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ABSTRACT

Graph Coloring, Zero Forcing, and Related Problems

by

Boris Brimkov

This thesis investigates several problems related to classical and dynamic color-

ing of graphs, and enumeration of graph attributes. In the first part of the thesis,

I present new efficient methods to compute the chromatic and flow polynomials of

specific families of graphs. The chromatic and flow polynomials count the number

of ways to color and assign flow to the graph, and encode information relevant to

various physical applications. The second part of the thesis focuses on zero forcing —

a dynamic graph coloring process whereby at each discrete time step, a colored vertex

with a single uncolored neighbor forces that neighbor to become colored. Zero forcing

has applications in linear algebra, quantum control, and power network monitoring.

A connected forcing set is a connected set of initially colored vertices which forces

the entire graph to become colored; the connected forcing number is the cardinality

of the smallest connected forcing set. I present a variety of structural results about

connected forcing, such as the effects of vertex and edge operations on the connected

forcing number, the relations between the connected forcing number and other graph

parameters, and the computational complexity of connected forcing. I also give ef-

ficient algorithms for computing the connected forcing numbers of different families

of graphs, and characterize the graphs with extremal connected forcing numbers. Fi-

nally, I investigate several enumeration problems associated with zero forcing, such



iii

as the exponential growth of certain families of forcing sets, relations of families of

forcing sets to matroids and greedoids, and polynomials which count the number of

distinct forcing sets of a given size.
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Chapter 1

Background and literature review

This chapter surveys the literature and historical development of chromatic and flow

polynomials, zero forcing, and related topics. See Chapter 2 for graph theoretic

notions and operations used throughout this discussion.

1.1 Graph polynomials

Algebraic graph theory studies properties of graphs by algebraic means. This ap-

proach often leads to elegant proofs and at times reveals deep and unexpected con-

nections between graph theory and algebra. In the last few decades, algebraic graph

theory has developed rapidly, generating a substantial body of literature; the mono-

graphs of Biggs [1] and Godsil and Royle [2] are standard sources on the subject.

A central topic of algebraic graph theory is the study of polynomials associated

with graphs. These polynomials contain important information about the structure

and properties of graphs, and enable its extraction by algebraic methods. In partic-

ular, the values of graph polynomials at specific points, as well as their coefficients,

roots, and derivatives, often have meaningful interpretations.

The study of graph polynomials was motivated by the Four Color Conjecture,

which states that any map can be “face-colored” using four colors so that neighbor-

ing regions do not share the same color; see Figure 1.1 for an example. In 1912,

Birkhoff [4] introduced a polynomial which counts the ways to face-color a planar
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Figure 1.1 : A map colored with four colors (adapted from [3])

graph and attempted to prove the Four Color Conjecture by analyzing the roots

of this polynomial. For planar graphs, the concept of face-coloring is equivalent to

“vertex-coloring”, and in 1932, Whitney [5] generalized Birkhoff’s polynomial to count

vertex-colorings of general graphs; this polynomial is known today as the chromatic

polynomial. The Four Color Conjecture was proved true in 1976 by Appel and Haken

[6] with the help of a computer, though an analytic proof in the vein of Birkhoff’s

attempt is still being sought.

In 1954, Tutte [7] extended the idea of face-coloring to non-planar graphs by

introducing group-valued flows and the associated flow polynomial; the chromatic

and flow polynomials are closely related, and are essentially equivalent in planar

graphs by graph duality. Tutte and Whitney further generalized the chromatic and

flow polynomials into the two-variable Tutte polynomial [8], which includes as special

cases several other graph polynomials such as the reliability and Jones polynomials.

Since then, graph polynomials which are not special cases of the Tutte polynomial

have also been introduced. For instance, Hoede and Li [9] introduced the clique

and independence polynomials, and McClosky, Simms, and Hicks [10] generalized the
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independence polynomial into the co-k-plex polynomial; see Section 1.1.3 for other

examples. Studying these polynomials has been an active area of research: Chia’s

bibliography published in 1997 [11] counts 472 titles on chromatic polynomials alone.

The interest in graph polynomials is in the information they contain about the

properties of graphs and networks, which can be easily obtained by algebraic tech-

niques but is much harder to access through purely graph theoretic approaches. Graph

polynomials also have connections to sciences such as statistical physics, knot the-

ory, and theoretical computer science. The chromatic and flow polynomials remain

two of the most well-studied single-variable graph polynomials, and are a subject of

this thesis; several important results about them are discussed in the remainder of

this section. Dong [12] and Zhang [13] are standard resources on chromatic and flow

polynomials respectively, while Tutte [14] relates the two polynomials in a broader

framework. These monographs provide a number of technical tools for the compu-

tation of chromatic and flow polynomials, some of which are included in this section

and applied in Chapter 3.

1.1.1 The chromatic polynomial

A vertex coloring of G is an assignment of colors to the vertices of G so that no edge

is incident to vertices of the same color. Many problems which involve vertex coloring

(which shall be referred to simply as coloring) are concerned with the following two

questions:

Q1. Can G be colored with t colors?

Q2. In how many ways can G be colored with t colors?
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Clearly, the answer to Q2 contains the answer to Q1 and therefore Q2 is more general

and typically more difficult to answer. In a sense, Q1 is equivalent to asking “What

is the least number of colors needed to color G?” because if G can be colored with t

colors, it can be colored with t + 1 colors as well. Thus, if t∗ is the least number of

colors needed to color G, then Q1 can be answered in the affirmative for all t ≥ t∗

and in the negative for all t < t∗. The parameter t∗ (usually written χ(G)) which

answers Q1 is called the chromatic number of G. The rest of this section will analyze

the chromatic polynomial of G, which counts the number of ways to color G with t

colors and answers Q2.

Let G = (V,E) be a graph with n vertices. Formally, a t-coloring of G is a function

c : V → {1, . . . , t} such that c(u) 6= c(v) for any e = uv ∈ E. Let p(G; t) denote the

number of t-colorings of G for each nonnegative integer t. Figure 1.2 shows all 18

ways to color the house graph H using 3 colors; thus p(H; 3) = 18.

Figure 1.2 : All 3-colorings of the house graph H; p(H; 3) = 18.

There are several equivalent definitions of the chromatic polynomial. Definition 1.1

gives immediate intuition into the nature and purpose of the chromatic polynomial;

see (1.18) for an alternate definition.

D> D> D> D> D> D> 
D> D> D> D> D> D> 
D> D> D> D> D> D> 
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Definition 1.1. The chromatic polynomial P (G; t) is the unique interpolating poly-

nomial of degree at most n of the integer points {(t, p(G; t))}nt=0, where n = |V (G)|.

Let us examine this definition closely. First, we can rightly claim that P (G; t) is the

unique interpolating polynomial of these n+1 points due to the following well-known

theorem (see [15] for a proof).

Theorem 1.1 (Unisolvence Theorem). Let (x0, y0), . . . , (xn, yn) be points in R2 such

that x0 < . . . < xn. Then, there exists a unique polynomial P of degree at most n

such that P (xi) = yi, 0 ≤ i ≤ n.

By definition, the chromatic polynomial counts the number of ways to color G with

n or fewer colors. Figure 1.3 shows a graphical representation of the chromatic poly-

nomial of the house graph H and the points it interpolates. Since H has 5 vertices,

by definition P (H; t) is guaranteed to interpolate p(H; t) for t = {0, 1, 2, 3, 4, 5};

however, notice that P (H; 6) = p(H; 6). In fact, at each nonnegative integer t,

P (H; t) = p(H; t), and this is true for the chromatic polynomial of any graph. This

fact is stated in the following theorem, followed by a proof adapted from [16].

Theorem 1.2. At each nonnegative integer t, P (G; t) = p(G; t).

Proof. If G is a graph with a loop, there can be no proper coloring of G with any

number of colors since the loop will always be incident to vertices of the same color.

Thus, p(G; t) = 0 for all integers t ≥ 0, so P (G; t) = 0 and the claim is true.

Let G be a loopless graph and u, v be two vertices of G. The t-colorings of G can be

split up into those in which u and v have different colors and those in which they have

the same color. Adding the edge uv to G assures that u and v have different colors,

and identifying u and v into a single vertex assures that they have the same color.
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P(H;t)

H
H

P(H;t)

Figure 1.3 : The chromatic polynomial of the House Graph H and the points it
interpolates evaluated for 0 ≤ t ≤ 3 (left) and 0 ≤ t ≤ 6 (right). Note that P (H; 3) =
18 as found in Figure 1.2.

Thus, p(G; t) = p(G + e; t) + p(G/e); equivalently, p(G; t) = p(G − e; t) − p(G/e; t)

for each nonnegative integer t. Note also that if e is an edge of multiplicity greater

than 1, p(G; t) = p(G− e; t).

We will now show by induction on the number of edges that for any loopless

graph G, there exists a degree n polynomial P (G; t) such that P (G; t) = p(G; t)

at each nonnegative integer t. This polynomial must be the chromatic polynomial,

since two polynomials of degree n which agree at n + 1 points must be identical by

Theorem 1.1.

If G is a loopless graph with no edges, each vertex can be colored with any available

color, so p(G; t) = tn and the degree n polynomial P (G; t) = tn satisfies the conditions

of the theorem. Now, suppose G is a loopless graph with m ≥ 1 edges and n vertices.

If G has an edge e of multiplicity greater than 1, it is easy to see that G − e is

loopless and has n vertices and m− 1 edges. By induction, there exists a polynomial

P (G − e; t) of degree n equal to p(G − e; t) for all nonnegative integers t. Thus, we

define P (G; t) = P (G− e; t), so that P (G; t) = P (G− e; t) = p(G− e; t) = p(G; t), at

p( ;t) 

20 p( ;t) 

2500 

10 1500 

500 

0 2 3 0 2 3 4 5 6 



7

all nonnegative integers t, and P (G; t) has degree n.

If every edge of G has multiplicity 1, let e be any edge of G. It is easy to

see that G − e is loopless and has n vertices and m − 1 edges, and that G/e is

loopless and has n− 1 vertices and m− 1 edges. Hence, by induction, there exists a

polynomial P (G − e; t) of degree n equal to p(G − e; t) for all nonnegative integers

t, and a polynomial P (G/e; t) of degree n − 1 equal to p(G/e; t) for all nonnegative

integers t. Thus, we define P (G; t) = P (G − e; t) − P (G/e; t), so that P (G; t) =

P (G− e; t)−P (G/e; t) = p(G− e; t)− p(G/e; t) = p(G; t), at all nonnegative integers

t, and P (G; t) has degree n. This completes the induction.

The dependence of the chromatic polynomial on t is often implied in the context;

if there is no scope for confusion, P (G; t) can be abbreviated to P (G). By convention,

the graph with no vertices has chromatic polynomial equal to 1; this graph will be

excluded from further considerations.

Properties

Trivially, G can be colored by assigning a different color to each vertex; thus, χ(G) ≤

n. Unless t = χ(G), it is possible to have unused colors in a t-coloring; if t > n,

this becomes necessary. If t2 > t1 ≥ χ(G), any t1-coloring is also a t2-coloring and

p(G; t2) > p(G; t1). Thus, the sequence {p(G; t)}∞t=0 starts with χ(G) zeroes and then

strictly increases. The behavior of the chromatic polynomial of a general graph is

pictured in Figure 1.4.

The coefficients, derivatives, roots, and values of the chromatic polynomial at

certain points contain various information about the graph and are widely studied.

Below are several characteristics of the chromatic polynomial evaluated at specific

points.

D 
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0 n(G)

P(G;t)

Figure 1.4 : General appearance of the chromatic polynomial in the first quadrant.

• P (G; t) is the number of t-colorings of G for any nonnegative integer t.

• The chromatic number of G is the smallest positive integer t for which P (G; t) >

0. It can be determined by evaluating P (G; t) at t = 1, . . . , n (or faster, by a

form of binary search).

• For any integers t2 > t1 ≥ χ(G), P (G; t2) > P (G; t1).

• Stanley [17] gives a combinatorial interpretation of the chromatic polynomial

evaluated at negative integers in terms of orientations of G. In particular,

|P (G;−1)| is the number of acyclic orientations of G.

Let P (G; t) = cnt
n + cn−1t

n−1 + . . . + c1t + c0. The coefficients of the chromatic

polynomial have the following properties:

• c0, . . . , cn are integers.

• cn = 1.

• cn−1 = −m where m is the number of edges of G.

• If m 6= 0,
∑n

i=1 ci = 0; if m = 0, P (G; t) = tn and
∑n

i=1 ci = 1.

p{G;t) 

X 
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• c0, . . . , ck−1 = 0 and ck, . . . , cn 6= 0 where k is the number of components of G.

• ci ≥ 0 if i = n mod 2, ci ≤ 0 if i 6= n mod 2, i.e., the coefficients alternate signs.

• c1, . . . , cn−1 are #P-hard to compute, even for bipartite and planar graphs [18].

• The sequence {|ci|}ni=0 is log-concave, i.e., |ci|2 ≥ |ci−1||ci+1| for 0 < i < n [19].

This also implies it is unimodal, i.e., for some ci, |c1| ≤ . . . ≤ |ci| ≥ . . . ≥ |cn|.

The log-concavity of the chromatic polynomial was a long-standing conjecture

of Read [20]; it was proven true for outerplanar graphs [21] and some other

special families, before being settled recently for all graphs by Huh [19].

The derivative of the chromatic polynomial has interesting properties as well, in

particular when evaluated at 1. The quantity θ(G) = (−1)n d
dt
P (G; t)

∣∣
t=1

is called the

chromatic invariant of G and has been widely studied. Below are two results due to

Crapo [22] and Brylawski [23], respectively; in addition, see [24, 25] for combinatorial

interpretations of θ(G).

• θ(G) 6= 0 if and only if G is biconnected.

• θ(G) = 1 if and only if G is series-parallel. Series-parallel (SP) graphs are used

to model electrical circuits. It is useful to know that a graph is SP because

many NP-hard problems can be solved in linear time over SP graphs (cf. [26]).

Finally, the roots of P (G; t) — called the chromatic roots of G — contain significant

information about the structure of G. The set of chromatic roots of all graphs (or

of special families of graphs) is interesting in its own right; recall that Birkhoff’s

motivation for introducing the chromatic polynomial was to investigate gaps in the

set of chromatic roots of planar graphs in order to prove the Four Color Theorem.

-
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• The number of biconnected components of G is the multiplicity of the root ‘1’

of P (G; t) [27].

• If P (G; t) has a noninteger root less than or equal to h ≈ 1.29559, then G has

no Hamiltonian path [28]. Thus, if the chromatic polynomial of a graph can be

found efficiently, its roots can be approximated to an appropriate precision to

check whether the Traveling Salesman Problem has no solution on the graph.

• Let R be the set of all chromatic roots (of all graphs). R is dense in [32/27,∞)

[29] and dense in C [30]. Moreover, R∩ (−∞, 32/27) = {0, 1}, i.e., there are no

real chromatic roots less than 32/27 other than 0 and 1 [31].

• Not every complex number and real number in [32/27,∞) is a chromatic root;

for example, φ+ 1 =
√
5+3
2

is not a root of any chromatic polynomial [32].

• 5-Color Theorem [33]: Planar graphs have no real chromatic roots in [5,∞).

• 4-Color Theorem [6]: 4 is not a chromatic root of planar graphs. Appel and

Haken proved this by eliminating a long list of minimum counterexamples us-

ing a computer; it is still an open problem to prove the 4-Color Theorem by

analyzing chromatic roots.

◦ Birkhoff-Lewis Conjecture [34]: Planar graphs have no real roots in [4,∞).

Naturally, the chromatic polynomial is often used in graph coloring problems,

which are widely applicable in scheduling, resource allocation, and pattern matching.

Read [20] gives two specific applications of the chromatic polynomial to the construc-

tion of timetables and the allocation of channels to television stations; see Kubale’s

monograph [35] for more graph coloring problems.
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The chromatic polynomial is also used in statistical physics to model the be-

havior of ferromagnets and crystals; in particular, it is the zero-temperature limit

of the anti-ferromagnetic Potts model. The limit points of the roots of chromatic

polynomials indicate where physical phase transitions may occur [36]. Finally, the

chromatic polynomial is related to the Stirling numbers [37, 38], the Beraha numbers

[39], and the golden ratio [40], and thus finds applications in a variety of analytic and

combinatorics problems.

Computation

Computing the chromatic polynomial of a graph from its definition is highly impracti-

cal. Fortunately, there are several well-known formulas which aid in this computation

by reducing the chromatic polynomial of a graph into that of smaller graphs. The

most notable of these is the deletion-contraction formula, which is discussed next.

Let G = (V,E) be a graph and u and v be two vertices of G. The t-colorings

of G can be split up into those in which u and v have different colors and those in

which they have the same color. Adding the edge uv to G assures that u and v have

different colors, and identifying u and v into a single vertex assures that they have

the same color. Thus, for every coloring of G in which u and v have different colors,

there is exactly one coloring of G + uv and for every coloring of G in which u and v

have the same color, there is exactly one coloring of G/uv. This observation yields

the addition-contraction formula:

P (G) = P (G+ e) + P (G/e) for any e = uv, where u, v ∈ V. (1.1)

Note that this formula is only valid when the edge e does not already exist in the

graph. Alternately, we can set H = G − e for some edge e of G; then, P (G − e) =
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P (H) = P (H + e) + P (H/e) = P (G) + P ((G − e)/e), but (G − e)/e = G/e, so

P (G) = P (G− e)− P (G/e). This yields the deletion-contraction formula:

P (G) = P (G− e)− P (G/e) for any e = uv, where u, v ∈ V. (1.2)

Equations 1.1 and 1.2 can be used recursively to compute the chromatic polyno-

mial of any graph G. In particular, each application of (1.2) reduces G into two graphs

each with one fewer edge and, after enough iterations, into graphs with no edges;

thus, P (G) can be expressed as a linear combination of the chromatic polynomials of

empty graphs. Similarly, (1.1) can be used to express P (G) as a linear combination of

the chromatic polynomials of complete graphs. The chromatic polynomials of empty

graphs and complete graphs can be computed directly using combinatorial arguments

as shown in Examples 1.1 and 1.2.

The Combinatorica package of the computer algebra system Mathematica has a

ChromaticPolynomial function which uses the addition-contraction formula to com-

pute the chromatic polynomials of dense graphs, and the deletion-contraction formula

for sparse graphs [41]. Version 10 of Mathematica has a more efficient implementation

of the deletion-contraction algorithm built into the Wolfram System.

It can be shown (cf. [42]) that an algorithm based on the recurrences (1.1) and

(1.2) has a worst-case run time of O(φn+m), where φ = 1+
√
5

2
is the golden ratio.

Some improvements on this algorithm have been made by Bjorklund [43]. With a

priori information about the structure of the graph, the run time of this algorithm

can be improved significantly; in particular, the order of the edges being contracted

and deleted can be chosen strategically to obtain large subgraphs whose chromatic

polynomials are known. Moreover, there are polynomial time algorithms for comput-

ing the chromatic polynomials of graphs with bounded clique-width and tree-width.
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In particular, Makowsky et al. [44] show that P (G) can be computed in O(nf(w))

time, where w is the clique-width of G and f(w) ≤ 3 ·2w+2. However, even for w = 2,

this yields a worst-case run time of O(n48). Similarly, Andrzejak’s algorithm [45] for

computing the Tutte polynomials of graphs of tree-width t has a worse-case run time

of O(n109.6) when t = 2. Thus, these algorithms are principally of theoretical value.

In addition to formulas (1.1) and (1.2), there are several other reduction formulas

for chromatic polynomials which are outlined next; see Tutte [14] for detailed proofs.

If G has two subgraphs whose intersection is a clique, then the chromatic polynomials

of those subgraphs can be combined to compute the chromatic polynomial of G in

the following way:

If G = G1 ∪G2 and G1 ∩G2 = Kr, then P (G) =
P (G1)P (G2)

P (Kr)
. (1.3)

Note that cut vertices are cliques of size 1, so this formula can be used to separate a

graph into biconnected components to find its chromatic polynomial. Furthermore,

disjoint components of a graph can be colored independently; thus, to compute the

chromatic polynomial of a disconnected graph, it suffices to compute the chromatic

polynomials of each component separately:

If G = G1 ∪G2 and G1 ∩G2 = ∅, then P (G) = P (G1)P (G2). (1.4)

If G has a vertex v which is connected to every other vertex in G, then

P (G; t) = tP (G− v; t− 1). (1.5)

Equivalently, this formula can be used to compute the chromatic polynomial of a

vertex join GV of G as shown below:
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P (GV ; t) = tP (G; t− 1). (1.6)

Finally, multiple edges between vertices u and v have no more effect on the coloring

of G than a single edge between u and v; thus,

If e ∈ E is a multiple edge, then P (G) = P (G− e). (1.7)

This implies that the chromatic polynomial of a multigraph is equal to the chro-

matic polynomial of its underlying simple graph and that the chromatic polynomial

is invariant under amallamorphism. However, it is still sometimes useful to consider

the chromatic polynomials of graphs with multiple edges because the duals of these

graphs form a more general family. This matter is discussed further in Remark 3.1.

Using the decomposition techniques outlined thus far along with simple combi-

natorial arguments, closed formulas for the chromatic polynomials of some specific

graphs can be derived. Some of these closed formulas will be used in Chapter 3

to compute the chromatic polynomials of more complex graphs. For more detailed

proofs and other examples, see [12].

Example 1.1. Let (Kn)c be the empty graph on n vertices. Given t available colors,

each vertex in (Kn)c can be colored independently in t ways. Thus,

P ((Kn)c; t) = tn. (1.8)

Example 1.2. Let Kn be the complete graph on n vertices. Since all vertices in Kn

are mutually adjacent, after fixing the color of one arbitrary vertex, each successive

vertex can be colored in one fewer ways. With t available colors, the first vertex can

be colored in t ways, the second in t− 1 ways, etc., so

P (Kn; t) = t(t− 1) . . . (t− (n− 1)) =
n−1∏
i=0

(t− i). (1.9)
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Example 1.3. Let G be an arbitrary tree on n vertices. A tree on one vertex can be

colored in t ways, and adding a leaf vertex to a tree increases the number of colorings

by a factor of t−1, since the added vertex cannot have the same color as its neighbor.

Thus,

P (G; t) = t(t− 1)n−1. (1.10)

Example 1.4. Let Cn be the cycle on n vertices. Applying the deletion-contraction

formula to an arbitrary edge yields a tree and a cycle on n − 1 vertices; using this

formula recursively yields

P (Cn; t) = (t− 1)n + (−1)n(t− 1). (1.11)

Example 1.5. Let Wn be the wheel with n spokes. A wheel is a vertex join of a

cycle on n vertices; applying (1.6) to (1.11) yields

P (Wn; t) = t
(
(t− 2)n−1 + (−1)n−1(t− 2)

)
. (1.12)

1.1.2 The flow polynomial

A plane graph G has a well-defined dual whose vertices correspond to faces of G, so in

plane graphs, the concept of face-coloring is essentially equivalent to vertex-coloring.

However, face-coloring cannot be defined on general graphs in the same sense as on

planar graphs, since non-planar graphs do not have well-defined faces (in a planar

embedding). To this end, Tutte introduced the theory of group- and integer-valued

flows as a way to extend face-coloring from planar graphs to general graphs. A group-

valued (respectively, integer-valued) flow on an orientation of G is an assignment of

values to the edges of G from an Abelian group (respectively, from a set of integers)

so that flow is conserved at each vertex of G.
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The theory of group- and integer-valued flows is connected to some of the deepest

and most challenging notions in graph theory such as the cycle-double cover conjecture

[46] and the Four Color Theorem. Many problems which involve flows are concerned

with whether a graph admits a certain flow, and if so — in how many different ways.

Just as the chromatic polynomial counts the number of graph colorings, there is a

flow polynomial which counts the number of group-valued flows on a given graph.

Defining and studying this polynomial will be the subject of this section. To this

end, recall first the definition of an Abelian algebraic group.

Definition 1.2. An Abelian group (A,+) is an ordered pair consisting of a set A and

a binary operation ‘+’ which together satisfy the following conditions:

Closure: a, b ∈ A =⇒ a+ b ∈ A

Associativity: a, b, c ∈ A =⇒ a+ (b+ c) = (a+ b) + c

Identity element: ∃ 0 ∈ A such that 0 + a = a+ 0 = a ∀a ∈ A

Inverse elements: ∀a ∈ A ∃ (−a) ∈ A such that a+ (−a) = (−a) + a = 0

Commutativity: a, b ∈ A =⇒ a+ b = b+ a.

When there is no scope for confusion, the group (A,+) is abbreviated as A; the

cardinality of group (A,+) is equal to |A|, the number of elements in A. A finite

Abelian group is an Abelian group of finite cardinality. A simple example of a finite

Abelian group is the cyclic group (Zt,+) where Zt = {0, 1, . . . , t − 1} and ‘+’ is

addition modulo t. In fact, Zt is essentially the only finite Abelian group that will be

required in the context of this chapter. With this in mind, a group-valued flow can

be defined as follows.
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Definition 1.3. Let A be a finite Abelian group and G = (V,E) be a graph with a

fixed orientation. An A-flow on this orientation of G is a function φ : E → A such

that for each v ∈ V ,
∑

h(e)=v φ(e) =
∑

t(e)=v φ(e). An A-flow φ is nowhere-zero if

φ(e) 6= 0 for all e ∈ E.

The condition
∑

h(e)=v φ(e) =
∑

t(e)=v φ(e) in Definition 1.3 is sometimes called

Kirchhoff’s Law (commonly applied as the principle of conservation of energy in

electrical circuits) and means that the total flow entering each vertex is equal to the

total flow leaving each vertex. Nowhere-zero A-flows are also called group-valued flows

and modular flows. Taking A = Z and |φ(e)| < t for each e ∈ E in the definition

above yields another type of flow called a nowhere-zero t-flow. This is stated more

formally as follows.

Definition 1.4. Let G = (V,E) be a graph with a fixed orientation. A nowhere-zero

t-flow on this orientation of G is a function φ : E → {−(t−1), . . . , (t−1)}\{0}, such

that for each v ∈ V ,
∑

h(e)=v φ(e) =
∑

t(e)=v φ(e).

Nowhere-zero A-flows and nowhere-zero t-flows (also called integer-valued flows)

are closely related but not identical; the likeness in meaning and nomenclature of these

two concepts warrants caution. The similarities and differences between group-valued

and integer-valued flows are now discussed.

First, it is easy to see that the orientation of G in the definitions above is irrelevant.

If φ is a nowhere-zero A-flow on a certain orientation of G and a new orientation of

G is obtained by reversing the direction of some edge e0, then

φ̂(e) =

 φ(e) if e 6= e0

−φ(e) if e = e0

(1.13)
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is a nowhere-zero A-flow on the new orientation of G (where −φ(e) is the inverse

element of φ(e)). Thus, if some orientation of G has a nowhere-zero A-flow, every

orientation of G has a nowhere-zero A-flow; moreover, the number of nowhere-zero A-

flows is the same in all orientations of G. An analogous result holds for nowhere-zero

t-flows.

In addition, Tutte [7] showed that when A is finite, the existence and number

of nowhere-zero A-flows does not depend on the algebraic structure of A but only

on its cardinality. Thus, without loss of generality, the group A in a nowhere-zero

A-flow with |A| = t can be taken to be Zt. Tutte also showed that G has a nowhere-

zero t-flow if and only if it has a nowhere-zero Zt-flow. However, the number of

nowhere-zero t-flows on G is not necessarily the same as the number of nowhere-zero

Zt-flows. Finally, a graph with a bridge b does not admit a nowhere-zero t-flow or a

nowhere-zero Zt-flow, since a non-zero flow on b would create a non-zero total outflow

from some component of G − b (see Lemma 1.1 for more details). These results are

summarized in the following theorem.

Theorem 1.3 (Tutte [7, 14]). Let G be a bridgeless graph with a fixed orientation and

A be an Abelian group with |A| = t. Then, the following statements are equivalent:

1. G has a nowhere-zero t-flow

2. G has a nowhere-zero Zt-flow

3. G has a nowhere zero A-flow

4. Every orientation of G has a nowhere-zero t-flow

5. Every orientation of G has a nowhere-zero Zt-flow

6. Every orientation of G has a nowhere-zero A-flow.
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Let G = (V,E) be a graph with n vertices, m edges, and k components and let

f(G; t) denote the number of nowhere-zero Zt-flows on G for each positive integer t.

Figure 1.5 shows the two nowhere-zero Z3-flows and the six nowhere-zero Z4-flows on

an orientation of the house graph H; thus f(H; 3) = 2 and f(H; 4) = 6.
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Figure 1.5 : Left: All nowhere-zero Z3-flows on an orientation of the house graph H;
f(H; 3) = 2. Right: All nowhere-zero Z4-flows on H; f(H; 4) = 6.

The following lemma of Tutte [14] allows nowhere-zero Zt-flows to be counted

recursively; it will be useful in defining and computing the flow polynomial.

Lemma 1.1. Let G be a graph and e be an edge of G. Then, for each positive integer

t,

f(G; t) =



f(G/e; t)− f(G− e; t) if e is not a loop

(t− 1)f(G− e; t) if e is a loop

(t− 1) if G = C1

0 if G has a bridge

(1.14)

Proof. If e is a loop, then f(G; t) = (t − 1)f(G − e; t), since there are f(G − e; t)

nowhere-zero Zt-flows on G− e, and any of the t− 1 nonzero members of Zt can be

assigned to e to produce a nowhere-zero flow on G.

D> D> 

D> D> 

D> D> 

D> D> 
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Next, suppose e is not a loop. Let f1 be the set of Zt-flows which are nowhere-zero

on G− e and in which e may have 0 flow. For every Zt-flow in f1, there is exactly one

nowhere-zero Zt-flow on G/e. Let f2 be the set of Zt-flows which are nowhere-zero

on G − e and in which e does have 0 flow. For every Zt-flow in f2, there is exactly

one nowhere-zero Zt-flow on G− e. The nowhere-zero Zt-flows on G can be obtained

by subtracting f2 from f1. Thus, f(G, t) = f(G/e, t) − f(G − e, t) for any non-loop

edge e.

Now consider the graph C1 consisting of one loop; f(C1; t) = t − 1 since each of

the t − 1 nonzero members of Zt can be assigned to the loop to produce a non-zero

flow.

Finally, suppose G has a bridge b, let B be the component of G containing b,

and let B1 and B2 be the two disconnected subgraphs of B obtained by deleting b.

Without loss of generality, suppose b is directed from B1 to B2 in some orientation of

G. Next, let φ be a nowhere-zero Zt-flow and for any v ∈ V and S ⊂ V , define:

φ+(v) =
∑

e:t(e)=v,h(e)6=v

φ(e) (total flow into v)

φ−(v) =
∑

e:h(e)=v,t(e)6=v

φ(e) (total flow out of v)

φ+(S) =
∑

e:t(e)∈S,h(e)/∈S

φ(e) (total flow into S)

φ−(S) =
∑

e:h(e)∈S,t(e)/∈S

φ(e) (total flow out of S).

Since φ must obey conservation of flow, φ+(v) − φ−(v) = 0 for all v ∈ B1. Also,

φ+(B1) 6= 0 since b is the only edge satisfying {e : t(e) ∈ B1, h(e) /∈ B1}, and

φ−(B1) = 0 since there are no edges satisfying {e : h(e) ∈ B1, t(e) /∈ B1}. Then,

0 =
∑

v∈B1
(φ+(v)− φ−(v)) = φ+(B1)− φ−(B1) 6= 0, which is a contradiction. Thus,
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if G has a bridge, it cannot admit a nowhere-zero Zt-flow, so f(G; t) = 0 for all

positive integers t.

With this in mind, the flow polynomial can be defined as the polynomial that

counts nowhere-zero Zt-flows on G. There are several equivalent definitions of the flow

polynomial; the one given below mirrors the definition of the chromatic polynomial

and gives intuition into the nature and purpose of the flow polynomial. See (1.19) for

an alternate definition.

Definition 1.5. The flow polynomial F (G; t) is the unique interpolating polynomial

of degree at most m− n+ k of the integer points {(t, f(G; t))}m−n+k+1
t=1 , where m, n,

and k are the number of edges, vertices, and components in G, respectively.

Figure 1.6 shows a graphical representation of the flow polynomial of the house

graph H and the points it interpolates. Since H has 6 edges, 5 vertices, and 1

connected component, by definition F (H; t) is guaranteed to interpolate f(H; t) for

t = {1, 2, 3}; however, notice that F (H; 4) = f(H; 4). In fact, at each positive integer

t, F (H; t) = f(H; t), and this is true for the flow polynomial of any graph. This fact

is stated in the following theorem.

Theorem 1.4. At each positive integer t, F (G; t) = f(G; t).

Proof. By Lemma 1.1, if G has a bridge, f(G; t) = 0 for all integers t > 0, so

F (G; t) = 0 and the claim is true. We will now show by induction on the number of

edges that for any bridgeless graph G, there exists a degree m − n + k polynomial

F (G; t) such that F (G; t) = f(G; t) at each positive integer t. This polynomial must

be the flow polynomial, since two polynomials of degree m − n + k which agree at

m− n+ k + 1 points must be identical by Theorem 1.1.

D 
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F(H;t)

H

Figure 1.6 : The flow polynomial of the House Graph H and the points it interpolates
evaluated for 1 through 5. Note that F (H; 3) = 2 and F (H; 4) = 6 as found in
Figure 1.5.

If G is a bridgeless graph with one edge, that edge must be a loop, so f(G; t) = t−1

by Lemma 1.1. Moreover, m − n + k = 1 since n = k and m = 1, so the degree 1

polynomial F (G; t) = t− 1 satisfies the conditions of the theorem.

Now, suppose G is a bridgeless graph with m > 1 edges, n vertices, and k com-

ponents, and let e be an edge of G. If e is not a loop, it is easy to see that G/e

is bridgeless and has k components, n − 1 vertices and m − 1 edges. Thus, by in-

duction, there exists a polynomial F (G/e; t) of degree m − n + k equal to f(G/e; t)

for all positive integers t. Similarly, G − e has k components, n vertices, and m − 1

edges. If G − e is bridgeless, by induction there exists a polynomial F (G − e; t) of

degree m − n + k − 1 equal to f(G − e; t) for all positive integers t; if G − e has a

bridge, F (G − e; t) = 0. Thus, we define F (G; t) = F (G/e; t) − F (G − e; t), so that

F (G; t) = F (G/e; t)− F (G− e; t) = f(G/e; t)− f(G− e; t) = f(G; t), at all positive

integers t, and F (G; t) has degree m− n+ k.

If e is a loop, it is easy to see that G/e is bridgeless and has k components, n

vertices and m − 1 edges. Thus, by induction, there exists a polynomial F (G/e; t)

f( ;t) 

15 

10 

5 

2 3 4 5 
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of degree m− n+ k − 1 equal to f(G/e; t) for all positive integers t. By Lemma 1.1

f(G; t) = (t − 1)f(G − e; t); thus, we define F (G; t) = (t − 1)F (G − e; t), so that

F (G; t) = (t − 1)F (G − e; t) = (t − 1)f(G − e; t) = f(G; t), and F (G; t) has degree

m− n+ k. This completes the induction.

Remark 1.1. It should be noted that while the chromatic polynomial is often intro-

duced rigorously in textbooks and papers, such introductions to the flow polynomial

are somewhat rare in the literature. The proofs of Lemma 1.1 and Theorem 1.4 in-

cluded here are modeled after the discussions and proofs in [47, 13, 14] and attempt

to provide (perhaps for the first time) a unified and rigorous introduction to the flow

polynomial.

Note that the number of nowhere-zero t-flows is generally not equal to F (G; t);

however, F (G; t) > 0 if and only if G admits a nowhere-zero t-flow. The dependence

of the flow polynomial on t is often implied in the context; if there is no scope

for confusion, F (G; t) can be abbreviated to F (G). By convention, the graph with

zero edges has flow polynomial equal to 1; this graph will be excluded from further

considerations in this section.

