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ABSTRACT 

The effect of tool joints on the passage of plane longitudinal and 

torsional waves along a drill pipe was studied. An approximate solu¬ 

tion to the governing equations of motion found, and an idealized 

tool joint constructed. Calculations were made for the effect of the 

idealized joint on an example drill string. The results showed that 

tool joints had negligible effect for exciting frequencies of the same 

order as common rotary speeds and the drill pipe could be taken as a 

uniform pipe with negligible error. 

Equivalent systems of rigid inertias and massless springs were 

developed for a drill string with a uniform drill pipe and one drill 

collar section, for fixed-fixed or fixed-free end boundary conditions. 

Undamped responses of the equivalent systems were found for arbitrary 

periodic forces applied to any point of the drill string. Approximate 

responses were derived for small damping. Specific formulas were derived 

for responses at the top of the drill string for given periodic displace¬ 

ment or force at the bottom, for fixed-fixed or fixed-free boundary 

conditions. 
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INTRODUCTION 

Vibrations of oil well drilling strings have long "been of interest 

to the petroleum production industry because of damage to surface drill¬ 

ing equipment and to the drill string itself. 

The purpose of this study is to place the governing mathematical 

equations on as sound a basis as possible and to develop a method of 

approximating drill string dynamics with an equivalent system of rigid 

inertias and massless springs. The study is limited to torsional and 

longitudinal vibrations only, since the lateral vibrations of a drill 

string involves possible buckling and indefinable contact with the 

sides of the bore hole. 

Several authors have studied longitudinal and torsional drill 

string vibrations using the classical wave equation for a uniform bar. 

All have assumed the drill pipe to be one or more bars of uniform sec¬ 

tion rigidly joined together. However, the drill pipe which accounts 

for most of the string length, is not uniform, but often has very heavy 

couplings which may account for 20$ of the drill pipe weight. Also, at 

the junction of drill pipe and coupling (or tool joint), area and area 

moment of inertia may change by factors as large as 4 and 6 respectively. 

The change may be either abrupt or gradual. This makes suspect the 

common practice of ignoring the tool joints. Hence, a major portion of 

this study is devoted to the effects of the tool joints. It will be 

shown that tool joints have negligible effect on drill string vibrations 

in the usual range of rotary drilling speeds. 

* Numbers refer to the bibliography at the end of the paper. 



Not knowing the effect of the heavy drill pipe couplings on drill 

string dynamics makes the idea of a "lumped parameter" equivalent dynamic 

system attractive. However, the study of the coupling problem indicates 

they can be ignored and hence an equivalent system of rigid masses and 

massless springs is developed for two bars rigidly joined together. The 

technique allows finding the drill string natural frequencies with 

approximately the same accuracy as the wave equation approach and re¬ 

duces the degree of freedom of the system from infinity to a more man- 

agable size. The lumped system leads to relatively simple equations for 

the response of a damped system; lack of experimental data for compari¬ 

son eliminates a numerical comparison of results. 

Of special importance to this study is the frequency range involved, 

i.e., less than 200 revolutions per minute rotary drilling speed, which 

limits longitudinal and torsional driving frequencies to 20 radians per 

second. For roller cone bits, harmonics may be present with frequencies 

up to 30 times the drilling speed, but probably of small amplitude. 

Evaluation of their importance must await actual motion measurements at 

hole bottoms during drilling. Even at this much higher excitation fre¬ 

quency of 600 radians per second, methods of this paper should give 

reasonably accurate results. 

Sections I and II of this paper are devoted to deriving the equa¬ 

tions of motion and their solutions. Section III is devoted to applica¬ 

tion of the results of sections I and II to the drill string. The re¬ 

maining sections deal with equivalent lumped systems for the drill string 

and their responses. For reference, a typical drill string configuration 

is shown in Figure 1. 
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SYMBOLS 

? 

ft 

E. 

-c 

I 

-e- 

mass density, 0.283 jr/ifor steel 

gravitational, constant 

modulus of elasticity 

6 p 
11.5 x 10 #/in for steel in torsion 

30 x 10 #/in for steel in tension or 

compression 

velocity of propagation of a plane wave 

1.25 x 10^ in/sec for torsional wave 

2.04 x 10^ in/sec for longitudinal wave 

„ b 
f polar area moment in for torsional, case 

area in^ for longitudinal case 

displacement 

angular twist for torsional case 

local axial displacement for longitudinal 

case 

space coordinates along the har axis 

00 vibration frequency, radians per second 

F general force 

#-in for torsional case 

# for longitudinal case 

e, U 

ij'k'i2- 

phase shift angle 

summation indices 



I. EQUATIONS OF MOTION 

Torsional and longitudinal vibrations of "bars are governed "by the 

7 
well known wave equation : 

U E.c*') ItyC> } a _fi. iLs- 

Since in the problem at hand, material properties E , p , and ^ , are 

constant, the equation becomes: 

l Lit^ "so-3 a ~s7-& c1 =• E_a i-l) 
9V. e>* cx 3-fc1 

For a harmonic solution, the form below is assumed: 

■©•(*, s c4** 

d. L d-e- ] ^ /UJNZ 11*\ ■©• s o I_2) 
A* ^c'1 

For a uniform bar !<*■) is constant and the equation becomes 

£** + Iff*’® I-3) 

s . _ 1-4) ■©•C>0) a 4. B C 
c c 

si C Slu(4i*+£^ C X> 1+ 

Sisje s & cosfi s A 
c c 

For bars with axial holes the forms of Tc*.') in equation 1-2) are 

listed in Figure 2 for internal and external tapers for both the tor¬ 

sional and longitudinal case. To the writer's knowledge, no closed form 

solutions exist for any of these cases. 

The problem may be attacked by the method of successive approxima¬ 

tions, based on an existence theorem for ordinary linear differential 



-2- 

8 9 equations . A solution of form 1-5) is assumed, where the 4^ are 

functions of the independent variable x, as yet undetermined. Sufficient 

conditions for the existence of such a solution are that he con¬ 

tinuous and nowhere zero in the interval x^ — x x^, which is the 

case. 

Substitution of equation 1-5) into 1-2) yields: 

4_( I<*> 43} 4- (ytf Icrt ^ * o 1-2) 
<=U 

■©•^ = ■+ (c^1 +*   I"5^ 

i_(U« + + 

+ Cc)+{ + ' * * Cgf {   

Equating coefficients of powers of (^) 5 n= 5 to zero yields the 

values of y * • • etc. below. 

c?o = C, + Cz 
; lc^ 

4 = -C, t i* 

Obviously, succeeding coefficients become very difficult to evaluate. 
X- 

For the frequency range of interest (~r) is very small and succeeding 

povers of much smeller. For example, the maximum values of 
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and Q\ are compared "below using dimensions of a typical tool- 

joint external taper. 

GOO RKD/sec m*i = 2.25'' m*i=2>.Oo" 

Longitudinal: = -o.mcv+C2 -o.uaC, -vCa 

Ws 0.003 
c -&.01 C,+ o.»4Cj. -G.A&C, -Q.2SC,. 

Torsional: c()0<** = o.oaac, + C* 4>e<>0 = o.47C, 

£ a o.oo4S U,^ = -o.3lC, + >.65Ct -o.ooiC,* o,oo<sC, 

Based on these results, <4*« alone should he enough for quite accurate 

numerical calculations. For all following work cp0 will he assumed to 

he the solution to equation 1-2). 

Formulas are given helow for the form of ©oo> = J?0 , which will he 

used in succeeding work*. 

