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Abstract

Parameter Estimation for Discretely Observed
Continuous-Time Markov Chains

by

Roxy D. Cramer

This thesis develops a method for estimating the parameters of continusus-time
Markov chains discretely observed by Poisson sampling. The inference problem in
this context is usually simplified by assuming the process to be time-homogeneous
and that the process can be observed continuously for some observation period. But
many real problems are not homogeneous: moreover. in practice it is often difficult
to observe random processes continuously. [n this work. the Dynkin Identity moti-
vates a martingale estimating equation which is no more complicated a function of
the parameters than the infinitesimal generator of the chain. The time-dependent
generators of inhomogeneous chains therefore present no new obstacles. The Dynkin
Martingale estimating equation derived here applies to processes discretely observed
according to an independent Poisson process. Random observation of this kind alle-
viates the so-called aliasing problem. which can arise when continuous-time processes

are observed discretely. Theoretical arguments exploit the martingale structure to



it

obtain conditions ensuring strong consistency and asymptotic normality of the esti-
mators. Simulation studies of a single-server Markov quene with sinusoidal arrivals
test the performance of the estimators under ditferent sampling schemes and against

the benchmark maximum likelihood estimators based on continuous observation.
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Chapter 1

Introduction

This work develops a new method of parameter estimation for inhomogeneons
continuous-time Markov chains. The method applies to processes discretely observed
at times randomly generated by a Poisson process. [t thereby addresses two standard
problems in statistical inference for stochastic processes: the aliasing problem and
the often over-simplifving assumption of time homogeneity.

A continuous-time stochastic process is indexed by time ¢ ranging over a contin-
uous interval (e.g.. ¢t € [0. x)). Thus. to every time point t > 0 there corresponds a
random variable .X, whose probability distribution P? depends on ¢ and on a collec-
tion of other parameters. § < R%. The method developed in this thesis estimates the
unknown parameters based on a sample from a given continuous-time process.

A process is continuously observed over an interval [T,. T} if the state \it) is
known for any t € {Tp.T]. A sample obtained in this way is the actual realization
of the process over the observation period. A continuously observed sample is most
desirable for the purposes of inference. since it gives maximal information about the
underlying process. In practice. however. it is often difficult to obtain continuously
observed samples: more often. data points are taken at discrete-time points. often at

fixed intervals. The aliasing problem stems from the fact that on regularly spaced



observation points. distinct continuous-time processes may look the same in the sense
that they have the same joint distribution. In this way. the true underlying process
may well be aliased with false models. Based on a sample. an estimation method
must be able to distinguish between the many possible processes in a statistically
reliable sense: if the true model is aliased. then full identification is not possible.

An appealing way to alleviate the aliasing problem in discrete samples is to take
observations at randomly determined time points. The general idea is that randomly
generated observation times support all times on a continuous interval. thereby pre-
cluding many candidate processes. When identification is possible. a random ob-
servation scheme reduces the inference problem to that of a discrete-time process.
Moreover. a random sampling scheme offers a means of reducing data size. This is
appealing since data collection. storage. and manipulation are all costly endeavors.
especially as it is now the age of the massive data set. This thesis embraces the idea
of random observation. basing the new estimators on samples drawn at the event
epochs of a Poisson process.

A second problem in inference for stochastic processes is the often over-simplifving
assumption of time-homogeneity. The behavior of a homogeneous process is proba-
bilistically the same over time intervals of equal length. Homogeneous models are
mathematically simpler and therefore attractive. but the assumption can be an over-
simplification that in effect applies the wrong model. In modeling a queueing process.

for instance. the assumption of homogeneity implies that arrival rates and service rates



are constant: this would suggest that. say. over any hour during the day the queue
exhibits a similar pattern. For many real queueing applications this kind of model is
inadequate. As simple examples. consider the line at a lunch counter at noon. or cars
at a traffic light at rush hour: during these hours. the pattern of arriving customers
is characteristically different from that an hour earlier or an hour later. Peak and
lull times are common in more interesting applications. such as in the demands for
cellular phone connections and Internet access. These applications call for models
that account for time-dependent rates.

The homogeneity assumption is prevalent in applications because homogeneous
models are more tractable than their inhomogeneous counterparts. The assumption
of homogeneity makes it easier to prove asymptotic properties of estimators and many
important results have already been established. But since homogencous models are
inappropriate for many applications. there is strong motivation to find tractable and
effective methods that do not rely on the assumption of time homogeneity. A strategy
that has emerged in the literature is to base inference on the infinitesimal generator
of a continuous-time process rather than on the transition probability matrix. which
is usually difficult to find. The method developed here adopts this strategy as a way
to accommodate inhomogeneity in a Markov chain.

The estimation method developed in this thesis uses a martingale-based estimat-
ing equation. The Dynkin martingale. which applies generally to Markov processes.

motivates a sample analog that inherits the martingale property tor samples discretely



observed at the event epochs of an independent Poisson process. By then applying
well-known results for discrete-time martingales. further arguments suggest that the
estimators have good statistical properties such as strong consistency and asvmptotic
normality.

An implementation demonstrates estimator behavior for a queueing model simu-
lated with time-dependent arrivals. In particular. the example model is a single server
queue with time dependent Poisson arrivals and exponential service times. The ar-
rival rate function is a linear function of # and depends on time through a sinusoidal
term with period 24 (e.g.. a queue with a 24 hour cycle). The simulation study tests
the performance of the estimators for varyving sampling rates and test functions. and
against maximum likelihood estimators based on continuously observed samples. The
results indicate that the performance of the new estimators is on par with maximum
likelihood. showing that the new method offers a tractable and convenient way of
obtaining decent estimates.

Chapter 2 presents the theoretical and statistical context of this research. Section
2.1.1 reviews the structure and properties of inhomogeneous. continuous-time Markov
chains. The Dynkin martingale is defined in Section 2.1.2. Sections 2.2 and 2.3
describe the inference problem and provide an overview of parametric estimation for
continuous-time stochastic processes. A review of the literature is given in Section 2.4.

Chapter 3 presents the estimating equation based on the Dyvnkin Martingale.

Section 3.1 presents the sample analog. based on samples drawn according to an



independent Poisson process. Section 3.2 provides a review of martingale-based esti-
mating functions and a strategy for establishing asvmptotic properties of estimators
derived from martingale-based estimating equations is outlined in Section 3.3. The
connection to Dyvnkin Martingale estimators is made in Section 3.1

Chapter 4 provides an exampleof the Dyvnkin Martingale estimators derived for the
M,/ M/1 queueing model with time-dependent arrival rates. The model and method
of simulation is described in Section 1.1. The estimating equation is derived and
preliminary results are shown in Section 1.2, and Section 1.2.2 contains a comparison
of the new estimators with maximum likelihood estimators. Section 1.3 considers a
weighted version of the estimating equation. Finally. Chapter 5 provides conclusions

and directions for further study.



Chapter 2

Theoretical and Statistical Context

A continuous-time Markov chain. or CTMC. is a Markov process discrete in space
and continuous in time. ['nder regularity conditions. the sample path X' (¢) of such a
process is right-continuous with left-hand limits. In effect. this means that the pro-
cess remains in a given state for a length of time and then “jumps™ instantaneously
to a new state. with an intensity defined by its infinitesimal generator. Under gen-
eral conditions. the infinitesimal generator of a Markov process satisties the so-called
martingale problem. The result. known as the Dyvnkin martingale. forms the basis of
the new estimation method developed in this thesis.

This chapter first reviews the mathematical structure of an inhomogeneous CTMC'.
Section 2.1.2 reviews the Dynkin Martingale and how it arises in continuous-time for
the inhomogeneous Markov chain. Section 2.2 follows. with a summary of estima-
tion methods used prevalently in the context of parametric inference problems for
stochastic processes. Section 2.3 provides an overview of methods of sampling from

continuous-time processes. A review of the literature is given in Section 2.4.



2.1 Theoretical Context
2.1.1 Structure of a Continuous-Time Markov Chain

This section outlines the mathematical and probabilistic structure of a continuous-
time Markov chain (CTMC). These processes are widely studied: the focus here is
on “well-behaved™ processes with infinitesimal generators depending on time. More
thorough treatments are plentiful. see for example Barucha-Reid (1988) [5].

Let {X(t).t > 0} be a continuous-time stochastic process taking values in a
countable state space. 5. Technically. X(-) denotes the sample path of the random
variable X («.-) defined on some probability space (2. F. P) where F is the sigma-
field generated by the open sets of ). That is. for every « € . X(w.+) is a function
from {0. x) into & and for every ¢t > 0. X(-.t) is an F-measurable function from
to 5. Measure-theoretic details are omitted for the most part in this thesis. deferring

the interested reader to the vast literature on the theory of stochastic processes.

Transition Probabilities and the Markov Property

A right-continuous process with left-hand limits remains in a given state for a random
length of time and then jumps to a new state. The probability measure governing

this behavior is the transition probability function.

P(s.izt.J) = pyts.t) = P{X(t) = jiX(s) =14 s<t



v

defined for each i.j € S as the probability that the process assumes state j at time ¢
given that it is in state ¢ at time s. Standard regularity conditions on the transition
probabilities are that 0 < p,,(s.t) < L. limey, pi(5.t) = 1. and that for any : € 5 and
0<s<t.

d pys.tr=1.

JES

A process evolving continuously in time according to the transition probabilities.
Pijs.t)- 15 said to be a Markov process if it has the Markov property. The Markov
property is the property that given the states. j.iy..... Iy < N and the times,
0 <t <ty<---<t,. the probability of transitioning to a state 5 at time ¢, depends

only on the most recent information. X(¢,_;) = 1,_;: that is.
P(-\’(tn.) =JI'\'(tl) = il ------ \’(tn-l) = in—l) = P‘-\’([nj = ji-\"tn—l) = i'l—l,'-

Thus a Markov process has the property that the future of the process. given the
present. is independent of the past. In this sense. a Markov process is memoryless.

Further. if for anv t.5s > 0 and A > 0.
pi(t.t +h)y=p,(s.5+h)

so that the probability of transition from state : to state j depends only on the length

of the interval. h. the process is homogeneous in time. Otherwise. it is inhomogeneous.



The Infinitesimal Generator and Kolmogorov Equations

The intensity function. q,(t) is defined so that

q( ) At + o( At)

is the probability that .\'(¢) will undergo a random change in At given that \X(#) = ..
Then

pult ot + Nty =1 —q ()AL + o AY) (2.1

is the probability that X(¢) remains in state ! at least through time t + A¢. Taking
the limit as At — 0. q,(¢) is the intensity at time ¢ with which the process will jump

out of ! into some other state. In particular. for any state ..

L= paltt+ AL
lim

At—0 At = all).

The relative transition probability function.
Q.,(t +At) = PLX(t + At) = jiX(t) = ¢ and Xt + At #4].

is the conditional probability that the process will be in j at time ¢t + A¢ given that
the current state is ¢ and that .X'(-) undergoes a change in A¢f. As At — 0. Q,,(¢)

behaves as a transition probability at the jump instants. That is.

. pylt.t+ At)
hm ———

Ar—0 At = a(0Qult).

The intensity and relative transition functions determine the infinitesimal generator.
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The infinitesimal generator.A(t). is the (infinite) matrix indexed by the states.

i.J € 5. having elements

a,it).
where
a,(t) = —q(t)and
a,(t) = q()Q, (). 1 # . (2.2)

[f the process is in state ¢ in the instant just before time ¢. then at time ¢ it will either
stay in state ! or jump to some other state. j. In view of the definitions of ¢,(¢) and
Q,,(t). the infinitesimal generator governs the instantaneous behavior of the process.
X(¢t).

The Aolmogorov differential equations relate p,,(s.t) to the relative transition
function and intensity functions. ¢,{¢). and @Q,,i¢). and therefore. to the infinitesimal
generator. The forward Kolmogorov equation involves the derivative of the transition
probability with respect to the (forward) time ¢:

api,(s.t)

o = Tpy(s )+ 3 gl )Qu; () pukl 5.t

k=0

the backward equation involves the derivative with respect to the backward time. s:

Dp,, (5.t . < ,
%—°) = quts){piy(5.8) = D Quiel5)piy (s 1]

ds k=0

Both equations have the initial condition.

pi(s.s) =6, = lifi=



11
= 0 otherwise.

The forward and backward differential equations derive from the Chapmarn-Kolmogoror

functional equation.

Poy(s.) =D puls.T)pey(rt) s <7<t
k=0

The forward. backward. and Chapman-Kolmogorov equations in matrix form are.

respectively.
7}
L p(ait) = —AsIPis.t) (2.3)
ds
i)
—P{s.t) = P(s.t)Aet 2.1
It { ) ( JALE) { )
and

P(r.t) = P(r.5)P(s.t) 0<7<s<t
Equations 2.3 and 2.4 relate the transition probability function to its infinitesimal
generator. If A(t) = (q,,(t)) where for any 1. € 5. a,,{t) is a bounded continuous

function of ¢ satisfving

a,(t) < 0.

o
.

ot
-

a, > 0. for y # 1 and

Zjesaljit) = 0.

and if for anv 0 < 5 < ¢.
> pls.t) = 1.
1=0
then the derivative in 2.3 exists and exists in 2.4 for almost all t. See Feller (1910) [14].

or the discussion in Barucha-Reid (1988) {5]. Chapter 2 for further details.



Ergodicity of Inhomogeneous CTMCs

The term ergodicity means the existence of a long-run or inevariant distribution. The
implication of an invariant distribution is that the sequences {X(¢,). X(¢;)....} and
{X(t +5). X(¢2 + 5)....} will have the same probabilistic structure. (Many authors
call the invariant distribution a stationary distribution and the terms stationarity
and ergodicity are often interchanged.j Based on the papers. Johnson and [saacson
(1988) [30] and Zeifman and I[saacson (1994) [H]. this section reviews ergodicity for
inhomogeneous continuous-time Markov chains.

For the following. let {.X'(¢).¢t > 0} be an inhomogeneous continuous-time Markov
chain with transition probability matrix P(s.t) and associated infinitesimal generator
A(¢) satisfying the conditions in 2.5. Define the norm ||-!| for a matrix B with elements

(b;;) as || B|| = sup, ]2, [by,1.

Definition 2.1.1 [niform Ergodicity.
X(¢) is uniformly ergodic if there exists a vector = = (mg. 7.+ -). 7, > 0
and 372, 7, = L. such that lim, . p,,(s.t) = 7, uniformly in s for every

J and 1.
The vector 7 is called the long-run distribution for the chain.

Definition 2.1.2 Strong Uniform Ergodicity.