Just as the chromatic number χ(G) is the smallest number of colors needed to

color G, the flow number of G, written ψ(G), is the smallest positive t for which G has

a nowhere-zero t-flow (and therefore a nowhere-zero Zt-flow). While the chromatic

number of a graph can be arbitrarily high (for example, χ(Kn) = n), the same is not

true for the flow number – in fact, Seymour [48] showed that the flow number of any

graph is at most 6. Nevertheless, for any t, deciding whether G has a nowhere-zero

t-flow is an NP-hard problem. Indeed, even for planar graphs and t = 3, this problem

is NP-complete [49].

D 
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Properties

Knowing the flow polynomial of a graph allows the flow number to be determined in

linear time. In addition, the coefficients, roots, and values of the flow polynomial at

certain points contain various information about the graph. Below are several char-

acteristics of the flow polynomial of a bridgeless graph G with n vertices, evaluated

at specific points.

• F (G; t) is the number of nowhere-zero Zt-flows on G for any positive integer t.

• In general, for a positive integer t, F (G; t) is not the number of nowhere-zero t-

flows on G; however, G admits a nowhere-zero t-flow if and only if F (G; t) > 0.

Recently, Kochol [50] showed that there is a polynomial FZ(G; t) 6= F (G; t)

which counts the number of nowhere-zero t-flows in G, and that F and FZ can

be used to estimate one another.

• 6-flow Theorem: F (G; 6) > 0, i.e., every bridgeless graph admits a nowhere-

zero 6-flow. This result is due to Seymour [48] and is an improvement over the

earlier result of Jaeger and Kilpatrick who showed that every bridgeless graph

has a nowhere-zero 8-flow [51, 52].

◦ 5-flow Conjecture [7]: F (G; 5) > 0, i.e., every bridgeless graph has a nowhere-

zero 5-flow. This conjecture cannot be strengthened to “F (G; 4) > 0”, since,

e.g., the Petersen graph does not admit a nowhere-zero 4-flow.

• The flow number of G is the smallest positive integer t for which F (G; t) > 0.

In view of the 6-flow Theorem, ψ(G) can be determined by evaluating F (G; t)

at t = 1, . . . , 5.

• For any integers t2 ≥ t1 ≥ ψ(G), F (G; t2) ≥ F (G; t1).
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• Stanley and Noy [17, 53] give a combinatorial interpretation of the flow polyno-

mial evaluated at negative integers in terms of orientations of G. In particular,

|F (G;−1)| is the number of totally cyclic orientations of G.

• F (G; 1) = 0, i.e., no graph admits a nowhere-zero 1-flow.

• F (G; 2) > 0 if and only if G is Eulerian.

• F (G; t) > 0 for all real t > 2 log2 n [54]. This result is particularly useful for

graphs with few vertices but many double edges and loops.

Let F (G; t) = fνt
ν + . . . + f1t + f0. The coefficients of the flow polynomial have the

following properties:

• f0, . . . , fν are integers.

• fν = 1.

• Computing f0, . . . , fν is #P-hard, even for bipartite planar graphs [18].

• Dong and Koh [55] have shown that for 0 ≤ i ≤ ν, |fi| is bounded above by the

coefficient of ti in the expansion of a fixed polynomial of degree ν.

The degree ν of the flow polynomial has several interesting properties as well. Let G

be a graph with m edges, n vertices, and k components; then,

• The degree ν of F (G; t) is equal to m − n + k. This quantity is called the

cyclomatic number of G, written ν(G).

• The cyclomatic number is equal to dimension of the cycle space of G — the

set of all even subgraphs of G. There are many other connections between
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integer flows and the cycle space of G, especially involving cycle covers; Zhang’s

monograph [13] is dedicated to this subject.

• A control flow graph is a directed graph representation of the different decision

paths that can be taken in all possible executions of a computer program (cf.

[56]). McCabe [57] introduced the cyclomatic complexity number of a program

as a measure of a program’s complexity; this number is the cyclomatic number

of the corresponding control flow graph. It is interpreted as the amount of

decision logic in a program and a high cyclomatic complexity number correlates

with a high error rate of the program.

Finally, the flow polynomial contains information about the edge-connectivity of the

graph. Below are some results about the existence of flows under given conditions.

Recall that a graph has a nowhere-zero t-flow if and only if it has a nowhere-zero

Zt-flow if and only if F (G; t) > 0; thus, the following results can also be stated in

terms of the flow polynomial; for example, the first item below can be interpreted as

“If F (G; 3) = 0, then G is not 6-edge-connected”.

• Every 6-edge-connected graph has a nowhere-zero 3-flow [58]. This was an

improvement over Thomassen’s result that every 8-edge-connected graph has a

nowhere-zero 3-flow [59]. Both of these important results are very recent, and

have encouraged further research in the field.

• 4-flow Theorem [60]: Every 4-edge-connected graph has a nowhere-zero 4-flow.

◦ 3-flow Conjecture [61]: Every 4-edge-connected graph has a nowhere-zero 3-flow.

Some progress on this conjecture has recently been made in [62, 63, 64].

• A 3-regular graph admits a nowhere-zero 3-flow if and only if it is bipartite [60].
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In addition to its algebraic and combinatorial properties, the flow polynomial

also has applications in crystallography and statistical mechanics as it is related to

models of ice and crystal lattices (see [65]). In ice, each oxygen atom is connected by

hydrogen bonds to four other oxygen atoms; each hydrogen bond contains a hydrogen

atom which is closer to one of the two oxygen atoms it connects [66]. This structure

can be represented by a directed graph, where the oxygen atoms are the vertices and

the hydrogen bonds are directed edges pointing to the closer oxygen atom. The flow

polynomial of such a graph can be used to count the number of permissible atomic

configurations which conform to physical restrictions. In turn, this can be used to

model the physical properties of ice and several other crystals, including potassium

dihydrogen phosphate [67].

Computation

Just as the chromatic polynomial can be computed for general graphs using the

deletion-contraction and addition-contraction formulas, so too can the flow polyno-

mial be computed using the equations in Lemma 1.1 recursively; an algorithm based

on these recursions is featured in Version 10 of Mathematica. The computational

analysis of such an algorithm is analogous to the one given in the previous section for

the chromatic polynomial.

Furthermore, if a graph G has k > 1 components, the following identity allows

the flow polynomial of each component to be found separately:

If G = G1 ∪G2 and G1 ∩G2 = ∅, then F (G) = F (G1)F (G2). (1.15)

In fact, since flow is measured over edges and not vertices, this claim can be strength-

ened to biconnected components:
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If G = G1 ∪G2 and G1 ∩G2 = {v}, then F (G) = F (G1)F (G2). (1.16)

See [14] for proofs of these identities and [13, 68] for other decomposition formu-

las. In addition, for planar graphs, many of the identities developed for chromatic

polynomials can also be used in the computation of flow polynomials. Intuitively,

in planar graphs, vertex coloring is equivalent to face-coloring, and face-coloring is

generalized by nowhere-zero flows. Thus, it can be expected that the chromatic and

flow polynomials are very similar in planar graphs. Indeed, the following result by

Jaeger [69] confirms this intuition:

If G is planar, then F (G) =
1

t
P (G∗). (1.17)

Thus, in planar graphs, the identities developed for chromatic polynomials can also

be used in the computation of flow polynomials. For example, this duality relation is

used in Chapter 3 to compute the flow polynomials of outerplanar graphs from the

chromatic polynomials of their duals.

1.1.3 Other graph polynomials

As mentioned earlier, the chromatic and flow polynomials are special cases of the

two-variable Tutte polynomial T (G;x, y), which contains a great deal of information

about the graph and has many far-reaching connections. A detailed study of the Tutte

polynomial is outside the scope of this thesis, but it is worth noting the following

relations between the Tutte polynomial and the chromatic and flow polynomials.

P (G; t) = (−1)n−ktkT (G; 1− t, 0) =
∑
S⊂E

(−1)|S|tcomp(G:S) (1.18)

F (G; t) = (−1)m−n+kT (G; 0, 1− t) = (−1)m
∑
S⊂E

(−1)|S|tν(G:S) (1.19)

-
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Here, comp(G : S) is the number of connected components in the spanning graph

G : S, and ν(G : S) is the cyclomatic number of G : S. These closed formulas are

alternate definitions for the chromatic and flow polynomials of any graph. However,

the summation in these closed formulas is over an exponentially large set, since |{S :

S ⊂ E}| = O(2n
2
). Thus, these closed formulas cannot be efficiently used in practice

to compute chromatic and flow polynomials. Another useful identity of Kook, Reiner,

and Stanton [70] expresses the Tutte polynomial in terms of the chromatic and flow

polynomials of its minors:

T (G;x, y) =
∑
S⊂E

T (G/S;x, 0)T (G : S; 0, y). (1.20)

Sokal [71] surveys the applications of the Tutte polynomial and its single-variable

specializations to statistical mechanics, solid-state physics, and electrical circuit the-

ory. In addition, his survey brings out many connections and relations between graph

polynomials, matroids, and practical models.

Besides the chromatic and flow polynomials, the Tutte polynomial of a connected

graph G also contains as special cases the bad coloring polynomial, which counts all

possible colorings of G (not just proper colorings), the reliability polynomial, which

measures the probability that deleting an edge of G with fixed probability p does

not disconnect G, the shelling polynomial, which deals with orderings of the facets of

simplicial complexes associated with G, and the Jones polynomial, which deals with

knots associated with G; see [72, 73, 74] for more details. These polynomials have

a number of important applications in physics, engineering, and combinatorics; they

are also useful for computing or estimating certain graph invariants, which are of

interest in extremal graph theory and are important characteristics of large networks

[75, 76, 77]. For example, the reliability polynomial is used in network theory to
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model the resilience of a network to random edge failures [73].

Graph polynomials which are not direct specializations of the Tutte polynomial

have also been studied. For example, the domination polynomial [78] of a graph G

counts the number of dominating sets of G of size d. Work in this direction includes

derivations of recurrence relations [79], analysis of the roots [80], and characterizations

for specific graphs [81, 82]. Similar results have been obtained for the connected

domination polynomial [83], independence polynomial [84], clique polynomial [85],

vertex cover polynomial [86], and edge cover polynomial [87], which are defined as

the generating functions of their eponymous sets. For more definitions, results, and

applications of graph polynomials, see the survey of Ellis-Monaghan and Merino [88]

and the bibliography therein.

1.2 Zero forcing and related problems

In contrast to the classical static vertex and face colorings discussed in the previous

sections, an assortment of dynamically evolving graph colorings have gained promi-

nence in recent years. These coloring processes — known as zero forcing, infection,

propagation, and by several other names — arose independently, and almost simul-

taneously, in several different settings including linear algebra [89], quantum physics

[90], theoretical computer science [91], and electrical engineering [92]. The wide in-

terest in zero forcing has created a rapidly growing research community, which has

generated a large volume of work in the last several years. In this section, I survey

some of the problems which led to the formulation of zero forcing, as well as some

variants of zero forcing and related problems. I first give a purely graph theoretic

introduction to zero forcing, which is the primary perspective taken throughout this

thesis.
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1.2.1 Zero forcing

Let G = (V,E) be a graph and S ⊂ V be a set of initially colored vertices, all other

vertices being uncolored. The color change rule dictates that at each integer-valued

timestep, a colored vertex u with a single uncolored neighbor v forces that neighbor

to become colored; such a force is denoted u → v. The derived set of S is the set

of colored vertices obtained after the color change rule is applied until no new vertex

can be forced; it can be shown that the derived set of S is uniquely determined by

S. A zero forcing set is a set whose derived set is all of V ; the zero forcing number

of G, denoted Z(G), is the minimum cardinality of a zero forcing set. See Figure 1.7

for an illustration.
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Figure 1.7 : Left: A minimum zero forcing set of the graph is marked by colored
vertices. Then, from left to right, the following forces are applied: 1→ 3 and 2→ 4;
3→ 5; 5→ 6; 4→ 7.

A chronological list of forces of S is a sequence of forces applied to obtain the

derived set of S in the order they are applied; there can also be initially colored

vertices which do not force any vertex. Generally, the chronological list of forces is not

uniquely determined by S; for example, it may be possible for several colored vertices

to force an uncolored vertex at a given step. A forcing chain for a chronological

list of forces is a maximal sequence of vertices (v1, . . . , vk) such that vi → vi+1 for

1 ≤ i ≤ k − 1. A singleton chain is a forcing chain consisting of a single vertex, i.e.,

an initially colored vertex which does not force any vertex. If a vertex forces another
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vertex at some step of the forcing process, then it cannot force a second vertex at a

later step, since that would imply it had two uncolored neighbors when it forced for

the first time. Thus, each forcing chain induces a distinct path in G, one of whose

endpoints is an initially colored vertex and the rest of which is uncolored at the initial

timestep; we will say the initially colored vertex initiates the forcing chain, and we will

call the other endpoint of the forcing chain a terminal vertex. The set of all forcing

chains for a chronological list of forces is uniquely determined by the chronological

list of forces and forms a path cover of G. In Figure 1.7, the forcing chains associated

with the chronological list of forces given in the caption are (1, 3, 5, 6) and (2, 4, 7).

Zero forcing was introduced in a 2006 AIM workshop on linear algebra and graph

theory [89] and was used to bound the maximum nullity (equivalently, the minimum

rank) of the family of symmetric matrices associated with a graph; see Section 1.2.2

for details. The zero forcing number is generally more attainable than the maximum

nullity, which makes it a valuable tool in the study of this algebraic parameter. Zero

forcing was also independently studied in quantum physics [90], theoretical computer

science [91], and electrical engineering [92]; see Sections 1.2.3 and 1.2.4 for details.

Subsequently, applications of zero forcing in physics [93], logic circuits [94], modeling

the spread of diseases and information in social networks [95, 96], and bounding or

approximating various other graph parameters [97, 98, 99, 100, 101, 102] have also

been explored.

Computing the zero forcing number was shown to be NP-complete [103, 91]; thus,

the majority of research in this area has focused on developing structural results

on zero forcing sets [89, 104, 105], bounds on the zero forcing number [106, 107,

108], relating the zero forcing number to other graph parameters [99, 97, 109], and

characterizing the zero forcing numbers of graphs with special structure [110, 111,
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112, 113]. The number of timesteps in which an initially colored set of vertices forces

the graph, called the propagation time, is also a problem of interest — not just for

zero forcing [114, 115, 116], but also for its variants [117, 118]. The state-of-the-

art solver for computing the zero forcing numbers of moderately-sized graphs is the

Wavefront algorithm developed by Grout et al. [119]. Several integer programming

alternatives have been proposed in [120], which are generally slower but more flexible

than Wavefront, and can accommodate additional constraints to the problem.

1.2.2 Minimum rank

Let Sn(R) denote the set of real symmetric n× n matrices. For a matrix A ∈ Sn(R),

G(A) denotes the graph with vertex set {1, . . . , n} and edge set {{1, j} : aij 6= 0, 1 ≤

i < j ≤ n}. Note that the diagonal of A is not used when constructing G(A).

The set of symmetric matrices associated with a graph G is defined to be S(G) =

{A ∈ Sn(R) : G(A) = G}. The minimum rank of G is defined as the minimum

rank over all symmetric matrices associated with G, i.e., mr(G) = min{rank(A) :

A ∈ S(G)}. Similarly, the maximum nullity of G is defined as the maximum nullity

over all symmetric matrices associated with G, i.e., M(G) = max{null(A) : A ∈

S(G)}. Since for any symmetric n× n matrix, rank(A) + null(A) = n, it follows that

mr(G) + M(G) = n. Thus, the minimum rank and maximum nullity problems are

essentially equivalent.

The minimum rank problem has received considerable attention (see, e.g., [121,

122, 123, 124, 125, 126, 127]) and is related to various other problems in linear algebra

and graph theory. However, since by definition the minimum rank is computed over an

infinite family of matrices, direct computation of this parameter is usually impossible;

instead, research has often focused on approximating or bounding the minimum rank
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by combinatorial or algebraic means. It was this goal of finding an accessible bound

to the minimum rank (equivalently, the maximum nullity) of a graph that gave rise to

zero forcing. To illustrate the motivation, I give the following example of computing

the maximum nullity of a path P4.

Example 1.6. M(P4) = 1.

Proof. Consider the family of matrices S(P4); these matrices can be described by the

sparsity pattern

A =



a1 a2 0 0

a2 a3 a4 0

0 a4 a5 a6

0 0 a6 a7


,

where a2, a4, a6 are nonzero real numbers, and a1, a3, a5, a7 are arbitrary real numbers.

In particular, we may assume that A is a matrix which realizes M(P4), i.e., null(A) =

M(P4). Let x = [x1 x2 x3 x4]
T be a null vector of A. Then, we have the following

equations:

a1x1 + a2x2 = 0 (1.21)

a2x1 + a3x2 + a4x3 = 0 (1.22)

a4x2 + a5x3 + a6x4 = 0 (1.23)

a6x3 + a7x4 = 0

Suppose x1 = 0; then, in (1.21), x2 is forced to be zero; in (1.22), x3 is forced to be

zero (since x1 and x2 are zero), and in (1.23), x4 is forced to be zero (since x2 and x3

are zero). Thus, if Ax = 0 and x 6= 0, it follows that x1 6= 0.

Now, let X = {x ∈ R4 : x1 = 0} and K = ker(A). Clearly, dim(X) = 3;

moreover, since we found that every nonzero x in ker(A) has x1 6= 0, it follows that
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dim(X∩K) = 0. By the well-known formula for the dimension of the intersection and

sum of finite-dimensional subspaces, dim(X+K)+dim(X ∩K) = dim(X)+dim(K).

Thus,

M(G) = null(A) = dim(K) = dim(X +K) + dim(X ∩K)− dim(X)

= dim(X +K) + 0− 3 ≤ 4− 3 = 1,

where the last inequality follows from the fact that dim(X +K) ≤ dim(R4) = 4. On

the other hand, the matrix

A0 =



−1 1 0 0

1 −2 1 0

0 1 0 1

0 0 1 1


is in S(P4) and has nullity 1, so 1 = null(A0) ≤M(P4) ≤ 1.

What allows us to bound M(G) from above in Example 1.6 is the choice of an

appropriate set of indices I, such that when xi = 0 for all i ∈ I, all other entries of x

are also forced to be zero. In particular, the principle by which a set of zero entries of

x forces other entries to be zero is precisely the color change rule in the corresponding

graph: when all-but-one terms in the left-hand-side of ATi x = 0 are zero for some row

ATi of A, the remaining term (and the corresponding entry of x) must also be zero.

For example, this is the case in (1.21) when choosing x1 to be zero forces x2 to be

zero, which in turn forces x3 and x4 to be zero∗. Equivalently, selecting x1 to be zero

corresponds to choosing the end-vertex of P4 as a zero forcing set of P4. The same

principle can be applied to any family of symmetric matrices and the corresponding

graph to obtain an upper bound on M(G); this is stated formally below.

∗This process is the source of the nomenclature of “zero forcing”.

D 
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Theorem 1.5 ([89]). For any graph G, M(G) ≤ Z(G).

Thus, the zero forcing number can be used as a relatively tractable bound on the

maximum nullity of a graph. Further connections between these two parameters have

been investigated in subsequent papers, including, e.g., the effects of vertex and edge

operations on M(G) and Z(G) [113, 104, 128], conditions for equality or disparity

between M(G) and Z(G) [106, 129, 130], and characterizations of M(G) and Z(G)

for specific families of graphs [131, 132]. In addition, many variants of zero forcing

have been developed to bound other linear algebraic quantities; see Section 1.2.4 for

more details.

1.2.3 Power domination

Electric power networks consist of energy-producing generators, energy-consuming

loads, transmission lines connecting the generators and loads, and busses where trans-

mission lines intersect. An electric power company must constantly monitor the state

of its network in order to detect system failures and assure that demands are being

met. To this end, phase measurement units (PMUs) are placed at select locations

around the network; these devices measure the voltage at the bus where they are

placed, and the phase angle at the transmission lines incident with the bus (cf. [133]).

The PMU readings are then synchronized in processing stations, where the data from

multiple PMUs is leveraged with physical laws governing the behavior of electrical

circuits (such as Ohm’s laws and Kirchoff’s laws), in order to gain information about

parts of the network which are not being directly monitored. Thus, the state of the

entire network can be determined from partial information measured at appropri-

ate locations. Because of the high cost of the equipment, labor, and communication

infrastructure associated with installing and maintaining PMUs, electric power com-



37

panies aim to use the smallest number of PMUs necessary to maintain full control of

the network.

Electrical power networks can naturally be represented as graphs, where the gen-

erators, loads, and busses are vertices, and the transmission lines are edges. The

problem of interest is then to select a minimum set of vertices from which the entire

graph can be observed according to certain rules. The selected vertices correspond

to the locations where PMUs should be placed in the electrical network in order to

monitor the entire network at minimum cost. In particular, below are the rules (in-

troduced in [92]) by which vertices and edges can be observed; these rules reflect

information gained by direct measurements of PMUs, as well as information gained

through Ohm’s and Kirchoff’s laws about locations in the network which are not

directly monitored by PMUs.

1. All vertices at which a PMU is placed are observed

2. All edges incident to a vertex at which a PMU is placed are observed

3. A vertex incident to an observed edge is observed

4. An edge joining two observed vertices is observed

5. If a vertex is incident to k > 1 edges and k−1 of these edges are observed, then

all k are observed

It can be verified that this process is identical to zero forcing (where observed

vertices are colored), with the exception that at the first timestep, by rules 2 and 3,

the closed neighborhood of the set of initially colored vertices is colored. In other

words, the initially colored set of vertices performs a “domination” step, and then

the color change rule is applied iteratively as in zero forcing. Due to this domination



38

step and the application to power network monitoring, this problem is referred to as

power domination; a power dominating set is a set of vertices which causes the entire

graph to be observed under the rules above, and the power domination number of a

graph G, denoted γP (G), is the minimum cardinality of a power dominating set of G.

Since a set is contained in its closed neighborhood, it follows that any zero forcing

set is also a power dominating set. Thus, for any graph G = (V,E), γP (G) ≤ Z(G).

Moreover, S ⊂ V is a power dominating set of G if and only if N [S] is a zero forcing

set; thus, if S is a minimum power dominating set,

γP (G) ≤ Z(G) ≤ |N [S]| ≤ |S|(∆(G) + 1) = γP (G)(∆(G) + 1).

Empirically, the zero forcing number is typically easier to compute than the power

domination number, and has been used as a technical tool in the derivation of certain

results about power domination; see [109, 134] for some recent work in this direction.

The power domination problem is NP-complete even for bipartite graphs, chordal

graphs, and split graphs [135, 92], although efficient algorithms and approximations

are available for the power domination numbers of trees [92], interval graphs [135],

graphs of bounded treewidth [136], block graphs [137], grid graphs [138], product

graphs [139, 140], claw-free cubic graphs [141], and several other families.

1.2.4 Graph searching, quantum control, and zero forcing variants

Zero forcing also arose independently in the context of graph search problems. The

objective of graph search problems is to capture a fugitive hidden on the vertices or

edges of a graph while using a limited number of guards, search actions, or other

resources. The earliest graph search problems which have received considerable at-

tention are the edge search and node search problems, introduced by Megiddo et al.
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[142] and Kirousis and Papadimitriou [143], respectively. In these problems, the aim

is to capture an invisible fugitive using the smallest number of guards, where search

actions consist of placing a guard at a vertex, removing a guard from a vertex, or

sliding a guard along an edge. Bienstock and Seymour [144] introduced the mixed

search problem which combines the edge and node search problems, and focuses on

minimizing the number of guards used at any step. Dyer et al. [145] introduced the

fast search problem, which focuses on minimizing the number of search actions in

which the fugitive is captured; see also [146, 147] for some recent work on this model.

Yang [91] introduced the fast-mixed search problem, which combines the fast

search and the mixed search models. In the fast-mixed search problem, an invisible

fugitive can freely move at great speed from one vertex to another along a guard-free

path. A vertex or edge where the fugitive may hide is contaminated, otherwise it is

cleared ; a vertex is occupied if it has a guard on it. The search actions include placing

a guard on a contaminated vertex and sliding a guard along a contaminated edge uv

from u to v if v is contaminated and all edges incident to u except uv are cleared. A

contaminated edge becomes cleared if both endpoints are occupied by guards or if a

guard slides along it from one endpoint to the other. The fast-mixed search number

of a graph G, denoted fms(G) is the minimum number of guards required to clear all

edges of G (i.e., to capture a fugitive hiding in G).

In [148], it was shown that the search actions in the fast-mixed search model can

be interpreted precisely as the zero forcing color change rule, leading to the following

identity.

Theorem 1.6 ([148]). For any graph G, Z(G) = fms(G).

This relation allows results and techniques developed for graph search algorithms to

be applied to zero forcing and minimum rank problems, and vice versa.
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Finally, zero forcing was also studied in quantum control theory under the name

propagation [90], where it was introduced as a scheme for controlling large quantum

systems by acting on small subsystems satisfying certain conditions. A quantum sys-

tem in this setting can be represented as a graph, and the protocol for operating on

the system through local quantum transformations can be described in graph termi-

nology as follows: each vertex in an initially selected set has a packet of information

which has to be diffused among all the vertices of the graph; a vertex v can pass its

packet to an adjacent vertex w only if w is the only neighbor of v which still does not

have the information [149]. It is easy to see that this propagation protocol is identical

to the zero forcing color change rule, and that the smallest number of particles suf-

ficient to control the system is the zero forcing number of the corresponding graph.

This equivalence has enabled the use of techniques and results from zero forcing in

quantum control theory, paving the way for applications like control of quantum hard

drives and quantum RAM [90]; see [150, 151] for other recent work in quantum control

theory involving propagation.

In addition to the equivalent formulations of zero forcing in different disciplines,

there are numerous variants of zero forcing, obtained by modifying the color change

rule or by adding certain restrictions to the structure of a zero forcing set. These

variants can roughly be divided into two categories: those which are designed to

bound different linear algebraic parameters, and those which are obtained by natural

graph theoretic alterations. I briefly discuss a representative sample of these variants

below; this survey is not meant to be exhaustive.

One of the most popular variants of zero forcing is positive semidefinite zero forcing

[128, 152, 153, 148, 154, 118], obtained by modifying the color change rule to act

separately on certain induced subgraphs; the minimum cardinality sets which force a
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graph using this modified rule are used to study the maximum nullity of the positive

semidefinite matrices associated with a graph. A different modification of the color

change rule yields a variant called Zq-forcing [100], which can be used to bound

the maximum nullity of the matrices associated with a graph that have q negative

eigenvalues. Similarly, skew zero forcing [102] can be used to bound the minimum

rank among all skew-symmetric matrices associated with a graph, and signed zero

forcing [101] can be used to bound the maximum nullity of a matrix with a given

sign pattern; fractional zero forcing [155] generalizes skew zero forcing and positive

semidefinite zero forcing. Failed zero forcing [156, 157] and failed skew zero forcing

[158] are respectively concerned with finding the largest set of vertices which is not a

zero forcing set, and the largest set of vertices which is not a skew zero forcing set.

In probabilistic zero forcing [159], colored vertices can force their uncolored neighbors

independently with a certain probability. In k-forcing [160, 161, 95], a colored vertex

with at most k uncolored neighbors can force those neighbors to become colored.

Total forcing [162, 163] is concerned with zero forcing sets which induce subgraphs

without isolated vertices. Variants of zero forcing for directed graphs [164, 165] and

graphs with loops [99, 166] have also been studied.

The next section describes and motivates another variant of zero forcing, obtained

by requiring connectivity of the solution set; studying this variant is the second main

direction of this thesis.

1.2.5 Connected zero forcing

A natural graph theoretic variant of zero forcing is obtained by requiring every set of

initially colored vertices to induce a connected subgraph. More precisely, a connected

zero forcing set of a connected graph G is a zero forcing set of G which induces a
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connected subgraph. The connected zero forcing number of G, denoted Zc(G), is

the cardinality of a minimum connected zero forcing set of G. For short, these will

be referred to as connected forcing set and connected forcing number. Note that a

disconnected graph cannot have a connected forcing set.

In this thesis, I explore the differences and similarities between zero forcing and

connected forcing, establish numerous structural, extremal, and enumerative results

about connected forcing sets, and characterize the connected forcing numbers of sev-

eral families of graphs. Studying connected zero forcing can further the understanding

of the zero forcing process and the underlying structure of zero forcing sets in general.

Requiring a zero forcing set to be connected also has meaningful interpretations in

many of the applications and physical phenomena modeled by zero forcing.

For example, in power network monitoring, there are often significant costs as-

sociated with the high-speed communication infrastructure between the PMUs and

the processing stations which collect and manage PMU data; there may also be costs

associated with dispatching a technician to regulate or maintain the PMUs and re-

lated equipment. In a scenario where these costs outweigh the production costs of

the PMUs, an electric power company may seek to place all PMUs in a compact,

connected region in the network in order to decrease the costs incurred by processing

stations, communication infrastructure, and technician travel times. This motivates

the connected power domination problem (and the associated connected power domi-

nation number γP,c(G)), where the number of PMUs necessary to monitor the network

is minimized subject to the condition of connectivity. It is easy to see that in general,

the zero forcing number is neither an upper nor lower bound on the connected power

domination number; however, the connected forcing number is an upper bound on the

connected power domination number, since any connected zero forcing set is a con-
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nected power dominating set. Thus, connected forcing can be used as a technical tool

in the derivation of certain results about connected power domination, just as zero

forcing is used in relation to power domination. In the fast mixed search perspective

on zero forcing, connectivity reflects a scenario where all the guards are starting their

search from a connected region in the graph. As another example, it is often the case

that ideas or diseases originate from a single connected source in a social network or

geographic region; thus, connected forcing may be better suited than zero forcing to

model propagation in those scenarios.

More generally, the connected variants of many other graph problems have been

extensively studied. For example, the connected vertex cover [167, 168, 169, 170] con-

nected k-path vertex cover [171], and t-total vertex cover [172] problems have been

investigated in theoretical computer science, mainly in the context of parameterized

complexity and approximation algorithms. The connected domination [173, 174, 175,

176] and connected power domination problems [177] have been investigated in com-

binatorics and graph theory, and have been linked to other graph parameters like the

maximum leaf number (the largest number of leaves in any spanning tree).

Imposing connectivity often fundamentally changes the nature of a problem, in-

cluding its complexity, structural properties, and applications. For example, while

both domination and connected domination are NP-complete [178], the latter is gen-

erally much harder to solve exactly. The current best algorithm for solving the dom-

ination problem has runtime O(1.5048n) [179], while until recently, the only exact al-

gorithm for the connected domination problem was brute force enumeration with run-

time O(2n); this was marginally improved to O(1.9407n) [176] and later to O(1.8966n)

[180]. This disparity has been attributed in [176] to the non-locality of the connected

domination problem, since exact algorithms often rely on the local structure of the
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graph and are unable to capture global properties such as connectivity.

In some cases, however, efficient computation of connected variants of problems

(and zero forcing in particular) is possible. Trivially, if the connected forcing number

of a graph G is known to be very small or very large, an enumeration approach can

be used to find a minimum connected forcing set in polynomial time. For example, if

k1 ≤ Zc(G) ≤ k2 <
n
2
, it can be checked whether each of the

(
n
k1

)
+ · · · +

(
n
k2

)
sets of

vertices of appropriate size is connected and forcing in O(n2) time, so Zc(G) can be

computed in O((k2 − k1)n2+k2) time. An enumeration approach can also be used to

efficiently compute the connected forcing number of graphs with polynomially many

connected induced subgraphs. This graph class includes arbitrary subdivisions of

fixed graphs, and graphs with bounded maximum leaf numbers; see [181] for another

dynamic graph coloring process which can be solved efficiently in such graphs. In

[120], my coauthors and I proposed several combinatorial and integer programming

approaches for computing the zero forcing and connected forcing numbers of a graph,

and compared their performance in a variety of random graphs. Our computational

experiments showed that the proposed algorithms for connected forcing were faster,

and able to handle larger graphs, than the zero forcing algorithms. This work is not

discussed further in this thesis, but is presented in detail in the thesis of Fast [182].

-
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Chapter 2

Preliminaries

This chapter recalls select graph theoretic notions and operations; some additional

definitions will be included in later chapters when needed. The background material

presented here is meant to be a quick reference rather than a self-contained founda-

tion; the reader is referred to [47, 183] for a detailed introduction to graph theory.

2.1 Graph definitions

Different contexts call for different types of graphs. In the study of graph polynomials,

it is often useful to consider graphs with loops and multiple edges, and — when

studying flow — graphs with directed edges. Zero forcing is typically studied in the

context of simple undirected graphs, but there are also variants defined on directed

graphs and graphs with loops.

Definition 2.1. A simple graph G = (V,E) consists of a vertex set V and an edge

set E of distinct two-element subsets of V .

Definition 2.2. A multigraph G = (V,E) consists of a vertex set V and an edge

multiset E of not necessarily distinct one- or two-element subsets of V . A loop in a

multigraph is an edge which is a one-element subset of V and a multiple edge is an

edge which appears more than once in E.

Definition 2.3. A directed graph G = (V,E) consists of a vertex set V and an edge

set E of ordered pairs of elements of V . Given a directed edge e = (u, v), u is the
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tail of e — denoted t(e) — and v is the head of e — denoted h(e). If E is allowed to

contain multiple copies of the same edge, or loop edges of the form (v, v), then G is

a directed multigraph.

Unless otherwise stated, the first of the three definitions will be intended in the sequel

by the term ‘graph’. In addition, for notational simplicity, e = uv will stand for an

undirected edge e = {u, v} or a directed edge e = (u, v) when there is no scope for

confusion.

Given a multigraph G = (V,E), the number of times an edge e appears in E is the

multiplicity of e. The underlying set of E is the set E ′ which contains the (unique)

elements of E. For example, if E = {e1, e1, e2, e3, e3, e3}, then E ′ = {e1, e2, e3}. The

underlying simple graph of G = (V,E) is the graph G′ = (V,E ′\{e : e is a loop}).

An orientation ofG is an assignment of directions to the edges ofG; more precisely,

for each edge e = uv ∈ E, one of u and v is assigned to be h(e) and the other is

assigned to be t(e). An orientation of G is acyclic if it creates no directed cycles and

it is totally cyclic if it makes every edge belong to a directed cycle.

The disjoint union of sets S1 and S2, denoted S1∪̇S2, is a union operation that

indexes the elements of the union set according to which set they originated in; the

disjoint union of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G1∪̇G2, is the

graph (V1∪̇V2, E1∪̇E2). The join of two graphs G1 and G2, denoted G1 ∨ G2, is the

graph obtained from G1∪̇G2 by adding an edge between each vertex of G1 and each

vertex of G2. The corona of two graphs G1 and G2, denoted G1 ◦ G2, is the graph

obtained by taking one copy of G1 and |V (G1)| copies of G2, and adding an edge

between the ith vertex of G1 and each vertex of the ith copy of G2, 1 ≤ i ≤ |V (G1)|.

The Cartesian product of two graphs G1 and G2, denoted G1�G2, is the graph with

vertex set V (G1)× V (G2), where vertices (u, u′) and (v, v′) are adjacent in G1�G2 if
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and only if either u = v and u′ is adjacent to v′ in G2, or u′ = v′ and u is adjacent to

v in G1. The complement of a graph G = (V,E) is the graph Gc = (V,Ec).

2.2 Graph parameters and operations

Let G = (V,E) be a graph. The order and size of G will be denoted by n = |V | and

m = |E|, respectively. Two vertices v, w ∈ V are said to be adjacent, or neighbors, if

there exists the edge (v, w) ∈ E. If v is adjacent to w, we write v ∼ w; otherwise, we

write v 6∼ w. The neighborhood of v ∈ V is the set of all vertices which are adjacent

to v, denoted N(v;G). The degree of v ∈ V is defined as d(v;G) = |N(v;G)|.

The minimum degree and maximum degree of G will be denoted as δ(G) and ∆(G),

respectively. The dependence of these parameters on G can be omitted when it is

clear from the context. A leaf, or pendant, is a vertex with degree 1. An isolated

vertex or isolate is a vertex with degree 0; such a vertex may also be called a trivial

(connected) component of G. The number of connected components of G will be

denoted by comp(G).

A separating set of G is a set of vertices which, when removed, increases the

number of connected components of G. A cut vertex is a separating set of size one.