Internal Taper: 

Longitudinal %•(*& = C., f Ua, ^r0+wT 1 + 
1 I r0-vn>< J 

Torsional •©•cy.'* *= Cx | 'o^ Jro+unx + T**4 ' ^ \ +<-1 

External Taper: 

Longitudinal ^.c^= C, ( '°3 Jm-ft *\ , Q 
l I mi+fi [ l 

* See Figure 6 for tool joint configuration. 
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Torsional •©-£ = C, ^ »o<5 j m 3 -jry TKVJ
-
' mi T c2 

*i J 

Adjusting the constants in the above equations so that the variable term 

drops out at start of taper in all cases, and noting r = mx and r = mz 

gives the final form of the equations which will be used in the succeed¬ 

ing section. 

Internal Tapered Increase in Section: 

Torsional •©•<•/'> = \o« r°~r' -v* TKN'JC. -TAto1 jj\+C2 
*• 1 m0-ir r0+r, Y° r« * 

= + Ct 

Longitudinal 

= + C2 

1-6) 

External Tapered Section Increase: 

* %uCr>> -V C* 
1-7) 

Torsional 1 l j'CzY'1- 
V^-Yx Vo - Y\. Tx rl 1 3 

IV^-Yx 

B»> 

In a similar manner the following equations for the two types of 
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tapered decrease in section can be derived. 

External Tapered Section Decrease: 

Longitudinal V) •= ( l ° ^ I/r"r'v-- \ + 
L If-t-Vi rs-Vx. l 

= Dz hLCr^ + E.^ 

1-8) 

Torsional e-Cy') = D-J ry^. 
l I r+y-j, rt- r% j 

st V^TCr') 

Internal Tapered Section Decrease: 

longitudinal -ekw', = D loe, l/jjaiJC. + Ea. 
I >ro-v- t-o+r, \ 

=■ D3 +E.J 

1-9) 

Torsional = D.t loo. ,/r0yr ra-rx . TMJ'I --rMi'VA . E. 

1 

= D-a, Ur-fCv'j + Ea 
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II. EQUATIONS OF MOTION ACROSS DISCONTINUITIES IN A BAR 

Abrupt Change in Section 

For an abrupt increase in section as in Figure 3-a solutions of the 

vave equation of the form of equation 1-4) may be patched together by 

matching force or torque and longitudinal or angular displacement of 

the discontinuity. An arbitrary harmonic input will be assumed and the 

resulting motion developed for the other side of the discontinuity. 

* k 
utft 

Boundary Contition 1: 

2: &"Lp 3Oi — £ 3•Q'I 
3* 

or 
^ C 

= IBS>COS(.^14-^ 

The equation determining €z results from dividing boundary condition 

equation 2 into 1. 

TA.W (u^.i - Is. TA.kj(^ui2<si H-e.') 

^■P C 
II-l) 



-7- 

by B.C. 2: % = ir n-2) 
* i-B co%c^'+6x^ 

Determination of €7, from equation II-l) allows solving equation II-2) 

for the amplitude ratio, completely determining -Qr^ c *.,•£} 

For an abrupt decrease in section the connecting equations are 

determined in an exactly similar way. 

9 K1 ^ 

Boundary Condition 1: 

2: EI& sa. El. g&U 
x,1 r S* lK; 

TA.U ^ a H.3) 

X A.*,' 

&! » I»_E2±L^±_1A 

A' Ip + 
n-4) 

Dual Taper Change in Section 

The assumed transition from small to large cross section will he 

that of Figure 3-b. The approximate equations of motion derived in sec¬ 

tion I will he used to represent the motion of the tapered sections. 

The equations with the appropriate boundary conditions are listed below. 
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tuA 

* £** -e-^cy.U « L&i-Pc^ + Cx3 e w ft^-s) 
by equation 1-6) 

£CTY\*C 

Uc^ 

i«it 
Xt4 Ufa *, »,U,^ - C. V v 

by equation 1-7) ^ 

-e^Cjc,^ » B 4- e-a') ® 

Boundary Condition 1: ■©■»<.* 1,0 ss ■©rt<vln-h') 

2: Elr SSlI = E.1. 93» 
s*l*, a* *i- 

3: a -©^ 

4: £.1KI ^I| •» gl©1* 
3* 

5; 

6: El.!*! * 

or B.C. 1: K -btsJ ( 4*€.^ « Ca 

■2: AcosC*-^ -HS?)-* 

* Prime denotes differentiation with respect to x. 

<£*i 

<2*i. 

o (? *i 

(?*% 
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• « 
C f'(rfi 

+ S|KJ(1^.|^6, 

by B. C* 3: 

by B. C. 4: 

aK[wcn5(^i4.£Mlp 4. &&}\+*»*i(iiJ*.+«l']i] 
XI* ft*) 4'trV e 

* *• °-51 *C g «*<**.+«, 

A> L WCo<j(^i+4,') £iH) + iCa, 
c c -fit-A c 

■CVA 

"but £0^ = If 
^cr.A i; 

B. C. 6: £? iiftllss !> ^ eos/i^+g^ 
c c ■ ^ ^'crA c e 

but ^ , Irf .*. £ * 1? 11“5) 

1& A. 1& cn* + 

B.C. 5 -f B.C. 6 w(4^ 4-^Sstt\4.I®-TWl^+A 

1?^'(r(y Jr V« ,} 

II-6) 

Hence for ^ very small the value of et approaches 6X of equation 

II-l). for the same total change in section if x^ = x^'. 

Taking the inverse tangent of both equations II-l) and II-6) yields: 

y|&t 4.61. T/kKl ( (*£&( 

n
»
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4- ?1 = TMO ' { (62 ( 4. I p> 'j 4. 
C l c ^'cr^ Ip 4'trA 

By equations II-2) 

=£O5C_^ + W II-8) 

^ c * s (1 

Equations II-T) and II-8) indicate the error involved in replacing a 

conventional tapered section change hy an abrupt change. The results 

of equation II-7 at various input angles *££1 4.6 are plotted versus 

to in Figures b and 5 for a typical* tool joint. 

Similarly, use of equations 1-8) and 1-9) as equations of motion 

through the dual taper decrease in section of figure yield: 

by equation 1-8) 

X^£ % L X'j, ss LD4V«V> ® 

kt^s 

by equation 1-9) 

kcr^s 0 <5 L 

kcvft (?*i 

le 
Xdt 

hlrtl\W«) <2*x 

X4 X • -©^ SS. B1 (js^-4- 

| _ lb CO*( 

A1 cos C‘^4- tji) II-9) 

* See Figure 6. 
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TA.*J l = ^ (IP 4-iiirO\+ Ir T/SNJ [m•+ti') 11-10) 
c c ' h'trfl Ib Ve'<rrt i ib ^ c 

Combination of equations II-3), 11-^), II-10), and II-ll)result in 

"error" equations 11-12) and 11-13) "below: 

Si-U UO - K1 
e I c J 

II-ll) 

B' 

£. -i _ eo^ -V 12
s) _ 

CCS 

11-12) 

The results of equation II-ll) at various values of input angle 4-6, 

are plotted versus CO in Figures 4 and 5* 



-12- 

III. DRILL STRING DYNAMICS 

As shown in Figure 1 the drill string consists of a kelly joint, 

square or hexagonal in section, a very long section of drill pipe, and 

a much shorter section of drill collar, and finally the cutting hit. 

For this analysis, the effect of the kelly joint and the hit will he 

ignored. 

Drill Pipe Dynamics 

The large section couplings or tool joints, normally at 30'"0" to 

32'-0" intervals along the drill pipe, may account for as much as 20$ 

of the total mass of the drill pipe string. In addition area and polar 

area moment of inertia may change hy factors of 4 and 6 respectively. 

Their effect on the passage of longitudinal or torsional waves along the 

drill pipe will he analyzed using the results of Section II. 

