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ABSTRACT

Protein Degradation in Synthetic Gene Circuits

by

Erin O’Brien Gilbert

Synthetic gene circuits are built with mathematical predictions and are further char-
acterized experimentally. Most synthetic circuits utilize degradation tags to normalize
and speed up the rate of degradation of circuit components. Despite their widespread
use, the effect of degradation tags on circuit dynamics has not been well studied. This
work aims to characterize the degradation rate of the ssrA degradation tag variants
on a single substrate level and determine their role in overall network dynamics within
a synthetic gene circuit at the single cell resolution. Small differences in the protein
degradations rates indicating that the parameter space for the degradation tags is
critical for achieving desired circuit dynamics. Mathematically and experimentally,
this work demonstrates varying the rate of degradation can ultimately dictate the
output oscillations for the circuit dynamics. The ultimate goal of this work is to
create a better understanding of the role degradation plays in synthetic gene circuit

dynamics.
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The Goodwin oscillator. (A) This oscillator is composed of a

single gene that represses itself. (B) Mathematical simulations

predicted short, noisy oscillations. (C) In vivo implementation of the
circuit (D) demonstrated predicted noisy behavior with longer

oscillations. Figure adapted from [1] with permission. . . . . .. .. 5
The Repressilator oscillator. (A) The Repressilator is composed

of a ring of three repressors, Lacl, TetR, and cI. (B) In vivo
implementation of the repressilator agreed with mathematical

predictions and produced variable amplitude oscillations in a portion

of the cell population [2]. Reprinted with permission. . . . . . . . .. 8
Positive feedback influences oscillator behavior. (A) This

oscillator has amplifed negative feedback topology. (B) In wvivo
implementation of this oscillator which (C-D) produced damped
oscillations which was accurately predicted by mathematical

simulations. Figure adapted from [1] with permission. . . . . .. .. 11
The Fussenegger oscillator. (A) The general in vivo

implementation of the Fussenegger oscillator and the (B) network
interactions of the synthetic gene oscillator. (C) Undamped

oscillations were archived through a negative feedback loop and

matched mathematical prediction. (D) A low frequency version of

the oscillator still produced undamped oscillations. [3]. Reprinted

with permission. . . . . . . ... 13
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The Metabolator oscillator. (A) The general network interaction
of the metabolator oscillator flux, (B) the general metabolic
interactions of the synthetic gene oscillator, and (C-E) the resulting
single cell trajectories of observed cell cycle independent oscillations.
Figured adapted from [4] with permission. . . . ... ... ... ...
The dual feedback oscillator. (A) The general in vivo
implementation of the dual feedback oscillator. (B) Single cell
trajectories of the dual feedback oscillator experimental data. Figure
adapted from [5] with permission. . . . ... ... ... ...
ssrA degradation variants. Varying the last three amino acids of
the ssrA degradation tag has large effects on fluorescence decay.
Changing these amino acids decreases the binding ability of the
tagged fluorescent protein to ClpX, resulting in a sustained
fluorescence signal. GFP tagged with the ssrA variants, AAV and
ASV, is significantly more stable that GFP tagged with the wildtype
sequence of ssrA. Figure adaptred from [6] with permission. . . . . .
The structure of ClpX. (A) The protein structure of the
assembled hexomeric ring of ClpX. (B) Four of the six monomers are
loadable (L) subunits, where tagged substrates can bind and two of
the monomers are unloadable (U), providing a rigid body to support
degradation activity. (C) Schematic of the orientation of the loadable
and unloadable monomers in the hexomeric ring. [7]. Reprinted with
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Mechanism of ssrA target degradation by the ClpXP

degradation machinery. When a stalled ribosome has a peptide, it

is tagged on the C-terminus by the ssrA protein sequence. The

stalled ribosome signals for the ssrtA mRNA, and the ribosome reads

the tag sequence, which is subsequently added to the peptide. The

tagged protein is released by the ribosome and is targeted by the

ClpX subunit. The ClpX subunit then denatures the peptide

sequence and translocates the peptide into the ClpP subunit. The

ClpP subunit degrades the peptide [8]. . . . . . ... ... ... ... 26
ClpX mechanism of ssrA and SspB recognition. When a

tagged substrate is released from the ribosome, SspB recognizes the

sstA tag and binds to the first six amino acids. SspB aids in

substrate binding to ClpX by anchoring to ClpX. However, if the tag

slips, SspB remains bound to the tagged substrate and attempts

another binding event. After degradation begins, SspB is forced off as

the substrate translocated into ClpP [9]. Reprinted with permission. 27

Regulation of promoters through transcriptional activators
and repressors. (A) Transcriptional activators initiate
transcription of a gene once bound to the promoter. In the absence of
a transcriptional activator the gene is silenced, or off. (B)
Transcriptional repressors inhibit transcription of a gene by binding
to the promoter region. The removal of the transcriptional repressor

allows the promoter to become transcriptionally active. . . . . . . .. 37
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2.4

Schematic of steps involved in protein production. In order
for a mature protein to be produced, the gene must first be
transcribed and the mRNA must then be translated. Each of these
processes is comprised of hundreds or thousands of reactions that
must occur as the polymerase or ribosome progress through the

sequence of nucleotides. In addition, once translation has been

completed, the nascent protein must then fold and, often, oligomerize.

A genetic circuit diagram of direct negative feedback. The
promoter (arrow) regulates the expression of a gene encoding a
transcriptional repressor (red box). The transcription factor acts to
down-regulate its own expression (blunt-end line). . . . . . . . .. ..
Behavior of a negative feedback loop. (A) Here the mRNA
dynamics are explicitly modeled, as in Eqgs. (2.19) and (2.20). The
protein (red curve) and mRNA (blue curve) concentrations settle
onto a fixed point after a transient. (B) The trajectories of Egs.
(2.19) and (2.20) in m-x space. The imaginary components of the
eigenvalues of the stable fixed point create damped oscillations as the
trajectories spiral into the fixed point. Here we show 6 representative
trajectories in blue. The orange and pink curves are the null-clines of
Eqgs. (2.19) and (2.20), respectively. (C) When a third dimension is
added, as in Eqs. (2.21)-(2.23), stable oscillations are achieved. Here,
the blue, green and red curves are the values of =, y and z,

respectively, as a function of time. . . . . . . . .. ...
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The delayed negative feedback oscillator. Stricker et al.
predicted computationally, and proved experimentally, that a circuit
containing a single gene repressing itself was sufficient to produce
oscillations [5]. (A) Circuit diagram of the delayed negative feedback
oscillator. There are two copies of the LlacO-1 promoter [10], one
driving lacl and the other driving the gene encoding the green
flourescent protein (gfp). In the absence of IPTG, the product of the
lacl gene, Lacl, down-regulates the promoters. In addition, both
genes were ssrA-tagged in order to increase the degradation rates of
the resulting proteins [6]. (B) The level of flourescent protein in
single cells as a function of time (red indicates high fluorescence while
blue indicates low fluorescence). Each horizontal time series
represents the trajectory of a single cell. (C) The origins of delayed
negative feedback oscillations are apparent in this simulation. Here
there is a small delay between the time that the mRNA begin to be
formed and the time at which functional Lacl tetramer are produced.
Once enough Lacl has been made, transcription shuts down and the
mRNA levels begin to drop. The resulting burst in repressor
eventually decays through proteolysis. Once the Lacl concentration
falls below the threshold level, another burst of mRNA occurs,
starting the process anew. Figure adapted from Stricker et al.

(2008) [B]. - . . 95
Negative feedback loops can be made up of any number of
genes. Shown are the topologically distinct negative cyclic feedback
loops containing up to 5 transcription factors. Red and green circles
indicate transcriptional repressors and activators, respectively. The
blunt end lines and arrows represent repression and activation,

respectively. . . . . .o 58
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The model for the repressilator circuit oscillates in a specific
range of parameters. (A) The circuit consists of three genes each
of which represses a specific promoter that controls expression of one
of the other genes. (B) A Hopf bifurcation occurs at approximately
f =0.07. (C) For low values of 3, i.e. to the left of the bifurcation
point, the system undergoes damped oscillations. (D) The
repressilator exhibits stable limit cycle oscillations when [ is large. . .
The synthetic oscillator construction by Atkinson et al. [11].
(A) Circuit schematic of the circuit. The activator (encoded by the
glnG gene) up-regulates both proteins, while the repressor (encoded
by the lacl gene only down-regulates the activator. (B) The
tri-phasic regulation functions used by Atkinson et al. are decent
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2.10 The dual-feedback oscillator constructed by Stricker et
al. [5]. (A) Circuit diagram of the oscillator. Negative feedback is
provided by Lacl while positive feedback is provided by AraC. Both
genes are regulated by a hybrid promoter that responds to both
transcription factors. (B) Null-clines for the model system, Eqgs.
(2.43) and (2.44). Here, the green line is the nullcline for the
activator equation and the red line is the nullcline for the repressor.
A solid line indicates stability while a dashed line indicates
instability. When the degradation rates of the two proteins are the
same the intersection of the two nullclines produces a stable fixed
point. (C) However, if the degradation rate of the activator is 5
times greater than that of the repressor, the two nullclines intersect
at an unstable fixed point — resulting in limit cycle oscillations. (D)
Experimentally measured normalized period of the oscillator (red
squares) and normalized induction strength of the promoter (in the
absence of feedback, black circles) as a function of IPTG.
Interestingly, the period of the oscillator appears to be proportional
to the strength of the promoter at a given concentration of IPTG.

Figure adapted from Stricker et al. (2008) [5].. . . ... ... . ... 68
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The population control oscillator [12]. (A) Circuit schematic for
the population control circuit. The proteins LuxR and LuxI are
constitutively produced. LuxI creates AHL, which diffuses into and
out of the cell. Cellular AHL activates LuxR, which is then able to
up-regulate the enzyme that causes cell death. (B) Circuit topology
of the model used to describe the strain in a microchemostat. Note
that it constitutes a negative feedback loop with diffusive delay. (C)
The simple model will oscillate under the right conditions. Shown is
the cell density as a function of time, obtained by integrating Egs.
(2.45)-(2.48). . . .
The coupled synthetic gene oscillator [13]. LuxI provides the
positive feedback by creating AHL, which up-regulates the promoters
via constitutively produced LuxR. The enzyme AiiA provides the
negative feedback by degrading internal AHL. Dynamical coupling of
the cells is created by the diffusion of AHL out of each cell, where it

may spatially diffuse in the medium and diffuse into other cells.
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2.13 An in vitro negative feedback oscillator [14]. (A) The design

3.1

uses two “genes,” to form a two-step negative feedback loop. Here,
the genes are DNA switches (labeled Sw21 and Sw12). The products
of these two genes (rI2 and rAl) act to either inhibit or activate their
downstream targets. (B) Each DNA switch is controlled by partially
double-stranded DNA. Here, we show Sw21 as an example. Sw21 is
controlled by the DNA strand T21. When unbound, T21 is in the
“OFF” state and cannot be transcribed. However, if the olgio Al
binds to form the T21A1 complex, the switch is turned “ON” and is
free to create RNA rI2. The sequence of rI2 is such that it can bind
to the oligo A2. When bound to rI2, A2 cannot bind to T12, the
DNA controlling the switch Sw12. Hence rlI2 acts to repress Swil2.
However, RNaseH can degrade rI2 to free up A2. The switch Sw12

works in a similar fashion. . . . . . . . . . ... .

Comparison of DAW Designs. (A) The incremental mixing DAW
on the E.coli DAW microfluidic device design. (B) The simpler S.

ceresiae DAW microfluidic device design. . . . . . . . ... ... ..
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Chapter 1

Introduction to Synthetic Biology

Synthetic biology is a field of interdisciplinary research involving applied mathemat-
ics, engineering, and biology. This new area of science uses a bottom-up approach
to engineer novel genetic circuits that allow the study of dynamics in native gene
networks or build circuits that generate new functions for the host organism. Ideally,
this field would generate a library of standardized, orthogonal, and modular biolog-
ical parts. Typically, the design process would begin with developing a new circuit
on paper with the appropriate parts: promoters, repressors, and activators. Next,
a computational model would be built to coarsely tune the dynamic concentration
range of each part and make overall dynamic predictions about the circuit. The most
time-intensive step would involve building the circuit on the bench. Often, the com-
putational tuning predictions are incorrect, leading to an “ad hoc” method of building
the circuit. This library of available biological parts is completely dependent on net-
work architecture, environmental conditions, and the host genetic background. The
lack of modularity in the biological parts available to the synthetic biologist creates a
significant time lag in bringing a new synthetic circuit design to fruition. Substantial
effort to characterize, both mathematically and experimentally, this library of parts,

as well as to expanding the modular components.

Using synthetic gene circuits, this research aims to understand endogenous gene net-

works by breaking complex networks into simple components. These synthetic gene



circuits are built from mathematical predictions and are characterized experimentally.

1.1 The Molecular Biology Foundation of Synthetic Biology

A critical publication for the foundation of synthetic biology was the examination of
the dynamic response of the lac operon in E. coli to the cell environment by Francois
Jacob and Jacques Monod in 1961 [16]. Jacob and Monod then envisioned the ability
to assemble novel regulatory systems from native molecular components [16,17]. A
subsequent publication that further resolved the molecular details of transcriptional
regulation in bacteria further cemented the idea of programmable gene expression.
In combination with the expansion of knowledge of bacterial gene regulation and the
invention of the polymerase chain reaction (PCR) method, the capability to engineer
artificial gene regulation became technically possible [17,18]. Another monumental
step towards building a novel synthetic circuit was the ability to sequence entire bac-
terial genomes, which expanded the library of cellular components. The ability to
sequence whole genomes created the field of systems biology, requiring both biolo-
gists and computer scientists working together to resolve large sequencing datasets
in order to reverse-engineer cellular networks [19-21]. Systems biology utilized a
top-down approach to resolving gene regulatory networks and demonstrated that,
like engineered systems, these networks had distinct functional modules [22]. The
expansion of potential molecular parts slowly generated a more rational, bottom-up
approach to gene regulatory dynamics, forming the basis of a formal molecular biolog-
ical engineering discipline that could forward-engineer synthetic gene networks that
could demonstrate non-native cellular dynamics [17,23]. The physical realization of

this bottom-up approach to molecular biology occurred when collaborative efforts by



engineers, physicists, and computer scientists capitalized on the opportunity to use
previous molecular biology accomplishments to create a simple gene regulatory net-

work that would carry out a simple function, analogous to an electrical circuit [24,25].

1.2 The First Synthetic Gene Circuits

The Goodwin Oscillator

The Goodwin oscillator was the first synthetic gene oscillator to be theoretically de-
veloped [26] (although it was not experimentally built until much later [5]). This
simple oscillator has a single gene that represses itself (Fig. 1.1 (A)). The protein
concentration of the repressor oscillates between high and low states; as the system is
induced, the amount of protein increases, binding to the promoter and shutting down
protein expression. Then, as the repressor concentration decreases, the probability
of a repressor binding to the promoter decreases, allowing the expression from the
promoter to increase, and the systems restarts. Oscillatory behavior was achieved
through in silico analysis. This early work explored a variety of mathematical mod-
eling techniques and determined that, within biologically relevant parameter ranges,
oscillations can be demonstrated using stochastic simulations [27,28]. These initial
simulations found that the time delay was an important characteristic of oscillatory
systems. Biologically, this delay originates from processes in the cell, such as, tran-
scription, translation, and protein folding [27]. However, further examination of the
simulations suggested that too long a time delay decreased the stability and robust-

ness of the oscillatory behavior [29].

Experimentally, the Goodwin oscillator was built using the Lacl inducible promoter,



Puiaco-1, [10] driving the expression of the repressor Lacl [5] (Fig. 1.1 (B)). A negative
feedback loop is formed when Lacl represses the PrLiaco-1 promotor, inhibiting it’s
expression. To observe circuit behavior, the fluorescent protein, the gene encoding the
green fluorscent protein (GFP) was also placed under Priaco-1 control. Additionally,
to have observable dynamic behavior, the ssrA degradation tag, which is recognized
by native E. coli proteases, was placed at the C-terminus of each protein. Adding
these degradation tags ensures rapid protein turnover, enabling dynamics to occur on
a reasonably fast timescale. Oscillatory behavior was erratic and noisy, but agreed
with mathematical predictions; however, the oscillatory periods were longer than
predicted (10 to 20 minutes predicted verses 30 minutes observed). These results
highlight the need for building mathematical models to simulate circuit behavior,
and the importance of understanding parameter ranges and limitations to guide the

biological implementation of these synthetic gene circuits.

The Toggle Switch

The first synthetic gene circuit built was a bistable toggle switch composed of the two
repressors Lacl and cI [30]. The bistable topology of this circuit is built by having
the lacl gene under the regulation of the ¢/ promoter and the ¢/ and gfp genes un-
der the control of the lacl promoter. Isopropyl S-D-1-thiogalactopyranoside (IPTG),
the ligand for Lacl, was added to induce the c¢I expression state. This releases the
repression of ¢l and GFP expression, and the amount of green fluorescence increases.
Bistable behavior is exhibited because the system can only exist in one state or the
other, not both. The system toggles between one state or the other based on an
environmental stimulus. When IPTG is removed from the system, the system per-

sists (often referred to as cellular “memory”) in the Lacl state; however, once heat
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Figure 1.1 : The Goodwin oscillator. (A) This oscillator is composed of a single
gene that represses itself. (B) Mathematical simulations predicted short, noisy oscil-
lations. (C) In vivo implementation of the circuit (D) demonstrated predicted noisy
behavior with longer oscillations. Figure adapted from [1] with permission.



is introduced (in the absence of IPTG), the cl state is activated. cl is expressed and
begins repression of Lacl, causing a sharp transition into the cI state. Experimentally,
this state is observed when the amount of green fluorescence begins to decline. This
synthetic gene circuit was demonstrated our ability to design, build, and implement

non-native behavior from engineered DNA.

The Repressilator

The first synthetic gene oscillator, the repressilator, was built the same year as the
bistable toggle switch [31]. Building on the Goodwin oscillator foundation, the re-
pressilator was composed of a ring of three repressors, Lacl, TetR, and cI (Fig. 2.7
(A)). The topology of three interconnected repressors is also seen in electronics (ring
oscillators) and in neuroscience (neural ring networks) [1]. The ¢l promoter regulated
the expression of tetR, the tetR promoter regulated the expression of lacl and the
reporter, gfp, and the lacI promoter regulated the expression of cl. Temporal oscil-
lations are generated from this repressor ring design. Specifically, Lacl inhibits the
production of TetR and GFP, relieving the inhibition of TetR on the cI promoter,
causing increased production of the cl repressor. As cl accumulates, it inhibits the
expression of Lacl, relieving the inhibition of Lacl on TetR, and allowing the con-
centration of TetR to increase. TetR represses the production of cl, relieving the

repression of Lacl expression, and starting the cycle all over again.

The in vivo implementation of the repressilator demonstrated cell cycle-independent,
large, variable-amplitude oscillations in 40% of cells [31]. Mathematical simulations
correctly predicted this behavior. The amount of GFP gradually increased over time,

which was thought to be a consequence of GFP stability, but was not mathematically



accounted for (Fig. 2.7 (B)). Additionally, all dynamics ceased once the cell entered
the stationary phase, indicating that circuit behavior was coupled to global regula-
tion and the effects of cell growth and division, allowing the system to relax to an

equilibrium state [1, 31].

Both the toggle switch and the repressilator demonstrated a rational, mathemati-
cal model-based approach to design and build these synthetic gene circuits. How-
ever, agreement between model and experimental outcome was only achieved after
tedious, iterative, experimental tuning of the synthetic gene circuit. These pivotal
synthetic gene circuits established a foundational workflow that included rational
design, mathematical modeling, experimental construction, experimental testing of
circuit, and then extensive experimental troubleshooting to achieve the desired cir-
cuit behavior [17]. The necessity for extensive experimental troubleshooting identifies
a noticeable gap between the mathematical understanding of the design and the ex-
perimental realities, highlighting the importance of mathematically characterizing
individual circuit parts, such as the work done in this thesis. Increasing the accuracy
of these mathematical models can more efficiently guide the experimental construc-
tion, and eliminate the amount of troubleshooting and re-engineering needed. A more

detailed explanation of these mathematical models is provided in the next chapter.

1.3 Understanding Synthetic Gene Oscillators and The Im-

portance of Topology

Positive Feedback Influence Oscillator Dynamics

The previous synthetic gene circuits described above only incorporated negative regu-
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of a ring of three repressors, Lacl, TetR, and cI. (B) In vivo implementation of the
repressilator agreed with mathematical predictions and produced variable amplitude
oscillations in a portion of the cell population [2]. Reprinted with permission.



lation between circuit genes. To further understand the fundamentals of the contribu-
tion of gene regulation to overall circuit dynamics, the addition of positive regulation,
or feedback, was examined. In silico mathematical simulation studies of the addi-
tion of different types of positive feedback is comprehensively investigated in the next

chapter.