X(¢) is uniformly strongly ergodic if there exists a row constant stochastic
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matrix L such that

llim HP(s.t) = L|| =0
uniformly in s.

Strong uniform ergodicity implies uniform ergodicity. and the long-run distribution

is any row of the (row-constant) matrix L.

Definition 2.1.3 Weak Ergodicity.
X(t) is weakly ergodic if for all ¢ > 0 there exists a {stochastic) vector

function Q(t) such that if Q(¢t) = (q(t).q(t)....). then for all = > 0.

lim {[P(s.t) = Qt)]| = 0.

[t is sufficient to show that the limit is 0 for some s > 0.

Weak ergodicity is a loss of memory property. in the sense that the process forgets
the starting distribution as ¢ — . P(s.t) and Q(¢) are in some sense close. but
P(s.t) and P(s.t + h) need not be. even for large t's. This sense of closeness is
implied by strong ergodicity.

Johnson and [saacson (1933) [30] give sufficient conditions for the strong ergodic-
ity of an inhomogeneous continuous-time Markov chain in terms of the infinitesimal

generator. A(t).t > 0:

Theorem 2.1.1 Strong Ergodicity using A(t).

Suppose for every t > 0 there exist stochastic vectors 7 and =(¢) such that



| B

7(¢)A(t) = 0 and that [*||7(t) — 7||dt < x. Then if {X(f)} is weakly

ergodic. it is strongly ergodic.

This is an important result since finding P(s.t) directly is usually difficult. The
authors also cite a result that provides a way of testing for weak ergodicity in terms of
A(t). Thus it is possible to answer the question of ergodicity through the infinitesimal

generator alone.

The Birth and Death Process

Birth and death processes comprise a large class of continuous-time processes having
discrete state spaces. In a birth-death process. X'(¢) represents the number of mem-
bers in a population at time t. New members join the population either through birth
or immigration: members leave the population by death or emigration. I[n general.

given that X'(¢) = /. transitions in the small time interval At satisfy

¢

Al )AL + o( AY) fy=1+1
L= (A ) +pe.t)At+o Xy if j =1
polt.t + At) = (2.6
uli. AL + o &) ifj=i—1
o(\t) otherwise.

.

where A(r.t) and u(r.t) are the birth and death rates at time { when X (¢) = r. The
model incorporates an immigration process by replacing A(r.t) with a(t) + Nr.t).

where a(¢) is the rate of immigration.



From equation 2.6. the infinitesimal generator matrix.
Aty = (a,lt)i.jeS
is
plit) if j=i—-1.72>21
A t) ify=r+1.7/2>1

a,(t) = q(t)Q,,(t) = {
—(AlL) ) fy=021

[
.
=1

0 otherwise.

\

Note that the infinitesimal generator of a birth-death process is tridiagonal this is
because transitions in the small time interval At to other than a neighboring state
{i{ = 1.i.¢ + 1} has probability o(At). The process is inhomogeneous if the birth and
death rates are functions of time t. There are many good references for birth and
death processes: Bharucha-Reid (1997) [3] is in particular an excellent reference for
theory and applications.

Queueing models are examples of birth and death processes with immigration.
birth-rates equal to 0. and death rates equal to the rates at which customers are
served and leave the system. Queueing models describe systems that provide service
to randomly arising demands ({X(¢)} is the number of customers in the system at
time ¢). These models have broad applications: they emerged from problems in the
telecommunications industry beginning in 1908 with A.K. Erlang’s pioneering work
with the Copenhagen Telephone Company. Recent applications include modeling

the demands for internet access and cellular phone connections. Queueing models
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have applications in other areas: traffic control. financial transactions. biomedical
and chemical problems. A queueing model of ATM transactional data was the initial
motivation for studying parameter estimation for continuous-time processes discretely

observed.

2.1.2 The Dynkin Martingale

The infinitesimal generator of a Markov process. under certain conditions. solves the
so-called martingale problem. [t is useful here to view the intinitesimal generator as
a bounded operator on a space of functions. A solution to the martingale problem
is essentially the pair (.A(u). Domaint.A(u)). such that for any function of the sample

—
“

space S in Domain(.A(u)).

FIX(D) —/()(:l(u)f)(.\'(u))du

is a martingale with respect to F, = (X (5).0 < u < t). Let P(s.t) be the matrix of

transition probabilities.

py(s.t)y=P[X(t)=jlX(s)=1i] i.j€S.

for the Markov process X(t). For s < t. the integrated forms of the backward and

forward Kolmogorov equations are. respectively.

(3™
(72

P(s.t) = [+/tP(s.u).-l(u)du and (2.

P(s.t) = [+/t.-l(u)P(u.t)du. (2.9)
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Using the matrix norm defined by

Bl = supz |Bl1. j)].

toJEs
assume the condition

sup ||A()]] < x<. (2.10)
£20

Condition 2.10 implies that for all states. . j € S. «,,(t) is bounded for all t > 0. This
implies that there exists a unique solution. P(s.¢t) to the integral equations 2.8 and 2.9
(see Ethier and Kurtz (1936) [13]. pp. 221-222). Let the test function g: 5 — R™.
satisfving

lgll = suplgtr)] < x.
TEN

be such that

{ , .
(Als)g) X(s5)) = %E[Q(.\(t))l.\(a‘)l‘
[ t=s*

is defined. That is. g belongs to the domain of the generator. .A(t). For example. if

S is discrete and assuming X'(s) = r. then

(A(s)gNT) = D as,(t)glj).
JES
for any r and j in S. Now for t > 0. let
-t
M(t) =g(.\'(t))—/ (Als)g)( X (s))ds. (2.11)
4]

Then M(t) is a martingale adapted to the sigma-field

Fi=0a(X(s):0<s< ).



This follows since

E[M(t)|X(0) = r] [P(O.)M(t)](x)
ot
= [PO.O)g( X (t))](r) — [P(O.t)/o (Alw)g)( X(u))dul(r)
t
= {P(O.l)g(_\'(t})](r)—‘[)(P(O. u)Auyg)ridu

= g(r)

by equation 2.9. Thus. E[M(6)|.X(0) = r] = M(0). This result together with the

Markov property establishes that M(¢) is a martingale adapted to F.. Then
EiM(H)|Nis)=z]= M)

is the Dynkin Identity and M(f) (2.11) is a Dynkin Martingale. This continuous-
time martingale forms the basis of the estimation method explored in this the-
sis. See Athreva and Kurtz (1973) [2] for generalizations to Dyvnkin's Identity for
time-homogeneous Markov chains. For inhomogeneous processes. Ethier and Kurtz
(1986) [13] provide greater detail and see also Pazy (1980) [38] for the theory in the

context of two-parameter semigroups.

2.2 Statistical Context

The inference problem in this thesis is to estimate an unknown paramter § € O C
R4.d > 1 for an inhomogeneous continuous-time Markov chain {X(¢).¢£ > 0} with

state space S. The distribution of X(t) will depend on 8 through its infinitesimal
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generator. A(t). Thus the model and form of the generator will be specified a priort.
The estimation problem in this thesis is therefore one of parametric inference. The
goal in non-parametric problems. on the other hand. is to estimate the distribution
itself. usually for the purpose of prediction. While this is an important and rich
problem for continuous-time processes. it will not be treated here. For a general
reference. see Basawa and Rao (1930) [4]. The next Section provides an overview of
estimation methods appropriate for the inference problem of this thesis. In particular.
these are maximum likelihood and quasi-likelihood methods. generalized method of
moments. and martingale estimating equations. These techniques overlap in certain
respects: for more information regarding a unifving theory. see Godambe and Hevde

(1987) [20].

2.2.1 Parametric Estimation

Parametric methods in general arrive at finding an estimator ¢, which solves some

kind of estimating equation as in
Ug:{r,})=0. (2.12)

where {r,}.i = 1..... n is the sample data. (If 8 is a vector. equation 2.12 represents
a system of equations.) An estimating equation often results from the minimization
or maximization of some objective function. A score function is an estimating func-
tion [(8: {r.}) that is the derivative (or gradient) with respect to ¢ of the objective

function.
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Suppose {r,} is a sample from the distribution with density. f(r:8). The goal is
to estimate § based on the sample {r,}. The Maximum Likelihood principle asserts

that the value of # which maximizes the likelihood function

= [I ftzi:8)
=1

is the one most probable based on the observations. The log-likelihood function has

the same maximizer (if it exists) and so

log(L.(0)) = Zlog fle.: 0

=1
vields the likelihood score function.

dlog L,.(0)
A

Under regularity conditions. maximum likelihood estimators are asymptotically con-
sistent. normal. and efficient. meaning theyv have least variance. They serve in para-
metric inference as the benchmark to any new method that is justifiable in an asymp-
totic sense.

Methods that generate score functions are known generally as Quasi-Likelihood
methods. Quasi-likelihood thus includes maximum likelihood as a special case. Another
special case is the method of Least Squares. The principle of least squares calls for

the estimator that minimizes a sum of squared differences vielding the score function.

. d & ,
U({r.}.0) = .—Z(x,—hu..en-
n dh

x Z (£, — h{r..0
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The function (8. {r,}). typically an expectation. represents the model: then h(6: {r.})
is the model ~closest™ to the data in the least squares (Euclidean distance) sense.
Excellent references for Quasi-likelihood include Godambe and Hevde. (1987) [20].

and Hevde (1997) [27].

Generalized Method of Moments

Standard method of moments works by equating sample moments to their population
counterparts which are functions of the unknown parameter § = @ < R*.d > 1. This
step constructs a svstem of moment equations. If a model implies d independent
moment equations. the solution of the system is the method of moments estimator
for #. When a model generates more than d equations. i.e.. when the svstem is
overdetermined. the method is generalized from an equation-soiving problem to that

of a minimization problem. Borrowing from Greene. 1993 [21]. Chapters 4 and 13. let

ge(-). k= 1....d be any continuous function of the sample space. A sample moment
is then
_ 1 ,
gk=—ng(r.). A=1.2..... r.
n

Typically. a law of large numbers gives

G D Eslge(r)] = ()

from which follows the moment equation.

m(f) =g, — (@) =0. A=1.2....r.



[
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where +.(8) represents the population mean. Es[gi(r)]. The corresponding moment
conditions are that
Elm(07))=0.k=1..... r

when 6" is the true parameter value. An identifiability condition is that the moment
conditions hold only at the true value. . If a model gives d functionally independent
moment equations (i.e.. r = d). the method of moments estimator is identifiable as
the the vector of the d solutions: § = ((jl.(j'.) ..... d;)'. In the simplest examples. the
gk's are based on powers of r. or on sample central moments as in gi(r,) = (r, — T)*.
Assuming identifiability. method of moments estimators will be consistent though
not efficient unless they coincide with maximum likelihood estimators. There are
cases in which a model implies more moment equations than there are parameters to
be estimated and method of moments estimators cannot be exactly identified. The

method of moments is generalized to handle this situation.

If a model implies r > d moment conditions.
Elmyzr.0)]=0.,=1..... r.
vielding the r moment equations.
_ L
i, = — Y m,(r,.0).
n

there are (;) possible sets of method of moments estimators. In such cases. GMM

proceeds by choosing § which minimizes the criterion function.

Q(9) = m(0)W~'m(9).



where

M(0) = (71,(0). Ta(8). ... .77 (0)).
and W is some appropriate weighting matrix. The minimizer of Q is the GMM
estimator. I[f the underlving process is stationary and ergodic. and if other technical
conditions hold (Hansen (19382) [23]). the GMM estimator 9 converges almost surely

to 9* and 6 is asvmptotically normal V(0°. %) as n — x. where
T = [GWIG]™.

W is the asymptotic variance of m(#). and G is a matrix of partial derivatives whose

J* row is

. Jm, (8°%)
G =G/I")= ——.
=00
Hansen [23] also establishes the conditions under which these results hold with con-

sistent estimators for W and G.

Martingale Estimating Equations

Another approach in parametric inference is to find estimating equations that are
mean 0 martingales. If V/,(#) is a mean 0 martingale with respect to the filtration

{F.} generated by the observations. then the martingale difference.
D.(6) = M, (0) — M,_(8)
has 0 mean and is measurable with respect to F,. That is. for anv & > 1.

E[“[ni-k(o)lfn] = -‘[n(g)
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and E[My(0)] = 0 imply that E[D,(8)] = 0. Moreover. since E{D,(0)|F,_;] = 0. the

D, are uncorrelated: for : < J.

E[D,D.] = E[E[D,D.|F.-]]

E[D)E[Dr|~’:x-l”

= (.
A martingale estimating function is then given by
((0:{r.}) = M,0) = i D,(0).
=1
with E[M.(9)] = 0. and

Var{Ma(8)] = E[M}6)] = S_ E[D?(0)].

=1

As usual. the estimator based on M, (6) solves the estimating equation.
M. () =0.

More generally. for the martingale differences. {D,(8)}. and F,_; -measurable random

variables. a,_;. the estimating equation
Ma@)y =) a D) =0 (2.13)

=1

has solution 8,. which satisfies. under regularity conditions.

a1 E[DI)|Fisi]
VI, a2 Var[Di(0)|Fi_i]

(6, —8) = N(0.1) as n — x. (2.14)



where D!(8) = % D.(0). Godambe (1985) [13] establishes that 2.13 is optimal when

the weight variables are set to

_ E[DUO)|F.-i]
S OEDAFA]

d

That is. among all estimating functions constructed as in 2.13.

n

M0y =l D.(6)

=1
minimizes the ratio
E[M}(0)] -
—_—T D]
ELM () =0

which can be viewed as a measure of precision for a sample of size . The criterion to
minimize 2.15 asks simultaneously that M, (8) be as close as possible to 0 and that

M, (0 + J) be as large as possible (Godambe (1960) [17]).

2.3 Sampling from Continuous-Time Markov Chains

Estimation techniques for continuous-time Markov chains must take into account the
manner by which the process is observed. Asyvmptotic properties in particular depend
on how a sample is allowed to grow large. Methods in this context usually consider
asymptotic properties as the length of the observation interval T — . although
there are other situations. For instance. the observation interval can be fixed while
the number of independent realizations over the interval increases. See Basawa and
Rao (1980) {4] for further discussion. Given an observation interval. the process is ob-

served continuously or discretely. either at fixed intervals or at randomly determined
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observation times. [f the process is observed continuously. the likelihood function can
be written in terms of the infinitesimal generator of the process: otherwise. it requires

transition probabilities and other techniques are generally sought.

