defining instruction's
node to this instruction's node (i.e., def—use edges). The edge direction is backwards
from the pointers in the instruction (i.e., use—def edges). This is not a contradiction; we
are defining an abstract graph. As shown in Figure A.12, the concrete implementation of
this graph allows convenient traversal of an edge from sink to source (use to def) instead

of from source to sink (def to use).

Every instruction has a control input from a basic block. If the control input is an edge
in our abstract graph, then the basic block must be a node in the abstract graph. So we
define a REGION instruction [21] to replace a basic block. A REGION instruction takes
control from each predecessor block as input and produces a merged control as an output.
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abstraction implementation
def

def
use ,\use

Figure A.12 The implementation of dependence edges

Figure A.13 shows the change from basic blocks to REGION Nodes. The control field in
the base Node class points to the REGION Node defining control for the Node.

In edges
In edges

Basic
Block
v\

Out edges

Out edges

class RegionNode : public NodeX {
const char *Name() { return “Region”; }

b
class PhiNode : public NodeX {
const char *Name() { return “Phi”; }

};..

Figure A.13 Explicit control dependence

A.4.1 A Model of Execution

Having lost basic blocks and the CFG, we need to rethink our model of execution.
We take our cues from the design history of the intermediate representation. Like the
execution model for instructions, our model has two distinct sections. We have two dis-
tinct subgraphs embedded in our single graph representation. Optimizations make no dis-
tinction between the subgraphs; only the functions used to approximate opcodes differ. In
the graph figures below, heavy arrows are edges that carry control and light arrows de-

note data edges.
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The control subgraph uses a Petri net model. A single control token moves from
node to node as execution proceeds. This reflects how a CFG works, as control moves
from basic block to basic block. The model restricts the control token to existing in
REGION instructions, IF instructions, and the START instruction. The Start basic block is
replaced with a START instruction that produces the initial control token. Each time exe-
cution advances, the control token leaves the current instruction. The token moves on-
ward, following the outgoing edge(s) to the next REGION or IF instruction. If the token
reaches the STOP instruction, execution halts. Because we constructed the graph from a
CFG, we are assured that only one suitable target instruction (REGION, IF, STOP) exists on

all the current instructions’ outgoing edges.

The data subgraph does not use token-based semantics. Data nodes' outputs are an
immediate reflection of their inputs and function (opcode). There is no notion of a “data
token”; this is not a Petri net. Whenever an instruction demands a value from a data in-
struction, it follows the use-def edge to the data instruction and reads the value stored
there. In an acyclic graph, changes immediately ripple from root to leaf. When propaga-
tion of data values stabilizes, the control token moves on to the next REGION or IF in-
struction. We never build a graph with a loop of only data-producing nodes; every loop

has either PHI or REGION Nodes.

A.4.2 Mixing the subgraphs at PHI Nodes

Our two subgraphs intermix at two distinct instruction types: PHI instructions and IF
instructions. The PHI reads in both data and control, and outputs a data value. The con-
trol token is not consumed by the PHI. IF Nodes take in both control and data, and route

the control token to one of two following REGION Nodes.

CFG edges determine which values are merged in the ¢-functions. Without those CFG
edges our intermediate representation is not compositional” [9, 39]. We need to associ-
ate with each data input to a PHI Node the control input from the corresponding basic
block. Doing this directly means that PHI Nodes would have a set of pairs as inputs. One

7 In essence, we would require information not local to an instruction. A non-compositional representation is diffi-
cult to transform correctly because changing an instruction may require information not directly associated with the
instruction.
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element of the pair would be the data dependence and the other control dependence. This

is a rather ungainly structure with complicated semantics. Instead, we borrow some ideas
from Ballance, et al. and Field [4, 22].

Our PHI Nodes inherit the required information from the underlying Node class. The
control field points to the REGION Node defining control for the PHI Node. The other in-
puts to the PHI Node are aligned with the REGION Node’s control inputs, as shown in
Figure A.14. The ith data input to the PHI Node matches the ith control input to the
REGION Node. In essence, we split the paired inputs between the PHI Node and the

REGION Node.

The result computed by a PHI Node depends on both the data and the matching control
input. At most one control input to the REGION Node can be active at a time. The PHI
Node passes through the data value from the matching input.