Typical tool joint configurations are shown in Figure 6. Although 

only those for 4.5" diameter drill pipe will he examined here, the work 

is more general than might appear. The most commonly used drill pipe 

sizes are 4.5" and 5.0" diameter. Each has a more or less standard tool 

joint configuration. Total change in area and area polar moment of in¬ 

ertia from pipe to tool joint barrel are hy factors of 3*8 and 4.7 for 

typical 5.0" tool joints. The importance of these factors is seen from 

equations II-5), II-6), II-9), and 11-10). Since these factors are 4.17, 

and 6.12 for the 4.5" drill pipe tool joint combination, it alone will 

he considered. 

The results of equations II-7) and II-ll), plotted in Figures 4 

and 5, show that replacing a tapered increase or decrease in section 
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by an abrupt change results in a large phase shift than the actual 

tapered change. It follows that phase shift calculations using the 

idealized tool joint of Figure 6 instead of the type 1 or 2 will result 

in larger values than is actually the case. If idealized joint calcu¬ 

lations show small variation from the results for a uniform straight 

pipe, the actual tool joint effect is even less. 

For calculation purposes Test Well "A" or reference 3 was selected.* 

The drill pipe string configurations used are shown in Figure 8. For 

phase shift calculations of string 1, equation 1-4) was assumed to hold 

twit 
in each constant area section, with solution of the form 

that 11-1,3) apply at discontinuities. For string 2 no tool joints 

were used except the last, since a half tool joint is commonly used to 

connect the pipe string to the drill collar. The resulting phase angles 

are plotted in Figure 9* Natural, frequencies of the drill pipe string 

alone are tabulated in Figure 10; a phase angle at the end of the string 

of 90° indicating a free end, a phase angle of 0° indicating a fixed 

end. 

Combination of the equations for the phase shift at the beginning 

and end of an idealized tool joint gives: 

G ip c 

c Xfi, c 

a (If* + 
l ±6 1 I. If c c J ) j c 

* Test Well "A" is shown in Figure 7* 



For small values of LO the total phase shift is very small, and would 

become large only when the angle UJQ becomes large. Figures 9 and 10 

indicate this is the case. 

It is concluded that the effect of the idealized tool joints on a 

traveling wave is negligible except for very high frequencies, and the 

effect of actual tool joints is even less. Since displacement was 

assumed continuous in the derivation of equations II-l) and II-3), if the 

phase angle change through a tool joint is approximately zero, the am¬ 

plitude of the drill pipe motion must be very nearly that of a uniform 

bar. 

Although calculations were made for only 3445'-8" of drill pipe, 

lower modes of longer lengths can be found from the curves of Figure 9 

because the direction of calculation is unimportant. For example, the 

lowest fix-free frequency of 3^-5'-8" of drill pipe corresponds to the 

first fix-fix frequency of a pipe twice as long; the second fix-free 

mode of a pipe three times as long; and the second fix-fix mode of a 

pipe four times as long. Similar results may be found for any multiple 

of 3445'-8" as illustrated in sketches below. As a result, it is con¬ 

cluded that tool joints have negligible effect on pipe phase, regardless 

of pipe length, for low frequencies. 
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Point Mode 
1 1st fix-free 
2 1st fix-fix 
3 2nd fix-free 
4 2nd fix-fix 
5 3rd fix-free 

Pipe Length 
L 
2L 
3L 

4L 

5L 

^ = 4.65 Radians/Second 

L = Lp = 3445'-8" 

Point Mode Pipe Length 
1 1st fix-fix L 
2 2nd fix-fix 2L 

3 3rd fix-fix 3L 
4 4th fix-fix 4L 

5 5th fix-fix 5L 

tO =9.40 Radians/Second 

L = Lp 3445’8" 

Drill Collar Dynamics 

Since the drill collar is a uniform bar, wave equation 1-3) and 

the corresponding solution 1-4) apply. Calculations can he made for 
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the phase angle at the tool Joint drill pipe Junction which will satisfy 

either a fixed or free boundary condition at the bottom of the drill 

collar* The method of calculation is presented below; results are plotted 

in Figure 11. ^—- £ 

1,5 L 
*226 

ee- 

•DC 

O * -y® e 

* 4 ♦.L** ■ ¥ + o e 
iuit 

Fix-Fix 

Fix-Free 

Either case 

3X 

&22b 

a =0 * c 

^2t7+-€ia6« ^ 

*t2t 

4^227 •+ ~ ^ 
c 

225) * 1.6 TA.ro ^236*) 
X DC 

^!»+ £K5 - T**^ 

» ‘^-224+ “diJroc 

Fix-Free 

Fix-Fix 

l~^'Z.’2£ + ^<Z2S 
c 

a TAM' 

*■^^216 + *■ 225 S OOf* S TAhl‘ ^ ** TM(K 
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Drill String Dynamics 

The natural frequencies of Test Well "A" of reference 3 may "be found 

by a combination of the results of the preceding section, which are shown 

in Figure 11. Intersections of the ''Drill Pipe Curves” with the "Drill 

Collar Curves” are natural frequencies of the system. The two families 

of "Drill Pipe Curves" for the uniform drill pipe and the drill pipe 
i 

with 113 tool joints give only slightly different natural frequencies; 

again indicating tool joint effects may he ignored. 

Since the drill pipe with tool joints behaves so nearly like a uni¬ 

form bar, the case of a uniform pipe directly connected to a uniform 

drill collar is considered below. Resulting frequency curves are shown 

in Figure 12 and resulting natural frequencies are tabulated for compari¬ 

son with the results mentioned above in Figure 13. 

A  I     

|- Mi 4-    

© 6 * 4t Lp s *>*(«*£*) 

V,yjt 
Mr* * * LP+ Loc 6 • KBC + 0 « 

Matching force or torque and displacement at x * L gives: 
JHT 

‘32§
,
M| -B AkDff £ + igLoc-t^ *© 

«*Lp S - 
e T 1 e 

Free end: 
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Fixed end: ^)-DC| 
= ADC ^ -V^L-BC 4*6^ - 

0 

tp+L ee 
tid-p +€■ s K —^roe 

Free end : TA.M s TA,K>^3| -^rBc^ s coT^^toc) 

Fixed end: TXrsi ( +(x) r TA>Ki - L4^,«) * - TMJ(^tc^ 

The resulting frequency equation for a free drill collar end is: 

T<kh» s: i? 
^ Xoc ® 

- nx «. ip coTC^ft^l 
c \ ioc s c M 

III-l) 

ns ... 

The resulting frequency equation for a fixed drill collar end is: 

Tku(^ = - \fM ™ C^-L «) m-2) 

4^:? -m: = - TA si"' ^ 
$ 

For later reference the modes shapes are given "below for the nth 

mode where d$n is the nth root of the corresponding frequency equation. 

Fix-free: o 4 * k tp -ej<>e> a siM n-3) 

Lp 6 x, 4 Lp+ t—fac = SiriCs!*) co*(^(Lp»Log-yft 
cosC^Ut) 
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Fix-fix: o 4 x L Lp - SUM 
Cm 

Lp6^iLp4*Lo6 C T~W
 ^ 

^IM(i£S'Lp4) 

III-4-) 

SlK)(£*(up+Loe-*')') 
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17. EQUIVALENT LUMPED PARAMETER SYSTEMS 

Equivalent System for Single Uniform Bar 

In this section equivalent lumped systems vill he derived for uni¬ 

form single bars with ends fixed-fixed and fixed-free as shown in Figures 

l4-a and l4-b. A standard length of a uniform bar will be defined 

and all its elasticity put in one spring of the equivalent system, 

Figure l4-e, and all Its inertia placed in one mass of the lumped 

system. Equations will be derived for the fixed end case and the fixed- 

free end case for slightly different length bars and conditions specified 

so that results may be applied to bars of the same length. 

Fixed-fixed Case: Go o Jsi 

K.H&1 3 = p ifi I JV-1) 

Equating elastic and inertial torques for each mass of the limped system 

gives: 

\ e, -3o, ,»o 

For a periodic solution: 

•M.V\ “*<.&i SO 

\ £ Jt. LY\ + (fcVC- 3uil) 
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Jtes* -vc-e-^.j + ClK. 