Continuous Observation and Maximum Likelihood

If the process is observed continuously on some interval [1,. T]. so that every state
and transition time throughout the interval is known. then the likelihood function is
expressible in terms of the infinitesimal generator and maximum likelihood is straight-
forward. Under regularity conditions. maximum likelihood estimators attain optimal
properties asymptotically as T — x.

For a sample taken continuously on some observation period [T,. T|. the inference
problem essentially reduces to that of a discrete time process because the sample is a

realization of the imbedded Markov chain. The imbedded Markov chain is the process

:k“—‘.\’(f)fO[‘ Tka<Tk-f-Tk 12.16)

and J(T) is the number of transitions made by the process by time T. T, denotes the
time of the Ath transition (or jump) and 7 is the length of time (or holding time)

the process is in state z. Therefore.

T.=mf{t>0: X(t)==z}=To+70+711+ .-+ Tke1-



(8]
-1

Then. as derived in Billingsley (1961) [7]. the likelihood based on the sample.
{(z.7). i=0.....J(T) -1}

for a (homogeneous) Markov chain is
J(T)=1
Liry0) = JI as(zx)Qs( 2k zker) exp™ ol (2.17)
k=0
where ¢ and Q are the transition intensity and relative transition intensity functions.

respectively. Note that since J(T) is the last jump observed on [0.T]. 7j) is un-

known. The log-likelihood is

J(TYy=-1 J(T)-1
D log(qalzk)Qal =k k1) = D qslZe) T (2.18)
k=0 k=u

Billingsley (1961) [7] Section II gives conditions necessary for maximum likelihood
estimation in the case of homogeneous Markov chains. [Under appropriate conditions.
MLEs from 2.18 are strongly consistent. asymptotically normal. and asvmptotically
efficient as T — x. Basawa and Rao (1980) [4] review maximum likelihood when n
independent sample paths of the process are observed continuously over {T,. T']: then
asymptotic properties are as n — > with 7T fixed.

The inhomogeneous analog to 2.17 is

JT)=1 )
- k gelz.3)4s
Lyty(0) = JI @s(zk. Tus1)Qs( k. Zksr- Tiwr) €xp A

=0

In terms of the infinitesimal generator .A(t) = (a,,(t)) defined in 2.2. this is seen to

be
J(T)-1

TR (k.2 .5)d
Lin0) = ][ a(:k-:k+l-Tk+l)efo° ek sesids
k=0
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Observation at Fixed Intervals

[n practice. it is common that a continuous-time process is observed at discrete. fixed

interval time points. Samples look like {(zx.te). A =0..... n}. where
o = X(tx) and
lk = I\h

for some fixed positive value. h. These samples are fragmentary in the sense that they
do not provide full information about the evolution of the process over the period of
observation. Since the {ti} are not the jump (trasition) times of the process. the
likelihood is inexpressible in terms of the infinitesimal generator. [n this case. the
likelihood is

n—1

H Pyt ki tisr. Zisr)

k=0

and the transition probabilities must be known. Finding the transition probabilities

explicitly requires solving the system

._()’P(D'-t) = —A(s)Pls.t)
ds
P(.S.o‘) = [
for each s = .t = txy; and all i.j € S. Thus obtaining maximum likelihood

estimators in this case presents a huge computational burden. especiall when S is
countably infinite. Even in the homogeneous case. maximum likelihood based on fixed

samples requires additional information or simplifving assumptions. For example.
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Keiding (1975) [32] derives maximum likelihood estimates of functionals of the birth
and death parameters in the fixed sampling case by assuming that. in addition to
knowing Xin = k. one also knows a quantity ('x which equals the number of particles
among X(k-1)» = =x+1 that have 0 offspring. Usually. however. the problem calls for
other estimating functions that balance the loss in efficiency with computational

feasibility.

Fixed Observation Intervals and Aliasing

Any method based on fixed sampling must contend with the so-called aliasing prob-
lem. which arises when a sample represents more than one underlyving process. It is
generally a difficult task to resolve the problem so that the true process is identifiable.
One way to alleviate it is to take the interval size h sufficiently small. thereby reduc-
ing the class of candidate processes. Occasionally it is possible to put restrictions
on the model. Phillips (1973) [39] brings the problem to light in the context of esti-
mating the spectral density of a continuous-time process observed at fixed intervals.
and provides conditions on the structural {parameter) matrix of a first-order linear
time-series model that ensure identification. Hansen and Sargent (1933 [24] provide
related work for covariance stationary models. Singer and Spilerman (1976) [43] pro-
vide a detailed account of the aliasing problem for homogeneous Markov processes

with finite state spaces. Alternatively. other authors obtain identification results un-
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der certain random observation schemes (Shapiro and Silverman (1960) [t1]. Duffie

and Glynn (1996) [11]).

Observation at Random Times

In the general view. a process randomly observed is observed at time points
T, =inf{t: N(t) =:}. i=1..... n.

where T, denotes the i** event time of doubly stochastic point process with time-
varying intensity {J(.X(¢)) : ¢ > 0}. The sample is the collection. {{(Z,.T,)}. where
Z, = X(T,) for 0 < : < n.taking Ty = 0. The technique is called Poisson sam-
pling when NV(¢) is a Poisson process. Note that since the observation times do not
coincide with the jump times of the process. the likelihood function requires the tran-
sition probabilities (P[X(Ty) = Zi|X(Tk-1) = Zi-1]) which are generally unknown
or difficult to find. Discrete samples based on random observation. as in the fixed
observation case. usually call for methods other than a direct likelihood approach.
The next section provides a review of a number of papers on estimation for stochas-
tic processes that were consulted for this research and which are not necessarily ref-

erenced elsewhere in this dissertation. The organization is by estimation method.
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2.4 Literature Review
2.4.1 Maximum Likelihood

Two early papers serve as background papers on the method of maximum likeli-
hood for continuous-time processes. Keiding (1975) [32] derives maximum likelihood
estimates for a {homogeneous) birth and death process observed continuously. He
discusses the estimation problem when observations are obtained discretely: for such
samples he uses the term discrete skeleton. An earlier work is Darwin [10]. who
discusses the discrete skeleton and under which circumstances maximum likelihood
estimates of a linear birth and death process can be obtained.

Baba [3] considers maximum likelihood estimation of (homogeneous) birth and
death processes by Poisson sampling. The Poisson sampling scheme in his paper.
however. differs from the scheme considered in this work. His assumes that the
number of transitions of states in the generated observation intervals. (T, Tiyq). is
known. whereas in the version considered here. only the state at the observation time

is known. The author applies the method to a homogeneous M/ M/ 1 queueing model.

2.4.2 Conditional Least Squares and Quasi-Likelihood

Klimko and Nelson (1978) [33]. derive Conditional Least Squares (CLS) estimators
for discrete-time processes. Their estimating function is of the form

n-1

) d -
U(0: {x:}) = 55 D_(£ie1 = EZ (2i1))’. (2.19)
=1
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where E? [r.;\] = E®[£,4,]r.]. Thus the CLS estimator minimizes the sum of squared
differences between the observations and their expectations conditioned on the previ-
ous step. Though intended for discrete-time processes. it is relatively straightforward
to apply CLS in the case of discretely sampled continuous-time processes. One com-
plication is that the conditional expectation. Efzpilz] fori = 1.... n — L. may he
difficult to compute. It is. however. generally easier to work with conditional expec-
tations than it is to find transition probabilities necessary for the likelihood. Ensor
and Glynn (1996) [12] work out the asymptotic results specifically for the continuous-
time Markov process and in addition suggest a grid-based simulation method for
computing conditional expectations.

Hutton and Nelson (1986) [28] develop quasi-likelihood estimation for samples
taken under continuous observation. They construct a quasi-likelihood objective func-
tion based on a semi-martingale representation of the process. Their method applies
to a broad class of processes including diffusions (Markov processes with continu-
ous state space): furthermore. they do not require that the process be homogeneous.
ergodic. or even Markov.

Hutton. Ogunyemi. and Nelson (1991) [29] propose a modified quasi-likelihood
estimator using a simplified covariance matrix. They provide conditions for con-
sistency and asvmptotic normality. The authors apply the method to a branching

process with immigration. The presentation is for discrete-time processes but results

extend to continuous-time in conjunction with the work in [28]. Broader references



33

for quasi-likelihood include the papers by Godambe and Hevde (1937) [{20] and Hevde
(1993) [26]. The text by Heyde (1997) [27] is comprehensive and should be consulted

first for the general theory of quasi-likelihood.

2.4.3 Generalized Method of Moments

Hansen [23] studies large sample properties of Generalized Method of Moments (GMM)
estimators. He establishes strong consistency and asyvmptotic normality under sta-
tionarity and ergodicity assumptions. This paper provides an important theoretical
foundation for GMMs.

Hansen and Scheinkman (1993) [25] derive a class of GMM estimators for time-
homogeneous. reversible Markov processes observed at fixed intervals. Their moment
conditions involve the infinitesimal generator of the process and the generator of
the associated reverse-time process. Theyv establish conditions on the generators
ensuring that their estimators attain the asymptotic properties of GMM estimators.
In view of the aliasing problem. they conclude that their moment conditions based on
fixed samples cannot distinguish between generators admitting the same stationary
distributions except possibly for reversible processes.

As a follow-up to Hansen and Scheinkman. Shoji and Ozaki (1997) {42] compare
the Hansen and Scheinkman estimators to other methods applied to diffusions sam-
pled at fixed intervals. For time-homogeneous ergodic processes. Duffie and Glynn

(1996) [11] derive GMM estimators based on randomly observed samples. Their idea
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is to first choose a test function g : (@ x S x 5) — R™ and then to define the function

f via
Aeg®)(y)

f.r.y) €O <« S5 x N, 3.2
30,7 (0.r.y) €O <5 xS (2.20)

flo.r.y)=g(0.1.y) -

where

in
s

. d . |
N y) = ZE,[g(X()]j=or L.y (2.21)

Aoy T dt

E. denoting expectation associated with a given initial condition r = 5. The basic

moment condition is given by

15
[
[ B

E-Lf(0°. 2. Zwr) —g(0". Z,. Z,)] = 0. (2.2

where 7 is the invariant probability measure of the sample process (Z,.T,). They
also show that the generator is fully identified by their moment conditions for a
constant sampling rate bounded away from zero. and for time-dependent sampling

rates bounded away from zero as long as observation times are observable.

2.4.4 Martingale Estimating Functions

On the general theory of martingale-based estimating functions the main references
overlap a good deal with the quasi-likelihood literature. namely Godambe 1 1935) (18],
and Godambe and Hevde (1987) [20]. Llovd (1987) [36] considers optimal martingale
estimating equations derived in the presence of nuisance or “accessory™ parameters.
The collection edited by Godambe (1991) [19] includes many useful papers. Among

them. Llovd and Yip (1991) [35] derive estimating functions to estimate the size of the



population in capture and recapture experiments. The authors provide an excellent
overview of martingale-based estimation. apply it to a specific application. and discuss

bias reduction and more complex models.
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Chapter 3

Estimating Equation Based on a Dynkin
Martingale

The Dynkin martingale motivates an estimating equation in the following way: if
in fact a sample analog of the Dynkin martingale based on discrete observations
inherits the martingale property. then it falls within the class of martingale esti-
mating equations introduced in Chapter 2. In this way. the inference problem for
a continuous-time process is cast in the context of discrete-time. martingale-based
estimation procedures. This immediately outlines a strategy for proving asymptotic
properties for the Dynkin martingale estimators. This strategy is to mimic the argu-
ments already established for discrete-time martingale estimating equations.

This chapter first establishes the martingale property for the sample analog when
discrete samples are taken via Poisson sampling. Section 3.2 contains a review of mar-
tingale estimating equations and Section 3.3 presents a discussion of the asvmptotic
properties of martingale estimating functions and how these properties translate to
the estimator itself. Finally. conditions and implications for the Dyvnkin martingale
estimator are summarized in Section 3.4.

Recall the inference problem in this thesis: {X(¢).t > 0} is an inhomogeneous
Markov chain with (discrete) state space S and infinitesimal generator. A4(t). The

underlying probability space is {Q. F. P;}. where F is the collection of Borel sets of
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Q. The purpose here is to estimate the unknown parameter § € @ C R?. for d > 1.

Suppose the generator satisfies

sup | Aa(8)]] < x i3.1)
20
(the matrix norm ||B|| = sup, 3_,e51B(i.j)|) and that the real-valued function g

defined on the sample space & satisfies

gl = suplg(r) < x. £3.2)
IeS
Then
t
Mty = g(X(t)) - / (Agt)gH XNtu)du 3.3
0

is a (Dynkin) martingale adapted to the filtration F, = a(X(u) : 0 < u < t). That

is.

E[M(t)|F,} = M(s).

That M (¢) is a martingale follows directly from the integrated version of the forward
equations as shown in Section 2.1.2. The condition on .15 ensures that a unique

process exists. and the condition on g ensures integrability.

3.1 Sample Analog

If the process cannot be observed for a continuous time period. it would appear
that the martingale result 3.3 is not useful in constructing an estimating equation.

However. if the process can be observed at random observation times. independently of
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the process. the martingale in 3.3 implies a sample analog. This is shown below when
the process is sampled according to a homogeneous Poisson process independently of
X(¢).

The process is observed at random times according to an independent Poisson
process .V(¢) with constant rate parameter J. Let T}. 7). ... be the event times of this

observation process. For a sample of size n.

Let . = T, — T,_, indicate the iid inter-arrival times. which are exponential with

mean 1/J3. Therefore with Z, = X(T,). the set

fully describes the sample. Let
Fo=a(l,, X(5):0<s<T).

That is. F, is the sigma field generated by .\'(¢) on [0.T,]. Suppose the function g

satisfies condition 3.2. and consider the expectation
E[g( Zz+l )Iﬁ] = E[!]( Zl+l )‘(Zl' Tx)]°
using the Markov property. From the martingale result 3.3. this is

Tis
Elg(Z+)(Z.T)] = M(T.)+E[/o (Ag(u)g)(X(u))dul( Z,. T,)]

T,
= g(z‘)-[o (Ag(2)g)(X(u))du
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T4 ) » N
B[ (Aalw)g) (X (u))dul( Z,. T,

Tigl

(As(T, + 5)g)(X(T, + 5))ds|(Z,. T,)].