Bi1:

B3: | :=¢(x1.xz)|

Figure A.14 PHI Nodes for merging data

Note that these instructions have no run-time operation. They do not correspond to a
machine instruction. They exist to mark places where values merge and are required for
correct optimization. When machine code is finally generated, the PHI Nodes are folded
back into normal basic blocks and CFG behavior.

A.4.3 Mixing the subgraphs at IF Nodes

If the basic block ends in a conditional instruction, we replace that instruction with an
IF Node. Figure A.15 shows how an IF Node works. In the basic-block representation,
the predicate sets the condition codes (the variable named cc) and the branch sends con-
trol to either block B1 or block B2. With the explicit control edges, the IF Node takes
both a control input and a predicate input. If the predicate is T, the IF Node sends control
to the true basic block's REGION Node. Otherwise control is sent to the false basic block's
REGION Node.
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Control
cc = predicate predicate
branch eq Bl
True False
Bl: B2: BI:

Figure A.15 An example IF construct

IF Nodes take in both a data value and the control token, and hold onto either a TRUE
or a FALSE control token. This token is available to only half of the IF instruction's users,
and eventually exits to only one of (wo possible successors. In Section A.5.1 we modify
the IF instruction so that it behaves more like other control handling instructions: we give

it exactly two successors, only one of which receives the control token.

(_ starr ) io(initial data )
Start: io := initial dataJ T

| C REGION ™ jpm
y ;
ADD

100[)! iy = ¢( io, i2)
iz = il +1
cc:=test(iy)
branch ne loop

17}

cc [ﬁ test )
| loop eXit data

IF
veadzen I leop back control

loop exit control

Figure A.16 An example loop

Figure A.16 shows what a simple loop looks like. Instead of a basic block heading the
loop, there is a REGION instruction. The REGION instruction merges control from outside
the loop with control from the loop-back edge. There is a PHI instruction merging data
values from outside the loop with data values around the loop. The loop ends with an IF
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instruction that takes control from the REGION at the loop head. The IF passes a true
control back into the loop head and a false control outside the loop.

A.4.4 Value Numbering and Control

If we encode the control input into our value numbering's hash and key-compare func-
tions, we no longer match two identical instructions in two different basic blocks; the
function and other inputs are equal but the control input differs. We end up doing only
local value numbering. Ignoring the control input (and doing some form of global value

numbering) is covered in Chapter 6.

A.5 More Engineering Concerns

In the original Node-based implementation, several instruction types defined more than
one value. Examples include instructions that set a condition code register along with
computing a result (i.e., subtract) and subroutine calls (which set at least the result regis-
ter, the condition codes, and memory). Previously these instructions have been dealt with

on an ad hoc basis. We use a more consistent approach.

Having a single instruction, such as an IF instruction, produce multiple distinct values
(the true control and the false control) is problematic. When we refer to an instruction,
we want to designate to a specific value. We fix this by making such multi-defining in-
structions produce a tuple value. Then we use PROJECTION Nodes to strip out the piece of
the tuple that we want. Each PROJECTION Node takes in the tuple from the defining Node
and produces a simple value. The PROJECTION Node also has a field specifying which

piece of the input tuple to project out.

These PROJECTION Nodes have no run-time operation (i.e., they “execute” in zero cy-
cles). When expressed in machine code, a tuple-producing Node is a machine instruction
with several results, such as a subroutine call or a subtract that computes a value and sets
the condition codes. The PROJECTION Nodes, when expressed as machine code, merely
give distinct names to the different results.

Computing a new Type for a PROJECTION Node is the responsibility of the tuple-
producer. The Compute code for a PROJECTION Node “passes the buck” by passing the
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PROJECTION on to the Compute code for the tuple-producer, letting the tuple-producer
determine the PROJECTION's Type and using that result. Since non-tuple-producing Nodes
should never be inputs to a PROJECTION, the default is an error as shown in Figure A.17.