In 2003, Atkinson et al. built a synthetic gene oscillator composed of an activator,
NRI, and a repressor, Lacl, where ginG (which encodes NRI) activates the transcrip-
tion of lacl under the glnKp promoter. Lacl then represses the expression of ginG
under the glnApO promoter. However, an additional positive feedback element is
built into the system by having NRI activate its own expression (Fig. 1.3 (A-B)).
Circuit dynamics were recorded at the population level by utilizing the S-galactoside
reporting system, and at the single-cell level by fusing CFP to the Lacl promoter. The
oscillator yielded three damped oscillation cycles at the population and the single cell
levels, agreeing with mathematical modeling predictions. Originally, each gene in the
system was integrated into the E. coli chromosome as a single copy; however, it was
possible to increase the number of oscillations to four by increasing the copy number of
the activator, NRI, near a section of the chromosome that undergoes four-fold higher
transcription [11]. This amplified negative feedback through transcriptional control
showed excellent agreement between mathematical simulations and experimental dy-
namics, at both the population and single-cell levels. Additionally, it showed that
the addition of a positive feedback auto-activation loop caused the system to produce
damped oscillations (Fig. 1.3 (C-D)). However, this oscillator did not show sustain-
able or robust oscillations. This laid the foundation for exploring the topology of the

dual feedback oscillator.
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The Fussenegger Oscillators

To generate sustain oscillations, mathematical analysis determined that the activator
needed faster dynamics compared to the repressor. As discussed in the previous sec-
tion, this can be accomplished through negative feedback. Another way to integrate
this characteristic is to add a delay to the negative feedback loop [1]. Both of these
integrations allow the activator to increase to a critical concentration before the re-
pressor settles the system into a repressed steady state, thereby promoting sustained
oscillator dynamics [1]. These ideas were actualized in the oscillators built in Tigges

et al. [3,32], commonly referred to as the Fussenger oscillators.

The Fussenegger oscillators were the first synthetic gene oscillators to be built in
an eukaryotic system (Fig. 1.4 (A)). These oscillators took advantage of the higher
complexity of the eukaryotic system and built regulation into the oscillator through
sense and anti-sense interactions. The first iteration of this oscillator had two genes,
which both had regulatory sense and anti-sense transcripts. The translated protein
from the sense transcript activates its own expression and that of the second gene.
This second gene acts a repressor by activating the anti-sense transcript from the first
gene, which represses the translation of sense transcript by hybridizing to it, prevent-
ing protein production (Fig. 1.4 (B)). This interaction creates an amplified negative
feedback loop, but varies from the previously discussed amplified negative feedback

oscillator due to the added delay of repression from anti-sense transcript dynamics [3].

Experimentally, the sense transcript positive feedback loop was formed by the tetracycline-

dependent transactivator protein (tTA) under the Phomv1 promoter. This promoter
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also controlled the expression pristinamycin-dependent transactivator protein (PIT).
Therefore, as tTA promoted its own transcription, it also activated the expression
of PIT. The ability of tTA to bind the Pncmv+*1 promoter could be inhibited by the
presence of tetracycline. The negative feedback loop was formed as PIT bound to
the Prir promoter, which controlled the expression of the tTA antisense transcript.
The ability of PIT to bind the Prir promoter could be inhibited by pristinamycin.
Oscillator dynamics were observed through the expression of GFP under the control
of Phcmv+1. This added delay in the negative feedback loop produced undamped os-
cillations, proving the importance of delay in synthetic gene oscillators. In addition,
much of the observed behavior matched mathematical simulations, even when vary-
ing the circuit experimental conditions, testifying that oscillator dynamics could be
mathematically predicted (Fig. 1.4 (C)). A “low-frequency” variant of this oscillator
was later built, in which a delay in the negative feedback loop is attributed to direct
siRNA interference, rather than to anti-sense RNA, which still produces undamped
oscillations (Fig. 1.4 (D)) [32]. Importantly, the use of tunable amounts of RNAs
suggested a relationship between gene dosage and the observed dynamics, offering

synthetic biologists a mechanism by which to tune oscillator dynamics [1].

The Metabolator

The Metabolator was the first synthetic gene oscillator to use metabolites to drive
circuit behavior. On a gross scale, the metabolator has two genes. One gene, gene A,
converts a metabolic pool (M2) to metabolic pool (M1). The expression of gene A is
activated by the presence of (Mz2). (Mz2) also represses gene B, which converts (M)
to (M2). Lastly, there is an influx into (M1) and an efflux from (Mz2) [1] [4]. Simply

put, gene A activates the expression of gene B while repressing its own expression.
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Gene B activates the transcription of gene A, while repressing its own transcription.

This oscillator was implemented experimentally in F. coli using acetyl coenzyme A
(acetyl-CoA) for (M1) and acetyl phosphate for (M2). Phosphate acetyltransferase,
gene A converts acetyl-CoA into acetyl phosphate. Then, through indirect repres-
sion, acetyl phosphate triggers the phosphorylation of Nitrogren Regulation 1 (NRx1),
which activates the glnAp2 promoter that expresses Lacl. The production of phos-
phate acetyltransferase is controlled by the priaco-1 [10] promoter, which is repressed
when Lacl is present. Additionally, acetyl-CoA synthetase is also under the glnAp2
promoter, and is activated in the presence of NRi. The influx of acetyl-CoA into the
system is through sugars present in the growth media and the efiux of acetyl phos-
phate from the system occurs through the conversion of acetate kinase to acetate,

which is then protonated and becomes permeable across the cell membrane (Fig. 1.5

(A-B)).

The metabolator produced oscillations that were independent of cell division ((Fig. 1.5
(C-E)). Interestingly, because key components of the circuit were metabolites, oscil-
lations could be varied by changing the sugar in the medium from glucose to fructose,
mannose, and glycerol. However, glycerol did not have a high enough influx of acetyl
CoA to sustain oscillations. Oscillations could also be suppressed by either adding
high concentrations of acetate or allowing for natural accumulation. This behavior
was correctly predicted by mathematical simulations and showed that oscillations

could be controlled by external sources [1].
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1.4 Dual Feedback Oscillator

Previously built synthetic gene oscillators did not produce robust observable sustained
oscillation dynamics. Oscillation dynamics, if reported, were only observed in a small
percentage of the cell populations. The Smolen oscillator [33] theoretically proposed
a two-component oscillator composed of an activator, gene A, and a repressor, gene
B. An in vivo implementation of this oscillator, termed the dual-feedback oscillator,
was built by Stricker et al. [5]. The dual feedback oscillator was an oscillator built
using the repressor Lacl, the activator AraC, and the fluorescent reporter GFP. The
oscillator was built using a hybrid that incorporated elements of the AraC and Lacl
promoters. This creates competition between the two transcription factors. When
AraC “wins”, all three genes are transcribed. When Lacl 'wins’, transcription of all
three genes is repressed. In this way, the hybrid promoter creates oscillation of GFP
florescence. In silico analysis provided critical insights into the physical manifestation
of the dual feedback oscillator; for example, that oscillations were more likely to occur
if the degradation rate of the activator is at least two times faster than that of the

repressor [1,34]. This analysis is discussed in more detail in Chapter 2 of this thesis.

Experimentally, the dual feedback oscillator was built on two plasmids, in which
identical copies of the Plac/arc-1 promoter controlled the expression of oscillator genes;
araC; lacl, and yemGFP (monomeric yeast-enhanced GFP), and which were trans-
formed into E. coli cells lacking Lacl and AraC. Each protein was tagged with the
C-terminal ssrA degradation tag. Circuit dynamics were initiated by the addition
of IPTG and arabinose (Fig. 1.6 (A)). An important characteristic of this circuit is
the robustness of the cell cycle-independent oscillations. Unlike previous implemen-

tations of synthetic gene oscillators, oscillations were observed in 99% of the cells.
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Additionally, model simulations and observed dynamics matched well, demonstrating
a range of conditions where oscillator dynamics were tunable (Fig. 1.6 (B)). Oscilla-
tions with 2 mM IPTG and 0.7% IPTG generated an oscillatory period of 40 minutes.
This could be tuned to 13 to 58 minutes by changing the concentration of IPTG and

arabinose, temperature, and types of growth media (LB or minimal media).

It is well understood that raising the temperature 10 °C, doubles the biochemical
reaction rates in a cell; this is termed Arrhenius scaling of reaction rates. Therefore,
the oscillatory period of the dual feedback oscillator decreased by roughly 50% for
every 10 °C increase [35]. Resistance to temperature, or temperature compensation,
is a common feature found in natural oscillators [36]. A more detailed investigation of
the relationship between temperature and oscillation dynamics revealed that the dual
feedback oscillator could be engineered to be resistant to temperature changes [37].
These studies demonstrate that dual feedback oscillator dynamics can be attributed
to a number of different parameters. A greater understanding of the external (exper-
imental conditions) and internal (circuit “parts”) influences on genetic circuits, both
experimentally and mathematically, provides insight to build future novel synthetic
gene circuits. This thesis work focuses on examining the influence of degradation

rates of circuit proteins on dual feedback oscillator oscillator dynamics.

One aspect of synthetic biology aims to expand the number of biological tools avail-
able, by taking advantage of native genomic resources (promoters, transcription fac-
tors, proteases, etc.) and optimizing these resources for specific synthetic gene net-
works. To obtain dynamic behavior, systematic, controlled protein turnover is re-

quired. Without protein degradation, it would be impossible to elicit oscillating
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Figure 1.6 : The dual feedback oscillator. (A) The general in vivo implementation
of the dual feedback oscillator. (B) Single cell trajectories of the dual feedback
oscillator experimental data. Figure adapted from [5] with permission.

behavior from the dual feedback oscillator. Many synthetic gene circuits widely
but blindly use ssrA degradation tags. These tags take advantage of the native
ClpXP degradation pathway of E. coli and consist of an 11-amino acid tag (AAN-
DENYALAA) that is attached to the C-terminus of a protein. Anderson et al., using
GFP tagged with ssrA variants, found that changing the last three amino acids had
a significant impact on protein degradation rates (Fig. 1.7). However, these rates are
a population average and are not calculated at single-cell resolution. Finer resolution
of these degradation rates is needed to better mathematical model degradation in
synthetic gene circuits. The work presented in this thesis quantifies the degradation
rates of each ssrA variant on a single cell level as well as demonstrates the relationship
between increasing degradation rates and changes in dual feedback oscillator oscil-
lation periods. To accurately quantify these degradation rates, it was necessary to
thoroughly understand the protein biochemical dynamics that contribute to changes

in oscillatory behavior.
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1.5 CIpXP Protein Degradation in Synthetic Gene Circuits

All organisms have native protein degradation machinery, consisting of proteases,
that removes misfolded or aggregated proteins from the cell to prevent the damage or
disruption of normal cellular processes. These native degradation machineries sim-
plify synthetic circuit design and construction because they do not need to be built
or cloned into the host organism. Targeted protein degradation needs to only occur
for proteins involved in circuit dynamics for synthetic gene circuits. There are two
components that need to be considered when building a synthetic gene circuit. What
native protease will be used, and how will the proteins be recognized by the protease

for targeted degradation?

Most synthetic gene circuits utilize the ssrA protein degradation tag system for rapid
protein turnover for faster circuit dynamics. The ssrA degradation system is a quality
control protease pathway in E. coli that prevents the buildup of mistranslated pro-
teins [38] that target the protease, ClpXP. This ssrA-mediated ClpXP degradation is
an essential process in E. coli, as 1 in 200 protein synthesis events terminates with ssrA
tagging [38]. SsrA (small stable RNA A molecule) was first discovered in E. coli; it
was determined to be composed of 362 nucleotides and have structural and functional
similarities to alanyl-tRNA synthetase [39]. The first evidence that the ssrA gene in
E. coli had a role in protein quality control was discovered when truncated proteins
found in inclusion bodies had an 11-amino acid modification (AANDENYALAA) at
the C-terminus of the truncation; this addition did not occur in cells when the ssrA

gene was deleted [39].

ClpXP is a well-conserved protease complex that was first discovered in K. coli and
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has since been extensively characterized [40]. ClpXP is composed of two distinct
proteins, an AAA+ ATPase, ClpX and a peptidase, ClpP. Together they form the
barrel-shaped protease, ClpXP. Additionally, the adapter binding protein, SspB, is
responsible for delivering ssrA-tagged proteins to the ClpXP complex and anchoring
the bound protein to ClpX. Anchoring the ssrA-tagged protein reduces slipping and
increases ClpX’s grip on the docked protein, allowing the maximum amount of force
to be transferred to the tagged protein for unfolding and eventual digestion [41,42].
The mechanics of the coordinated efforts of ClpP, ClpX, and SspB are described be-

low.

1.5.1 ClpX AAA+ ATPase

The Structure-Function Relationship of ClpX

AAA+ enzymes are defined by their ability to harness the energy of ATP binding
and hydrolysis to perform mechanical work to power numerous biological reactions
and processes. Of specific importance for this work, this mechanical work is the force
required to degrade fully folded proteins that are often in stable tertiary and quater-

nary structures [43].

The homohexameric ring structure of ClpX is critical for performing the mechanical
functions necessary to degrade stable proteins. A single ClpX monomer contains three
important domains: the N-domain, which contributes to the overall stability of the
complex and is responsible for adapter and substrate recognition, the large AAA+ do-
main where ClpP binds, and the small AAA+ domain [44-47]. The AAA+ domains

form the hexomeric ring and perform all the mechanical functions of ClpX [44,47-49].
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ATP binding and hydrolysis occurs in the hinge regions between the small and large
AAA+ domains [8,50]. Interestingly, the N-domain forms a dimer independent of the
rest of the protein. In contrast to the rigid AAA+ domains that form the hexomeric

ring and carry, the N-domains are flexibly tethered [8,44,47,51].

The orientation between the AAA+ subunits can considerably vary in monomers of
the ClpX hexomer [8] (Fig. 1.8 (A)). Functional differences arise from this variation
between monomers. The ability to bind nucleotides dictates the difference between
the two possible domain-domain orientations. Of the six monomers, four are “load-
able” (or L) subunits where the domains can bind ATP (Fig. 1.8 (B)). The two
“unloadable” (or U) monomers have an approximate 80° rotation between the small
and large AAA+ domains that eliminate the ATP binding site. These subunits are
arranged in an L-L-U-L-L-U pattern resulting in an asymmetric structure, where
a maximum of four ATP molecules can bind [8] (Fig. 1.8 (C)). This redundancy in
ATP hydrolysis functions to increase the rate of unfolding and translocation by ClpX.
Martin et al. demonstrated, using engineered single chain molecules of ClpX, that a
construct with only one subunit is capable of ATP hydrolysis and is sufficient to drive
the conformational changes need to carry out the mechanical functions to unfold and

translocate substrates [48].

In clockwise fashion, each small AAA+ domain is tightly compressed against the
large domain of the neighboring subunit [8]. The ClpX hexamer is stabilized by vast
subunit-subunit connections where rigid-body interactions bury nearly 2000 A? of the
surface area. The region between the two AAA+ domains acts as a hinge. Prior to

ATP binding, the ring is topologically closed; however, ATP binding triggers confor-
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mational changes in the orientation of the small and large AAA+ subunits, which

propagates around the entire ring to aid in substrate unfolding and translocation [40].

ClpX Mechanism of ssrA and SspB Recognition

ClpX recognizes proteins substrates that have a large variety of short peptide se-
quences on both the N- and C-terminal of proteins, as well as the ability to bind
many adapter proteins [42,52]. For the purpose of this work, only the mechanisms of

sstA and SspB recognition will be discussed.

To remove incomplete peptide sequences stalled on ribosomes, an 11-amino acid pep-
tide sequence is added to an incomplete nascent protein in eubacteria. The transfer-
messenger RNA (tmRNA) system is triggered when a ribosome stalls on the tran-
script, and then the 11-amino acid peptide tag (AANDENYALAA) is translated from
the ssrA in tRNA-like fashion [39,53]. The ssrA peptide tag has two important recog-
nition sequences. The adapter protein, SspB, recognizes the first seven amino acids
of the ssrA tag (AADENY), whereas the C-terminal alanines with the negatively

charged a-carboxyl group determine ClpX recognition [41,53,54].

SspB delievers ssrA-tagged substrates to ClpXP, working in concert with the degra-
dation complex and thereby modulating proteolysis [40,41,55]. Although the ClpX
hexamer demonstrates proteolytic ability outside of the ClpXP-SspB complex, degra-
dation is greatly enhanced with the binding of SspB [41]. Active SspB is a dimer
with two important structural features. First, the SspB dimer has a pocket that rec-
ognizes the first seven amino acids of the ssrA tag [41,56-58]. Second, each monomer

in the dimer has a highly flexible C-terminal tail that docks with the N-domain of
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ClpX [59,61]. For efficient degradation, both tails of the SspB dimers must make
multivalent contacts with ClpX, ensuring high-affinity tethering of the ssrA-tagged
substrate [60]. It should be noted that it is essential that the ssrA degradation tag
be engaged with SspB and ClpX at the same time. Orchestrating binding in this way
results in strong, tight binding of the substrate to the degradation machinery, and
ensures efficient degradation in low ClpXP concentrations. Briefly, the affinity of each
SspB tail to the N-domain of ClpX is about 20 uM, and that of ssrA binding to the
ClpX pore is about 1 M, but the coordination of all three binding events increases

the affinity of ClpX to the SspB-ssrA substrate complex to 15 nM [60,61].

Unfolding and Translocation Mechanics of ClpX

The main role of ClpX is to use mechanical force to translocate (spool) proteins
through the axial pore and into the ClpP chamber. This translocation through ClpX’s
small pore often prompts the unfolding of the larger ssrA-tagged substrate. ClpXP
must exert an incredible amount of force to disrupt the stable delivery complex to
unfold the tagged substrate and facilitate degradation. This force termed a “power
stroke”. When ClpX does not have a good grip on the substrate, this power stroke is
not effective because it cannot transmit the force efficiently [40]. This stable delivery
complex attached to the ATPase emphasizes the mechanical force that ClpXP exerts
on an ssrA-tagged substrate, to stimulate disruption of the structure to eventually
be fed through the protease. Bolon et al., permanently bound GFP-ssrA to the SspB
dimer through a disulfide bond. Unable to mechanically separate the ssrA substrate
from SspB, the protease degraded both the ssrA substrate and SspB [60]. ClpXP
is natively capable of degrading disulfide-bonded substrates by translocating two or

more peptides through the pore [60,62]. The hinge region between the large and small
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Figure 1.9 : Mechanism of ssrA target degradation by the ClpXP degra-
dation machinery. When a stalled ribosome has a peptide, it is tagged on the
C-terminus by the ssrA protein sequence. The stalled ribosome signals for the ssrA
mRNA, and the ribosome reads the tag sequence, which is subsequently added to the
peptide. The tagged protein is released by the ribosome and is targeted by the ClpX
subunit. The ClpX subunit then denatures the peptide sequence and translocates the
peptide into the ClpP subunit. The ClpP subunit degrades the peptide [8].
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Figure 1.10 : ClpX mechanism of ssrA and SspB recognition. When a tagged
substrate is released from the ribosome, SspB recognizes the ssrA tag and binds to
the first six amino acids. SspB aids in substrate binding to ClpX by anchoring to
ClpX. However, if the tag slips, SspB remains bound to the tagged substrate and
attempts another binding event. After degradation begins, SspB is forced off as the
substrate translocated into ClpP [9]. Reprinted with permission.

AAA+ domains of unloadable ClpX monomers unfolds to widen the pore to conform

to larger substrates and subsequently refolds to close the pore.

After the ssrA is translocated, ClpX grips the subsequent peptide chain through
van der Waal’s interactions with carbonyl oxygens along the peptide chain [63]. The
conformations of unfolded peptides, and the amino acid step size by which the peptide

strand is translocated, vary by protein sequence.
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1.5.2 ClpP Peptidase

Structure and Function of ClpP

ClpP is the proteolytic component of the ClpXP protease. To prevent unregulated
degradation, ClpP is expressed as a proenzyme and undergoes autoproteolysis to re-
move an N-terminal peptide sequence to generate the mature enzyme [64]. ClpP is a
homoheptamer ring that forms a barrel shape. This final barrel shape is constructed
from two homoheptamer ring structures that stack to form a double-ring tetrade-
camer [65,66]. The mature assembly is then capped or doubly capped by an ATPase
cohort, which prevents rogue degradation [51]. Small axial pores allow entrance into
the proteolytic chamber. The active and inactive confirmations of ClpP result from
the distance between these axial pores [64,66-70]. The pores regulate degradation
because they are large enough to allow small peptides to enter. To prevent clogging,
the pores exclude folded proteins and specifically slow the entry of large unfolded

proteins. The proteolytic chamber has a diameter of roughly 50 A [71].

