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ABSTRACT

The effect of tool joints on the passage of plane longitudinal and
torsional waves along a drill pipe was studied. An approximate solu-
tion to the governing equations of motion found, and en idealized
tool joint constructed. Calculations were made for the effect of the
idealized Jjoint on an example drill string. The results showed that
tool Jjoints had negligible effect for exciting frequencies of the same
order as common rotary speeds and the drill pipe could be taken as a
uniform pipe with negligible error.

Equivalent systems of rigid inertias and massless springs were
developed for a drill string with a uniform drill.pipe and one drill
collar section, for fixed-fixed or fixed-free end boundary conditions.
Undamped responses of the equivalent systems were found for arbitrary
periodic forces applied to any point of the drill string. Approximate
responses were derived for small damping. Specific formulas were derived
for responses at the top of the drill string for given periodic displace-
ment or force at the bottom, for fixed-fixed or fixed-free boundary

conditions.
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INTRODUCTION

Vibrations of oil well drilling strings have long been of interest
to the petroleum production industry because of damage to surface drill-
ihg equipment and to the drill string itself.

The purpose of this study is to place the governing mathematical
equations on as sound a basis as pos#ible and to develop a method of
approximafing drill string dynemics with an eqpivalent system of rigid
inertias and massless springs. The study is limited tq torsional and
longitudinal vibrations only, since the lateral vibrétions of a drill
string involves possible buckling and indefinable contact with the
sidés of the bore hole.

Several authorsl's* have studied longitudinal and torsional drill
string vibfations using the classical wave equation for a uniform bar.
All have assumed the drill pipe to be one or more bars of uniform sec=-
tion rigidly Joined together. Howevér, the drill pipe which accounts
for most of the string length, is not uniform, but often has very heavy
couplings which may account for 20% of the drill pipe weight. Also, at
the junction of drill pipe and coupling (or tool joint), area and area
moment of inertia may change by factors as large as 4 and 6 respectively.
The change may be either abrupt or gfadual. This meskes suspect the
common practice of ignoring the tool Joints. Hence, a major portion of
this study is devoted to the effects of the tool joints. It will dbe
shown that tool Jjoints have negligible effect on drill string vibrations
in the usual range of rotary drilling speeds.

* Numbers refer to the bibliogrephy at the end of the paper.



Not knowing the effect of the heavy drill pipe couplings on drill
string dynamics makes the idea of a "lumped parameter" equivalent dynamic
system attractive. However, the study of the coupling problem indicates
they can be ignored and hence an equivalent system of rigid masses and
massless springs is developed for two bars rigidly Jjoined together. The
technique allows finding the drill string natural frequencies with
approximately the same accuracy as the wave equation approach and re-
duces the degree of freedom of the system from infinity to a more man-
agable size. The lumped system leads to relatively simple equations for
the response of a damped system; lack of experimental data for compari-
son eliminates a numerical comparison of results.

Of special importance to this study is the frequency range involved,
i.e., less than 200 revolutions;per minute rotary drillihg speed, which
limits longitudinal and torsional driving frequencies to 20 radians per
second. For roller cone bits, harmonics may be present with frequencies
up to 30 times the drilling speed, but probably of small amplitude.
Evaluation of their importance must await actual motion measurements at
hole bottoms during drilling. Even at this much higher excitation fre-
quency of 600 radians per second, methods of this paper should give
reasonably accurate results.

Sections I and II of this paper are devoted to deriving the equa-
tions of motion and their solutions. Section III is devoted to applica=-
tion of the results of sections I and IIto the drill string. The re-
maining sections deal with equivalent lumped systems for the drill string
and ﬁheir responses. For reference, a typical drill string configuration

is shown in Figure 1.
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SYMBOLS

e mess density, 0.283 i/in’ for steel
3 gravitational constant
E modulus of elasticity

C11.5 x lO6 #/:’Ln2 for steel in torsion

30 x 106 #/in2 for steel in temsion or

compression
< velocity of propagation of a plane wave
1.25 x 107 in/sec for torsional wave
2.0k x 10 in/sec for longitudinal wave
I r polar area moment inh for torsional case
1 area :l.n2 for longitudinal case
<

displacement
angular twist for torsional case
local axial displacement for longitudinal
case
XN YWy T space coordinates along the bar axis
w vibration frequency, radians per second
F general force
#-in for torsional case
# for longitudinal case
€, ¥ phase shift angle

AyqR,q sumation indices



I. EQUATIONS OF MOTION
Torsional and longitudinal vibrations of bars are governed by the
T

well known wave equation':

2 L E(%\].Lx\a.@.] = IM\_@_ @Eﬁ'
A 9 % q 2ttt

Since in the problem at hand, material properties E , @ , and % ) are
constant, the equation becomes:
- 2
2 Tlw2e). lwile =By 1)
I% D% c? 'a.t’- (:

For a harmonic solution, the form below is assumed:

S = B C'Mt

d L I.L%\A_é‘] wu? Iy & =0 I-2
5= i) [-2)
For a uniform bar T.c,c) is constant and the equation becomes

%

£2 . gpe-e =

S =Aew\%;4+gcasu I-k)
[}

= C sw(u._ég.,_q c= (N v
eneE = B cose= A
c C

For bars with axial holes the forms of Tc¢x) in equation I-2) are
listed in Figure 2 for internal and external tapers for both the tor-
sional and longitudinal case. To the writer's knowledge, no closed form
solutions exist for any of these cases.

The problem may be attacked by the method of successive approxima-

tions, based on an existence theorem for ordinary linear differential
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equations8’9. A solution of form I-5) is assumed, where the & are
functions of the independent variable x, as yet undetermined. Sufficient
conditions for the existence of such a solution are that L¢x) be con-

tinuous and nowhere zero in the interval x. < x < x_, which is the

1 2’
case.
Substitution of equation I-5) into I-2) yields:
d (Indd wy = I-2)
d*( ‘A%\ + () Tewd =0
= w\* Ry " I-5)
S = Lo + ()Y + (:.)‘97-*"‘*'0?) Prdererir

‘AT;, ( Ly ﬁo) + (uzo')"{jl_,‘(. ll.sc\:lrit\ + %o 7.(
N (25")4{ 3 (Teorgd)ed 1S Yoot (%f"{g?(m\-%y +‘?nsvlj-\--

n
Equating coefficients of powers of (%) yN=\,7,%4... ,to zero yields the

velues of =Po, ) yeser ete. below.

&o: C.g "A_L:Q + Cz

- g___(;.%i dx%
O

._C.g %{g%“"}AE dx _ng*dﬁ

B
" "

'. T I
. . A
cQ“ = - g g é?n ° dx
T )

Obviously, succeeding coefficients become very difficult to evaluate.
For the frequency range of interest (%SL is very small and succeeding

powers of ('-:__.2)7'" much smaller. For example, the maximum values of



-3=

c?., and <Q| are compared below using dimensions of a typical tool-
Joint external taper.

W= GO0 rRap/sec MxX,=2.25" mxy= 3.00"

Longitudinal: fox)= =0\72C,+Cy Poexd= -0.13C +C,

®W= 0.003 PUANRE =D.071C, + 0,14Cy, R N -G.48C,-0.28C,
Torsionel: Dotx)= 2.028C, +C, dolx) = ©.47C, +Cq

L= 00048 f q.\%‘ -2.31C,+163C, KON E -0.001C0+ 0,006C,

Based on these results, cf)o alone should be enough for quite accurate
numerical calculations. For all following work <P, will be assumed to
be the solution to equation I-2).

Formulas are given below for the form of &= &, , which will be
used in succeeding work¥.

Internal Teper:

Longitudinel &) = C, { loqvm } + Cy
o =mx

’ "\
Torsional S =C, { \06 Yodmy 4 TAN % ]f +Cq
?'a-my\

External Teper:

Longitudinal Sy = C { log [mz-ra "\ +C,

* See Figure 6 for tool joint configuration.
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Torsional B = C { \°'-'5 MZ-a L TAN ME.}.\_C?_

Ad justing the constants in the gbove equations so that the variable term
drops out at start of taper in all cases, and noting r = mx eand r = mz

glves the final form of the equations which will be used in the succeed-

ing section.