Il
b=
N
.{.
i

S~

Letting /g denote the indicator of the set B. the expectation in the second term is

equivalent to

E[/l; [(?.+l>5}(-"0(Tx + ”)g)(‘\"’[“ + \))(Iv\“ZI. Tt”
= ‘/(; E[[{v’wl)s}(-“&(n + \)!])L\'(Tx + 5))([5“2" T‘)]
= /(; E[’{f.,x)s}]E[(-'U(Tx + )9 NX(T, +"")!(Z“T')]([§

= / Primey > S)E[(AT, + 519} (N(T, + sN[(Z,. T.)}ds. (3.4)
V]

using the independence of the inter-arrival times. r,. The 7, follow an exponential

distribution with mean 1/J3. so that expression 3.4

[ > o
= 7/0 3ePE[( AT, + 3g)(X(T, + s Z.. T)]ds

l
= 3 [(-"6(K+Tz+l)g)(-\’(7:+‘-x+l”“.Z:-Tx)]
1
}E[(A@(Tr{-l)y)(-\’(TH-I)”(Zx-Tx)]-

Finally.

1
Elg(Z+ )N Z..T))] = g(Z,) + 35[(.49( Te)gUZ. i) Z.. T))).

Therefore. a martingale is given by

n

M.(0) = D.(0).

=1
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where the

. . l . . -
D.(0) = g(Z,) = g(Z,-1) — ‘;(-"6( gz, (3.5)
are martingale differences with respect to the filtration
Faa=0o(T_,.X(5):0<s < T ).

Using 3.5. the estimating function satisfies

1

=Y Dub) = g(Z.) ~ 9(Zy) )= 5= Z At THgi(Z,)

and has these properties:
i. M,.(8) is measurable F,.
E[JM.(0)]] < x.
()Fnl= Ma(8). 0<m<n.

It follows that E[E[M(0)|Fn]] = E[Ma(6)] = E[Me(0)] = 0. so that M,(6) is a

mean 0 martingale. For the true value 8-, the moment condition
E[M.(6°)]=0foralln>0

implies the estimating equation

M.(6) = 0.

so that the Dynkin Martingale estimator (DME) 6, satisfies

. 1 &
M,(8,) = g(X(Ta)) — g(X(To)) — = D (44 (Tg)(X(T)) =
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The work that follows considers only scalar parameters 8. but it is straightforward to
define the DME for a vector valued parameter: For § € © € RY. d > 1. choose test

functions ¢;.92..... g4. and then compute é,, as the root of
.- . I & ‘e
ge(X(To)) = ge( X(To)) = 5 3 _(As(Tge)(X(T.)
T3

by component. k = 1.2....d. The vector case adds (at least) the additional concern

of how to choose multiple test functions.

3.2 Martingale Estimating Equations

The goal of this thesis is to reduce the problem of inference for an inhomogencous
continuous-time Markov chain to that of a discrete-time process. The construction of
the sample version of the Dynkin Martingale accomplishes this in part as it provides
a martingale estimating equation for 8 based on discrete samples. This is appealing
since much of the asymptotic theory for discrete-time martingale estimating func-
tions has been worked out. This section reviews the established theory. Recall from
Section 2.2.1 that for martingale differences D,(#) and F,., measurable random vari-

ables a;_,. the martingale estimating equation
-‘[n(o) = Zaz—le(()) =0
=1
has solution 6, satisfying (under regularity conditions)

Gnl(6. — 8) = N(0.1).



where
Sy a E[DUO)Fis)]
VI ai Var[D,(0)|F._y]

For example. if the a,.; = L. then

Gn =

= K, (8)
ey
where
Ka(0) = 3 E[D(8)iF ]
=1
and

1.6) =S E[DO)F._\].
=1

Alternatively. if ¢,_; = a;_, = E[D!/(0)|F.-1]/ E[D}(0)|F.-]. the optimal weights of

Godambe. then

. _ (& EADUONF N
= (Z E[D?wnf_ll) '

=1

Since [,(0) and A,(0) involve conditional expectations and are most likely unattain-
able in closed form. in practice the optimally weighted estimating equation is likely
forsaken for the more tractable. unweighted version. However. one could try to tind
reasonable estimates of the optimal weights and investigate how the estimates improve

over those based on an unweighted version.

3.3 Establishing Asymptotic Properties

A fundamental idea in the study of estimating equations is that properties of estima-

tors derive from the estimating functions that generate them. To illustrate. suppose
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that 8~ is the true value of the parameter and consider a first order Taylor series

expansion for M, (0") about §' € ©:

M.(0°) = .wn(o')+(o-—o')a%.unw')
= M.(0')+ (9" —6')J.(6)
= M(0)+ (07 —0)[Ju(0) + [,(87) = [,(67))]

= M (0') = (07 = O)[.(0°) + (07 = 0)[SalO) + [,(07)]

where § € (6.0°) and [,(6) is a quantity to be determined. Then

[THOYML(07) = [7HO)ML (0 — (0" —0') + (0" — 0"V [7110°)[J.(0) + [,(67)].
If ¢ =6, where M,(6,) = 0. this is
[THO)YML(07) = (6, —07) + (0" = 0,)[7HOV [ Ja(0) + [,(67)]. (3.6)

n

A strong law of large numbers for M,(0") with the norming /,(07). as in
I7HO)ML(07) = 0as.  asn — x.
and the condition that

lim sup([,(8°)] " 11.(07) + Jo(0)] < | a.s. (3.7)

would then imply that 6, is strongly consistent for 8* (§, — 6" a.s.). Furthermore. if

a central limit theorem (CLT) holds for M,(87). as in

I[7Y3(0°)MA(07) 2 N(0.1) as n — . (3.8)

n
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then
1M407)(0, —0°) & N(0.1) (3.9)
as long as
J(6)7J.(0°) = 1 and (3.10)
J0°)/1,(6°) — —1in probability. as n — x. (3.11)

This parallels the argument in Hall and Heyde (1980} [22] for the maximum likelihood

estimator. for which D,(§) = ,{'—‘e[log L.(0) - log L,_,(8)] and

[.(0) =) Eg[D}(0)|F._\].

=1

[n Chapter 6 of [22]|. the authors give conditions ensuring the CLT result 3.8 for
the log-likelihood score function. Note that if condition 3.11 does not hold. then
(assuming conditions 3.10 and 3.8). the result in 3.9 generalizes to

[M0).J,(07)(8, — 0°) 5 N(0.1). (3.12)
In summary. the asymptotic properties of the 9, derive from the asyvmptotic behavior
of the estimating function. M,(f). For consistency and asymptotic normality. the

challenge is first to verify a strong law and a CLT for M., (#). The purpose of the next

section is to sketch out the arguments for doing this.

3.3.1 Strong Law of Large Numbers and Central Limit Theorem

This section first treats consistency by reviewing some well-known convergence results

for martingales and martingale differences which lead to the strong law of large num-



15

bers (SLLN) for martingales. Then the martingale CLT is presented. The discussion

borrows from Glynn [16] and Hall and Heyde (1930) [22]. Sections | and 2.

Consistency

The first result. the Martingale Convergence Theorem. states that. for instance. a

square-integrable martingale has an almost sure limit as n — .

Theorem 3.3.1 Martingale Convergence Theorem.
Let M, .n > 0 be a martingale with respect to F,. If there exists a p > |
such that

sup EJ M, P < x.

n>1

then there exists M. such that M, — M as. as n — x.

Given the form of the estimating equation. M, (8} = 0. if the a.s. limit M. is 0. then
strong consistency holds for M, (#). Kronecker’s Lemma can be used to establish that

the limit is 0.

Theorem 3.3.2 Kronecker’s Lemma.
Let (r,.n > 1) and (a,.n > 1) be two real-valued sequences. Suppose
ax >0and ax T x. Let B, = ¥7_, r,/a,. f B, > B< xasn— x.

then

Li!, — 0.
an ;31



[f the a, are deterministic. then

M, = Z D,/q,
=1
has the martingale property. If there exists a p > 1 such that

sup E[|Y" D, /a,P] < x
n>1

=1

then by the martingale convergence theorem. M, has an a.s. limit. M.

p =2 since E{D,] =0and E[D.D,] =0. ; # ..

EIY. D,/a,l’] = 3 E[D¥/a]
J=1 =1

and so. if a, T x. 2%, E[D?]/a} < x. then

M,

ar

— 0 a.s.as n — x.

16

Now set

A similar argument proves the next theorem (rf. Theorem 2.18 of Hall and Heyde

(1930) [22]).

Theorem 3.3.3 Martingale Strong Law with Random Norming. Let

{M. =X, D..F.} be a martingale and {{",.n > 1} a non-decreasing

sequence of positive random variables such that (7, is measurable F,_,

for each n > 1. Thenfor 1 <p < 2.

x
Z 7' D, converges a.s.

=1

on the set {7, UTPE(|D,|PiFi-1) < <} and

lim (7'M, =0 a.s.

n—ac
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on the set

{Im U, =x. Zl"""E(!D,!”!}',_.) < x}.

n-r
t=1

To see how Theorem 3.3.3 applies to M, (8) = 37_, D,(0). set [", = [, where
1.(0) = 3 EID2(0)|F.y].
i=1

Then if [,(8°) - x a.s..

x

SO TP E(D(07)|Fazi) < x as. i3.13)

and the martingale SLLN gives
[([n(07)]7' )" D,(07) =2 0. (3.1
=1

This again parallels the argument in Hall and Hevde(1930) [22] for the MLE. The
added condition 3.7 involving [,(#) and .J.(#) would then ensure the strong consis-
tency of the estimator 6,.

Alternatively. Hevde (1997) [27]. Chapter 12. provides a criterton for consistency
in terms of a sequence of estimating functions {}/,(0)} which are not necessarily the
derivative with respect to 8 of a scalar objective function. Rewritten in the current

notation. this is:

Theorem 3.3.4 Consistency Criterion. Let {M,.(8)} be a sequence of

estimating functions that are continuous in § a.e. on £ C Q for n > 1. If



for all § > 0 a.e. on E there exists an ¢ > 0 so that

limsup( sup (8 — ()')'.Un(ﬂ)) < —e.

n—x \[[8-0%)=5
then there exists a sequence of estimators 8, such that for any « € E.

6, — 0" and .U,.((),,(.u)) =0 when n > V_.

Hevde admits some difficulty in checking this criterion in practice. particularly in the
case when 6 is a vector. Theorem 12.1 of Hutton. Ogunyemi. and Nelson (1991) {29]
provides sufficient conditions in terms of the eigenvalues of the quadratic character-
istic of M, (0). denoted by (M(8)),. For example. with univariate #. the quadratic

characteristic for the DM estimating function M. (8) = 37, D,(8) is

Lui=1
(M(0))n = 1.(0) =) _ E[D}6)|F,_\].
=1

More generally. Lin (1994) [34] gives sufficient conditions for the strong law to hold

for multivariate martingales in terms of the eigenvalues of random norming matrices.

3.3.2 A Martingale Central Limit Theorem

Next is a martingale central limit theorem due to Brown (1971) [3] and following
Section 1.6 of [22]:
Theorem 3.3.5 Martingale CLT. Let {M, =3, D.. F.} be a 0 mean

martingale whose increments D, have finite variance. Set

12 =Y E(D}F-)  and s2 = E[VZ] = E[M]].

=1
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Ifs72V2 5 1 and if for all € > 0

n

s;zzﬁ'(Dfl(ID,l >esy)) = 0asn— x

=1
then

sTUML S N0 ).

Billingsley (1961) [6] proves a CLT for homogeneous (stationary). ergodic processes.
For example. he proves the condition s72V? £ | by exploiting stationarity and

ergodicity in the following way: stationarity gives that

EID{l = ED}]. k>1 (3.15)

Then the ergodic theorem gives

lim n™' Y E(D}F._1) =0’ = EID;})

n-=—+ 2

=1

almost surely. which further implies
Vi=Y E(DHF_) —x
=1

as n — . This last result would assist in establishing consistency for the estimator
in view of 3.13. Since relation 3.15 does not hold for an inhomogeneous chain. the very
same argument cannot be used for the Dynkin martingale differences based on discrete
samples. However. if the chain is in some sense ergodic (Section 2.1.1). an appropriate
ergodic theorem could be used to establish the conditions of the CLT. Chapter 3 of

Hall and Heyde (1930) [22] contains several generalizations of Theorem 3.3.5.



3.4 Asymptotic Results for the DME

Recall the inference setting for the DME. { X (¢).¢t > 0} is an inhomogeneous continuous-
time Markov chain with infinitesimal generator. .-43-(¢). depending on the parameter
0° € © € R. The sample. {Z, = X(T). k=1..... n}. where {T,.: > 0} are expo-
nentially distributed observation times with mean 1/.3. is drawn by Poisson sampling
over the observation interval. {Ty. T|. For a bounded. continuous function g : 5 — R.

the DME 6, for 8* satisfies

; . - I & - . .
M(0n) = g(N(Ta)) = g(X(T)) = 5 3 1A, (T)g) X(T0)) = 0. (3.16)

=1
As long as n — x coincides with T — . the arguments in the previous section

vield the following two propositions:

Proposition 3.4.1 Let 0. be the DME for #° based on the Poisson

sample. {Z¢ = X(T)}. Let 8 € (6,.0%) and define
Vi S EDAO VIR . si= 0V = EQM)
=1
[07) =V . J.(0) =Y D'9).
[ffasn - x (& T — x).

(1) V. = oc and

(2) limsup,_ . [[.(09)] " [[.(07) + Jo(8)] < 1 a.s..

then the DME is strongly consistent for 6* (, — 6° almost surely).



Furthermore.
Proposition 3.4.2 If
(3) s72,(07) = sV S 0.

n

(4) Foralle >0. s72¥n, E(D?(|D,] > es,)) — 0. and

n

(5) For § € (4,.0%).
Joa0) ' J.(0°) = 1 and
Ja(07)/1,(0°) — —1 in probability.
then the following holds:
[M360°)(0, — 07) 2 N(0.1).
Or. if (3) is not met but
(5°) For 6 € (6,.6%). Jo(6)"'J.(0%) = L.
then the modified result holds:

[M307) . (07)(0, — 67) 2 N(0.1).

The arguments in Section 3.3 support the above two propositions. There are. however.
some technical difficulties in applying them. For instance. there exists a generalization
to condition (3) for which a CLT for the estimating function still applies. Moreover.

additional regularity assumptions on [,(#) are needed in order to use [['/%(8%) as a
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random norming in the CLT in place of its expectation. s3 (e.g.. see Hall and Heyde
(1980) [22]. page 160). Furthermore. there are the general results for martingale

estimating equations that use
Ra(0) = 3 E[D}(8)|F.-1]
=1

in place of J,(#). as given in Section 3.2.