The Identity code is handled similarly.

class Node { /! Basic Node class
/I Default Type computation for projections
virtual const Type *Compute( int field ) { abort(); }|

/| As before
)
class Projection : public Node {
public:
int field, /I Specifies which slice of the tuple we want

/I “Pass the buck” - tuple-producing node computes Type for projection
virtual void Compute() { type := control-sCompute(field); }

)
Figure A.17 PROJECTION Nodes

A.5.1 IF Nodes
An IF Node takes in control and a predicate and produces two distinct outputs: the

true control and the false control. We implement this by having the IF Node produce a
tuple of those two values. Then a PROJECTION-TRUE Node strips out the true control and
a PROJECTION-FALSE Node strips out the false control. The basic block that would exe-
cute on a true branch is replaced by a REGION Node that takes an input from the PRoO-
JECTION-TRUE Node. Similarly, the basic block that would execute on a false branch is
replaced by a REGION Node that takes an input from the PROJECTION-FALSE Node.
Figure A.18 shows both the structure of a PROJECTION Node and how it is used with an IF
Node. Figure A.19 shows the code for an IF Node. In the test “control—type #
T_CONTROL” the use of the hash-consed Type object T_CONTROL allows us to make
a structural equality test with a simple pointer comparison. T_CONTROL is a global

pointer to the one Type object that defines control.
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Control

cc = predicate predicate

branch eq Bl

True False
TR FALSE
B1:| REGION ) B2:| REGION )

Figure A.18 Projections following an IF Node

public IfNode : public Nodel { I/l IfNodes use control and 1 test input
virtual const Type *Compute( int field );

K

const Type *IfNode::Compute( int field)  // Computing the type of following proj’s

{ if( control-type # T_CONTROL ) Il If the IfNode is not reachable then...

True False
BI: B2:

return T_TOP; /I neither is any following Proj
if( linl —>type—is_constant() ) /I If test is not a constant true/false
return T_CONTROL; /Il then assume both branches are reachable

Il If projection field matches the constant test

Il then that branch is executable (return T_CONTROL)

I/ else the branch is unreachable (return. T_TOP)

return (ind —type—get_constant() = field) 7 T_CONTROL : T_TOP;

Figure A.19 IF Node and optimizations

A.5.2 The START Node

The START Node needs to produce the initial control. It also needs to produce initial
values for all incoming parameters, memory, and the I/O state. The START Node is a
classic multi-defining instruction, producing a large tuple. Several PROJECTION Nodes

strip out the various smaller values.

A.5.3 Memory and 1/0

We treat memory like any other value, and call it the STORE. The START Node and a
PROJECTION-STORE Node produce the initial STORE. LOAD Nodes take in a STORE and an
address and produce a new value. STORE Nodes take in a STORE, an address, and a value
and produce a new STORE. PHI Nodes merge the STORE like other values. Figure A.20

shows a sample treatment of the STORE.
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Xi=... I Make some value
*pirl :=x; I/ Store value to memory

y:=*ptr2, I/ Load some value
Y /1 Use loaded value

Figure A.20 Treatment of memory (STORE)

The lack of anti-dependencies® is a two-edged sword. Between STORE’s we allow
LoAD Nodes to reorder. However, some valid schedules (serializations of the graph)
might overlap two STOREs, requiring that all of memory be copied. Our serialization al-
gorithm treats memory like a type of unique machine register with infinite spill cost. The
algorithm schedules the code to avoid spills if possible, and for the STORE it always suc-

ceeds.

This design of the STORE is very coarse. A better design would break the global STORE
up into many smaller, unrelated STORE’s. Every independent variable or array would get
its own STORE. Operations on the separate STORE’s could proceed independently from

each other. We could also add some understanding of pointers [11].

Memory-mapped I/O (e.g., volatile in C++) is treated like memory, except that both
READ and WRITE Nodes produce a new I/O state. The extra dependency (READs produce
a new /O state, while LOADs do not produce a new STORE) completely serializes /0. At
program exit, the I/O state is required. However, the STORE is not required. Non-

memory-mapped I/O requires a subroutine call.

A.5.4 Subroutines

We treat subroutines like simple instructions that take in many values and return many
values. Subroutines take in and return at least the control token, the STORE, and the I/O
state. They also take in any input parameters, and often return a result (they already re-

3 An anti-dependence is a dependence from a read to a write. For the STORE, an anti-dependence is from a LOAD to a
STORE.
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turn three other results). The peephole (and other) optimization calls can use any inter-

procedural information present.

A.6 Related Work

Ferrante, Ottenstein and Warren present the Program Dependence Graph [21]. The
PDG is more restrictive than our representation in that control edges are added to every
node. Also, the PDG lacks the control information required at merges for an execution
model. Cartwright and Felleisen extend the PDG to the Program Representation Graph
adding valve nodes to the PDG [9]. The PRG has a model of execution. Selke's thesis
gives a semantic framework for the PDG [39]. The PDG has fewer restrictions than our
representation where control edges are required. We would like to extend the combined

optimization algorithm so that it understands control dependence.