Internal Tapered Increase in Section:
Longitudinal & = Bz{\os ’ro«-r re-v \ ., C,
Yo-¥  Your, f
= Bz'&(\"\ + Cz
I-6)
Torsional B = Bz&\og '—rﬂ Yofi LNt --rAJ':JﬁCz
Fom¥ Yo4r, Yo Yo

= B':.'E\.(\’\ + Cy

External Tapered Section Increase:

Longitudinal &(¥)= B%{ log V';-L rorr | 4.C,

i Y'-,_ ro - r-‘_

= By R Ca

I-7)
Torsional B(V= B,,[[ loq l,r-r-,. FotVi _man' L o TAN'm L4 C
r+Ya Yo-Yy 2 2 g 3

= By i +Cy

In a similar manner the following equations for the two types of



tapered decrease in section can be derived.
External Tapered Section Decrease:

Longitudinal B<) = Daf log v:_‘:-‘ Ca4r 1 4 E.
1 =Yy

= Dz hL(\"\ + E'L

1-8)

Tqrsional B3 = 'D'z,{ ‘°°~’|’nﬂ' M4V _ Tan” +-rm~a ﬁ,lj.\-E.-,,
0 ryaf £

D, htn + By

Internal Tapered Section Decrease:

Longitudinal &(wh = D 4 { log V_L_r_ Yoo \ 4 B,
1 Vour Fot+hy

1-9)

Torsional Sw) = D, § log, ',ro-\-r o2 4 Tan'y '
1 Fo=r Yotvry Yo

15 +E,



II. EQUATIONS OF MOTION ACROSS DISCONTINUITIES IN A BAR

Abrupt Change in Section

For an abrupt increase in section as in Figure 3-a solutions of the
wave equation of the form of equation I-l) may be patched together by
matching force or torque and longitudinal or angular displacement of
the discontinuity. An arbitrary harmonic input will be aséumed and the

resulting motion developed for the other side of the discontinuity.

wt

X2 Dt = B e (2-’:_"4 + €3) e'“"’t
Boundary Contition 1: g ) = Dk )
2: E‘-LP a'_Q'tl = Els 3_9‘7.
3% b S SR %)
or P\%\N(O-‘_c"'.\.e.\ =B %tw(tacxl.;.e,)

S.? A CQQQ%}\ +&) = IBB COSL'ﬁ:Iﬂ-\-é.ﬂ

The equation determining €; results from dividing boundary condition

equation 2 into 1.

TAN (Wi 4 €)) = %‘3; TAN( +€.) II-1)
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wXi
by B.C. 2: % = Lp coslF+e) II-2)
' la cos( LEly €

Determinetion of €5 from equation II-1) allows solving equation II-2)
for the amplitude ratio, completely determining ©, (%.,t)

For an abrupt decrease in section the connecting equations are

determined in an exactly similar way.
! ’
% EX & (k) = A B0 (4 X))

X X, -e-’,(»a,t\ = B‘s\u(wa&*{z\

Boundary Condition 1: & (¢!, = @ Jex !y

[\M]

Elg %?‘.L‘“ = El, g_g‘-.h‘

TAN (BB 4 Xa) = ‘%g TAN(SE X)) 11-3)

;5_’ = lg :as(%}-&- K.\ II-l})
A Ip cos (@X +8.)

Dual Taper Change in Section

The assumed transition from smell to large cross section will be
that of Figure 3-b. The approximate equations of motion derived in sec-
tion I will be used to represent the motion of the tapered sections.

The equations with the appropriate boundary conditions are listed below.
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XEX, (%) = A":'N("-'-"E’"-\-G.D e.“'“’t
twt firy=o @X
XEXER Sty = [ fn+C] € “ S { '
by equation I-6) fod %

:. u-\t

X XEXy Sy s LB el e

qera=o @ X2
by equation I-T) QN ={

QLN @3

4 = et
XA Slxe)= Bein(wrtser) e

Boundary Condition 1: © (X%} = (Y%, t)

2: £1lp 22| = BElp 2&
L3-S

3: g tyt) B By (xqyt)

: Bly 28y = EL
L N a,‘il = N%%';

%y

51 @aky) = Dylinyt)

. 294 _
6: Ely 'a—;"L: Ely %?Jl*b

or B.C. 1: Agm(%’t’.‘.\.\.eﬂ\ =C,

r>

: -'-E_’- ACos(".egS +€)) = B,_-F.'g.m* .

¥ Prime denotes differentiation with respect to x.
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. it
') '@'q_(%,‘t\ = AY— % CO%L“%‘J‘-Q‘\%:) +5|N(%§l+ é|)1 é.w
()

by B. C. 3t Aluccs(_:swe.‘)&&m+sm(m+e.)1 =Gy
ry

|
by B. C. h': A‘f CG"(U%‘*'G.\ f..“;&) = 55 %‘Cfo)

4
but §_<_~:1 = Lp
£ Th\
T,
‘e‘b(xﬁ:\ = P\[ oy CO‘)(%\-\-&\(%P Q(\“-\ o ‘E‘_"ﬂ\.*.%\ﬂ .4.5.)]5

g'tes) £er

. 1 )
by B. C. 5: A e :cs(v.icm-e.}( \; %"c_:?\ 4,:?\4-%4(9%2"-‘-6.3]

= B SIN (W14 €0

' B. C.6: ALsecns(_&\.\.g\ g? Qo= Bsécaﬁ(w*;-q-z.,\
Q)

but 4 o Ia L0, B . Zpeos(F+e) 119
%a(r,\ 1lg A 1a coe (ugﬁn*_"é:

B.C. 5 L B.C. 6 TAN(WHALE \:o_é a4 4 Isfy 14 An (2
(e G(%m ?#cr\)’\' i )

1I-6)
Hence for % very small the value of €, approaches €, of equation
II-1). for the same total change in section if x. = x.'.

1 1
Teking the inverse tangent of both equations II-1) and II-6) yields :

' M_-‘g_\.;.é-,_ = TAN g %: TAu(nﬁé&\ +€B\S
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s a2 :ia&m + ;5» w(wame.\ls
gl Lo £y P

- - 1I-7)
€r-€p = W - (1 1
1= €q E(%; %h.\-TA& -\.i% TAN(U.:.’C.I.“*i.\ s

—Tan'l w2 I% £06) 1 4 Lo Tan(w

‘ A.“ { C %i((\ P :(:_;:. A‘f (% +6\}
By equations II-2)

B

B

- = CO$(_.L9'¢!5 -\'21.\ -\ 11-8)

cos ( '-:%‘.\ - E.-L\
Equations II-7) and II-8)4 indicate the error involved in replacing a
conventional tapered section change by an abrupt change. The results
of equation II-7 at various input angles ‘:’E’.‘l +€ are plotted versus
w in Figures 4 and 5 for a typical* tool joint.

Similarly, use of equations I-8) and I-9) as equations of motion

through the dual taper decrease in section of figure yield:

®EX 't = AN sim (u.a.*ﬂ\ etwt

K e RER B k) = LD hiny +E.1 €™

hirz0 @x.
by equation I-8) her = " ‘

“lher) @xe

t
'L L ! ! = E‘w
Xt X EXy  Snlhh) LOken +E3 1 o {kcmzo@%-:.
(ry= |
by equation I-9) ki) @ %5
- - it
Yol X% D (1) = B (e XY e
__' = ip cos( & *K\
! Ip cos("""b-\- XD 1I-9)

* See Figure 6.
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Tan (@ 4\ = w( e Lo ween I ran(@trg¥) II-10
S <h'cr;\15*\<cr\+1: ) )

Combination of equations II-3), II-4), II-10), and II-11)result in

"error" equations II-12) and II-13) below:
- =g
§i-%2 = _cue L)ta;-x:\ + TAN {%g TAN(«—%.'-\_X\\]

—ran'fwlhey Ip ], L %7 -cm(qu. ¥)  II-11)

1¢ h'tes Iy Win) B
B o ocos(E+R) | II-12)
5 "y
cns (bﬂ_‘\ -+ K.\
¢

The results of equation II-11) at various values of input angle U_i}(._\_e'

are plotted versus & in Figures 4 and 5.
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III. DRILL STRING DYNAMICS

As shown in Figure 1 the drill string consists of a kelly Jjoint,
square or hexagonal in section, a very long section of drill pipe,.and
a much shorter section of drill collar, and finally the cutting bit.
For this analysis, the effect of the kelly Jjoint and the bit will be

ignored.