Division of all n equations "by K yields: 

M*\ «0 ^ 

\ L *v ('2.-R"') ■©'&. — s o 

-fe.** -^n-l -V- t'l-Bf) -©vi a ° 

The frequency determinant is: 

2-p 

-i 2-te -i 

-l 2-R -1 

a O 

-\ a-R. -» 

-\ 2-R 

This can he factored by identity 1 page 53: 

=0 

4? * JL p p» 
r «*l r 

IV-3) 

By equation IV-2): 

"f “ $R " 4 fv 

For j^p small, l.e., \fl large *iw( j^f)is approximately equal to 4? 

uip ai £, JL. p a ££ p 
ft. r Uir 
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vhich is the same as the vave equation for a fixed-fixed uniform bar. 

i.e. Wp » 
tujt< 

IV-4) 

Since the mode shapes are unique only within a constant factor, a 

legitimate choice constant for the pth mode is: 

Application of the recurrence formula for the sine allows evaluation of 

all succeeding 1, 

'G'Jk - 'I-rSv'lcoS 

%u a %IN> •Ksy0I7-^) 
«-H r U( 

Fixed-free Case: 

Ho' » L* 

ss 
' J x'.v 

The equations of motion are the same as equations IV-2 with the excep¬ 

tion of the last equation since Kn+1 = 0. 

A m I (2-R) e-, - so 

\ * A -&Jk.\ =.© 

- ■$*., •+ c I - cf) ao 
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The frequency determinant is: 

2-\z -i 

-\ a-e -\ 

= O 

-» 1-rz 

-i i-e 

This can he factored hy identify 2, page 53 • 

COS ^ 

x 

S O' 2-fL a Z co* $ 

* Jt-P psl|t|5|V*‘ ^ 
InH J 1 

IV-6) 

As before for small, i.e., n large 4i*i ^P is approximately equal 

to <i f. 
1 WP —y -2*— p a S3 p 

Jli »nv\ K ZLr 

This is the same as the wave equation solution for a fixed-free bar: 

l iuit wip B 2L£ p pB i, %,%,»' • 

Determining the modes shapes as in equation IV-5) yields: 

If the two uniform bars of Figures l4-a and l4-b are the same, 

1^ = 1^'. To give correct results for lower frequencies for both the 

fix-fix case and fix-free case, the value of K/j must be the same. 
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tn + \ » n-t*l 

which is obviously not an identity. However, if n is large enough the 

two values become approximately equal. For the case n = 50, the differ¬ 

ence is less than 1$. Figure 15 shows the error resulting from the 

lumped approximation in natural frequency for n = 50.) 

Equivalent Lumped System for a Dual Section Bar 

The results of section III show that tool joints may be ignored on 

drill pipe section of a drill string, and that it can be replaced by a 

uniform bar of the same length. Hence, the drill string will be taken 

to be two bars of uniform cross section, rigidly joined together, as in 

Figure l4-c and l4-d. The equivalent lumped system is shown in Figure 

l4-f. Equivalent systems will be derived for the cases; top and bottom 

fixed, top fixed and bottom free, and top free and bottom fixed. In all 

cases the systems reduce to that of a single uniform bar if the bars are 

of the same section. 

The fixed-fixed case will be considered first and as before, all 

elasticity and inertia of a standard length J will be placed in the 

springs and inertias, respectively, of the lumped system. 

5.o a s 

iioc IV“7) 

Go to 

3i a p Is Ip 3 T. s (3 Ipc 
 \ JL. 
* A similar treatment for a uniform string is given in reference 11 pp. 
- 122-126. 
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Kt a C? 
J, «* IV-7) 

Cont'd. 
K* , Su 
3* l? 

CX S Xoc kt. a EIoc ■ Sv< 
it* K. 5. eif 

3a - ~Sj Kt - w 31 
K» kt k-; vc, 

k% = 2*,vca - VK, =ftvc, (b* isi, 
V+o< l+K 

Equating elastic and inertial torques for each inertia yield the equa¬ 

tions of motion "below: 

-3,e, -vc,eiao -M. a k 

\ L }kL*r\ 

J/lam 

IV-8) 

*"kt '©‘m-l + wr*3i ©V« “K.J, '©■ryv+l » © 

— k^«©m+j + Om4«l — IY»4-1 —'kq .©v^aO 

• 4 

w+\ mm^,% ©^,.1 Qika— 3%<0^ ■ o 

-*1 ■©*..» +2kte-n -3« aO 

Assuming a periodic solution and dividing all m + n equations "by K^, and 

using the constants defined in equation IV-7) yields: 

•©•j^ a e**^ ■& m 5l!±ia si 3a u? m /C.LOS1 

ki ka >4o / 

-k»\ (i-tf-e, - 

• Jltim 

m l ■V C -(i ^rv> + i 
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m4-\ — ^ ^fn “ •* sO 

m-vi L — «»< ■©■j^ 4-^Cz-T^ -.•<.^j)l+l -Q 

— «H •©■m+ft_^-V‘®<,('i.-R.'\ ©^+ri r Q The frequency 

determinant is then: 

m + n rows 

and columns 

'2.-12 -l 

-i 2-re - 
\ 
\ 
X IV-10) 

for ■mtk  
inertia 

\ 
x 

-l 2-fc -I 

— -i (!+&-?*) -g> 

-B (p+xCi-t?)) 

© 

-«* °<C2-J2) -•=< 
X 
X 
\ 
\ 

-•» ®<(7-B') “**< 

-«< “<•('2.-12) 

Expanded on the mth row and column hy Sylvester's identity:* 

m rows and n rows and 
columns columns 

m-1 rows and 
columns 

n-1 rows and 
columns 

?-*. -• (2)4-0<(i-12') -•< a-re, -' *(>&) -®< 
-1 1-1? -I -c* 

JL 

-1 2-B. -I 

1-fc -1 -•* -\ 2-re 

-l UBrB - c* « a-$) -1 -2-R 

sO 

Expanding the first determinant on its last row and the second on its 

first row yields: 

* Reference 10, v. 2, page 422. 
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(m-l)x(m-l) (m-2)x(m-2) (n-l)x(n-l) (n-2)x(n-2) 
r 

2-E -l l-E -l ■N r 
-K y 

-v a-e -» 

- 

-i C-re -i 

H 
1 

-•< 

-K 

> 

-t 1-12 -1 -1 7-12 -l -•< 
V. 

-i 2-R -l J k 
-+f.o4(lr$ 

* 
- fb «H 

n-t 

*1-11 -i 1-R -1 
“I ,2-re -i -1 2-4. 

-1 2-4 -1 -t 2-R -l 

-l 2-R -1 2-12 

= O IV-ll) 

(m-l)x(m-l) (n-l)x(n-l) 

Factoring out powers of ©< and applying identity 1 page 53 yields: 

-6iKUm-^t f LfUcxfi-igyl 
l & 11 

C* s»i>on^q»tfC6vOM 
i 

frtM nr> $ 

a Ico^ ^ 

l — [Z. a rLcot»j>—[ 

Z : 4 
7. 