In any case. it is clear that the sum of conditional variances [,(#). the sum of
partial derivatives. .J,(8). and the sum of conditional expected partial derivatives
K',(0) figure prominently in obtaining asymptotic results for the DME. For this rea-
son. the next sections explore these quantities in more detail for the inhomogeneous

continuous-time Markov chain.

The Conditional Variance

The sum of conditional variances. /,(#) can be interpreted as the information con-
tained in a sample of size n (e.g.. in maximum likelihood estimation. [,(#) is Fisher’s
information.) For consistency. it is important to know under what conditions the sum
of conditional variances diverges. For normality. it is important to know under what
conditions [,(8)/E([.{8)) converges to | in probability. The conditional variance
for a given martingale difference. D,(8). 1 > 1 is considered below. Let g, = g(Z,).

A, =(44(T)g)(Z,).and for i = 1..... n consider

- 1 ~ ) -
D.(8)" = (9(Z:) = g(Zi-1) = 5(Ae(Ti)g)(2,)) (3.17)



Lo ol
- )4 = 2=(9 — g1 ) A (3.13)

— o 2
- (gt gl—l) +(.3" ] 3

Taking conditional expectations with respect to the sigma-field
Fio1 = U{T;-l--\’(-")lo <s< Tx-l}
and applving Jensen’s inequality.

2 ) | L1
E[DK(O)-Iﬁ—l] = E[(!]; - g:—l)- + ?'l:if'x—l] - -)-['-l._}(g: — G- )(1:”-7:-1—11

| —

" 1 " . .
> Ellgi— gi-1)|Fiei]” + ?E[-‘l.lﬁ-d' = 2E(=(g, — g1 LA F 0

AL

Now using martingale property (L E[A|F._1] = E{(g. — g.—1)|F21]). the right hand
side of the inequality is

) l .
-ZE[_(]: -gx—llj::—l]- - -)-E[';(gx - g:—l)(-"();j::-ll- ‘.3~19)

Assuming Z,_; = r and T,_; = ¢ and using the notation
Ell= E[UZ 1. Tioy) = (o).
expression 3.19 simplifies to
ot , 2 2 .
AE[g] = 9(2)) = SEL g4 + Sg0r) EZ[A]

(g(r)EL[A] = ExfgA]).

., 2
= 2(El[g]-g(r)) — 3

Expanding the first term and simplifving. the right hand side becomes

2w] = 2wiglr) + g(£)%) +2/3(glz)ei — g(£)?) = (2/I)o,

= A +(2/3 = daglr) + (2 =2/3)g(r)* — (2/3)o..



where
w = Eilg] = E[g(.X(t + 7.)]
= /0' fS)E[g(X (¢t + s))]ds
= / F(5) S gli)pey (Lot + 5)ds
0 JES
= Zg(j)/' f(s)pe, (tot + 5)ds.
JES u
and
o = ElgA]=Efg(X(t+7)(At+7)g)0 Xt + 7))
= /) S E g Xt + )0+ 190X (¢t + s))]ds
= /x f(s)[z:g(j)(_z dyilt + S1g(h)pe bt + silds
0 JES k€S
= zg(j)/' [Fls)pe, (bt +5) S aylt + s)gik)]ds
JES 0 kES
= Zg(_j) Z g(k)/ - (f(pe, bt + s)a,,(t + 5)]ds.
JES k€S 0
Thus.

E[D}0)F.oi] =227 +(2/3 — Hwg(r) +12 = 2/ 3)g(r)° — (2/ 310,

for each i:. The lower bound suggests the role of the sampling rate .7 in the growth of

the sum of the conditional variances.
[.(8) =) E[D}{0)|F.-i].

For the divergence condition on [,(8). it would be enough to know when the bound is

almost surely positive for each i. However. since this bound still depends on transition
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probabilities. it may not be of practical use in establishing that /,(8) — >. Still. the
divergence condition seems a reasonable one. given that there is no apparent reason
in the construction of }/,(#) that the conditional variances would converge to 0 as
n -+ >x (T = x). In obtaining asymptotic confidence intervals. the dependence
of I,(0) on P(t.s) presents the major difficulty: in some cases the sum of squares

Y1 D?(8) is a reasonable approximation (Hall and Heyde. 1930 [22]. pg. 53).

-t

Conditional Expected Derivative

Next consider the conditional expected derivatives. For test functions free of § and

again setting Z,_; = r.T,_; = t. these are for each : = 1... .. n.
E[Di(®)|F..1] = lF[i 1e(Z)gNZ ) F.-i]
f 11 = 3 - 00(‘ 4 ;)_(I) x) =1
I~ , a o A -
= —3/(; f(..\)E,[a—o(:l,;(t-r.s)_(])(.\(f—g—.s))!(la

1 >~ J
= —-= 5 —(Ag{t + 1) )pe, (Lot + Sids
3/0 fl ’%‘00”9‘ 19)(J ) )Pz, I

l e !
- -3/0 Fis) SO ()t + 5)g(h)pz, (.t + 5)ds

JES kES

1 Y s o, , )
= —;ZZg(Is)/O f(s)a) (b + s)pe (Lt + 51ds

JES KES
where a’ denotes the partial of a with respect to 8. For convenience. the dependence

of a on 0 is implied. Finally. for test functions free of 6.

J.8) = > Do)
=1

= —% Z Z ﬂl:,k(Tx)(g(k))-

=1 k€S



Summary

In summary. through the vehicle of Poisson sampling of a continnous-time Markov
chain. asymptotic results for the DME parallel those of discrete time martingale
estimating equations. The problem remains to prove that the conditions hold for
a particular process the DME is derived for. Ideally. a set of generally reasonable
conditions on the process could be imposed to ensure that the conditions above hold
(under Poisson sampling) for the estimator solving 3.16. This important goal is set
in motion though not fully pursued in this thesis. However. a simulation study in
the next chapter applies the DME to a particular Markovian queueing model and

provides empirical evidence that the conditions of the proposition hold in that case.
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Chapter 4

A Test Case for Dynkin Martingale Estimators

This chapter provides a fully-worked example of the Dynkin Martingale estimator
(DME) applied to an M,/ M/1 queueing process with time-dependent arrival rates.
The arrival rate A(#.t) depends on an unknown parameter. §. The purpose here is
to evaluate the behavior of the DME as an estimator for 8 in a variety of sampling
scenarios.

In a Poisson resampling scheme. the sampling parameters are the observation
interval [Ty. T]. the Poisson sampling rate .J. and m. the number of resamples taken
from the interval at each rate. A second scheme sets the observation interval. [T,. T].
the sampling rate. .J. and R. the number of independent realizations (or independent
segments) of the queue. Varving these parameters generates numerous sampling
scenarios. Generally. however. small or large samples coincide with the length of
the observation period. and asymptotic behavior is considered as T — x.

Section 4.1 presents the M,/ M/1 test model and the method of simulation. Section 4.2
presents the Dvnkin Martingale estimating equation for the test model and summa-

rizes the results under the different sampling scenarios. The maximum likelihood

Section 4.3 discusses the weighted version of the DME.



4.1 M,/M/1 Queue with Time-Dependent
Arrival Rates

This section presents the M,/ M/ test model. its specification in the simulations. and
details of the simulation and sampling methods. In the M,/ M/1 model. customers
arrive according to an inhomogeneous Poisson process with rate function. A(¢). and
receive service from a single server in exponentially distributed service times with

constant rate parameter. g. [he infinitesimal generator has the form
A(t) = (ay, (1))

where

—(At)y+p) if1 21
llu(“=°q.“)= lil)

and

7 fj=1-1

a,(t) =q(t)Q,(t) = ¢ Xt) ifj=i+1 (4.2)

0 otherwise.

\

The intensity and relative transition probability function are denoted by ¢(t) and
Q.,{t). respectively. An event (arrival or departure) happens according to a Poisson
process with rate A(¢) + u: that is.

Pr{event occurs in (t.t + At)] = (A(£) + p)(At) + o( At) (1.3)

and

Pr{ two or more events in (t.t + At)] = o(At). (4.4)
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These probabilities define the transition intensity function
q.(t) for ¢ > 1.

For i = 0. the queue is empty and the only event possible is an arrival: therefore.
qo(t) = A(¢t). Given that an event occurs at time ¢. the probability that it is an arrival

is
Alt)
(A(E) +p)

and the probability that it is a departure is

I
(M) + )

These probabilities define the relative transition probability function.

Q.,(t) for i # .

The above describes a general M,/ M/l queueing process. In order to simulate the
process and test the estimation method. it remains to specify the functional form
of the arrival rate function and the dependence of the infinitesimal generator on the
parameter 8. After specifving A(¢) and introducing the parameter 8. the next step is
to simulate the M,/ M/l process. The simulation serves as a realization of the “true”
process: samples are then drawn from such realizations. and estimates based on these
samples are computed. Specifically. for each sample from a realization. the Dynkin

Martingale estimator 0, solves

M.(8)=0
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where

M.(0) =3_ D,(6) = g(X(T.)) = g(N(To)) = 33 (A (T)g N X(T)).

1=1 =t
4.1.1 Simulation

Let the arrival rate function depend upon ¢ and on 8 in the following wayv:
AG.t) = 0 + sin(27t/24).

The sinusoidal term puts a cyclic pattern with a period of 24 into the rate of arriving
customers. [n this case. the infinitesimal generator depends on # through the arrival
rate function.

A method known as thinning is used to simulate the quene. The thinning method
simulates an inhomogeneous Poisson process with rate function «(¢) in the following

on the interval [0.T].

way. Suppose there exists a constant «° so that «(¢) < «
The first step is to simulate a homogeneous process with rate *: these events are
then ‘thinned out’ with probability «(t)/~". That is. an event is retained or rejected
according to the probability «(¢)/~". The events retained in such a way are simulated
events from an inhomogeneous Poisson process with rate «(¢) over the time interval
[0.T]. For more details and extensions. see Ross (1990) [40].

The event process of the queue described in equations 4.3 and 4.4 is an inhomo-

geneous Poisson process with a time-varving rate q,(t) given in 4.1. The thinning
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method is easy to use in this case. with
<" =sup{q(t)} = sup{AO.t)} +u=6+3
t t

and rejection probabilities given by ¢,(t)/«". With 8" = 1 and ¢ = 2. Figure 1.1 shows
a simulation of the queue on the interval ¢t € [0.140] with the arrival rate function

superimposed. Since the service rate is constant. the traffic intensity

At
p(t) = ( ).
H

varies as A #.t) varies with {. With the choices 8 = | and u = 2. p(0=.t) < 1 for
all ¢ > 0. so that the queue length will not explode. For the simulation over a longer
period. [0.30K] (where 'K’ represents 1000). Figures 1.2 and 1.3 show respectively the

distribution of the queue length and the mean queue length as a function of time.

Checking The Simulation

A simple way to check the validity of the queue simulation without resorting to
complicated queueing process formulas is to compare the number of events (arrivals
and departures) on [0.7T] to the expected number of Poisson events. The expected
number of events on [0.T] for an inhomogeneous Poisson process with rate () is
given by

T

m(T) = [ w(t)dt.

0

Setting «(t) = qi(t) for ¢ > 1. m(T) will in general overestimate the true expected

number of events in the simulation. since while the queue is in state 0. <(¢) is really



Figure 4.1 Realization of M,/ M/1 queue over [0. 140] with arrival rate
A(0.t) = 0 + sin( %) overlaid. Simulation done with u = 2.6 = 1.

010 015 020 02%

00%
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01 2 3 4567 8 31017312131 4151671718193202122232425

Figure 4.2 Relative frequency of states of /,/V/1 simulated on
[0.30K] with (8.u) = (1.2). A(8.¢t) = 8 + sin(2xt/24).
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Figure 4.3 Mean Queue Length at time T of M,/ M/l simulated on
[0.30K] with (6. ) = (1.2). AM(0.t) = 0 + sin(27t/21).

qo(t) < qi(t). Recall that for ¢ > 1. q,(¢t) = (MH.t) + u). whereas qo(t) = Ad.¢t). In
particular. m(T) computed with «(¢) = ¢,(¢) for ¢ > | overestimates the experted
number of events by ux(length of time spent in state 0 on [0.T}). Therefore. the
rough but easy way to check is to compute m(7T) and then subtract p x (length of time
simulated queue is in 0). For a queue simulated on [0.30K] with 6 = | and y = 2.
the expected number of eventsis m(T) = m(30A’) = Y0A". One realization contained
60315 events and spent about 14367 time units in state 0. Then 90A™ — 2(14367) =
60726. indicating that the simulation procedure gives reasonable results.

More sophisticated approaches are available to test the validity of the simulation.

Omosigho and Worthington (1988) [37] present a discrete time model to approximate
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certain functionals of a single server queueing process with time-dependent arrival
rates and continuous service time distributions. They consider the mean and vari-
ance of queue length. idleness probability. and virtual waiting time. Clark (1981) [9]
proposes the use of Polya distributions in approximating time-dependent probabilities
for non-stationary (inhomogeneous) queues. in particular for the purpose of incorpo-
rating queueing delays in continuous simulations. Asmussen and Thorisson (1937) [1]
consider general independent (non-Markov) queueing processes with periodic arrival
rates and service times. The authors establish limit results for standard queue-related
processes, such as waiting times and queue lengths. using the phase process which

comprises a Markov chain.

Sampling

The next step is to sample from the queue according to an independent Poisson
process with rate J. This means that the observation times. T, are i.i.d exponential
random variables with mean 3. In practical terms. Poisson sampling with rate .3 = .25
would mean that on average. an observation is made every 4 time units. Higher rates
would take observations more frequently. obviousiyv. Figure 4.4 illustrates how the
sampling rate affects the composition of the sample. (Observation times for the

different rates are marked along the queue with an "X".)
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Figure 4.4 Sample segments at different sampling rates (.23. 1.5. 3)
showing how the sampling rate affects the composition of the sample.
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4.2 The Dynkin Martingale Estimating Equation

This section presents the derivation of the Dynkin Martingale estimating equation
based on Poisson sample from the M,/ M/l test model. Let {(Z,.7,).: = 1.2..... n}
denote the collection of observations taken at Poisson rate .5 over some observation
interval [Ty. T']. The (unweighted) Dynkin Martingale estimating function is

n

- . 1 .
M.(0) = g(m—g(zo)——,Z(Ae(T,)gnZ.)

=l

= g(Z,) — g(Zo)

l
-3 S AuglZ, = 1) = (u+ MO.T)Ng(Z) + M. TOg Z, = 1)}
2,21
1 . . .
-3 MO TG Z + 1) —g(2)).
0:Z,=0

In this case. M, (#) is linear in  and the estimating equation. M, (#) = 0. has solution

011 = — x
=il fl - g(Z))
« [ )= g(Zo)) —p Y_(gtZ — 1) —gtZ.y)
:Z, 21
-y Zsm T./240(g(Z, + 1) — g(Z))]| - (4.3)
xZ)lx—

Once the test function g is specified®. equation 4.5 gives the DME 8, based on a

sample. {(T;.Z,).: =0.1..... n}.