Drill Pipe Dynamics

The large section couplings or tool Jjoints, normally at 30'-0" to
32'-0" intervals along the drill pipe, may account for as much as 20%
of the total mass of the drill pipe string. In addition area and polar
area moment of inertia may change by factors of It and 6 respectively.
Their ef:ect on the passage of longitudinal or torsional waves along the
drill pipe will be analyzed using the results of Section II.

Typical tool joint configurations are shown in Figure 6. Although
only those for 4.5" diameter drill pipe will be examined here, the work
is more general than might appear. The most commonly used drill pipe
sizes are 4.5" and 5.0" diameter. Each has a more or less standard tool
joint configuration. Total change in area and area polar moment of in-
ertia from pipe to tool joint barrel are by factors of 3.8 and 4.7 for
typical 5.0" tool joints. The importance of these factors is seen from
.eqnations II-5), II-6), II-9), and II-10). Since these factors are 4.17,
and 6.12 for the L4.5" drill pipe tool joint combination, it alone will
be considered.

The results of equations II-7) and II-ll), plotted in Figures b

and 5, show that replacing a tapered increase or decrease in section



by an‘abrupt change results in a large phase shift than the actual
tapered change. It follows that phase shift calculationg using the
idealized tool Joint of Figure 6 instead of the type 1 or 2 Wil; result
in larger values than is actually the case. If idealized joint calcu-
lations show small variation from the results for a uniform straight
pipe, the actual tool Joint effect is even less.

For calculation purposes Test Well "A" or reference 3 was selected.*
The drill pipe string configurations used are shown in Figure 8. For
phase shift calculations of string 1, equation I-L4) was assumed to hold
in each constant area section, with solution of the form -Ans\n(“."ci-\-e.\\eiw;t
that II-1,3) apply at discontinuities. For string 2 no tqol Joints
were used except the last, since a half tool Jjoint is commonly used to
connect the pipe string to the drill collar. The resulting phase angles
are plotted in Figure 9. Natural frequencies of the drill pipe string
alqne are tabulated in Figure 10; a phase angle ap the end of the string
of 90° indicating a free end, a phase angle of 0° indicating a fixed
end.

Combination of the equations for the phase shift at the beginning

and end of an idealized tool Jjoint gives:

TAN(UQ.CJSN+ €n) m %: TAN (W¥n 1 €na)
TAN(u_%}sm.\ 4+ Eny) = %f Tan ( %’éin*\-\- En) XnsreXnsl  La18"
8

- (1 ant'{ 1 W ﬂ.l -
€y = TAN lI;TAN{T {-i-:"'“'“-a*“*-én-\\-*%g (3 %mmﬂ)

* Test Well "A" is shown in Figure T.
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For small values of W +the total phase shift is very small, and would
become large only when the angle c%? becomes large. Figures 9 and 10
indicate this is the case.

It is concluded that the effect of the idealized tool Jjoints on a
traveling wave is negligible except for very high frequencies, and the
effect of actual tool Jjoints is even less. OSince displacement was
assumed continuous in the derivation of equations II-1) and II-3), if the
phase angle change through a tool Jjoint is approximately zero, the am-
plitude of the drill pipe motion must be very nearly that of a uniform
bar.

Although calculations were made for only 3445'-8" of drill pipe,
lower modes of longer lengths can be found from the curves of Figure 9
because the d;rection of calculation is unimportant. For example, the
lowest fix-free frequency of 3445'-8" of drill pipe corresponds to the
first fix-fix frequency of a pipe twice as long; the second fix-free
mode of a pipe three times as long; and the second fix-fix mode of a
pipe four times as long. Similar results may be found for any multiple
of 3445'-8" as illustrated in sketches below. As a result, it is con-
cluded that tool joints have negligible effect on pipe phase, regardless

of pipe length, for low frequencies.
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e _ -
Kl (&2 _ %D
5 ////////’—_~§\\\\\\\\\ ,////////”
g o &.e- ad '9'8‘0
; | =
3-3 _ | I . !
& L L 1 L L | L
5 & o
0 ® ® ®
Point Mode Pipe Length
1 1st fix-free L
2 1st fix-fix 2L,
3 2nd fix-free 3L W = 4,65 Radians/Second
N 2nd tix-fix L1, -
5 3rd fix-free 5L L =L, = 34h5'-8"
=0 =0 ez0
3 o re N\ /N
< ‘\/Ikem K/ l\e-.o I
()]
a ! . ! ' '
m L _|_ L 1 L L L L L _J
| N N y ™1
0] ® ® @ ®
Point Mode Pipe Length
1 1st fix-fix L
2 2nd fix-fix 2L
13+ 13‘m fix-fix EL W = 9.40 Radians/Second
th fix-fix L - "
5 5th fix-fix 5L L = Ly 3445'8

Drill Collar Dynamics

Since the drill collar is a uniform bar, wave equation I-3) and

the corresponding solution I-l) apply.

Calculations can be made for
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the phase angle at the tool joint drill pipe junction which will satisfy
either a fixed or free boundary condition at the bottom of the drill

collar. The method of calculation is presented below; results are plotted
) 1
Ied Lo |

X22¢

in Figure 11.

1
Kaae

i i L - :\dt
Kol * & ¥ BN = RSN (WX e,y @

L% L A wr €, ) et
Xl RaXy @)z A S8 4 €

- v .. L=/ - \ -
Fix-Fix ?a_,_‘ua‘ = Amf.g ccs(t%usm-, + € =@
*221
@éﬁz?.'!'\"‘ezzc- ?
Fix-Free S50 = Azzc, 5““( WX o1+ 527.63 :
X221 c
"_"E:ﬁzzz +€2, = R
Either case ° TAN ( 1—,9‘_117_,,_64. 6275 = ..]I-'J TAN (lg_‘l;.m.\— ém3
oe c
. -\ ( .
“hogt €25 = TAN {;-.b T""’(Mm‘\-eus)]
Ipe < S

‘.‘:‘ciq.'n = WX 9.-’&.\.-9:.

: X = rat (L ok
Fix-Free Whoog 4 En2s = TAW { T::M(% u%_aq\]
1
§

Fix-Fix Whg 4 €225 = "'NJL{ B TAN(TC - w:“"’“)

-1
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Drill String Dynamics
The natural frequencies of Test Well "A" of reference 3 may be found

by a combination of the results of the preceding section, which é.re shown
in Figure 11. Intersections of the "Drill Pipe Curves" with the "Drill
Collar Curves" a.zje' natural fre;;,uencies of the system. The two families
of "Dr:l.li Pipe Curves" for the uniform drill pipe and the drill pipe
with 113 tool J'b:l.nts glve ,oniy slightly different natural frequencies;
egain indicating tool Jjoint effects may be ignored. |
Since the drill pipe with tool joints behaves so neéarly like a uni-
| form bar, the éase of a uniform pipe directly connected to a uniform
drill collar is considered below. Resﬁl'bing frequency curves are shown |
in Figure 12 and resulting natural frequencies are tabuJ.atqd for compari-

son with the results mentioned a'bove in Figure 13.
Ip & Ioe

-p (-1 -

|
e
ohaxtly, Spmtls A ghut
ax&lp poat) = Ap SIN(wl¥)
Lok X £lpsl = A it
Pe N &Ebpalor Opedn®) ® Ape ‘NN(E%!‘-\-EW e
Matching force or torque and ‘d.ispla.cement at x = Lp'g:lves:

. @Eoc| = Apcmicos(whpwl 20
Free end 5% |ipein oc i (ghr e+ 0c+€)

5
%ickr ¥Gs I - ukoc



=18~

Fixed end: @p.| = Acc 2iN(¥le+glocre)=o
Lparbloc

wl = -
BLp +€ = W %&-x

Free end: TAN ( t%\-f - e\

TAN (% .w‘_L.acB = co'r(ta‘\.-oc)

Fixed end: TAN ( H%H‘ 4-6\ Tan (T - “.‘-%N) = - TAQ(%_\_.,GS

The resulting frequency equation for a free drill coller end is:

Tan (whF) = I.T-.? CBT (1eked)

Tee IIT-1)
Ly - -1 (T
Whp-an = TAN {.i.:‘:c'r(@ém\}
Hﬂls'!.,’:,u‘

The resulting frequency equation for a fixed drill collar end is:

TAN (t.%e\ = - Zp TAN (:@5‘_-::.)