ClpP will cleave any unfolded peptide chain that is translocated into its proteolytic
chamber. The proteolytic cleavage requires ATP hydrolysis It should be noted that
the peptidase does not digest the peptide into single amino acids, rather it chops the
peptide chain into small enough fragments to exit the chamber. Free floating exopepti-
dases then degrade these smaller fragments into single, free amino acids [72,73]. ClpP

preferentially cleaves non-polar residues, specifically Leu, Gly, Met, Ala, and Tyr [40].

The structure of the proteolytic chamber gives insights to the mechanisms of pep-
tide cleavage. The proteolytically active sites of ClpP reside within a barrel shaped

chamber, formed by the face-to-face stacking of two heptameric Clp rings [51]. Most
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importantly, the high local concentration of active sites and the orientation and dis-
tance of these 14 active sites from each other inside the chamber govern the efficiency
of cleavage. The high local concentration close to 350 mM of active sites means that
proximity drives active site binding therefore decreases the need for high specificity,
ensuring that weakly interacting sequences can be degraded. It is easy to understand
the lack of a need for specificity for a protease responsible for degrading unwanted,
misfolded proteins. The specificity of degradation is regulated via the addition of the
sstA degradation tag. To further illustrate this point, each active site must be 25 A
away from three other active sites, meaning this distance could be bridged by eight
amino acids. Consequently, a substrate can bind to multiple active sites and can be
simultaneously degraded. These tandem-cleavage events increase the rate at which

ClpP can digest a peptide [74,75].

1.5.3 ClpXP-SspB Degradation Machinery

Structure and Function of ClpXP

Although both ClpX and ClpP have ring structures, the difference in the number
of monomers, six and seven, respectively, causes an asymmetric fit when ClpX caps
ClpP [40]. However, the axial pores of ClpX align with the pores of the ClpP rings,
providing entrance into the proteolytic chamber of ClpP. This formation of ClpXP
influences the function of each of the subunits [8, 39,49, 54]. Despite being doubly
capped by ClpX, translocation is coordinated through ClpP and can only occur from
one of the two ClpX rings [76]. The tight binding of these two proteins absolutely
requires ATP; no ClpXP proteases are detected in the absence of ATP [51,54,77]. It is

not clear if conformational changes of ClpP occur concurrently with ATP binding and



30

hydrolysis by ClpX. It is possible that the binding of ClpX stabilizes the active con-
formational state of ClpP during ATP-driven substrate unfolding and translocation.
Additionally, it is possible that structural conformational states in ClpX and ClpP

are coupled to facilitate substrate translocation, degradation, and product release [40].

Steady State Kinetics of ClpXP

Evidence of this influence of ClpP on ClpX behavior is found in the steady-state
kinetic parameters for ClpX hydrolysis of ATP when bound to Clp with or without
a protein substrate [39,78]. Succinctly, Vj,,., linearly correlates with ;. Biochem-
ically, this linear relationship indicates that ATP molecules that bind to the ClpXP
complex are hydrolyzed, and the resulting ADP molecules dissociate [78]. Individual
ClpX monomers hydrolyze ATP at a rate of 100 to 600 min~'. This rate varies de-
pending on ClpP binding and the presence or absence of a substrate [78,79]. However,
it is unknown whether, once four ATPs are bound to all loadable ClpX, the hydrol-
ysis of ATP and dissociation of ADP occur in concert with the other molecules or
independently of one another [40]. Additionally, it is not known whether monomers
alternate loadable or unloadable roles. Recall that in a ClpX hexamer, only four of

the ClpX monomers are loadable—capable of ATP binding.

The tight binding of the adapter protein SspB to ClpX reduces the amount of ATP re-
quired for the substrate to bind to ClpX by 30-fold, compared to just the ssrA-tagged
peptide sequence by itself [60]. This cooperative binding of SspB and ClpX, ATP
binding, and the rate of hydrolysis all increase cooperatively as the ATP concentra-
tion increases [80]. Bound ATP and ADP facilitates the binding of ssrA-tagged sub-

strates to ClpX loadable monomers. In addition, ATP binding of one ClpX monomer
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enhances the hydrolysis activity of its clockwise loadable neighbor — the one that do-
nates the large subunit of the shared rigid body unit. Therefore, in the L-L-U-L-L-U
orientation of the ClpX hexamer, the L- monomer between the L- and U- subunits is

capable of the highest hydrolysis activity.

Degradation Mechanics of ClpXP

ClpX is the rate limiting step for degradation, as ClpP is able to rapidly cleave an
unfolded peptide sequence (36). Previous work has shown that ClpX translocates
peptide sequences highly processively, 58 amino acids at a time, with an average rate
of 1800 residues min~"! [75]. Once translocation begins, it is a robust process. For ex-
ample, at high ATP concentrations and low resistance load, translocation of a filamin
domain consisting of 100 amino acids occurs in 15 steps without any slipping [75].
Each step is powered by the hydrolysis of one ATP molecule. In the case of high
resistance load, such as 20 pN, ClpXP can perform a minimum of 3 kcal/mol of me-

chanical work per power stroke [40].

For incredibly stable substrates, unfolding is the rate-limiting step for degradation
(34). Successful unfolding of stable substrates may require several attempts through
power strokes fueled by ATP hydrolysis [40]. The super-stable 127 domain of titan
requires 200 pN of force to denature with AFM and 500 ATP hydrolysis events to
be degraded by ClpXP [81]. After a successful local unfolding event, the peptide
segment is translocated, and a pause is observed where no movement from the pep-
tide is detected. This pause can be a few to several hundred seconds (36). When
the substrate resists unfolding, it is possible to for CIpXP to lose its grip, and the

substrate can dissociate [81]. If this occurs prior to the degradation of the ssrA tag,
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ClpXP can simply rebind and try again. These results indicate that during this
pause, ClpXP hydrolyzes more ATP to unfold the next local stable structure in the
substrate. The most productive unfolding occurs when a power stroke coincides with
a transient thermal destabilization of the local structure, indicating that although
stochastic, unfolding results from a single ATP-dependent power stroke [40]. Taken
together, these actions force ClpXP to preferentially engage easily unfoldable proteins

in a mixture of substrates [81].

1.6 Focus of This Thesis

Synthetic biology seeks to understand endogenous gene networks by breaking complex
gene networks into simple components. There has been extensive research on the
construction of new promoters, activators, and repressors; however, there has been
little research on the role and importance of the degradation of circuit proteins in
circuit dynamics. Degradation tags are essential for synthetic gene circuit dynamics
by accelerating protein degradation and preventing the buildup of circuit proteins that
could be detrimental to circuit behavior. The ability to vary the protein degradation
rate allows further control of the dynamics of the circuit. The overall goal of this
work is to quantify the degradation rate of five ssrA degradation tag variants, and
their consequential effect on overall circuit dynamics. A deeper understanding of how
degradation affects circuit dynamics will make it possible to reduce the build time on
the bench, and increase the usefulness of mathematical models to guide important

parameters for this building time.
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Chapter 2

Modeling Synthetic Gene Oscillators

This thesis chapter is a result of the review paper:
O’Brien, E. L., Itallie, E.V., and Bennett, M.R. Modeling Synthetic Gene Oscilla-

tors. (2012) Math Biosci., 236(1): 1-15.

2.1 Introduction

In order to perform the multitude of functions necessary to survive, cells must be
able to regulate the expression pattern of their genes [16]. Often, this is accomplished
through genetic networks — intricate webs of interactions between regulatory elements
controlling protein production. The topological similarities between gene networks
and electronic devices have lead many to draw analogies between the two, and hence
gene networks are often referred to as “gene circuits” [24,82]. Coupled to this analogy
is the belief that mathematical modeling of genetic networks will lead to new insights

into their role in regulating cellular functions [83, 84].

To better understand the regulatory mechanisms of gene networks, both quantita-
tively and qualitatively, synthetic biologists construct small-scale systems that can
be studied in fine detail [85,86]. Synthetic gene circuits are generally comprised of

a few interacting genes that can be placed into organisms with minimal interference
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from the hosts’ own regulatory processes. While naturally occurring gene networks
are generally much more complicated, the simplicity of synthetic circuits provides a
more manageable framework with which to test mathematical models. In addition, it
is hoped that new, practical technologies will emerge from testing the limits of ratio-
nally engineered gene circuits. Indeed, the complexity of synthetic circuits and range
of their functionality have greatly increased. For instance, synthetic gene circuits
now exist with diverse behaviors, such as toggle switches [30], pulse counters [87],

and image detectors [88,89].

One of the most studied types of synthetic gene circuits, however, is the oscillator.
These circuits are designed to produce periodic changes to the expression level of the
target genes, in turn generating periodic changes in the concentration of the resulting
proteins. To date there have been numerous synthetic gene oscillators reported in
the literature, beginning with the “repressilator” over a decade ago [31]. Since then,
circuits displaying oscillatory behavior have evolved greatly and have displayed a host

of interesting properties [1,3-5,11-14,32,90].

There are several reasons why synthetic gene oscillators have been so heavily studied.
First, oscillations are an important natural phenomena observed in cellular life. For
instance, the circadian rhythms and the eukaryotic cell cycle are controlled by genetic
networks that act as oscillators [91,92]. Additionally, some stress response signaling
pathways, such as the p53 and NF-«B pathways, can respond to stimuli with transient
oscillations [93,94]. While the oscillations do not persist, the dynamical properties
of the fluctuations can determine the specific downstream response [95]. Therefore,

it is important that we understand how genetic oscillations occur and how they are
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regulated in order to understand cellular physiology.

The second reason, and perhaps the more important reason, that synthetic gene os-
cillators are studied is that they are simple circuits that nevertheless display rich
dynamical behavior. This provides synthetic biologists with the opportunity to test

mathematical theories of genetic regulation.

Mathematical models used for predicting gene network dynamics have varied greatly,
ranging from Boolean networks [96,97] to large-scale discrete stochastic simulations
[98,99]. The most common type of model consists of coupled nonlinear ordinary
differential equations (ODEs) that use a combination of Hill functions, Michaelis-
Menten enzyme kinetics [100, 101], and exponential decay to simulate the dynamics
of gene products. Although these types of models have proved useful, they often
use a quasi-steady-state assumption (QSSA) that ignores reactions that occur on fast
time scales [102-105]. In addition, the inherent randomness associated with reactions
comprised of a finite number of molecules is not included in these approximations.
Stochastic simulations have therefore been used to address this randomness. These
types of models are usually either Langevin-type stochastic differential equations [102]

or discrete stochastic simulations, such as Gillespie’s algorithm [98].

In this review, we provide an overview of mathematical models that have been used
to describe the dynamics of experimentally constructed synthetic gene oscillators. We
focus not on the analysis of these models, which often involves the use of nonlinear
dynamics, but instead on how the models are derived from the underlying biological

phenomena. We will pay particular attention to common assumptions that go into
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model derivations, how models based on these assumptions can fail, and theoretical

techniques that attempt to model circuit dynamics more accurately.

Often, models that use common approximation techniques, such as the QSSA, are
qualitatively correct but are quantitatively inaccurate. While more complicated mod-
els are more quantitatively accurate, they generally suffer from being more difficult
to simulate and analyze. Finding the right balance between model complexity and
quantitative accuracy is one of the goals of synthetic biologists. Eventually it is hoped
that the study of mathematical models of gene regulation will provide scientists not
only the means to predict cellular behavior but also the tools with which to rationally

design synthetic gene circuits for use in industrial and biomedical applications.

2.2 Transcriptional Regulation and Protein Dynamics

Before we can begin to discuss how to model synthetic gene oscillators, it is first
necessary to understand the biochemical processes by which proteins are produced
within the cell and how that production is regulated. Modeling the resulting dynam-
ics of protein production and gene regulation can be done in many different ways [83].
It is therefore imperative to understand the underlying mechanisms that lead to the
various assumptions that go into mathematical models. In this section, we examine
how gene expression is regulated at the transcriptional level. We start by describing
how promoters initiate transcription and how initiation is modulated by transcription
factors. Next, we outline the basic processes that occur during protein production,
including a description of the different ways protein production can be modeled. We

then examine how proteins decay through cellular growth and proteolytic processes.
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Figure 2.1 : Regulation of promoters through transcriptional activators and
repressors. (A) Transcriptional activators initiate transcription of a gene once
bound to the promoter. In the absence of a transcriptional activator the gene is
silenced, or off. (B) Transcriptional repressors inhibit transcription of a gene by
binding to the promoter region. The removal of the transcriptional repressor allows
the promoter to become transcriptionally active.

2.2.1 Promoters and Transcription Factors

A promoter is a region of DNA just upstream of the coding region of a gene that acts
as a regulator of the gene’s expression. For synthetic biologists, constructing syn-
thetic circuits starts with matching promoters with a specific type of protein called
a transcription factor (TF). Transcription factors are an integral part of the tran-
scription machinery and interpret external signals for the activation or silencing of
specific genes. There are generally three types of promoters used in synthetic biol-
ogy: (1) promoters that are up-regulated by transcriptional activators, as shown in
Fig. 2.1(a), (2) promoters that are down-regulated by transcriptional repressors, as

shown in Fig. 2.1(b), and (3) constitutive promoters which are always active.
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Promoters that are regulated by transcription factors contain within them sequences
of DNA, called operator sites, to which TFs can bind. Once bound to the operator,
the TFs either prohibit transcription of the gene (repression) or recruit enzymes that

begin the decoding process (activation).

For regulatable promoters, the activity of the gene, i.e. the rate at which transcription
is initiated, is determined by the concentration of TF available to activate or repress
the gene, and the probability that those available TF's are bound to the operator
site. As an example, consider a simple promoter containing a single operator site.
Further assume that the transcription factor must first dimerize before it can bind to
the operator site. If the concentrations of DNA and TF are constant, then we can

write the following set of chemical reactions:

k
P+P = P (2.1)
k_q
ky
Out P == O (2.2)
—b

where P, P,, O, and O, are the concentrations of TF monomer, TF dimer, unbound
operator, and bound operator, respectively, and the forward and reverse reaction rate

constants are shown. If each of these reactions is in equilibrium we have

kaP? = k_4Ps (2.3)

kOuPy = k_yOp. (2.4)

The total concentration of DNA is constant (in this example), so that O, + O, = N.

Solving for O, gives us
N
Op=———3, (2.5)
1+ (P/K)
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where K = \/k_pk_4/kpkq . Similarly, since O, = N — O,,, we have

N (P/K)?
b= ﬁ (2.6)
Equations (2.5) and (2.6) are generally called Hill functions [106]. The constant K,
either called the Hill constant or dissociation constant represents the concentration
of TF needed for half occupancy. The exponent (here 2) is either called the Hill
coefficient or the Hill exponent, and is a measure of the cooperativity of the TF. The
Hill coefficient need not be 2; its value depends on, among other things, the oligomer-
ization of the TF. For instance, with a quick derivation, one can show that the Hill

coefficient for a tetrameric TF is 4. If TFs bind cooperatively to multiple binding

sites, then the Hill coefficient is not restricted to being a whole number.

If the promoter fires at a rate «, when unbound and «a; when bound, then the total

rate at which initiation events occur is
Vim't(P) = auOu + CVbOb

. N Y (P/K)*
I+ (P/K)? 1+ (PR

(2.7)

For repressible systems, it is generally assumed that a bound promoter does not fire,
so that ap, = 0. Likewise, for activatible promoters, it is often assumed that o, = 0.
However, promoters can sometimes be “leaky”, in that initiation can occur even when
it is not favored. For instance, the initiation rate of a leaky repressible promoter might
have 0 < ap < . In this case, it is sometimes preferable to write Eq. (2.7) as

N

5 (PP .

Vim't(P) = Qeak + QO

where ayeqr is the constant rate of leaky (i.e. unregulated) initiation, and «, is

the “regulated” initiation rate. Note that Eqs. (2.7) and (2.8) are equivalent when
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Ooak = Op and o, = a, — .

In reality, the initiation rate of a promoter can be much more complicated than Eq.
(2.7) suggests. For instance, many promoters contain multiple operator sites that act
in tandem to regulate the promoter [10,107]. This will change the functional form
of the associated Hill function. Also, there can exist more complicated regulatory
schemes involving the looping of DNA [108,109]. In that case, DNA can be thought
to have more than just two states, further complicating the initiation rate. In eukary-
otic cells, TFs must enter the nucleus before they can affect the promoter. Sometimes,
this shuttling in and out of the nucleus can be a complicated process [110], making
the determination of the true initiation rate extremely difficult. Finally, many TFs,
especially those used in synthetic biology, are dependent on small molecule ligands,
often sugars, which bind to the TF and change its activity. For instance, the lactose
repressor, Lacl, will only bind to the operator in the absence of ligand [16], while
the arabinose regulator, AraC, only activates transcription in the presence of a lig-
and [111]. Therefore, the true association rates of TFs to the promoters are ligand

dependent, adding another layer of complexity to the process.

2.2.2 Transcription and translation

In the previous section, we were careful to state that the promoter initiates tran-
scription of the gene. It is tempting to equate the protein production rate with the

initiation rate, leading to an ODE of the form
N N (P/K)’
Oy 5ty -
1+ (P/K) 1+ (P/K)

where x is the concentration of the protein to be produced, the overdot represents

3 7”deg(m)a (2.9)

differentiation with respect to time, and rg4(z) is the concentration dependent degra-
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dation rate of the protein. Certainly, there are instances when Eq. (2.9) is a good
approximation of protein dynamics. However, the creation of protein is a complicated
process involving a large number of molecular complexes and reactions. Some math-
ematical models of synthetic gene circuits have begun to take some of these processes
into consideration, and it is therefore worthwhile to examine, in some detail, the pre-

cise manner in which protein is produced within cells.

Once the transcription of a gene has been initiated, there is still a long chain of events
that must be completed before the protein it encodes is active. While the following
list of these reactions is not meant to be exhaustive, the basic process, outlined in

Fig. 2.2, follows these basic steps [112]:

1. An enzyme called RNA polymerase binds to the DNA sequence encoding a
protein and begins to create messenger RNA (mRNA). In a process called tran-
scription, each base pair of the gene is read sequentially and a corresponding

nucleotide is added to the growing single-stranded mRNA molecule.

2. In prokaryotic gene expression, the elongating mRNA chain can begin to create
protein even before it has completely finished. In eukaryotes the process is
slightly more complex. Modifications are often needed to prepare the mRNA,
and the complete mRNA molecule must also be transported out of the nucleus

before protein production can begin.

3. Once prepared, the mRNA must then be decoded to create protein, in a process
is called translation. The first step in this process is the binding of ribosome to

the mRNA strand.



42

DNA 3
IIIIIII:IIIIIIIIIIIISI

RNA polymerase

5
3

/ Transcription
start

5’_I_I_l_l_l_

Transcript elongation

5’lIllIllIllIlllIllllIllllll

«

mRNA processing
(capping, transport, etc.)

A%osome

binding

5’ | T T T T T T T N T T T T T T T T N T O T T O T Y

/Translation start
[ | Protein elongatlon peptide chain

Protein preparation
(folding, oligomerization, etc.)

|

Functional
protein

Figure 2.2 : Schematic of steps involved in protein production. In order
for a mature protein to be produced, the gene must first be transcribed and the
mRNA must then be translated. Each of these processes is comprised of hundreds
or thousands of reactions that must occur as the polymerase or ribosome progress
through the sequence of nucleotides. In addition, once translation has been completed,
the nascent protein must then fold and, often, oligomerize.
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4. Once bound to the mRNA, the ribosome reads the nucleotide sequence of the
mRNA and catalyzes the reactions that build the protein one amino acid at a

time.

5. Once the protein chain is complete it must fold correctly and often oligomerize
before it is fully functional. Many large cellular enzymatic complexes (like the
ribosome) consist of a number of different proteins that must hetero-oligomerize
to function as a unit. Most transcription factors used in synthetic biology

operate as either homodimers or homotetramers.

Of course, for each of the above steps there are other sub-steps. For instance, during
transcription, polymerase must read from single stranded DNA. This means that the
double stranded DNA must first be separated and unwound before polymerase can

function. These processes in themselves are then made up of other sub-sub-steps, etc.

Due to the large number of steps required to make functional protein, Eq. (2.9)
can sometimes be a poor approximation of the dynamics because it assumes that
transcriptional initiation instantaneously leads to active protein. When modeling
synthetic gene circuits, the first correction to Eq. (2.9) that is often made is to include
the dynamics of the associated mRNA. If we assume that promoter initiation firsts
leads to mRNA through transcription, and then subsequent translation of that mRNA

leads to protein we are led to a two-dimensional system of the form

. ayN aN (P/K)* .
S Y)Yy e (2.10)
T = rgm—ry(x), (2.11)

where m is the concentration of mRNA, ry; is the rate of translation, and r,,(m) and
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r.(x) are the degradation rates of mRNA and protein, respectively.