*The requirement for g as a function of the sample space is only that it be defined and bounded
in supnorm for every r € S (a restriction which possibly can be relaxed). If ¢ is also a function of
the parameter . it must be continuous and differentiable. The simulation here considers functions
g free of 6.



The Consistency Criterion

Proposition 3.1.1 gave conditions for the consistency of the DME in terms of the
sum of the conditional variances. [,,(8). For univariate 6. the alternative consistency

criterion (Heyde (1997) [27]) may prove easier to check. Recall.

Theorem 4.2.1 Consistency Criterion. Let {/,(#)} be a sequence of
estimating functions that are continuous in 8 a.e. on £ C Qforn > 1. If

for all § > 0 a.e. on E there exists an ¢ > 0 so that

lim sup( sup (8 ~ 0'}'.”,,(0)) < —c.

"= IEELMIEN]

then there exists a sequence of estimators 0, such that for any ~ = E.
0, — 0" and .‘[,,(0.,,(.;)) =0 whenn > V_.
To test the criterion empirically for the M,/ VM/1. Figures 4.5 and 1.6 display plots of
6 vs. (8—6°)M,(0)

for values 0 ranging about the true value. 0°. where M, (8) is based on Poisson samples
drawn with rate J = | over observation intervals of length 1K and 10K. The vertical
line marks 6 = 1.5 and the horizontal line marks 0. According to the criterion. for
0 close to 0°. the graph should fall below the horizontal line at 0 as samples grow
large enough. The plots do show that the criterion clusters near zero for 8 close to
0. and do not preclude the possibility that in the limit the condition is satisfied.
In the following sections. bias and error are investigated empirically under different

sampling scenarios.
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Figure 4.6 Plot of 8 vs. (§ — 6°)M, () for 3 = .25..5.1.3.3 computed over
an observation interval of length IOK for a single realization of the queue
with 0% = 1.5, u = 2.25. \(0.t) =0 + sin("':,'—:'). g(r)=¢e""*.
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4.2.1 Preliminary Results

The initial simulations fix the observation interval [Ty.T] of a single realization of
the queue. The sample is the collection of states observed at the event times of an
independent Poisson process with constant rate J. The results here reflect the choices
J € {.25..5..75.1.1.5.2.2.5.3}. For each J. Figure 1.7 shows boxplots of 1000 esti-
mates based on samples taken on the interval {0.53K]. The distributions become tighter
as the sampling rates increase. but indicate a bias. Taking larger samples (through
higher sampling rates) will reduce the sampling variance but will not alleviate the
bias problem (Figure 1.3). Similar plots for sampies drawn at higher intervals along
the queue are shown in figures 1.9 and 4.10. Figure 1.10 demonstrates that on certain
intervals the DME performs well.

In this first scenario. the observation period is fixed and sample sizes vary with
sampling rate. The higher rate samples contain more observations but this offers
no apparent advantage in terms of the bias of the estimators. The sampling rate
did not affect bias since each rate captured the same segment of the queue. These
results indicate that the length of the observation period is a more important design
parameter than (strict) sample size in terms of bias.

Table 4.1 provides the bias. standard deviation. and mean squared error for 30
estimates based on intervals of length 5K with varyving starting points. Table 4.2
similarly shows statistics for 50 estimates based on intervals of length 10K. and one

set for an interval of length 60K.
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Figure 4.7 Boxplots of 1000 estimates 0, based on samples taken
at different sampling rates .3 on the interval [0.5K].
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Figure 4.8 Boxplots of 1000 estimates 6, based on samples taken
at different sampling rates J on the interval [0.10K].
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Figure 4.9 Boxplots of 1000 estimates (}n based on samples taken
at different sampling rates 3 on the interval [5K.10K].

10

i

1y
il
i
1]
11
|

:
g-
:

Hh
i

il

ass
|
It

080

Figure 4.10 Boxplots of 1000 estimates 6, based on samples taken
at different sampling rates 3 on the interval [3K.15K].



Table 4.1 Estimates of 8~ = | based on intervals of length 5K
from M,/ M/L. A(8.1) = 6 +sin(3). g(£) = /(1 + &)

[tstart.tfinish] 3 Bias 6, sdev 8, MSE
[15K.20K] .25 -.0319 .0351 0022
b} -.0355 .0223 0017
1.5 -.0334 0les 0014
2.5 -.0346 0138 0014
[25[(.30[{] .25 .0101 0376 0015
! .0029 .0213 .0005
1.5 -.00038 0167 .0003
2.5 2.7e-05 Ot24 0001
[45K.50K] 25 -.0052 0109 0017
) -.0091 L0213 0007

1.5 -.00-11 0159 .0002 |

2.5 -.0075 0115 0002 |

Table 4.2 Estimates of § = | based on intervals of length 10K (and of
60K) from M, /M/L. M8.t) = 0 +sin(35). g(r) = €7 /(1 + %)

tstart.tfinish] 3 Bias #,, sdev 0, MSE
[5K.15K] 25 10056 0351 -0007
75 0053 0223 .0002
1.5 0063 0168 .0002
2.5 .0036 0133 6.0e-05
[B5K.45K] 25 0286 0326 0019
75 0219 0182 .0008
1.5 0263 0109 .0008
2.5 0246 .0062 .0007
[5K.55K] 25 -.0040 :0039 -0007
73 -.0053 0154 .0003
1.5 -.0063 0119 .0002
2.5 -.0073 .0030 .0001
[0.60K] 25 .0049 .0096 .0001
75 .0076 0071 .0001
5 0077 0044 7.0e-5

L.
25 .0064 .0064 3.0e-5

(8




Independent Intervals

If each estimate is based on a different (independent) interval of the queue. the sam-
pling distributions for the most part center on L. the true value of the parameter

Figures 1.11 and .12 illustrate this fact for 50 estimates based on intervals of lengths

IK. 2K. 3Kk. and 5Kk.
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Figure 4.11 Boxplots of 4, based on 50 intervals of length 1K. 2K. 3K. and
5K (over panels) for different sampling rates (y-axis within panels). Panels
read left to right. 8 = 1. p =2, A(0.1) = 0 + sin(32). g(r) = €7/(1 + €).
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These plots also demonstrate that matters improve for the larger intervals. as one
expects since asymptotic properties in this context obtain as T — x. Table 4.3

contains the corresponding statistics for these runs.

Table 4.3 Summary statistics for 50 estimates of 8 = | based on intervals of
length 1K. 2K. 3K. and 5K from the M,/ M/1.A(8.t) =140 +5in(%).
g(r) =et /(1 +¢7)

T (length) 3 bias @, sdev 0, MSE
IR 25 0213 :0969 0093
75 0227 0793 0067
1.5 0116 .0603 0037
2.5 0041 0530 0028
2K 25 10095 0583 10035
75 0065 0455 0021
1.5 0038 0443 0020
2.5 .0001 0373 0014
K 25 10016 0537 0023
75 0075 0367 0014
1.5 -.0016 0343 0012
2.5 -.0015 0288 0003
5K 25 10036 10360 0013
75 -.0014 0314 0010
1.5 -.0008 0272 .0007

2.5 .0026 0250 .0006 |

Based on R = 200 independent realizations of the queue. DMEs exhibit no de-
tectable bias problems. Figure 4.13 displays boxplots of the corresponding estimates
for two choices of the test function and each sampling rate over intervals of varving

length.
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Figure 4.13 Estimates §, of 8* = | based on samples over intervals of
length IK. and 3K (left to right) from 200 independent realizations. Test
functions are g(r) = €™ and g(r) = 7 /(1 + €7) (bottom to top).



A Note on the Choice of Test Function

There are no restrictions besides boundedness on the choice of g(.r). This is imposed
to ensure integrability in the derivation of the sample martingale (although in a
practical sense. the boundedness condition may be unnecessarily restrictive). In the
tests presented here. the condition poses no impediment. The logistic function is
a natural choice for g(r) since it is bounded on the state space. as is the negative
exponential. g(r) = e~*: the logistic is monotone increasing and concave while the
negative exponential is monotone decreasing and convex. As a rough comparison of
the two test functions. Table 1.4 shows statistics for DMEs using g(r) = ¢~° based
on the same samples that were used above in Table 1.3 for the logistic. The bias in
the smaller intervals (T = LA’) is better by an order of magnitude: the advantage
of e~* appears to diminish as T grows larger. however. The comparison suggests
that there may be better choices of test functions in small samples. [f further the
test function is allowed to depend on the parameter. differentiability and tractability
become important criteria. It is not clear at this point how a test function should

depend on @ or what advantage it would offer.



Table 4.4 Estimates of 8 = | based on 50 intervals of length IK. 2K. 3K.
and 5K from M/M/1. A(6.t) = 8 + sin(3E). g(r) = e~*

T (length) 3 bias 6, sdev 6, MSE
25 0023 1198 011
Ik 75 .0051 0712 .0054
1.5 .0013 .066-4 0043
2.5 -.0009 0573 0032
25 .0093 10653 0013
2K 75 .0089 0507 0026
1.5 .0060 0461 0021
2.5 .0009 0392 0015
25 0061 0625 10039
3k .75 .0090 0392 0016
1.5 -.0017 0371 0014
2.5 -.0009 0317 0010
25 .0052 10360 0019
5k 75 -.0003 0314 0011
1.5 -.0009 0272 .0008 |
25 .0032 0250 0006 i

4.2.2 MLE Comparison

Because of its optimal asymptotic properties. the maximum likelihood estimator
serves as a benchmark in comparing different estimators. This section compares
the MLE based on continuous observation with the DME based on Poisson samples.

Recall that the likelihood function for a time-inhomogenous Markov chain in terms

ty,

of the infinitesimal generator A(t) = (a,,(t) = a(i.j.t)). 1.J € S.is

HT)-1

4 ,k B Tkek - 3

Lyny(0) = J[ alzk.zks1. Tk+1)€‘XPf° HEksesd
k=0

where J(T) is the number of jumps on [0.T]. and {(z¢.T%).k =0...... J(T)y—-1}is

the collection of states and transition times based on coantinuous observation.



Then the likelihood score function is

Olog Lymy(9) _ J(g:-l a2k zke1- Terr) /,k ia(-k -
da k=0 (a(:k':k+l~Tk+[)) o ()0 ~ko~ke D S.

(It is assumed that the a(:..t) depend on the parameter. 8.) For the M,/ M/1 test

model, it is not hard to show that the MLE solves the equation.

1 1
- = - =T. (1.6
Z'EE‘H NO.T,) z.=zz.-,+| 0+ sin(2x1,/24) )

Though the likelihood equation is simple. solving for the MLE requires a root-
finding algorithm. The simulations with §° = | and ¢ = 2 present some practical
difficulties because for 8 < 1. A(4.t) is negative and the likelihood itself is undefined.
A constrained optimization procedure would solve this difficulty but would add sub-
stantially to the computational time and would not offer any greater insight about
the new estimators. There is no loss of generality if instead the MLE is based on
simulations of the queue with * = 1.5. 4 = 2.3. Then the likelihood is defined on an
open interval about the true value and a basic root-finding algorithm is sufficient.

From the likelihood equation 4.6. Fisher information is

02 log [.J(T)(g) 1

= - = ]
(0 £l 06 | z.=§.;x+| E[/\z(f)-T,)‘
l
= ——F—PlZ =Z_ +1|(Z_-,.T.-
Z.=;_l+l A2(0~T‘) [ i '( 1 l)]
_ l A6.T,) )
- z.;.iﬂ(/\z(o-ﬂ)) ((z\(9~Tx)+u)

1

B z.=§l+1 MO.T.)MO.T.) +p)’

(4.7)
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Then the standard error of the MLE is [7!/%(8). The MLE (based on continuous
observation) is shown along with the DME based on Poisson resampling and based on
Poisson sampling from independent realizations of the queue. The standard deviation
of the estimates obtained according to each sampling scenario roughly approximate

standard errors for the DME.

Poisson Resampling

In the first comparison. the DME is based on m Poisson resamples over a fixed
observation interval. The standard deviation of the DME over these m samples
provides an estimate of the DME standard error. The MLE is based on continuous
observation over the same interval. with its standard error given by the inverse square
root of Fisher information. 4.7. Table 4.5 shows the bias and standard error for the
MLE on intervals of length 100. 1K.5K. and 10K next to the bias. standard deviation.
and root MSE for the DME based on m= 100 resamples over the same intervals.
The performance of resampled DMEs appears to be on par with the MLE. and
even better in terms of bias for the smaller observation intervals. As expected. the
MLE by all measures improves as the length of the observation interval grows large.
For the DME. the standard deviation and MSE improve as T grows large. but the
bias for all but the small interval (T = 100) remains about the same for each sampling
rate. Table 1.5 is typical of the results obtained over several different realizations of

the queue. Among the worst cases. however. the DME has bias over double that of the
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MLE (table 4.6). For the longer observation intervals. DME standard deviations are
typically lower than the MLE standard error. This is misleading. since the standard
deviation over resamples is only a rough estimate of the true standard error. The
resampling method suggests using better. bootstrap type estimators and this kind
of investigation is among the topics for future work. A valid comparison can be
made between the MLE standard deviation and the DME standard deviation over R

independent realizations. The next subsection covers this case.

Table 4.5 MLEs and DMESs of 8* = 1.5 based on 100 resamples along intervals
of varying length from M, /M/1. A(8.t) = 8 + sin(3F). glr) = €7/(1 + 7).

T (length) MLE DME
3 Bias 0, sdev 4, MSE
1.315 25 1570 4566 4949
100 bias: -.1846 75 .0996 2478 2659
SE: .2136 L5 0381 1936 2119
2.5 0633 1271 1411
L1474 25 .0006 1242 12371
IK bias: -.0259 75 -.0103 0672 0673 |
SE: .0631 1.5 -.022] 0349 0592
2.5 -.0193 0419 0459
1.521 25 -.0196 0536 0616
5K bias: .0210 75 0174 0325 0361
SE: .0276 1.5 0226 0241 0332
2.5 0195 0177 0265
1.439 25 0287 0439 .0566
10K bias: -.0107 .75 0226 0177 0236
SE: .0198 1.5 0151 0219 0265
2.5 0174 .0033 0195




v
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Table 4.6 DME of 8* = 1.5 based on 100 resamples over [50K.55K]

from M, /M/1. M(8.t) = 0 +sin(3Z), g(r) = €7 /(1 + 7).