Cytron, Ferrante, Rosen, Wegman and Zadeck describe an efficient way to build the
SSA form of a program [15] which assigns only once to each variable. The SSA form is a
convenient way to express all data dependences, but it also lacks control information at 0-

functions.

Alpern, Wegman and Zadeck present the value graph [2]. The value graph is essen-
tially an SSA form of the program expressed as a directed graph. The authors extend the
value graph to handle structured control flow, but do not attempt to represent complete
programs this way. The value graph lacks control information at ¢-functions and there-

fore does not have a model of execution.

Ballance, Maccabe and Ottenstein present the Program Dependence Web [4]. The
PDW is a combination of the PDG and SSA form and includes the necessary control in-
formation to have a model of execution. It also includes extra control edges that unnec-
essarily restrict the model of execution. The PDW includes p and 1 nodes to support a
demand-driven data model. Our representation supports a data-driven model and does not

need these nodes. The PDW is complex to build, requiring several phases.

Pingali, Beck, Johnson, Moudgill and Stodghill present the Dependence Flow
Graph [38]. The DFG is executable and includes the compact SSA representation of data
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dependences. The DFG has switched data outputs that essentially add the same unneces-
sary control dependences found in the PDW. The DFG includes anti-dependence edges to
manage the store; our representation does not require these. The DFG includes a deno-

tational semantics and has the one step Church-Rosser property.

Paul Havlak has done some recent work on the thinned Gated Single Assignment form
of a program [26]. This form is both executable and compact. Currently, the GSA is lim-
ited to reducible programs. The GSA can find congruences amongst DAGs of basic
blocks not found using our representation. We can find congruences amongst loop in-
variant expressions not found using the GSA. It is not clear if the forms can be combined,
or if one form is better than another. A promising implementation of thinned GSA exists
and has been used on a large suite of FORTRAN applications with good results.

Weise, Crew, Emst, and Steensgaard present the Value Dependence Graph [48]. The
VDG is similar in spirit to our representation. It represents an independent line of re-
search, performed in parallel with our own. Weise, et al. stress the VDG for research in
partial evaluation, slicing and other optimizations; they have built visual display tools to
help transformations on the VDG. We stress compilation speed and code quality; our

compiler is much faster and includes a larger set of classic optimizations.

John Field gives a formal treatment of graph rewriting on a representation strongly re-
sembling our representation. We hope to be able to use his semantics with only minimal

modifications [22].

A.6.1 Summary of Related Intermediate Representations

As program representations have evolved they have gained an executable model; they
include all the information necessary to execute a program. Also, restrictions on the
evaluation order, expressed as edges in the graph, are lifted. The later representations are
both more compact and more complete and allow more optimizations. Our representation
is one more step along these lines. It has an executable model and has fewer restrictions
on the evaluation order than any of the previous models. This lifting of restrictions gives
analysis and optimization algorithms more freedom to discover facts and reorganize code

from disjoint sections of the original program.
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A.7 Summary

To produce a faster optimizer, we decided to do some of the work in the front end.
We reasoned that inexpensive peephole optimizations done while parsing would reduce
the size of our intermediate representation and the expense of later optimization phases.
To do useful peephole optimizations we need use-def information and the static single as-

signment property.

We take advantage of C++'s inheritance mechanisms and structure our Nodes into
separate classes for each kind of instruction. A Node’s opcode is represented by the C++
virtual function table pointer. Each Node holds use-def pointers, represented as simple
C++ pointers to other Nodes. We make control dependence an explicit pointer to the
controlling block and make our model compositional by providing control information at

PHI Nodes.

We collapse the CFG edges into the representation, just like the data edges. This is
crucial to the good running time of the combined algorithm, which does not need to dif-
ferentiate between the two edge types. Instead of flow analysis over the CFG edges fol-
lowing analysis over the data edges, we replace the two-tier CFG and basic block struc-

ture with REGION Nodes.

We use virtual functions to define opcode semantics. Constant propagation, algebraic
identities and hash table behaviors are all inherited. We also use specialized allocate and
delete functions. We discussed convenient mechanisms to handle instructions that defined

several values, subroutines, memory, and I/O.