Systems of ODEs that include mRNA dynamics are generally more accurate than
those without, especially for gene circuits that include non-trivial dynamics. Note
however, that these types of ODE systems still ignore a host of reactions that occur
during protein formation and transcriptional regulation. The basic assumption that
is being made is that some reactions (such as oligomerization, TF-DNA binding and
protein folding) occur on a much faster time scale than transcription and translation.
If this is so, one can further assume that the fast reactions are in a state of local
temporal equilibrium. Hence, these types of model derivations fall under the guise of

the QSSA.

There do exist problems with the QSSA, however. For instance, because the QSSA
is essentially a projection of the multidimensional dynamics onto a slowly evolving
manifold, some aspects of the dynamics of the full system can be lost [102,103, 105].
As an alternative, one can resort to writing differential equations for every species
in the system using mass-action kinetics. Non-reduced, “complete” models that de-
scribe the dynamics of every species within a system, however, come with their own
problems. First, for a given system, the complete set of biochemical species is often
too large or unknown. Second, the network of associated reactions, describing which
species interact with each other, is also often unknown. Third, even for known reac-
tions, the forward and reverse kinetic rate constants are unknown or at best poorly
bounded. Finally, analysis of such nonlinear systems, which can be tens or even hun-
dreds of dimension, is extremely difficult. All of this makes large-scale unreduced

models impractical, at best.
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Another approach, which has recently been gaining popularity, is the use of delay
differential equations (DDEs) [24,29,113-118]. Instead of writing down each of the
reactions necessary for the creation of a protein, or just a few as in the case of
the inclusion of mRNA dynamics, one can assume that each of the reactions in the
pathway takes some amount of time. As Bel et al. showed, the completion time of
linear biochemical reaction chains can be nearly deterministic and finite [119]. In that

limit, then, the production of protein could be approximated by

 — aul¥ N (P(t—7)/K)*
o 1+(P(t_7_)/K)2 + 1+(P(t—T)/K)2 deg( ), (2.12)

where P(t — 1) is the time-delayed concentration of the transcription factor, and 7 is

the delay time.

Of course, the dynamics of Eq. (2.12) are not much different from its non-delayed
version, Eq. (2.9). Without feedback the dynamics of z(¢) are essentially unchanged,
with the exception that they are delayed. However, as we will see in the case where

feedback is present, delay can have dramatic consequences.

2.2.3 Protein Degradation

Thus far, we have not specified the exact form of the degradation rates of the proteins.
To do this we must examine the ways in which the concentration of molecular species
decline within cells. The most ubiquitous form of protein “degradation” is due to
cellular growth and division, i.e. the protein concentration dilutes as the total reaction

volume grows. Therefore, if we assume that cells are growing exponentially with a
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rate 7, then we can write
Taeg(T) = . (2.13)

Cellular growth and division, however, is generally more complicated than simple
exponential growth. The true growth rate of cells depends on a number of external
factors. In addition, the growth of some cell types, such as Saccharomyces cerevisiae
is biphasic at the single cell level. As S. cerevisiae progress through the cell cycle, the
total cell volume increases at different rates. During G1 phase, cell volume grows very
slowly, if at all, as the cell determines whether or not conditions are right to initiate
cell division [120]. Once cell division has been initiated, the cell volume begins to
increase as a new cellular bud forms and grows [121]. Furthermore, protein partition-
ing upon cell division can be unequal between mother and daughter, creating cellular

heterogeneity [122,123].

Often, in synthetic gene circuits, it is desirable to increase the degradation rates of the
proteins in order to decrease the resulting time scales of the system. Experimentally,
this has been most often accomplished with the use of degradation tags, especially the
ssrA tagging system [124]. ssrA tags are C-terminal amino acid sequences that can
be inserted at the end of the target gene. These short peptide tails are recognized by
proteolytic enzymes within Escherichia coli that first denature and then degrade the
tagged protein. Adding these tags to target proteins can significantly increase their
degradation rates [6], thereby adding another level of control over circuit dynamics.
Further, enzymatic degradation has also been shown to increase the robustness of os-
cillations in synthetic circuits [125]. Several synthetic gene oscillators have made use

of ssrA tagging [4,5,31], and the system has also been ported into S. cerevisiae [126].
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Because ssrA-mediated degradation is an enzymatic reaction, the dynamics are not
exponential. Instead, they can be modeled to follow Michaelis-Menten enzyme kinet-
ics [100], such that

Vma:vx

eg,enz — s 2.14
rd 9, Km + :UI ( )

where V., and K,, are the well-known Michaelis-Menten constants.

If multiple proteins within the synthetic circuit are tagged, then each must compete
for the same pool of proteases [101]. The total pool of tagged protein will degrade

enzymatically according to Eq. (2.14), so that

VersT
’r’deg(T) - ﬁ, (2.15)

where Vs is the effective maximal rate for the pool of proteins, 7' = ). z; and w; is
the concentration of the i*" tagged protein species in the circuit. For the i*" protein,
however, only a fraction x;/T is being degraded by the proteases. This means that

the actual degradation rate of z; can be written as

Vma,a:,ixi

= menii o 2.16
Kot 550, ot (2.16)

Tdeg,i (mz ’ T)

where Vo, is its maximum degradation rate, the binding affinity of the protease
to the ssrA tag is identical for all protein species, and we have included the dilution
term. Note that the tagging of multiple protein species has introduced degradation-
mediated coupling into the dynamics. While often ignored, such coupling can affect

the overall dynamics of the system [101].

We should point out that, just like ssrA-mediated protein degradation, transcription

and translation are also enzymatic processes. It is uncommon, though, to model these
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processes with Michaelis-Menten dynamics. This is because it is often assumed that
the total number of all promoters or transcripts is much larger than that of the par-
ticular promoter or transcript being modeled. In that case, the total pool of substrate
is so large that it is effectively independent of the concentration of the promoter or
transcript in question. Therefore, the denominators of the Michaelis-Menten equa-

tions for transcription and translation can be assumed constant.

Like proteins, mRNA dynamics are also greatly affected by degradation. In gen-
eral, mRNA are subject to similar decay mechanisms as proteins, including cellular
growth, enzymatic degradation and general instability of the molecules. Synthetic
biologists have engineered pathways targeting mRNA for degradation (see Ref. [127]
for a good review), but these mechanisms have not been widely used to construct
synthetic gene oscillators. However, there is one major exception. The mammalian
oscillator constructed by Tigges et al. [3] uses anti-sense mRNA to target sense mRNA

for degradation. We will discuss this form of regulation in more detail in Section 2.4.1.

2.2.4 Small Number Effects

So far, the equations that we have derived depend on mass-action kinetics. By this,
we mean that the concentrations of each reactant are large enough that ODE models
are good approximations of the true dynamics. If the number of reactants involved

is small, as is often the case for gene networks, the QSSA fails for several reasons.

First, the rate of a binding event, especially homo-oligomerization, is very sensitive

to the number of reactants at low concentrations. For instance, if we let P be the
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number of proteins, then the rate of dimerization is actually proportional to P-(P—1)
and not P2. ODE models can easily be rewritten with this in mind, but care must be
taken when simulating such systems in order to avoid negative estimates of oligomer
concentrations. Similarly, if the copy number of a gene (and hence its promoter) is
large compared to the number of available transcription factors then incorrect use of

QSSA can lead to overestimation of bound operators.

The second complication that arises at low reactant numbers stems from the fact
that chemical reactions are not deterministic and the relative stochasticity increases
as the number of reactant molecules decreases. For genetic regulatory systems, there
are often very few molecules involved, leading to significant amounts of noise in in
vivo synthetic circuits. In addition to this “intrinsic” noise, external factors can ran-

domly impact the dynamics of circuits [2,128].

While we cannot go into detail into all the origins and consequences of noise in
this review it should be noted that there has been a great deal of work, both the-
oretical and experimental, characterizing noise in genetic circuits [99, 129-132] and
how circuit architecture affects noise [133,134]. From a modeling standpoint, there
are several options for dealing with noise [102]. The most common methods use
some form of discrete stochastic simulation, such as Gillespie’s algorithm or its vari-
ants [98,99,135,136]. However, other methods such as stochastic differential equations

and master equation approaches have also been used [102,137-139].
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Figure 2.3 : A genetic circuit diagram of direct negative feedback. The
promoter (arrow) regulates the expression of a gene encoding a transcriptional re-
pressor (red box). The transcription factor acts to down-regulate its own expression
(blunt-end line).

2.3 Negative Feedback Oscillators

In Section 2.2 we discussed the important processes by which protein dynamics are
regulated and the various ways that they can be modeled. These biological mech-
anisms are present in all synthetic gene circuits, yet mathematical models do not
always take each into account. To examine this issue in more detail, we now turn to
oscillators that are based on negative feedback loops. The negative feedback loop is
important to understand because it is essential not only to synthetic gene oscillators,
but also to circadian oscillators [140]. Further, while the circuit diagram for transcrip-
tional negative feedback often looks simple, as shown in Fig. 2.3, it can be modeled
in different ways. The amount of detail that a model contains often determines the

resulting dynamics.

2.3.1 Direct Negative Feedback

At its most basic, a transcriptional negative feedback loop is a system in which the
transcription of a gene results in the down-regulation of that same gene (Fig. 2.3).
Often this is because the gene in question encodes for a transcription factor that can

bind to its own promoter and inhibit further transcription of itself. To describe this
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situation, a simple ODE model based on Hill function kinetics can be written as

«

= T (a:’/K)" . (2.17)

T

where z is the concentration of the repressor protein, « is the maximum production
rate, K is the concentration of repressor needed for half repression, n is the Hill co-

efficient and ~ is the degradation rate coefficient.

Of course, Eq. (2.17) cannot oscillate because there is only one dimension. In fact,
there is just a single stable fixed point given by the positive real solution to

«v

ey (2.18)

Y

Why then, does negative feedback form the basis for oscillations in synthetic gene

circuits?

The answer comes when we begin to expand away from the simplistic, one dimensional
QSSA model for negative feedback. If we also include the dynamics for the mRNA

in the system, we arrive at

T = pm—nzx, (2.20)

where m is the concentration of mRNA, 3 is the translation rate and the degradation

rate coefficients for mRNA and protein are § and ~, respectively.

Ostensibly, the differences between Eq. (2.17) and the system (2.19)-(2.20) are not
great. The former is just one dimensional, while the latter is two dimensional. Two

dimensions is enough to support oscillations, of course, but system (2.19)-(2.20) does
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Figure 2.4 : Behavior of a negative feedback loop. (A) Here the mRNA dy-
namics are explicitly modeled, as in Eqgs. (2.19) and (2.20). The protein (red curve)
and mRNA (blue curve) concentrations settle onto a fixed point after a transient.
(B) The trajectories of Egs. (2.19) and (2.20) in m-z space. The imaginary compo-
nents of the eigenvalues of the stable fixed point create damped oscillations as the
trajectories spiral into the fixed point. Here we show 6 representative trajectories
in blue. The orange and pink curves are the null-clines of Eqs. (2.19) and (2.20),
respectively. (C) When a third dimension is added, as in Egs. (2.21)-(2.23), stable
oscillations are achieved. Here, the blue, green and red curves are the values of z, y
and z, respectively, as a function of time.

not exhibit oscillations. Like its one dimensional analog, the system that includes
mRNA has a single stable fixed point. However, the fixed point can have oscillatory-

like behavior.

Figure 2.4 shows a trajectory of system (2.19)-(2.20). Note that while the fixed point
is attracting, the eigenvalues have imaginary components (the real parts are both
negative). The imaginary components of the eigenvalues produce the damped oscil-
lations of the repressor concentrations, and provide a tantalizing clue as to how true
oscillations are formed. The repressor “overshoots” its steady state position where-

upon it begins to relax onto the fixed point.

By adding more intermediate species in the linear pathway that leads from the ini-
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tiation of transcription to the down-regulation of the promoter, a “diffusive delay”
is created that can lead to oscillations [26]. Even with just three dimension, oscil-
lations are relatively easy to achieve, especially if the protein decays enzymatically.

For instance, consider the following set of equation:

«

r = ———— — 7, 2.21

v 1+ (/K ** (2:21)

y = By‘L — YyY (2'22)
V2

s — By — : 2.23

% B.y K 1: (2.23)

where z, y and z can be thought of as the concentration of mRNA, an intermediate
species, and the repressor, respectively. This set of equations produces stable limit
cycle oscillations, as shown in Fig. 2.4(c). What the intermediate species is we have
not specified, and there are several possibilities that present themselves. In a rough
sense, y could be another transcription factor that up-regulates the production of
z. Of course, the functional form of the regulation would most likely look different
than above, but the principle still holds. As we will see later, this form of negative

feedback loop, consisting of more than one gene, has been well studied.

Another plausible explanation is that y is some intermediate, non-active version of
the mature repressor, z. Perhaps the repressor needs to be activated by an en-
zyme, or unfolded and immature versions of the protein can be thought of as another
species altogether. This line of reasoning quickly leads to the concept of delayed
negative feedback. As discussed in Section 2.2.2, delay in protein production can be
thought of as the sequential assembly of the mRNA and mature protein. In fact,
delayed negative feedback oscillators have been well studied and are thought to form

the basis of some naturally occurring cellular oscillators, such as circadian oscilla-



54

tors [24,29,116,117,141-143).

2.3.2 The Delayed Negative Feedback Oscillator

Single gene negative feedback loops can, under certain circumstances, exhibit sus-
tained oscillations. This fact was first observed experimentally by Stricker et al. [5]
in a circuit they constructed using Lacl to repress itself, as shown in Fig. 2.5. Pre-
vious theoretical work had predicted that such oscillations might exist in single gene

circuits [26], or that stochasticity might induce oscillations when delay is present [29].

Essentially, one can model the delayed negative feedback oscillator by using an ex-

tension of Egs. (2.21)-(2.23):

«

Tg = ——— — Y 2.24
T Iy (2:24)
T, = 1Di(~771—1) - Pi+1(5'7i) — VT (2-25)
. Van
= P ) - 2.2
N N(TN_1) K +zn YIN, (2.26)

where ¢ € {1, N — 1} and there are N intermediate species. The production of the
repressor is still initiated by the repressive Hill function term, but instead of creating
fully formed protein the result is the initial intermediate, . Subsequent interme-
diate species, z; for i = 1...(N — 1), are then created according to some production
function, P;(z;_1), roughly irreversibly, by the previous species in the linear chain.
Eventually the fully formed repressor, xy, emerges and is able to down-regulate the
initiation process. Note that in this scheme we have allowed only the fully functional

repressor to enzymatically decay, but this need not be the case.
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Figure 2.5 : The delayed negative feedback oscillator. Stricker et al. predicted
computationally, and proved experimentally, that a circuit containing a single gene
repressing itself was sufficient to produce oscillations [5]. (A) Circuit diagram of the
delayed negative feedback oscillator. There are two copies of the LlacO-1 promoter
[10], one driving lacl and the other driving the gene encoding the green flourescent
protein (gfp). In the absence of IPTG, the product of the lacl gene, Lacl, down-
regulates the promoters. In addition, both genes were ssrA-tagged in order to increase
the degradation rates of the resulting proteins [6]. (B) The level of flourescent protein
in single cells as a function of time (red indicates high fluorescence while blue indicates
low fluorescence). Each horizontal time series represents the trajectory of a single
cell. (C) The origins of delayed negative feedback oscillations are apparent in this
simulation. Here there is a small delay between the time that the mRNA begin to be
formed and the time at which functional Lacl tetramer are produced. Once enough
Lacl has been made, transcription shuts down and the mRNA levels begin to drop.
The resulting burst in repressor eventually decays through proteolysis. Once the Lacl
concentration falls below the threshold level, another burst of mRNA occurs, starting
the process anew. Figure adapted from Stricker et al. (2008) [5].
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From a stochastic viewpoint, the time it takes from initiation to fully formed protein
is determined by the number and nature of the steps in the pathway. If each reaction
step is irreversible, and exponentially distributed with rate A, then the mean delay
time is given by 7 = N/A. Further, as the number of reactions increases while keeping
T fixed, the variability in the delay time decreases such that it can be considered to

be deterministic [119].

With the above in mind, we can now rewrite the system of equation, Eqgs. (2.24)-
(2.26), as [116]
o Va

i = _ _
1+ (2,/K)" Kntw

v, (2.27)

where 2, = z(t — 7) and ¢ is the effective maximum production rate. This correction
to « is necessary due to the possible degradation and dilution of intermediate species
in the reaction pathway. To see this, assume that the degradation of the intermediate
species is only due to dilution, with rate v. Then the probability that any one protein
makes it all of the way through the reaction chain to become a functional repressor

is simply given by exp(—~7). In that case, we can rewrite Eq. (2.27) as

.
p= Ve . (2.28)

so that o/ = aexp(—77). Note that if there is active degradation, either acting on

the mRNA or nascent protein, the correction to a will be more complicated.

Inspired by the experimental evidence for delayed negative feedback oscillations,
Mather et al. theoretically investigated a system similar to Eq. (2.27) [116]. They
found that the period of oscillations observed in such systems can be arbitrarily long

compared to the delay time. In addition, they showed that tight repressor binding
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and strong enzymatic decay of the protein were essential to obtaining oscillations.

2.3.3 Multi-gene Negative Feedback Circuits

As mentioned above, one way of looking at the three equations that make up the
“diffusive delay” system, Eqs. (2.21)-(2.23) is to consider them a multi-gene network,
with the intermediate species, y, being a transcriptional activator that up-regulates
the repressor, z. If we allow our negative feedback circuit to contain more than one
gene, then there are any number of ways in which to construct it (at least theoreti-
cally). Figure 2.6 shows the complete sets of topologically distinct negative feedback
circuits consisting of up to five genes. The general rule of thumb is that for circuits
with a ring architecture there must be an odd number of repressors in order for the

entire loop to be a negative feedback circuit.

Of course, the production of each protein in the circuit will not be linearly dependent
on another, as in Eqgs. (2.21)-(2.23), but instead be produced according to some Hill
function. In that case, a simple ODE model of a two gene negative feedback loop, as

shown in Fig. 2.6, could be written as:

M, = aa% — gy (2.29)

a = fumg — Y0 (2.30)

m, = ara—na — 0,m, (2.31)
Kla + ana

Po= feme — T, (2.32)

where r and a are the concentrations of the repressor and activator, respectively, and

m, and m, are their respective concentrations of mRNA; «;, K; and n; for i € {a,r}
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Figure 2.6 : Negative feedback loops can be made up of any number of genes.
Shown are the topologically distinct negative cyclic feedback loops containing up to
5 transcription factors. Red and green circles indicate transcriptional repressors and
activators, respectively. The blunt end lines and arrows represent repression and
activation, respectively.

are the respective constants describing the Hill functions; and 9; and ~; are the mRNA

and protein degradation rate coeflicients.

While there are many types of multi-gene negative feedback circuits possible, the

repressilator is by far the most well-studied [31].

2.3.4 The Repressilator

The first reported experimental realization of a synthetic gene oscillator is the well-
known “repressilator” [31]. This circuit contains three genes, each of which is a
transcriptional repressor, as shown in Fig. 2.7(a). The repressilator was based on a
form of digital circuit, the ring oscillator. In electronics, a ring oscillator is an odd

numbered set of NOT gates that are linked in a circle. These types of electronic cir-



99

(a) (c) *
K‘ Acl | F\ as

[ fael | — [ e <

2.5

p=0.05

1000 . 2000 3000
time

i

0 0.05 0.1 0.15 ... p=013
/3 0 200 400 600 800 1000
time

Figure 2.7 : The model for the repressilator circuit oscillates in a specific
range of parameters. (A) The circuit consists of three genes each of which represses
a specific promoter that controls expression of one of the other genes. (B) A Hopf
bifurcation occurs at approximately 5 = 0.07. (C) For low values of 3, i.e. to the
left of the bifurcation point, the system undergoes damped oscillations. (D) The
repressilator exhibits stable limit cycle oscillations when [ is large.

cuits oscillate, with a period that is inversely proportional to the circuit delay (which

is determined by the number of NOT gates).