3. I1I-2)

- -
“-‘-L-_L‘? A% = - 'fAﬂ { .;i\so‘-rAN (kgal-vc)]-s

For later reference the modes shapes are glven below for the nth

mode where u.)n is the nth root of the corresponding frequency equation.
Fix-free: ©&xklp o= SN EgX II-3)

o AR
bp £X4 Lor L @no) = S1NCE) can(gn(Lpslac¥)

[X-1 (%ﬁ‘-p‘)



Fie-fixi o bbby @00 = SN ()

III-k4)
L
Lpé R éLpblpe One) = (s SIN(En(Lpeloc=x))
SIN (L)
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I\( . EQUIVALENT LUMPED PARAMETER SYSTEMS
Equivalent System for Single Uniform Bar

In this section equivalent lumped systems will be derived for uni-
form single bars with ends fixed-ﬂfixed and ﬁxed-;-free as shown in Figures
14es and b, A standard length 20 of & uniform bar will be defined
and all its ela.qticity put in one spring of the eqpiva.lent system,
Figure lll--e', and all its 1nert1q pleced in one mass of the lumped
system. Equations will be derived for the fixed end cese and the fixed-
free end case for slightly different length bars and conditions specified
so that reéults may be applied to bars of the same length.

Fixed-fixed Case: lo = ;\=|
>

Equating elastic and inertial torques for each mass of the lumped system

glves:

) 2 @ =~J@, -k, a0
*““ | -‘eﬂ'\ +2K'e'n -Jé‘“ =9

For a periodic solution: Sy =S »” e‘“‘*‘
Jew) (26-3 &, -wd, =0

| & dein KBy, + (2w~ Su:ﬁ-ﬁiu-klgnh*‘=<b
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R=n e D 4 (k=T Bpze
Division of all n equations by K yields:
Kozt (- B, -8 =0 R W
| 4 Hein -é’«-\ + (2R éh— \cé'_n.\.\ =20
‘J2=h —él‘\-\ -+ (’L-RW éh=0v

The frequency determinant is:

aQ

-\ 2R -

- 1R
This can be factored by identity 1 page 53

BN S _ o 2-R2ces ¢
AN (X 41\&'%[ IV-3)
5. 2 \\2 " Vot

Frm g PoPrIBY

By equation IV-2):
et
By

w{.‘ = ‘,§.R 2 4 %\Nt('aﬁ:hr\

For ¢P small, i.e., 1 large ‘HN(éf)is epproximately equal to Qp .
2

Wp & & RN.p x kS
v Ro HHP \-tP



vhich is the same as the wave equation for a fixed-fixed uniform bar.

i.e. Wp = E\:“ P GPQ&,‘\:\: A%IN(’E&‘ﬁetm IV-lt)

Since the mode shapes are unique only within a consfa.n‘b factor, a
legitimate choice constant for the pth mode is:

= N

S = on(E )
Application of the recurrance formule for the sine allows evaluation of

all succeeding &3,

é»h = (2-® Su. ;éhﬂ U-Rslcos dp
N 1¢p= 7-¢,°5¢p SINW-N gp =sin(l-a)

5& 2 9IN é_: P a"im';tzs? %:kqe IV-5)
+| |
Fixed~free Case: '

Qo‘ 3_‘=‘|_

n-t-!;_
Ko &
- T e

The equations of motion aré the same as equations IV-2 with the excep-

tion of the last equation since Kn 0.

+1 -
x| (2-R) &, - B, =0
\ ¢ J“" -éh_\ '\"(7—"‘1\5‘»& —‘éh.\.‘ -

Hen  -F,., +U-RY S, =0



-23-

The frequency determinant is:

2-R -~
-\ 2-r A~

=0
-l 2-r -\
- =R
This can be factored by identify 2, page 53:
cos(n+ild_ o -2z 2ens @
SIN
: Lo 1 & IV-6)
= XK. 3"35100‘ w4 K qN -
¢r QM-\P P3h%9 T %

As before for ﬁ. small, i.e., n large SIN %F is approximately equal
to éf.
z wpe £ -D-pa &8¢

Ly 2w 2L

This is the same as the wave equation solution for a fixed-free bar:
Wpa ES 238 ecnt\aA'\N(Yid: etw‘t
pe BSp prhibs, phuit)e APINCEEP)

Determining the modes shapes as in equation IV-5) yields:

B = ‘im(—%’l.;&;r) > %tN(%‘v)

If the two uniform bars of Figures lh-a and lh-b are the same,
L = Ll' + To glve correct results for lower frequencies for both the

fix-fix case and fix-free case, the value of K/J must be the same.



) I
5:.&1:53 Qo = —LJ-?._\;-
J PR U Ner e

N+t = n+{

which is obviously not an identity. However, if n is large enough the
two values become approximately equal. For the case n = 50, the differ-
ence is less than 1%. Figure 15 shows the error resulting from the

lumped approximation in natural frequency for n = 50.)

Equivalent Lumped System for a Dual Section Bar

The results of section III show that tdol Joints may be ignored on
drill pipe section of a drill string, and that it can be replaced by a
uniform bar of the same length. Hence, the drill string will be taken
to be two bars of uniform cross section, rigidly Jjoined together, as in
Figure lh-c and 1h-d. The equivalent lumped system is shown in Figure
14-f, Equivalent systems will be derived for the cases; top and bottom
fixed, top fixed and bottom free, and top free and bottom fixed. In all
cases the systems reduce to that of a single uniform bar if the bars are
of the same section.

The fixed-fixed case will be considered first and as before, all
dwﬁdwaMdmmmofaﬁm@ﬁlm@hﬁomubemmﬁinme
springs and inertias, vrespectively, of the lumped system.

Qo = L P = Loe

z z
k= Ekp We= Elec v=T)
'H Re
J = ?&SKP - Ja= '.9_-_0:9:
? ‘i

* A similar treatment for a uniform string is given in reference 11 pp.
- 122-126,



K\ = Cz K1 = s. ‘
T ® T 3 v-T)
7 2
3 Ad ds g Cont'd.
o¢ = Loe ke o Eloc Os -
P K, « Elp
93 = .S_". \.C.!'. = o4 .:.S.‘
K| . 1. kt K‘
Ky = LW, = 2R =Qw, o= 2
i+ Ky oy . | ol

Equating elastic and inertial torques for each inertia yield the equa-
tions of motion below:

st‘ ').K.Q" *I\é. "'K'tez:o IV-B)
| & )ng -»c.e)&_‘ .\.’LK.'Q')z-S.é‘k - K\eh.‘.\"a

J’Z=M ""K.|‘em.‘ + (‘C‘,-\-‘\Cz\eme‘s; ‘é’m "K), e-m“ F Y]

Jenma =Ky By F Kt S| = sﬂ-’ém.ﬂ -K},.ﬁm*\lo

el &M Ln —Ke € ¥ 2K €Yy -3y, =1L €Y, s O

HRan =Ka ehu\ "'2%1_6‘;\ -Sn én =20

Assuning e peripdic solution and dividing all m 4 n equations by Kl , and
using the constants defined in equation IV-7) ylelds:

Sp u By et B L, Yt 6.22)"

K, Wy Lo
Hem\ (7-'7-3'91 -
| & Je L -B',h_\ e ('L-K\é‘h ﬂ-éh*‘=Q
e m

“Smal (B4 -RDNS =R Sy 2O



Mz mil
Ml & S Lmn

_ M Mien
determinant is then:

2-r -l
m + n rows -l 2-r -

and columns N

for mth— —_—
inertia

o

=26

=B (pamG-r) -=
- x(2~R) —=<
AN
\\

N
- e((i-'lz) -

~o oc(?2-R)

- P: a‘m - K?)*-"L\'w-\\ é'm+\ - é’m% =0
-°<"'-'e-,§?_“ 40 (2-T) éh - -«ékﬂ =0

- ém‘.h,‘-\-o&(l- ) émw\ = The frequency

IV-10)

Expanded on the mth row and column by Sylvester's identity:*

m rows and n rows and

columns columns
2w - Bar=x(i-R) -=<
-1 1-R =i - =¢(2-R) =X
-\ g -l - >t oc(z-R)
=t \+B-R -

m-1 rows and

colunns
@-rz -\
-l 2-R -
-8
- -\ 2R -
or (2-%) -l 2R

n-1l rows and
columns

(2-R) ==

ot ¢(7-R) ~o¢

20

—o¢ (2R -«
- o o(2-R)

Expanding the first determinant on its last row and the second on its

first row yields:

* Reference 10, v. 2, page L422.
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(m-1)x(m-1) (m-2)x(m-2) (n-1)x(n-1)  (n-2)x(n-2)
2R - -2 - (2-@) -
A 2 A T o Pt R
(\+(2-R) _ 2
_ L pandi=py] o
-l 2R -l -l R - . e
-l
-l 7-R -1 2R —~ a(2-8) e ot 2-1)
-R - =R =
IR o 2R -
- Iv-11)
Nl =20
- &z“ Lo
-l 2er =l -1 - -l
-l 2R -1 2R

(m-1)x(m-1) (n-1)x(n-1)

Factoring out powers of o¢ and applying identity 1 page 53 yields:

{(\-u-b-ra\ SiNmg =5 INim-Dg] {Lg,...qu.m] o SINNG = SN B L
aNg eNg | N g &INg

__F,ﬁ-.:‘" GINmMm P sinng
QNG SING

2-R=z0cos ¢

| =2 Q.c=$¢"l

14

4o
2

Using the definition of R and the recurrance formule for the sine gives:

(\=R) Sinmg =sinim-INg=cosd SINMP=Simim=-N g =S inmg

= SInmEN G —siamp

Restricting sIN ¢#O and canceling out the 6\N¢ terms:
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{ (B-Nainmg -\-s\rd(m-rhgé]‘ { ( E-.\ SINNG sinln ¢15

rbl
-2 SINM@ SINng =0

(benmg Cse |~(.h+0¢ -anngl 4+ 2". ‘5\Nn¢c.5m<m+n¢ ~siNmg }
-2i8mp LoantneNd - siand ] + SiN(mang Lomnvineng -sinndl=o

Dividing the expression by E’- from equation IV-T) the expression

2ot
simplifies to:

o Lainmeng ~oinndIlainmg + sinima g 1

+ Conmmg-sivmplLemned +s1ung] =0

By the identifies:

INA-ainD = 'Zces(A;:B\ 5|N(A7-:E>)

SINA+eINB = chs(é-’z_&) s\M(A;-B)

The final form of the frequency equation is:

{4-: cos (n+3) b aINtm+i\ @ + 4cos(mrl)d sinlnrt)e 15 SIN % cos ;2!5: o

— Loc_
o = -1-(-" = =TAN(M+4)g COT (m+H) P Iv-12)
By definitien of R:
z [ 3
wWe = Re Xl =4 & g
P=Rek e %P
For @, small:
W= £ gp
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~¢p= _'-e&‘. Qo
(ﬂ*‘g}%z l—_;_in; (m*’.;) ¢P'§ hs_‘\-?

oc = _T_-I_u: = -TANL!%‘.—BG\ coT(ly)
P

Which is the same as frequency equation III-2).

Equation IV-12 can be rewritten as:

BIN (man+)) &
cos(n+ L)@ SIN(M+L\P

n\_«_-:

which has the same roots for = = 1 aé equation IV-3) for a uniform bar
of length (m+4 n~1) [ o+ Both frequency equation III-2 and IV-12)
are indeterminate when LP = Ibc' In this case the two bars have the
same fixed-fixed frequencies and can vibrate independently. In an
actual drill string, the drill pipe is usually meny times longer than
the drill collar.

If XP is a root of the equation

n
ox = £0¢ m-rTaNYcoTdY =t = Lp
T'P \‘\'\"1', Loc

The natural frequency by the wave equation is

Wp=c¥s = £¥F - cd (nelVpp= ¥
PEEF Tee T L -

For the lumped equivalent system the natural frequency is:

Wp =2 & oin P
fo 2



Error of the lumped system is:

/
Wp-wWr — |- 2 g0

Since the approximate roots of IV-12) occur whenex = 1, at ¢P= I

men<+| P

the maximum error can be computed as a function of n and .\\-:P . This
oc

is shown in Figure 16.

/
e QRSP = - Limeada_T__p\ 10-13)
we P Z(m+nai).

Similar to the equivalent system of a single uniform bar, the mode
shapes can be evaluated by assuming that €,= SIN 75\, for the pth mode.
The recurrance formula for the sine allows the first m coefficients to
be evaluated:

S, = Sin Pp

. é/h- = (7.-\2\ ‘é‘h -\ - '-é')’__?_

2c05é SIN (k-Ngp ~sinlk-2)Pp
= ain(k ¢F)

By the mth equation of motion IV-9):

Pb'é'm-\-\ = ( (’:-\-\—R\ 'ém "ém-l
= heanmap + (2c05¢p -1) SIN M@ = SIN(m-NPp

= (BH-) ginm ¢F’+ 6w(r§\+\j¢‘,

= 2= ==\ by IV-T)
& e DUlESE

Divided by é the equation becomes:
-3



-31-
Lom T o Sec Smmge i (mt Wbkt SiNimaF, -5 mPp
1€ me = 2 s inmeilgpeos gr-{-f_‘: = 5(mrl ), 51K %F
¢ = = TAN(n+L B coT(mr i\ o

Sl = Slwtm+%)¢F {C’o‘: %P - co‘;(n‘*“i)qsp BtNil
SiINtn++\dp

: : : (L::;}ﬁe? { BN (N4 \Ppcos %p- Costne4)B oSN %ﬂ)

= awlmrDNPe giun gp
Sin(nt ) Pp

By the m + 1 st equation of motion IV-9:

Bmay - = (B +‘-‘Z\:'é'mm—§'m

&) Z =

= e—m—
- —

2 sinim+E\Pp cosin+ 1) Bp
< | 4=t

SIN(m-w Pp
=R = 2cosd -\ by IV-T and
-12)
(f;‘ + I-R) = 2cos Bp S NIn-MNBp + SN en+)F p
= SIN(m-"\ B

Sy = _2nlm+Pdo (’Lacs(n+'f,_§¢r‘-“'\’()'f“"a¢|’5w“¢l’
SINIM-n) @ SINIn+4)Bp |

-ZQ\A(n&‘;‘\géFcoS(nhﬂqSPsm MSZ%,
+ (2cos8p-1) IN(m -\M‘Pf;\wgf\,)

= L
S w 2N0m+E) Fo SIN(n-N o 3
3IN(n+d Py

The remaining can be found by rewriting the recurrance formula

for the sine and solving the remaining equations of motion IV-9).

SINU-N B = Lcos Bainld ~alng

- L
BIN (n+ 3) Pp
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The mode shapes for the pth mode are then:

= SN k¢\,

J’L .é.h« é;pl‘,

de S -G-,Qz\, SINm+ NP ‘5|M(m+h+l-z‘2\¢p
9\N(ﬂ-\--‘;_\¢P

which are of the same form as equation III-v).

Defining the normalization factor below*:

Application of identity %4, page 5%, yields the result below:

m m
E Ins B =J, z o oo, 23.(, SIN 2me) )
hz! ’hl’ Tt P \2"\‘\“ $|~.¢? }

min
2 1x hek? =3, 2D dp Z sintsdo

Rz ainy 1)y
= = BN 7’Cm-\-=.\¢?& ] - 2N €5
4 st tned\Pp singp
S 8k vy i)
Ng = 3,{ S +=<_ B
¥ '1 P * dezmer) f
= Lil 2m+l - Binzm+NBp
4' SIN ¢?

_ cos(m+i B (L) Po Cln - N(’L"H“ﬂ?

e o s(nigp SN+ B S Pe

Nt = 3, _ sin(m+) B Bl
F 4 {'qu-\ SN In+\) Dp (2n+d

* See reference 7, pp 40-42, for explanation of definition.



Elements of the solution vector to the fixed-fixed system of equa-

tions may be written:

-}Lém e)z,P_-_-_ ‘-"\N&Q¢?
Np -15)

Je S Epp = 1= IR o)\ el = o) Pe
N?%\M(n+-\.;_\¢\=

Where ekP is the amplitude of the motion of the kth mass when the system

is vibrating at the pth natural frequency.