The vertex connectivity of G, denoted κ(G), is the largest integer such that G remains

connected whenever fewer than κ(G) vertices of G are removed; a disconnected graph

has vertex connectivity zero. A cut edge or bridge is an edge which, when removed,

increases the number of connected components of G. A biconnected component, or

block, of G is a maximal subgraph of G which has no cut vertices; G is biconnected

if it has no cut vertices. An outer block is a block which contains at most one cut

vertex of G. A trivial block is a block with two vertices, i.e., a cut edge of G. The

block tree of G is the bipartite graph with parts A and B, where A is the set of cut
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vertices of G and B is the set of blocks of G, and where a ∈ A is adjacent to b ∈ B

if and only if b contains a in G.

Given S ⊂ V , the induced subgraph G[S] is the subgraph of G whose vertex set is

S and whose edge set consists of all edges of G which have both endpoints in S. If F

is a set of graphs, a graph is F-free if it does not contain F as an induced subgraph

for each F ∈ F . Given S ⊂ E, the spanning subgraph G : S is the subgraph of

G whose vertex set is V and whose edge set is S. A set S ⊂ V is an independent

set if G[S] has no edges, and it is a clique if G[S] is a complete graph. The clique

number of G, denoted ω(G), is the size of the largest clique in G. A subset S ⊂ V is

a dominating set if N [S] = V ; the domination number of G, denoted γ(G) is the size

of the smallest dominating set in G.

Given u, v ∈ V , the contraction G/uv is obtained by deleting edge uv if it exists,

and identifying u and v into a single vertex. Note that the edge uv does not have

to be in E for G/uv to be defined, and G/uv results in the same graph regardless

of whether or not uv is in E. The subdivision of edge e = uv is obtained by adding

a new vertex w and replacing uv with edges uw and wv; a subdivision of G is a

graph obtained by subdividing some of the edges of G. Given v ∈ V and e ∈ E,

the notations G − e, G + e, and G − v respectively denote the graphs (V,E\{e}),

(V,E ∪ {e}), and (V \{v}, {e ∈ E : v is not an endpoint of e}).

An isomorphism between two graphs G1 = (V1, E1) and G2 = (V2, E2) will be

denoted by G1 ' G2. We will also say G1 and G2 are homeomorphic if there exist

subdivisions of G1 and G2 which are isomorphic. Likewise, G1 and G2 are amallam-

orphic if (V1, E
′
1) is isomorphic to (V2, E

′
2), where E ′1 and E ′2 are the underlying sets

of E1 and E2.

A vertex join of G = (V,E) is the graph GV = (V ∪ {v∗}, E ∪ {vv∗ : v ∈ V }),
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where v∗ /∈ V . In other words, it is the graph obtained by joining a new vertex to

each of the existing vertices of G. See Figure 2.1 for an illustration of a vertex join.

v1

v2v5

v4 v3 v1

v2v5

v4 v3

v*

Figure 2.1 : Left: A graph H. Right: HV , the vertex join of H.

2.3 Special types of graphs

The complete graph, path, and cycle, on n vertices are respectively denoted Kn, Pn,

and Cn. A graph with no edges will be called an empty graph and denoted (Kn)c. A

graph is bipartite with parts A and B if every edge of G has one endpoint in A and the

other endpoint in B. A complete bipartite graph, denoted Kp,q is the complement of

Kp∪̇Kq (we may allow these indices to equal 0, in which case Kn,0 ' K0,n '
⋃̇n

i=1K1).

A complete multipartite graph, denoted Ka1,...,ak is the complement of
⋃̇k

i=1Kai . A

tree is a connected graph with no cycles, and a forest is the disjoint union of trees.

A unicyclic graph is a connected graph with exactly one cycle. A uniclique graph is

a connected graph with exactly one block of size greater than 2, with the additional

property that this block is a clique. A cactus graph is a graph in which every block

is a cycle or a cut edge, and a block graph is a graph in which every block is a clique.

A planar graph is a graph which can be drawn in the plane so that none of its

edges cross. A graph drawn in such a way is called a plane graph. If G is a plane

graph, its dual G∗ is a graph that has a vertex corresponding to each face of G, and

O> 
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an edge joining the vertices corresponding to faces of G which share an edge. Note

that if G is connected, G = (G∗)∗. The weak dual of G is the subgraph of G∗ whose

vertices correspond to the bounded faces of G. See Figure 2.2 for an illustration of

the dual of the house graph H. An outerplanar graph is a planar graph which has

a plane embedding where all of its vertices lie on the outer face; a graph drawn in

such a way is called an outerplane graph. Trees, cactus graphs, and minimal polygon

triangulations are examples of outerplanar graphs.

Figure 2.2 : Left: The house graph H. Middle: H and its dual. Right: H∗, the dual
of H. The graphs H and H∗ are outerplanar and biconnected.

D> )~ 
I ~ a ~---V--------~ V 
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Chapter 3

Characterizations of chromatic and flow

polynomials

As discussed in Chapter 1, computing the chromatic and flow polynomials of a graph

are very challenging tasks. These problems are #P-hard for general graphs, and even

for bipartite planar graphs and sparse graphs with |E| = O(|V |) [18]. In fact, most

of the coefficients of the chromatic and flow polynomials of general graphs cannot

even be approximated (by a fully polynomial randomized approximation scheme; see

[184, 18]). Thus, a large volume of work has focused on exploiting the structure of

special families of graphs in order to derive closed formulas, algorithms, or heuristics

for computing their chromatic and flow polynomials. In particular, classes of graphs

which are generalizations of trees, cliques, and cycles are frequently investigated.

For example, Wakelin and Woodall [185] characterized the chromatic polynomials

of polygon trees and biconnected outerplanar graphs; Whitehead [186, 187] character-

ized the chromatic polynomials of q-trees; Lazuka [188] derived closed formulas for the

chromatic polynomials of cactus graphs; Gordon [189] studied the Tutte polynomials

of rooted trees; Mphako-Banda [190, 191] derived closed formulas for the chromatic,

flow, and Tutte polynomials of flower graphs.

In this chapter, I consider several other families of graphs and present closed

form expressions and efficient algorithms for computing their chromatic and flow

polynomials. These results are also computationally compared against a general-

purpose solver and shown to have superior performance.
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3.1 Characterizations of chromatic polynomials

Recall the definition of a vertex join from Chapter 2; this operation adds a new

vertex to a graph G and joins it to each of the existing vertices of G. I now propose a

generalization of this concept, and characterize the chromatic and flow polynomials

of several families of graphs obtained using this operation. Given a graph G = (V,E),

a multiset S over V is a collection of vertices of V , each of which may appear more

than once in S.

Definition 3.1. Let G = (V,E) be a graph, S be a multiset over V , and v∗ /∈ V . The

generalized vertex join of G using S is the graph GS = (V ∪ {v∗}, E ∪ {vv∗ : v ∈ S}).

In other words, GS is the graph obtained by joining a new vertex to some (or all) of

the existing vertices of G, possibly more than once. Note that if the multiplicity of

v in S is p, there are p parallel edges between v and v∗ in GS. See Figure 3.1 for an

illustration of a generalized vertex join.

v1

v2v5

v4 v3 v1

v2v5

v4 v3

v*

Figure 3.1 : Left: A graph H. Right: HS, the generalized vertex join of H using
S = {v1, v1, v3, v4, v4, v4}.

Remark 3.1. Let G = (V,E) be any graph, S be a multiset over V , and S ′ be the

underlying set of S. Recall that by (1.7), P (GS) = P (GS′). Thus, when computing

the chromatic polynomial of GS, we can assume without loss of generality that the

D> 
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multiplicity of every element in S is 1. The reason the definition of a generalized

vertex join allows multisets instead of sets of vertices is because allowing certain

muliple edges in a class of graphs corresponds to a larger class of dual graphs. In

turn, this can lead to broader dual results about flow polynomials.

For instance, in the next section, I compute the chromatic polynomials of general-

ized vertex joins of trees. I then show that the duals of these graphs are outerplanar

graphs, where the added vertex v∗ is the one corresponding to the outer face. Al-

lowing multiple edges between v∗ and each vertex of the tree means the family of

duals includes all outerplanar graphs, instead of ones for which at most one edge

from each bounded face borders the outer face. Thus, I am able to state a broader

result about flow polynomials. A similar principle is used in Section 3.2.2 with the

flow polynomials of generalized vertex join cycles.

3.1.1 Generalized vertex join trees

Let T = (V,E) be a tree with |V | = n, S be a multiset over V , and let TS be the

generalized vertex join of T using S. See Figure 3.2 for an illustration. For short,

TS will be called a generalized vertex join tree. In this section, I present an efficient

algorithm to compute P (TS), the chromatic polynomial of a generalized vertex join

tree.

First, by Remark 3.1, P (TS) = P (TS′) where S ′ is the underlying set of S; however,

to simplify notation, we will simply assume that the multiplicity of every element in

S is 1 when computing P (TS). This restriction will be lifted when computing flow

polynomials of outerplanar graphs in the next chapter.

Two special cases of TS occur when |S| = 0 and when |S| = 1. In the first case,

TS consists of a tree on n vertices and an isolated vertex. Thus, by (1.4) and (1.10),
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v*

Figure 3.2 : Forming a generalized vertex join tree TS from a given tree T and a
subset of its nodes S.

P (TS) = t2(t−1)n−1. In the second case, TS is a tree on n+1 vertices, so by equation

(1.10), P (TS) = t(t− 1)n. Thus, from now on, we will assume that |S| ≥ 2.

Next, suppose there are b bridges in TS, and let B be the set of vertices in TS which

are an endpoint of some bridge, but do not belong to a cycle. Note that since |S| ≥ 2,

there is at least one cycle, so not all edges of TS are bridges. Let T ′S = TS −B. Using

(1.3), each bridge with a degree 1 endpoint can be separated from the rest of the

graph, adding a factor of P (K2)
P (K1)

= t(t−1)
t

to the chromatic polynomial of the resulting

graph; once every bridge in TS is removed, the resulting graph is T ′S and

P (TS) = P (T ′S)(t− 1)b. (3.1)

See Figure 3.3 for an illustration of T ′S. In this graph, we define the indicator function

f : V (T ′S)\{v∗} → {0, 1} by f(v) = 1 if v ∈ S, f(v) = 0 if v /∈ S.

We now introduce some definitions which are analogous to standard notions in

graph theory and are slightly modified to suit our purposes. For simplicity, we will

refer to these terms by the names of their standard analogues (cf. [192]).

First, select an arbitrary vertex r 6= v∗ in T ′S called a root. The level of a node in
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Figure 3.3 : Removing the bridges of TS to form T ′S.

T ′S is given by the function L : V (T ′S)\{v∗} → N ∪ {0} by L(v) = dist(r, v), where

dist(r, v) is the length of the shortest path between r and v in T ′S − v∗. Denote by

Li(T
′
S) the set of nodes at the ith level; more precisely, Li(T

′
S) = {v : L(v) = i}. Let

L be the height of T ′S, i.e, L = max{L(v) : v ∈ V (T ′S)\{v∗}}.

If L(v) = i, w is a child of v if w is adjacent to v and L(w) = i+ 1. Vertex z is a

descendant of v if z = v∗ or if there is a path v, p1, . . . , pr, z such that L(v) < L(p1) <

. . . < L(pr) < L(z). The set of all descendants of v is denoted D(v). See Figure 3.4

for an illustration of the levels in T ′S.

Finally, we will specify some subgraphs of T ′S to be used in the sequel. The

purpose of these subgraphs is to facilitate an expression of P (T ′S) in terms of the

chromatic polynomials of smaller generalized vertex join trees, which in turn facilitates

a recursive computation of P (T ′S). For any a ∈ V (T ′S)\{v∗}, we define:

• Ta = T ′S[a ∪ D(a)]; this is a generalized vertex join tree with root a, which

includes all of the descendants of a in TS.

• T̃c = T ′S[{a} ∪ {c} ∪ D(c)]; this is a generalized vertex join tree with root a,
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v*

r

L0(T'S)

L1(T'S)

L2(T'S)

L3(T'S)

L4(T'S)

v*

r

a2

a1

Figure 3.4 : Selecting a node r and finding L(v) and Li(T
′
S).

which includes only the descendants of c in TS.

• Ha = Ta/av
∗; this is essentially a generalized vertex join of a forest with root a:

since Ta− v∗ is a tree, Ta− v∗− a is a forest, and a is connected to some subset

of the other vertices.

• H̃c = T̃c/av
∗, this is one ‘branch’ of the generalized vertex join forest Ha, and

is also a generalized vertex join tree with root c, which includes all of the

descendants of c in T ′S (possibly with an extra connection between c and v∗).

See Figure 3.5 for an illustration of these subgraphs.

With this in mind, let a 6= v∗ be a vertex with children c1, . . . , ck, and suppose we

know P (Tci) and P (Hci) for 1 ≤ i ≤ k. Let I = {i : f(ci) = 1} and Z = {i : f(ci) = 0}

be the sets of children of a which are connected and not connected to v∗, respectively.

Then, we can compute P (Ha) as follows.
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a2

a2
a1a1

Figure 3.5 : From left to right: Ta1 ; T̃a1 ; Ha2 ; H̃a2 , for two vertices a1 and a2 of the
graph T ′S shown in Figure 3.4, right.

P (Ha) =
1

tk−1

k∏
i=1

P (H̃ci)

=
1

tk−1

∏
I

P (H̃ci)
∏
Z

P (H̃ci)

=
1

tk−1

∏
I

P (Tci)
∏
Z

(
P (Tci)− P (Hci)

)
Here, the first equality follows from (1.3) and the definition of H̃ci , since H̃c1 , . . . , H̃ck

all have only the vertex a in common. The second equality is obtained by partitioning

{1, . . . , k} into I and Z. Finally, if a was originally connected to v∗, then H̃ci =

Tci ; otherwise, the deletion-contraction formula (1.2) yields P (H̃ci) = P (H̃ci − ac)−

P (H̃ci/ac) = P (Tci)− P (Hci), and the third equality follows.

Next, we compute P (Ta) by considering two cases: a is either in S or not. Let

P1(Ta) = P (Ta), where f(a) = 1, and P0(Ta) = P (Ta), where f(a) = 0. Clearly,

P (Ta) = f(a)P1(Ta) +
(
1 − f(a)

)
P0(Ta). We now find P1(Ta) and P0(Ta) separately

as follows.



58

P1(Ta) =
1(

t(t− 1)
)k−1 k∏

i=1

P (T̃ci)

=
1(

t(t− 1)
)k−1 ∏

I

P (T̃ci)
∏
Z

P (T̃ci)

=

∏
I

(
P (Tci)(t− 2)

)(
t(t− 1)

)k−1 ∏
Z

(
P (T̃ci + civ

∗) + P (T̃ci/civ
∗)
)

=

∏
I

(
P (Tci)(t− 2)

)(
t(t− 1)

)k−1 ∏
Z

(
P (Tci + civ

∗)(t− 2) + P (Hci)(t− 1)
)

=

∏
I

(
P (Tci)(t− 2)

)(
t(t− 1)

)k−1 ∏
Z

((
P (Tci)− P (Hci)

)
(t− 2) + P (Hci)(t− 1)

)
=

1(
t(t− 1)

)k−1 ∏
I

(
P (Tci)(t− 2)

)∏
Z

(
(t− 2)P (Tci) + P (Hci)

)
P0(Ta) = P (Ta + av∗) + P (Ta/av

∗) = P1(Ta) + P (Ha)

In the computation of P1(Ta), the first equality follows from (1.3) and the definition

of T̃ci , since T̃c1 , . . . , T̃ck all have the edge av∗ in common, which is a clique of size

2. The second equality is obtained by partitioning {1, . . . , k} into I and Z. In the

third equality, the vertices a, ci, and v∗ form a clique of size 3 in T̃ci for {ci : i ∈ I};

this clique is connected to the rest of T̃ci by the edge civ
∗, which is a clique of size

2. Moreover, the rest of the graph is precisely Tci ; thus, (1.3) is applied to obtain

P (T̃ci) =
P (Tci )P (K3)

P (K2)
= P (Tci)(t − 2). For the vertices {ci : i ∈ Z}, the addition-

contraction formula (1.1) is applied to add the edge civ
∗ to get P (T̃ci) = P (T̃ci +

civ
∗) + P (T̃ci/civ

∗). In the fourth equality, the graph T̃ci + civ
∗ for {ci : i ∈ Z} is the

same as the graph T̃ci for {ci : i ∈ I}; thus, a similar argument as before can be used

to show that P (T̃ci +civ
∗) = P (Tci +civ

∗)(t−2) (by separating a clique of size 3 using

(1.3)). Moreover, T̃ci/civ
∗ is precisely Hci with the additional edge aci. This edge can

be separated from Hci using (1.3): P (T̃ci/civ
∗) =

P (Hci )P (K2)

P (K1)
= P (Hci)(t − 1). The



59

fifth equality follows from the deletion-contraction formula (1.2) applied to the edge

civ
∗, so that P (Tci+civ

∗) = P (Tci+civ
∗−civ∗)−P ((Tci+civ

∗)/civ
∗) = P (Tci)−P (Hci).

Finally, the last equality is obtained by simple algebraic manipulations.

In the computation of P0(Ta), the first equality follows from the addition contrac-

tion formula (1.1), as the edge av∗ is added. Then, by the definitions of P1 and Ha,

P (Ta + av∗) = P1(Ta) and P (Ta/av
∗) = P (Ha) and the second equality follows.

Thus, I have shown how to express P (Ta) and P (Ha) in terms of P (Tci) and

P (Hci), 1 ≤ i ≤ k. Using these identities, I propose the following algorithm for

finding the chromatic polynomial of a generalized vertex join tree TS.

Algorithm 1

1. Find and remove the bridges of TS to acquire T ′S

2. For i = L to 0

Compute P (Ta) and P (Ha) for each a ∈ Li(T ′S)

3. Compute P (TS) using (3.1)

Theorem 3.1. Algorithm 1 finds the correct chromatic polynomial of a generalized

vertex join tree TS using O(n2 log n) time and O(n) space.

Proof. It was shown in (3.1) and the preceding discussion that by finding the bridges

of TS and the chromatic polynomial of T ′S, P (TS) can be easily computed as well.

Thus, we only need to verify that Step 2 of the algorithm correctly computes P (T ′S).

It was already established that for every a ∈ V (T ′S)\{v∗}, P (Ta) and P (Ha) can

be expressed in terms of P (Tc) and P (Hc) for every child c of a. Note that this
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expression is trivially satisfied for vertices which have no children. By construction,

vertices in LL(T ′S) have no children, so P (Ta) and P (Ha) can be found immediately

for any vertex a ∈ LL(T ′S). For L > i ≥ 0, a vertex a in Li(T
′
S) either has no children,

or has all of its children in Li+1(T
′
S). In either case, P (Tc) and P (Hc) are known for

every child c of a — either vacuously or inductively. Thus, P (Ta) and P (Ha) can also

be computed using the formulas derived earlier in this section. Since by construction,

P (T ′S) = P (Tr) and L0(T
′
S) = {r}, Algorithm 1 indeed finds the correct chromatic

polynomial of TS.

To verify the time-complexity of the algorithm, let |V (T )| = n. The bridges in TS

and the graph T ′S can be found in O(n2) time∗ by successively finding and deleting

degree 1 vertices of TS. Also, the level and list of children of each vertex of T ′S − v∗

can be found with O(n) time by a breadth-first scan.

Each evaluation of P (Ta) and P (Ha) requires the multiplication of O(ak) polyno-

mials, where ak is the number of children of a. Since we evaluate P (Ta) and P (Ha)

for O(n) vertices, and the total number of children in T ′S is O(n), the evaluation of

P (T ′S) requires the multiplication of O(n) polynomials. Each of these polynomials

has degree at most O(n), since P (T ′S) has degree O(n). The time-complexity of mul-

tiplying two polynomials of degree n, using a Fast Fourier Transform, is O(n log n),

so the total time complexity of Algorithm 1 is O(n2 log n).

Finally, to verify the space-complexity, note that the total number of vertices in

the set of graphs {Ta, Ha : a ∈ Li(T ′S)} is at most O(n). Recall that the chromatic

polynomial of a graph with k vertices has degree k; hence, the sum of the degrees of

the set of polynomials {P (Ta), P (Ha) : a ∈ Li(T
′
S)} is O(n). A set of polynomials

∗By the restriction that every element in S has multiplicity 1, |E(TS)| = O(n). Thus, using the

algorithm of Tarjan [192], all bridges of TS can actually be found in O(n) time.
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whose degrees add up to n can be stored with O(n) space. Thus, since we only have

to store the polynomials P (Ta) and P (Ha) for a in one level at a time, the total

space-complexity of Algorithm 1 is O(n).

3.1.2 Generalized vertex join cycles

Let C = (V,E) be a cycle, S be a multiset over V and let CS be the generalized

vertex join of C using S. For short, CS will be called a generalized vertex join cycle.

In the literature, graphs of a similar form have also been called “generalized wheel”

graphs, and have been investigated by other approaches and in different contexts (cf.

[193, 194, 12]). In the remainder of this section and in Section 3.2.2, I will present

closed formulas for P (CS) and F (CS) in a unified framework.

Suppose the generalized vertex join cycle CS is equipped with a “wheel” plane

embedding obtained by placing v∗ in the bounded face of a plane drawing of C,

and drawing edges from the vertices in S to v∗ so that the resulting graph remains

plane. Since cycles have a unique plane embedding, the “wheel” embedding of CS is

unique up to topological conjugacy. Moreover, since chromatic and flow polynomials

are independent of embedding, this embedding can be considered without loss of

generality. The vertices along the outer face of CS will be labeled in clockwise order

as v1, . . . , vn; see Figure 3.6 for an illustration. The edges incident to v∗ will be called

spokes.

If S = ∅, then by (1.11), P (CS) = tP (Cn) = t
(
(t − 1)n + (−1)n(t − 1)

)
; thus,

suppose hereafter that S 6= ∅ and consider S ′, the underlying set of S. By (1.7),

P (CS) = P (CS′). Without loss of generality, suppose that S ′ = {va1 , . . . , vas} where

1 = a1 < . . . < as. Also, let e1, . . . , es be the spokes of CS′ , with ei = vaiv
∗, and

F1, . . . , Fs be the faces of CS′ , with Fi clockwise of edge ei; see Figure 3.7 for an

D 
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v*

v1 v2
v3

...
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Figure 3.6 : Generalized vertex join cycle CS.

illustration.

v*

va1
va2

vas

...

va3

va4

F1
F2

F3

F4

Fs

Figure 3.7 : CS′ , the underlying graph of CS.

Let fi be the size of face Fi, i.e., the number of edges along the boundary of Fi,

with cut edges being counted twice. It is easy to see that fi = 2 + ai+1 − ai for

1 ≤ i ≤ s− 1 and fs = 2 + (n+ 1)− as.

With this in mind, some auxiliary graphs will be introduced in order to express

P (CS) as a combination of the chromatic polynomials of simpler graphs. For 1 ≤ i ≤

s, define Ci
S′ = CS′ − {ei, . . . , es} and for notational simplicity, Cs+1

S′ = CS′ . Then,

applying the deletion-contraction formula (1.2) consecutively on the edges es, . . . , e1
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yields the following identity; see Figure 3.8 for an illustration of this decomposition.

P (CS) = P (CS − es)− P (CS/es)

= P (Cs
S)− P (Cs+1

S /es)

= P (Cs−1
S )− P (Cs

S/es−1)− P (Cs+1
S /es) (3.2)

...

= P (C1
S)− P (C2

S/e1)− . . .− P (Cs
S/es−1)− P (Cs+1

S /es)

= tP (Cn)−
s∑
i=1

P (Ci+1
S /ei).

....
..

Figure 3.8 : Decomposing CS′ (on far left) into simpler graphs as described in (3.2).
Using (1.3), the graphs in the top row can be further decomposed into the cycles
making up their bounded faces.

Thus, P (CS′) is decomposed into the chromatic polynomials of the collection of graphs

{Ci+1
S′ /ei}si=1. The faces of CS′ can be regarded as cycles of sizes f1, . . . , fs; thus,

the graphs {Ci+1
S′ /ei}si=1 can be further decomposed into the cycles making up their

bounded faces. Let Ui be the face of Ci+1
S′ corresponding to the union of Fi, . . . , Fs

after edges ei+1, . . . , es are deleted. Then, the faces of Ci+1
S′ have sizes f1, . . . , fi−1, ui,
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where ui is the size of Ui; more precisely,

ui = 2 + (fi − 2) + . . .+ (fs − 2)

= 2 + (−2)(s− i+ 1) +
s∑
j=i

fj (3.3)

= 2(i− s) +
s∑
j=i

fj.

Let Ji be the multiset of sizes of faces of Ci+1
S′ /ei, i.e., J1 = {n} and for 2 ≤ i ≤ s,

Ji = {f1, . . . , fi−2, fi−1 − 1, ui − 1}. (3.4)

Then, starting from a face of Ci+1
S′ /ei which borders the contracted edge, and using

the fact that this face shares just one edge (which is a clique of size 2) with the

rest of the graph, (1.3) can be successively applied to decompose Ci+1
S /ei into cy-

cles with sizes in Ji in order to evaluate P (Ci+1
S′ /ei). In particular, P (Ci+1

S′ /ei) =

P (K2)
1−i∏

j∈Ji P (Cj). Thus, by (3.2) we have

P (CS) = P (CS′) = tP (Cn)−
s∑
i=1

∏
j∈Ji P (Cj)

P (K2)i−1
(3.5)

= t((t− 1)n + (−1)n(t− 1))−
s∑
i=1

∏
j∈Ji((t− 1)j + (−1)j(t− 1))

(t(t− 1))i−1
.

Note that formula (3.5) depends only on the sequence of face-sizes of CS′ and hence

only on S.

3.1.3 Generalized vertex join cliques

Let K = (V,E) be a complete graph, S be a multiset over V and let KS be the

generalized vertex join of K using S. For short, we will call KS a generalized vertex

join clique. Let |V | = n, S ′ be the underlying set of S, and |S ′| = s. Then,
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P (KS) = P (KS′) =
P (Kn)P (Ks+1)

P (Ks)
= (t− s)

n−1∏
i=0

(t− i), (3.6)

where the first equality follows from equation 1.7, the second follows from (1.3) —

since KS′ [S
′ ∪ {v∗}] = Ks+1, and the third follows from (1.9).

Since in general complete graphs are not planar, graph duality cannot be applied

to generalized vertex join cliques to obtain a result about flow polynomials. However,

it would be interesting to investigate the flow polynomials of generalized vertex join

cliques directly. This will likely be a challenging task: Tutte [8] derived a formula

and a generating function for the flow polynomial of a complete graph which is quite

complicated; adding a vertex with arbitrary connections to the others will complicate

this formula even more. Such investigations will be the focus of future work.

3.2 Characterizations of flow polynomials

In this section, I show that the family of outerplanar graphs is dual to the family of

generalized vertex join trees, and adapt Algorithm 1 from Section 3.1.1 to compute

the flow polynomials of outerplanar graphs. These results complement and expand

the work of Wakelin and Woodall [185] on chromatic polynomials of outerplanar

graphs, by characterizing the flow polynomials of outerplanar graphs and the chro-

matic polynomials of their duals. I also show that the family of generalized vertex

join cycles is self-dual, and transform (3.5) into a closed formula for computing the

flow polynomials of generalized vertex join cycles.

3.2.1 Outerplanar graphs

Let B be a biconnected outerplane graph with bounded faces F1, . . . , Fs and outer

face F∗. The weak dual of B is a tree T = (V,E), where vertex vi ∈ T corresponds
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to face Fi ∈ B (see [195] for more details). Suppose Fi shares fi edges with F∗, and

let v∗ be the vertex in the dual of B corresponding to F∗. Then, the dual of B is the

generalized vertex join tree TS, where S is the multiset over V in which vi appears fi

times.

With this in mind, the flow polynomial of an arbitrary outerplanar graph G can

be computed by applying Algorithm 1 to the dual of each biconnected component of

G. This procedure is formally outlined in Algorithm 2 below.

Algorithm 2

1. Find the biconnected components G1, . . . , Gk of G

2. Find the dual graphs G∗1, . . . , G
∗
k

3. Compute P (G∗1), . . . , P (G∗k) using Algorithm 1

4. Compute F (G) by F (G) = 1
tk

∏k
i=1 P (G∗i )

Theorem 3.2. Algorithm 2 finds the correct flow polynomial of an outerplanar graph

G using O(n2 log n) time and O(n) space.

Proof. Consider the biconnected components of G as separate graphs, i.e., Gi = G[Vi]

where Vi is a maximal subset of V (G) such that G[Vi] is biconnected. Then, each Gi

is a biconnected outerplanar graph and by (1.16) and (1.17),

F (G) =
k∏
i=1

F (Gi) =
1

tk

k∏
i=1

P (G∗i ).

Since the dual of a biconnected outerplanar graph is a generalized vertex join tree,
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Algorithm 1 can be used to compute P (G∗i ) for 1 ≤ i ≤ k, so Algorithm 2 indeed

finds the correct flow polynomial of G.

To verify the time- and space-complexity, let |V (G)| = n and |V (Gi)| = ni;

clearly n1 + . . . + nk = O(n). By the algorithms of Hopcroft and Tarjan [196, 197],

the biconnected components G1, . . . , Gk of G can be found, embedded in the plane,

and have their dual graphs G∗1, . . . , G
∗
k computed, with O(n) time and space. Finally,

note that Algorithm 1 runs with O(n2
i log ni) time on the generalized vertx join tree

G∗i and that

k∑
i=1

(
n2
i log ni

)
≤

(
k∑
i=1

ni

)2

log

(
k∑
i=1

ni

)
= O(n2 log n).

Hence, Algorithm 1 can be applied to find P (G∗1), . . . , P (G∗k) in O(n2 log n) time and

O(n) space. Thus, the total time complexity of Algorithm 2 is O(n2 log n) and the

total space complexity is O(n).

I conclude this section with a characterization of the duality between outerplanar

graphs and generalized vertex join trees.

Proposition 3.1. Let G be a simple biconnected outerplane graph and TS be its dual

generalized vertex join tree. G is simple if and only if every vertex of TS has degree

at least 3.

Proof. Suppose G is a simple biconnected outerplane graph. G has no parallel edges

or loops, so G has no faces of size 1 or 2. Thus, each face of G is incident to at least

3 edges, so each vertex of TS has degree at least 3.

Now, suppose TS is a generalized vertex join tree, and that every vertex of TS has

degree at least 3. We will show that TS is the dual of a simple biconnected outerplanar

graph by induction on the number of vertices of TS. If TS has two vertices v and v∗,

D 
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all the edges in TS must join v to v∗ since by construction, TS can have no loops.

Thus, TS is the dual of some cycle of size at least 3 (which is simple, biconnected,

and outerplanar). Next, let TS be a generalized vertex join tree on k + 1 vertices

with minimum vertex degree at least 3, and let v be a leaf of T . Since T is a tree, v

has a unique neighbor u in T with exactly one edge between u and v. Moreover, by

assumption, v must be connected to v∗ by ` ≥ 2 edges and u must be incident to at

least two edges other than uv. Thus, if we delete v from TS and add an edge from u

to v∗, we obtain a generalized vertex join tree on k vertices, which by induction is the

dual of some simple biconnected outerplanar graph G. In this graph, u corresponds

to some bounded face F and v∗ corresponds to the outer face F∗. Since we added an

edge uv∗, F shares at least one edge e with F∗. Now, if we glue a cycle of size ` + 1

to e, we obtain a simple biconnected outerplanar graph whose dual is TS.

3.2.2 Generalized vertex join cycles

Let CS be a generalized vertex join cycle. If S = ∅, then F (G) = t− 1; thus assume

hereafter that S 6= ∅. To compute the flow polynomial of CS, note that by (1.17),

F (CS) = 1
t
P (C∗S), where C∗S is the dual of CS. But C∗S is again a generalized vertex

join cycle. To see why, note that each bounded face of CS is incident to two spokes —

hence the weak dual of CS is a cycle; in addition, each bounded face of CS may share

any number of edges with the outer face, making the vertex of C∗S corresponding to

the outer face of CS a generalized vertex join. See Figure 3.9 for an illustration.

Let s̃ = |S| and s = |S ′| where S ′ is the underlying set of S. Let C̃ be the weak

dual of CS; C̃ is a cycle with s̃ vertices. Let S̃ be the multiset of vertices of C̃ such

that C∗S = C̃S̃ and let S̃ ′ be the underlying set of S̃. Then,

D 
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Figure 3.9 : Left: CS and its weak dual. Right: C∗S, the dual of CS, is also a
generalized vertex join cycle.

F (CS) =
1

t
P (C∗S) =

1

t
P (C̃S̃) =

1

t
P (C̃S̃′). (3.7)

It is easy to see that CS′ and C̃S̃′ have the same number of faces. Moreover,

if f̃1 . . . , f̃s are the sizes of the faces of C̃S̃′ in clockwise order, then f̃i equals the

multiplicity of vai in S plus 2. Thus, to find F (CS), we simply plug in the sequence

of face-sizes of C∗S into (3.3), (3.4), and (3.5) as follows:

F (CS) = (t− 1)s̃ + (−1)s̃(t− 1)− 1

t

s∑
i=1

∏
j∈J̃i((t− 1)j + (−1)j(t− 1))

(t(t− 1))i−1
,

where J̃1 = {s̃} and J̃i = {f̃1, . . . , f̃i−2, f̃i−1 − 1, 2(i− s) +
∑s

j=i f̃j − 1} for 2 ≤ i ≤ s.

Note that this closed formula again depends only on S, since the face-sizes of C∗S are

determined from S.

3.3 Computational results

In this section, Algorithm 1 and formulas (3.5) and (3.6) are computationally com-

pared to the general-purpose ChromaticPolynomial function found in Version 10.0

of the computer algebra system Mathematica. The ChromaticPolynomial function

is an implementation of the deletion-contraction algorithm for finding the chromatic
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polynomials of general graphs. The computations described in this section were per-

formed on an HP-Pavilion desktop with an Intel R©CoreTM 2 Quad Q9300 2.50GHz

processor. All coding was done in Mathematica, which has a native ability to mul-

tiply and divide polynomials and manipulate graphs. Other than that, no high-level

functions were used in the implementation of Algorithm 1 and formulas (3.5) and

(3.6).

3.3.1 Generalized vertex join trees

A test graph TS was created by first generating a random tree T on n vertices, then

adding a new vertex and connecting it to all of the leaves of T plus a random subset

of the other vertices of T .

The level of each vertex was found by computing its distance from a randomly

chosen root r, and the children of each vertex were identified as the adjacent vertices

with a higher level. Finally, the sets I and Z were computed for each vertex by

intersecting the set of its children with the set of neighbors of v∗. Then, the poly-

nomials P (Ta) and P (Ha) were computed for each a as described in Section 3.1.1,

with P (Tr) giving P (TS). The order of the graph n was varied and the corresponding

computation time was recorded.

The chromatic polynomials given by Algorithm 1 exactly matched those given by

the ChromaticPolynomial function. However, the ChromaticPolynomial function

was only able to handle graphs with n ≤ 65 before running out of memory, and

Algorithm 1 was able to handle much larger graphs. In addition, for n ≤ 65, the

computation time of Algorithm 1 was between 0.001 and 0.15 seconds whereas the

ChromaticPolynomial function was more than 10 times slower. See Figure 3.10,

right, for the run times of Algorithm 1 and Figure 3.10, left, for the run times of the
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ChromaticPolynomial function on graphs of increasing order.
tim

e 
(s

)

3

2

1

10 20 30 40 50 60
n

10 20 30 40 50 60
n

0.05

0.10

0.15

tim
e 

(s
)

Figure 3.10 : Computing the chromatic polynomial of a generalized vertex join
tree using the ChromaticPolynomial function (left) and Algorithm 1 (right). The
ChromaticPolynomial function fails to run for n > 65.

By inspection, the growth rate in Figure 3.10, left, appears to be exponential, while

the growth rate in Figure 3.10, right, appears to be polynomial; this agrees with the

theoretical complexities of the two approaches. In addition, Algorithm 1 was used

on graphs with up to 500 vertices, and ran relatively quickly; see Figure 3.11. The

long-term growth rate of the run-time appears to be polynomial as expected.
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Figure 3.11 : Computing the chromatic polynomial of a generalized vertex join tree
using Algorithm 1.

• 

• 
• • 

• • • • 
-+----'--'~ ,. ' 

• • 

• 

• •• 
• ... 