To build the genetic version of the ring oscillator, Elowitz and Leibler used three
genes encoding transcriptional repressors: the lactose repressor, Lacl; the tetracycline
repressor, TetR; and the CI repressor from bacteriophage A (see Fig. 2.7(a)). Next,
they placed these genes under the control of promoters that are regulated by one of

the three transcription factors, such that each represses the transcription of the next
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gene in the circle. Therefore, using Hill functions one can write the system as

aq

. . 2.33
T 040,1 + 1 + (1‘3/K3)n3 /1.:51 ( )
. (&%)

_ Yo, 2.34
T Qg2 + 1+ (01K )™ 2T 2 ( )
. Q
I3 = Qg3 + & — 7373, (235)

1+ (xg / Kg)nz
where 1, x5 and x3 are the concentrations of Lacl, TetR and cI, respectively. Note
that we have included the leakiness of each promoter, represented by the constitutive

production rates, ag ;.

n their original mode owitz and Leibler included the m dynamics for each
In tt ginal lel, Elowit 1 Leibl luded tl RNA d f 1
protein. Also, by assuming that various constants are the same for each protein, i.e.
ap; = o, K; = K, n; = n and ; = +, one can rescale the concentrations and time

to arrive at the compact, dimensionless form of the equations:

o}
1+pj

pi = —B(pi—mi), (2.37)
where ¢ € {1,2,3} represents a gene in the circuit and j represents its predecessor.
The number of protein copies per cell produced from a given promoter type during
continuous growth is v in the presence of saturating amount of repressor (an effect of
a leaky promoter), and o+ ag in its absence; 5 denotes the ratio of the protein decay
rate to the mRNA decay rate; and n is the Hill coefficient. Time is rescaled in units
of mRNA lifetime; protein concentrations are written in units of K, the number of
repressors necessary to half-maximally repress a promoter; and mRNA concentrations

are rescaled by their translation efficiency, the average number of proteins produced

per mRNA molecule [31].
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By performing bifurcation analysis on Eqgs. (2.36) and (2.37), one can determine where
in parameter space the system should oscillate. For instance, Fig. 2.7(b) shows that
a Hopf bifurcation occurs at approximately 5 = 0.07. When § is less than 0.07 oscil-
latory behavior is transient, whereas the the system oscillates for values of § larger

than 0.07, as show in Figs. 2.7(c) and 2.7(d), respectively.

Since it was first reported, theorists have examined many models for the repressi-
lator [105, 114, 144,145]. For instance, several groups have examined ODE models
with n repressing elements and showed that not only can periodic solutions exist,
but also multiple steady states, and aperiodic heteroclinic cycles [146,147]. Others
have looked at how stochasticity [148,149] or the copy number of each gene affects

oscillations [150].

2.4 The Role of Positive Feedback

As we have seen above, a transcriptional negative feedback loop is sufficient to gen-
erate oscillations in protein concentrations in and of itself. Circuits relying solely on
negative feedback generally work on the principle of delay, whether it is diffusively
through a transcriptional cascade or due to the time lag necessary for protein produc-
tion. Another form of synthetic gene oscillator, based on the principle of linking both
negative and positive feedback to create relaxation oscillations [151], has also been
widely studied. While they are harder to construct experimentally, it is predicted that
genetic oscillators containing both positive and negative feedback should be more ro-

bust and more tunable than oscillators containing only negative feedback [152,153].
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2.4.1 Experimental Realizations of Linked Positive and Negative Feed-

back

Several synthetic gene circuits that exhibit oscillatory behavior have been built on the
principle of linked positive and negative feedback. The first was by Atkinson et al.,
in which they used a simplified model of gene regulation to predict oscillations [11].
Their mathematical model used tri-phasic (i.e. piece-wise linear) functions instead
of Hill functions to represent transcriptional control and predicted that the circuit
shown in Fig. 2.8(a) would oscillate. Indeed, when they constructed the circuit in E.
coli they did observe long-period oscillations, though they damped out after several

periods.

The use of a tri-phasic function might seem odd, but it is a decent approximation of
a Hill function. The idea is that the Hill function can be thought of as containing
three distinct regions: basal production, maximum production, and an intermediate
regime. If we were to construct a tri-phasic function for the activation of a gene by

an activator it might take the form (see [11]):

B ifz<B
fo)=9 2 ifB<z<M (2.38)
M ifz>M,

where z is a dimensionless concentration of activator, and B and M are dimension-
less rates of basal and maximal production, respectively. If we compare this to a

dimensionless Hill function of the form

x'ﬂ

f(x)=B+(M—B)Kn—+$"7

(2.39)

where K = (B+ M)/2, we see that the fit, while not perfect, can be reasonably close,
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Figure 2.8 : The synthetic oscillator construction by Atkinson et al. [11].
(A) Circuit schematic of the circuit. The activator (encoded by the glnG gene)
up-regulates both proteins, while the repressor (encoded by the lacl gene only down-
regulates the activator. (B) The tri-phasic regulation functions used by Atkinson
et al. are decent approximations of Hill functions. Here, an activating tri-phasic
function, Eq. (2.38), is shown in black, while its Hill function counterpart, Eq. (2.39),
is shown in red. Here, B = 10, M = 100 and n = 4.
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as shown in Fig. 2.8(b).

The piece-wise linear Hill function, Eq. (2.38), while an approximation of a true Hill
function, has the distinct advantage that it is much easier to analyze than its non-
linear counterpart. Further, it has been shown that models of gene oscillators using
Heaviside step-functions instead of Hill functions still give good quantitative agree-
ment [118]. Therefore, piece-wise linear Hill functions are an attractive option for

modeling gene networks, especially when analytical solutions are desired.

Two other synthetic gene oscillators incorporating positive and negative feedback are
of importance here. Each uses standard QSSA models with Hill functions, but each
also includes more than just transcriptional regulation. In the first, Fung et al. cre-
ated a network, termed the “Metabolator,” that couples transcriptional regulation
to metabolism [4]. Essentially, two metabolite pools are cyclicly interconverted into
one another through the action of two enzymes. One of the metabolites up-regulates
the production of two proteins (one that encourages and one that inhibits the cyclic
interconversion of the two metabolites) that provide the feedback. Therefore, it was
necessary for the authors to use a mathematical model that not only includes tran-
scriptional dynamics but also metabolite dynamics. The result is a system of ODEs
that combines Hill function dynamics for the proteins and Michaelis-Menten and

mass-action kinetics for the metabolites.

The other network, constructed by Tigges et al., was created in mammalian cells [3].
This network made use of regulation at the mRNA level by creating both sense and

anti-sense mRNA of a coding region, as shown in Fig. 2.9. Anti-sense mRNA (i.e.
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Figure 2.9 : Sense and anti-sense mRINA interactions from the mammalian
synthetic gene oscillator [3]. A gene is flanked on either side by a promoter. The
“sense” promoter initiates the transcription (reading left to right in the above figure)
of sense mRNA, which is able to generate functional protein encoded by the gene. The
anti-sense promoter initiates backwards transcription of the gene (here right to left),
producing anti-sense mRNA. The anti-sense mRNA is unable to produce protein.
The sense and anti-sense mRNA can hetero-dimerize into a degradable complex.

the reverse compliment of the sense mRNA that cannot be translated) can bind to
the sense mRNA. The dimer cannot be translated and degrades faster than either
strand does alone. Because the sense-anti-sense dimer provides a new sink for the
sense mMRNA, the creation of the anti-sense mRNA is a form of negative regulation

of the protein that is translated from the sense mRNA.

While the mammalian oscillator contains transcriptional regulation, the presence of
regulation at the mRNA level increases the complexity of the network and the sub-
sequent modeling. One can extend the Hill-function based ODE models of transcrip-
tional regulation to include terms describing the kinetics of the mRNA species and

their interactions. Specifically, if one uses standard mass-action kinetics the resulting
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kinetics of the mRNA species can be modeled as:

ms = ks — kymsmg + kymg — ysms (2.40)
me = ko —kpmgmg + kemg — yamyg (2.41)
mg = kpmgmg — kymg — yama, (2.42)

where mg and m, are the concentrations of the sense and anti-sense mRNA, respec-
tively. The sense and anti-sense mRNA are created at some rate, either kg or k,,
which are functions of the associated transcription factor concentrations (not mod-
eled here). In addition, the two forms of mRNA can dimerize into an sense-anti-sense
dimer (my) with a forward rate k; and a reverse rate k,. All three forms degrade,

but the dimer will generally degrade more quickly.

As predicted for oscillators containing both positive and negative feedback, the oscil-
lator constructed by Tigges et al. exhibited tunable oscillations. The same authors

also used a similar mechanism to create a synthetic low-frequency oscillator [32].

2.4.2 Large-scale Modeling of a Dual Feedback Oscillator

There exists another form of the dual feedback oscillator that was created by Stricker
et al. [5]. While topologically it is not very different from the dual feedback oscilla-
tors described above, it deserves mention for several reasons. First, it is an extremely
robust oscillator — meaning that nearly every cell in the population oscillates and the
oscillations do not damp out. Second, the oscillatory period was tunable by control-
ling the extracellular concentrations of small molecule ligands. Finally, the modeling

of this oscillator goes beyond standard Hill-function ODEs, and in doing so highlights
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many of the problems that arise when using QSSA-based Hill function techniques.

The basis for the Stricker oscillator came from Hasty et al. [34], who proposed a
two-gene circuit consisting of a transcriptional activator that up-regulates both genes
(to provide positive feedback) and a repressor that represses both, as shown in Fig.
2.10(a). In this case, and provided the two promoters are identical, the ODEs might

take the form

1+ aa?
v = p, Y 2.43
CT Py gy (2:43)
1+ aa?
C =, — T, 2.44

where a and 7 are the (rescaled) concentrations of activator and repressor, respec-
tively; « is the fold-change of activated transcription; v, and ~, are the degradation
rates of the activator and repressor, respectively; and p, and p, are the basal tran-

scription rates.

In order for Eqgs. (2.43) and (2.44) to make sense, the promoter driving both genes
must be regulated by both the activator and the repressor. This can be achieved,
experimentally, by placing the regulatory elements (i.e. the DNA sequences that cor-
respond to the binding sites) of each transcription factor near the promoter [10]. The
derivation of equations like (2.43) and (2.44) is similar to that for promoters with a
single transcription factor input explained in Section 2.2.1. Instead of having just two
states for the promoter, however, all combinatorial possibilities of DN A-transcription
factor complexes must be taken into account. For instance, if there is one binding
site for the activator and one for the repressor then number of promoter states is 4:

unbound; bound by the activator only; bound by the repressor only; and bound by
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Figure 2.10 : The dual-feedback oscillator constructed by Stricker et al. [5].
(A) Circuit diagram of the oscillator. Negative feedback is provided by Lacl while
positive feedback is provided by AraC. Both genes are regulated by a hybrid promoter
that responds to both transcription factors. (B) Null-clines for the model system,
Egs. (2.43) and (2.44). Here, the green line is the nullcline for the activator equation
and the red line is the nullcline for the repressor. A solid line indicates stability while
a dashed line indicates instability. When the degradation rates of the two proteins
are the same the intersection of the two nullclines produces a stable fixed point.
(C) However, if the degradation rate of the activator is 5 times greater than that
of the repressor, the two nullclines intersect at an unstable fixed point — resulting
in limit cycle oscillations. (D) Experimentally measured normalized period of the
oscillator (red squares) and normalized induction strength of the promoter (in the
absence of feedback, black circles) as a function of IPTG. Interestingly, the period of
the oscillator appears to be proportional to the strength of the promoter at a given
concentration of IPTG. Figure adapted from Stricker et al. (2008) [5]..
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both activator and repressor. Each state of the promoter consequently has its own

rate of transcriptional initiation.

Figures 2.10(b) and 2.10(c) show nullclines for Eqs. (2.43) and (2.44) in two different
parameter regimes. The intersection of the two curves determines the fixed point
of the whole system. When the degradation rates of the two proteins is the same
(Fig. 2.10(b)), the intersection indicates a stable fixed point. However, if the degra-
dation rate of the activator is roughly 5 times greater than that of the repressor (Fig.
2.10(c)), the intersection of the two nullclines occurs in the region of the unstable

fixed point in the activator’s nullcline. In this case, the result is a stable limit cycle.

Experimentally, this synthetic gene oscillator consisted of two genes: the repressor
lacl and the activator araC. Each gene was driven by a synthetic hybrid Pac/ara—1
promoter, which is simultaneously repressed by Lacl and activated by AraC [10]. In
addition, the authors used ssrA tags to increase the degradation rates of the pro-

teins [6]. The circuit diagram for this network is shown in Fig. 2.10(a).

While the ODE model predicts relaxation oscillations, as described above, it was
found that the oscillations predicted by the QSSA model had little in common with
the oscillations actually observed in the experiments. In particular, the tunability
of the oscillator as a function of the ligand concentrations and the period of the os-
cillations were difficult to achieve in the the simple model when realistic parameters
were used. For instance, to achieve the fast periods (as low as ~ 15 mins), unrealisti-
cally fast protein degradation rates were required with half-lives on the order of a few

minutes. This is faster than any measured degradation rate mediated by ssrA tags [6].
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One clue as to the origin of the discrepancy was found in the correspondence be-
tween the period of the oscillator and the strength of the promoter (in the absence
of feedback). As shown in Fig. 2.10(d), the period of the oscillator is roughly pro-
portional to the promoter strength, as a function of the concentration of isopropyl
p-D-1-thiogalactopyranoside (IPTG, the ligand for Lacl). One possible explanation
for this behavior is the presence of dynamical delay in the system. As the promoters
begin to transcribe, they do so at a rate proportional to the induction level. There-
fore, before the repressor shuts off production, the amount of protein produced is also
proportional to the induction level. Then, enzymatic decay reduces the levels of both
transcription factors until the repressor reaches a low enough level that the promoters
can begin transcription again. If the time it takes for the burst of transcription to
happen is small compared to the decay time, then the total period of the oscillator is
controlled by the roughly zeroth-order enzymatic degradation of the protein. Hence,

the period will be proportional to the induction strength of the promoters [116].

Instead of introducing delay directly into their QSSA model, however, the authors de-
cided to expand the QSSA model by incorporating all known (or supposedly known)
reactions in the system, without reducing the model onto a slow manifold. The re-
sulting system of equations (which is too large to reproduce here) is considerably
more vast than the original QSSA model — going from 2 dimensions to a total of
27. By expanding the original 2 dimensional QSSA model, the authors pay the price
of increasing the number of unknown parameters. Still, the expanded model does a
much better job predicting the experimentally observed behavior of their oscillator

when compared to the original QSSA model [5].
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If delay were the cause of the oscillations, then the network might not need the posi-
tive feedback loop in order to oscillate. By manipulating their large-scale ODE model
to disable the positive feedback loop, they did indeed obtain fast, low amplitude os-
cillations. Informed by this computational prediction, the authors then went back
to their experimental system to create a related strain with only negative feedback.
Just as they had predicted, the strain did exhibit low amplitude oscillations. This is
the origin of the single gene delayed negative feedback oscillator discussed is Section
2.3.2. Further, the experimental findings of Stricker et al. showed that the system
containing just negative feedback was much less tunable than its dual-feedback coun-
terpart. This is in agreement with theoretical predictions made by Tsai et al. [152].
So, at least in this case, the addition of positive feedback to a negative feedback loop
produces oscillations that are more robust and tunable than those obtained from neg-

ative feedback alone.

2.5 Synthetic Multi-cellular Oscillators

The natural next step in the development of synthetic gene oscillators is to engineer
into them cellular signaling mechanisms that create population-wide oscillatory dy-
namics. The most common method for coupling gene expression among cells in a
population is to use quorum sensing systems from bacteria [154]. These systems use
an enzyme to metabolize S-adenosyl-methionine (SAM) into an N-acyl-homoserine
lactone (AHL), which can diffuse into and out of cells within the population and act
as a ligand for transcription factors. Quorum sensing systems have been used success-

fully in a number of applications, including synthetic gene circuits that are capable
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of cellular population control [155], spatial pattern formation [156], cellular photog-
raphy [88], programmed invasion of cancer cells [157], image edge detection [89], and

multicellular logic gating [158].

2.5.1 Synthetic Population Control Circuits

The first experimental realization of a synthetic circuit containing intercellular com-
munication that oscillates was reported by Balagaddé et al. [12]. To do this, the
authors used a combination of an existing synthetic circuit that was designed to con-
trol population size [155] and a microfluidic device [159,160] designed to act as a
micro-chemostat for microbial populations [12]. A schematic of the regulatory pro-

cess is shown in Fig. 2.11(a).

The cells in the population create a signaling molecule (AHL) that induces a cell death
pathway within each cell. As the population size increases, the concentration of AHL
also increases. The rise in AHL subsequently activates LuxR, which then up-regulates
the enzyme that causes cell death. Finally, the cell death enzyme down-regulates the
population size by killing cells. The topology of the whole system, which can be

thought of as a diffusive delay negative feedback loop, is depicted in Fig. 2.11(b).

The model used by Balagaddé et al. introduces us to two new aspects of modeling
synthetic gene circuits: cellular signaling and population dynamics. The growth

dynamics of the population can be written as

N = kN (1 — ]ifv ) —dEN — DN, (2.45)

m

where N is the number of cells in the chemostat. The first term on the r.h.s. of Eq.
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Figure 2.11 : The population control oscillator [12]. (A) Circuit schematic
for the population control circuit. The proteins LuxR and LuxI are constitutively
produced. LuxI creates AHL, which diffuses into and out of the cell. Cellular AHL
activates LuxR, which is then able to up-regulate the enzyme that causes cell death.
(B) Circuit topology of the model used to describe the strain in a microchemostat.
Note that it constitutes a negative feedback loop with diffusive delay. (C) The simple
model will oscillate under the right conditions. Shown is the cell density as a function
of time, obtained by integrating Eqgs. (2.45)-(2.48).

(2.45) represents logarithmic growth of the population, with maximum rate k and a
maximum population size N,,. The second term is the death rate of the cells, which
is proportional to a constant, d, and the amount of the enzyme, E, responsible for
fatality. Finally, the third term represents the eflux of the cells out of the chemostat

at a dilution rate D.

The enzyme that creates the AHL, LuxI, and the transcriptional activator that re-
sponds to AHL are both produced constitutively within each cell and hence their
cellular concentrations can be considered constant. Therefore, the production of the

AHL in the whole culture is proportional to the number of cells, and the amount of
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activated LuxR within each cell is proportional to the amount of AHL. This gives us

A = vuN—(ds+D)A (2.46)

R = kA —dgR, (2.47)

where A is the concentration AHL in the chemostat and R is the concentration of
activated LuxR in each cell. Finally, the enzyme that causes cell death is up-regulated

by activated LuxR, and therefore its dynamics can be approximated by
E =kgR—dgE, (2.48)

where kg is the coefficient for production, and dg is the degradation rate. If the
dilution rate of the chemostat, D, is tuned properly, the systems exhibits distinct

oscillations (Fig. 2.11(c)), which were confirmed experimentally.

Interestingly, Balagaddé et al. used the same microchemostat and similar gene cir-
cuits to create a synthetic ecosystem containing two distinct strains — a “predator”
strain and a “prey” strain [161]. Modeled after the classic predator-prey system [162],
the predator strain induced death in the prey strain, while the prey strain repressed
death in the predator strain. If conditions are right, theoretical models predict that
the population sizes of the two strains will oscillate. However, unlike the population
size control circuit which displayed robust stable oscillations, the predator-prey sys-

tem was much harder to tune experimentally.

2.5.2 The Synthetic Coupled Oscillator System

The study of coupled oscillators began when the Dutch physicist Christiaan Huygens

discovered that two pendulum clocks could synchronize their oscillations when hung



75

from a common support [163]. Since that time, physicists and mathematicians have
come a long way in understanding how systems of coupled oscillators coordinate their
behavior [164-166]. Synthetic biologists, too, have examined how oscillations in sin-
gle cells can be coupled to create population-level synchrony [145, 167-170]. While
the population control circuit constructed by Balagaddé et al. described above shows
oscillations at the population level in a chemostat, it does not actually constitute a
system of coupled oscillators. A system that does couple oscillations between cells

was constructed by Danino et al. [13].

Danino et al. used cellular signaling proteins that create and degrade AHL (LuxI and
AiiA, respectively). By placing the genes encoding these two proteins downstream
of a promoter regulated by LuxR (which was constitutively expressed), a dual feed-
back loop is created. Luxl creates AHL, which up-regulates transcription, while AiiA
destroys AHL, down-regulating transcription. The circuit diagram for this system is

shown in Fig. 2.12.

Like its non-coupled predecessor [5], the coupled system displays robust oscillations.
Danino et al. observed well-synchronized behavior of the oscillators once the cell den-
sity was high enough. Also, because the AHL had to diffuse through the population,
propagating waves of oscillations were apparent. Instead of the usual system of ODEs,
the authors had to use a system of partial differential equations (PDEs) to describe

the spatio-temporal dynamics.

The dynamics for the two proteins, AiiA (A) and LuxI (I), can be written as the
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Figure 2.12 : The coupled synthetic gene oscillator [13]. LuxI provides the pos-
itive feedback by creating AHL, which up-regulates the promoters via constitutively
produced LuxR. The enzyme AiiA provides the negative feedback by degrading in-
ternal AHL. Dynamical coupling of the cells is created by the diffusion of AHL out
of each cell, where it may spatially diffuse in the medium and diffuse into other cells.

following set of PDEs:

% . Qoa Tt OKAHE,T _ VaA (2.49)
ot K2+ H?. Ky +(A+1) '
ol oo ol Vi1 (2.50)
ot K2+ H?,  Kn,+(A+1) '

where the production of both proteins is a time-delayed function of the internal con-
centration of AHL (H;, where the 7 denotes the time delay), which up-regulates the
promoters via an interaction with the constitutively produced LuxR (which is not
modeled). Here, ag; (i € {4,I}) is the basal and «; the activated rate of protein
synthesis. In addition, the two proteins were tagged for degradation by the same
protease, and hence decay with a coupled enzymatic process, with Michaelis-Menten
constants V; and K,,. Note that while Egs. (2.49) and (2.50) are similar to the ODE

models previously described, they are still functions of space.