Using the definition of R and the recurrance formula for the sine gives: 

(\-RT) =. Ico*)^ ^ 

s i- MVnj6 

Restricting SINJ^^O and canceling out the terms: 
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— Qj SiKjrirv^ s\tzr\j> so 

fbftiM rnflZ siMln+f)^ -*»»Mn^>3 + £ Jb\iJ«\^C.6iN<m+0^—btMmjSl 

-s.Mm£L*iM(*+»y-siMt^'J + ^iwfm+n^Csmch+^-'&iMn^l-o 

Dividing the expression "by ^ from equation IV-7) the expression 
1®* 

simplifies to: 

CK Leiulw-H^ +siu<m+t'>0l 

4 Csi«j(*n.w\^5-®>iN>»n563Lsin(w+»'>^ 4si*4n^3 SO 

By the identifies: 

SIN SIM fc = 1 fcos(A>4B^ 5,NJ
(^2^) 

SIM^4SIMBS 2.cos^&r_B) swsi|A±J>) 

The final form of the frequency equation is: 

4 4COS(rm.jL^ 6lMCn+^ \ «|M S5 CoS £=0 
^ *2 £ 

**< =» -^-De = - TA.M 6l44^ COT ( m+^ ^ IV-12) 

By definition of R: 

= KP-£i a 4 
J1 X© & 

Ei* p 
r Bo ^ 

For J^p small: 
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^ do 

0p M Loc 0p a !£ Lp 
6 G * 

c* S .IP* a - TMa^PC^coT^t^ 

Ip e 

Which Is the same as frequency equation III-2). 

Equation IV-12 can "be rewritten as: 

| ^ (m4»nv0 4 
eo*Cn+fti KJCm+l^ 

which has the same roots for =x = 1 as equation IV-3) for a uniform bar 

of length (m + n +1) (2, Q. Both frequency equation III-2 and IV-12) 

= L^. In this case the two bars have the 

same fixed-fixed frequencies and can vibrate independently. In an 

actual drill string, the drill pipe is usually many times longer than 

the drill collar. 

If is a root of the equation 

o< a 2Loc «-r/Vsi'tfcoT S V 6 s a 1;? 
XP « + 

The natural frequency by the wave equation is 

oiP = cjfp - e Vp cj> in+1) 4a X r L„ lW+tfto to 

For the lumped equivalent system the natural frequency is: 

are indeteimnate when Lp 

oiip a 2 £. Gin & 
U 1 
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Error of the lumped systeni is: 

F - 1" -|-2 <5i/o ^ 
Uip 0 2 

Since the approximate roots of IV-12) occur when©< - 1, at 

the maximum error can he computed as a function of n and kp . This 
Loc 

is shown in Figure 16. 

i.e. « l- if n p«> IV-13) 
UJp PTC J pic 

Similar to the equivalent system of a single uniform bar, the mode 

shapes can be evaluated by assuming that ■©•) = ^ for the pth mode. 

The recur ranee formula for the sine allows the first m coefficients to 

be evaluated: 

•= SIM 

= 'ZCOS96 Si KA (Jz.-l'l jzip — 0p 

s <5lM ( k {Zip') 

By the mth equation of motion IV-9): 

(% = C + \ -12^ %r^ — -O-m-i 

s (k SiM *■* $p +■ (2co^<£p -0 St»o vv\^ip— 

Divided by § 
•K 

- ( jb-O <Swo m ^p 4-Sisitm+n^p 

ft = 
!+•< M o<-f \ 

the equation becomes: 

by IV-7) 
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2.CK ■©■y«4.\ ‘SltJvnjjp +-,10^+^^ S|fJl>*y)+t'^p-$|f,m0p 

^ ,©m+\ - 2 ‘aisil’m+l^pcos ^p+leo&t.^Vl^'StM 

o< a — "f/VNJ(n+l'\^pCOT(»n'V i>*P 

■©•rt-i+l S, SlK)(.W + (>&? (CO-J if _ co*on+^&*>N 4r\ 

=• *>rttm+^P r ftlNin^^cos 5^p- tosCn+^p^iM S£p\ 
s»»o(n+^0p l 1 2 J 

a «,iMn^p 
<Slw(«+ ^ 0p 

By the m + 1 st equation of motion IV-9: 

*&. Wl-vl -* ( & +>-^:ewi-5 

ft « —2^. - 'Z ‘siMim-t cos^n+i^p 
o< \ 4-o< / v y 

*=>1^ (m-vOi^zSp 

l -K, = 'Ic.oidi -\ "by IV-7 and 
IV-12) 

C ft _p i_f£) — Icos^p^Mim-W^p -Vb\tol,m+n+t^p 
e»< 

SUOCm-ir^ 0p 

^■m+“2 =s ( £c.0^n+^9^5w4p+£V&,S|»Jh9Sp 

-1 e\ t4 (n COS (wt-^ 9^, s i Ki rvs^ 

^ 4- (i£O^0p-^ 

"®W2 a ?iufo+^ $? stMCn-Dqbp 
9»Mln+£* 

The remaining can he found ty rewriting the recurranee formula 

for the sine and solving the remaining equations of motion IV-9)• 

<
=>INC1-^ =■ '2-cas <^swsi*I<56 --s»VNiCft+0<^> 

V-s'.l,3* •e-mtr » s^frn+i^r e^n+t-rtA, 
*%isi ^ $£p r 
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The mode shapes for the pth mode are then: 

Jk =* 

Jle ^iKi(m+n+l 
9iN(n+Aj^p 

which are of the same form as equation III-v). 

Defining the normalization factor "below*: 

*n±n 
T. 

rJkf 

«L2ali 

NP =. 
k*\ 

Application of identity 4, page 54, yields the result "below: 

*■-* 
?
 Jfe.i P A\ ‘biMflbp I A*1 

mva 

3jh k-ejL “51 M'
2,
«^P 

Ssr| 

- O£3«. «^j20ni^p f £n.j.| 
4 l ^>iM9Sp J 

m4T> 

M» s= J, ( -©^ -V ®< *EL S’Jte \ 
l >1-1 V-m+1 J 

= 1,^ 0-^.M- »uotom + ftg*P 
*5>M $£p 

- /nnu..<B* 

M f — 3J f 'Zm+l - 
4 \ S»to(2wvt^0p | 

* See reference 7> PP 40-42, for explanation of definition. 
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Elements of the solution vector to the fixed-fixed system of equa¬ 

tions may he written: 

Jk 4: rn =• 
kip W-15) 

ejfep = j- 
^ip^>wCn+k\^>p ' 

"bll Where % is the amplitude of the motion of the k n mass when the system 
"til is vibrating at the p natural frequency. 

Consider the product: 

m+n *> 

KipKici Y1 e^p 3*^ s 3» Y. S(NJ fe,^P 1 *Bl r * ■ 4t-» 1 

z*» 

Substitution of identify 6, page 5k and substitution of the frequency 

IV-12) for o< , yield a fraction with the numerator below: 

CC2<® £ 
_ coS(m^ jiJpSlNJ(rn+^')^<| ®lNl ^ 

c.oStn+V> ^ l 
CO* 



« # • 

6lKl(«H^0peoS(A^ l -c,lKj^.^^1MCm^VP^ 

- (I<?Wsi^peoS ^ -Q-^C^oA]  
«»Ki lv*ty 0? CO*)1 *\ KlCiY\+^ %i Mfm+^ta&pC ®S(r»+i\ 

m-m 

Vtfe ° T"M IV-15-a) 

For the fixed top, free bottom case the equations of motion are 

the same as IV-9) except for the last equation. Km+n+i = 0, as shown 

in Figure l4.f. The same constants defined in equations IV-7) will 

also apply here. 

etf* = Jk. 
luJ-t 

e 

E - ^ ■ lx)1" 

Jk - I 

l L Jk Lm 

Jte*m 

Jfeam+| 

m*n L Jk L h 

-fe a m+r> 

(2-i^e, - ©2 =o 

-^te-1 +C2-B^jh, -<©fc+t =o 

-©fn-i + <jfe +»-e>i©vn-p3-©*M+v =0 

- Pjem ■+ C ■©Vn-t-r" "* ^»"+'L*0 

—‘^m+n-i + -KCI-^S^ -O 
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The frequency determinant is then: 

m + n rows 

& columns 

2-fc -i 

-i 2-iz. -» 

row m 

-I 2-R -t 

 1 (l+ts-e') - p> 

“P> ((b+XCHplf* -ex 

-=x o<(l
2-iz') - *x 

— <x ex(2-p) -oc 

-®< exO-tS') 

= O 

Expansion on the mth row and column hy Sylvester's identity; and reduc¬ 

tion of the two highest order determinants in the fix-fix case yields 

results similar to equation IV-ll). 