• 

• 
• • 

• • 

• 
• • 



72

3.3.2 Generalized vertex join cycles

For short, the implementation of formula (3.5) will be called Algorithm 3. A test graph

CS was created by first generating a cycle C with n vertices, then adding a new vertex

and connecting it to a random subset of size between 3n
10

and 7n
10

of the other vertices

of C. The sets Ji were computed as described in (3.4) and the following discussion,

and P (CS) was computed by summing the products of polynomials as described in

(3.5). The order of the graph n was varied and the corresponding computation time

was recorded.

The polynomials given by Algorithm 3 exactly matched the polynomials given by

the ChromaticPolynomial function. However, the ChromaticPolynomial function

was only able to handle graphs with n ≤ 60 before running out of memory, and

Algorithm 3 was able to handle much larger graphs. In addition, for n ≤ 60, the

computation time of Algorithm 3 was predominantly less than 0.001 seconds (the

minimum time interval recorded on the system) whereas the ChromaticPolynomial

function ran nearly 100 times slower. See Figure 3.12, left, for the run times of

Algorithm 3 and Figure 3.12, right, for the run times of the ChromaticPolynomial

function on graphs of increasing order.

Note the difference in n when comparing Figure 3.12, left, and Figure 3.12, right. By

inspection, the growth rate in the former appears to be polynomial, while the growth

rate in the latter appears to be exponential. Detailed analysis of the growth rates are

outside the scope of this study.

3.3.3 Generalized vertex join cliques

For short, the implementation of formula (3.6) will be called Algorithm 4. A test

graph KS was created by first generating a clique K with n vertices, then adding a
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Figure 3.12 : Computing the chromatic polynomial of a generalized vertex join cycle
using Algorithm 3 (left) and using the ChromaticPolynomial function of Mathemat-
ica (right). The ChromaticPolynomial function fails to run for n > 60.

new vertex and connecting it to a random subset of the other vertices of K. P (KS)

was computed by multiplying a number of terms as described in (3.6). The order of

the graph n was varied and the corresponding computation time was recorded.

The polynomials given by Algorithm 4 exactly matched the polynomials given by

the ChromaticPolynomial function. However, the ChromaticPolynomial function

was only able to handle graphs with n ≤ 16 before running out of memory, and

Algorithm 4 was able to handle significantly larger graphs. In addition to running

out of memory for much smaller graphs, the ChromaticPolynomial function is more

than 100 times slower, even for small graphs. See Figure 3.13, left, for the run times

of Algorithm 4 and Figure 3.13, right, for the run times of the ChromaticPolynomial

function on graphs of increasing order.

The deletion-contraction algorithm used by Mathematica performs very poorly

on dense graphs, as is to be expected. A clear exponential trend in its run time is

exhibited in Figure 3.13, right; moreover the function fails for generalized vertex join

cliques with more than 16 vertices. On the other hand, Algorithm 4 is much faster,

is able to handle graphs with thousands of vertices in less than 5 seconds, and has a
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Figure 3.13 : Computing the chromatic polynomial of a generalized vertex join clique
using Algorithm 4 (left), and using Mathematica (right). The program fails to run
for n ≥ 16.

polynomial growth rate as can be seen from Figure 3.13, left.

3.3.4 Discussion

All three computational experiments reveal that my algorithms were much faster than

the ChromaticPolynomial function and able to handle much larger graphs from the

appropriate family. This is not surprising, since generality is often achieved at the

expense of speed. However, this motivates the inclusion of a preprocessing step in

general purpose algorithms: if a general graph is suspected to contain one or more

subgraphs whose chromatic polynomials can be found efficiently, it may be worth to

locate those subgraphs and modify the deletion-contraction algorithm so that they

appear as components in some step of the recursion. This will remove a large part of

the recursion tree and may speed up the computation of the chromatic polynomial

significantly.

Finally, note that simply having a closed formula for a chromatic polynomial

does not mean it can be used efficiently. For instance, recall from Chapter 1 that the

chromatic polynomial of any graph G = (V,E) can be computed by the closed formula
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P (G; t) =
∑

S⊂E(−1)|S|tcomp(G:S). However, this formula requires, among other things,

a summation with an exponential number of terms. In contrast, Algorithms 1, 3, and

4 can be used in polynomial time in practice, as seen from the preceding experiments.



76

Chapter 4

Structural results and complexity of connected

forcing

In this chapter I present a variety of structural results about connected forcing, such

as the effects of certain vertex and edge operations on the connected forcing number,

the relations between the connected forcing number and other graph parameters, and

the computational complexity of connected forcing. I also present several technical

lemmas which are used in later chapters to give efficient algorithms for computing

the connected forcing numbers of certain graphs, and to characterize graphs with

extremal connected forcing numbers.

4.1 Basic properties and relation to other parameters

Since any connected forcing set is also a zero forcing set, any minimum connected

forcing set contains a (not necessarily minimum) zero forcing set. Thus, the following

simple result follows.

Observation 4.1. For any connected graph G, Zc(G) ≥ Z(G), and this bound is

sharp.

Observation 4.1 is sharp, e.g., for paths, cycles, and complete graphs; other graphs

with Zc(G) = Z(G) are identified in the following chapters. Conversely, it is natural

to ask whether there are families of graphs for which the connected forcing number

is arbitrarily larger than the zero forcing number; the next result answers this in the
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affirmative.

Observation 4.2. For any c > 0, there exists a graph G such that Zc(G) ≥ Z(G)+c.

Proof. Consider the graph Gk obtained by attaching a pair of pendant vertices to

each end of a path Pk. It is easy to see that Z(Gk) = 3 (where any 3 leaves of Gk

form a minimum zero forcing set), and for k ≥ 2, Zc(Gk) = k + 2 (where all vertices

except 2 leaves must be included in a minimum connected forcing set); see Figure 4.1

for an illustration. Thus, Zc(Gk) − Z(Gk) = k − 1, which can be made larger than

any constant c.

Figure 4.1 : Zc(G) and Z(G) can differ arbitrarily. Left: minimum connected forcing
set. Right: minimum zero forcing set.

Another natural question to ask is whether every graph has some minimum con-

nected forcing set that contains a minimum zero forcing set (or equivalently, whether

some minimum zero forcing set can be extended to obtain a minimum connected

forcing set). The following observation provides a counterexample to this question.

Observation 4.3. It is not necessarily the case that some minimum connected forcing

set of a connected graph G contains a minimum zero forcing set of G.

Proof. Consider the graph G in Figure 4.2, obtained by joining two copies of P5 by an

edge. The minimum connected forcing sets of G consist of the two degree 3 vertices,

together with one degree 2 neighbor of each degree 3 vertex. The minimum zero

forcing sets of G consist of two degree 1 vertices which are not in the same copy of P5.
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Thus, no subset of any minimum connected forcing set of G is a minimum zero forcing

set, and no superset of any minimum zero forcing set of G is a minimum connected

forcing set.

Figure 4.2 : It is possible that no minimum connected forcing set of a graph contains
a minimum zero forcing set. Left: minimum connected forcing set. Right: minimum
zero forcing set.

Let L(G) denote the number of leaves in G. A path cover of G is a set of vertex-

disjoint induced paths in G which contain all the vertices of G. The path cover

number of G, denoted P (G), is the minimum size of a path cover. Recall that M(G)

denotes the maximum nullity of G. It has been shown that the zero forcing number

is an upper bound on the minimum degree, maximum nullity [89], path cover number

[166], and chromatic number minus one [198] of a graph. Thus, by Observation 4.1,

we have the following relations.

Observation 4.4. For any connected graph G, Zc(G) ≥ δ(G), Zc(G) ≥ M(G),

Zc(G) ≥ P (G), and Zc(G) ≥ χ(G)− 1; moreover, all these bounds are sharp.

The bounds in Observation 4.4 are sharp, e.g., for paths. Some additional re-

lations between connected forcing, vertex degrees, and path covers are included in

the following chapters. The next result shows that the connected forcing number is

also an upper bound on the number of leaves in the graph. The same relation does

not always hold for the zero forcing number (see, e.g., Figures 4.1 and 4.2, right);

however, it holds that Z(G) ≥ L(G)/2, since each leaf must be either the beginning

or end of a forcing chain.
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Proposition 4.1. For any connected graph G different from a path, Zc(G) ≥ L(G),

and this bound is sharp.

Proof. Let R be an arbitrary connected forcing set of G. Each vertex, and in partic-

ular each leaf of G has to be in some forcing chain. A forcing chain cannot contain

more than two leaves, since then it would not induce a path. Suppose some chain

contains two leaves. Then one of these leaves must be in R, and every other vertex

in the chain must not be in R. In particular, the neighbor of the colored leaf is not in

R. However, since G is not a path, there must be other members of R outside of this

forcing chain; thus, R is not connected – a contradiction. Thus, each forcing chain

can contain at most one leaf. Since each forcing chain contains one element of R, it

follows that Zc(G) ≥ L(G). This bound is sharp, e.g., for the graph in Figure 4.2,

left.

4.2 Vertex and edge operations

In this section, I explore the effect of various vertex and edge operations on the

connected forcing number. An important concept to studying the zero forcing process

is that of zero forcing spread of a vertex v and edge e in graph G; these parameters,

defined as z(G; v) = Z(G)− Z(G− v) and z(G; e) = Z(G)− Z(G− e), respectively,

describe the effects of deleting a vertex or edge from the graph on the zero forcing

number of the graph. It has been shown in [104, 106] that the zero forcing spread

of any vertex or edge is bounded by 1; more precisely, for any graph G, vertex v,

and edge e, −1 ≤ z(G; v) ≤ 1 and −1 ≤ z(G; e) ≤ 1. Similar results are also known

for the rank spread and path spread – parameters which describe the change in the

minimum rank and path cover number of a graph when an edge or vertex is deleted.

In particular, it has been shown that 0 ≤ r(G; v) ≤ 2 [199], −1 ≤ r(G; e) ≤ 1 [199],
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−1 ≤ p(G; v) ≤ 1 [127, 125], and −1 ≤ p(G; e) ≤ 1 [132] (where the rank spread r

and path spread p are defined analogously to the zero forcing spread).

I now define the concept of connected forcing spread of a vertex v and edge e

in graph G as zc(G; v) = Zc(G) − Zc(G − v) and zc(G; e) = Zc(G) − Zc(G − e),

respectively. In these definitions, it is convenient to restrict v to be a non-cut vertex

and e to be a non-cut edge of G, since a disconnected graph cannot have a connected

forcing set. The next result shows that unlike the zero forcing spread, the connected

forcing spread of a vertex and edge can be arbitrarily large.

Proposition 4.2. For any c1 < 0 and c2 > 0, there exist graphs G1 and G2, vertices

v1 ∈ G1 and v2 ∈ G2, and edges e1 ∈ G1 and e2 ∈ G2 such that zc(G1; v1) < c1,

zc(G2; v2) > c2, zc(G1; e1) < c1 and zc(G2; e2) > c2.

Proof. Let G1 be the graph obtained by appending a pendant vertex to each endpoint

of two maximally distant edges of an even cycle C2k, k ≥ 5. Let v be a vertex at

distance at least 3 from any leaf of G, and let e be an edge incident to v. See

Figure 4.3, left for an illustration. It is easy to see that Zc(G1) = 4 and Zc(G1− v) =

Zc(G1 − e) = k + 4. Thus, zc(G1; v) = zc(G1; e) = −k, which can be made smaller

than any constant c1.

Let G2 be the graph obtained by appending a copy of K3 to each end of a path Pk,

k ≥ 1. Let v be a degree 2 vertex in one of the copies of K3, and let e be an edge in

one of the copies of K3 whose endpoints have degrees 2 and 3. See Figure 4.3, right for

an illustration. It is easy to see that Zc(G2) = k+2 and Zc(G2−v) = Zc(G2−e) = 2.

Thus, zc(G2; v) = zc(G2; e) = k, which can be made larger than any constant c2.

Clearly, Proposition 4.2 also implies that adding a vertex or edge to a graph can

change the connected forcing number arbitrarily. I now show that the same holds for
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Figure 4.3 : Left: Deleting a vertex or edge from G1 makes Zc(G1) increase arbitrarily.
Right: Deleting a vertex or edge from G2 makes Zc(G2) decrease arbitrarily.

edge contractions. The effect of contractions has also been considered for the zero

forcing number [200] and the positive semidefinite zero forcing number [198]; both

of these parameters can be increased or decreased by at most one when an edge is

contracted.

Proposition 4.3. For any c1 < 0 and c2 > 0, there exist graphs G1 and G2 and edges

e1 ∈ G1 and e2 ∈ G2 such that Zc(G1)−Zc(G1/e1) < c1 and Zc(G2)−Zc(G2/e2) > c2.

Proof. Let e1 and f be two maximally distant edges of an even cycle C2k, k ≥ 3; let

G1 be the graph obtained by appending a pendant vertex to each endpoint of e1, and

two pendant vertices to each endpoint of f . See Figure 4.4, left for an illustration. It

is easy to see that Zc(G1) = 6 and Zc(G1/e1) = k + 5. Thus, Zc(G1)− Zc(G1/e1) =

−k + 1, which can be made smaller than any constant c1.

Let G2 be the graph obtained by attaching a pair of pendant vertices to each end

of a path Pk. Let e2 be an edge incident to some leaf of G2. See Figure 4.4, right

for an illustration. It is easy to see that Zc(G2) = k + 2 and Zc(G2/e2) = 3. Thus,

Zc(G2)− Zc(G1/e2) = k − 1, which can be made larger than any constant c2.

Lastly, I consider the operation of edge subdivision. I show in the next two results

that subdividing an edge can increase the connected forcing number arbitrarily, or
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Figure 4.4 : Left: Contracting an edge in G1 makes Zc(G1) increase arbitrarily. Right:
Contracting an edge in G2 makes Zc(G2) decrease arbitrarily.

keep it the same, but cannot decrease it. The effects of edge subdivision have also been

investigated for other parameters like the zero forcing number [200] and the positive

semidefinite zero forcing number [198]; when an edge is subdivided, the former can

increase by one or remain unchanged, and the latter always remains unchanged.

Proposition 4.4. Let G be a connected graph, e be an edge in G, and H be the graph

obtained by subdividing e in G. Then Zc(H) ≥ Zc(G), and this bound is sharp.

Proof. Let e = uv be the subdivided edge, and w be the new vertex introduced by

the subdivision, i.e., if G = (V,E), then H = (V ∪ {w}, E\{uv} ∪ {uw, vw}). Let

R be a minimum connected forcing set of H and fix some chronological list of forces

associated with R. Suppose first that R contains both u and v. Regardless of whether

or not R contains w, R (or R\{w}) remains connected in G. Moreover, any force

that is valid in H remains valid in G, since u and v are already colored and have no

uncolored neighbors in G which they do not have in H (and all other vertices have

the same neighbors as in H). Thus, R (or R\{w}) is also a connected forcing set of

G.

Next suppose that R contains neither u nor v; in this case R cannot contain w,

since if it did, it would not be connected. Then, one of u and v, say u, will be forced
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first by a vertex other than w in some timestep, and then either u will force w which

can force v, or v will be forced by some other vertex in a later timestep. In either

case, these forces remain valid in G (where in the former case, the forcing sequence

u→ w → v is replaced by u→ v). Thus, R is also a connected forcing set of G.

Finally, suppose R contains only one of u and v, say u. If R also contains w, then

w can force v in the first timestep in H. Then, by the same reasoning as in the first

case above, the set R\{w} ∪ {v} is a connected forcing set of G, and has the same

size as R. If R does not contain w, then in some timestep either u will force w which

can force v, or v will be forced by some other vertex. Then, by the same reasoning as

in the second case above, R is also a connected forcing set of G. Thus, in all cases,

Zc(H) ≥ Zc(G); moreover, this bound is attained with equality, e.g., by subdividing

any edge in a path.

Proposition 4.5. For any c > 0, there exists a graph G and edge e ∈ G such that if

H is obtained by subdividing e in G, then Zc(H)− Zc(G) > c.

Proof. Let e and f be two maximally distant edges of an even cycle C2k, k ≥ 3;

let G be the graph obtained by appending a pendant vertex to each endpoint of e,

and two pendant vertices to each endpoint of f . Let H be the graph obtained by

subdividing e in G; see Figure 4.5 for an illustration. It is easy to see that Zc(G) = 6

and Zc(H) = k + 5. Thus, Zc(H) − Zc(G) = k − 1, which can be made larger than

any constant c.

I will now show that a leaf incident to a vertex of degree 2 does not belong to any

minimum connected forcing set. In view of Proposition 4.4, this result implies that

subdividing an edge incident to a leaf does not affect the connected forcing number.
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Figure 4.5 : Subdividing an edge in G makes Zc(G) increase arbitrarily.

Lemma 4.1. Let G = (V,E) be a connected graph different from a path and ` be a leaf

adjacent to a vertex of degree 2. Then ` does not belong to any minimum connected

forcing set of G, and Zc(G) = Zc(G− `).

Proof. Let R be an arbitrary minimum connected forcing set of G. Let v be the

neighbor of `, and w be the other neighbor of v. We will first show that ` /∈ R.

Suppose on the contrary that ` ∈ R, v ∈ R, and w ∈ R; then R\{`} is a connected

forcing set of smaller size, since v can force ` in the first timestep. Next, suppose

that ` ∈ R, v ∈ R, and w /∈ R. If ` and v are the only vertices in R, then G must be

a path, contradicting our assumption; if there are other vertices in R besides ` and

v, then R is not connected. Similarly, it cannot be the case that ` ∈ R, v /∈ R, and

w /∈ R, or that ` ∈ R, v /∈ R, and w ∈ R. Thus, ` is not in R.

Now, if R is a minimum connected forcing set of G, then R is also a minimum

connected forcing set of G − `, since ` cannot be initially colored and cannot be a

non-terminal vertex of any forcing chain. Conversely, if R is a minimum connected

forcing set of G − ` and v ∈ R, then w must also be in R since otherwise R will be

disconnected; then, v can force ` in G in the first timestep. If v /∈ R, then at some

timestep w will force v, and the addition of ` can have no effect on the forcing chain
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of w or any other vertex in G; at the next timestep, v can force `. Thus, in both

cases, R is also a minimum connected forcing set of G, so Zc(G) = Zc(G− `).

4.3 Bounds and mandatory vertices

This section identifies sets of vertices which are contained in every minimum connected

forcing set, and uses them to establish bounds on the connected forcing number.

These results are in some contrast to a result of Barioli [128] that no vertex belongs

to every minimum zero forcing set. An asymptotic bound on the connected forcing

number in terms of graph density is also presented. I begin with the following technical

lemma, which identifies certain vertices that must belong to every connected forcing

set, using the vertex connectivity of the graph.

Lemma 4.2. Let G be a connected graph, S be a separating vertex set of G, and

V1, . . . , Vk be the vertex sets of the connected components of G− S. If each vertex of

S is incident to each Vi, 1 ≤ i ≤ k, then every connected forcing set of G contains a

vertex from at least k − 1 of V1, . . . , Vk. Moreover, if k = 2 and Z(G[Vi]) > |S| for

i ∈ {1, 2}, or if k ≥ 3, then every connected forcing set of G contains a vertex of S.

Proof. Let R be an arbitrary connected forcing set of G and F be an arbitrary

chronological list of forces associated with R. Suppose for contradiction that R does

not contain vertices from two components of G − S, say G[V1] and G[V2]. Let v be

the first vertex in V1 ∪ V2 to be forced; since N(v;G) ⊂ S ∪ V1 ∪ V2, v must be forced

by a vertex of S. However, no vertex of S can force v, since at that timestep every

vertex of S has at least two uncolored neighbors — one in V1 and one in V2. Thus,

R must contain a vertex from at least k − 1 of V1, . . . , Vk. In particular, if k ≥ 3, R

must contain a vertex from at least two components of G− S. Since R is connected,
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and since any path between two vertices from different components of G − S must

contain a vertex of S, R contains a vertex of S.

Now suppose k = 2, and suppose for contradiction that R ⊂ V1. Let Z be the

set of vertices of V2 which are forced (according to F) by vertices in S; let F ′ be a

list of forces whose ith element is the ith instance of a vertex of V2 forcing another

vertex of V2 (according to F). We claim that Z is a zero forcing set of G[V2], and

that F ′ is a chronological list of forces for Z in G[V2]. To see why, note that if

v ∈ V2 is the ith vertex to force another vertex in V2 at some timestep of F , since

N(v;G[V2]) ⊂ N(v;G), v and all-but-one of its neighbors are colored in G[V2] at the

ith step of F ′. Thus, v would be able to force the same vertex in G[V2] as in G, so

each force between two vertices of V2 in G can also be performed in G[V2]. Since

in G, each vertex in V2 is forced either by a vertex of S or a vertex of V2, in G[V2]

each vertex is either in Z or is in a forcing chain initiated by a vertex in Z; thus Z

is a forcing set of G[V2]. However, |Z| ≤ |S| since each vertex in S forces at most

one vertex of V2 in G; this contradicts the assumption that Z(G[V2]) > |S|. Thus,

R 6⊂ V1; similarly, R 6⊂ V2. Also, R cannot contain elements of both V1 and V2 without

containing elements of S, since R is connected and S is a separating set. Thus, R

contains a vertex of S.

Below is some terminology and notation which will be used in the sequel.

Definition 4.1. Let G = (V,E) 6' Pn be a graph and v be a vertex of degree at

least 3. A pendant path attached to v is a maximal set P ⊂ V such that G[P ] is a

connected component of G− v which is a path, one of whose ends is adjacent to v in

G. The neighbor of v in P will be called the base of the path, and p(v) will denote

the number of pendant paths attached to v ∈ V . We will also say that p(u) = 1 if u
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is a cut vertex which belongs to a pendant path.

Definition 4.2. Let G = (V,E) 6' Pn be a connected graph. Define

R1(G) = {v ∈ V : comp(G− v) = 2, p(v) = 1}

R2(G) = {v ∈ V : comp(G− v) = 2, p(v) = 0}

R3(G) = {v ∈ V : comp(G− v) ≥ 3}

L(G) =
⋃

v∈V,d(v)≥3

{all-but-one bases of pendant paths attached to v}

M(G) = R2(G) ∪R3(G) ∪ L(G).

When there is no scope for confusion, the dependence on G will be omitted. Note

that the sets R1, R2, and R3 partition the set of cut vertices of G.

The next result is a useful implication of Lemma 4.2 and the sets defined above. In

view of this result,M(G) can be understood as a set of “mandatory vertices”, which

appear in every connected forcing set.

Lemma 4.3. Let G = (V,E) be a connected graph different from a path and R be an

arbitrary connected forcing set of G. Then M(G) ⊂ R.

Proof. Since a cut vertex v is a separating set incident to each component of G− v,

by Lemma 4.2, R must contain v for all v ∈ R2 ∪ R3. If all components of G − v

are pendant paths attached to v, then it is easy to verify that R consists of v and

all-but-one bases of pendant paths attached to v, i.e. L ⊂ R. Now, suppose v is a cut

vertex such that not all components of G− v are pendant paths attached to v. If R

does not include any vertices from some component of G− v, that component must

be a pendant path attached to v, since otherwise the component cannot be forced by

v alone. Since by Lemma 4.2, R includes a vertex from all or all-but-one components
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of G − v, and since the excluded component can only be a pendant path attached

to v, it follows that for each u ∈ V , R includes at least all-but-one bases of pendant

paths attached to u. Thus, by definition, L ⊂ R, and since M = R2 ∪ R3 ∪ L, it

follows that M⊂ R.

Note that the converse of Lemma 4.3 is not true, in the sense that there could be

vertices not inM(G) which are contained in every minimum connected forcing set of

a graph G. For example, let u and w be the neighbors of a vertex v in C10, and let

G be the graph obtained by appending leaves to u, v, and w. Then v is contained in

every minimum connected forcing set of G, even though v is in R1 and not M. The

next result is also related to vertices which belong to every connected forcing set.

Proposition 4.6. Let G be a connected graph different from a path and B be a block

of G which is not a cut edge of a pendant path of G. Then every connected forcing

set of G contains at least δ(G[B]) vertices of B.

Proof. Suppose there is a connected forcing set S of G which contains at most

δ(G[B]) − 1 vertices of B. Clearly there are uncolored vertices in B, since B has

at least δ(G[B]) + 1 vertices. Any forcing chain initiated by a vertex outside B

and containing a vertex of B must pass through an uncolored cut vertex p of B;

by Lemma 4.3, p /∈ M, so p ∈ R1. However, this means S contains a vertex of a

pendant path, but not the vertex to which the path is attached — this contradicts S

being connected. Thus, there can be no forcing chain initiated outside B and passing

through B.

Now suppose there is a (non-singleton) forcing chain starting at v ∈ B which

contains another vertex of B. The vertex v has at least δ(G[B]) neighbors in B;

however, by assumption, at most δ(G[B]) − 2 of them can be colored. Since none
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of these neighbors of v can get forced by a vertex outside of B, v cannot force any

vertex — a contradiction. Thus, no uncolored vertex in B can be forced, so S must

contain at least δ(G[B]) vertices of B.

The next result considers the relationship between the density of a graph and its

connected forcing number. It can be readily verified that sparse graphs can have both

large and small zero forcing numbers and connected forcing numbers; path graphs and

star graphs are extremal in this regard. The following theorem shows that in contrast,

dense graphs can only have asymptotically large connected forcing numbers and zero

forcing numbers.

Theorem 4.1. Let G = (V,E) be a graph with |E| = Ω(|V |2). Then, Zc(G) = Θ(|V |).

Proof. Let n = |V | and suppose for contradiction that for every S ⊂ V , δ(G[S]) =

o(n). Let G0 = G; for 1 ≤ i ≤ n, let vi be a vertex such that d(vi;Gi−1) = δ(Gi−1) and

let Gi = Gi−1 − vi. In words, the graphs {Gi}ni=1 are obtained by repeatedly deleting

a vertex of minimum degree. By our assumption, for 1 ≤ i ≤ n, δ(Gi) = o(n)

so each Gi has o(n) fewer edges than Gi−1. However, this is a contradiction, since

n · o(n) 6= Ω(n2). Thus, there must be some S ⊂ V for which δ(G[S]) = Ω(n).

Let R be a minimum connected forcing set of G; clearly |R| = O(n). Fix some

chronological list of forces, and let v be the first vertex in S (if any) which forces

another vertex. At the timestep when v performs a force, v and all-but-one of its

neighbors must be colored; since δ(G[S]) = Ω(n), there must be Ω(n) colored vertices

at the timestep when v performs a force. Since v is the first vertex in S to perform

a force, each of v’s neighbors in S is either in R, or has been forced by a distinct

forcing chain (since if two vertices in S are in the same forcing chain, the one that

comes first in the chain would have performed a force before v). If no vertex of S
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ever performs a force, then again each vertex in S is either in R, or has been forced

by a distinct forcing chain. Since each forcing chain is initiated by a unique element

in R, and since |R| ≥ |S| ≥ δ(G[S]) = Ω(n), it follows that Zc(G) = Θ(n).

A similar argument as above can be used to show that for G = (V,E) with

|E| = Ω(|V |2), then Z(G) = Θ(|V |), as well. It should be noted that Theorem 4.1

describes only the asymptotic relationship between the density of a graph and its

connected forcing number. It is also useful to obtain non-asymptotic bounds on the

connected forcing number in terms of the edge count and other easily computable

parameters. Some progress to this end has been made in [201]; bounds on the zero

forcing number have also been pursued, e.g., in [107, 108, 202]. The next result is

also a step in this direction. Using Proposition 4.6 and the fact that the only vertices

which can belong to more than one block which is not part of a pendant path are the

vertices in R2 ∪ R3, I formulate the following lower bound on the connected forcing

number.

Corollary 4.1. Let G be a connected graph, B be the set of blocks of G which are not

cut edges of pendant paths of G, and let µ(v) denote the number of blocks a vertex v

is part of. Then,

Zc(G) ≥
∑
B∈B

δ(G[B])−
∑

v∈R2∪R3

(|µ(v)| − 1).

The bound in Corollary 4.1 is tight, for example in a cycle or complete graph;

this bound can be used in conjunction with the bound Zc(G) ≥ |M(G)| implied by

Lemma 4.3.

D 



91

4.4 Computational complexity

In this section, I show that computing the connected forcing number of a graph is

NP-complete. To begin, I state the decision version of this problem.

PROBLEM: Connected zero forcing (CZF )

INSTANCE: A simple undirected connected graph G = (V,E) and a positive integer

k ≤ |V |.

QUESTION: Does G contain a zero forcing set S of size at most k such that G[S] is

connected?

Theorem 4.2. CZF is NP-complete.

Proof. We will first show that CZF is in NP. Given a set S of vertices of G, it can be

checked in polynomial time whether there is a vertex in S with exactly one neighbor

not in S. Moreover, there cannot be more than |V | steps in a forcing process. Thus, a

nondeterministic algorithm can check in polynomial time whether a subset of vertices

of V is forcing, whether it induces a connected subgraph, and whether it has size at

most k. Thus, CZF is in NP.

For our reduction, we select the problem of zero forcing, which was proved to be

NP-complete in [203, 103]. The decision version of zero forcing is stated below.

PROBLEM: Zero forcing (ZF )

INSTANCE: A simple undirected graph G = (V,E) and a positive integer k ≤ |V |.

QUESTION: Does G contain a zero forcing set S of size at most k?

Next, we construct a transformation f from ZF to CZF . Let I = 〈G, k〉 be an

instance of ZF , where G = (V,E) and V = {v1, . . . , vn}. We define f(I) = 〈G′, k+2〉,

where G′ = (V ∪ {v∗, `1, `2}, E ∪ {{v∗, vi} : 1 ≤ i ≤ n} ∪ {{v∗, `1}, {v∗, `2}}). See
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Figure 4.6 for an illustration of G and G′.

G

v*

l1 l2

Figure 4.6 : Obtaining G′ from G.

Finally, we will prove the polynomiality and correctness of f . Clearly, G′ can be

constructed from G in polynomial time, so f is a polynomial transformation.

Suppose I = 〈G, k〉 is a ‘yes’ instance of ZF , i.e., that G = (V,E) has a zero

forcing set S of size at most k. We claim that S ′ := S ∪ {v∗, `1} is a connected

forcing set of G′. To see why, first note that since v∗ is adjacent to every vertex in

S ′−{v∗}, G′[S ′] is connected. Next, given an arbitrary chronological list of forces for

S in G, each force can also be applied for S ′ in G′, since for any v ∈ V , N(v;G′) =

N(v;G)∪{v∗} and v∗ is initially colored; thus, when v has a single uncolored neighbor

in G at some step of the forcing process, it will have the same uncolored neighbor in

G′. When all vertices of V in G′ are colored, `2 will be the only uncolored vertex in

G′, and it will be forced by v∗. Thus S ′ is a connected forcing set of G′ of size at

most k + 2, so f(I) = 〈G′, k + 2〉 is a ‘yes’ instance of CZF .

Conversely, suppose f(I) = 〈G′, k+2〉 is a ‘yes’ instance of CZF , i.e., that G′ has

a connected forcing set S ′ of size at most k+2. Fix a chronological list of forces for S ′

in G′ and suppose v∗ forces a vertex w ∈ V . Then, both `1 and `2 must be in S ′, since

they are adjacent only to v∗, which cannot force them if it forces w. Moreover, w
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must be the last uncolored vertex in G′, since if there was another uncolored vertex,

v∗ would have more than one uncolored neighbor and could not force w. If w is not

an isolated vertex of G, then in the last step of the forcing process, w can be forced

by one of its neighbors in V instead of by v∗. If w is an isolated vertex of G, then

it is a leaf of G′, and the set S ′′ = S ′\{`1} ∪ {w} is also a connected forcing set of

G′, where v∗ does not force any vertex of V (if we use the same chronological list of

forces, except in the last step, v∗ → `1 instead of v∗ → w).

Thus, we can choose a connected forcing set S ′ and a chronological list of forces

for S ′ such that v∗ does not force any vertex of V in G′. We claim that S := S ′ ∩ V

is a forcing set of G. To see why, first note that v∗ must be in S ′ by Lemma 4.3, and

that for any v ∈ V , N(v;G) = N(v;G′)\{v∗}. Thus, each force between vertices of

V in G′ can also be applied for S in G, since if v ∈ V has a single uncolored neighbor

in G′ at some step of the forcing process, it will have the same uncolored neighbor

in G. Moreover, since v∗ does not force any vertex in V , all vertices in V must be

forced by the elements of S ′ which are in V . Thus, S is a forcing set of G. Finally,

to verify the size of S, note that by Lemma 4.3, v∗ and at least one of `1 and `2 must

be in S ′, so k + 2 ≥ |S ′| ≥ |S ′ ∩ V | + 2 = |S| + 2, so S has size at most k. Thus, if

f(I) is a ‘yes’ instance of CZF , then I is a ‘yes’ instance of ZF . D 
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Chapter 5

Characterizations of connected forcing numbers

In view of Theorem 4.2, one cannot hope to efficiently compute the connected forcing

number of a general graph. In this chapter, I give specialized algorithms for efficiently

computing the connected forcing numbers of different families of graphs, including

tree-like graphs and graphs with certain symmetries. I also characterize the graphs

from these families whose connected forcing numbers are equal to their zero forcing

numbers. Related parameters of such families of graphs have been investigated in the

past: for example, [204] and [205] give efficient algorithms for computing the path

cover numbers of trees; [206] and [89] respectively show that for trees, the path cover

number equals the maximum nullity and the zero forcing number; [89] and [106]

show that in block graphs, the maximum nullity equals the zero forcing number;

[98] surveys several characterizations and gives polynomial time algorithms for the

maximum nullity and path cover number of unicyclic graphs; [207] and [198] show

that the zero forcing number of unicyclic graphs and cactus graphs equals the path

cover number; [137] characterizes the power domination number of block graphs.

5.1 Graphs with symmetry

By definition, for any connected graph G, Zc(G) = Z(G) if and only if there exists

some minimum zero forcing set of G which is connected. Thus, if Z(G) is known,

and a minimum zero forcing set of G is found which is connected, then Zc(G) will
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immediately be determined as well. However, in general, it is harder to characterize or

even count all distinct minimum zero forcing sets of a graph than to find its connected

forcing number. Thus, even if Z(G) is known, it may be difficult to determine whether

or not any of the minimum zero forcing sets of the graph are connected. In particular,

in Chapter 7, I show that a graph could have exponentially-many minimum zero

forcing sets which are disconnected, and still have minimum zero forcing sets which

are connected. Nevertheless, sometimes it is possible to easily find a minimum zero

forcing set which is connected. This principle is applied below to easily characterize

the connected forcing numbers of some graphs.

Proposition 5.1. Let Wn be the wheel on n vertices, Qs be the sth hypercube on 2s

vertices, Ts be the sth supertriangle on 1
2
s(s+ 1) vertices, Mn be the Möbius ladder on

n = 2k vertices. Then,

1. Zc(Wn) = 3

2. Zc(Mn) = 4

3. Zc(Ka1,...,ak) = n− 2, where k ≥ 2 and ai ≥ 2 for 1 ≤ i ≤ k

4. Zc(G ◦K2) = 2
3
n, where G is a connected graph

5. Zc(Qs) = 2s−1

6. Zc(Ts) = s

7. Zc(Ca�Cb) =


2a− 1 if m = n and n is odd

2a otherwise

, where b ≥ a ≥ 3

8. Zc(Ka ×Kb) = n− 4, where a, b ≥ 4
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9. Zc(Pa � Pb) = a+ b− 1

10. Zc(G�Pa) = |V |, where G = (V,E) is a connected graph and |V | ≤ a

Proof. The numbers of the proofs below correspond to the numbers in the statement

of the proposition.

1. The vertex of degree n−1 of the wheel together with two other adjacent vertices

form a connected forcing set; also, Zc(Wn) ≥ δ(Wn) = 3. Thus, Zc(Wn) = 3.

2. In [89], it was shown that Z(Mn) = 4, where the vertex set of a subgraph of Mn

isomorphic to C4 forms a zero forcing set; since this set is connected, it follows

that Zc(Mn) = 4.