The spatial dependence of the system is more evident in the dynamical equations for
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the internal and external concentrations of AHL (H; and H.,, respectively). These

equations are

OH; V.1 kAH,
o K+l EKntH D(H. = H,) (251)
oH, 9°H,

= —D,.(H,— H;) — pH, + D, ——¢, 2.52
T ( ) = uHe + D1~ (2.52)

where internal AHL is created enzymatically by LuxI, with constants V. and K; and
degraded enzymatically by AiiA with constants k and Ky (because AiiA is a variable,
its concentration cannot be wrapped up into the normal Michaelis-Menten constant
in the numerator). The diffusion of AHL into and out of the cell is modeled by a two-
state diffusion process, with rates D (internally) and D, (externally). The difference
in these two rates is due to mass conservation (see [13]). Externally, AHL can be lost
due to fluid flow through the chamber, at a rate p, and is free to spatially diffuse
(here in one spatial dimension) with diffusion constant D;. In addition, Danino et
al. were also able to model the effect of cellular density on the system. High cellular
densities reduce protein production rates, but also change the effective external rate

diffusion of AHL into and out of the cells, D, [13].

2.6 Synthetic in vitro Gene Oscillators

One reason to create synthetic gene circuits is that they can be partially decoupled
from the hosts’ own regulatory processes. Of course, decoupling is far from com-
plete, as synthetic networks still rely on the hosts’ machinery to drive the reactions.
Some researchers have taken the concept of decoupling the circuit from the cell even
further in an attempt to analyze, in detail, every reaction that occurs in a circuit.

This is done by using in vitro transcriptional systems that mimic in vivo regulatory
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processes [14,90,171,172]. For instance, Kim et al. demonstrated that ultrasensitive
bi-stable switches could be constructed in vitro using DNA, RNA, and two enzymes:
bacteriophage T7 RNA polymerase and E. coli ribonuclease H [172]. These networks

have been extended to create cell-free oscillators [14,90].

Of particular interest is the work of Kim et al. in which they construct several differ-
ent circuits that exhibit oscillations: negative feedback, coupled negative and positive
feedback, and a three ring repressive circuit akin to the repressilator [14]. The basic
components of all of these designs are the same: 1) DNA switches that are partially
double-stranded (so they cannot be transcribed); 2) single stranded DNA oligos that
complete the partially double stranded strands (and hence allow transcription to pro-
ceed); 3) RNA strands transcribed from the DNA that form DNA-RNA hybrids with
the single-stranded DNA oligos; and 4) enzymes that make and degrade RNA (RNA
polymerase and ribonuclease H, respectively). By carefully designing the sequences of
the DNA and oligos, the RNA products can either up- or down-regulate downstream

components within the system.

As an example, let us examine the negative feedback circuit depicted in Fig. 2.13. The
circuit is comprised of two DNA switches (Sw21 and Sw12) that, when in the “ON”
state, can be transcribed to generate the RNAs rI2 and rA1, respectively. These two
RNAs act to regulate the state of the switches: rI2 inhibits Sw12 and rAl activates

Sw2l.

To model these networks the authors used a combination of methods. First, they

analyzed “simple” models. For instance, the simple model for the negative feedback
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Figure 2.13 : An in vitro negative feedback oscillator [14]. (A) The design uses
two “genes,” to form a two-step negative feedback loop. Here, the genes are DNA
switches (labeled Sw21 and Sw12). The products of these two genes (rI2 and rAl)
act to either inhibit or activate their downstream targets. (B) Each DNA switch is
controlled by partially double-stranded DNA. Here, we show Sw21 as an example.
Sw21 is controlled by the DNA strand T21. When unbound, T21 is in the “OFF”
state and cannot be transcribed. However, if the olgio A1 binds to form the T21A1
complex, the switch is turned “ON” and is free to create RNA rI2. The sequence of
rI2 is such that it can bind to the oligo A2. When bound to rI2, A2 cannot bind to
T12, the DNA controlling the switch Sw12. Hence rI2 acts to repress Sw12. However,
RNaseH can degrade rI2 to free up A2. The switch Sw12 works in a similar fashion.

circuit can be written as

WA~ k11242 — kfra (2.53)
A o - k) (2.54)
d[T12A2] B [TthOt]
Taw TRy A 2
AT21A1]  [T21fr AL
g = gmrpane - 241 (2.56)

where [T'12A2] and [T21A1] are the concentrations of the “ON” state DNA switches
and [rAl] and [rI2] are the concentrations of their respective RNA products. Each
RNA is transcribed from its respective DNA at a rate k, and is degraded at a rate
kq. Earlier work by the authors had shown that steady-state concentrations of the

ON-state switches is well-modeled by Hill functions [172]. Here, this is represented
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in Egs. 2.55 and 2.56. Note that, in the steady state, these two equations give

T1242] — [Tuwt]H(WlQ] " (2.57)
[121A1] = [T21t0t]%, (2.58)

where n and m are Hill coefficients, K; and K, are Hill constants, and [T'12"
and [T21%"] are the total concentrations of switch DNA (for instance [T12%f] =
[1'12] + [T'12A2]). The constant 7, in Egs. 2.55 and 2.56 then gives the time scale of

relaxation of transient perturbations away from these fixed points.

While simple models, like that shown above, helped the authors determine where
in the design space they should expect oscillations, it was found that they did a
poor job quantitatively describing the experimentally determined dynamics. In an
attempt to gain quantitative agreement, they developed more detailed models that
took into account all known reactions in each system. While these models are too
large to reproduce here, it should be noted that they, too, had difficulty predicting
the measured dynamics of the networks. The authors suggest that the presence of
waste products and finite levels of materials and energy were primarily responsible for
the discrepancies and lack of robustness. Still, this study exemplifies the difficulties

inherent to modeling the dynamics of complex biochemical regulatory networks.

2.7 Discussion

One of the most compelling reasons to construct synthetic gene oscillators is that
they provide a simple, yet highly dynamic, genetic regulatory process and thus pro-

vide more data than do circuits exhibiting only steady-state behavior. Synthetic gene
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oscillators are therefore a valuable platform with which to test mathematical models
of gene regulation. Thanks to the experimental construction of the various synthetic
oscillators, mathematical models describing gene oscillations have evolved. We now
have a better handle on what processes are important to the dynamics of gene regu-

lation.

Still, we have a long way to go before we can say that we truly have a grasp of
the dynamics of synthetic oscillators. There exist many factors influencing cellular
and genetic regulatory processes not mentioned above that are usually ignored in
most mathematical models. To make matters worse, the production of protein itself
can influence cellular growth rates, creating a feedback loop [173]. Another major
problem is that the number of non-specific reactions between the biochemical species
is unknown.

If full-scale models of in witro systems still have difficulty, however, what hope is
there for mathematical models of synthetic gene oscillators in vivo? Certainly some
large scale modeling of in vivo synthetic gene oscillators have, at least to some extent,
accurately predicted experimental results — such as the model of the dual-feedback
oscillator by Stricker et al. [5]. But the model created by Stricker et al. had an inordi-
nate number of unknown parameters that had to be fit and many reactions within the

circuit that had to surmised. This makes such modeling a tiresome and inexact affair.

At what level of detail, then, does one need in order to accurately model synthetic
gene circuits? As of yet there is no easy answer to this question, and the question
itself is one reason why synthetic gene oscillators are such an attractive model system

for theorists and synthetic biologists.
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Chapter 3

Experimental Materials and Methods

3.1 Microfluidics and Synthetic Biology

Microfuidic devices are an important microscopy technological advancement for syn-
thetic biology and integral part of synthetic gene circuit development. It is critical to
collect data at the single cell level to make conclusive statements about the real time
dynamics of synthetic gene circuits. Microfluidic devices offer a balance of continuous
real time data collection with population level statistics over long periods of time.
This type of data is integral to the mathematical analysis needed to measure the
dynamic response to changes or perturbations by the the synthetic gene circuit. The
fluorescence data generated from these experiments can be accurately measured over

time using tracking algorithms that follow cells through the cell trap area over time.

3.2 Bacterial Microfluidic Design

For the ssrA degradation with the dual feedback oscillator experiments, the four
port microfluidic device designed by the Hasty lab was used for all experiments [5].
The single substrate ssrA degradation experiments needed a microfluidic device that
contained a “dail-a-wave” (DAW) design which allows for the rapid and accurate
switching between two distinct medias. The Hasty Biodynamics lab had previously
developed a DAW device for tailored for imaging bacteria. This DAW device of-

fered more than binary switching, allowing for incremental mixing of the two distinct
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Figure 3.1 : Comparison of DAW Designs. (A) The incremental mixing DAW
on the E.coli DAW microfluidic device design. (B) The simpler S. ceresiae DAW
microfluidic device design.

medias (Fig. 3.1(A)). Additionally, they had also developed a simpler binary DAW

device tailored for Saccromyces ceresiae (Fig. 3.1(B)).

For the single substrate degradation experiments, binary control would be sufficient,
simplify workflow, and calibration of the microfluidic device considerably for each
experiment. With the clean room facilities at Rice, it was possible to construct a
simpler E. coli DAW microfluidic device. The trapping region of the yeast microfluidic
device is show in Fig. 3.2 (A), where the green region traps the cells and the blue
region acts as channels for media to enter and waste to leave. To accommodate for
the fluid dynamic constraints of making a trap region small enough for a bacteria cell,
four new designs were proposed (Fig. 3.2 (B-E)). Ultimately, none of these designs
were operational and the more complicated incremental DAW was fabricated for this

work.
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Figure 3.2 : Reduced complexity DAW design options for bacteria. (A) The
yeast DAW trap design, where green indicated the cell trapping area and the blue
are channels that bring fresh media to cells and remove waste. To accommodate for
the reduced trap height for bacteria and comply with fluid dynamic constraints, the
in coming channel needed to be modified. The following modifications were proposed
(B) Shunts off the main channel that would aid pushing waste out of the trap area.
(C) Making the trap area more oval to shorten the main incoming channel. (D)

Decreasing the size of the whole trapping area. (E) Keeping the in coming channel
and trap area the same, but reduce the size of exit channels.

3.3 Construction of Plasmids and Molecular Biology Proto-

cols
3.3.1 Construction of Single Substrate Degradation Plasmids

To quantify the degradation rates of each ssrA tag variant, a set of plasmids was
constructed using a pET28 plasmid backbone (Table 3.3.1). Each plasmid was
consisted of the IPTG inducible promoter p;_j..01 promoter, yemGFP (monomeric
yeast-enhanced green fluorescent protein) with the ssrA LAA degradation tag vari-
ant sequence added to the C-terminus. Once this plasmid was constructed, PCR
mutagensis was used to change the last three amino acids into the LVA, AAV, and
ASV variant. To create a plasmid with no degradation tag on GFP, to measure the
degradation rate due to cell growth and division, the “T-S” linker between the was

changed into a Spel restriction enzyme site using PCR mutagenesis. With Spel sites
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Plasmid Name Opening Reading Frame Backbone, Resistance

pET28-GFP-LAA  pr_jucor:yemGFP:TS:LAA ColE1, kan”
pET28-GFP-LVA  pr_ieco1:yem GFP:TS:LVA ColE1, kan®
pET28-GFP-AAV  pr_jeco1:yemGFP:TS:AAV ColE1, kan®
pET28-GFP-ASV  pr_jaco1:yemGEP:TS:ASV ColE1, kan®
pET28-GFP-NT Pr—taco1:yemGEFP ColE1, kan®

Table 3.1 : Catalog of Single Substrate ssrA Degradation Plasmids

flanking the degradation sequence, the ssrA tag could then be removed using Spel

digestion, and self-ligated to reform a functional plasmid.

3.3.2 Construction of Dual Feedback Oscillator Plasmids

The dual feedback oscillator ssrA variant plasmids were constructed from strains
supplied from the Hasty lab [5] (Table 3.3.2). AraC-LAA and GFP-LAA were con-
structed on the same ColE1 plasmid. Lacl-LAA was constructed on a p15A plasmid.
To modify the ssrA degradation tag on AraC, a segment of the plasmid containing
GFP-LAA was removed using the restriction enzymes Nhel and Apall and self-
ligated back together. Removing the GFP-LAA segment guaranteed that only the
AraC ssrA tag was modified. Once removed, site directed mutagenesis was used to
change the last three amino acids to LVA, AAV, and ASV. Once the variations of
the ssrA degradation tag were made, GFP-LAA was reinserted back into the plas-
mid. To create a variant of the plasmid containing AraC with no degradation tag,

the last six nucleotides of the degradation tag sequence were mutagenized to a Spel
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Plasmid Name Opening Reading Frame Backbone, Resistance
pZAl4-Lacl-LAA PLac/Ara:lac:sstA-LAA p15A, amp®
pZA14-Lacl-LVA Prac/Ara:lacl :sstA-LVA pl5A, amp”
pZAl4-Lacl-AAV PLac/Ara:lact :ssTA-AAV p15A, amp®
pZA14-Lacl-ASV PLac/Ara:lac] :sstA-ASV p15A, amp”
pZA14-Lacl-NT PLac/Ara:lact pl5A, amp”
pJS167-AraC-LAA  proc/ara:yemGFP:sstA-LAA, procjara:yemGFPsstA-LAA pBR322, kan®
PZA14-AraC-LVA  Droc/ara:yemGFP:sstA-LVA, proc/ara:yemGFPsstA-LAA pBR322, kan®
PZA14-AraC-AAV  Drac/ara:yemGFP:sstA-AAV, DProcjara: yemGFP:sstA-LAA pBR322, kan®
PZA14-AraC-ASV  prgc/ara:yemGFP:sstA-ASV, proc/ara:yemGFP:sstA-LAA pBR322, kan’
pZA14-AraC-NT PLac/Ara:YeMGFP, PLoc/ara:yemGFP:sstA-LAA pBR322, kan®

Table 3.2 : Catalog of Oscillator ssrA Degradation Plasmids

site. The plasmid was originally constructed with a “T'S” linker between the protein
and degradation sequence is also a Spel site. Using the Spel restriction enzyme,
the degradation tag was removed and the plasmid was self ligated. To change the

degradation sequences on Lacl site directed mutagenesis was used to change the last

three amino acids from LAA to LVA, AAV, and ASV.

3.3.3 Construction of Orthogonal Degradation Plasmids

Orthogonal degradation tag plasmids were built using insertion mutagenesis, except
RepAm, which was inserted with isothermal assembly. The pET28-GFP-NT (No
Tag) was used a plasmid template to construct each orthogonal degradation plasmid

(Table 3.3.3).
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Plasmid Name Opening Reading Frame Backbone, Resistance
pET28-RepA-GFP Pr—taco1:RepA:TS:yemGFP ColE1, kan®
pET28-GFP-SulA Pr—taco1:yemGFP:TS:SulA ColE1, kan®?

pET28-GFP-GGSPG-SulA  pr_jeco1:yemGFP:GGSPG:SulA ColE1, kan®?
pET28-GFP-PAPAP-SulA  pr_jeco1:yemGFP:PAPAP:SulA ColE1, kan®
pET28-GFP-SoxS Pi—taco1:yemGFP:TS:SoxS ColE1, kan”
pET28-GFP-GGSPG-SoxS  pr_ieco1:yemGFP:GGSPG:SoxS ColE1, kan”
pET28-GFP-PAPAP-SoxS  pr_iuco1:yemGFP:PAPAP:SoxS ColE1, kan®
pET28-GFP-108 PL_taco1:yemGFP:TS:cI108 ColE1, kan®
pET28-GFP-104 PL_taco1:yemGFP:TS:c1104 ColE1, kan®
pET28-GFP-5Gal PLtaco1:yemGFP:TS:Gal ColEl, kan®
pET28-5Gal-GFP Pr—taco1:8Gal:TS:yem GEFP ColE1, kan®

Table 3.3 : Catalog of Orthogonal Degradation Plasmids

3.4 Single Cell Time Lapsed Microscopy using Microfluidic

Devices

Cell Culture and Media

Single substrate plasmids were transformed into JS006 LT cells and plated on LB agar
+ 50 pg/mL of kanamycin. A single colony was selected to inoculate an overnight
culture that did not exceed 18 hours. To prepare cells for the microfluidic device, 25
L of the overnight culture was diluted into 25 mL of LB + 2 mM of IPTG + 50
pg/mL of kanamycin and allowed to grow until an ODsoo of 0.15 was reached. In the
microfluidic device, cells grow in the presence of inducer for an additional two hours,
after which the inducer was removed and the decay of green fluorescence observed by

images recorded every three minutes. Red fluorescent dye was added to the inducing
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media to ensure the complete removal of the inducer.

Oscillator plasmids were transformed into JS006 LB agar + 50 pg/mL of kanamycin
+ 50 pg/mL of ampicillin. A single colony was selected to inoculate an overnight
culture that did not exceed 18 hours and 25 uL of the overnight culture was diluted
into 25 mL of LB + 50 ug/mL of kanamycin + 50 pg/mL of ampicillin and allowed
to grow until an ODeoo of 0.15 was reached. On the microfluidic device, circuit
dynamics are activated by the addition of 2 mM IPTG and 0.7% arabinose in LB.
The dynamics were observed at single-cell resolution using microfluidic devices and

time-lapse microscopy, with images recorded every three minutes [37].

3.5 Image Analysis of Single Cell Time Lapsed Microscopy

Experiments
3.5.1 Segmentation

Segmentation of gray scale images is done manually. All gray scale images must be
segmented before running through the MatLab algorithm (Fig. 3.3). Segmentation is
the designation of an area of pixels that represents a cell. Segmenting each cell over
the course of an experiment removes the need for the algorithm to (1) differentiate
the area of a cell from the image background and (2) decide when a cell division event

has occurred.

3.5.2 MatLab Tracking Algorithm

The tracking of cell lineage across images was done using a custom cell-tracking algo-

rithm written in Matlab (available at github.com/alanave/rodtracker). For each cell,
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Figure 3.3 : Segmentation files for a Completed Scope Run. Every cells on each
image of a microfluidic experiment is segmented, which allows for easy discrimination
of the pixel cell area from the background by the MatLab algorithm.
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(', in an image the position and length is determined, Po = (z,y) and L, respec-
tively. Then, all cells were found in the next image whose position P,.,; was near P,
that is |Po — Prest| < dmove- The parameter dp,e equals the maximal movement of
a cell from one frame to the next. From the cells satisfying this criterion, cells were
selected with length Ly, similar to Lo, that is |Le — Lpext| < dgrowtn- The param-
eter dgrouen €quals the maximal expected growth between frames. All pairs of cells
whose length Lyepe 1 and Lyeg o approximately added up to Le were also found, that
is |[Le — (Lnextn + Lnext2)| < dgrowen- With this criteria, a ‘lineage graph’ was created
where each cell in an image had a set of possible transitions from one image to the
next. Fach transition corresponded to either movement between frames connecting
the cell to a single descendant, or division and movement, connecting a cell to two

descendants.

This graph was then reduced by removing inconsistent transitions (e.g., a cell can
only have one possible location in the next image or two locations if it divided).
The reduced graph was further reduced by only selecting transitions that minimized
Y el o(ILe = Lneat| + | P — Preat|). The final graph consisted of transitions where
each cell is associated with a unique cell (if the cell moved) or two cells (if the cell
moved and divided). The lineage trajectories were then computed using the lineage

graph and the fluorescence data.

MatLab Tracking Algorithm
Workflow
Input: Files with segmented cells (Fig. 3.4(A)).

Output: CSV file with lineage trajectory (Fig. 3.4(C)).



91

Figure 3.4 : Simplified workflow for tracking cells in microfluidic exper-
iments. (A) Segment cells on gray scale images to easily distinguish cells from
background and clearly indicate a division event. (B) Run segmented gray scale im-
ages through the MatLab tracking algorithm. This algorithm takes statistical guess
to mapping cells from the previous image to the subsequent one. If it is confident in
the guess, the cell with be dark blue on the previous image and red on the subsequent
image. If it is unsure the cell will be cyan on the previous image and magenta on the
subsequent image. Lastly, if it has no clue, the cell will be white. If it is a new cell
emerging into the image, it will appear yellow. (C) Once cell are tracked through
the experimental run, MatLab maps the pixels on the gray scale images onto the flu-
orescent images and measures the fluorescent intensity at those locations. The final
output of the algorithm is a graph of fluorescence over time.
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Requirement: Matlab with image processing toolbox (parallel computing toolbox

is optional) (Fig. 3.4(B))

Tracking Cells from Frame to Frame
1. Set up the correct parameter values.
2. Run read_data_fun to load data in MatLab.