■SCl+fc-R') 

(m-l)x(m-l) (m-2)x(m-2) 
l-f? -I 
-> 2-rz -i 

-I 2-fc -I 

-I 2-V. 

2-V- -l 

-I 1-12 -I 

-1 2-e r| 

-I 2-It 

r 

X 

(n-l)x(n-l) (n-2)x(n-2) 
-<x. 

•-« «H(2-1t\ -•< 

-<< 

—< <*(1-12^ -*s 

> 

-•W(2-tO —< 

1-fc. -1 “2-1? -1 
-l S-fc -l -' 2-G -1 

-l 2-IZ -l -l <2-R -1 

-1 2-IZ -1 t-IZ 

(m-l)x(m-l) (n-l)x(n-l) 
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Applying identify l, page 53, to the first, second, and fifth determi¬ 

nants; identify 2, page 43, to the third, fourth, and sixth determinants 

yields: 

l Slhjlji JV** %\K| $ J 

(.1 “I**) %ikJrh^ — SirtCm-ft $ —Q. cos^Siutn^ -SisKm-l'^ -Sisi rt'jd 

s SIKUIYN-H^ 96 -SIM 

Restricting fb SO«IN0^Q* and canceling out: 

| + siM<.nvH^ 

_ ft1 si*4 m^C-siwn^ - siMfvw'i^l :0 

CsiiOA^ 
•< 

4LS uo(m+l'l^-‘buJ*n^lL^N(n+\^ -ISvwn^-VSlMtvi^} *0 

Dividing the equation by yields: 

b - T-** ft * _L 
a<x '+•< 
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+ L -^HOW^lLsiNiln+^yi -^viJw^lsO 

^>IN>A.±«,IMB = 2 cos^A 

cosA. - co«, e> s -2“>»K)^A±^p\^A-fej 

%\N)IYVH^-T.si^n^ +^IK»<O-^ s 2%i*£t.c©sin+^0-c©Mjrr'^9ft 

- - 4 ^ ^wsjnct 
a T 

■UNCm-Hfoi + 6»K)rft^ s 2%!N»Cm+^ 9* co6i| 

^iMlm+fi<£ - ^tMm^ ,s 2.e©«,(m+^£ SIM ^ 

%u4ln+fi $ - %uO(,vw^ s ‘Ico^n^'puo^ 

Applying the above identities gives: 

— S»t ©issn^ ^ s — 8 c.oSl»v»+^)^ Cosing £11^^ co%^ 
2 2i 2 

The final form of the natural frequency equation is: 

o< B JL®* a COTtm^VcoTW^ 

Ip 
IV-16) 

For *P the pth root of the frequency equation, by the definition of R: 

40^ c EpK 

= 4 
JLo1, 2 

For 9&p small: uip SJ % ^P 
u 

a tOp |p 
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a L0e n(Us*LPff 

o< a cor I^B eor i^L 
c TT DC 

Which is the same as equation III-l). 

Equation IV-l6) may also "be written: 

56 

which has the same roots for °< = 1 as equation IV-6) for 

of length (m +■ n)Q0« 

If X p is a root of the equation: 

o«=toTUoTSV 
" -4 Lee- 

The natural frequency by'the wave equation solution is: 

Wpa C^p * «JLP S 
eni^p (£=.$. 

l-&c (n-4M* Cn-^2.o ^ 

For the Imped equivalent system, the natural frequency is: 

60p » *2 £ «»iu ^ 
P £a 2 

Error of the lumped system natural frequencies is then: 

LOp- LO'P __ \ _ lr>-| S4lsl £ 
tOp 2 

Since the maximum roots of IV-16) occur when o< = 1, at ^ 

maximum error can be computed as a function of n and LP. 

i.e. tOp-t>ap z. \ _(/I_ 1^ ZCm+rft-H 
U)p n (Z.p-t'l 7s. z 

a uniform bar 

, the 

iv-17) 
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As in the fixed-fixed case, the first coefficient ■©-, will "be 

assumed as f6pfor the pth natural mode. As before, the recurrance 

formula for the sine can be used to evaluate successive coefficients up 

to ■©K . 

Jkl m '2-ni- 'Zco* 5Z$p 

By the mth equation of motion IV-9) 

*F 

s Cfo - ft 4-£\i*(rYi+A^^ 

Divided by Gjj the equation becomes: 

ft a ^ 

®< »+-< 

^ — “< ■+■ Sw^*v' + ft 

$z£p —5l/0 m^p 

*V**i » *» «(m + ^ ^pCO*£p4-.L coSCm+^^pSiM gp 

J. s TKM(mV^ by IV-l6 

tfo*n*p I r rj 

-©■fv\vt ss e«*(n-l\c£p 
eo«A0p ” r 



By the m+1 at equation of motion IV-9): 

^ ' 

a & [ q.iN>Cm4^^peo«s,(n-y>9Sp-^»^*v\9^\ 
©< I eo*n0p r r J 

4- (2co*9$p-^ co%c*v^0p 
eo*r\sj5p 

— ^ C cost, yTA“y>*v 
•< 1 eoempSp 

-*-(2co‘b^p-t>) %i^Gl±jkl^p co*(n ~~\ JZ$f» 

= 2 = siiobtt*V>i9^*\io*Mfp 

**■ c.o?(m-nH-^95p 
hy IV-16) 

fcitJlnM^^p ^2s»,o^P%irtn^ *(2c©s^f-‘VcACo-^{Zpj 

5" Co*»Cn-4S^> -cosi<H-j^<j6p 
ca^njip ( 

- (,2co*^p -ft co* <n- 

» S\KlClY\*^j6p i lco*52ipC<a*(,v\-^^p-C.O*t(r»4-^0p\ 
Co*A^, l J 

■©■\rr\V2 = frH<r>-V'^ffSp ec3^ (y^- 3^q$p 
co*r>jrfp a 

Writing the recurrance formula for the cosine and solving the remaining 

equations of motion IV-9)# the remaining -©^ are found to "be: 

cos Cl-ft flip = 'Zcos f£p coS jl^p-costift-ft^p 

^+r •= <5iNKmVx)0p co^ (n + ^-vft fz£p 
co* A9Sp 

V“ - V^2j • * * 



The amplitude coefficients for the pth mode are then: 

Jk Lzm k 

' co%r\{6p * " 

vhich are of the form of equation III-3). 

Defining the normalizing factor for the pth mode as: 

mVtt 

*■1 

Application of identities 4 and 5, page 54, give the results "below: 

«W>\ 

m 

* El %VKi’ 

<fe»l 

4 ^4 'SIM^P 

m+n uri+n 

> - •©•4?= <=>ii^z(w^4.NigV El 
Jfe«»+t " eo-b'npSp fc.m+, 1 

El cos’l -£ p — ^ CoS C*2«S-l^ 

*M 4,1 ad 1 

«i»l %al 

M 

v* 

p «3. E -©w 

- r\ _ &osClir>*,^g$p-co*t'Lft'‘‘4\9^ 
1 & e>W9*p 

-ft + 1 
'l 4 StN4^p 

Vri-vr 

+ o< 3, E. 
Jfesm+i ' 
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The final form of the normal!zation factor for the fixed-free case is: 

2 
Mp = I™** * £ gfp 

r 4 2 *»M2r\A. 

IV-18) 

Elements of the solution vector to the fixed-free system of equa¬ 

tions may he written 

4 rr\ ■. ft id 

, iv-19) 
Jk^rn ejiepp r Klptotn^p 

Where e*P is the amplitude of the motion of the mass when the 

system is vibrating at the p natural frequency. 