Consider the product:

m4n

N}Nq %\, € kg Ay e,%q = 3\ Z\ SN k:;éF swﬂaqﬁﬁ

%(m-\-“a‘,wﬁp%\u(m«\-"-;.\% Z %m?z;b;awsé,\
NN +1) P Sl E) By

+.°‘ 3\

Substitution of identify 6, page 54, and substitution of the frequency

IV-12) for e , yield a fraction with the numerator below:

= sw(m-\-%\ ¢pc.o<> (m«-{\(éq cos %P%W %‘

- Cos(m+d) ¢?%\N(M+!ﬂ¢,1 SIN .gi’f-'os %

~ Sislma) dpcosime’) 95" (sm(nw‘;}%-ccsm-\-‘;\% »‘:-95?7'5_\»4 g"l
S (ned) ¢f' cosln+d) ¢=‘

-em{ms‘, 5,\ M(M&W%W%?@&%ﬂf
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= 25N éﬂgos é‘l { sintm-m ¢P s\n(menst) 951
SIN(n+5) Bpeosineddy |

—5iINimr Paain (m +n+\\¢P)S

Q.-,\N.ét’cos %‘\ [ (= () e = (1 =0 +ed ]
SIN ey Py cos'-mﬂ\qbq 2\ N(m+4) ¢1 BIN(M+L) B € 05N+ ¢P

_E-‘= €np St €rq =© P*q IV-15-a)

For the fixed top, free ‘bottom case the equations of motion are

the same as IV-9) except for the last equation. Km-l-n-l-l = 0, as shown
in Figure 14.f. The same constants defined in equations IV-7) will

also apply here.

R= Ju = =_~_»)"
e UL
.492= (Z-E\é. 62 =0
VL JeLm —Sh +(2-RYBy, —B i =0
Heam = Bimey Fp 1= B = By 20
Heama| ~b&, +( ?:4-“0—\23\ = = By 402 O
men Z foln

- .‘éh-l =+ u(Q-lZ\'é'v% - é',k_.g-\ =0

o =men -~ . T-RYS,, =0
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The frequency determinant is then:

2-rR
-\

m + n rows -
2= -

& columns

- 2-R =1

— = (1+p-)

=B (Basc-@) —ox

-p

- X(2-R) -e<

- o(2-R) -0

- ox(1-R)

Expansion on the mth row and column by Sylvester's identity; and reduc-

tion of the two highest order determinants in the fix-fix case yields

results similar to equation IV-11).

(m-1)x(m-1) (m-2)x(m-2) (n-1)x(n-1)
( 72-g -\ 7- -\ N x(1-2) -
- 2-'r - -l 2-R -1 —et o(2-R) =
G+ (o-R) - >q [P+eci-RY] =
- -r -l -l 2-g - ~te(2- RY =
\ - 2-r -l 2-R )L =% ot(1=R)|
2-R. -\ -2 =\
-l 2-r - -l 2.R -
n-\
-l 2R =y -l 2-R -~
-1 2R -l |-R
(m-1)x(m-1) (n-1)x(n-1)

(n~2)x(n-2)
—(2-R) —x N
e (2-P) =&

-, on(']_..m -—¢

= (1-R)! |
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Applying identify 1, page 53, to the first, second, and fifth determi-

nants; identify 2, page 43, to the third, fourth, and sixth determinants
yields:

{(\-\-p; R smm# ¢ewtm-h¢}{(q “+l- g\awné SIN(h-DG _ SIN (00 = swmgg.},‘

ON P SN

~ol S BiNmd [3mng ~sivtn-ngl =o
G N* @

(1 =R) sinmp —sintm-N@ = 2cospainm@ =Sin(m-0 g -siNnmg

= SINMMEN P -~ mg

Restricting ¢ so sivg#Q, and canceling 4in@ out:

{ (®-0 2INM@ 4 SIN(M+D ;ﬂ} {% Loinng ~oinn-1@] + [SINMNG =2 ainng +qm¢n-t\¢}}
- g ainm@Laivng - sinm-Ngl z 0
E Csinng ~oiun-0¢1 s N(m+) ¢ =5IN m@]
+ B onm@lanineng - 251un @ +5i8 a0 @)

+Lainmeng.ammgllammamg = 228 nd waint-1gl =

Dividing the equation by _’;.L yields:
[-%3

| o Qo | e
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ocLainineN g =2 5iun@d+ainin-n gl swm#\-%\u(m‘\-tﬁ-smmsﬂ
4 Lm0 g =sinmgllsininang =S iNngl=0
a210A X onp =12 mN(Atb) cos(A'-\'-E;>
2 2
COSA - cos B = =28 A+B\2INA=-B
SRR
S\NINNB - 2BINNG +SINN-NP = ’Z%m%\'_casm-\-il\‘ﬁ-cosk,n--‘i\;ﬂ
=- 4 em"% siNng

SIN(M+1)P + sinmg

2oinim+l) & cas%

anlm+p = SINMP

Leosimad)d SIN %

NN+ ¢ - %\HCV\-\\¢ - 2 cos n¢ 5‘~¢

Applying the ebove identities gives:

- Box em"_? SINng BIN(mpL\pcos P = -8 cosimeIP cosng emz? ce‘..»%s

The final form of the natural frequency equation is:

o¢ = I-ine = c.c'rcm-\--\.‘-_\¢co1‘n¢ IV-16)
P

For ¢P the pth root of the frequency equation, by the definition of R:
%
=4 gt

For @p small: wpm %;6;:
°

P wple
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(M-\-'&\QA = ng nllox ch

o< = :Ii.:c = coT l%\-p coT A.%Lo:

Which is the same as equation III-1).

Equation IV-16) may also be written:

el = CQ%QZ(M-;:\\*-\qs)
T SINIm4g) P SINN B

vhich has the same roots for ©¢ = 1 as equation IV-6) for a uniform bar
of length (m + n){.:

Ir X p 1s a root of the equation:

o = Co'r'\‘ r-OTsx

nt-

$=m+

n =%

L

L
Lae-
The natural frequency byj’che wave equation solution is:

We= 8 =
p= ==2F =
LDC

e¥p _ cndo b= L
(n"' j-i\ Qo (ﬂ-'\i\lo n

For the lumped equivalent system, the natural frequency is:

w%: 2 < 5!92
Ro 2

Error of the lumped system natural frequencies is then:

We=wp - | - Wl g #
wWp neg
Since the maximum roots of IV-16) occur when e = 1, at Bpz

(2p-\ , the

2(myr+|
maximum error cean be computed as a function of n and LP.

]
il.e. WP-LP £ | (2~ 1) LU+l o, yF  IV-1T)
we (2p-Y R 2



As in the fixed-fixed case, the first coefficient -©

. Will be

assumed as SIN ¢Pfor the pth natural mode. As before, the recurrance
formula for the sine can be used to evaluate successive coefficients up
to 'é‘m .
)Q/:.m ék 3 (Q-ﬁ\é)a.‘-é}g.z 7.-\Z=’Z.c.05¢P
= a8k ¢P

By the mth equation of motion IV-9)
p)‘-éwn.\u\\ a (?)-\- \-(2.\ ém "ém-t

3 Panm@p +(2e0sBe-NSINme, - sin(m-1) Bp

= (B-Dsinmde +oinim+dde

Divided by .Qg the equation becomes:

B 2
o gy

Lot Sy = = (sinmPp = Sinim+1) ¢P

4 SN+ Fp —SINmEp

Bme = SiN(m+L) Ppeos %P""‘;‘; costm-c--‘,-_\gSPsm %p

:‘ = TAN(m-LY B wanngp by IV-16
Srp = ‘%‘_N’LM_*"ﬁ.)_ép&GMng!Pcosfe.\.SNngﬁpsm 2p |
CQ$H¢P 2 2 j

é‘m*\ = MEE Cﬂﬁ(ﬂ; l'l-\¢P

cosn ¢P



=40
By the m+l at equation of motion IV-9):

BSmar = ( E -\-\-E)é'm-\-\ -rm

= & ('sm(m-&-"-{.\sﬁrcos(n--\,-_\qs?-swm;ﬁ?\

o cosng@p
+ (2ensgp-1) SN+ B cosn-4\ @go
cosngy
& ( costm-ns -z’¢p S\N gp-\
o, coandp .f
+(_2cos¢P-0 5___J—¢\:“'m“' ) PCO%M--\¢P
fen

B = 2 _owmdswnds
o \ X cos(m-nq.-\,‘-_\¢‘,

by IV-16)

=, q"”_"“%él’ %25"«’ épe.mn;&? +('an$¢? t\cos(“..\\q;[
coOSn
P

= ‘.*\NCM+’5-\¢P 3 cosin-t\% _c.os'm*‘i\;ﬁ?

_.('z.c.o$¢9 -Ncos (\'\--‘,-_\95]:)3

= S\NIm+H)

c:as\'\%.