T (length) MLE DME
3 Bias 4, sdev 6, MSE
1.198 25 0111 .0606 0051
5K bias: -.0016 75 0358 0345 0025
SE: .0278 1.5 L0330 0225 .0019
2.5 0362 0196 0017

Independent Realizations

Table 4.7 summarizes the performance of the DME against the MLE over 200 inde-
pendent realizations of the queue based on samples of lengths 100. 1K. 5K. and 10K.
In some instances. the DME does substantially better in terms of bias than the MLE.
Table 1.8 summarizes the performance of the DME based on samples taken over the
interval [30K.40K]. Note also that. as expected. the standard deviations of the MLE

are uniformly smaller than those of the DME.



Table 4.7 Summary statistics of MLE and DME of 8° = 1.5 based on samples

from R = 200 independent realizations of the M,/M/] queue with
A(B.t) = 0 +sin(3F). g(r) = €7 /(1 + 7).

T (length) J3 bias 0, sdev 6, MSE
(MLE) .0039 1077 0116
25 0177 4376 1913
100 .75 0341 3319 113
1.5 0L+ 2571 06633
2.5 0105 2366 0561
(MLE) -.0045 0461 .0022
25 0149 2065 0429
500 75 -.0073 1293 0169
L5 -.0060 1169 0137
2.5 -.00-10 1049 0110
(MLE) -.0023 0343 0012
25 0132 1445 0211
IK 75 .0003 0927 .0036
1.5 -.0077 0817 0067
2.5 -.0121 0701 0051
(MLE) .0006 0109 .0001
25 .0031 0434 0019
10K 75 .0019 0303 .0009
1.5 0024 0256 .0006 :
2.5 .0023 0265 .0007 |

Table 4.8 Summary statistics of the best performing DME of #* = 1.5 based on

samples over [30K.40K] from R = 200 independent realizations of M,/M/1.
A(6.t) = 8 +sin(3E). g(1) = €7 /(1 + €7).

T (length) 3 bias 4, sdev 6, MSE
(MLE) -.0014 .0100 0001

.25 .0003 0474 .0022

10K .75 .0006 .0315 .0009
1.5 -.0002 .0269 .0007

2.5 -.0011 .0226 .0005

33
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4.3 The Weighted Version

Recall that the Dynkin Martingale estimating function constructed above falls in
the class of the so-called unbiased martingale estimating function first presented in
Chapter 2 and for such estimating functions there are optimal weights.

= ELDo)F
= T TEDAR]

which minimize the precision measure.

E[M3(6)]
EQML0))*

The DME based on a weighted version solves
Ma(0) = 3 a1 (0)D,(0)
=1

where the a,_,(f) are measurable F,_,. Choosing the a,.; to be optimal requires
computing E[D!(8)|F.-1] and E[D*(8)|F.-,] for each i = 1..... n. To find these
in closed form requires the transition probabilities: this negates the advantage of
basing inference for inhomogeneous processes on the infinitesimal generator. Case
by case. one could investigate approximating the weights. perhaps by estimating the
transition probabilities. (See Fleming (1978) [15] for an approach to estimating the
transition probabilities of a continuous-time. inhomogeneous Markov chain.) Even
then. however. the solution to the estimating equation likely would require an iterative
root-finding algorithm. At this point. it is at least worthwhile to explore the quantities

in more detail for the M,/ V[ /1 test model.



Conditional Variances of D,(8) for the ,/\/1

Recall from Section 3.4 that when X (¢) is observed at times T, following an exponen-
tial distribution with parameter J and density function. f(¢). the conditional variance

for D,(8) satisfies
E[D}ONFioi] 2 220 +(2/3 = Hangle) + (2 =2/ S)g(r)? - (2/ o,

where

- = Zg(j)/ox f(s)pe,(tot + s)ds

JES

and

o= S gUi) T gtk) [ U Ipes bt = shaselt + »)]ds.

JES k€S

For the M,/M/1 test model. first let
B(j.k) = /0 [f(3)pey(t.t + s)a,ult + 5)]ds.
then for the tridiagonal generator of a birth and death process

o = Y lg)gli=NBLI.J— 1) +g(j)g)BL(j.J) +g(j)gli+ B . j + 1)]
J€5\{0}

+  9(0)g(0)B;(0.0) + g(0)g(1) B;(0. 1).

For the M,/M/1 test model. A(t) = (a,,(¢t)) with

MOty +p) i
ai;(t) = —q(t) = (1.3)
—\6.1)) ifi=0



and )
i ifj=r-1
a,(t) = q(t)Qu,(t) = AO.t) ifj=i+1
0 otherwise.
so that
4
-1 ifhk=y
aplt+3) =9 1 ifk=j+1
0 otherwise.

{-+.9)

{(-1.10)

where o’ denotes the partial derivative of a with respect to # and the dependence of

a on # is assumed. Denoting by p,,(¢.t + 5) the transition probabilities.

PIX(t +s)=1X(t) = z].

— [ f(s)pey (bt + ) MOt +5) +u)lds fhk=j>1

— o Uf(s)pey (Lt + 5)NO.t + 5)]d= ifhk=,=0

Bi(j.k) =3 [R[f(s)ps, (bt + 5)A(O.t + 5)]ds ifh=j+1
Jo lf(s)pey (bt + s)(p)]ds fh=,-1>0

‘ 0 otherwise.

which leads to

o, = Z[[g(j)g(j+1)_g(j)zl/'*[f(s)pmu.t+.>-wo.t+.<)}d.<]

JES
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Conditional Expected Derivative

Recall from Section 3.4.

E[D'(8)|F._ l]———Zng)/ F(S)a4lt + 5)pey(t.t + 5)ds

3 JES kES

where a’ denotes the partial of a with respect to 8. For convenience. the dependence

of a on € is implied. Let
B(j. k) =/0" [F(8)pay (£t + $)a (£ + »)]ds.

Then for a birth-death process.

E[DI(0)|F.-1] = —7[ Yo 9= DB =) +g()BL ) 9+ DB+ 1)
o es\{o}
+ g(0)BL(0.0) + g(1)B(0.1)]. (4.11)
Using 4.10.

4

— Jo U (5)pe, (.t + 5)ds ik =

BiG-k) = [F[f(s)py (bt + 5)ds ik =) +1

0 otherwise.

\

so that E[D!(6)|F.-.] for the M,/ M/l model is

= =3 0} [ U Ipetot 4 5)ids + g + 1) [ LFhpey (bt + )]ds
JES

= 5% [TUpatt + s)ldslgli + 1) - 9]
JES

If g is logistic (and therefore increasing on 5).

E[D'(9)|F, l < -
> ! -1 2 -3 -
0> E[D'(0)|Fia] 2 3J€S(I+5J+l l+61)
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On the other hand. if g(r) = €%, it is easy to show that

0 < EIDO)IF] < 5.
For the general test function g.
) | & 1
[E[DUONFoa]l € 53 (90 + 1) = 9(j) = 5{lim g0j) = g(0)].
j—O

and therefore the sum of conditional expected derivatives.

n

IR (0)] < jl

hm g(J) — g(0)].

Thus for the M,/M/1. the conditional expected derivative of D,(8) has simple
bounds depending on .3 and the test function g. However. in this case the infinites-
imal parameters are linear in §: in general. one should not expect to find bounds
for the conditional expected derivative free of . In summary. these results for the
M,/M/1 may be used to approximate or bound asymptotic variances of the DME.
perhaps by simulating the conditional expectations using the estimate 6, which solves
the unweighted version of the estimating equations. This and many other interest-
ing questions are left for future work. The next chapter outlines further strategies
for continuing the investigation of Dynkin Martingale estimators for inhomogeneous

continuous-time Markov chains.



Chapter 5

Conclusions and Future Work

The goal of this thesis was to derive and test a new estimating method for inhomoge-

necus. Contjnuous-time Markov chains parameterized by their infinitesimal generators

and discretely observed. Through the device of Poisson sampling. an estimating equa-

tion based vn the Dynkin Identity belongs to the class of discrete-time martingale

estimating squations. It was in this context that the new method and the estimators

were cast. |he simulation study showed that once the generator is specified. the

method is easy to apply and the estimators perform reascnably well in terms of bias

and error apd against the benchmark maximum likelithood estimators. In Section 3.4.

Proposition? 3.4.1 and 3.4.2 establish conditions ensuring consistency and normality

of the new ¢stimators.

There r¢Mmain important theoretical questions which stem from the asymptotic
arguments il Chapter 3. The main goal would be to characterize the processes for
which the DME satisfies the conditions in Propositions 3.4.1 and 3.4.2. In the test
case considered in this thesis. the new estimators perform well and appear to attain
the a.symptOtiC properties expected of them. The M;/M/1 queueing model with
the sinusoidal arrival rate function and constant service rate function actually has

what is caljed shift-stationarity. There is recent work in ergodic theory for shift-



90

stationary processes. There appear to be key results in Kallenberg (1999) [31]. who
proves a mean ergodic theorem and a pointwise ergodic theorem for shift-stationary
processes randomly observed. The author establishes specific results when the process
is observed by Poisson sampling. The conjecture that the DME is consistent and
asymptotically normal when applied to shift-stationary processes thus has substantial
merit. Specific technical conditions require further investigation. There is also the
question as to whether or not and under what conditions Poisson sampling resolves
the aliasing problem in this context. Thus. future work would establish identification
conditions for the new estimators.

Further steps involve extending the estimation method to the multivariate case
and making larger scale comparisons with other parametric estimation methods that
base inference on the infinitesimal generator. Extending the new estimators to the
multivariate case requires specifving a test function for each dimension and then using
a Newton-Raphson type iteration to solve the estimating equation. One issue is the
choice of test functions. {There was no problem finding viable test functions in the
univariate case.) Furthermore. there may be cases in which it is advantageous to
specify more test functions than parameters and then to proceed in the context of
GMM.

Future work also calls for a comparison study with other estimating techniques.
The closest in spirit are the estimators of Hansen and Scheinkman (1995) [25] and

Duffie and Glynn (1996) [11] in the sense that thev use a test-function. generator
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approach. This would require in the first place making the connections between the
techniques. The moment conditions of Duffie and Glynn fit the framework of the
DME in the case of homogenous processes. The Hansen and Scheinkman estimators
extended to samples based on random observation rather than fixed intervals may
be special cases of DMEs as well. A DME under continuous observation would.
presumably. use the continuous version of the Dynkin Identity. Then a comparison
with the quasi-likelihood approach of Hutton and Nelson (1936) [28] could be made.
More interesting perhaps would be to amend their quasi-score functions for discrete
samples based on random observation and then to make a comparison.

Finally. the martingale property established for the sample-analog relies only on
the fact that inter-observation times are independent: in fact. the martingale result
holds if the Poisson rate is allowed to depend on time. This and more general sampling
schemes could be considered. particularly as motivated by the application. In some
applications. for example. it may not be possible to apply a Poisson sampling scheme.
Based on other observation schemes. the main question is whether or not the Dynkin

Martingale leads to a martingale estimating equation.



Appendix A

C-program for Queue Simulation and Estimation

Main Program

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

/%%* Function Prototype Declarations ®ss/

/* Queue specific functions #/

// Arrival rate function

double 1lmdaf(double t, double theta);

// Service rate function

double muf(double t);

// Simulates the queune

double simQf(double theta, double tmax, double t0,int x);

// Samples from the queue

double ssmpQf(double tstart,double tfinish,double tmax,double beta);

/* DME specific functions #/

// Defines test function

double gf(int z,double theta);

// Generator elements a(t,x,y,theta)

double axyf(double t, int x, int y,double theta);
// Returns [A(t)gl(2)

double Agf(int z,double t,double theta);

// Returns DME for sampling rate beta

double solif(double beta);

/* MLE specific functions */

// Derivative of arrival rate function wrt theta integrated O to t

double lmdaprimef(double theta,double t);

// Derivative of log-likelihood

double objectivef(double theta, double tstart, double tfinish,double truetheta);
// Finds MLE

double bisolvef(double start, double tstart, double tfinish, double truetheta);

/‘t““tttt‘t““##“t#"#“‘t“““##‘##tt“#“#t‘t“#‘t‘t‘t‘t‘ttt#t‘t‘t‘
Program main offers simulation and estimation for the M_t/M/1
queue. It prompts for repeated realizations or resampling and asks also

whether user wants only MLE results
t‘.““#““#‘t“tt‘t##t“‘“t“t“‘l“t‘tt#tt#'tt‘tttt‘t““‘t‘t““““t/



void main()

{
FILE sinmle,*ininfo,*inseed,soutmle2,*outdme, *outpert, *cutMn;
int j,k,x0;

int seed,optionflag,mleonlyflag;

int ntheta;

double tstart,tfinish;

/* initialize sampling rates, beta %/

double betas[8]={.25,.5,.75,1.0,1.5,2.0,2.5,3.0};
double tmax,beta,tO,DME;

double tsim,Mn,MLE mlet,mlex;

double sdevmle,biasmle,msemle,ssdmle,meanmle;
double semle,tmpspace;

double sdev,bias,mse,ssdme,meandme;

double sdeva(8],biasa[8],ssdmea(8],meandmeal[8],msedmea[8];
double truetheta;

/% set parameter values */

truetheta=1.5;

/* open io files =/

outperf=fopen("ergperfi’, "a+");
outdme=topen("ergbetadmesl","a+"):

outMn=fopen("ergMni”,"a+");

printf("Enter t for different simulations, 0 for resampling:\n");
scanf ("%d",koptionflag);

printf("Enter 1 for MLE only, O otherwise:\n");

scanf ("%d", &mleonlyflag);

if(optionflag==1){

/+ file seedfile.txt contains random seeds (integers 1 to RAND_MAX) s/
inseed=fopen("seedfile.txt”,"r+");

ntheta=0;

for(j=0;j<8; j++){

sdevaljl=0;

biasa(j]=0;

ssdmealj]=0;

meandmealjl=0;

msedmea[j]=0;

}

sdevmle=biasmle=msemle=ssdmle=meanmle=0;

/* set starting state, time, and tmax here s/
x0=1;

t0=0;

tmax=60000;

/* set sampling or observation interval here =/
tstart=30000;

t£inish=40000;

