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We extend a model for the morphology and dynamics of a crawling eukaryotic cell to describe cells on

micropatterned substrates. This model couples cell morphology, adhesion, and cytoskeletal flow in

response to active stresses induced by actin and myosin. We propose that protrusive stresses are only

generated where the cell adheres, leading to the cell’s effective confinement to the pattern. Consistent with

experimental results, simulated cells exhibit a broad range of behaviors, including steady motion, turning,

bipedal motion, and periodic migration, in which the cell crawls persistently in one direction before

reversing periodically. We show that periodic motion emerges naturally from the coupling of cell

polarization to cell shape by reducing the model to a simplified one-dimensional form that can be

understood analytically.

DOI: 10.1103/PhysRevLett.111.158102 PACS numbers: 87.17.Jj, 02.70.�c, 87.17.Aa

Cultured cells on two-dimensional substrates are often
used as a convenient proxy for more biologically relevant
situations, such as cells within a three-dimensional extrac-
ellular matrix (ECM). However, cells in the ECM often
exhibit qualitatively different modes of migration than those
on substrates [1–4]. A remarkable example of this is the
discovery of periodic migration in zyxin-depleted cells in a
collagen matrix [5]. Understanding cell motility in the ECM
may be profoundly important for the study of cancer invasion
[6]. Interestingly, features of cell morphology and dynamics
in a matrix are recapitulated in cells on micropatterned
adhesive substrates, including cell speed, shape, dependence
on myosin [1], and periodic migration [5]. Other micropat-
terns induce cell polarization and directed cell motion [7–9]
and sorting of cells from one- to two-dimensional regions of
micropatterns [10]. In this Letter, we study the influence of
micropatterns on cell motility using an extension of a com-
putational model of eukaryotic cell crawling [11,12] and
observe a wide range of dynamic behaviors including peri-
odic migration. To our knowledge, ours is the first cell
crawling simulation to display periodic migration.

It would be natural to expect that periodic migration [5]
requires underlying oscillatory protein dynamics, as in Min
oscillations in E. coli [13]. Surprisingly, this is not the case;
periodic migration and other complex behaviors appear
with only minimal alteration to the model for freely crawl-
ing cells. We study periodic migration in detail, and show
that it is a consequence of feedback between the cell’s
shape and its biochemical polarization, i.e., how proteins
are segregated to one side of the cell. We use sharp inter-
face theory to reduce our model to a simplified 1D model
that is analytically tractable. Periodic migration exempli-
fies how coupling between cell shape and chemical polarity
can lead to unexpected cell behavior.

Model summary.—We describe the cell’s cytoskeleton as
a viscous, compressible fluid driven by active stresses from
actin polymerization and myosin contraction. This is
appropriate for the long time scales of keratocyte and
fibroblast migration on which the cytoskeleton can rear-
range; see, e.g., Ref. [14]. Our model is one of a broad
spectrum of active matter [15,16] models of motility in
which active stresses drive deformation [14,17–26].
Details of the model are available in Ref. [12]; we review
it briefly to highlight changes made to study cells on
micropatterns. It has four modules: (1) cell shape, tracked
by a phase field �ðr; tÞ, (2) the cytoskeleton as an active
viscous compressible fluid [14,27], (3) actin promoter
(e.g., Rac or Cdc42) and myosin concentrations obeying
reaction-diffusion-advection equations, and (4) adhesions
between cell and substrate, tracked individually.
Cell shape is tracked by a ‘‘phase field’’ �ðr; tÞ that is

zero outside and unity inside the cell [11,28–33]. � varies
smoothly across the cell boundary, which is implicitly set
by � ¼ 1=2. �ðr; tÞ obeys

@t�þ u � r� ¼ �ð�r2��G0ð�Þ=�þ c�jr�jÞ (1)

where u is the cytoskeletal velocity, � a relaxation coeffi-
cient, c ¼ r � ðr�=jr�jÞ is the local interface curvature,
� the interface width, and Gð�Þ ¼ 18�2ð1��Þ2.
We describe cytoskeletal flow with a Stokes equation

including active forces from actin and myosin and forces
induced by membrane curvature and cell-substrate
adhesion:

r � ½�ðruþruTÞ� þ r � ð�poly þ �myoÞ
þ Fmem þ Fadh � �u ¼ 0; (2)
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where �ð�Þ ¼ �0� is the viscosity. � does not vary over
the substrate; i.e., �u is a hydrodynamic drag [34], not
friction from adhesive binding [35]. Individual adhesions
lead to Fadh; Fmem comes from membrane deformations
(see Supplemental Material [36]). We neglect the pressure
term arising from coupling between cytoskeletal mesh
and cytoplasm [14]. Equation (2) is solved numerically
with a semi-implicit finite difference spectral method;
other equations are stepped explicitly (see Supplemental
Material [36]).