3. Let R be a minimum connected forcing set of Ka1,...,ak . If R excludes two vertices

in the same part of Ka1,...,ak , then every vertex outside that part will be adjacent

to two uncolored vertices and will not be able to force them. If R excludes a

vertex from more than two parts of Ka1,...,ak , then every vertex will have at

least two uncolored neighbors and will not be able to force them. Thus, R

can exclude at most two vertices of Ka1,...,ak , so Zc(Ka1,...,ak) ≥ n − 2. On the

other hand, the set excluding one vertex from each of two parts of Ka1,...,ak is

connected and forcing, so Zc(Ka1,...,ak) = n− 2.

4. If G ' K1, then G ◦ K2 ' K3 and Zc(G ◦ K2) = 2. Now suppose G has at

least two vertices. In G ◦ K2, every vertex of G is a cut vertex and belongs

to R2(G ◦ K2) or R3(G ◦ K2). Thus, by Lemma 4.3, every vertex of G is in

every minimum connected forcing set of G ◦K2. Moreover, by Proposition 4.6,

every minimum connected forcing set of G ◦ K2 contains at least two vertices

of each block of G ◦ K2 consisting of a copy of K2 and a vertex of G; thus,
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Zc(G ◦K2) ≥ 2
3
n. The set consisting of the vertices of G and one vertex from

each copy of K2 in the corona is a connected forcing set, since the colored vertex

in each copy of K2 can force its uncolored neighbor. Thus Zc(G ◦K2) = 2
3
n.

5. In [89], it was shown that Z(Ts) = s, where the vertices along one edge of Ts

(in a standard planar embedding) form a minimum zero forcing set; since this

set is connected, it follows that Zc(Ts) = s.

6. In [89], it was shown that Z(Qs) = 2s−1, where the vertices of a subgraph of Qs

isomorphic to Qs−1 form a zero forcing set; since this set is connected, it follows

that Zc(Qs) = 2s−1.

7. In [109] it was shown that Z(Ca�Cb) = 2a − 1 if m = n and n is odd, and

Z(Ca�Cb) = 2a otherwise. In the former case, a subgraph of Ca�Cb isomorphic

to Ca�P2 − v (where v is any vertex) is a zero forcing set which is connected.

Likewise, in the latter case, a subgraph of Ca�Cb isomorphic to Ca�P2 is a zero

forcing set which is connected. Thus, Zc(Ca�Cb) is as claimed.

8. In [106], it was shown that Z(Ka × Kb) = n − 4, and that if V (Ka × Kb) =

{(xi, yb) : 1 ≤ i ≤ a, 1 ≤ j ≤ b}, thenR = V (Ka×Kb)\{(x2, y2), (x3, y1), (x1, y2),

(x2, y1)} is a minimum zero forcing set. Since a, b ≥ 4, the set {(xi, yj) :

i ≥ 3 or j ≥ 4} is connected in Ka × Kb; moreover, (x1, y1) ∼ (x3, y2) and

(x3, y2) ∼ (x2, y3). Thus, R is connected, so Zc(Ka ×Kb) = n− 4.

9. In [89], it was shown that Z(Pa � Pb) = a+ b− 1, where the vertices along two

adjacent edges of Pa � Pb (in a grid embedding) form a minimum zero forcing

set; since this set is connected, it follows that Zc(Pa � Pb) = a+ b− 1.

10. In [89], it was shown that Z(G�Pa) = |V |; since the vertices of a copy of G
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corresponding to an end of the path Pa form a zero forcing set, and since G is

connected, it follows that Zc(G�Pa) = |V |.

Using Proposition 4.1, I now give a closed formula for the connected forcing num-

bers of sunlet graphs. The sunlet graph on n = 2k vertices, k ≥ 3, is obtained by

adding a pendant vertex to every vertex of a cycle Ck. The path cover number, min-

imum rank, and zero forcing number of the sunlet graph have been investigated in

[127, 125]; in particular, it has been shown that the zero forcing number of the sunlet

graph on n = 2k vertices is dk/2e.

Proposition 5.2. Let G = (V,E) be the sunlet graph on n = 2k vertices. Then,

Zc(G) = k.

Proof. By Proposition 4.1, Zc(G) ≥ L(G) = k. On the other hand, R = {v ∈ V :

d(v) = 3} is a forcing set, since each v ∈ R can force the leaf vertex adjacent to it in

the first step of the forcing process. Moreover, G[R] is connected, so Zc(G) ≤ |R| = k.

Thus, we conclude Zc(G) = k.

The sun graph on n = 2k vertices, k ≥ 3, is obtained by joining a vertex to the

endpoints of each edge in a spanning cycle subgraph Ck of a clique Kk; see Figure 5.1

for an illustration. The next result gives a closed formula for the connected forcing

number of sun graphs.

Theorem 5.1. Let G = (V,E) be the sun graph on n = 2k vertices. Then,

Zc(G) =


3 if k = 3

k − 1 if k ≥ 4

D 

D 
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Proof. By inspection, the connected forcing number of the sun graph on 6 vertices

is 3. Thus, assume G is a sun graph on n = 2k vertices with k ≥ 4. We will first

construct a connected forcing set of G of size k − 1.

Let K be the set of vertices of G with degree greater than 2; pick v ∈ K and let a,

b be its two neighbors of degree 2, and u, w be the other neighbors of a and b besides

v. Finally, let x be another vertex in K different from u, v, and w (which exists since

|K| = k ≥ 4 by assumption). We claim the set R = K\{u,w, x}∪{a, b} is a connected

forcing set of G. First, R is connected, since v is adjacent to every vertex in R. Next,

note that a and b can force u and w in the first timestep, since they each only have

one uncolored neighbor. At that step, every vertex in K except x will be colored;

moreover, every neighbor of v except x will be colored, so v will force x. After v

forces x, every vertex in K will be colored, and u and w will each have one uncolored

neighbor of degree 2 which they will force. At that point, the other neighbors of

the most recently colored degree 2 vertices will each have one uncolored neighbor of

degree 2. By continuing this process, all degree 2 vertices of G will eventually become

colored. Thus, R is a connected forcing set, so Zc(G) ≤ |R| = k − 1; see Figure 5.1

for an illustration of this construction.

On the other hand, by Observation 4.4, Zc(G) ≥ χ(G) − 1; since the chromatic

number is an upper bound to the clique number, and since the clique number of G is

k, we have that k − 1 ≤ ω(G)− 1 ≤ χ(G)− 1 ≤ Z(G) ≤ Zc(G). Thus, we conclude

that Zc(G) = k − 1.

From the last chain of inequalities in the proof above and by Observation 4.1 (and

by inspection for the case of k = 3), we conclude that the formula in Theorem 5.1

can also be used to compute the zero forcing number of G. This is stated formally

below.

D 



100

Corollary 5.1. Let G be a sun graph on n = 2k vertices. Then, Z(G) = Zc(G).

Figure 5.1 : A connected forcing set of the sun graph on 14 vertices.

5.2 Trees and uniclique graphs

In this section, I characterize the connected forcing numbers of trees and uniclique

graphs. The proofs of these results are constructive, and can be used to find minimum

connected forcing sets in linear time.

Theorem 5.2. Let T = (V,E) be a tree. Then,

Zc(T ) =


1 if T ' Pn

|M(T )| if T 6' Pn.

Moreover, a minimum connected forcing set of T can be found in O(n) time.

Proof. If T is a path, then Zc(T ) = 1 and an endpoint of the path is a minimum

connected forcing set. Assume henceforth that T is not a path; we will show thatM

is a minimum connected forcing set of T . All vertices of T with degree at least 3 are in

R3, and all vertices of T which have degree 2 and do not belong to pendant paths are

in R2. Thus, any vertex of T which is not initially colored belongs to some pendant
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path, and all other vertices of that pendant path are also initially uncolored, possibly

except the base. Since deleting all vertices of a pendant path (possibly except the

base) does not disconnect the graph, M is a connected set. Next, let v be a vertex

to which a pendant path is attached. Since v is in R3 and therefore in M, and since

the base of one of the pendant paths attached to v is the only uncolored neighbor

of v, v will be able to force this pendant path; all other pendant paths attached to

v can be forced by their bases. Thus, each pendant path of T will be forced, so M

is a connected forcing set of T . Moreover, by Lemma 4.3, every minimum connected

forcing set of T contains M, so Zc(T ) = |M|.

Clearly, it is possible to find the set of pendant paths of T in linear time (e.g.

by starting from the degree 1 vertices of T and applying depth-first-search until a

vertex of degree at least 3 is reached); then, for each vertex to which one or more

pendant paths are attached, all-but-one neighbors which are bases of pendant paths

can be selected in linear time, and added to the set of vertices which do not belong

to pendant paths to form M. Thus, M can be found in O(n) time.

The next result is a characterization of trees for which Zc(T ) = Z(T ).

Proposition 5.3. Let T be a tree. Then, Zc(T ) = Z(T ) if and only if T ' Pn.

Proof. If T ' Pn, it is easy to see that Zc(T ) = 1 = Z(T ). If T 6' Pn, then

Z(T ) ≤ L(T ) − 1 ≤ Zc(T ) − 1 < Zc(T ), where the first inequality is the statement

of Theorem 5.6 in [160] and the second inequality follows from Proposition 4.1. By

contraposition, Zc(T ) = Z(T ) implies T ' Pn.

Proposition 5.3 can be generalized to the following result.

Lemma 5.1. Let G be a connected graph different from a path. If G has a vertex v

to which two or more pendant paths are attached, then Z(G) < Zc(G).

D 

D 
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Proof. Let R be a minimum connected forcing set of G. By definition v belongs to

R3, so by Lemma 4.3 v is in R; moreover, all or all-but-one bases of pendant paths

attached to v are in R. Let Z be the set obtained by removing v from R and replacing

each base of a pendant path attached to v by the leaf of that pendant path. Then

Z is a zero forcing set of G, because each colored leaf will force its pendant path

and then v; at that timestep, the set of colored vertices contains R and is therefore

forcing. Thus, Z is a zero forcing set of size |R| − 1, so Z(G) ≤ |Z| < Zc(G).

Proposition 5.3 allows us to make the following characterization of the minimum zero

forcing sets of trees.

Corollary 5.2. Every minimum zero forcing set of a tree T 6' Pn is disconnected.

I conclude this section with a characterization of the connected forcing numbers of

uniclique graphs. Recall that p(v) denotes the number of pendant paths attached to

vertex a v.

Theorem 5.3. Let G = (V,E) be a uniclique graph whose maximum clique has vertex

set K, k = |K|. Then,

Zc(G) =


|M(G) ∪K| − 1 if ∃u, v ∈ K : u /∈M(G), p(v) = 0, u 6= v

|M(G) ∪K| otherwise.

Moreover, a minimum connected forcing set of G can be found in O(n) time.

Proof. By Proposition 4.6 and Lemma 4.3, every minimum connected forcing set of

G contains δ(G[K]) = k − 1 vertices of K and all vertices in M. Thus, Zc(G) ≥

|M∪K| − 1. Suppose first that there are distinct vertices u, v ∈ K such that u /∈M

and p(v) = 0, and let R =M∪K\{u}. The only vertices not in R are the vertices

belonging to pendant paths (possibly except the bases), and u; thus, R is connected.

D 



103

Since p(v) = 0, if v has any neighbors outside K, they are all inM; thus, v can force

u in the first timestep. Then, all pendant paths can be forced either by their bases

or by the vertices to which they are attached. Thus, R is a connected forcing set, so

Zc(G) = |M(G) ∪K| − 1.

Now suppose there are no distinct vertices u, v ∈ K such that u /∈M and p(v) = 0,

and let R =M∪K. The only vertices not in R are the vertices belonging to pendant

paths (possibly except the bases); thus, R is connected. Since all vertices in K are

initially colored, all pendant paths can be forced either by their bases or by the

vertices to which they are attached. Thus, R is a connected forcing set. Suppose

there is a connected forcing set R′ of size |M ∪K| − 1; R′ contains δ(G[K]) = k − 1

vertices of K and all vertices in M, so R′ must exclude a vertex u ∈ K which is

not in M. By assumption, either every vertex v ∈ K has p(v) ≥ 1, or u is the only

vertex in K which satisfies u /∈ M, p(u) = 0. In either case, no vertex can force u

because every vertex in K is adjacent to u and to the uncolored base of a pendant

path attached to it. Thus, there cannot be a connected forcing set of size |M∪K|−1,

so Zc(G) = |M(G) ∪K|.

By Theorem 5.2 and since G is a uniclique graph, K and M can be found in

linear time; moreover, it can be determined in linear time whether there exist distinct

vertices u, v ∈ K such that u /∈M and p(v) = 0. Thus, a minimum connected forcing

set can be found in O(n) time.

Proposition 5.4. For a uniclique graph G, Zc(G) = Z(G) if and only if G is in the

family of graphs depicted in Figure 5.2.

Proof. Let G be a uniclique graph satisfying Zc(G) = Z(G), let K be the maximum

clique of G, and let k = |K|. By Lemma 5.1, no vertex in G can have more than

D 
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one pendant path attached to it. Thus, G cannot have any vertices in R2 and R3, so

G consists of the clique K with at most one pendant path attached to each vertex

of K. If every vertex of K has a pendant path attached to it, then by Theorem 5.3

Zc(G) = k, but Z(G) = k − 1 since any k − 1 leaves of G form a zero forcing set.

Thus, at most k − 1 of the vertices of K can have pendants attached to them. On

the other hand, by Theorem 5.3, any uniclique graph satisfying this condition has

Zc(G) = k−1, and has Z(G) = k−1 since Z(G) ≥ χ(G)−1 ≥ ω(G)−1 = k−1.

Figure 5.2 : Uniclique graphs for which the zero forcing number equals the connected
forcing number. The shaded oval represents a clique, the dotted lines represent paths
of arbitrary (possibly zero) length, which are attached to all-but-one vertices of the
clique.

5.3 Unicyclic graphs

In this section, I will derive a closed formula for the connected forcing number of

a unicyclic graph G and give a linear time algorithm for finding a minimum con-

nected forcing set of G. I first establish two technical lemmas which are applicable

to arbitrary graphs that contain a cycle block.

Let G be a connected graph and C be the vertex set of a block of G such that

G[C] is a cycle. Given vertices u and v of C, let (u ↪→ v) be the set of vertices of

D 
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C encountered while traveling counterclockwise from u to v, not including u and v;

note that (u ↪→ u) is also well-defined. Let (u ↪→) be the neighbor of u which is

counterclockwise of u in C, and (←↩ u) be the neighbor of u which is clockwise of u

in C. I will refer to (u ↪→ v) as a segment of C, and call u and v the ends of the

segment.

Lemma 5.2. Let G be a connected graph and C be the vertex set of a block of G such

that G[C] is a cycle. Then, any connected forcing set of G can exclude at most one

segment of C.

Proof. Let R be an arbitrary connected forcing set of G. Suppose (u ↪→ v) and

(x ↪→ y) are two non-intersecting and non-adjacent segments of C which are not

contained in R (note that two intersecting or adjacent segments can be represented

as a single segment). Without loss of generality, suppose u, v, x, and y lie on C in

this counterclockwise order. Then R contains at least one vertex between v and x,

and at least one vertex between y and u; however, these vertices cannot be connected

in G[R] since all paths between them pass through the missing segments in C. Thus,

there can be at most one segment of C which is not contained in R.

Lemma 5.3. Let G be a connected graph and C be the vertex set of a block of G such

that G[C] is a cycle. A segment of C excluded from a connected forcing set of G can

contain at most two cut vertices, each of which is in R1(G).

Proof. Let R be an arbitrary connected forcing set of G and (u ↪→ v) be a segment

of C not contained in R; by Lemma 4.3, M ⊂ R, so (u ↪→ v) cannot contain a

vertex ofM. Thus, each vertex in (u ↪→ v) is either a non-cut vertex, or a cut vertex

in R1; in the latter case, the entire pendant path attached to the vertex is also not

in R since otherwise R could not be connected. Suppose (u ↪→ v) contains three

D 
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distinct cut vertices, p, q, and r, lying on C in this counterclockwise order. Every

path from a vertex of C outside (u ↪→ v) to a vertex in (p ↪→ r) passes through p or

r. However, once p and r are forced by some forcing chains starting outside (u ↪→ v),

each of p and r will have two uncolored neighbors and will not be able to force another

vertex. Thus, the vertices in (p ↪→ r) cannot be forced; note that (p ↪→ r) 6= ∅ since

q ∈ (p ↪→ r). This contradicts R being a forcing set, so (u ↪→ v) can contain at most

two cut vertices.

Lemma 5.4. Let G be a unicyclic graph, C be the vertex set of the cycle of G, and

(u∗ ↪→ v∗) be the largest segment of C such that R∗ :=M∪C\(u∗ ↪→ v∗) is a forcing

set of G. Then R∗ is a minimum connected forcing set of G.

Proof. The vertices in V can be partitioned into M, C\M, and X, where X is the

set of vertices in pendant paths of G which are not inM; by Lemma 5.3, (u∗ ↪→ v∗) ⊂

C\M and any cut vertices in (u∗ ↪→ v∗) are in R1. Thus V \R∗ = X ∪ (u∗ ↪→ v∗),

and deleting all vertices in X ∪ (u∗ ↪→ v∗) from G does not disconnect it, so R∗ is a

connected forcing set.

Now suppose there is a connected forcing set R′ of G with |R′| < |R∗|. By

Lemma 4.3, R′ contains all vertices in M. Thus R′ must contain at most |C\M| −

|(u∗ ↪→ v∗)|−1 vertices of (C\M)∪X. By Lemma 5.2, the vertices of C not contained

in R′ must form a segment (u′ ↪→ v′). If R′ = M∪ C\(u′ ↪→ v′), then (u′ ↪→ v′)

would be larger than (u∗ ↪→ v∗), which contradicts our assumption about (u∗ ↪→ v∗);

thus, R′ includes some vertices of X. These vertices cannot be in pendant paths

attached to vertices of (u′ ↪→ v′), since then R′ would be disconnected; if they are

in pendant paths attached somewhere other than u′ and v′, then a set R′′ without

them is a smaller connected forcing set than R′, and we can henceforth consider R′′
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instead of R′. Similarly, if the vertices of R′ in X are not the bases of the pendant

paths containing them, then since R′ is connected, it must also include the bases of

the pedant paths, and a set R′′ without the non-base vertices of these pendant paths

is a smaller connected forcing set than R′. Thus, without loss of generality, suppose

the vertices of R′ in X are the bases of pendant paths attached to u′ or v′. Then,

u′ and v′ would be able to initiate forcing chains. Let R′′ be obtained from R′ by

replacing the vertices in X by the vertices forced by u′ and v′. This resulting set is

of the form M∪ C\(u′′ ↪→ v′′), and has the same cardinality as R′, but (u′′ ↪→ v′′) is

larger than (u∗ ↪→ v∗) — a contradiction. Thus, no connected forcing set of G can

have cardinality less than |R∗|, so R∗ is a minimum connected forcing set of G.

In view of Lemma 5.4, to find a minimum connected forcing set of a unicyclic graph

G with cycle C, one could generate all connected subgraphs of C, check whether each

subgraph together with M is forcing, and find the smallest one, in polynomial time.

However, I will include a more thorough case analysis which reduces the number of

segments that have to be compared, eliminates the need to check whether a set is

forcing, and gives a linear time algorithm for finding a minimum connected forcing

set of G.

To this end, we define a feasible segment to be a segment (u ↪→ v) for which

R := M ∪ C\(u ↪→ v) is a forcing set of G and which is maximal in this regard

(with respect to inclusion). Clearly, (u∗ ↪→ v∗) described in Lemma 5.4 is the largest

feasible segment (or rather, a largest feasible segment since there could be several

feasible segments with the same maximum cardinality — see, e.g., Figure 5.3). Let

A(C) = {p1, . . . , pk} be the set of cut vertices in C in counterclockwise order. The

following lemmas will allow us to enumerate the feasible segments of C; recall that

p(v) denotes the number of pendant paths attached to vertex v.
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Lemma 5.5. Let G be a unicyclic graph, C be the vertex set of the cycle of G and

suppose |A(C)| ≥ 3. Let

f2(u, v) =



{(u ↪→), (←↩ v)} if p(u) > 0 and p(v) > 0

{(u ↪→)} if (p(u) > 0 and p(v) = 0) or ((p(u) = 0 and v = u)

{(←↩ v)} if p(u) = 0 and p(v) > 0

∅ otherwise,

I2 = {i : pi+1 ∈ R1, pi+2 ∈ R1, pi+1 ∼ pi+2}, (5.1)

and for i ∈ I2 with i read modulo k, let

D2
i = (pi ↪→ pi+3)\f2(pi, pi+3). (5.2)

Then, the set {D2
i : i ∈ I2} contains the largest feasible segment which has two cut

vertices.

Proof. We will first show that if {pi, pi+1, pi+2, pi+3} ⊂ A(C) with pi+1 ∈ R1, pi+2 ∈

R1, and pi+1 ∼ pi+2, then S := (pi ↪→ pi+3)\f(pi, pi+3) is a feasible segment. First

note that S is indeed a segment, since f2(pi, pi+3) can only remove the leaves of

G[(pi ↪→ pi+3)] from (pi ↪→ pi+3). If R := M ∪ C\S is a set of initially colored

vertices, any uncolored vertex in a pendant path, except the ones adjacent to pi+1

and pi+2, can be forced either by its base — if its base is inM— or by the vertex the

pendant path is attached to — if its base is not inM. This includes any pendent paths

attached to pi and pi+3, since if they exist, (pi ↪→) and (←↩ pi+3) would respectively

be added to the forcing set by f2, ensuring that the bases of these paths are the only

uncolored neighbors of pi and pi+3. Thus, both ends of S are either able to initiate a

forcing chain reaching pi+1 and pi+2, or are themselves pi+1 or pi+2 (if pi happens to

be adjacent to pi+1, or if pi+2 ∼ pi+3). In either case, pi+1 and pi+2 will be colored at
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some step of the forcing process, whereupon each will be able to force their respective

uncolored attached pendant paths. Thus, R is a forcing set of G.

We will now show that S is maximal, by showing that if either end of S is removed

from R, the resulting set would not be forcing or would not be connected. First note

that if p(pi) = 0 and p(pi+3) = 0, S is clearly maximal since by Lemma 5.3, neither

pi nor pi+3 can be excluded from the forcing set. Next, note that pi+1 and pi+2 must

be forced by two distinct forcing chains, since if a single forcing chain were to force

them, then the first of pi+1 and pi+2 to be forced would have two uncolored neighbors,

and could not force the other. Thus, if one or both of pi and pi+3 are attached to a

pendant path, then (pi ↪→) and (←↩ pi+3) cannot be removed from R since then one

or both ends of the segment would not be able to initiate a forcing chain.

In the special case of pi = pi+3, which happens when |A(C)| = 3, pi+1 and pi+2

must still be forced by two distinct forcing chains; if pi is attached to a pendant path,

then both its clockwise and counterclockwise neighbors must be added to the forcing

set; the first case in the definition of f2 remains valid for this situation. If pi is not

attached to a pendant path, then one of its neighbors (say, the counterclockwise one)

must nevertheless be added to the forcing set since pi cannot initiate two distinct

forcing chains on its own. This is reflected in the second case of the definition of f2.

Thus, every segment in D2 := {D2
i : i ∈ I2} is feasible. Suppose there is a feasible

segment S ′ which contains two cut vertices p and q but which is not in D2. The cut

vertices p and q must be adjacent, since otherwise (p ↪→ q) 6= ∅ and by a similar

argument as in Lemma 5.3, the vertices in (p ↪→ q) cannot be forced. Moreover,

by Lemma 5.3, p and q must be attached only to single pendant paths; thus, they

are some adjacent pi+1 and pi+2 in R1; note that pi and pi+3 exist (and are possibly

equal), since by assumption |A(C)| ≥ 3. By a similar argument as above, S ′ cannot
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contain either end of S := (pi ↪→ pi+3)\f2(pi, pi+3) so S ′ can be at most equal to S.

Moreover, since S ′ is maximal, it cannot be a proper subset of S since we have shown

that M∪ C\S is a forcing set of G; therefore, S ′ is precisely equal to S. Thus, by

construction, D2 contains every feasible segment which has two cut vertices, and in

particular, the largest one. Note that D2 could also contain some segments that have

fewer cut vertices, which happens if pi+1 or pi+2 is subtracted from (pi ↪→ pi+3) by

f2(pi, pi+3).

Lemma 5.6. Let G be a unicyclic graph, C be the vertex set of the cycle of G and

suppose |A(C)| ≥ 2. Let

f1(u, v, w) =



f2(u,w) if u 6∼ v and v 6∼ w

{(←↩ w)} if u ∼ v and v 6∼ w and p(w) > 0

{(u ↪→)} if u 6∼ v and v ∼ w and p(u) > 0

v if u ∼ v, v ∼ w, u 6= w, p(u) > 0, p(w) > 0

{(u ↪→), (←↩ u)}\{v} if u = w and u ∼ v

∅ otherwise,

I1 = {i : pi+1 ∈ R1}, (5.3)

and for i ∈ I1 with i read modulo k, let

D1
i = (pi ↪→ pi+2)\f1(pi, pi+1, pi+2). (5.4)

Then, the set {D1
i : i ∈ I1} contains the largest feasible segment which has one cut

vertex.

Proof. We will first show that if {pi, pi+1, pi+2} ⊂ A with pi+1 ∈ R1, then S := (pi ↪→

pi+2)\f1(pi, pi+1, pi+2) is a maximal segment containing at most one cut vertex for

D 
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which R := M ∪ C\S is a forcing set of G. First, by a similar argument as in

Lemma 5.5, all pendant paths of G attached to vertices other than pi and pi+2 can

get forced by their bases or the vertices to which they are attached. If neither pi nor

pi+2 is adjacent to pi+1, then by a similar argument as in Lemma 5.5, two separate

forcing chains are needed to color pi+1 and the pendant path attached to it; the first

case in the definition of f1 assures that this can happen in the same way as when the

segment contains two cut vertices, and that any pendant paths attached to pi and

pi+2 whose bases are not in M get colored as well. If pi (but not pi+2) is adjacent to

pi+1 and if pi+2 is attached to a pendant path, then f1 adds (←↩ pi+2) to the forcing

set, which initiates a forcing chain to color S and allows pi+1 to force its attached

pendant path; then pi and pi+2 will also be able to force any pendant paths attached

to them whose bases are not in M. Similarly, if pi+2 is not attached to a pendant

path, then it is able to initiate a forcing chain to color S on its own; by symmetry,

the same argument shows that S gets colored if pi+2 (but not pi) is adjacent to pi+1.

If both pi and pi+2 are adjacent to pi+1, then pi+1 must be added to the forcing set

only if both pi and pi+2 are attached to pendant paths; this is reflected in the fourth

case of the definition of f1.

Finally, in the special case of pi = pi+2, which happens when C has two cut

vertices, there are several possible situations. If pi 6∼ pi+1, there must again be two

forcing chains initiating outside S which force pi+1; the first line of the definition of

f1 is valid for this case, by a similar reasoning as in the special case of Lemma 5.5. If

pi ∼ pi+1 and pi is attached to a pendant path, then a neighbor of pi in C different

from pi+1 must be added to R by f1, so that this neighbor can initiate a forcing chain

around C to pi+1 and the pendant path attached to it. If pi ∼ pi+1 and pi is not

attached to a pendant path, then any neighbor of pi in C can be added to R by f1
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to ensure G is forced (including the one different from pi+1). This is reflected in the

fifth case of the definition of f1. Thus, we have seen that in all cases, R is a forcing

set of G.

We will now show that S is maximal, by showing that if either end of S is removed

from R, the resulting set would not be forcing, or would not be connected, or would

contain two cut vertices. First note that if neither pi nor pi+2 is adjacent to pi+1,

then by the same reasoning as in Lemma 5.5, S is maximal. If pi ∼ pi+1, then the

other end of S must be able to initiate a forcing chain. Thus, if pi+2 is attached to a

pendant path, then (←↩ pi+2) cannot be removed from R since then pi+2 would not be

able to initiate a forcing chain. Similarly, if pi+2 ∼ pi+1, (pi ↪→) cannot be removed.

Thus, every segment in D1 := {D1
i : i ∈ I1} is a maximal segment containing at

most one cut vertex, whose exclusion fromM∪C yields a forcing set of G. Suppose

there is a feasible segment S ′ containing one cut vertex p which is not in D1. By

Lemma 5.3, the cut vertex p must be attached only to a single pendant path. Thus,

this is some pi+1 in R1; note that pi and pi+2 exist (and are possibly equal), since by

assumption |A(C)| ≥ 2. By a similar argument as above, S ′ cannot contain either

end of S := (pi ↪→ pi+2)\f1(pi, pi+1, pi+2), up to the arbitrary choice made by f1 when

it must subtract one of two possible vertices from the segment in order to assure the

resulting set is forcing, which does not affect the size of the segment. Thus, S ′ can be

at most equal in size to S; moreover, since S ′ is maximal, it cannot be a proper subset

of S since we have shown thatM∪C\S is a forcing set of G. Thus, by construction,

D1 contains a feasible segment of maximum size among all feasible segments with one

cut vertex.

Lemma 5.7. Let G be a unicyclic graph, C be the vertex set of the cycle of G and

D 
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suppose |A(C)| ≥ 1. Let

f0(u, v) =


(u ↪→) if (p(u) ≥ 1 and p(v) ≥ 1) or u = v

∅ otherwise,

I0 = {1, . . . , k}, (5.5)

and for i ∈ I0 with i read modulo k, let

D0
i = (pi ↪→ pi+1)\f0(pi, pi+1). (5.6)

Then, the set {D0
i : i ∈ I0} contains the largest feasible segment which has no cut

vertices.

Proof. We will first show that if {pi, pi+1} ⊂ A(C), S := (pi ↪→ pi+1)\f0(pi, pi+1) is

a maximal segment containing no cut vertices for which R :=M∪ C\S is a forcing

set of G. First, by a similar argument as in Lemma 5.5, all pendant paths of G —

except any pendant paths attached to pi and pi+1 whose bases are not in M — can

get forced by their bases or by the vertices to which they are attached. If at least

one of pi and pi+1 is not attached to a pendant path, then the vertex not attached

to a pendant path can initiate a forcing chain which colors (pi ↪→ pi+1), and then

the other vertex will be able to force its pendant path whose base is not in M, if

it exists. Similarly, if both pi and pi+1 are attached to pendant paths, then f0 adds

(pi ↪→) to the forcing set, which is able to initiate a forcing chain to color S. Note

that if pi ∼ pi+1, R =M∪C regardless of whether or not pi and pi+1 are attached to

pendant paths. Thus, R is a forcing set of G. R is also maximal, since if either end

of S is removed from R, the resulting set would either contain a cut vertex, or would

not be forcing, or would not be connected.
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In the special case of pi = pi+1, which happens when G has a single cut vertex p1,

regardless of whether or not p1 is attached to a pendant path, one of its neighbors

in C — say, the counterclockwise one — must be added to R in order to initiate a

forcing chain. This is reflected in the first case of the definition of f0.

Thus, every segment of D0 := {D0
i : i ∈ I0} is a maximal segment containing

no cut vertices whose exclusion from M ∪ C yields a forcing set of G. Moreover,

every feasible segment containing no cut vertices must either have two ends which

are cut vertices, at least one of which is not attached to a pendant path, or have one

end which is a cut vertex attached to a pendant path, and another end which is a

neighbor of a cut vertex attached to a pendant path — otherwise the segment would

contain a cut vertex, or would not be forcing, or would not be maximal. Thus, by

construction, D0 contains every feasible segment which has no cut vertices, up to the

arbitrary choice of whether f0(u, v) subtracts (u ↪→) or (←↩ v), which does not affect

the size of the segment. In particular, D0 contains a feasible segment of maximum

size among all feasible segments with no cut vertices.

For an illustration of the constructions in Lemmas 5.5, 5.6, and 5.7, see Figure 5.3

which shows a unicyclic graph with feasible segments of maximum size containing

zero, one, and two cut vertices.

Theorem 5.4. Let G be a unicyclic graph and C be the vertex set of the cycle of

G. For 0 ≤ j ≤ 2, if |A(C)| > j, let Dj
max = maxi∈Ij{|D

j
i |}, where Ij and Dj

i are

defined as in (1)—(6); if |A(C)| ≤ j, let Dj
max = 0. Let i∗ and j∗ be such that

|Dj∗

i∗ | = max{D0
max, D

1
max, D

2
max}. Then,

D 
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Figure 5.3 : A unicyclic graph and a minimum connected forcing set. Two other
minimum connected forcing sets can be obtained by coloring the uncolored segment
of C and removing one of the segments indicated by the dashed lines.

Zc(G) =


2 if |A(C)| = 0

|M ∪ C\Dj∗

i∗ | if |A(C)| ≥ 1,

and a minimum connected forcing set of G can be found in O(n) time.

Proof. If |A(C)| = 0, then G is a cycle, and two adjacent vertices of G clearly form

a minimum connected forcing set. Thus, we will henceforth assume |A(C)| ≥ 1. By

Lemma 5.3, a feasible segment can have at most two cut vertices. By Lemmas 5.5,

5.6, and 5.7, Dj∗

i∗ is the largest feasible segment of C, and by Lemma 5.4, |M∪C\Dj∗

i∗ |

is a minimum connected forcing set of G.

To verify that the time needed to find Dj∗

i∗ is linear in the order of the graph, first

note that the set of cut vertices in G, and hence the vertices inM, C, and A(C), can

be found in linear time (cf. [192]). Then, the sets (pi ↪→ pi+1), 1 ≤ i ≤ k, can also be

found in linear time. These sets of cut vertices and other vertices can be stored (with

linear space), and each of the functions f0, f1, and f2 and Dj
i can be computed in

constant time for 0≤ j ≤ 2 and 1 ≤ i ≤ k. Since each of the index sets I0, I1, and I2
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has at most |A(C)| = O(n) elements, Dj∗

i∗ can be found by computing the maximum

of O(n) terms.

The zero forcing number and path cover number of unicyclic graphs have been

investigated in [125, 105, 198] and have been shown to coincide. I conclude this section

by characterizing the unicyclic graphs for which Z(G) = Zc(G), and thus describing

the connectivity of the minimum zero forcing sets of unicyclic graphs.

Proposition 5.5. For a unicyclic graph G, Zc(G) = Z(G) if and only if G is in the

family of graphs depicted in Figure 5.4.

Proof. Let G be a unicyclic graph satisfying Zc(G) = Z(G). Let C be the vertex set

of the cycle of G, and let R be an arbitrary minimum connected forcing set of G.

By Lemma 5.1, no vertex in G can have more than one pendant path attached to it.

Thus, G cannot have any vertices in R2 and R3, so G consists of the cycle C with at

most one pendant path attached to each vertex of C.

Now, for any v ∈ C, define `(v) to be v if v is not a cut vertex, and to be the leaf

of the pendant path attached to v if v is a cut vertex. Suppose for contradiction that

|R∩C| ≥ 3. As shown in Lemma 5.2, R can exclude at most one segment of C, which

implies that R ∩ C also forms a segment; thus, there are vertices {u, v, w} ⊂ R ∩ C

such that u ∼ v and v ∼ w. We claim Z := R\{u, v, w}∪{`(u), `(v)} is a zero forcing

set of G. To see why, note that whether or not u and v are attached to pendant paths,

at the first stage of the forcing process, `(u) and `(v) can initiate forcing chains which

color u and v; next, w will be the only uncolored neighbor of v, and v can force w.

At this point, the set of colored vertices contains R, and can therefore color all of G;

this means Z(G) ≤ |Z| < |R| = Zc(G) — a contradiction. Thus, |R ∩ C| < 3; on the

other hand, by Proposition 4.6, |R ∩C| ≥ 2, so |R ∩C| = 2. By inspection, only the

D 
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unicyclic graphs in Figure 5.4 satisfy this condition and the condition that each cut

vertex of C is in R1.

Remark 5.1. Note that Figure 5.4 does not include all unicyclic graphs with zero

forcing number 2; one can easily find a unicyclic graph G with Z(G) = 2 and Zc(G) >

2.

Figure 5.4 : Unicyclic graphs for which the zero forcing number equals the connected
forcing number. The solid line represents a cycle of arbitrary size; the bold line
represents a single edge; the dotted lines represent paths of arbitrary (possibly zero)
length.

Proposition 5.5 allows us to make the following characterization of the minimum zero

forcing sets of unicyclic graphs.