Consider the product: 

M 0 Cjtep IfeJk e^e= 

p J, jjL. 9^ 

mt,' 4 

c®*,n 9^ eotnjrfp 

|||*H 
coe* \*r cot 

Substitution of identities 6 and 7, page 43, for the summation terms 

and use of the frequency equation IV-16) will reduce the term to zero 

just as in the fixed-fixed case. 

"e- ej,. 
•fell 

f>**l 
IV-19-a) 
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For the fixed bottom, free top case mode coefficients will be 

counted from the bottom of the string.* Results are then the same 

as the fixed top-free bottom case with the subscripts interchanged and 

replacing <x . 

COT<n <p COT m9$ = lf _ j_ 
ipc" °< IV-20) 

Ain 
IV-21) 

co«i(m+n+lj J^cL 
cot« r 

Mp a f^rv + l + m J. 17-22) 
1 A L ) 

IV-23) 

Jk. L <"> 

* L^, - (n + |) l Q J2 = TXT 9.0 

L_ = m 0 S 

P * O 
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V. RESPONSE OF THE EQUIVALENT LUMPED SYSTEMS 

The equations of motion of the lumped system of section IV can he 

put into the matrix form given "below. By matrix algebra the response 

of the system may he found to an arbitrary periodic forcing function 

acting on any or all of the masses of the system. The general equa- 

*bll tion of motion for the r inertia may he written: 

. v ‘ * *r •   
Of/Kv-H -V-eyOr + «-r Cv e 

A • f. tu3t 
+ 5= nr ft 

^(nr = ^irry\ = — ^Cy+.\ 

as — VC v-_^ 

s a O 1 V"-^\ ■^'2 

3 - O r + s 

[J][©]+[c][e-Ms][e] = [F] Iwt 
e 

[j] J, 
CK • row m 
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The damping matrix is diagonal since only surface forces on a 

length of drill string are considered: 

[C] - 
Cl 

\ 
\ 
\ 
s 

[SJ--K, 

-i -» 
-t 1 -\ 

% 

-l >+e> -ft.  
-p» •«+£ -•< 

[F] = I 
I 
i 
p rrn+n 

Top Fixed-Fixed Bottom 

£#*2 jftz 
 row m 

Ton Fixed-Free Bottom 

Top Free-Fixed Bottom 
Set Y-Z 

i 
| 

Assuming a linear periodic response in terns of the natural modes: 

H=[E][X]e"* [XI- 
V-3) 

Where [E] is made up of the elements defined "by equation 17-15) or 

IV-19). 

[E]“ 

6,2, 
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Substitution of the above into equation V-I and premultiplication of the 
T entire equation by [E] yields: 

-“•[E][J][E][X] + -[E]LC][E][X] 

+ [E][S][E][X]=TLE][F] 

Calling the first matrix product J, the second C, the third S, the re- 

*bll "fell suiting elements of the K row and p n column of each is: 

= ^__T 

w-t-n m+vi 

*•5 

JrS=0 

erJfe s ( 

Jjfep - ^— 3» 

s i. by definition of the normalization 
factor 

s ° *7 equation IV-15-a) or IV-19-a) 

= 

  W4-V1 

Z ^ T 
Y* 

"in 
6 

- S C £p.i,p -V Spy S^p-V- ^r,r+> 

Sy* = Q \r ~s| -^2 

But ^r-i,p etc. are the normalized amplitudes of the system when it is 

vibrating in a natural mode at frequency Uip. Hence they satisfy the 
‘till 

equation of motion for the r n inertia. 
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^r, r-i 4* ^ v, r+l €«•*!, p 4- £y-p C ^ VV* — 3nr^ = O 

• « 
^■P “ WP1 5 ^trp 3 rr 

s 00 jesi 

= O -M? 

Therefore the inertia matrix and the spring matrix are diagonalized by 

the transformation V-3)• In general the damping matrix is not. 

m+n 

Co_ ™ 

■ITS 

ekr c^e*p 
S 

s O V »$ 

Crvte. ^rp C'H* 

Since the E matrix is orthogonal to the inertia matrix and hence to the 

spring matrix, the damping matrix will he diagonalized exactly if it is 

proportional to the inertia matrix. 

i.e. Crr a C o V” — 

Ctpr not Co ir 

Since the above is physically unlikely, an approximate approach must he 

used. 

For small damping the damping matrix may he assumed diagonal and 

12 
the diagonal terms assumed proportional to the natural frequencies . 

i.e. CjJap so Jta 
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ebb*. yAh }\k ±.ia kb = uiu> -r SEIe^c^. 
The equations separate and the X's may be solved for. 

- uO ^ fc + two J^it Kit 4- a El T Cjfo Fr 
Ajfe r 

mvw 

Ee^Fr 
tr 

Transforming back to the original coordinates, the final result is: 

[*] = [&][*]>* 
m-Hri 

■©“A = EL Xjfe 
At 

Fv- 

^ ^ Jj," u^m* ^ k. 

If the only driving force is at the bottom of the hole: 

mvn 

■©"j£ sr E_ 
Jk. Uij£ - ui1,4- L LO UJAL 

Ajk 

The formula is written out on page 4l for the three types of Imped 

systems of section IV, for the response at the top of the hole for a 

periodic force at the. bottom of the hole. The real part of the expression 

should be used. 

For a given displacement at the bottom of the hole, the force on 

the next to last inertis becomes merely the displacement of the last 

inertia times the spring constant. The situation is illustrated 
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below: 

Given: 
— Loot 

■©•m+h - 0-r, £? 

— I. tot 
-©"O € 

^ QVn+v\ ■ I + s ^wtvt ( 

•©■ ( l^mvn-t “ — L-O1" Jw\+n->^ “ 

— “ Knth»( 

which is the same as a system with the bottom end fixed of one less 

degree of freedom. Responses are given below for the top of the string. 

m-hTM 

Top Fixed *©i — e< ‘ BOTTOtvl _ ^ 5_ ^ ‘oidlm+Tfl © j   
*9\ w(n- M f 2m»t _ 2n-l 

t 4 4 SvtJCin-O i 

•5- 

,uot 

—oi^ + >.tu ysife 
*■ Ajta 

i 

= -COTC'TYV-V-^^ T 
't/ll 

Where ^ is the k n root of: 
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rrv*inr\ 

TO£ Free ^ ^ <51 M (n- k) (6J& <£>>M {6jb CQ6 ^^-0-BC.TTOK>\ , 

co^^c&i^. f Trs-i . m ‘3in(Zn-isl &h\ 
\ A 'l <=4KJ 2 m / 

JivJt 

\ LO£ — oJ" 4* J- UJ 

 T 

mh. i 
Ajfe. 

Where 0. is the kth root of: -is* = coTCm+i^ coTtK-h^ 
* ip 

Both cases: m4-4 = Cn-4^ “ -i;PC 

Upc *+* 

ui£ * 

lo* 2 

RESPONSE AT TOP HOLE FOR PERIODIC FORCE AT BOTTOM 

Fixed-Fixed 
-m-v-n 

V I 4t*l - .v -jt r OIAAI.1 o m-i-i 

BOTTOM 

olplp 4401 

r P 4 4 eitfCtafiiftii ) 

. r ^ x 
- to1 4* i. UJ cOik. j 

A*a. 

juit 

*fcli 
Where C6A. is the k root of equation IV-12). 

Top Fixed-Free Bottom m+r) 

Q- = ^ V S^K)C'm4-^!0k.^>l tsi ffjfc Ccy^ F, BOTTOM 

p lpLp'* *f?"’ tosn 9$jj i Sm+t 4. n. ^iwOzQvtil^^ I 
l 4 *2. J 

- c ^ \ 

*■ U)J^-asl4.JLwJ J 

A»c 
th 

Where ^J^is the k root of equation IV-l6). 