3. Run graph_manualcorrection_fun to do manual correction of cells yellow cells.
You can switch between the current and next frame with “right click”. To
manually declare the lineage of a cell click on a cell in the “current frame”; then
click on the two daughter cells (or twice in the same cell if it did not divide) in
the “next frame”. After a manual correction press ENTER to save it. If there
are no more yellow cells in the current frame press ENTER to continue to next

frame (Table 3.5.2).
4. Run graph_red_fun to do trivial corrections.

5. Run graph_manualcorrection2_fun to check that there are no yellow cells in any

current frame. Manually correct (as in step 3) if necessary.
6. Run check_for_errors_fun to look for errors in step 5 (repeat step 5 if necessary).
7. Run graph_optimization_fun to get the most likely movement of cells.
8. Run getdata_fun to get fluorescence data in mat file.

9. Run getdata_csvfile_fun to save data in CSV format. The CSV file will have the

lineage trajectories in the following tree format.
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Cell Color Color Code Interpretation Action Required
Blue Cell in current frame with exactly 1 candidate (or exactly None, correct tracking event.
2 daughter cells) in the next frame.
Cyan Cell in current frame with more than 1 candidate (or Select correct cell in next frame.
more than 2 daughter cells) in the next frame.
White Cell that apparently disappeared from current frame. Find correct cell or if left image field, select background.
Red Cell in next frame with exactly 1 candidate in the current  None, correct tracking event.
frame.
Magenta Cell in next frame with more than 1 candidate in the Select correct cell in previous frame.
current frame
Yellow Cell that apparently appeared in next frame Occurs when a cell divides or was incorrectly segmented.

Select daughter cells or fix segmentation.

Table 3.4 : Matlab Tracking Algorithm Color Code and Necessary Actions
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Chapter 4

Understanding the Role of Protein Degradation on
Synthetic Gene Circuits

Synthetic biology seeks to understand endogenous gene networks by breaking down
complex gene networks into simple components. Synthetic gene circuits are built from
mathematical predictions and are characterized experimentally. First-generation syn-
thetic biology studies aimed to create a library of orthogonal parts that could be mixed
and matched to facilitate circuit construction [174]. Extensive research has been con-
ducted on the construction of new promoters, activators, and repressors; however,
protein degradation in synthetic gene circuits has been restricted to the ssrA degra-
dation system. Most synthetic circuits utilize degradation tags to normalize and
speed up the rate of degradation for circuit components. Protein degradation tags
are essential for synthetic gene circuit dynamics as they accelerate protein dynamics
and preventing the build-up of circuit proteins that could impact circuit behavior.
The ability to vary protein degradation rates allows greater control of the dynamics

of synthetic gene circuits.

Currently, ssrA C-terminal degradation tags are still widely, but blindly, used in
synthetic gene circuits to control the degradation rate of circuit proteins. E. coli na-
tively uses the ssrA degradation system as a way to tag protein fragments for prompt
degradation by the carboxy terminal-specific proteases ClpXP and CIpAP [38, 175].

This ssrA degradation tag is an 11-amino acid peptide tag that is placed on the C-
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terminus of a protein fragment on a stalled ribosome [39,53]. Previously published
data showed that changing the last three amino acids of the consensus sequence
(AANDENYLAA) alters the ability of the protein to bind ClpX, and thereby varying
the amount of time required to degrade a tagged protein [6]. In Andersen et al. [6],
relative degradation rates in bulk culture were established for each of these ssrA
degradation tag mutants. The wild-type LAA exhibited a similar degradation rate to
the mutant LVA [6]. Changing the last three amino acids to AAV and ASV slowed the
bulk degradation rate significantly. Although relative bulk culture degradation rates
were examined, these ssrA degradation tags have not been quantified at single-cell
resolution. Assigning a degradation rate to each of these tags and understanding the
influence of degradation on synthetic gene circuit dynamics can allow for better design
and construction of circuits. Degradation rates are often computationally modeled
using exponential decay equations. However, proteins degraded through the ClpXP
machinery would more accurately be modeled through nonlinear kinetics. This work
uses a simple inducible single substrate system to quantify theA degradation variants.
Single cell analysis of this system provides more appropriate data for more extensive

computational modeling of these degradation rates.

Once degradation rates are assigned to each ssrA degradation tag mutant, we can
isolate the effects of varying this parameter on synthetic gene circuit behavior. To
quantify these effects, we used the well-studied (experimentally and computationally)
dual feedback oscillator as a “model” synthetic gene circuit. The dual feedback two
gene oscillator was built using the lactose repressor protein, Lacl, and a regulator of
the L-arbinose operon, AraC (Fig. 4.1 (A)) [5]. A hybrid promoter (piuc/ara—1) [10]

was engineered to allow both AraC and Lacl to competitively bind, to regulate the
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Figure 4.1 : The Dual Feedback Oscillator. (A) The dual feedback oscillator was
constructed of an activator (AraC), a repressor (Lacl), a fluorescent reporter (GFP).
(B) The interconnected circuit topology yields sustain oscillatory behavior. Figured
adapted from [5].

activity of this promoter. In the dual feedback oscillator, this hybrid promoter con-
trols the expression of araC, lacl, and yemGFP. Activation of the synthetic oscil-
lator begins with externally added arabinose, inducing the expression of AraC, and
repression is modulatedbwith the addition of isopropyl g-D-1-thiogalactopryanoside
(IPTG), which induces Lacl dissociation and allows expression of the genes under its
control. As AraC accumulates, it induces its own expression and that of Lacl. As the
Lacl protein concentration increases, the repressor protein shuts down the expression
of GFP, AraC, and itself. The activation and repression of GFP expression yields
measurable fluorescencet oscillations (Fig. 4.1 (B)). All proteins are enzymatically

removed from the circuit through the ssrA LAA degradation tag variant by ClpXP.

Utilizing the dual feedback oscillator as a model synthetic circuit allows for the analy-
sis of varying degradation rates on overall circuit dynamics, both experimentally and
computationally. The goal of this work is to determine a single substrate degradation

rate for each ssrA degradation tag variant with single cell resolution, and determine
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the effect of varying degradation rate in a synthetic gene circuit on the overall circuit
dynamics. Understanding the role of degradation on dynamics allows for the ability

to further tune synthetic gene circuits.

4.1 Gene Network and Experimental Design
4.1.1 Single Substrate ssrA Degradation Quantification

In order to understand the role of degradation in synthetic gene circuits, it was nec-
essary to first quantify the degradation rate of each ssrA degradation tag variant on a
single substrate. In our single substrate system, protein degradation due to dilution
by cell division and enzymatic degradation of ClpXP combines to contributed to the
overall protein degradation rate. Generally, as a cell divides, the overall number of
proteins in a cell is divided between the two daughter cells. This degradation due
to dilution rate was accurately quantified in our experimental system by measuring
the protein disappearance rate of GFP with no ssrA degradation tag attached to the
C-terminus of the protein. When the ssrA degradation tag was present, enzymatic
degradation also occurred. The ssrA degradation tag directed the GFP to be enzy-
matically degraded, specifically by the ClpXP degradation machinery. Changing the
last three amino acids of the 11-amino acid tag caused instability in the binding to
the ClpX subunit of the ClpXP degradation machinery, thereby slowing recognition

of the tag and ultimately decreasing the enzymatic degradation rate.

A set of plasmids was constructed using a pET28 plasmid backbone to analyze the

degradation rates of each ssrA tag variant. Each plasmid was constructed with the
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Figure 4.2 : General plasmid design for single substrate degradation exper-
iments. Single substrate degradation plasmids have a pET28 Kan® backbone with
the IPTG inducible promoter pr_j..01 regulating the expression of gfp-ssrA.

IPTG inducible promoter pj_jac01 promoter, yemGFP (monomeric yeast-enhanced
green fluorescent protein), with the sstA LAA degradation tag variant sequence added
to the C-terminus (Fig. 4.2). Once this plasmid was constructed, PCR mutagenesis
was used to alter the last three amino acids, to yield the LVA, AAV, and ASV vari-
ants. In order to create a plasmid with no degradation tag on GFP (to measure the
degradation due to dilution rate by cell growth and division),the T-S linker between
the protein and the tag was altered to a Spel restriction enzyme site using PCR mu-
tagenesis. With Spel sites flanking the degradation sequence and, te ssrA tag wereas
tn be reved using Spel digestion. Then the plasmid was self-ligated to reform a func-

tional plasmid.

To create a measurable single substrate system, the IPTG-inducible promoter pLac01
was used to drive the expression of GFP. The ssrA degradation tag was added to the
C-terminus of GFP by insertion mutagenesis. Site-directed mutagenesis was used to

change the last three amino acids for each variant. After this system was built on a
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pET28 high-copy number expression plasmid, it was transformed into JS006 compe-
tent cells [5] with Lacl integrated back into the genome. Cells transformed with this
plasmid system were induced with 2 mM IPTG to activate GFP expression prior to
loading on the microfluidic device to ensure a saturating steady state level of fluores-
cence. Once loaded, these cells grew in the presence of inducer for an additional two
hours, after which the inducer was removed and the decay of green fluorescence was
recorded over time. Red fluorescent dye was added to the inducing media to ensure

the complete removal of the inducer (Fig. 4.3).

Time-lapse single cell microscopy was used to accurately measure the single sub-
strate fluorescence degradation rate of each of the ssrA degradation tag variants.
A custom microfluidic device that wllows rapid switching between inducing media
and non-inducing media was used. The custom microfluidic device used a dial-a-wave
junction to rapidly and accuratly switch between two distinct medias (Fig. 4.4(A-Red
Circle, B)). This transition from inducing media to non-inducing media was nearly in-
stantaneous and took less than three minutes for the red dye to no longer be detected
(Fig. 4.4(C)). The single substrate plasmid (pET28-GFP-ssrA) was transformed into
JS006 LT cells and plated on LB agar + 50 pg/mL of kanamycin. A single colony was
selected to inoculate an overnight culture that did not exceed 18 hours. To prepare
cells for the microfluidic device, 25 puli of the overnight culture was diluted into 25
mL of LB + 2 mM of IPTG + 50 pg/mL of kanamycin and allowed to grow until an

ODeoo of 0.15 was reached.
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Figure 4.3 : Experimental design for quantifying single substrate degrada-
tion rates. (A) JSOOG6 LT cells were transformed with the single substrate pET28
plasmid were induced with 2 mM IPTG (indicated by the presence of red fluores-
cence) for two hours. GFP fluorescence increased during this time. Then, the in-
ducing medium was rapidly and accurately removed from the cells and replaced with
non-inducing medium. (B) Fluorescence decay was measured over time.
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Figure 4.4 : Microfluidic setup for single substrate degradation experiments.
(A) Bacterial DAW microfluidic design, where green indicates the cell trapping area,
orange indicates the choatic mixers that thoroughly mix the ratios of media coming
from the DAW (circled in red). M; and My are media ports, Wp is a water balance
for the DAW, C is the cell port, where cells are loaded into the device, and Wy is
the waster port. (B) Appearance of the DAW at 0% inducing media, 50% inducing
media, and 100% inducing media. (C) Tmages at 0 and 33 min of cells growing in
100% inducer (2 mM IPTG). Image at 48 min of the trapping regions, as media is
being removed from the system. Images at 54 through 90 min showing cells growing
in the absence of inducers; fluorescence decay is observed.
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Figure 4.5 : General plasmid design for the dual feedback oscillator two-
plasmid system. The repressor plasmid (pZAl4Lacl) has a p15A Amp” backbone
with the hybrid promoter pjqc/arq regulating the expression of lacI-ssrA. The activator
plasmid (pJS167 AraC-GFP) has a pBR322 Kan® backbone with the hybrid promoter
DPlac/ara Tegulating the expression of araC-ssrA and gfp-laa.

4.1.2 ssrA Degradation Variants for Dual Feedback Oscillator Compo-

nents

The dual feedback oscillator strains were supplied from the Hasty lab [5]. AraC-
LAA and GFP-LAA were constructed on the same ColEl plasmid. Lacl-LAA was
constructed on a pl5A plasmid (Fig. 4.5). To modify the ssrA degradation tag on
AraC, the segment of the plasmid that contained GFP was removed using the re-
striction enzymes Nhel and ApalLl, followed by self-ligation of the plasmid. Once the
GFP-LAA section was removed, site-directed mutagenesis was used to change the last
three amino acids to LVA, AAV, and ASV. After the variations of the ssrA degrada-

tion tag were made, GFP was reinserted back into the plasmid. To create a variant
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of the plasmid containing AraC with no degradation tag, the last six nucleotides of
the degradation tag sequence were mutagenized to an Spel site. The plasmid was
originally constructed with a “T'S” linker between the protein and degradation se-
quence is also a Spel site. Using the Spel restriction enzyme, the degradation tag
was removed and the plasmid was self-ligated. After all modifications to the AraC
degradation sequences were made, GFP was re-ligated back into the plasmid. To alter

the degradation sequences on Lacl, site-directed mutagenesis was used to change the

last three amino acids from LAA to LVA, AAV, and ASV.

After individual degradation rates were measured for each ssrA variant constructed,
we wanted to understand how changing the degradation rate on the activator, AraC
and on the repressor, Lacl, in the dual feedback oscillator would alter the observed
circuit dynamics. Experimentally, the two plasmids were transformed into JS006
competent cells. To activate circuit dynamics, transformed cells were grown in 2 mM
IPTG and 0.7% arabinose. The dynamics were observed at single-cell resolution us-
ing microfluidic devices and time-lapse microscopy, with images recorded every three

minutes (Fig. 4.6) [37] .

4.2 Results and Discussion

Fluorescence degradation was assumed to begin when the inducer was removed indi-
cated by the absence of red fluorescence. The maximum fluorescence values varied
for each degradation tag, ranging from 1,500-12,000 A.U. for all of the tags. GFP-
LAA had the lowest fluorescence and both GFP-ASV and GFP-NT had the highest

fluorescence values that were four times higher than GFP-LAA. The maximum fluo-
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Figure 4.6 : Experimental design for quantifying the effect of degradation
on the dual feedback oscillator. (A) Degradation of circuit components, AraC
and Lacl, were varied by altering the ssrA degradation tag variant located at their
C-terminus. (B) The Hasty four-port microfluidic device was used to image all dual
feedback oscillator microfluidic runs. (C) Cells were tracked over time, and their
fluorescence measured and plotted to calculate changes in oscillation behavior.
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Figure 4.7 : Enzymatic degradation mathematical models accurately predict
experimental results. (A) Experimental single-cell, single-substrate degradation
data for each ssrA variant. From these experimental data, a model was built to
calculate degradation rates for each ssrA variant. (B) Mathematical simulation of
the experimental data. The model accurately fits the experimental data.
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Figure 4.8 : Degradation models that do not use nonlinear dynamics fail
to accurately model enzymatic degradation data. Red arrows indicate gaps in

exponential model fit to experimental data. This is model does not capture enzymatic
degradation dynamics.

rescence value can be related to the overall speed of the degradation tag (Fig. 4.7(A)).
For example, because the ClpXP degradation machinery can quickly and efficiently
degrade LAA tagged proteins, the steady state expression level is much lower than

the steady state expression level of GFP-ASV which is more slowly degraded.

A short lag in the initiation of decay was evident after the removal of the inducer,
presumably due to residual mRNA transcripts. This lag was typically around 10
minutes and could be measured from the initial non-linear section of the fluorescence
decay data. The linear portion of the fluorescence decay data was used to extract
the enzymatic degradation rate for each ssrA tag variant after the dilution rate was
subtracted. Computational modeling was used to quantify the degradation dynamics.

The following model was considered:
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& = aexp(—dt) — fx — h(x) (4.1)

where o > 0 represents the amount of RNA still present and d represents its half-life;
[ is the growth rate of cells, and h(z) is the degradation rate that depends on the
tag. The form of h(x) depends on the dynamics of degradation. Also, ¢ is the time
since IPTG is absent and decay is observed. Assuming first-order reaction for the

degradation, the following model is obtained

& = avexp(—0t) — Bz — Biagt, (4.2)

where [i,, depends on the tag used. This model failed to accurately describe the
dynamics of proteins that are ssrA-tagged and are being enzymatically degraded

(Fig. 4.8 - Red Arrows.) .

A more appropriate model for enzymatically degraded proteins is the model below,

in which degradation is nonlinear:

r‘\,/:L'

T = ozexp(—ét) - BLE - m,
ag

(4.3)

where v is the maximal degradation rate (when z is large), and Ry,g is the protein
concentration at which degradation is half the maximal rate. This model was able to
fit degradation dynamics very well Fig. 4.7(B). Using this model, protein degradation
rates were assigned for each of the ssrA variants with units of percentage of total
protein concentration degradation per min. GFP-LAA had a degradation rate of
8.2%/min, that of GFP-LVA was 7.2%/min, that of GFP-AAV was 5% /min, and
that of GFP-ASV was 2.2%/min (Table 4.2).
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Single Substrate ssrA Variant Degradation Rate

GFP-LAA 8.2%
GFP-LVA 7.2%
GFP-AAV 5%

GFP-ASV 2.2%

Table 4.1 : Quantified ssrA Degradation Rates.

4.2.1 Mathematical Analysis for Quantifying Single Substrate Degrada-

tion Rates

The dynamics of the concentration of a single protein can be modeled by

T =a— fr— h(z) (4.4)

where « represents the rate of production due to constitutive expression, [ is the

growth rate of cells, and h(x) is the degradation rate.

The simplest model of degradation is first-order decay, h(x) = B4x, where the decay

rate §; depends on the particular properties of degradation. In the case of degrada-

tion by proteolysis, a more accurate model can be obtained by using h(x) = RZL,
which corresponds to the Michaelis-Menten kinetics. Here ~ is the maximal degrada-
tion rate (when x is large), and Ry is the protein concentration at which degradation

is half the maximal rate.

The reactions that describe how the protein and protease interact also describes the

protein degradation :
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kr
X+P % XP = [kJP. (4.5)
'f

where X denotes the protein. P denotes the protease, and kj/ 4 are the rates of
the reactions. Using a Michaelis-Menten or a quasi-steady-state approximation, the

degradation rate is of the form

X
degradation rate of X = _R()%[]X]'

Here Ry depends on k,, k¢, and, depending on which approximation is used, may de-
pend on k4. Importantly, v depends on k; and the concentration of the degradation
machinery, but not on the rates k,, ky. Changing the tag of a protein only changes
the rates k,, ky, which only affects Ry and not . Thus, regardless of the tag used,

the value of the parameter v will be the same.

To estimate the values of v and Ry from experimental data, consider the differential

equation

Ro + ZL’7

T = aexp(—dt) — fr — (4.6)

where x is the concentration of « is the protein production rate, § corresponds to the
degradation of mRNA and maturation of GFP, 3 is the growth rate, v and Ry are
the Michaelis-Menten constants from enzymatic degradation, and ¢ is the time after
removal of the inducer. The term «exp(—dt) corresponds to the fact that after the
inducer is removed, no new mRNA is transcribed, but existing mRNA is still being

translated and degraded.
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The difference between experimental and simulated trajectories were minimized to
estimate the value of the set of parameters p = («,9, 3,7, Ro), as follows. First,
Eq. 4.6 was simulated for a given set of parameters p and the trajectory zgm (¢, p), for
0 <t < Thna was obtained. Then, the error was computed between simulations and

experimental data as

E@)= Y (teolt) = zam(t.p)),

0<t<THnal

where Zeyp,(f) is a single-cell trajectory. A gradient descent was used to identify the
set of parameters p that minimized E(p). The parameters obtained are listed in Table

4.2.1. Fig. 4.7(B) shows how the simulations fit the experiments.

4.2.2 Influence of Protein Degradation on Dual Feedback Oscillator Dy-

namics

Initially, degradation rate parameters for AraC and Lacl were increase to yield slower
degradation in the previously published model [5] (Fig. 4.9). This model predicted
that as component protein degradation rates slowed, oscillation periods would in-
crease. Slowing the rate of AraC degradation slightly longer oscillations than those
seen for the corresponding ssrA variant on Lacl (Table 4.2.2). When the degradation
tag is completely removed from AraC, the model predicts that GFP fluorescence will
steadily increase, whereas removing the degradation tag from Lacl, predicts the shut

down of GFP fluorescence.

Experimentally, decreasing the degradation rate of circuit proteins in the dual feed-
back oscillator does disrupt normal oscillator dynamics (Table 4.2.2). Slowing the

degradation rate of Lacl corresponds with increased oscillator periods. Slowing the
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parameter  value units

g In(2)/30 min~!