Corollary 5.3. For all unicyclic graphs except the ones in Figure 5.4, any minimum

zero forcing set is disconnected.

5.4 Cactus and block graphs with no pendant paths

I will now characterize the connected forcing numbers of cactus and block graphs

which have no pendant paths. The following definition will be used in the sequel.

Definition 5.1. Let G be a graph, let G0 = G, and for i ≥ 1, let Gi = Gi−1 − {all

non-cut vertices of the outer blocks of Gi−1}. We will say a block of G has depth i if

it is an outer block of Gi.

0 

0 --------
.................. 
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Proposition 5.6. Let G = (V,E) be a block graph with no pendant paths and b be the

number of blocks of G which have at least one non-cut vertex. Then Zc(G) = n− b.

Proof. Let Q be a set containing one non-cut vertex from each block of G which has

non-cut vertices. We claim that R := V \Q is a minimum connected forcing set of

G. G[R] is clearly connected, since deleting one non-cut vertex from each block by

definition does not disconnect G. Next, since G has no pendant paths, each outer

block of G has size at least 3; thus, each outer block has at least two non-cut vertices,

one of which is in Q and the other of which is in R and can force the first. Thus, each

block at depth 0 can be forced. Now suppose every block at depth at most i ≥ 0 has

been colored and let B be a block at depth i + 1. By definition, B must have a cut

vertex p adjacent only to blocks at depth less than i+ 1 (besides B), since otherwise

B would not be an outer block when all blocks of smaller depth are deleted. Since

all blocks adjacent to p besides B have been colored by assumption, p can force an

uncolored non-cut vertex in B, if such a vertex exists. Thus, each block at depth i+1

will get colored as well. By induction, every block in the graph can get forced by R,

so R is a connected forcing set.

Now, let S be an arbitrary minimum connected forcing set of G. By Proposi-

tion 4.6, S must contain at least δ(G[B]) = |B| − 1 vertices from each block B of

G. Moreover, since G has no pendant paths, all cut vertices of G are in R2 or R3, so

by Lemma 4.3, all cut vertices of G must be in S. Thus, S can exclude at most one

vertex from each of the b blocks that have non-cut vertices, so |S| ≥ n− b. Thus, R

is a minimum connected forcing set.

Proposition 5.7. Let G = (V,E) be a cactus graph with no pendant paths. Let C be

the collection of vertex sets of cycles of G and b be the number of outer blocks of G.

D 
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For C ∈ C, let DC be the largest segment of C which does not contain cut vertices of

C. Then, Zc(G) = n −
∑

C∈C |DC | + b, if G is not a cycle, and Zc(G) = 2 if G is a

cycle.

Proof. Clearly Zc(G) = 2 if G is a cycle, so suppose henceforth that G is not a cycle.

Let Q be a set containing one vertex from each outer block of G which is adjacent

to the cut vertex of the outer block. Let D :=
⋃
C∈C DC and R := (V \D) ∪ Q. We

claim that R is a minimum connected forcing set of G. R is connected, since deleting

one segment containing no cut vertices from each cycle block does not disconnect G.

Next, since G has no pendant paths, each outer block of G is a cycle in which the

cut vertex and one of its neighbors (the one in Q) are in R. In each outer block,

the colored neighbor of the cut vertex will initiate a forcing chain around the cycle;

thus, each block at depth 0 can be forced. Now suppose every block at depth at most

i ≥ 0 has been colored and let B be a block at depth i+ 1. If B is a cut edge block,

then both vertices of B are already in R. If B is a cycle block, then let (u ↪→ v)

be the segment missing from B. By definition, one of u and v — say, u — must be

adjacent only to blocks at depth less than i+ 1 (besides B), since otherwise B would

not be an outer block when all blocks of smaller depth are deleted. Since all blocks

adjacent to u besides B have been colored by assumption, u can initiate a forcing

chain which colors the segment (u ↪→ v). Thus, each block at depth i + 1 will get

colored as well. By induction, every block in the graph can get forced by R, so R is

a connected forcing set.

Finally, suppose there is a connected forcing set R′ with |R′| < |R|. Let B be

the vertex set of some block of G which contains fewer vertices of R′ than of R. B

cannot be the vertex set of a cut edge block of G, since both vertices in each cut edge

block are in R2 and hence belong to R′ by Lemma 4.3. B also cannot be an outer
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block, since every outer block is a cycle and by Proposition 4.6, R′ contains at least

δ(G[B]) = 2 vertices from each such block. Thus, B must be a non-outer cycle block

of G. However, by Lemma 5.2, the vertices of B which R′ excludes form a segment

of B, but by construction, this segment cannot be bigger than the segment excluded

from R. This is a contradiction, so R is a minimum connected forcing set. Since the

segments {DC : C ∈ C} are disjoint, Zc(G) = n−
∑

C∈C |DC |+ b.

Remark 5.2. The characterizations of Propositions 5.6 and 5.7 are constructive, and

minimum connected forcing sets of cactus and block graphs with no pendant paths

can be found in linear time, by a similar analysis as in Theorem 5.4.

D 
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Chapter 6

Graphs with extremal connected forcing numbers

One way to address the complexity of connected forcing is to derive closed-form ex-

pressions and polynomial time algorithms for computing the connected forcing num-

bers of special classes of graphs, as was done in Chapter 5. Conversely, a complete

characterization of graphs having a particular connected forcing number can be ob-

tained through a combinatorial case analysis; such is the content of this chapter. In

particular, I characterize the graphs with connected forcing numbers 1, 2, n− 1, and

n − 2. Graphs with zero forcing numbers 1, 2, and n − 1 have been characterized

in [207], and graphs with zero forcing number n− 2 have been characterized in [89].

Other related characterizations have been derived for graphs whose minimal rank

is two [126, 208] and three [209], graphs whose positive semi-definite matrices have

nullity at most two [210], three-connected graphs whose maximum nullity is at most

three [211], and graphs for which the maximum multiplicity of an eigenvalue is two

[206]. Many of these characterizations have been obtained using linear algebraic ap-

proaches; in contrast, I employ novel combinatorial and graph theoretic techniques

which make use of the vertex connectivity of a graph and the connectedness of its

forcing set.
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6.1 Graphs with Zc(G) = 1 and Zc(G) = n− 1

The following characterizations easily follow from the definition of zero forcing and

the properties of forcing chains.

Observation 6.1. Let G be a graph. Then,

• Z(G) = 1 if and only if G ' Pn

• Zc(G) = 1 if and only if G ' Pn

• Z(G) = n if and only if G '
⋃̇n

i=1K1

• Zc(G) = n if and only if G ' K1

• Z(G) = n−1 if and only if G '
(⋃̇t

i=1K1

)
∪̇Kn−t for n ≥ 2 and 0 ≤ t ≤ n−2.

Below I characterize the graphs which have Zc(G) = n− 1.

Theorem 6.1. Let G = (V,E) be a connected graph. Then, Zc(G) = n − 1 if and

only if G ' Kn, n ≥ 2, or G ' K1,n−1, n ≥ 4.

Proof. If G ' Kn or G ' K1,n−1, it is easy to verify that Zc(G) = n−1. Now suppose

Zc(G) = n−1. If G has no separating set of vertices, then G is a complete graph Kn.

We will show that if G has a separating set S ⊂ V then G must be a star K1,n−1.

Let S be a separating set of minimum cardinality, and suppose first that |S| > 1.

Let V1 be the vertex set of a component of G − S; pick an edge sw, s ∈ S, w ∈ V1,

and pick a vertex v ∈ V \(S ∪ V1) such that {v, s} is not a separating set. If |S| > 2,

it is clear that such a v exists; if |S| = 2, G− s must be connected, so simply pick v

to be a non-cut vertex of G−s which is not in S or V1. Then, V \{v, s} is a connected

forcing set of G, since N(w) ⊂ V1∪S, so all of the neighbors of w except s are colored;
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thus, w will force s and then any neighbor of v will force v. Thus we have found a

connected forcing set of size n− 2, a contradiction.

Suppose now that |S| = 1, and suppose first that there are multiple cut vertices

in G. Let A and B be two blocks of G which are leaves of the block tree of G and

which are not incident to the same cut vertex. Color every vertex except one non-cut

vertex in A and one non-cut vertex in B. This is clearly a connected forcing set of

size n− 2 – a contradiction. Now suppose there is only one cut vertex p. If any block

B incident to p is nontrivial, color everything except one (non-cut) vertex in B and

one (non-cut) vertex in a different block. Then, the uncolored vertex in B will be

forced by one of its neighbors in B, and then the uncolored vertex in the other block

will be forced by any of its neighbors – a contradiction. Thus, every block incident

to p must be a trivial block, so G ' K1,n−1.

6.2 Graphs with Zc(G) = 2

In this section, I characterize all graphs with connected forcing number 2. I first recall

some definitions and previous results.

Definition 6.1. A graph G = (V,E) is a graph of two parallel paths specified by V1

and V2 if G 6' Pn, and if V can be partitioned into nonempty sets V1 and V2 such that

P1 := G[V1] and P2 := G[V2] are paths, and such that G can be drawn in the plane

in such a way that P1 and P2 are parallel line segments, and the edges between P1

and P2 (drawn as straight line segments) do not cross; such a drawing of G is called

a standard drawing. In a standard drawing of G, fix an ordering of the vertices of P1

and P2 that is increasing in the same direction for both paths. In this ordering, let

first(Pi) and last(Pi) respectively denote the first and last vertices of Pi for i = 1, 2.
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The sets {first(P1), first(P2)} and {last(P1), last(P2)} will be referred to as ends of G.

Note that if G is a graph of two parallel paths, there may be several different

partitions of V into V1 and V2 which satisfy the conditions above. For example,

let G = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}) be a cycle on 5 vertices.

Then G is a graph of two parallel paths that can be specified by V1 = {1} and

V2 = {2, 3, 4, 5}, as well as by V1 = {1, 2, 3} and V2 = {4, 5}.

Graphs of two parallel paths were introduced by Johnson et al. [206] in relation

to graphs with maximum nullity 2. They were also used by Row [207] in the following

characterization.

Theorem 6.2 ([207]). Z(G) = 2 if and only if G is a graph of two parallel paths.

The following observation regarding the result of Theorem 6.2 is readily verifiable

(and has been noted in [207]).

Observation 6.2. Either end of a graph on two parallel paths is a zero forcing set.

Conversely, if Z(G) = 2, the two forcing chains associated with a minimum zero

forcing set induce a specification of G as a graph on two parallel paths.

The following observation follows from the definition of forcing vertices.

Observation 6.3. Every minimum zero forcing set and every minimum connected

forcing set contains a vertex together with all-but-one of its neighbors.

I now prove the main result of this section.

Theorem 6.3. Zc(G) = 2 if and only if G belongs to the family of graphs described

in Figures 6.1 and 6.2.

Proof. Let G = (V,E) be a graph with Zc(G) = 2. Since Z(G) = 1 if and only

if Zc(G) = 1, and since 2 = Zc(G) ≥ Z(G), it follows that Z(G) = 2. Thus, by
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Theorem 6.2, G is a graph of two parallel paths. Fix some partition of V into V1 and

V2 which satisfies Definition 6.1, fix a standard drawing of G based on that partition,

and fix a vertex ordering as specified in Definition 6.1. From Proposition 4.1, it follows

that G has 0, 1, or 2 leaves.

Claim 6.1. Let G be a graph of two parallel paths with Zc(G) = 2. Then, there are

at least two edges between the two parallel paths of G.

Proof. If there are no edges between the two parallel paths of G, then G is discon-

nected, and cannot have a connected forcing set. If there is one edge between the

two parallel paths, then G is either isomorphic to a path (and is hence not a graph

of two parallel paths), or has more than two leaves (and hence Zc(G) > 2 by Propo-

sition 4.1). Thus, there must be at least two edges with one endpoint in V1 and the

other in V2.

We will now consider several cases based on the number and position of the leaves in

G. Let L be the set of leaves of G.

Claim 6.2. Let G be a graph of two parallel paths which has 0 leaves, 1 leaf, or 2

leaves which belong to the same end of G. Then, Zc(G) = 2, and G belongs to the

family of graphs described in Figure 6.1.

Figure 6.1 : A graph of two parallel paths with 0 leaves, 1 leaf, or 2 leaves which
belong to the same end of the graph; solid lines represent paths of arbitrary (possibly
zero) length; bold lines represent mandatory single edges; dashed lines represent any
configuration of non-intersecting edges between the parallel paths.

, ,.. ,, I 
' , , , , I 
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Proof. Without loss of generality, suppose L ⊆ {last(V1), last(V2)}. Let V ′1 ⊆ V1 and

V ′2 ⊆ V2 be maximal sets of vertices which do not belong to pendant paths of G.

By Claim 6.1, there are at least two distinct edges with one endpoint in V ′1 and the

other in V ′2 ; thus, it follows that at least one of the paths G[V ′1 ] and G[V ′2 ] must

have length greater than zero. Moreover, by Observation 6.2, and since first(V1) and

first(V2) are adjacent, it follows that {first(V1), first(V2)} is a connected forcing set;

thus, Zc(G) = 2. This is the family of graphs illustrated in Figure 6.1.

Claim 6.3. Let G be a graph of two parallel paths that has 2 leaves which belong to

the same path and different ends of G. Then Zc(G) = 2 if and only if G belongs to

the family of graphs described in Figure 6.2.

Figure 6.2 : A graph of two parallel paths with 2 leaves which belong to different
ends of the graph; solid lines represent paths of arbitrary (possibly zero) length; bold
lines represent mandatory single edges; dashed lines represent a configuration of non-
intersecting edges between the parallel paths, all of which are incident to the same
vertex in the path containing the mandatory single edge.

Proof. Without loss of generality, suppose L = {first(V1), last(V1)}. Let H1 be the

pendant path containing first(V1), and u1 be the vertex to which H1 is attached; let

H2 be the pendant path containing last(V1), and u2 be the vertex to which H2 is

attached. Let V ′1 = V1\(H1 ∪H2).

Suppose first that |V ′1 | = 1. Then u1 = u2, and H1 and H2 are both attached to

u1; thus, by Lemma 4.3, u1 and some neighbor z of u1 in H1 or H2 must be contained

in every minimum connected forcing set of G. However, a set containing only u1 and

D 
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z is not forcing, since u1 has at least two uncolored neighbors outside H1 ∪H2; this

is a contradiction.

Suppose next that |V ′1 | ≥ 3, and let R = {r1, r2} be a connected forcing set of

G. By Observation 6.3, and since neither leaf of G together with its neighbor forms

a forcing set, it follows that at least one of r1 and r2 has degree 2. Without loss of

generality, let r1 be a vertex of degree 2. If r1 is contained in Hi, for i ∈ {1, 2}, then

no vertex outside Hi ∪ {ui} can be forced by R. Similarly, if r1 is contained in V ′1 ,

then no vertex outside V ′1 can be forced by R, and if r1 is contained in V ′2 , then no

vertex outside V ′2 ∪ {u1, u2} can be forced by R. Thus, the assumption that |V ′1 | ≥ 3

leads to a contradiction, so it follows that |V ′1 | = 2, i.e., V ′1 = {u1, u2}. Recall that by

Claim 6.1, each of u1 and u2 must be adjacent to at least one vertex of V2 – namely,

first(V2) or last(V2), respectively.

Suppose first that both u1 and u2 are adjacent to two or more vertices of V2. Let

v1 and v2 respectively be the neighbors of u1 and u2 in V2 which are respectively

closest to first(V2) and last(V2) in G[V2]; v1 and v2 could possibly be the same vertex.

Let S1, S2, and S3 respectively be the sets of vertices between first(V2) and v1, v1 and

v2, and v2 and last(V2), inclusively (where “between” refers to the vertex ordering of

G, i.e., to the position of the vertices in the path G[V2]). As shown in the case where

|V ′1 | ≥ 3, the degree 2 vertex r1 cannot be contained in Hi, i ∈ {1, 2}. Similarly, if

r1 is contained in S1, S2, or S3, then, respectively, no vertex outside S1 ∪ {u1}, S2,

and S3 ∪ {u2} can be forced by R. Once again, it follows that no set consisting of a

degree 2 vertex and one of its neighbors can force all of G, a contradiction.

Thus, one of u1 and u2, say u1, must be adjacent to a single vertex of V2, namely

first(V2). Then {u2, last(V2)} is a connected forcing set, since last(V2) can initiate a

forcing chain passing through all vertices in V2 and eventually forcing u1; then u1
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and u2 will be able to force H1 and H2, respectively. This is the family of graphs

illustrated in Figure 6.2.

Claim 6.4. Let G be a graph of two parallel paths which has 2 leaves which belong

to different paths and different ends of G. Then Zc(G) = 2 if and only if G (can be

respecified as a graph which) belongs to the family of graphs described in Figure 6.2.

Proof. Without loss of generality, suppose L = {first(V1), last(V2)}. Let H1 be the

pendant path containing first(V1), and u1 be the vertex to which H1 is attached; let

H2 be the pendant path containing last(V2), and u2 be the vertex to which H2 is

attached. Let V ′1 = V1\H1 and V ′2 = V2\H2. Since G is different from a single path,

it cannot be the case that |V ′1 | = 1 and |V ′2 | = 1.

Suppose |V ′1 | ≥ 2 and |V ′2 | ≥ 2, and let R = {r1, r2} be a connected forcing set of

G. By the same argument as in Claim 6.3, one of r1 and r2, say r1, must have degree

2; moreover, r1 cannot be contained in H1 or H2. If r1 is contained in V ′1 , then no

vertex outside V ′1 ∪ {u2} can be forced by R, a contradiction. By symmetry, r1 also

cannot be in V ′2 .

Thus, exactly one of V ′1 and V ′2 consists of a single vertex; without loss of generality,

suppose |V ′1 | = 1 and |V ′2 | ≥ 2. Note then, that u1 = last(V1), and all edges between

V ′1 and V ′2 are incident to u1. Let w be the neighbor of u2 in V ′2 , which exists by

the assumption that |V ′2 | ≥ 2. Then, the vertex partition V̂1 = H1 ∪ {u1, u2} ∪ H2,

V̂2 = V \V̂1 gives an alternate specification of G as a graph of two parallel paths. In

this specification, the two leaves of G belong to the same path and different ends of

G. Thus, by Claim 6.3, Zc(G) = 2 if and only if G belongs to the family of graphs

described in Figure 6.2.

Since there are no other possible positions for the leaves of G, this concludes the proof

D 
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of Theorem 6.3.

6.3 Graphs with Zc(G) = n− 2

In this section, I will characterize all graphs with connected forcing number n− 2. I

begin by recalling a result regarding graphs with zero forcing number n− 2.

Theorem 6.4 ([89]). Z(G) ≥ n − 2 if and only if G does not contain an induced

subgraph isomorphic to any of the graphs in Figure 6.3.

Figure 6.3 : Forbidden induced subgraphs for Z(G) ≥ n−2; from left to right: P2∪̇P3,
“fish”, P2∪̇P2∪̇P2, “dart”, P4.

Theorem 6.4 is a consequence of the following characterization of the graphs with

minimum Hermitian rank at most 2, due to Barrett, van der Holst, and Loewy [126].

Theorem 6.5 ([126]). Given a graph G = (V,E) with vertex set V = {1, . . . , n}, let

H(G) be the set of all Hermitian n×n matrices A = [aij] such that aij 6= 0 for i 6= j,

if and only if {i, j} ∈ E (and no restriction on aii). Let hmr(G) = min{rank(A) :

A ∈ H(G)}. Then, the following are equivalent:

1. hmr(G) ≤ 2.

2. Gc has the form (Ks1∪̇ . . . ∪̇Kst∪̇Kp1,q1∪̇ . . . ∪̇Kpk,qk)∨Kr where t, s1, . . . , st, k,

p1, q1, . . . , pk, qk, r are nonnegative integers and pi + qi > 0 for 1 ≤ i ≤ k.

3. G is (P2∪̇P3, “fish”, P2∪̇P2∪̇P2, “dart”, P4)-free.
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The proof of Theorem 6.5, and the relation between hmr(G) and Z(G) used in the

proof of Theorem 6.4, are obtained primarily through linear algebraic techniques. In

contrast, in this section, I will develop and use predominantly combinatorial and graph

theoretic techniques to derive a characterization of graphs satisfying Zc(G) = n− 2.

The following characterization of graphs whose zero forcing number equals n−2 easily

follows from Theorem 6.4; this characterization will be used in the sequel.

Corollary 6.1. Z(G) = n− 2 if and only if G satisfies the following conditions:

1. G does not contain any of the graphs in Figure 6.3 as induced subgraphs,

2. G 6'
⋃̇n

i=1K1,

3. G 6'
(⋃̇t

i=1K1

)
∪̇Kn−t for n ≥ 2 and 0 ≤ t ≤ n− 2.

Proof. By Observation 6.1, the second condition in the statement of Corollary 6.1 is

satisfied if and only if Z(G) = n, and the third condition is satisfied if and only if

Z(G) = n− 1.

The following is a novel concept in the study of forcing sets, and will be useful in

proving a technical lemma. Further study of this restriction of connected forcing (and

analogously of zero forcing) would be interesting in its own right.

Definition 6.2. For any S ⊂ V , let Zc(G;S) be the cardinality of the minimum

connected forcing set of G which contains S.

For example, let G = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}}) be a path on 5

vertices. Then Zc(G; {1}) = 1, Zc(G; {2, 3}) = 2, and Zc(G; {1, 5}) = 5.

Lemma 6.1. Let G be a biconnected graph different from Kn. Then for any v ∈ V ,

Zc(G; {v}) ≤ n− 2.
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Proof. Note that since G is biconnected and not complete, it must have at least

4 vertices. Let v∗ be an arbitrary vertex of G and suppose for contradiction that

Zc(G; {v∗}) = n− 1.

Suppose first that some {v1, v2} ⊂ V \{v∗} forms a separating set of G. Let u

be a vertex which is not a cut vertex of G − v1 and which belongs to a component

of G − {v1, v2} that does not contain v∗ (it is easy to see that such a vertex exists).

We claim that R = V \{v1, u} is a connected forcing set of G. To see why, note first

that by construction R is connected. Moreover, some colored neighbor of v1 in the

component of G− {v1, v2} containing v∗ can force v1 in the first timestep; then, any

neighbor of u can force u. Thus, G cannot have a separating set of size 2.

Let v be any vertex in V \{v∗} and suppose there is a vertex u ∈ V which is not

adjacent to v; let w be a neighbor of u different from v∗ (which exists since G is

biconnected). Then, V \{v, w} is a connected forcing set of G, since u can force w in

the first timestep, and then v can be forced by any of its neighbors; moreover, since

G has no separating sets of size 2, this set is connected. However, since we assumed

that Zc(G; {v∗}) = n−1, it follows that every v ∈ V \{v∗} is adjacent to every vertex

in V . This implies that G is a complete graph, a contradiction.

The following definition is a generalization of Definition 4.1.

Definition 6.3. A pendant tree attached to vertex v in graph G = (V,E) is a maximal

set T ⊂ V composed of the vertices of the connected components of G− v which are

trees and which have a single vertex adjacent to v in G.

I now prove the main result of this section.

Theorem 6.6. Zc(G) = n−2 if and only if G belongs to the family of graphs described

in Figures 6.4–6.9.
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Proof. Let G = (V,E) be a graph with Zc(G) = n−2. If G does not have a separating

set, then G is a complete graph, and Zc(G) = n− 1. Note also that G is connected;

thus, κ(G) ≥ 1. We will consider several cases based on the vertex connectivity of G,

starting with κ(G) = 1. We will say v is a feasible vertex if v is part of exactly one

nontrivial block of G and if every trivial block adjacent to v is part of a pendant tree.

If v is a feasible vertex, define `(v) to be v if v is not a cut vertex, and otherwise to

be some leaf of G in the pendant tree attached to v. Note that for any feasible vertex

v, deleting `(v) does not disconnect G.

Claim 6.5. If G is a graph with κ(G) = 1 and if G has three or more nontrivial

blocks, then Zc(G) ≤ n− 3.

Proof. From the structure of G it follows that G has two nontrivial blocks B1 and B2

with feasible vertices u1, v1 in B1 and feasible vertices u2, v2 in B2, and a nontrivial

block B3 with a feasible vertex v3. We claim that V \{`(v1), `(v2), `(v3)} is a connected

forcing set. To see why, note that `(v1) and `(v2) each have a neighbor which is not

adjacent to another vertex in {`(v1), `(v2), `(v3)}; therefore, `(v1) and `(v2) can be

forced in the first timestep, and then any neighbor of `(v3) can force `(v3). Thus,

Zc(G) ≤ n− 3.

Claim 6.6. Let G be a graph with Zc(G) = n − 2, κ(G) = 1, and two nontrivial

blocks. Then, G belongs to the family of graphs described in Figure 6.4.

Figure 6.4 : Shaded ovals represent cliques, each of size at least 3; dotted line repre-
sents a path of possibly zero length.

D 



133

Proof. Let B1 and B2 be the nontrivial blocks of G. Suppose first that G also has

at least one trivial outer block. It is easy to see that there are at least two feasible

vertices u1, v1 in B1 and at least two feasible vertices u2, v2 in B2. Let v3 be a leaf

vertex of some pendant tree of G, which, without loss of generality, does not coincide

with `(v1) and `(v2) (although it may coincide with `(u1) or `(u2)). We claim that

V \{`(v1), `(v2), v3} is a connected forcing set. To see why, note that at least one of

`(v1) and `(v2), say `(v1), has a neighbor which is not adjacent to another vertex

in {`(v1), `(v2), v3}. Therefore `(v1) can be forced in the first timestep; then, any

neighbor of `(v2) can force `(v2), and then the neighbor of v3 can force v3. Thus,

Zc(G) ≤ n− 3, a contradiction.

Now suppose G has no trivial outer blocks, and that at least one of B1 and B2,

say B1, is not a clique. Let v be the cut vertex of B1 and x be a non-cut vertex in B2.

By Lemma 6.1, Zc(G[B1]; {v}) ≤ |B1| − 2, so there are two vertices u and w in B1

such that V \{u,w} is a connected forcing set of G. Moreover, some non-cut neighbor

of x in B2 can force x in the first timestep; thus V \{u,w, x} is a connected forcing

set of G, a contradiction.

Finally, suppose G has no trivial outer blocks, and that both B1 and B2 are cliques.

By Proposition 4.6 and Lemma 4.3, the set excluding one non-cut vertex from each

of B1 and B2 is a minimum connected forcing set of G. This is the case illustrated in

Figure 6.4.

Claim 6.7. Let G be a graph with Zc(G) = n− 2, κ(G) = 1, a single nontrivial block

B, and non-cut vertex x ∈ B. Then any pendant tree T of G is either composed of

one or more leaves attached to a vertex of B, or of two or more leaves joined to a

vertex of B by a path.
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Proof. Let T be a pendant tree of G attached to some vertex v ∈ B. If T has two

leaves `1 and `2 which are not adjacent to the same vertex, then V \{`1, `2, x} is a

connected forcing set; thus, all leaves of T are adjacent to the same vertex. T also

cannot be a pendant path of length more than 1, since then V \{`, w, x} is a connected

forcing set, where ` is the leaf of the pendant path and w is the neighbor of `. Thus,

T is composed of one or more leaves attached to v, or of two or more leaves joined to

v by a path.

Claim 6.8. Let G be a graph with Zc(G) = n− 2, κ(G) = 1, and a single nontrivial

block, which is either an inner block or an outer block and a clique. Then, G belongs

to the family of graphs described in Figure 6.5.

......... ...

Figure 6.5 : White oval represents an independent set of size at least 1, shaded ovals
represent cliques of size at least 3. Shaded regions represent all possible edges being
present. Dotted line represents a path of possibly zero length, thick lines represent
mandatory single edges, dashed straight lines represent an arbitrary number (possibly
zero) of single edges. If white oval consists of a single vertex, dashed curved line
represents a mandatory single edge; otherwise, it represents a possibly non-existent
single edge.

Proof. Let B be the nontrivial block of G and suppose first that B is an inner block.

If B has at least 3 cut vertices v1, v2, and v3 (which are by definition feasible vertices),

then V \{`(v1), `(v2), `(v3)} is a connected forcing set, a contradiction. Thus B has

2 cut vertices v1 and v2. Let T1 and T2 be the pendant trees attached to v1 and v2,

,,,,--- ... 
, 

.............. k 
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respectively, and let x be some non-cut vertex of B. By Claim 6.7, for i ∈ {1, 2}, Ti

is composed of one or more leaves attached to vi, or of two or more leaves joined to

vi by a path.

If at least one of T1 and T2, say T1, is composed of two or more leaves joined to

v1 by a path, let `1 be a leaf in T1, `2 be a leaf in T2, and x be a non-cut vertex of

B. Then V \{`1, `2, x} is a connected forcing set, since `1 can be forced in the first

timestep by its neighbor, then any neighbor of x (possibly except v2) can force x, and

then `2 can be forced by its neighbor; this is a contradiction.

If at least one of T1 and T2, say T1, consists of a single leaf `1, and `2 is a leaf in

T2, then V \{`1, v1, `2} is a connected forcing set since some non-cut neighbor of v1 in

B (possibly except v2) can force v1 in the first timestep, and then `1 and `2 can be

forced by their neighbors; this is a contradiction.

Thus, T1 and T2 each consist of two or more leaves. Let `1 and `2 be leaves in T1

and T2, respectively. If G[B\{v1, v2}] is not an empty graph, then there is an edge

between two vertices x and y in B\{v1, v2}. Then, V \{`1, `2, x} is a connected forcing

set since y can force x in the first timestep, and then `1 and `2 can be forced by v1

and v2 (note that this set is connected since x is not a cut vertex of G); this is a

contradiction.

Now, suppose G[B\{v1, v2}] is an empty graph. Then both v1 and v2 must be

adjacent to every vertex in B\{v1, v2}, since otherwiseG[B] would not be biconnected;

v1 and v2 could also possibly be adjacent to each other, and if B\{v1, v2} consists of

a single vertex, then v1 and v2 must necessarily be adjacent in order for G[B] to be

biconnected. Moreover, it is easy to see that V \{`1, `2} is a connected forcing set of

G. This set is also minimum, since by Lemma 4.3, v1 and v2 are contained in every

connected forcing set of G, and a set excluding 3 or more vertices of V \{v1, v2} will
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exclude at least two neighbors of at least one of v1 and v2, and will therefore not be

forcing. This family of graphs is illustrated in Figure 6.5, left.

Now suppose that B is an outer block and a clique. Let v be the cut vertex of B,

T be the pendant tree attached to v, ` be a leaf in T , and x be some non-cut vertex

of B. By Claim 6.7, T is either composed of one or more leaves attached to v, or

of two or more leaves joined to v by a path. In both cases, by Proposition 4.6 and

Lemma 4.3, V \{x, `} is a minimum connected forcing set of G. These two cases are

illustrated in Figure 6.5 middle and right, respectively.

Claim 6.9. Let G be a graph with Zc(G) = n− 2, κ(G) = 1, and a single nontrivial

block, which is an outer block and not a clique. Then, G belongs to the family of

graphs described in Figure 6.6.

...

...

Figure 6.6 : Shaded region represents a clique of size at least 3; thick lines represent
mandatory single edges, dashed lines represent an arbitrary number (possibly zero)
of single edges, such that the vertex outside the shaded oval is not adjacent to every
vertex inside the shaded oval.

Proof. Let B be the nontrivial block of G and v be the cut vertex of B. By Claim 6.7,

the pendant tree T attached to v must either be composed of one or more leaves

attached to v, or two or more leaves joined to v by a path. If T consists of two or

more leaves joined to v by a path, then by Lemma 6.1, Zc(G[B]; {v}) ≤ |B| − 2, so

there are two vertices x and y in B such that V \{x, y} is a connected forcing set.
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Moreover, a leaf ` in T can be forced by its neighbor in the first timestep; it follows

that V \{x, y, `} is a connected forcing set of G, a contradiction.

Thus, T consists of one or more leaves attached to v. Let ` be one of these leaves.

Suppose G[B] − v has no separating set; then G[B] − v is a clique. Since G[B] is

not a clique, there must be some vertex x ∈ B\{v} which is not adjacent to v. Let

y 6= x be another vertex in B\{v}. If T consists of a single leaf, then V \{`, v, y} is a

connected forcing set of G, since x can force y in the first timestep, then any neighbor

of v in B\{v} can force v, and then v can force `. If T contains two or more leaves,

then V \{`, x} is a connected forcing set. Moreover, this set is minimum, since by

Lemma 4.3, every connected forcing set contains v and all-but-one leaves attached to

v, and if a set excludes two or more vertices from B\{v}, then any colored neighbor

of these vertices would always have at least two uncolored neighbors. This family of

graphs is illustrated in Figure 6.6.

Now suppose G[B] − v does have a separating set. Note that since G[B] is bi-

connected, κ(G[B] − v) ≥ 1. If κ(G[B] − v) = 1, let u be a vertex such that {u, v}

is a separating set of G and let x ∈ B be a non-cut vertex of G − u; let C be the

component of G − {u, v} containing x. Then V \{`, u, x} is a connected forcing set,

since u can be forced by some neighbor of u in a component of G−{u, v} other than

C in the first timestep, then x can be forced by any of its neighbors except v, and

then v can force `. Thus, Zc(G) ≤ n− 3, a contradiction.

If κ(G[B] − v) ≥ 2 and dG[B](v) = 2, let u and w be the neighbors of v in B.

Suppose first that there is some vertex x ∈ B\{u, v, w} such that at least one of

{u, x} and {w, x}, say {u, x}, is a separating set of G. Let C be a component of

G− {u, x} which does not contain v. Let y be a non-cut vertex of G− x in C. Then

V \{x, y, `} is a forcing set of G, since some neighbor of x (except v) in a component
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of G − {u, x} other than C can force x in the first timestep, then any neighbor of y

can force y, and then v can force `. This set is also connected since y is a non-cut

vertex of G[B]− x, which is connected. Thus, Zc(G) ≤ n− 3, a contradiction.

Now suppose that for any x ∈ B\{u, v, w}, neither {u, x} nor {w, x} is a separating

set of G. If u is not adjacent to w, let y be any neighbor of u in B\{u, v, w}. Then

V \{`, w, y} is a connected forcing set, since u can force y in the first timestep, then

any neighbor of w (except v) can force w, and then v can force `. Note that this set is

connected, since by assumption, {w, y} is not a separating set of G. If u is adjacent

to v, suppose there is a vertex y ∈ B\{u, v, w} which is not adjacent to at least one

of u and w, say y 6∼ u. Then V \{`, w, y} is a connected forcing set, since u can force

w in the first timestep, then any neighbor of y can force y, and then v can force `.

Now suppose every vertex in B\{u, v, w} is adjacent to both u and w. Since G[B]−v

is not a clique, there must be some vertices x and y in B\{u, v, w} which are not

adjacent to each other. Then V \{`, w, y} is a connected forcing set, since x can force

w in the first timestep, then any neighbor of y can force y, and then v can force `. In

all these cases, it follows that Zc(G) ≤ n− 3, a contradiction.

If κ(G[B]−v) = 2 and dG[B](v) ≥ 3, let {u,w} be a separating set of G[B]−v, and

let x be a non-cut vertex of G[B]− {u, v} in some component C of G[B]− {u, v, w}.

Then V \{u, x, `} is a forcing set of G, since any neighbor of u in a component of

G[B]−{u, v, w} different from C can force u in the first timestep, then any neighbor

of x (except v) can force x, and then v can force `. This set is also connected:

G[B]−{u, v} is connected since κ(G[B]− v) = 2, G[B]−{u, v, x} is connected since

x is a non-cut vertex of G[B]− {u, v}, G[B]− {u, x} is connected since dG[B](v) ≥ 3

and hence v’s neighbors in B cannot be only u and x, and G− {u, x, `} is connected

since ` is a leaf. Thus, Zc(G) ≤ n− 3, a contradiction.
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If κ(G[B] − v) ≥ 3 and dG[B](v) ≥ 3, let x and y be two non-adjacent vertices

in B\{v}, and let z ∈ B\{v} be a neighbor of y. Then V \{`, x, z} is a forcing set,

since y can force z in the first timestep, then any neighbor of x except v can force x,

and then v can force `. This set is also connected, since κ(G[B] − v) ≥ 3 and since

dG[B](v) ≥ 3. Thus, Zc(G) ≤ n− 3, a contradiction.