Smre = Sinlnes) P Pecosin-2\g
Co$h¢P P

{ 2 cos;ﬁPCQﬂw-‘i\ ¢f’ —-cosln+l) ¢Pl

J

Writing the recurrance formula for the cosine and solving the remaining

equations of motion IV-9), the remaining ék are found to be:

cosll-0p = 2cos Pocoshéy —coslrgy

co%ﬁ P
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The amplitude coefficients for the pth mode are then:

ke len @pp=siNkdp

dedm  Bpp = é‘c'*‘_‘g'\ﬁ“%:_‘é? cos(men+b- S\

which are of the form of equation III-3).
Defining the normalizing factor for the pth mode as:
men
= 3
N = Ik B ior
hem | e
Application of identities 4 and 5, page 54, give the results below:
AL} e
Z. '-é'): = E %\l\\ak%
A\ k)

= 2mxl |\ BINme) ¢?
4 4 BIN ¢P

M) Mbn

E Syt = Sintim+ P& ch‘a"(m+n+!i-h\¢‘,

Lozma cosingdo  hamy

men |
tﬁx_ co$2(m+n+§-)a\¢9 = i

Cos” (2s-1) ¢P
HRema | 20-\ 5a) /)

n;\
= E: cosls®p - 7. cods P
2 Sz

coslan+E) Bp —coslan-4\ ¢?

15
3
W

2 & %m\%?e\n¢9
- N L 5820 @
-_— -—— + -
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The final form of the normalization factor for the fixed-free case is:

NP \ . n swirm+) Fo Iv-18)
3N AngZy
Elements of the solution vector to the fixed-free system of equa-
tions mey be written

Sl e;.,-_kz"aw P

Iv-19)
JR Am e,.,_P = L’“‘"‘M COS(mens i = Je) Pp
Npeosngp
Where e‘hP 18 the amplitude of the motion of the k"B mass when the

system 1s vibrating at the pth natural frequency.

Consider the product:

men

NFINP T Chp i €eq
Re) m
m 3, ;‘emhgs?mu.ﬂz;sa\

- o N o optmardNdy
cosn @y caindp

? cos B g cos i &y

|

Substitution of identities 6 and 7, page 43, for the summation terms
end use of the frequency equation IV-16) will reduce the term to zero

Just' as in the fixed-fixed case.

me '
i.e. ‘ki ehr Jhk eﬁlf-\ 20 P*‘\ IV-19-a)
L 1 _
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For the fixed bottom, free top case mode coefficients will be
counted from the bottom of the string.* Results are then the same
as the fixed top-free bottom case with the subscripts interchanged and

"L replecing o .

COT(N+4\ @ CoTme =

_—

T,, IV-20)

At S, =
&n 'e';hF SIN 92¢P v-21)

A @k(, = DINn+H Fp cosmensly -Kg,

G+ (i g e s

N v-23)

’9{ Ln e)!P = Sin(ng 'Z\¢P Ccs(m+n+1-h\¢P

Pc::sm P
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V. RESPONSE OF THE EQUIVALENT LUMPED SYSTEMS

The equations of motion of the lumped system of section IV can be

put into the matrix form given below. By matrix algebra the response

of the system may be found to an arbitrary periodic forcing function
acting on any or all of the masses of the system. The general equa-

tion of motion for the rth inertis may be written:

| - . . tt
G (Kpp + k) + e de + B Cr K Sy - K, @, = Fr €

€ Durr T €It DCrr + Sy @y + 5,1, Oy, = Fre

Ser= K+ ¥y Srer = = Wi
Sre-t == W,
Srezo lr-glan

3v-5=0 ok X

[J][6}+[C][@]+[5][e| =[F]e

R B
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The demping matrix is diagonael since only surface forces on a

length of drill string \, are considered:

€]

B

[F]

K,

K |
Ce
Sy
- N
N
\\
[4 -\ 7] Top Fixed-Fixed Bottom
-\ ?.\\-\ S22 gez
S Vep b — o roV m
SIS IR Top Fixed-Free Bottom
N §:2 =1
| ~ Yo Top Free-Fixed Bottom
S=\ ¥=2
R [ ]
i I B
— '
| [o] =] |
| |
| Foen -.@‘.“n-

Assuming a linear periodic response in terms of the nstural modes:

[e]=[E]X]e™ [X]=|;

v-3)

Where [E] is made up of the elements defined by equation IV-15) or

V-19).

[E ]

-eu enz_ -
€y
€

e — ——

men i

- enw\-
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Substitution of the above into equation V-I and premultiplication of the
entire equation by TIE] yields:

~SEITE X+ w[E e Tx]
+[EsS]E Ix]="[EJ[F]

Calling the first matrix product J, the second C, the third 5, the re-

sulting elements of the kth row and pth column of each is:
min m+n
I T
e = ? Crie Z Jrs €1p
J“'S =0 r *5
*
Crhe= e.kr
men
JJQF - _;'.... J\-r eph erP

=4 F._.,.k' by definition of the normelization
factor

= O \"'—‘#k by equation IV-15-a) or IV-19-a)

men man
5}&? = EF' .rE)gp ZS—- Srs egF
men

z"— eg-ﬂ'.< 6?’\‘-‘ Cr—-u, P -+ 5r\n e"F <+ 5:-,?'4-\ e\‘#l,P)

Sre= 0O  \r-s| 22

But e,,..,P etc. are the normaelized amplitudesof the system when it is

vibrating in a natural mode &t frequency w‘:. Hence they satisfy the

equation of motion for the rth inertia.
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5".\*—\ ev-\,P * %P.H-\ er+\,P - ev-PCSv\--w';,Jw\= (»)
Men
2

. 5""? = We Z €ri Crp Jer
= w"P k:?
= O e P
Therefore the inertia matrix and the spring matrix are diagonelized by

the transformation V-3). In general the demping metrix is not.

en Mn
= T
C):?""" g € hr g.cm.e,P

CPSBG \':,ﬁﬁ

m
i er,h‘ e\-P C—rr

Since the E matrix is orthogonal to the inertis matrix and hence to the

spring matrix, the demping matrix will be diagonalized exactly if it is

proportional to the inertias matrix.

iaeo CPP = C (] g é- ™
c\—\- a2 o Co Sy
Since the above is physically unlikely, an approximate approach must be

used.

For small damping the damping matrix may be assumed diagonal and

the diagonal terms assumed proportional to the natural frequenciesle.

i.e. Chp =@ h#p
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Men
- 2
Chip= Lk P\k 2720 Ar = Wi = Ei:erjo}P

Aw r
The equations separate and the X's may be solved for.
Man
2 .
—Ah +ilw .‘fk X,}g "H'“E,Xk = "e_%,F'..
h -
men
= E. eh\. FV'
P

Transforming back to the original coordinates, the final result is:

[e] = [B][X] &

min
Sy = € Xio
) men Veﬂ
= L. Eik EhyFr
r + 2, ¢
W =+l Wi
b A

If the only driving force is at the bottom of the hole:

Men
Sy = ; €ath Emande Fmn

gt~ L Wh
A
The formula is written out on page 41 for the three types of lumped

systems of section IV, for the response a.t.the top of the hole for a
preriodic force at the bottom of the hole. The real part of the expression
should be used.

For a given displacement at the bottom of the hole, the force on
the next to last inertis becomes merely the disvlacement of the last

Inertia times the spring constent. The situation is illustrated
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<

below: ;”/Sm+n-1
é Komanc
“LJman-1
% Kmtn
1 = ° e;’“’
2 Tmin !
Given: S man = S, ei'wt Sy = é_keiud‘f-

—w1 3'&*“-\ é’md"\-l b Kmm"(.é‘"\#n-\—é”““‘m\ =Kmm(é’°—'-ém“_n-_‘\
.é.( Km\-n"‘ - Km+h - 1'Jm+n—|\ - Km*n_‘ém*n.z

= KnnSo ® Fman-

which is the same as a system with the bottom end fixed of one less

degree of freedom. Responses are given below for the top of the string.