) In(2)/15 min~!

v 90 (molecules/cell) min~
OLAA 107 (molecules/cell) min~
QLVA 118 (molecules/cell) min~*
ANV 146 (molecules/cell) min~
QASY 159 (molecules/cell) min~
Onotag 151 (molecules/cell) min~*
Rraa 73 molecules/cell
Riva 278 molecules/cell
Raav 173 molecules/cell
Ragv 367 molecules/cell

Table 4.2 : Estimated parameters for Eq. (4.6)
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Figure 4.9 : Predicted and experimental period lengths. Model prediction of
increased oscillation periods which correlated with decreasing degradation rates. The
green line represents free AraC dimers, the red line represents free Lacl tetramers,
and the black line represents Lacl mRNA.
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AraC-LAA + Predicted Period Length (min) Experimental Period Length (min)

Lacl-LAA 40.5 37 £10

Lacl-LVA 39.9 42 £+9

Lacl-AAV 49.3 85 £25

Lacl-ASV 72.0 Cell Cycle Dependent Fluctuations
LacI-No Tag 0 No Fluorescence Observed

Lacl-LAA +  Predicted Period Length (min) Experimental Period Length (min)

AraC-LAA 40.5 37 £10
AraC-LVA 39.0 35 £7
AraC-AAV 55.7 Stochastic Fluctuations
AraC-ASV 86.1 Stochastic Fluctuations
AraC-No Tag 0 Stochastic Fluctuations

Table 4.3 : The predicted [5,6] and experimental oscillator period lengths for dual
feedback oscillator ssrA variants.
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degradation rate of AraC causes circuit dynamics to collapse. Changing the degrada-
tion rate for the activator, AraC, led to drastic differences in circuit dynamics than
what was predicted from the mathematical model. The model predicted that the
oscillatory period would increase as the degradation of AraC also increased. How-
ever, oscillations were only observed in AraC-LAA and AraC-LVA. For AraC-AAV,
AraC-ASV, and AraC-No Tag, stochastic fluctuations, or random noisy flashes, of
fluorescence were observed. It should be noted that the fluorescence levels in these
fluctuations were not much more than background, but were still measurable. An
explanation for these dynamics is if the increased concentration of AraC (through
slowed degradation) allows AraC to quickly bind and activate transcription as Lacl

is quickly enzymatically degraded.

The most interesting ssrA degradation tag variant result was that of Lacl-ASV. Math-
ematically, the model predicts that the oscillatory period length should double the
period length of Lacl-LAA. Experimentally, slowing the degradation rate with Lacl-
ASV causes the circuit to break, and cell cycle independent oscillations were no longer
observed. Initially, no fluorescence was observed. However, after 5 hours, short bursts
of fluctuations were observed as the cell begins to divide (Fig. 4.10). A possible ex-
planation for these cell cycle-dependent fluctuations is that the slow degradation of
LacIl-ASV allows LacIl-ASV to accumulate and shut down the expression of the dual
feedback oscillator. However, due to leaky expression, AraC-LAA slowly accumu-
lates, but not enough to overpower LacI-ASV. After a long time, AraC-LAA reaches
a critical protein concentration. When the cell divides and the protein concentration

is halved, AraC-LAA can occupy free promoter sites and activate the expression of

GFP-LAA. However, AraC-LAA and GFP-LAA are quickly degraded and Lacl-ASV
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Figure 4.10 : LacIl-ASV degradation is slow enough to break the oscillator
circuit dynamics and produce cell cycle-dependent fluctuations. As the en-
circled cell begins to divide, GFP fluorescence increases. As the cell finishes septation,
fluorescence begins to degrade.

regains control of the circuit dynamics. Another theory is that due to the overwhelm-
ing amount of GFP, and the stress of a crowded, high-density growing environment,
additional protein quality control pathways are activated. For example, SulA, a Lon
protease adapter/chaperon protein, is activated as an SOS signal when DNA damage
is detected, resulting in cell division ceasing and cell growth cannot continue until the

damaged proteins and SulA are degraded.

Computational modeling incorporating ssrA degradation rates determined from single
substrate experiments was used to quantify the effect of different degradation rates on

the dual feedback oscillator. As with the single-substrate case, nonlinear dynamics
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were considered for protein degradation due to proteolysis (Eq. 4.3). The model

describes the dynamics of Lacl (r), AraC (a), immature GFP (g), and mature GFP

(G)
r= arh [TTM aTr] - gr(/rv a, g, G) - /87", (47)
a = azh(r.,,a.] — gulr,a,9,G) — Ba, (4.8)
g = agh [rTg7a’Tg] - gg(ra a, g, G) - >‘g - /Bg/ (49)
G = )‘g_gG(r7a7g7G)_ﬂG7 (410)

where x, = x(t — 7) for x in {r,a, g}, and
2
(&)

(1 (2)) (1+ (é)4)2’

is the composite Hill function describing the activity of the hybrid promoters as a

h(r,a) = (4.11)

function of activator and repressor concentrations, and

_ '79:1]3/R:J:,taggc
1 + T/Rr,tagr + a/Ra,taga + g/Rg,tagg + G/RG,tagG

9:(ra, 9, G) (4.12)

is the nonlinear function describing enzymatic degradation of x in {r,a, g, G}.

Here, c,., a, and oy are the maximal production rates, and 7,, 7,, and 7, are the tran-
scriptional delay times. For x in {r,a, g, G}, 7, and R, 4., are the Michaelis-Menten
parameters for ClpXP-mediated proteolysis, and C, and C, are the concentrations
needed for half-maximal induction and repression. In addition, f is a unitless mea-
sure of the strength of the activation by a compared to basal production, A is the

maturation rate of GFP, and f is the dilution rate due to cell growth.
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Figure 4.11 : Incorporation of single substrate degradation rates was insuf-
ficient to predict experimental dual feedback oscillator data degradation
data. These predictions incorporated a delay for the degradation of Lacl due to its
increased stability, but very poorly predict circuit behavior.
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Initially, a predictive model could not be achieved (Fig. 4.11). It was only possible
to generate parameter values from experimental data fits, and this approach caters
to the initial conditions to each degradation tag variation, providing little insight
about circuit dynamics. However, recently it has been shown that the overall stabil-
ity of a protein greatly impacts the ability of ClpXP to degrade it [75]. The ClpXP
degradation machinery is composed of a homohexamer ring of ClpX that binds to a
homoheptameric ClpP peptidase [7]. Once a protein has been tagged for degrada-
tion, the adapter protein SspB binds to the AADENY peptide sequence of the ssrA
degradation tag [38]. SspB guides the protein to the ClpX ATPase subunit and an-
chors the protein to the ClpX subunit. The last three amino acids are responsible for
the binding affinity of the ATPase and the tagged protein. Changing the last three
amino acids disrupts the ability of the tag to properly dock to ClpX, causing a delay
in translocation into ClpP. Previous research has shown that this process is not highly
specific, and the tagged protein can go through multiple rounds of binding to and
dissociation from ClpX before it properly docks to the degradation machinery [75].
When this docking is complete, ClpX exerts a mechanical force to physically break the
tertiary structure of the protein. ClpX uses ATP to generate a power stroke that pulls
on the proteins, attempting to strain the existing protein structure [40,75,81]. This
effort is necessary to unfold the protein into a peptide chain that can be successfully
fed through the ClpX pore to be subsequently degraded by the ClpP peptidase in 5
to 15 amino acid increments [7]. Not all of the ClpX at one time can bind substrates
and act as a rigid body for this mechanical force. Depending on the stability of the
tagged protein, one power stroke may not be sufficient to achieve global denaturation.
This requirement for another ATP hydrolysis event to generate a power stroke can

cause the target protein to lose affinity and be released. SspB remains attached to
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the strained protein and attempts to bind again to ClpX until the protein is unfolded

and degraded in its entirety [40, 75, 81].

From a mathematical model perspective, it is evident that the previous dual feed-
back oscillator model cannot accurately capture all of the biophysical and mechanical
dynamics that occur when a protein is being degraded. In addition, it would be
difficult to correctly model, assuming classic Michaelis-Menten enzyme kinetics. Pre-
vious mathematical models for the dual feedback oscillator did not allow for different
Michaelis-Menten parameter values (Rg) for Lacl, AraC, and GFP. The biochemical
evidence of the ClpX power stroke, the binding parameter Rq was allowed to change
with each substrate. Prior to these data, there was no experimental evidence of a
change in the value of Ro(AraC) and Ry(Lacl). However, given that Lacl is a tetramer
and one of the most stable proteins, it should take many more rounds of mechanical
effort to strain the protein enough to destroy its protein structure and be degraded
as a peptide chain, compared to AraC. With this change, it was possible to generate
a predictive model that fits well with the experimental data for Lacl ssrA variants.
Additionally, capturing the dynamics competition of tagged protein targets to the
binding of ClpXP gives the most accurate enzymatic degradation term for the dual
feedback oscillator. The model even predicted a short burst in fluorescence that oc-
curs when Lacl is tagged with ASV (Fig. 4.12). For AraC, we could easily predict the
dynamics for LAA and LVA, however, predicting the correct amplitude (fluorescence
intensity) is challenging, but the fast, short oscillation periods were captured by the

model.

The results of this work are important to the area of synthetic biology for several
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Figure 4.12 : Incorporation of substrate stability and binding competition
to ClpXP into a degradation term accurately predicts experimental data.
With a enzymatic degradation term that comprehensively accounts for the degra-
dation delay to (1) substrate stability and (2) binding competition to ClpXP, it is
possible to accurately predict experimental data—even the cell cycle dependent fluc-
tuations for Lacl-ASV and AraC-LAA.
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reasons. First, it adds to the knowledge of parts available to build novel synthetic
networks. Quantifying each degradation tag rates provides synthetic biologists new
parameters that can be used to fine-tune circuit dynamics. In addition, it provides
accurate parameter values for building descriptive mathematical models. This point
is crucially important, because a mathematical understanding of the parameters that
are critical to the functioning of a novel circuit reduces the amount of time needed to

experimentally fine-tune the circuit.
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Chapter 5

Engineering Orthogonal Degradation Tags

The ClpXP machinery is an efficient machine that requires ATP to function. To
conserve energy, bacterial cells have evolved to maintain critical amounts of these
enzymes [176] [177] [178]. Previous research has shown that exclusive use of ssrA
degradation tags can saturate the degradation machinery, thereby generating cou-
pled network behavior [15]. Additional ssrA-tagged proteins, allow for the possibility
to overload the ClpXP degradation machinery. With this unexpected burden on these
proteases, tagged proteins must wait in line to be degraded (Fig. 5.1); directly cou-
pling the tagged proteins and leading to a strong correlated observed behavior [15].

Mathematically, this phenomenon is a biological application of queuing theory.

Previous studies have demonstrated queuing experimentally by transforming F. coli
cells with the dual feedback oscillator and an inducible promoter driving the expres-
sion of CFP-LAA (Fig. 5.2(A)). Knowing that the dual feedback oscillator does not
overload the degradation machinery while operational, CFP expression can gradu-
ally be increased until oscillations are no longer detectable and correlative fluorescent
patterns are observed (Fig. 5.2(B)). Transition from an underloaded to an overloaded
ClpXP state reveals itself in significant crosstalk between these two independent net-

works.

Therefore, not only can slower degradation rates alter network dynamics, but copi-
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Figure 5.1 : Correlation of overwhelmed protein degradation machinery
to queuing theory. The yellow and blue boxes represent two different types of
jobs that the servers can accomplish. When the system is underloaded, there are
more servers than there are jobs. When the system becomes overloaded, the excess
number of jobs piles up, requiring a wait time to be processed by the limited amount
of servers. Experimentally, each colored box represents a different protein. Figure
adapted from [15] with permission.
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ous amounts of tagged protein can overwhelm the degradation machinery and halt
network dynamics. Thus, expansion of the library of degradation tags to include
orthogonal proteases that minimize circuit crosstalk is needed. Additionally, not all
proteins or engineered split proteins have a free, non-functional C-terminus to de-
vote to a degradation tag (e.g. split T7 polymerase). An N-terminal degradation
tag would allow finer control of these types of circuit proteins. To build larger, more
complex synthetic gene circuits, it is necessary to look for orthogonal degradation

machinery in the native degradation pathways of E. coli.

In addition to ClpXP, there are other AAA+ proteases native to F. coli that aid
in regulating protein quality control. ClpAP, HslUV (ClpYQ), Lon, and FtsH are
energy-dependent enzyme complexes that often require chaperones to degrade spe-
cific substrates [7]. All of these proteases are ATP-dependent proteases, with ATPase
domains of these complexes are responsible for substrate recognition [124]. These
chaperone proteins or the substrates themselves tightly bind to specific sites on the
proteases. Using the amino acid binding sequences as inspiration, degradation tags
were engineered to target this additional degradation machinery. Prospective peptide
tags that target alternative degradation proteases include: RepA (CIpAP protease),

SulA (Lon protease), ¢1-104/108 (HfIB protease), and SoxS (Lon protease) (Table 5).

Each of the degradation tags listed above was cloned into the IPTG-inducible pET28-
GFP plasmid using insertion mutagenesis (with the exception of RepA, which was
inserted using isothermal assembly). Degradation tags were crudely evaluated using
a fluorescent plate reader. Liquid cultures were induced with 2 mM IPTG for 4 hours.

An aliquot of the culture was then spun down, washed several times with LB, and
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Figure 5.2 : It is possible to overwhelm the ClpXP degradation machinery
resulting in coupled circuit dynamics. (A) The network is designed to exhibit
enzymatic coupling. AraC-LAA, Lacl-LAA, and GFP-LAA are components of the
dual feedback oscillator. CFP-LAA is produced with the addition of the inducer,
AHL. (B) Whole-field fluorescence traces show CFP and GFP oscillations, indicating
enzymatic coupling. Figure adapted from [15] with permission.

then resuspended in LB without IPTG. The induced cells and the newly suspended
cells were loaded into a 96-well plate. The ODgoy and the green fluorescence were
measured every 10 min for 8 to 12 hours. Promising degradation tags were then more
accurately quantified by single-cell time-lapse microscopy. GFP expression was in-
duced with 2 mM IPTG for 2 hours and then withdrawn. The amount of fluorescence

was recorded every 3 minutes for 8 to 12 hours.
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Peptide Tag Tag Placement Amino Acid Sequences Target Protease Published Half Life

ssTA C-Terminal AANDENYALAA ClpXP 16 min

RepA N-Terminal MNQSRSDILYADIE CIpAP unknown
SulA C-Terminal KIHSNLYH HsIVU 1.2 min
c1-104 C-Terminal IHTVR HAB unknown
¢1-108 C-Terminal SLLWS HfIB 45 min

SoxS C-Terminal PSDYRHRL Lon 2 min

Table 5.1 : Summary of Degradation Tag Catalog

5.0.1 CIpAP Degradation Machinery: RepA Degradation Tag

The proteolytic component, ClpP, can also bind with another ATPase, ClpA [179].
ClpA functions similarly to ClpX, degrading substrates specifically, starting from a
variety of degradation signals [180], including RepA [181]. RepA is a pSC101 plasmid
protein that natively controls cell division through the SOS response in E. coli [181].
Several research groups have demonstrated that that last 15 amino acid residues of
the protein can be synthetically added to GFP, and this is sufficient for CIpAP bind-
ing and subsequent degradation [179]. Most importantly, these data show that this
15-amino acid RepA tag can be recognized by the ClpAp protease whether it is at-
tached to the C- or N-terminus of a targeted protein. RepA was selected as the first
orthogonal degradation tag variation, because it would be incredibly useful in split-
protein systems. Due to its large insertion size, the RepA degradation tag was added

to the N-terminus of GFP by isothermal assembly.
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5.1 Targeting the Lon Protease: SulA and SoxS.

The Lon protease was the first AAA+ protease to be discovered in bacteria, although
ClpXP is the best characterized [182]. The Lon protein does not need an additional
protein subunit; rather, it is a single peptide in which the AAA+ subunit is fused to
the peptidase subunit [7]. Although it maintains a barrel-like structure, the Lon pro-
tease is composed of a homohexameric ring that is transcribed from a single gene [182].
Two of these hexamers combine to form a functional dodecamer complex. [7]. Inter-
estingly, the Lon protease is the only AAA+ protease that can bind DNA, although

the purpose of this binding remains a mystery [182].

Lon degrades a broad range of proteins and is responsible for the majority of ATP-
dependent degradation of misfolded proteins [182]. For general degradation, Lon
recognizes exposed hydrophobic amino acid sequences (about 15 residues) that are
rarely exposed [182]. The lack of constraints on the sequence of the target hydropho-
bic residues allow the Lon protease to degrade a large range of substrates. However,

Lon is also capable of rapid targeted degradation of specific substrates, including

SulA, SoxS, and MarA [175].

5.1.1 SulA C-terminal Degradation Tag

Natively, SulA is a 18-kDa protein comprised of 169 amino acids that is produced
when DNA damage is detected [183]. SulA interacts with the cell division protein
FtsZ to prevent the progression of cell division. This "hold” on cell division is lifted
when transcriptional regulation of the SOS signal ceases or when SulA is degraded by

Lon [184-188]. SulA levels are tightly regulated and, this protein is rapidly degraded:;
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as excessive accumulation of SulA is toxic, making it an attractive novel degradation
tag.

In the absence of an existing synthetic SulA degradation tag, the logic of the RepA
degradation tag was applied to create a new synthetic degradation tag using the last
15 amino acids of these proteins, which are responsible for recognition and binding
of the Lon protease, to create this degradation tag. The SulA degradation tag was
cloned using insertion mutagenesis to the C-terminus of GFP (maintaining the T'S

linker).

5.1.2 SoxS C-terminal Degradation Tag

SoxS is a transcriptional activator that is expressed as a defense against reactive oxy-
gen species, specifically superoxide anion [189]. The synthesis of SoxS then triggers
the transcription of genes of the defense regulon [190]. Once the oxidative stress is
mitigated, SoxS is rapidly degraded by the Lon protease. Similar to SulA, this rapid

removal of SoxS makes it an ideal candidate for a novel degradation tag.

Previous research used western blots to demonstrate that the last several amino acids
of SoxS fused to GFP were enough to confer rapid (half-life of 2 min) degradation by
the Lon protease. The SoxS degradation tag was cloned using insertion mutagenesis
to the C-terminus of GFP (maintaining the TS linker). An extended SoxS degrada-

tion tag comprised of 15 amino acids was built, but never evaluated.
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5.2 Targeting the HsIVU Protease: cI104 and cI108

Lastly, the cI degradation tag is a pentapeptide nonpolar tail that has been shown to
cause the degradation of the stable phage A cI repressor. Although ClpXP, CIpAP,
and Lon account for 70-80% of the proteolytic degradation in E. coli, the membrane
bound ATP-dependent zine protease HAAB (FtsH) is the only essential protease [191].
Natively, this protein is responsible for degrading the shock sigma factor ¢3? and the
regulatory proteins cII and cIIT of phage A [192,193]. Previous research demonstrated
that adding the nonpolar pentapeptide tail of the ¢l variants ¢I-104 and ¢I-108 to the
C-terminus of GFP leads to target degradation by HfiB. cI-104 and cI-108 were se-
lected as potential orthogonal degradation tags because the tags are considerably
shorter than other potential tags (5 amino acids vs 815 amino acids). Additionally, a
membrane-bound targeted degradation system could be an elegant way to spatially
control degradation in synthetic gene circuits. Both cI synthetic degradation tags

were cloned to the C-terminal of GFP by insertion mutatagenesis.

5.3 The Effect of Linkers on Orthogonal Tag Degradation

Rates

The single-cell degradation trajectories resemble nonspecific degradation due to cell
dilution. A review of literature brought up the possibility of adding flexible linkers to
increase the degradation rate [56]. Subsequently, a talk at the Winter Bio conference
inspired a strategy to insert a proline into the linker (GGSP) to make the linker
more rigid, and also to test the more rigid PAPAP repeated linker. After adding

proline to the linkers, degradation of GFP expression for SoxS-PAPAP, SoxS-GGSPG,
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Figure 5.3 : Using single-cell time-lapse microscopy, each of the orthogonal
degradation tags was quantitated and compared to ssrA degradation tag
variants. It became apparent that SoxS-GGSPG (red dots) was not enzymatically
degraded and was being degraded through non-specific degradation and cell dilution.
However, SoxS-PAPAP (maroon dots) and RepA-GGSPG (orange dots) appear to be
enzymatically degraded. The difference in decay shape could be due to differences in
the targeted degradation machinery. RepA targets CIpAP and SoxS targets the Lon
protease.
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and RepA-GGSPG was observed. Each of these orthogonal degradation tags was
quantified using single-cell time-lapse microscopy in a similar experimental setup to
the single substrate degradation experiments. It became apparent that SoxS-GGSPS
((Fig. 5.1:red) was not being enzymatically degraded, and rather was being degraded
at a rate similar to non-specific degradation. RepA-GGSPG ((Fig. 5.1:orange) and
SoxS-PAPAP ((Fig. 5.1:maroon) appeared promising, even though they did not have
the same decay shape as the ssrA degradation tag variants. This difference in shape
could be due to differences in the CIpAP (targeted by RepA) and the Lon (targeted by
SoxS) machinery. For example, the ClpA hexamer is at a much lower concentration
than that of the ClpX hexamer. Due to these unclear results, this project to engineer

orthogonal degradation tags was discontinued.
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