Claim 6.10. Let G be a graph with Zc(G) = n − 2, κ(G) = 1, and no nontrivial

blocks. Then, G is one of the graphs described in Figure 6.7.

...

... ...

Figure 6.7 : Left: two stars each with at least 2 leaves joined by a path of length at
least 1. Middle: Pendant attached to a leaf of a star with at least 3 leaves. Right:
P3.

Proof. Since G has only trivial blocks, G is a tree; thus, by Theorem 5.2, Zc(G) =

R2 ∪R3 ∪ L. If G has three or more vertices in R3, then there are at least 3 vertices

not in L, so Zc(G) ≤ n− 3, a contradiction.

If G has two vertices u and v in R3, then all other vertices must belong to a path

connecting u and v, or to pendant paths attached to u or v. By a similar argument

as in Claim 6.7, the length of any pendant path attached to u or v must be 1. By

Theorem 5.2, this condition is also sufficient to guarantee that Zc(G) = n − 2. This

is the family of graphs illustrated in Figure 6.7, left.

If G has one vertex v in R3, then all other vertices must belong to pendant paths

attached to v. If all pendant paths have length 1, then G is a star and Zc(G) = n−1.

If more than one pendant path has length greater than 1, or if any pendant path

D 
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has length greater than 2, by a similar argument as in Claim 6.7, it follows that

Zc(G) ≤ n − 3. Thus, one pendant path must have length 2, and all other pendant

paths must have length 1. This is the family of graphs illustrated in Figure 6.7,

middle.

If G has no vertices in R3, then G is a path, and Zc(G) = n − 2 if and only if

G ' P3. This is the graph illustrated in Figure 6.7, right.

Claim 6.11. If G is a graph with κ(G) ≥ 2 and S is a minimum separating set of

G such that G− S has three or more components, at least one of which is nontrivial,

then Zc(G) ≤ n− 3.

Proof. Let B1, . . . , Bk be the components of G−S, k ≥ 3; let s1 and s2 be vertices in

S. Since S is minimum, each vertex of S is connected to at least one vertex of every

component of G− S. Without loss of generality, let B1 be a nontrivial component of

G−S. Note that since G[B1] is connected and nontrivial, it has at least two non-cut

vertices. If s1 is adjacent to exactly one vertex of B1, let x1 be a non-cut vertex of

G[B1] different from the neighbor of s1 in B1; otherwise, if s1 is adjacent to two or

more vertices of B1, let x1 be an arbitrary non-cut vertex of G[B1]. If B2 is a trivial

block, let x2 be the vertex of B2; if B2 is nontrivial and if s1 is adjacent to exactly one

vertex of B2, let x2 be a non-cut vertex of G[B2] different from the neighbor of s1 in

B2, and if s1 is adjacent to two or more vertices of B2, let x2 be an arbitrary non-cut

vertex of G[B2]. In every case, V \{s2, x1, x2} is a forcing set, since any neighbor of

s2 in B3 can force s2 in the first timestep, then any neighbor of x1 in B1 can force x1,

and then any neighbor of x2 can force x2. This set is also connected, since each of

the graphs G[B1] − x1, G[B2] − x2, G[B3], . . . , G[Bk] is connected, s1 is connected to

each of these graphs, and all other vertices of S\{s2} are connected to some vertices

D 
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in G[B3], . . . , G[Bk]. Thus, Zc(G) ≤ n− 3.

Claim 6.12. Let G be a graph with Zc(G) = n−2 and let S be a minimum separating

set of G such that G− S has only trivial components. Then every trivial component

of G− S must be adjacent to every vertex in S; moreover, any connected forcing set

of G excludes at most one trivial component of G− S.

Proof. Let v be a vertex that is a trivial component of G− S. If v is not adjacent to

some vertex u ∈ S, then S\{u} would be a smaller separating set of G than S. Let R

be a connected forcing set of G and suppose R excludes two vertices v1 and v2 which

are trivial components of G − S. Since v1 and v2 are only adjacent to vertices in S,

and since every vertex in S has at least two uncolored neighbors (namely v1 and v2),

no vertex in S would be able to force v1 and v2. Thus, any connected forcing set can

exclude at most one trivial component of G− S.

Claim 6.13. Let G be a graph with Zc(G) = n−2, κ(G) ≥ 2, and let S be a minimum

separating set of G such that G − S has only trivial components. Then G is one of

the graphs described in Figure 6.8.

Figure 6.8 : Ovals represent sets of vertices, each of size at least two. Shaded regions
represent all possible edges being present within a set of vertices or between sets of
vertices; white regions represent no edges being present. Region with wave pattern
represents a set of vertices which induces a graph H which has no isolated vertices
and has zero forcing number |V (H)| − 2.

D 

D 
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Proof. Let C be the set of vertices which are trivial components of G − S. By

Claim 6.12, every vertex in C is adjacent to every vertex in S. Suppose for contradic-

tion that Z(G[S]) < |S| − 2, and let Z be a minimum zero forcing set of G[S]. Then

Z∪C is a connected forcing set ofG, since any vertex in Z which forces a vertex inG[S]

can also force the same vertex in G. Thus, Zc(G) ≤ |Z|+ |C| < |S|− 2 + |C| = n− 2,

a contradiction. Thus, Z(G[S]) ≥ |S| − 2.

If Z(G[S]) = |S|, then G[S] is an empty graph, and hence G is a complete bipartite

graph with parts C and S. Then, any set containing all-but-one vertices of C and

all-but-one vertices of S is connected and forcing (note that |C| ≥ 2 and |S| ≥ 2).

This set is also minimum, since a set excluding more than one vertex from one (or

both) of C and S is not forcing. This family of graphs is illustrated in Figure 6.8,

left.

If Z(G[S]) = |S| − 1, then G[S] is the disjoint union of a nontrivial clique and

zero or more isolated vertices. If G[S] has at most one isolated vertex, then any set

containing all-but-one vertices of C and all-but-one vertices of S is connected and

forcing. This set is also minimum, since by Claim 6.12, a connected forcing set R

can exclude at most one vertex of C; if R excludes one vertex of C, then it cannot

exclude two or more vertices of S, since then no vertex will be able to force them.

Similarly, if R contains all vertices of C, then it cannot exclude three or more vertices

of S, since then at least two of them will belong to the nontrivial clique in G[S], and

no vertex will be able to force them. Thus Zc(G) = n − 2; this family of graphs is

illustrated in Figure 6.8, middle-left and middle-right.

If G[S] is the disjoint union of a nontrivial clique and two or more isolated vertices,

then let u and x be isolated vertices in G[S], v and y be vertices in the nontrivial

clique of G[S], and w be a vertex in C. Then V \{u, v, w} is a connected forcing set,
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since x can force w in the first timestep, then y can force v, and then w can force u.

Thus Zc(G) ≤ n− 3, a contradiction.

Finally, if Z(G[S]) = |S| − 2, then G[S] is one of the graphs in Corollary 6.1.

Let Z be an arbitrary minimum zero forcing set of G[S], let {z1, z2} = S\Z, and

let x be a vertex in C. If G[S] has an isolated vertex v, then v must be contained

in Z. Then V \{z1, z2, x} is a connected forcing set, since v can force x in the first

timestep, and then z1 and z2 can be forced by the same vertices which force them in

G[S]. Thus, G[S] does not have isolated vertices. Moreover, V \{z1, z2} is a connected

forcing set of G, since z1 and z2 can be forced in G by the same vertices which force

them in G[S]; we claim that this set is also minimum. To see why, suppose there is a

connected forcing set R which excludes three or more vertices of G. By Claim 6.12, R

can exclude at most one vertex of C. If R excludes one vertex x of C and two or more

vertices of S, then no vertex in C can force another vertex until all-but-one vertices

in S are forced (because until then, all vertices in C are adjacent to two or more

uncolored vertices in S). Thus, the first force must be performed by a vertex y in S.

This means y has a single uncolored neighbor, which must be x. Then, all neighbors

of y in S are contained in R. Let R′ be the set obtained by adding x and all-but-two

vertices in S\R to R. R′ is also connected and forcing, and there is a chronological

list of forces where both vertices not in R′ are forced by vertices of S. Thus R′ ∩ S is

a zero forcing set of G[S] of size |S| − 2. However, y is a non-isolated vertex in G[S],

which is in R′ ∩ S and all of whose neighbors are in R′ ∩ S. Therefore, R′ ∩ S\{z} is

also a zero forcing set of G[S], where z is a neighbor of y in S; this contradicts the

assumption that Z(G[S]) = |S| − 2. Similarly, if R excludes no vertices of C, then it

cannot exclude three or more vertices of S, since then S ∩R would be a zero forcing

set of G[S] of size at most |S| − 3, a contradiction. Thus, Zc(G) = n− 2; this family
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of graphs is illustrated in Figure 6.8, right.

Claim 6.14. Let G be a graph with Zc(G) = n−2 and κ(G) = 2; let S be a minimum

separating set of G such that G−S has exactly two components, at least one of which

is nontrivial. Then each component of G − S is a clique, and each vertex from each

component of G− S is adjacent to every vertex in S.

Proof. Let s1 and s2 be the vertices of S, and let B1 and B2 be the components

of G − S. Let I = {{(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (2, 2)}} and

J = {{(1, 1), (1, 2)}, {(2, 1), (2, 2)}}.

Suppose first that there exists a set I ∈ I such that for each (i, j) ∈ I, G[Bi∪{sj}]

has no cut vertices. Without loss of generality, let I = {(1, 1), (2, 1)}, i.e., suppose

G[B1 ∪ {s1}] and G[B2 ∪ {s1}] have no cut vertices. Suppose also that s2 is not

adjacent to some vertex of B1 ∪ B2, say x ∈ B2; then, B2 must be a nontrivial

component. Let y be a neighbor of x in B2 and let v ∈ B1 be a non-cut vertex of

G−s2. Then, V \{v, s2, y} is a forcing set, since x can force y in the first timestep, then

any neighbor of s2 in B2 can force s2, and then any neighbor of v can force v. This

set is also connected, since G− s2 is connected, y is not a cut vertex of G[B2 ∪ {s1}],

and v is not a cut vertex of G[B1 ∪{s1}]. This contradicts Zc(G) = n− 2, so s2 must

be adjacent to every vertex in B2. Hence, G[B2 ∪ {s2}] has no cut vertices (since

G[B2] is connected), and so by the same argument as above, it follows that s1 is also

adjacent to every vertex in B2. Similarly, s1 and s2 are adjacent to every vertex in

B1. Now suppose B2 is not a clique; then, B2 must have at least three vertices. Let x

and y be two non-adjacent vertices in B2; let z be a neighbor of x in B2, and let v be

any vertex in B1. Then, V \{y, z, v} is a connected forcing set, since x can force z in

the first timestep, then any neighbor of y in B2 can force y, and then any neighbor of

D 
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v can force v. This set is also connected, since every vertex in B1 and B2 is adjacent

to S, and every vertex in S is adjacent to x. This is a contradiction, so B2 is a clique;

similarly, B1 is a clique.

Now suppose that there does not exist a set I ∈ I such that for each (i, j) ∈ I,

G[Bi ∪ {sj}] has no cut vertices. Equivalently, there exists a set J ∈ J such that

for each (i, j) ∈ J , G[Bi ∪ {sj}] has cut vertices. Without loss of generality, let

J = {(2, 1), (2, 2)}, i.e., G[B2 ∪ {s1}] and G[B2 ∪ {s2}] have cut vertices. Hence,

G[B2] has cut vertices, since G[B2] is connected. At least one of s1 and s2 must be

adjacent to a non-cut vertex of every outer block of G[B2], since otherwise the cut

vertex of such a block would be a cut vertex of G. Note also that if s1 or s2, say s1, is

adjacent to a non-cut vertex of every outer block of G[B2], then G[B2 ∪ {s1}] would

not have any cut vertices. Thus, there is an outer block D1 of G[B2] such that s1 is

adjacent to a non-cut vertex d1 of D1 and s2 is not adjacent to any non-cut vertex

of D1, and there is an outer block D2 of G[B2] such that s2 is adjacent to a non-cut

vertex d2 of D2 and s1 is not adjacent to any non-cut vertex of D2.

Suppose s1 is adjacent to a single vertex of B2; this must be the vertex d1 defined

above. Let v ∈ B1 be a non-cut vertex of G− s1. Then, V \{v, s1, d1} is a forcing set,

since any neighbor of d1 in B2 can force d1 in the first timestep, then d1 can force

s1, and then any neighbor of v can force v. This set is also connected, since G − s1

is connected, and v and d1 are non-cut vertices of G − s1. Thus, Zc(G) ≤ n − 3, a

contradiction.

Now suppose s1 is adjacent to two or more vertices of B2. Let v ∈ B1 be a non-cut

vertex of G− s2. Then, V \{v, s2, d1} is a forcing set, since d2 can force s2 in the first

timestep, then d1 can be forced by any of its neighbors in B2, and then any neighbor

of v can force v. This set is also connected, since G[B1]− v is connected, G[B2]− d1
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is connected, s1 is adjacent to some vertex in B1 other than v, and s1 is adjacent to

some vertex in B2 other than d1. Thus, Zc(G) ≤ n− 3, a contradiction.

Claim 6.15. Let G be a graph with Zc(G) = n−2 and κ(G) = 3; let S be a minimum

separating set of G such that G−S has exactly two components, at least one of which

is nontrivial. Then each component of G − S is a clique, and each vertex from each

component of G− S is adjacent to every vertex in S.

Proof. Suppose first that at least one of B1 and B2, say B2, is not a clique; then B2

is a nontrivial component. Suppose also that no two vertices of B2 form a separating

set of G− s1. Let x and y be two nonadjacent vertices in B2, and let z be a neighbor

of x in B2. Then, V \{s1, y, z} is a forcing set, since any neighbor of s1 in B1 can force

s1 in the first timestep, then x can force z, and then any neighbor of y can force y.

This set is also connected, since G− s1 is connected, and by assumption {y, z} is not

a separating set of G− s1.

Now suppose that two vertices t1 and t2 in B2 form a separating set of G−s1. Let

D be a component of G− {s1, t1, t2} which does not contain s2 and s3. Note that s1

must be adjacent to some vertex d in D, since otherwise {t1, t2} would be a separating

set of G. Let v ∈ B1 be a non-cut vertex of G − {s1, s2}. Then, V \{s1, s2, v} is a

forcing set, since d can force s1 in the first timestep, then any neighbor of s2 in B2

can force s2, and then any neighbor of v can force v. This set is also connected, since

G− {s1, s2} is connected, and v is a non-cut vertex of G− {s1, s2}.

In both cases, it follows that Zc(G) ≤ n− 3, a contradiction; thus, B2 is a clique,

and similarly, B1 is a clique. Now suppose that some vertex in S, say s1, is not

adjacent to some vertex in B1 or B2, say x ∈ B2; note that B2 must then be a

nontrivial component. Let v be any vertex in B1.

D 
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If |B2| = 2, let B2 = {x, y}. Then, s1 is adjacent only to y, so both s2 and s3 must

be adjacent to x, since otherwise x will have fewer than three neighbors (contradicting

κ(G) = 3). Then, V \{s1, y, v} is a forcing set, since x can force y in the first timestep,

then any neighbor of s1 in B2 can force s1, and then any neighbor of v can force v.

This set is also connected, since s2 and s3 are both adjacent to x, and if B1 is not a

trivial component, then at least one of s2 and s3 is adjacent to a vertex of B1 other

than v.

If |B2| = 3, let B2 = {x, y1, y2}. Note that any pair of vertices in B2 must

collectively have at least two neighbors in S, since otherwise their single neighbor

and the other vertex in B2 form a separating set of G. If s1 is adjacent to a single

vertex in B2, let y be that vertex. If s1 is adjacent to both y1 and y2, and if x is

adjacent to both s2 and s3, let y be y1. If s1 is adjacent to both y1 and y2, and if x is

adjacent to a single vertex s ∈ {s1, s2}, and if S\{s1, s} has a single neighbor z ∈ B2,

let y be B2\{x, z}; if S\{s1, s} has multiple neighbors in B2, let y be y1. In each of

these cases, V \{s1, y, v} is a forcing set, since x can force y in the first timestep, then

any neighbor of s1 in B2 can force s1, and then any neighbor of v can force v. This

set is also connected, since G[B2]− y is connected, G[B1]− v is connected, s2 and s3

are each adjacent to at least one vertex in G[B2]− y (for each choice of y above), and

at least one of s2 and s3 is adjacent to a vertex of G[B1] − v (if B1 is not a trivial

component).

If |B2| ≥ 4, let y be a vertex in B2 which is different from x, and — if one or both

of s2 or s3 have a single neighbor in B2 — is different from those neighbors. Then,

V \{s1, y, v} is a connected forcing set by the same reasoning as above.

In all cases, we reach a contradiction, so it follows that each vertex of B2 is adjacent

to each vertex of S. Similarly, we conclude that each vertex of B1 is adjacent to each
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vertex of S.

Claim 6.16. Let G be a graph with Zc(G) = n−2 and κ(G) ≥ 4; let S be a minimum

separating set of G such that G−S has exactly two components, at least one of which

is nontrivial. Then each component of G − S is a clique, and each vertex from each

component of G− S is adjacent to every vertex in S.

Proof. Let B1 and B2 be the components of G−S, and suppose for contradiction that

some vertex in B1 or B2, say x ∈ B1 is not adjacent to some vertex in S, say s1; note

that B1 must then be a nontrivial component. Let y be a neighbor of x in B1 and let

z be a vertex in B2. Then, V \{y, z, s1} is a forcing set of G, since x can force y in

the first timestep, then some neighbor of s1 in B1 can force s1, and then any neighbor

of z can force z. This set is also connected since κ(G) ≥ 4; thus, Zc(G) ≤ n − 3, a

contradiction. Therefore, each vertex from each component of G − S is adjacent to

every vertex in S.

Now suppose for contradiction that some component of G − S, say B1, is not

a clique. Note that B1 must then have at least 3 vertices, since if B1 is a trivial

component or has two vertices which are connected, then B1 is a clique. Let x and

y be vertices in B1 which are not adjacent, and let z be a neighbor of x in B1; let

w be a vertex in B2. Then, V \{y, z, w} is a forcing set of G, since x can force z in

the first timestep, then some neighbor of y in B1 can force y, and then any neighbor

of w can force w. This set is also connected since κ(G) ≥ 4; thus, Zc(G) ≤ n − 3, a

contradiction. Therefore, each component of G− S is a clique.

Claim 6.17. Let G be a graph with Zc(G) = n−2, κ(G) ≥ 2 and let S be a minimum

separating set of G such that G−S has exactly two components, at least one of which

is nontrivial. Then G is one of the graphs described in Figure 6.9.

D 

D 



149

Figure 6.9 : Ovals represent sets of vertices. Shaded regions represent all possible
edges being present within a set of vertices or between sets of vertices; white regions
represent no edges being present. Region with wave pattern represents a set of vertices
which induces a graph H which has no isolated vertices and has zero forcing number
|V (H)| − 2. Smaller ovals have at least one vertex, larger ovals have at least two
vertices.

Proof. Let B1 and B2 be the components ofG−S, where B1 is a nontrivial component.

By Claims 6.14, 6.15, and 6.16, B1 and B2 are cliques, and every vertex in B1 and B2

is adjacent to every vertex in S. By the same argument as in Claim 6.13, Z(G[S]) ≥

|S| − 2.

If Z(G[S]) = |S|, then G[S] is an empty graph, and any set excluding a single

vertex from S and a single vertex from B1 is connected and forcing (note that |S| ≥ 2).

This set is also minimum, since if R is a set which excludes two or more vertices from

B1, S, or B2, or excludes one vertex from each of B1, S, and B2, then every vertex

in R will have at least two neighbors not in R, and hence R will not be forcing. This

family of graphs is illustrated in Figure 6.9, left.

If Z(G[S]) = |S| − 1, then G[S] is the disjoint union of a clique and zero or more

isolated vertices. If G[S] has at most one isolated vertex, then any set excluding a

single vertex from S and a single vertex from B1 is connected and forcing. This set

is also minimum since if R is a set which excludes two or more vertices from B1, S,
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or B2, or excludes one vertex from each of B1, S, and B2, then every vertex in R will

have at least two neighbors not in R, and hence R will not be forcing. This family of

graphs is illustrated in Figure 6.9, middle-left and middle-right.

If G[S] is the disjoint union of a clique and two or more isolated vertices, then let

x1 and x2 be isolated vertices in G[S], v1 and v2 be vertices in the nontrivial clique

of G[S], u1 be a vertex in B1. Then V \{u1, v1, w1} is a connected forcing set, since

x2 can force u1 in the first timestep, then v2 can force v1, and then any neighbor of

x1 can force x1. Thus Zc(G) ≤ n− 3, a contradiction.

Finally, if Z(G[S]) = |S| − 2, then G[S] is one of the graphs in Corollary 6.1. Let

Z be an arbitrary minimum zero forcing set of G[S], and let {z1, z2} = S\Z. By a

similar argument as in Claim 6.13, G[S] does not have isolated vertices; moreover,

V \{z1, z2} is a connected forcing set of G. We claim that this set is also minimum;

to see why, suppose there is a connected forcing set R which excludes three or more

vertices of G. If R excludes three or more vertices of B1∪B2, then two of them are in

the same clique component of G− S, and can therefore not be forced by any of their

neighbors. For the same reason, if R excludes two vertices of B1 ∪ B2, then one of

these vertices must be in B1 and the other must be in B2; however, if R also excludes

one or more vertex of S, then every vertex of G will have at least two uncolored

neighbors, and no forcing will be possible. By a similar argument as in Claim 6.13,

we also reach a contradiction if R excludes one vertex of B1 ∪ B2 and two or more

vertices of S, or if R excludes no vertices of B1 ∪B2 and three or more vertices of S.

Thus, Zc(G) = n− 2; this family of graphs is illustrated in Figure 6.9, right.

Since each of the graphs described in Figures 6.4–6.9 has connected forcing number

n− 2, this concludes the proof of Theorem 6.6.

D 
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The statement of Theorem 6.6 can be rewritten in a similar format as the state-

ment of Theorem 6.5; however, I chose to express my results using explicit diagrams

in order to make it easier to visualize the structure of the graphs in question. Due

to the constant number of equivalence classes of vertices in each of the graphs in

Figures 6.4–6.9 (or in their complements, according to Theorem 6.5), it is readily

verifiable that a graph in this family is efficiently recognizable; this is stated formally

below.

Observation 6.4. It can be recognized whether a graph G belongs to the family of

graphs given in Theorem 6.6 in O(n2) time.
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Chapter 7

Enumeration problems related to zero forcing

In this chapter, I focus on several enumeration problems associated with zero forcing

and connected forcing. I investigate the cardinality and other properties of the set

of minimum connected forcing sets of a graph G, the set of connected forcing sets of

G which have a given size, and the set of all connected forcing sets of G; analogous

results for zero forcing are presented as well. In particular, I identify when some of

these sets grow exponentially with the order of the graph, use the set of all forcing

sets of certain graphs to define greedoids and matroids, and define zero forcing and

connected forcing polynomials which count the number of distinct zero forcing and

connected forcing sets of a given size.

7.1 Exponential quantities associated with zero forcing

In this section, I show that several parameters related to zero forcing can grow expo-

nentially with the size of a graph. These results imply that in general, any compu-

tation based on enumeration of these parameters will not be efficient. For example,

one way to determine the minimum and maximum propagation times of a graph G is

to find the propagation times of each of its minimum zero forcing sets. The following

result implies that this approach could take exponential time.

Proposition 7.1. A graph can have exponentially-many distinct minimum zero forc-

ing sets and exponentially-many distinct minimum connected forcing sets.
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Proof. Let Pk be a path with vertex set {v1, . . . , vk}. Let G be the graph obtained

by appending two pendants, ai and bi, to vi, 1 ≤ i ≤ k. Since Z(G) ≥ L(G)/2 and

since {a1 . . . , ak} is a zero forcing set, Z(G) = k. Since Zc(G) ≥ L(G) and since

{a1 . . . , ak, v1, . . . , vk} is a connected forcing set, Zc(G) = 2k. Each set of the form

{c1 . . . , ck} is a zero forcing set, where ci ∈ {ai, bi} for 1 ≤ i ≤ k; likewise, each set of

the form {c1 . . . , ck, v1 . . . , vk} is a connected forcing set. Thus, G has Ω(2k) distinct

zero forcing sets and connected forcing sets.

Let R be a minimum zero forcing set of a graph G = (V,E), and let GS be the

graph obtained by adding a vertex v∗ to G and connecting it to all vertices in a set

S ⊂ V (i.e., GS is a generalized vertex join of G). A question of interest in this

scenario is: when does R remain a zero forcing set of GS? A sufficient condition to

assure that R is a zero forcing set of GS is for S to be a set of terminals of forcing

chains associated with R (since then v∗ would not interfere with any forces performed

between vertices of G, and could be forced in the last timestep). The next result

shows that in general, one could not efficiently enumerate all sets S ⊂ V which are

terminals of forcing chains associated with R.

Proposition 7.2. A graph with a fixed minimum zero forcing set or minimum con-

nected forcing set R can have exponentially-many sets of vertices which are terminals

of forcing chains associated with R.

Proof. Let G′ = (V,E) be the disjoint union of k copies of C5, where the ith copy

of C5 has vertex set {ai, bi, ci, ui, vi} and edge set {aibi, bici, civi, viui, uiai}. Let G =

(V ∪ {x}, E ∪ {xui : 1 ≤ i ≤ k}), and R = {x, u1, . . . , uk, v1, . . . , vk}. It is easy to

see that R is a connected forcing set of G; by Lemma 4.3 and Proposition 4.6, R is

a minimum connected forcing set of G. In each copy of C5, possible forcing chains
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initiated by ui and vi include {ui → ai, vi → ci → bi} and {ui → ai → bi, vi → ci}.

Thus, there are Ω(2k) distinct sets of vertices which are terminals of forcing chains

associated with R. Similarly, R′ = R\{x} is a minimum zero forcing set of G′ and

there are Ω(2k) distinct sets of vertices which are terminals of forcing chains associated

with R′.

Finally, as mentioned in Chapter 5, if the zero forcing number of a graph is known,

and if one of the minimum zero forcing sets of a graph is found to be connected, then

the connected forcing number of the graph will immediately be determined as well.

The following result shows that this approach is not efficient in general, even if distinct

minimum zero forcing sets could be generated efficiently.

Proposition 7.3. A graph could have exponentially-many minimum zero forcing sets

which are not connected, and also have minimum zero forcing sets which are con-

nected.

Proof. Let G = (V,E) be the sun graph on n = 2k ≥ 12 vertices. By Theorem 5.1,

Z(G) = Zc(G) = k − 1; thus, G has minimum zero forcing sets which are connected.

We will now show that G has exponentially-many minimum zero forcing sets which

are not connected. Let A = {a1, . . . , ak} be the set of vertices of the k-clique of G

and let B = {b1, . . . , bk} be the set of vertices of G with degree 2, where bi is adjacent

to ai−1 and ai for 1 ≤ i ≤ k (with indices read modulo k). Let R be the family of

sets of the form {a1, b1, b2, c3, . . . , ck−2}, where ci ∈ {ai, bi} for i ∈ {3, . . . , k − 2}; we

claim that each R ∈ R is a minimum zero forcing set. To see why, note that b1 and

b2 can force ak and a2 in the first timestep, since they each only have one uncolored

neighbor. Then, starting at i = 3 and incrementing i, either ci = ai, or ci = bi and bi

can force ai since ai−1 is already colored. In any case, eventually ak, a1, . . . , ak−2 will
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be colored, and then a1 can force ak since both b1 and b2 are already to be colored.

Then, starting at i = 2 and incrementing i, ai can force bi+1 since bi (and every vertex

in A) is already colored. Thus, R is a zero forcing set, and since it has cardinality

k − 1, it is a minimum zero forcing set.

Now, we will show that exponentially-many of the sets in R are disconnected.

Note that a sufficient condition for R ∈ R to be disconnected is that ci = bi and

ci+1 = bi+1 for some i ∈ {3, . . . , k − 3} (since then neither neighbor of bi+1 will be

in R). Thus, to show that exponentially-many elements of R are disconnected, it

suffices to show that exponentially-many binary strings of length k − 4 contain at

least two consecutive 0’s (where a 0 corresponds to a choice of ci = bi in the zero

forcing set, and 1 corresponds to ci = ai). The number of binary strings of length

p with at least two consecutive zeros is equal to 2p − |Jp|, where Jp is the set of

binary strings of length p with no consecutive zeros. The strings in Jp that end in

0 can be obtained by appending ‘10’ to the strings in Jp−2, and the strings in Jp

that end in 1 can be obtained by appending ‘1’ to the strings in Jp−1. Therefore,

|Jp| = |Jp−1| + |Jp−2|. Moreover, |J1| = 2 and |J2| = 3, so |Jp| = Fp+2, where Fi is

the ith Fibonacci number. Since Fp = O(φp), where φ = 1+
√
5

2
is the golden ratio,

it follows that 2p − Fp+2 = 2p − O(φp+2) = Ω(2p). Thus, G has Ω(2k) disconnected

minimum zero forcing sets.

I conclude this section with a brief discussion of when the quantities characterized in

Propositions 7.1 and 7.2 are only polynomial in the order of the graph. Trivially, if

Z(G) = O(1) or Z(G) = n − O(1), there are polynomially-many distinct minimum

zero forcing sets, since G has polynomially-many subsets of vertices of size O(1). For

the same reason, if Z(G) = O(1) or Z(G) = n − O(1), then there are polynomially-

many sets of vertices which are terminals of forcing chains associated with some fixed
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zero forcing set R. Analogous conclusions hold true for the connected forcing number.

It could also happen that these cardinalities are bounded by a polynomial even when

Z(G) = Ω(n) and Zc(G) = Ω(n); for example, this is the case when G is a sunlet

graph.

7.2 Connected forcing and matroids

In this section, I investigate graphs for which the set of all connected forcing sets can

be used to define greedoids or matroids. A matroid is an ordered pair (S, I) where S

is a finite set and I is a subset of P(S) (the power set of S) satisfying

(M1) ∅ ∈ I

(M2) If J ′ ⊂ J ∈ I then J ′ ∈ I

(M3) For every A ⊂ S, every maximal subset of A in I has the same cardinality.

An ordered pair (S, I) which satisfies only (M1) and (M3) is called a greedoid. Ma-

troids and greedoids have been studied extensively; see, e.g., [212, 213] for some of

their fundamental properties, and in particular their connection to the greedy algo-

rithm. We can define a greedy algorithm for finding a connected forcing set of a graph

G = (V,E) as follows:

Set R = V ;

While there exists v ∈ R with R\{v} being a connected forcing set,

Replace R by R\{v}.

Clearly, this algorithm always produces a connected forcing set. The next results show

that in some graphs, the greedy algorithm produces a minimum connected forcing set,
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and that the collection of all connected forcing sets can be used to define greedoids

and matroids.

Theorem 7.1. Let T be the family of trees, T ′ be the family of trees whose pendant

paths have length one, and B be the family of block graphs with no pendant paths.

1. Let G = (V,E) ∈ T ∪ B, G 6' Pn, and let I be the set of all connected forcing

sets of G. Then (V,P(V )\I) is a greedoid.

2. Let G = (V,E) ∈ T ′ ∪ B, G 6' Pn, and let I be the set of all connected forcing

sets of G. Then (V,P(V )\I) is a matroid.

Proof. Suppose G is a tree different from a path and let A ⊂ V . If a ∈ A\(R2 ∪R3),

then a belongs to a pendant path of G. Let X1(A) be the set containing, for all

a ∈ A\(R2 ∪ R3), the vertices of the pendant path containing a which lie between a

and the base of that pendant path, including a and the base of the path. Let X2(A) be

the set containing, for v ∈ R3, all-but-one bases of pendant paths attached to v which

do not belong to pendant paths containing vertices of A. We claim that a minimal

superset S of A which is a connected forcing set of G is the union of R2, R3, X1(A) and

X2(A). First, note that S is clearly a superset of A since A ⊂ R2∪R3∪X1(A); S is also

connected, since the only vertices of G which are not in S are connected parts of some

pendant paths which contain the leaves of those pendant paths, and deleting those

does not disconnect G. S is also forcing, since it contains M, which by Theorem 5.2

is a minimum connected forcing set of G. Now suppose for contradiction that for

some s ∈ S, S\{s} is also a connected forcing set. By Lemma 4.3, R2 ∪ R3 ⊂ S,

so s /∈ R2 ∪ R3. Since each a ∈ A\R2 ∪ R3 is in S, since the vertex attached to the

pendant path containing a is in S, and since S is connected, S must also contain

all vertices in that pendant path which lie between a and the base of the pendant
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path; thus s /∈ X1(A). Finally, by Lemma 4.3, S must contain all-but-one bases of

pendant paths attached to each v ∈ V ; thus, s /∈ X2(A). Therefore, S is minimal.

Since R2, R3 and X1(A) are determined by the structure of G and the given set A,

and the arbitrary choice of bases in X2(A) does not affect the cardinality of X2(A),

every minimal superset S of A which is a connected forcing set of G has the same

cardinality.

Next, suppose G is a block graph which has no pendant paths and is different

from a path and let A ⊂ V . Let X(A) be the set containing, for each block B of G,

one non-cut vertex in B which is not in A, if such a vertex exists. We claim that a

minimal superset S of A which is a connected forcing set of G equals V \X(A). First,

note that by construction, S is a superset of A. S is also connected, since it excludes

only non-cut vertices of G, and S is forcing, since it contains a minimum connected

forcing set of G, namely, R as defined in the proof of Proposition 5.6. Suppose there

is some s ∈ S such that S\{s} is also a connected forcing set of G. By Lemma 4.3,

s is a non-cut vertex of some block B, and s /∈ A. However, since X(A) contains

a vertex from each block which has a non-cut vertex which is not in A, X(A) must

already include a vertex from B. However, by Proposition 4.6, S cannot exclude two

vertices from B. Thus S is minimal, and since the arbitrary choice of vertices in

X(A) does not affect the cardinality of X(A), every minimal superset S of A which

is a connected forcing set of G has the same cardinality.

For any G = (V,E) ∈ T ∪ B, V is clearly a connected forcing set of G. Thus, the

ordered pair (V, I) satisfies

(M1′) V ∈ I

(M3′) For every A ⊂ V , every minimal superset of A in I has the same cardi-
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nality.

Now, it can be verified that (V,P(V )\I) satisfies properties (M1) and (M3) and is

therefore a greedoid.

Suppose G is a tree whose pendant paths have length one, and let J be an arbitrary

connected forcing set of G. Since by Lemma 4.3, M⊂ J , the only vertices of G not

in J are some of the leaves of G. Let J ′ be a superset of J . Since each leaf of G is

adjacent to a vertex in J and since J ⊂ J ′ is a forcing set of G, J ′ is also a connected

forcing set of G.

Suppose G is a block graph with no pendant paths and let J be an arbitrary

connected forcing set of G. By Proposition 5.6, the only vertices of G not in J are

up to one non-cut vertex in each block of G. Let J ′ be a superset of J . Since each

non-cut vertex of G is adjacent to a vertex in J and since J ⊂ J ′ is a forcing set of

G, J ′ is also a connected forcing set of G.

Thus, for any G = (V,E) ∈ T ′ ∪ B, the ordered pair (V, I) satisfies

(M2′) If J ′ ⊃ J ∈ I then J ′ ∈ I.

Moreover, since T ′ ∪ B ⊂ T ∪ B, (V, I) satisfies properties (M1′) and (M3′) as well.

Thus, it can be verified that (V,P(V )\I) satisfies properties (M1), (M2), and (M3)

and is therefore a matroid.

I will now briefly address several (negative) results related to Theorem 7.1.

1. If G = (V,E) is an arbitrary cactus or block graph (or a cactus graph with

no pendant paths) and I is the collection of connected forcing sets of G, then

(V,P(V )\I) is not necessarily a greedoid. As a simple counterexample, let G be

the graph obtained by attaching two pendants to a triangle, each to a different
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vertex. Let S1 be the set containing both vertices of G of degree 3, and one

vertex of degree 1, and S2 be the set containing one vertex of degree 3 and one

vertex of degree 2. S1 and S2 are minimal connected forcing sets, but do not

have the same cardinality.