// titles

tprintf(outdme,"%1f %1f\n", tstart,tfinish);
fprintf(outMn,” %1f %1f\n", tstart,tfinish);



fprintf(outpert,"%lf %1f\n", tstart,tfinish);

while(fscanf(inseed, "%d" ,&seed) '= EOF){
ntheta+=1;

srand( (unsigned) seed);
outmle2=fopen("fmlesim2","w+");
tsim=simQf (truetheta,tmax,t0,x0);
inmle=fopen(“fsim2","r+");
while(fscanf(inmle,"%1f" ,&mlet) '= EQF){
fscanf(inmle,"%d" ,smlex);

if((mlet >= tstart) & (mlet <=tfinish)){
fprintf(outmle2,"%lf %d\n",mlet,mlex);

}

}

fclose(outmle2);
MLE=bisolvef(1.1,tstart,tfinish,truetheta);
meanmle+=MLE;

ssdmle+=pow(MLE,2);
msemle+=pow(MLE-truetheta,2);
biasmle+=(MLE-truetheta);

printf("%12 MLE \n" , MLE);

printf("/1f %lf %1f %lf %d\n",meanmle,sdevmle,biasmle,msemle,ntheta);
for(j =0;j<8;j++){

beta=betas (j];

printf("%1lf Beta \n",beta);

Mn=ssmpQf (tstart,tfinish,tmax,beta);
DME=solif(beta);

meandmeal[j]+=DME;

ssdmeal[j]+=pow(DME,2);

msedmea [j] +=pow(DME-truetheta,2);
biasa[j]+=(DME-truetheta);

fprintf (outMn,"’1f %1f \n",beta,Mn);
fprintf (outdme,"’1lf %1f \n", beta,DME);
}

} //matches while(fscanf(inseed...)

meanmle=meanmle/(double) ntheta;

msemle=msemle/(double) ntheta;

biasmle=biasmle/(double) ntheta;

sdevmle=ssdmle/(double) ntheta - pow(meanmle,2);

sdevmle=pow(sdevmle,.5);

fprintf(outpert, "1t %1t %lf %lf /d\n",meanmle,sdevmle,biasmle,msemle,ntheta);

for(j =0;j<8;j++){

meandmea[j]-meandmealjl/(double) ntheta;

msedmealj]l-msedmea[j]/(double) ntheta;

biasa[jl=biasal(jl/(double) ntheta;

sdeva(j]=ssdmealj]/(double) ntheta - pow(meandmealj],2);
sdeva[jl=pow(sdeva(j],.5);

fprintf(outpers,"¥lf %1f %lf %lf %lf %d\n",betas[j],meandmeal(j],sdeval(jl,
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biasalj],msedmea(j],ntheta);
}

} // matches if
else{ // else do resampling
/* set a seed */
seed=22;
srand( (unsigned) seed);
sdev=bias=mse=ssdme=meandme=0;
ntheta=1;
outmle2=fopen('fmlesim2","w+");
//start state
x0=1;
// Queue simulation interval
t0=0;
tmax=60000;
/+* Sampling or observation interval s/
tstart=5000;
tf£inish=8000;
/* 20,20100,5000-6000 +/
tsim=simQf (truetheta,tmax,t0,x0);
/+* make continuous sample for MLE s/
inmle=fopen("fsim2","r+");
while(fscanf (inmle,"%12" ,&mlet) != EOF){
fscanf(inmle,"%d",dmlex);
if((mlet >= tstart) & (mlet <=tfinish)){
fprintf(outmle2,"%lf %d\n",mlet,mlex);
}
}
fclose(outmle2);

/% Get MLE +/

MLE=bisolvef(1l.1,tstart,tfinish,truetheta);
ininfo=fopen("infofile3", "r+");

fscanf (ininfo,"%1f %1£",&semle,&tmpspace);

printf("%1f MLE Y%lf\n",MLE,semle);

tprintf (outdme,"’d %1f %1lf\n",seed, tstart,tfinish);
fprintf(outMn,"%d %1f %1f\n",seed, tstart,tfinish);
fprintf(outperf,”sim seed MLE Bias\n");
fprintf(outpert,”’d %1t %1f %lf\n",seed,MLE ,MLE-truetheta,semle);
fprintf(outpert,”’.0f %.0f", tstart,tfinish);
fprintf(outperf,”\n beta mean sdev avgbias mse ntheta\n");
fclose(ininfo);

if (mleonlyflag==0){

/* Get DME for each beta; Resample m=ntheta times on tstart to tfinish
Compute mean,sdev,and mse#*/

for(k=0;k<8;k++){

beta=betas[k];

printf£("%1f Beta \n",beta);

for(j=0; j<ntheta; j++){
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Mn=ssmpQf (tstart,tfinish, tmax,beta);

DME=sol1f (beta);

meandme+=DME;

ssdme+=pow(DME,2) ;

mse+=pow(DME-truetheta,2);

bias+=(DME-truetheta);

fprintf(outMn,"%1lf %1f \n", beta,Mn);

tprintf(outdme, "%l %1f \n",Kbeta,DME);

}

meandme=meandme/ (double) ntheta;

mse=mse/ (double) ntheta;

bias=bias/(double) ntheta;

sdev=ssdme/(double) ntheta - pow(meandme,2);

sdev=pow(sdev, .5);

/* output to outperformance file named above in io statements =/

fprintf (outpert, "1t %1f 1f %1f 1f %d\n",beta,meandme,
sdev,bias,mse,ntheta);

meandme=mse=bias=sdev=ssdme=0;

}

fclose(outpert);

fclose(outMn);

}// matches mleonly flag

} //matches else

} // End Main()

Functions

Queue Specific Functions

/* lmdaf: defines the arrival rate function. In this case,
lambda(t,theta)= theta + sin(alphast)
where alpha = 2+pi/24

*/

double lmdaf(t,theta)

double t,theta;

{

double rate,alpha;

double pi,sinarg;

pi= 3.14159265635897932;

alpha=2.0%pi/24.0;

sinarg = alpha»t;

rate=theta+sin(sinarg);

return rate;

}

/* muf: returns a constant service rate. The t is dummy argument
in this implementation */

double muf(t)

double t;

{



return 2.25;

}

/* simQf: simulates the queue on the time interval (t0O, tmax) starting

in state x0 with arrival rate lmdaf(t,theta)
=/

double simQf(theta,tmax,t0,x0)

double theta, tmax, tO0;

int x0;
{
FILE *=outfl;

float rnum,BIG;

int nevents,event,cx;

double runif,qmax,t;

/* Names queue output file #/
outfi=fopen("fsim2","w+");
fprintf (outf1,"%.6£\t%d\n",t0,x0);
nevents=0;

t=t0;

BIG=(float) RAND_MAX;

/* from theta+max(sin(s))+mu =/
gqmax=theta+i+muf(t);

runif=0;

while(runif==0){

rnum=(float) rand();
runif=(double) (rnum/BIG);

}

t=t-log(runif)/qmax;

cx=x0;

while(t < tmax){

runif=0;

while(runif==0){

rnum=(float) rand();
runif=(double) (rnum/BIG);

}

if(runifsqmax <= -axyf(t,cx,cx,theta)){
nevents+=1;

runif=0;

while(runif==0){

ranum=(float) rand();
runif=(double) (rnum/BIG);

}

if(runif <=lmdaf(t,theta)/-axyf(t,cx,cx,theta)){
event=1;}

elseq{
event=-1;
}
cx+=event;

/+* output event time and state */
fprintf(outf1,"%.62\t%d\n",t,cx);
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}
runif=0;
while(runif==0){
raum=(float) rand();
runif=(double) (rnum/BIG);
}
t=t-1/qmax*log(runit);
} /* matches while t< tmaxs/
fclose(outfl);
return t;

}

/* ssmpQf: samples the queue by Poisson sampling with rate beta */
double ssmpQf(tstart,tfinish,tmax,beta)
double tstart, tfinish,tmax,beta;
{
FILE *inpl,soutpl,*soutp2;
int readx,state,zprev;
double readt,randt,t,runif;
double tprev,Mn,di;

double theta=1.S5; //dummy
float rnum,BIG;
/* Queue realization input file */
inpi=fopen("fsim2","r+");
/* Queue sample output file */
outpi=fopen("fsmple2","u+");
/* This output file receives the Dynkin Martingale differences, D_i */
outp2=fopen(”betadi”,"a+");
BIG=(float )RAND_MAX;
randt=tstart;
fscanf (inp1,"%lf d",&readt,&readx);
t=readt;
state=readx;
while(randt>t £& randt < tmax){
state=readx;
fscanf (inpl,"%lf %d",&readt,&readx);
t=readt;}
fprintf (outpl,"%.62\t%d\n",randt,state);
Mn=0;

tprev=randt;

zprev=state;
/*this is based on tfinish =/
while(randt < tfinish){
runif=0;
while(runif==0){
rnum={float) rand();
runif=(double) (rnum/BIG);
}
randt=randt-log(runif)/beta;
while(randt > t && fscanf(inpi,"%1f", &readt) != EOF){
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state=readx;

fscanf(inpl,"%d",&readx);

t=readt;}

di=gf(state,theta)-gf(zprev,theta)-(1/beta)*Agf(state,randt,theta);

Mn+=di;

fprintf(outp2,"%1lf %1lf\n",beta,di);

tprev=randt;

Zprev=state;

fprintf (outpl,"%.6f\td\n" ,randt,state);
}

fclose(inpl);

fclose(outpl);

fclose(outp2);

return Mn;

}

DME Specific Functions

/% gf: defines test function g. This implementation g does not
depend on theta though it has it as an argument
=/
double gf(z,theta)
int z;
double theta; //dummy
{
double gfval;
gtval=exp(- (double) 2z);
/* other choices commented out */
/sgtval=exp( (double) z)/(1.0+exp((double) z));*/
return gfval;

}

/% axyf: returns generator elements, a(t,x,y,theta) */
double axyf(t,x,y,theta)
double theta,t;

int x,y;

{

double axy;

if(x==y){

if(x>0){

axy=-(lmdaf(t,theta) + muf(t));
}else{

axy=-lmdaf(t,theta);}

}

if(y==(x+1)){
axy=lmdaf{t,theta);}
if(y==(x-1)){

axy=muf(t);

}

return axy;



}

/% Agf: returns [A(t,theta)gl(z) */

double Agf(z,t,theta)
double t, theta;
int z;
{

double a0,al,a2, Agval;
a2=axyf(t,z,z+1,theta);
at=axyf(t,z,z,theta);
ift(z > 0){
a0=axyf(t,z,z-1,theta);
}
else{
a0=0;
}

Agval=aO»gf(z-1,theta)+al*gf(z,theta)+a2sgf(z+1,theta);

return Agval;

}

/* solif: gets the DME as solution to M_n(theta)=0. Receives sampling
rate beta.DOES NOT generalize to differently defined arrival rate functions
or vector parameters theta

=/

double solif(beta)

double beta;

{

FILE #*in4,*out4;

int zi,n,x0;

double t,pi,ti,cn,bn,kn,mu;
double DME,sinarg,alpha;
in4=fopen("fsmple2”,"r+")};
out4=fopen("Mn","a+");
n=0;

pi= 3.14159265356897932;
t=0.0;

mu=muf(t);

cn=bn=kn=0;

alpha=2spi/24;

fscanf (in4,"%1t/d" &ti,&2i);

x0=2i;
cn+=gt(zi+1,0)-g£(2i,0);
if(zi >=1){
kn+=gf(2i-1,0)-g£(zi,0);}
sinarg=alphasti;

bn+=sin(sinarg)*(gt(zi+1,0)-g£(2i,0));
while(fscanf(in4,"%1z",&ti) !=EOF){

fscanf(ing,"%d",&21);
cn+=gf(zi+1,0)-g£(z2i,0);
if(zi >=1){
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kn+=gf(zi-1,0)-g£(z1,0);

}

sinarg=alphasti;
bn+=sin(sinarg)*(gf(zi+1,0)-g£(2i,0));
}

DME=beta*(gf (zi,0)-gf(x0,0))-mu*skn-bn;
DME=DME/cn;

fclose(outd);

fclose(ingd);

return DME;

}

MLE Specific Functions

/* lmdaprimef: computes integral O to t of the derivative of
of the arrival rate function wrt to theta s/

double lmdaprimef(theta,t)

double theta,t;

{

return t;

}

/* Computes the derivative of the log-likelihood */
double objectivef(theta,tstart,tfinish,truetheta)
double theta,tstart,tfinish,truetheta;

{

FILE *=inmlel,*info;

double infoterm,termi,term2,term3;

double tkil,tk,t,dloglike;

double standerr;

int zk1,zk,count,z;

inmlei=fopen("fmlesim2","r+");

/* this file is used to calculate fishers information for MLE =/
info=fopen("infofile3", "w+");

termi=0;

term2=0;

term3=0;

count=0;

infoterm=0;

fscanf(inmlel,"%1£%d", &t , &z);

tk=t;

zk=2;

while(fscanf(inmlel,"%1f" ,&t) !'= EOF){
fscanf(inmlel,“%d" ,&2);

tki=t;

zk1=2;

count+=1;

if(zki==(zk+1)){

infoterm+=1.0/{1mdaf (tk1l,truetheta)*(Ilmdaf(tkl,truetheta)+muf(tki)));



termi+=pow(lmdaf(tkil,theta),-1);
term2+=lmdaprimef (theta, (tkil-tk));
}
if (zki==(zk-1})
{
term3+=1lmdaprimef (theta, (tki-tk));
}
=zKk1;
tk=tkl;
}
fclose(inmlel);
dloglike=termli-term2-term3;
standerr=pow(infoterm,-.5);
fprintf(info,"%41lf %1f\n",standerr,theta);
fclose(info);
return dloglike;
}

/% bisolvef: solves the likelihood equation */
double bisolvef(start,tstart,tfinish,truetheta)
double start,tstart,tfinish,truetheta;

{

int iter;

double tol,next,objval,increment,oldnext,err;
iter=0;

tol = 0.00000001;

next = start;

increment = 0.1;

err = 5;

while((err > tol) & (iter < 100)) {

objval=objectivef(start,tstart,tfinish, truetheta);

if (objval<0){

oldnext=next;

while(objval< 0) {

oldnext=next;

next = next - increment;

objval=objectivef (next,tstart,tfinish,truetheta);
}

next = oldnext - (next - oldnext)/2.0;

increment = (next - oldnext)/4.0;

}

if(objval > 0) {

while(objval > 0) {

oldnext=next;

next = next + increment;
oijal=objectivef(next,tstart.ttinish,truetheta);
}

next = oldnext + (oldnext - next)/2.0;

increment = (oldnext - next)/4.0;

}
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err = pow(objvalsobjval,.5);
printf£("%1f \n",objval);
iter+=1;

}

return(next);

}
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