Man-|

n ‘ ‘ .
Top Fixed S = =2 F— SINIm+3) PBre S\n° ¢ah S eovrom

| 7 S
S Rt S\N(n-1) @By, § 2mel _2n-1 SIN(Zm+0 I
: Je{ 4 4 sW@n-\\Pp S

( ei.w‘t' 1
\ w;;—..,o"‘a-kw %;: S

Where ¢k is the KB root of: Lo, -co-r(m-r!,;)yﬁ TAN(N-3)P

I, -
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mane\

Top Free : <. Z SiN(n-DFBae DINDER cosﬁ"e-em«m .
R" &l C05m¢}z§2h'1 . m SIN(2Nn- h¢)£l
1 4 2 aw2m @y
st
{ ceLw A
gy — AL Wk S
Ak

th

Where @, is the k™ root of: -I‘T‘!‘ = cOoTM+NGCcOT(n-N

. . L - -.L .\= Q°= __\_—-_VC
Both cases: M+t = (n-3) L:: v

2
wi = 4t Le
L C
| RESPONSE AT TOP HOLE FOR PERIODIC FORCE AT BOTTOM

Fixed-Fixed
m+n

o= L) g Z Silmrd) Bre o\’ Phe Foorrom .
(JT- LP %lM(n+L\¢2{2m+\ Ll SIN (2N Fpp
4 siv@nr NPy
{ ei.wf 1
UO)Q GO ek w W _,sz
At

Where ¢9Lis the k°® root of equation IV-12).

Top Fixed-Free Bottom MmN

(W'H"&\ % E S\NLM*1\¢D¢.%IN ¢}z. Cos é FBO'\"\'OM .
@ 1 L c.osn¢h Sl’Zm+\ +hn %!N(’).m-tﬁ Q’Z l
4 2 %\N'Lh¢k
& euw‘t 1
Wt =t Hhw Wk S
th A,
Where ¢k is the k root of equation IV-16).




-51-

Top Free Bottom Fixed

m4n

o = (n+i) 2 "hz" SINMA T B Sim ¢2@_. co%%k Es_gr-rom

g cosmgy { Znrl L m Sinlen+d ¢k}
F e tee V4 77 slaame,
.{ eu»t 1

w2 —ut Lo e |
Ak

Vhere @, is the k" root of equation IV-20).

For all cases

(mMm+d) = (ned) ,\-:_p Q.= Lee
oe ned

We = 4 g s P
Z

b



VI. SUMMARY AND CONCLUSIONS

The results of sections I, II, and III, show that the heavy tool
Joints have negligible effect on the vibratory motion of the drill
string, within the usual range of rotary drilling speeds. Therefore
the drill pipe string mey be considered a uniform bar with the same
properties as the pipe itself. This allows & simple wave equation treat-
ment of the drill string, as on page 1T.

Based on the simple wave equation.treatment above, an equivelent
lumped parameter system may be constructed for various system boundary
conditions. Placing the eqlations in matrix form allows the derivation
of the response of any point of the drill string to a periodic disturb-
ing force or periodic displacement applied to any or all points of the
drill string. For small damping the approximate response can be found.
The lack of experimental data prevents actual comparison of numerical
results calculated for the lumped system. Also, actual system damping
by the drilling fluid in and around the string may be proportionsl to a
power of velocity and not viscous as was assumed herelu. Consideration
of velocity power terms mekes the system equations of motion non-linear,
and very difficult to treat. Approximate viscous coefficients can be
calculated from experimental results, however, and the work of this
paper in that direction must awaeit these calculations for any proof of
its usefulness. In any case, the undamped response of the lumped system
may be easily calculated, with the minimum of computing power, from the
expressions of pages 50 and 51s The minimum number of lumps to give re-
sponses of desired accuracy may be found from figures 16 and 17 for

given boundary conditions.



VII. APPENDIX

I. The identify for the special determinant below, called a continuent,

is based on the fact that its expansion follows the recurrence formula

for the sine¥*.

c =\
-\ c =\

O\ N\
m rows and O\ N = 2iN(meN @ for C= 'ans;ﬁ
SN
columns \...\\c\ ™

-\

-1 <

II. The identify below is based on identify I following expansion on

the bottom row:

m-l TOowWs m-2 rows
and columns and columns
e =\ C =l c -\
-l e =\ -y C =\ -1 c -\
NN N\ NN SN N
NN\ = (e-D N - NN
m. rows and \\\\ NONN AN N
=t ¢ -l -\ Cc - -l "¢ -l
columns - (e -\ c - C
C=2cos &

\

(2cosd - N sm @ — aislm-N g

SN P
= SIN(MING —DInmPb cos(m+i)d
S\ P cos®
7
III. The identify below is stated without proof1 3:
L .\.CQ‘5¢ +¢°5Q¢+CO$%¢+ e '.,+c°¢,“¢ - ﬁ\“(n-\--\,;\)é
b Loing

* Reference 10, v 3, pg. 413
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= 2n-l . an(2n+ND
4 LR INE-
n.

=\

n
V. g_._ Cosz)uﬁ = A = g_‘ S\ML)«.gS =
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VI.

x>
1]
-

_

m m
ainkAosin k® = L hE cos Ye(A-B) - -_\)-_ *E cos k(A+®)
=\ s\

=1 ( S\ (a5 (A-B) _ ewgmﬁ)gg\-@l
Q‘\ QS\M(&.&EW QSIM(A;'_P) j

AN few(ma-“i)ArcsLm-‘-k\_B sau(ﬁ_\i[.b)_ &) ,..(A;g,))
Flow(aBamagy) A 20 TE

_ costm+5)AsiNMm+ DB ain( AR\ _ | AB }
St (AEE) 51 (B25) (5)-2m2)

2 N(m+3A cos(mrl)e cos A ol
A- AsB
ST _qjﬁ.) =N (_%_)

A
21

- cos(m+ J-?.\A%tN(m-v’i\b%m%cos% 1
(559 (A25)
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m
VII. E cos A coste® =

\
et 1

m m
E cos e(A-B) + L Ecas&zo\-\'l‘b
=\ T fo=|

L {oimmeDHAD) | swlmeB)A+B o)
£ w18 (AcB) SIN(AER)
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Mode

Number

I:I"S\OCD-QO\\TI-P'UJI\)I—'

w

NATURAL FREQUENCIES OF DRILL PIFE

ONLY-- Finnie & Bailey Test Well "A"*

Top Fixed-Free Bottom Top Fixed-Fixed Bottom

W,

k.65
14.25
23.50
32.25
k.70
51.00
60.25
69.50
T8.00
88.00

97.00
w'

l,

wl

2?7 2

wo “ W radians/sec
ll"73 9"" 90)4
1k.2 18.5 18.9
23.7 27.7 28.4
33.1 375 37.9
b2, 46.C b7.3
52.1 55.7 56.8
61.5 64.7 66.3
T1.0 %.C 75.8
80.5 83.2 85.2
89.8 92.4 ok, 7
99.4k

Results of Graphical Solution of Figure 9
for Drill Pipe String with 113 Tool Joints
(Figure 8, String 1)

Results of Graphical Solution of Figure 9
for Drill Pipe String with one Tool Joint
(Figure 8, String 2)

* Figure 7,8

Figure 10
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NATURAL FREQUENCIES OF COMPLETE DRILL

STRING--Finnie & Bailey Test Well "A"¥*

Top Fixed-Free Bottom Top Fixed-Fixed Bottom
Mode
w w w t 1
Nuzber 1 2 3 wi Wy Wiy radians/sec
1 2.6 2.6 2.2 9.00 9.2 9.0
2 10.0 10.2 10.0 17.1 18.5 18.3
3 18.9 19.2 19.0 26.1 26.7 27.0
N 28.0 28.5 28.0 31.7 32.0 31.0
5 37.3 37.3 37.0 38.7 37.8 38.0
6 45.5 47.3 k6.5 46.6 48.1 k7.0
7 54.0 55.8 55.5 56.0 57.3 56.5
8 61.2 61.8 61.0 64.6 66.7 66.0
9 66.6 '68.0 67.0 3.4 5.5 5.0
10 .8 T6.5 5.5 82.7 8L4.6 8L4.0
11 83.3 85.8 85.0 90.3 91.3 91.5
12 92.3 95.0 9L.0 95.2 96.7 96.0
w 17 w'! 5 Results of Graphical Solution Figure 11

for Drill Pipe String 1 of Figure 6
(With 113 Tool Joints)

W u.\'a Results of Graphical Solution Figure 11
for Drill Pipe String 2, Figure 8
(Tool Joint at Drill Collar Junction only)

ws, w‘2 Results of Graphical Solution, Figure 12
for Uniform Drill Pipe directly connected

to Uniform Drill Dollar (no tool joints)
Reference - pages 17-18

* Figure T

Figure 13
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¢, Fix-Fix Duel Bar
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. I, ] Loy i
d. Fix-Free Dual Bar
-n springs K n inertias J
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BB E S ENE
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