2. If G = (V,E) is an arbitrary tree and I is the collection of connected forcing

sets of G, then (V,P(V )\I) is not necessarily a matroid, since a superset of a

connected forcing set of G could be disconnected.

3. If G = (V,E) is a graph in T , T ′, or B (defined as in Theorem 7.1) and I is the

collection of zero forcing sets ofG, then (V,P(V )\I) is not necessarily a greedoid

or a matroid, since, for example, not every minimal zero forcing set of a graph

in these families is minimum. This is only true for restricted subfamilies like

star graphs, complete graphs, and cycles. In general, when defining matroids

as in Theorem 7.1, it appears that axiom (M2)′ is harder to satisfy for the

collection of connected forcing sets, since a superset of a connected forcing is

always forcing but not always connected, and (M3)′ is harder to satisfy for the

collection of zero forcing sets, since there are no vertices which are part of every

minimum zero forcing set of a graph.

Even if the collection of connected forcing sets of a graph does not define a greedoid

or a matroid, the greedy algorithm may nevertheless produce a minimum connected

forcing set. I give an example of a family of graphs for which this is the case.

Proposition 7.4. Let G be a cactus graph different from a path, all of whose cycles

are outer blocks. Then, the greedy algorithm produces a minimum connected forcing

set of G.
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Proof. Let Q be defined as in the proof of Proposition 5.7; by a similar argument

as in Proposition 5.7, M∪ Q is a minimum connected forcing set of G. Let S be a

minimal connected forcing set of G. By Lemma 4.3,M⊂ S, and by Proposition 4.6,

S contains at least two vertices of each cycle. Since the cut vertex of each cycle is in

S and S is connected, at least one neighbor of the cut vertex of each cycle must be in

S. However, a single colored neighbor of the cut vertex of each cycle is sufficient to

initiate a forcing chain around the cycle; thus, for each cycle of G, S contains exactly

one neighbor of the cut vertex of the cycle. Moreover, if S contains a vertex v which

does not belong toM or to any cycle of G, then v must belong to a pendant path of

G; however, v and all other vertices from that pendant path (except one which is in

M) can be removed from S, and the resulting set is still connected and forcing. Thus,

S does not contain any vertices outsideM∪Q. Therefore, every minimal connected

forcing set of G is also minimum. By definition, the greedy algorithm produces a

minimal connected forcing set of G; thus, in this case it also produces a minimum

connected forcing set.

The previous results use the fact that in the considered families of graphs, a

minimal connected forcing set is also minimum. Similar properties of graphs have

been investigated in relation to other parameters. For example, well-covered graphs

are graphs in which every minimal vertex cover is also minimum; this property has

many desirable consequences and has been investigated in [214, 215, 216].

Remark 7.1. The greedy algorithm has run time O(n ·F (n)), where F (n) is the time

required for checking whether a vertex set of size n is forcing. In general, such an

approach would take superlinear time, whereas the constructions for finding minimum

connected forcing sets of trees and the graphs described in Propositions 5.6 and 5.7
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can be realized in linear time.

7.3 Zero forcing polynomial

In this section, I introduce the zero forcing and connected forcing polynomials of a

graph, which count the number of distinct zero forcing and connected forcing sets of

a given size. I give closed form expressions for the zero forcing and connected forcing

polynomials of several families of graphs, and present results about the coefficients

and values of these polynomials for general graphs.

Definition 7.1. Let G be a graph. Let z(G; i) and zc(G; i) respectively be the number

of zero forcing sets and the number of connected forcing sets of G with cardinality i.

The zero forcing polynomial of G is defined as

Z(G;x) =
n∑

i=Z(G)

z(G; i)xi.

The connected forcing polynomial of G is defined as

Zc(G;x) =
n∑

i=Zc(G)

zc(G; i)xi.

Below are some basic properties of the coefficients of the zero forcing and connected

forcing polynomials.

Theorem 7.2. Let G = (V,E) be a graph. Then,

1. If G is connected, zc(G;n) = z(G;n) = 1

2. z(G;n− 1) = |{v ⊂ V : d(v) 6= 0}|

3. If G is connected, zc(G;n− 1) = |{v ⊂ V : comp(G\{v}) = comp(G)}|

4. z(G;n− 2) = |{{u, v} ⊂ V : u 6= v, d(u) 6= 0, d(v) 6= 0, N(u)\{v} 6= N(v)\{u}}|
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5. If G is connected, zc(G;n − 2) = |{{u, v} ⊂ V : u 6= v, comp(G\{u, v}) =

comp(G), N(u)\{v} 6= N(v)\{u}}|

6. z(G; 1) = zc(G; 1) =



2 if G ' Pn, n ≥ 2

1 if G ' P1

0 otherwise

7. If G ' G1∪̇G2, Z(G;x) = Z(G1;x)Z(G2;x)

8. z(G; i) = 0 if and only if i < Z(G); zc(G; i) = 0 if and only if i < Zc(G)

9. If G is connected, zc(G; i) ≤ z(G; i) for 1 ≤ i ≤ n

10. Zero is a root of Z(G;x) of multiplicity Z(G) and a root of Zc(G;x) of multi-

plicity Zc(G)

11. Z(G;x) and Zc(G;x) are strictly increasing in [0,∞)

Proof. The numbers of the proofs below correspond to the numbers in the statement

of the theorem. Statements 1., 8., 10., and 11. above follow directly from the

definitions of the zero forcing and connected forcing polynomials.

2. Any non-isolated vertex v has a neighbor which can force v. Thus, each set

which excludes one non-isolated vertex of G is a zero forcing set of size n − 1;

moreover, no set which excludes an isolated vertex is a zero forcing set.

3. If G is connected, any non-cut vertex v has a neighbor which can force v. Thus,

each set which excludes one non-cut vertex of G is a connected forcing set of

size n− 1; moreover, no set which excludes a cut vertex is a connected forcing

set.
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4. Let u, v be two non-isolated vertices of G; if N(u)\{v} 6= N(v)\{u}, there is a

vertex w adjacent to one of u and v, but not the other. Suppose u ∼ w; then, w

can force u and any neighbor of v can force v (since d(v) 6= 0). Thus, any pair of

vertices u, v satisfying these conditions can be excluded from a zero forcing set

of size n − 2. On the other hand, a pair of vertices u, v which does not satisfy

these conditions cannot be excluded from a zero forcing set, since every vertex

which is adjacent to one will be adjacent to the other, and hence no vertex will

be able to force u or v.

5. The proof is similar to the proof of 4. Note that since G is connected, d(u) 6= 0,

d(v) 6= 0; moreover, any pair of vertices which form a separating set cannot be

excluded from any connected forcing set of size n− 2.

6. The only graph with zero forcing number 1 is Pn; thus if G 6' Pn, z(G; 1) =

zc(G; 1) = 0 . If G ' Pn and n ≥ 2, either end of the path is a zero forcing set;

if n = 1, there is a single zero forcing set.

7. A zero forcing set of size i in G consists of a zero forcing set of size i1 in G1 and

a zero forcing set of size i2 = i− i1 in G2. Since zero forcing sets of size i1 and

i2 can be chosen independently in G1 and G2 for each i1 ≥ Z(G1), i2 ≥ Z(G2),

and since z(G1; i1)z(G2; i2) = 0 for each i1 < Z(G1) or i2 < Z(G2), it follows

that z(G; i) =
∑

i1+i2=i
z(G1; i1)z(G2; i2). The left-hand-side of this equation

is the coefficient of xi in Z(G), and since Z(G1;x) =
∑|V (G1)|

i=Z(G1)
z(G1; i)x

i and

Z(G2;x) =
∑|V (G2)|

i=Z(G2)
z(G2; i)x

i, the right-hand-side of the equation is the co-

efficient of xi in Z(G1;x)Z(G2;x). Thus, Z(G1;x)Z(G2;x) and Z(G;x) have

the same coefficients and the same degree, so they are identical.

9. Since every connected forcing set is a zero forcing set, the number of connected



165

forcing sets of size i is at most the number of zero forcing sets of size i.

I now give closed form expressions for the zero forcing and connected forcing polyno-

mials of certain families of graphs.

Proposition 7.5. If n ≥ 2, Z(Kn;x) = Zc(Kn;x) = xn + nxn−1.

Proof. Z(Kn) = Zc(Kn) = n − 1, so z(Kn; i) = zc(Kn; i) = 0 for i < n − 1. By

Theorem 7.2, z(Kn;n − 1) = zc(Kn;n − 1) = n and z(Kn;n) = zc(Kn;n) = 1, so

Z(Kn;x) = Zc(Kn;x) = xn + nxn−1.

Proposition 7.6. If a1 . . . , ak ≥ 2, Z(Ka1,...,ak ;x) = Zc(Ka1,...,ak ;x) = xn + nxn−1 +

(
∑

1≤i<j≤k aiaj)x
n−2.

Proof. Z(Ka1,...,ak) = Zc(Ka1,...,ak) = n − 2, so z(Ka1,...,ak ; i) = zc(Ka1,...,ak ; i) = 0 for

i < n−2. Each minimum zero forcing set and each minimum connected forcing set of

Ka1,...,ak excludes a vertex from two of the parts of Ka1,...,ak ; there are
∑

1≤i<j≤k aiaj

ways to pick such a pair of vertices, so z(Ka1,...,ak ;n − 2) = zc(Ka1,...,ak ;n − 2) =∑
1≤i<j≤k aiaj. By Theorem 7.2, z(Ka1,...,ak ;n − 1) = zc(Ka1,...,ak ;n − 1) = n and

z(Ka1,...,ak ;n) = zc(Ka1,...,ak ;n) = 1, so Z(Ka1,...,ak ;x) = Zc(Ka1,...,ak ;x) = xn+nxn−1+

(
∑

1≤i<j≤k aiaj)x
n−2.

Proposition 7.7. If n ≥ 2, Zc(Pn;x) = 2x+
∑n

i=2(n− i+ 1)xi.

Proof. Either endpoint of Pn is a connected forcing set of size 1, so zc(G; 1) = 2.

Label the vertices of Pn according to the order they are visited in depth-first-search

starting from one of the endpoints. Let R be a connected forcing set of size i; there

are n − (i − 1) ways to choose the vertex in R with the smallest label j. This

choice uniquely determines R, since the other i− 1 vertices in R must be the vertices

D 

D 

D 
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with labels j + 1, . . . , j + (i − 1). Thus, zc(Pn; i) = n − i + 1 for 2 ≤ i ≤ n, so

Zc(Pn;x) = 2x+
∑n

i=2(n− i+ 1)xi.

Proposition 7.8. If n ≥ 3, Zc(Cn;x) = xn +
∑n−1

i=2 nx
i.

Proof. Zc(Cn) = 2, so zc(Cn; 1) = 0; also, clearly, zc(Cn;n) = 1. Label the vertices

of Cn according to the order they are visited in depth-first-search starting from some

arbitrary vertex. Let R be a connected forcing set of size i; there are n ways to choose

the vertex in R with label j, such that all remaining i − 1 vertices in R have labels

j + 1 mod n, . . . , j + (i− 1) mod n. This choice of the vertex with label j uniquely

determines R, so zc(Cn; i) = n for 2 ≤ i ≤ n−1. Thus, Zc(Cn;x) = xn+
∑n−1

i=2 nx
i.

Proposition 7.9. For n ≥ 1, Z(Pn, x) =
∑n

i=1(
(
n
i

)
−
(
n−i−1

i

)
)xi.

Proof. The sets of size i which are not forcing are those which do not contain an

end-vertex of the path and do not contain adjacent vertices. To count the number

of non-forcing sets of size i, we can use the following argument: there are n − i

indistinguishable uncolored vertices to be placed in the i + 1 positions around the

colored vertices, where each position must receive at least one uncolored vertex (in

order for there not to be any adjacent colored vertices and for the end-vertices to be

uncolored). There are
(
(n−i)−1
(i+1)−1

)
ways to choose the positions of the uncolored vertices.

Thus, there are
(
n
i

)
−
(
n−i−1

i

)
zero forcing sets of size i. Note that when i ≥ dn

2
e,

by the Pigeonhole Principle, one of the end-vertices or two adjacent vertices must be

colored; this is resolved by the convention that
(
a
b

)
= 0 when a < b, and the fact that

n− i− 1 < i if and only if i ≥ dn
2
e. Thus, Z(Pn, x) =

∑n
i=1(
(
n
i

)
−
(
n−i−1

i

)
)xi.

Proposition 7.10. For n ≥ 3, Z(Cn, x) =
∑n

i=2(
(
n
i

)
− n

i

(
n−i−1
i−1

)
)xi.

D 

D 

D 
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Proof. The sets of size i which are not forcing are those which do not contain adjacent

vertices. To count the number of non-forcing sets of size i, we can use the following

argument: first, select a representative vertex v of Cn and color it; this can be done

in n ways. There are n − i indistinguishable uncolored vertices to be placed in the

i positions around the remaining i − 1 colored vertices, where each position must

receive at least one uncolored vertex (in order for there not to be any adjacent colored

vertices). There are
(
n−i−1
i−1

)
ways to choose the positions of the uncolored vertices.

This can be done for each of the n choices of a representative vertex v; however, since

we are interested in sets without a representative vertex, and since each set has been

counted i times with a different representative vertex, we must divide this quantity

by i. Thus, there are n
i

(
n−i−1
i−1

)
ways to choose i vertices from Cn so that no two are

adjacent. It follows that there are
(
n
i

)
− n

i

(
n−i−1
i−1

)
zero forcing sets of size i. Note

that when i ≥ bn
2
c + 1, by the Pigeonhole Principle, two adjacent vertices must be

colored; this is resolved by the convention that
(
a
b

)
= 0 when a < b, and the fact that

n−i−1 < i−1 if and only if i ≥ bn
2
c+1. Thus, Z(Cn, x) =

∑n
i=2(
(
n
i

)
−n

i

(
n−i−1
i−1

)
)xi.

The following notation will be used to characterize the connected forcing polynomials

of trees.

Definition 7.2. Let S = S(a; b1, . . . , bk) be the set of k-tuples of positive integers

whose sum is a and whose ith element is at most bi. The cardinality of S will be

denoted by s(a; b1, . . . , bk), and the elements of S will be denoted by S(a; b1, . . . , bk; 1),

. . . , S(a; b1, . . . , bk; s), where s = s(a; b1, . . . , bk). For 1 ≤ j ≤ k, S(a; b1, . . . , bk; i; j)

will denote the jth element of the k-tuple S(a; b1, . . . , bk; i). When a and b1, . . . , bk

are clear from the context, we will write for short Si = S(a; b1, . . . , bk; i) and Si,j =

S(a; b1, . . . , bk; i; j) for 1 ≤ i ≤ s, 1 ≤ j ≤ k. Define S ′ = S ′(a; b1, . . . , bk) to be the
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set of k-tuples of nonnegative integers whose sum is a and whose ith element is at

most bi, and define s′, S ′, and S ′i,j analogously to s, S, and Si,j.

As an example of Definition 7.2, consider the set S(5; 2, 2, 6). The cardinality of

this set is 4, and its elements are (1, 1, 3), (1, 2, 2), (2, 1, 2), (2, 2, 1). If S1 = (1, 1, 3),

then S11 = 1, S12 = 1, and S11 = 3. Similarly, S ′(5; 2, 2, 6) = {(0, 0, 5), (0, 1, 4),

(1, 0, 4), (1, 1, 3), (2, 0, 3), (0, 2, 3), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

In addition to their integer partition definitions, there are several ways to interpret

the sets S(a; b1, . . . , bk) and S ′(a; b1, . . . , bk). For example, S also represents the ways

to place a identical balls into k distinct boxes, so that the ith box contains at least

one and at most bi balls; S is also the set of feasible solutions to the integer program

{min 0 :
∑k

i=1 xi = a, x1 ≤ b1, . . . , xk ≤ bk, x ∈ N}. The latter also gives a way to

obtain all the elements of S, i.e., solving the integer program while adding previous

solutions as constraints. The elements of S and S ′ can also be found by a recursive

combinatorial algorithm, e.g., using dynamic programming. Note that the sets S(a+

k; b1 + 1, . . . , bk + 1) and S ′(a; b1, . . . , bk) are equivalent, in the sense that s′ = s and

S ′i,j = Si,j−1. This can easily be seen from the context of distributing balls to boxes:

in S(a+ k; b1 + 1, . . . , bk + 1) every box must contain a ball, so k of the balls can be

placed in the boxes right away, whereupon the capacity of box i becomes bi; then,

the remaining a balls can be distributed to the boxes without a lower bound, which

is exactly the process described by S ′(a; b1, . . . , bk).

I now use Definition 7.2 to give characterization of the connected forcing polyno-

mial of a special class of trees (called spiders or generalized stars), which will then

be used to characterize the connected forcing polynomial of trees.

Proposition 7.11. Let G be a graph composed of k pendant paths attached to a vertex
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v, where the ith pendant path has bi vertices, 1 ≤ i ≤ k. Then,

Zc(G, x) =
n∑
j=1

(
s(j − 1; b1, . . . , bk) +

k∑
`=1

s(j − 1; b1, . . . b`−1, b`+1, . . . , bk)

)
xj.

Proof. By Lemma 4.3 and Theorem 5.2, every connected set of vertices which contains

v and all-but-one neighbors of v is a connected forcing set of G. Let p1, . . . , pk be the

vertex sets of the pendant paths of G, where |pi| = bi. Then, the set of connected

forcing sets of G of size j can be partitioned into the connected forcing sets of G of

size j where every neighbor of v is colored, and the connected forcing sets of G of size

j where the neighbor of v in pi is not colored (and hence also all other vertices in pi

are not colored), 1 ≤ i ≤ k.

The connected forcing sets of G of size j where every neighbor of v is colored

can be counted by s(j − 1; b1, . . . , bk), since v must be colored, which leaves j −

1 of the remaining vertices of G to be chosen, where at least one and at most bi

vertices are chosen from pi, 1 ≤ i ≤ k. The connected forcing sets of G of size

j where no vertices of p` are chosen for some ` ∈ {1, . . . , k} can be counted by

s(j − 1; b1, . . . b`−1, b`+1, . . . , bk), since v must be colored, which leaves j − 1 of the

remaining vertices of G to be chosen, where at least one and at most bi vertices are

chosen from pi, 1 ≤ i ≤ k, i 6= `. Thus, the total number of connected forcing sets of

G of size j is

zc(G; j) = s(j − 1; b1, . . . , bk) +
k∑
`=1

s(j − 1; b1, . . . b`−1, b`+1, . . . , bk).

By the convention that s(a; b1, . . . , bk) = 0 whenever a < k or a >
∑k

i=1 bi, we

conclude that the connected forcing polynomial of G is as claimed.

Using the previous results, I now characterize the connected forcing polynomials of

trees.

D 
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Theorem 7.3. Let T be a tree different from a path. Let p1, . . . , pk be the vertex sets

of the pendant paths in T . Let R1
3 be the set of vertices to which a single pendant

path is attached, and R2
3 = {v1 . . . , vq} be the set of vertices to which two or more

pendant paths are attached. For 1 ≤ i ≤ q, let Ij = {i : pi is a pendant path attached

to vj ∈ R2
3}; also, let Iq+1 = {i : pi is a pendant path attached to some vertex in R1

3}.

For 1 ≤ j ≤ q + 1, let Pj =
⋃
i∈Ij pi. Then, Zc(T ;x) is equal to

n∑
d=1

(
s′∑
i=1

((
q∏
j=1

s(|Ij| − 1 + S ′i,j; [|p`| : ` ∈ Ij])

)
s′(S ′i,q+1; [|p`| : ` ∈ Iq+1])

))
xd,

where in the second sum, s′ = s′(d − |M|; |P1| − |I1| + 1, . . . , |Pq| − |Iq| + 1, |Pq+1|),

and for 1 ≤ i ≤ q+ 1, S ′i,j = S ′(d− |M|; |P1| − |I1|+ 1, . . . , |Pq| − |Iq|+ 1, |Pq+1|; i; j),

and where [|p`| : ` ∈ Ij] stands for the sequence of elements |p`| for all ` ∈ Ij.

Proof. By Lemma 4.3 and Theorem 5.2, every connected set of vertices which contains

R2∪R3 and all-but-one bases of pendant paths indexed by Ij, 1 ≤ j ≤ q, is a connected

forcing set of T . Let R be a connected forcing set of T of size d. Then, |R2 ∪ R3|

of the vertices of R are taken up by the vertices in R2 ∪ R3, and at least |Ij| − 1 of

the vertices of R are taken up by vertices in Pj for 1 ≤ j ≤ q. Thus, the remaining

d−|R2∪R3|− (|I1|−1)− . . .− (|Iq|−1) = d−|R2∪R3|− |L| = d−|M| vertices of R

can be taken up by any of the sets Pj, 1 ≤ j ≤ q+1, as long as the number of vertices

added to Pj does not exceed |Pj| − (|Ij| − 1) for 1 ≤ j ≤ q and does not exceed |Pj|

for j = q + 1. By Definition 7.2, the possible assignments of vertices according to

these conditions are described by

S ′(d− |M|; |P1| − |I1|+ 1, . . . , |Pq| − |Iq|+ 1, |Pq+1|) = {S ′1, . . . , S ′s′}.

Thus, the set of connected forcing sets of T of size d can be partitioned into s′

parts, where the ith part consists of the connected forcing sets of G of size d where
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|Ij| − 1 + S ′i,j of the colored vertices are in Pj, 1 ≤ j ≤ q, and S ′i,q+1 of the colored

vertices are in Pq+1. Moreover, when |Ij|−1+S ′i,j vertices are allotted to Pj, 1 ≤ j ≤ q,

they must be distributed among the pendant paths indexed by Ij in such a way that

all or all-but-one of them have at least one colored vertex, and so that the pendant

path with vertex set p` does not receive more than |p`| vertices, for any ` ∈ Ij.

Similarly, when S ′i,q+1 vertices are allotted to Pq+1, they can be distributed among

the pendant paths indexed by Iq+1 without a lower bound, as long as path p` does

not receive more than |p`| vertices, for any ` ∈ Iq+1.

Finally, when some number of colored vertices is assigned to the sets P1, . . . , Pq+1,

one can distribute the colored vertices allotted to Pj to the specific pendant paths in

Pj independently for each Pj. Thus, the number of connected forcing sets of G of size d

where |Ij|−1+Si,j of the colored vertices are in Pj, 1 ≤ j ≤ q, and S ′i,q+1 of the colored

vertices are in Pq+1, is equal to the product of the number of ways to assign |Ij|−1+Si,j

and S ′i,q+1 colored vertices, respectively, to the sets Pj, 1 ≤ j ≤ q and Pq+1. In turn, by

a similar argument as in Proposition 7.11, the number of ways to assign |Ij|− 1 +S ′i,j

vertices to Pj, 1 ≤ j ≤ q, is s(|Ij| − 1 + S ′i,j; [|p`| : ` ∈ Ij]), where [|p`| : ` ∈ Ij] stands

for the sequence of elements |p`| for all ` ∈ Ij. Similarly, the number of ways to assign

S ′i,q+1 vertices to Pq+1 is s′(S ′i,q+1; [|p`| : ` ∈ Iq+1]). Thus, multiplying for 1 ≤ j ≤ q+1

and summing over 1 ≤ i ≤ s′ = s′(d− |M|; |P1| − |I1|+ 1, . . . , |Pq| − |Iq|+ 1, |Pq+1|),

we conclude that the number of connected forcing sets of G of size d is

zc(T ; d) =
s′∑
i=1

((
q∏
j=1

s(|Ij| − 1 + S ′i,j; [|p`| : ` ∈ Ij])

)
s′(S ′i,q+1; [|p`| : ` ∈ Iq+1])

)
.

By the conventions that s′(0; b1, . . . , bk) = 1, s′(a; b1, . . . , bk) = 0 whenever a >∑k
i=1 bi, and s(a; b1, . . . , bk) = 0 whenever a < k or a >

∑k
i=1 bi, we conclude that the
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connected forcing polynomial of T is as claimed.

Example 7.1. In this example, I will apply Theorem 7.3 to enumerate the connected

forcing sets of size d = 8 for the tree T shown in Figure 7.1. The pendant paths of T

p1

v1

p2 p4 p5

p6p3

v2

Figure 7.1 : A tree T for which zc(T ; 8) is computed in Example 7.1.

are labeled p1, . . . , p6. First, note that Zc(T ) = |M(T )| = 6 and R2
3 = {v1, v2}. Thus,

I1 = {1, 2}, I2 = {5, 6}, I3 = {3, 4}, and P1 = p1 ∪ p2, P2 = p5 ∪ p6, P3 = p3 ∪ p4.

The total number of vertices in these sets is |P1| = 2, |P2| = 3, |P3| = 3. Using these

values, we compute

S ′(d− |M|; |P1| − |I1|+ 1, |P2| − |I2|+ 1, |P3|) = S ′(2; 1, 2, 3) =

= {(1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2)} = {S ′1, S ′2, S ′3, S ′4, S ′5}

D 
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We now apply the formula for zc(T ; d) given in Theorem 7.3.

zc(T ; d) =
s′∑
i=1

((
q∏
j=1

s(|Ij| − 1 + S ′i,j; [|p`| : ` ∈ Ij])

)
s′(S ′i,q+1; [|p`| : ` ∈ Iq+1])

)

zc(T ; 8) =
5∑
i=1

(
s(2− 1 + S ′i,1; |p1|, |p2|)s(2− 1 + S ′i,2; |p5|, |p6|)

)
s′(S ′i,3; |p3|, |p4|)

=
5∑
i=1

s(1 + S ′i,1; 1, 1)s(1 + S ′i,2; 1, 2)s′(S ′i,3; 2, 1)

= s(2; 1, 1)s(2; 2, 1)s′(0; 1, 2) + s(1; 1, 1)s(3; 2, 1)s′(0; 1, 2) +

s(2; 1, 1)s(1; 2, 1)s′(1; 1, 2) + s(1; 1, 1)s(2; 2, 1)s′(1; 1, 2) +

s(1; 1, 1)s(1; 2, 1)s′(2; 1, 2)

= 1 · 2 · 1 + 2 · 1 · 1 + 1 · 2 · 2 + 2 · 2 · 2 + 2 · 2 · 2 = 24

Thus, there are 24 different connected forcing sets of size 8. These are shown in

Figure 7.2, where the panel showing the connected forcing sets corresponding to S ′1,

S ′2, S
′
3, S

′
4, and S ′5, respectively, is the left-top, left-bottom, middle-left, middle-right,

and right panel.

Figure 7.2 : All connected forcing sets of size 8 for the tree T .

The number of connected forcing sets of T of size d, Zc(T ) = 6 ≤ d ≤ 12 = n, (and

.tft1) ~ ATTI)AJTI) AJTI)Aft1) 

~ ~ Aft1)AJTI) AJTI)Aft1) 

.1ft1) ~ ATTI)Aft?) AJTI)ATTI) 

Aft1) ~ Aft1)AJTI) AJTI)ATTI) 
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hence Zc(T ;x)) can be found in a similar way.

I now present several structural results about the coefficients of the zero forcing

and connected forcing polynomials. I begin with the following observation which

implies that both bounds in 1 ≤ zc(G;Zc(G)) ≤
(

n
Zc(G)

)
are tight (the latter is tight,

e.g., for complete graphs).

Observation 7.1. A graph can have a unique minimum connected forcing set.

Proof. The graph in Figure 7.3 has a unique minimum connected forcing set.

Figure 7.3 : A graph with a unique minimum connected forcing set, indicated by the
colored vertices.

The same does not hold for zero forcing, since reversing the forcing chains associated

with a zero forcing set produces another zero forcing set. Thus, a (non-empty) graph

cannot have a unique minimum zero forcing set. I now strengthen the above obser-

vation by showing that only a minimum (and maximum) connected forcing set can

be unique.

Theorem 7.4. zc(G; i) = 1 only if i = Zc(G) or i = n.

Proof. Suppose G has a unique connected forcing set R of size i, where Zc(G) < i < n.

Let R′ be a connected forcing set of size i − 1. Then R′ ⊂ R, since otherwise R′

together with any neighbor of R′ forms a connected forcing set of size i different from

R. Let {v} = R\R′. Then N(R′) = {v}, since otherwise R′ together with either of

its two or more neighbors would form a connected forcing set of size i. Moreover, for

D 
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all u ∈ N(R), N(u) ∩ R = {v}, since if some u ∈ N(R) was adjacent to a vertex in

R other than v, v would not be the only vertex in N(R′). If R′ consists of a single

vertex, then G is a path, and by Proposition 7.7, there is no unique connected forcing

set of size i < n; thus, R′ has at least two vertices. Let w be a non-cut vertex of G[R]

different from v, and let u be a vertex in N(R). We claim R\{w}∪{u} is a connected

forcing set of G. This set is connected by construction, and it is forcing since w can

be forced in the first timestep by any of its neighbors in R′. This contradicts R being

the unique connected forcing set of size i.

The last result of this section concerns the unimodality of the zero forcing polynomial.

I first recall a well-known theorem due to Hall [217]. A matching of G = (V,E) is a

set M ⊂ E such that no two edges in M have a common endpoint. A matching M

saturates a vertex v, if v is an endpoint of some edge in M .

Theorem 7.5 (Hall’s Theorem [217]). Let G be a bipartite graph with parts X and

Y . G has a matching that saturates every vertex in X if and only if for all S ⊆ X,

|S| ≤ |N(S)|.

Theorem 7.6. Let G = (V,E) be a graph. Then, z(G; i) ≤ z(G; i+ 1) for 1 ≤ i < n
2
.

Proof. For every zero forcing set R of size i and every v ∈ V \R, R ∪ {v} is a zero

forcing set of cardinality i + 1. We will now show that to each zero forcing set of

size i, 1 ≤ i < n
2
, there corresponds a unique zero forcing set of size i + 1. Let H

be a bipartite graph with parts X and Y , where the vertices of X are zero forcing

sets of G of size i, and the vertices of Y are all subsets of V of size i + 1; a vertex

x ∈ X is adjacent to a vertex y ∈ Y in H whenever x ⊂ y in G. For each x ∈ X,

there are n − i vertices not in x; thus, d(x;H) = n − i. Since a set of size i + 1 has

i + 1 subsets of size i, it follows that for each y ∈ Y , d(y;H) ≤ i + 1. Suppose for

D 
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contradiction that there exists a set S ⊂ X such that |S| > |N(S)|. Since each vertex

in S has n − i neighbors and since |S| > |N(S)|, by the Pigeonhole Principle, some

vertex v ∈ N(S) must have more than n− i neighbors. Thus, i+ 1 ≥ d(v;H) > n− i,

whence it follows that i ≥ n
2
; this contradicts the assumption that i < n

2
. Thus, for

every S ⊆ X, |S| ≤ |N(S)|; by Theorem 7.6, H has a matching that saturates all

vertices of X. Thus, to each zero forcing set of size i, there corresponds a unique zero

forcing set of size i+ 1. We conclude that z(G; i) ≤ z(G; i+ 1) for 1 ≤ i < n
2
.

D 
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Chapter 8

Conclusion

In the first part of this thesis, I presented new efficient methods to compute the

chromatic and flow polynomials of several families of graphs, including outerplanar

graphs and generalized vertex joins of trees, cliques, and cycles. I also showed that

in these graphs, computation based on the proposed methods strongly outperforms a

general-purpose solver. If a graph contains one or more subgraphs whose chromatic or

flow polynomials can be found efficiently, locating those subgraphs and modifying the

deletion-contraction algorithm so that they appear as components in some step of the

recursion can speed up the computation significantly. Thus, the proposed algorithms

could be used in this capacity to improve the performance of general-purpose solvers.

As discussed in Chapter 1, the chromatic and flow polynomials have applications in

statistical physics, combinatorics, and theoretical computer science; thus, my results

may also be applicable to the Traveling Salesman Problem and the anti-ferromagnetic

Potts model — either directly on the graphs I consider, or on larger graphs which

contain them as subgraphs. The novel theoretical results presented in this part of the

thesis have been published in [218].

Because of the difficulty in computing the chromatic and flow polynomials of

general graphs, research in this area has often focused on developing specialized algo-

rithms for graphs with some exploitable structure. In this line of research, there are

a number of simple families of graphs whose chromatic and flow polynomials are still

being sought. Of note is the problem of efficiently computing the chromatic polyno-
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mial of an a × b grid graph, which is largely still unsolved (see [219, 220] for some

results in this direction). Grid graphs have arbitrarily large treewidth, which renders

bounded-treewidth algorithms like the ones discussed in Chapter 1 inapplicable. In

the words of Read and Tutte, “that is an easy question to ask, but without a doubt a

fiendishly difficult one to answer” [32]. The generalized vertex join operation provides

a natural extension to all families of graphs; thus, future work could also focus on

finding closed formulas for the chromatic polynomials of generalized vertex joins of

various families of graphs whose chromatic polynomials are already known.

In the second part of this thesis, I explored several facets of the connected zero

forcing problem. First, I presented a variety of structural results about connected

forcing, such as the effects of vertex and edge operations on the connected forcing

number, the relations between the connected forcing number and other graph param-

eters, and the computational complexity of connected forcing. I also gave efficient al-

gorithms for computing the connected forcing numbers of different families of graphs,

including certain product graphs, trees, unicyclic graphs, and cactus graphs with no

pendant paths. In this direction, it would be useful to develop a general framework

for computing the connected forcing numbers of graphs with cut vertices in terms of

the connected forcing numbers of their blocks. Such a framework has been developed

for the zero forcing number (cf. [105]), but the same approach does not carry over

to connected forcing due to the unboundedness of the connected forcing spread of

vertices and edges. Some of the novel theoretical results presented in this part of the

thesis appear in [221, 222].

In the next part of the thesis, I characterized graphs with connected forcing num-

bers 1, 2, n − 1, and n − 2. In doing so, I employed novel combinatorial and graph

theoretic techniques, which differ from the linear algebraic approaches typically used



179

in deriving similar characterizations. The results presented in this part of the the-

sis appear in [223]. A problem of interest is to obtain an analogous classification of

graphs with connected forcing number or zero forcing number 3 and n − 3; some of

the techniques developed in Chapter 6 could be useful toward that end. As part of

my proof of Theorem 6.6, I introduced the notion of a connected forcing set which

is required to contain a certain subset of the vertices of a graph (Definition 6.2). I

term this notion restrained connected forcing ; the notion of restrained zero forcing

(and restrained power domination) can be defined analogously, i.e., a zero forcing set

(power dominating set) of G = (V,E) restrained by S ⊂ V is a zero forcing set (power

dominating set) which contains S. These notions could lead to improved modeling

of some of the physical phenomena related to the forcing process. For example, if an

electrical power network is expanded by additional substations and transmission lines,

the electrical company would likely keep the existing PMUs and the non-portable sup-

porting infrastructure at their former locations. Thus, it would be of interest to find

a minimum power dominating set of the expanded network restrained by the set of

locations of the existing PMUs.

Finally, I investigated several enumeration problems associated with zero forcing

and connected forcing. I presented results regarding the cardinality and other prop-

erties of the set of minimum connected forcing sets of a graph G, the set of connected

forcing sets of G which have a given size, and the set of all connected forcing sets of G

(as well as analogous results for zero forcing). In particular, I identified some families

of graphs for which the greedy algorithm produces minimum connected forcing sets,

and showed that collections of connected forcing sets can be used to define greedoids

and matroids. I also defined the zero forcing and connected forcing polynomials as

the generating functions of the zero forcing and connected forcing sets of a graph, and
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studied some of their properties like unimodality and multiplicativity with respect to

connected components. I characterized the zero forcing and connected forcing poly-

nomials of several families of graphs including cycles, complete graphs, and trees.

Future work in this area could focus on studying the roots and coefficients of the

zero forcing and connected forcing polynomials, and relating them to other graph

polynomials. It would also be useful to derive recursive formulas for the connected

forcing and zero forcing polynomials — akin to the deletion-contraction formula for

the chromatic polynomial — which would aid in their computation for general graphs.
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[15] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis. Cambridge

University Press, 2003.

[16] T. Hubai, “The chromatic polynomial,” Master’s thesis, Eötvös Loránd Uni-
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