-51- 

Top Free Bottom Fixed 

& = CK+tt * SltsilVUT^&e ‘alN^ cpq>^ Fi vl ^ 71 1 

£ I 

BOTTOM 
^ 3k*\ 

pc ^oc c.©£ tnf ^ m \ 
14 ^ J 

{u>t ^ 

.{ ^7 
'uo^ -col-vl uo u>JH ( 

Me. 

Where 0, is the k 
th 

root of equation IV-20). 

For all cases 

(nvl) \z. P 

Uc 

oJ>fe = 4 c? 
* B * 

L-PC 

V\v^ 
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VI. SUMMARY AND CONCLUSIONS 

The results of sections I, II, and III, show that the heavy tool 

joints have negligible effect on the vibratory motion of the drill 

string, within the usual range of rotary drilling speeds. Therefore 

the drill pipe string may be considered a uniform bar with the same 

properties as the pipe itself. This allows a simple wave equation treat¬ 

ment of the drill string, as on page 17* 

Based on the simple wave equation treatment above, an equivalent 

lumped parameter system may be constructed for various system boundary 

conditions. Placing the equations in matrix foim allows the derivation 

of the response of any point of the drill string to a periodic disturb¬ 

ing force or periodic displacement applied to any or nil points of the 

drill string. For small damping the approximate response can be found. 

The lack of experimental data prevents actual comparison of numerical 

results calculated for the lumped system. Also, actual system damping 

by the drilling fluid in and around the string may be proportional to a 

l4 
power of velocity and not viscous as was assumed here . Consideration 

of velocity power terms makes the system equations of motion non-linear, 

and very difficult to treat. Approximate viscous coefficients can be 

calculated from experimental results, however, and the work of this 

paper in that direction must await these calculations for any proof of 

its usefulness. In any case, the undamped response of the lumped system 

may be easily calculated, with the minimum of computing power, from the 

expressions of pages 50 and 51* The minimum number of lumps to give re¬ 

sponses of desired accuracy may be found from figures 16 and 17 for 

given boundary conditions. 
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VII. APPENDIX 

I. The identify for the special determinant "below, called a continuent, 

is based on the fact that its expansion follows the recurrence formula 

for the sine*. 

m rows and 

columns 

c 
C - V 

\\\ \ \ \ 
-I C _i 

*>IU(rr>-vO 

‘Siu 5^ 
for 

II. The identify below is based on identify I following expansion on 

the bottom row: m-1 rows 
and columns 

m-2 rows 
and columns 

m rows and 

columns 

c -l 
c 

W X 
XX \ 

\X\ 
c -l 

^ (c-ft 

C - —r\ 
-\ c -\ 

X- 
XX, 

— 

c 
-1 c -\ 

\\ N 

X'c X 

(C-0 -l c -l c 

c = 2 cos 

— C2cosgi - 0 ‘Sm 
‘SIKI $6 

= _ co-s(vy>+4.^ ^ 
‘SIM?* <r o-S 2^ 

7. 
III. The identify below is stated without proof1^: 

i_ 4- CO'S + cos 2 -vc.os%^ . . . ^.coe>\^ — <a9>Ni(n,V' 
leJIM^ 

* Reference 10, v 3> PS* ^13 
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n 

E *=» 1 K? JZ$ 

*Y 

. A E Cv — Co'li 'iQ?^ 
1 Jk=l 

- 1 ( n ‘SlM(v\vW*^ _ l_\ 
1 /2.*=>IKS 96 ^ 

- 'in-1 . *%ihj( 2.n+iW 

4 4 “Siio 

n. 

E 
jk-i 

co^Jk^ 
■s * - j kTi 

“SINI^AI^ » 

- (ln+\ - + ^iioCanvh 

4 

w m m 

Z ‘SIKI JkK'btKi jkB s i_ co^ - i. co* SkGM^ 
^te=\ ^ k-\ “*■ -te-» 

1 l 251^^) /2.*>IM(£±S») j 

s. J f siM(ynvz)A-cosCm»^B> /«5tM/M-fc)_ ^UJ(A-&N\ 

4 I £lV ft ^ '/ 

cosCm4V)^s>^Cyn-»'t)& 

- ^ $ 'o\N(m+Vy\cos(nv*-i}e>ea«.^-«>iioIji’ 

^>\KI *S\*J ( 

c.o,b(ilYv»4^4<?<M(m+^b‘5k'>1%'CO*% 1 
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VII. 

J*) m w 

^— C.o'S.^A^cosJk'Ej as i. V CoS feCA.-&>) +■ i. CosJfe(M,<$) 
&all “2* -4?a l "*• -fe=l 

— C ^ t si (iw+ a^(A*G$) I ^tMCvy**1 _*21 
4 1 +t«c±&) ’ J 
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a Abrupt Change 

b Dual Taper Change 

Subscripts: P - Pipe 

N - Neck 

B - Barrel 

Changes in Drill-Pipe 
Section at Tool Joint 

Figure 3 



GO Radians/sec 

Phase Shift Error for Abrupt Change 
Compared to Dual Taper Change 

Longitudinal - Tool Joint of Figure 6 

Figure 4 
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NATURAL FREQUENCIES OF DRILL PIPE 

ONLY— Finale & Bailey Test Well "A"* 

Top Fixed-Free Bottom 

Moae 
Number 

CO, 

1 4.65 4.73 
2 14.25 14.2 

3 23.50 23.7 
4 32.25 33.1 
5 41.70 42.7 

52.1 6 51.00 

7 60.25 61.5 
8 69.50 71.0 
9 78.OO 80.5 
10 88.00 89.8 
11 97*00 99.4 

radians/sec 

9.k 9.4 
18.5 18.9 
27.7 28.4 

37.5 37.9 
46.C 47.3 
55.7 56.8 
64.7 66.3 
74.C 75.8 
83.2 85.2 
92.4 94.7 

Top Fixed-Fixed Bottom 

LO'| U>,2, 

LO, co’ Results of Graphical Solution of Figure 9 
1 1 for Drill Pipe String with 113 Tool Joints 

(Figure 8, String l) 

to , Results of Graphical Solution of Figure 9 
for Drill Pipe String with one Tool Joint 
(Figure 8, String 2) 

* Figure 7,8 

Figure 10 







NATURAL FREQUENCIES OF COMPLETE DRILL 

STRING—Finnie & Bailey Test Well "A"* 

Top Fixed-Free Bottom Top Fixed-Fixed Bottom 

Mode 
Number U1 2 “3 10*1 to’2 3 radians/sec 

1 2.6 2.6 2.2 9.00 9.2 9.0 
2 10.0 10.2 10.0 17.1 18.5 18.3 
3 18.9 19.2 19.0 26.1 26.7 27.0 
4 28.0 28.5 28.0 31.7 32.0 31.0 
5 37.3 37.3 37.0 38.7 37.8 38.0 
6 45.5 47.3 46.5 46.6 48.1 47.0 
7 54.0 55.8 55.5 56.0 57.3 56.5 
8 61.2 61.8 61.0 64.6 66.7 66.0 
9 66.6 68.0 67.0 73.4 75.5 75.0 

10 74.8 76.5 75.5 82.7 84.6 84.0 
11 83.3 85.8 85.0 90.3 91.3 91.5 
12 92.3 95.0 94.0 95.2 96.7 96.0 

to., u>' Results of Graphical Solution Figure 11 
for Drill Pipe String 1 of Figure 6 
(With 113 Tool Joints) 

u) Results of Graphical Solution Figure 11 
for Drill Pipe String 2, Figure 8 
(Tool Joint at Drill Collar Junction only) 

Results of Graphical Solution, Figure 12 
^ for Uniform Drill Pipe directly connected 

to Uniform Drill Dollar (no tool Joints) 
Reference - pages 17-18 

* Figure 7 

Figure 13 
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