Our central hypothesis for the effect of the adhesive
micropattern is that protrusive stress from actin polymer-
ization �poly is only generated where the cell contacts the

micropattern,

�poly ¼ ��0
a�ðrÞ��a	�n̂ n̂; (3)

where �ðrÞ is one inside the pattern and zero outside,
	�ð�Þ ¼ �jr�j2, n̂ is the normal to the cell surface, �a

the actin promoter density on the membrane, and �0
a a

protrusion coefficient. Our assumption is supported by
experimental work showing that fibroblasts preferentially
protrude processes from points near newly formed adhe-
sions, which only form on the pattern [37]. Others have
proposed active stresses proportional to cell-substrate ad-
hesion [38]. Our pattern is a stripe, �ðrÞ ¼ ð1=2Þ�
½1þ tanhð3fðw=2Þ � jxjg=�Þ�, with w the stripe width.
The contractile stress is �myo ¼ �0

m��mI, with �m the

myosin density, �0
m the myosin contractility coefficient,

and I the identity tensor.
Cell polarization arises from �a, which follows a wave-

pinning model [39]. The actin promoter exchanges
between active membrane-bound (�a) and inactive cyto-

solic (�cyt
a ) states; the membrane-bound promoter catalyzes

binding to the membrane. Fronts between high �a and low
�a can stall (‘‘pin’’), leading to a steady polarization [39].

Actin promoter and myosin processes only occur inside
the cell; the phase field method is ideally suited to handle
reaction-diffusion-advection equations within moving
cells [11,19,31–33]. The reaction-diffusion-advection
equations for the actin promoter and myosin are

@tð��aÞ þ r � ð��auÞ ¼ r � ½�Dar�a� þ�f; (4)

@tð��mÞ þ r � ð��muÞ ¼ r � ½�Dmð�aÞr�m�: (5)

The actin promoter diffuses with coefficient Da on the
membrane; at this level of modeling, we do not distinguish
between membrane and cytoskeleton velocity, and so �a is
advected with the cytoskeletal velocity u. Myosin binds
and unbinds from the cytoskeleton, which we model as a
�a-dependent diffusion coefficient Dmð�aÞ ¼ D0

m=ð1þ
�a=KDÞ [12]. The nonlinear reaction term fð�a; �

cyt
a Þ

for promoter membrane-cytosol exchange is in the

Supplemental Material [36]. �cyt
a is well mixed (constant)

and set by the conservation of �a; i.e.,
R
d2r�ðrÞ½�aðrÞ þ

�cyt
a � ¼ Ntot

a is constant.
Adhesions between cell and substrate are formed, age,

and transition between modes as in [12]. However, adhe-
sions may only form on the micropattern [37]; adhesions
that leave the micropattern are destroyed (see
Supplemental Material [36]). The number of adhesions is
fixed. We do not enforce symmetry, unlike Ref. [12].
Simulation of periodic migration.—Numerical evalu-

ation of Eqs. (1)–(5) shows spontaneous emergence of
periodic motion. An initially circular cell contracts to the
stripe, polarizes, migrates one way, then reverses and
migrates in the other direction. We present one reversal
in Fig. 1. When the cell is polarized (�a is segregated on
one side), the cell contracts while crawling in the direction
of its polarization [point (a) in Fig. 1]. As the cell contracts,
it depolarizes [1(b)]. The unpolarized cell expands quickly,
but does not crawl significantly. As the cell grows, it
suddenly repolarizes [1(c)] and begins to travel in the
direction opposite to its initial direction. As the cell moves,
myosin localizes to the cell rear [40], and the cell begins to
contract again [1(d)]. Each reversal corresponds to one
peak in the cell area.
Several questions arise. (1) How does cell polarization

control the cell’s growth and contraction? (2) Why does the
cell depolarize at small areas and repolarize at large ones?
(3) Why does the cell repolarize in a direction opposite to
its original motion? We address these questions by reduc-
ing our model to a significantly simpler 1D one.
Reduction to 1D model.—We neglect adhesions and

advection of �a. The latter is not strictly justified, as the
Peclet number Pe ¼ VcellLcell=Da is of order unity (Lcell is
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FIG. 1 (color online). Top: Cell shape (�), actin promoter
(�a�), and myosin (�m�) distribution at four time points
(a)-(d) during a reversal event in periodic migration. Color plots
are rescaled by unity, 1:4 
m�2 and 0:55 
m�2, respectively.
Cell velocity is indicated by an arrow. Total width of stripe is
w ¼ 6 
m (dashed lines). Bottom: Center-of-mass position
[ �y ¼ ð1=AÞR d2ry�ðx; yÞ] and area (A ¼ R

d2r�) of cell as a

function of time. Full parameters for all simulations are listed in
the Supplemental Material [36].
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the cell length and Vcell its velocity), but we reproduce the
essential aspects of the two-dimensional simulation with-
out fluid flow. In migrating cells, myosin accumulates at
the back while actin is enriched at the front [40]. We model
these myosin dynamics phenomenologically by letting
myosin go to the cell rear (where �a is low) with time
lag �. The simplified model for �a and �m is

@tð��aÞ ¼ @y½�Da@y�a� þ�fð�a; �
cyt
a Þ; (6)

@t�
f;b
m ¼ ���1½�f;b

m � ðm0 � �f;b
a Þ�; (7)

where �f;b
a;m ¼ �a;mðyf;bÞ and m0 is the equilibrium myosin

when �a is zero. The cell ‘‘front’’ is defined by yf > yb.

The cell shape is �ðy; tÞ ¼ ð1=2Þ½tanhð3ðy� ybÞ=�Þ �
tanhð3ðy� yfÞ=�Þ�. Actin polymerization causes local pro-

trusion; myosin contraction causes local contraction. The
simplest form for the normal velocity of the edge is thus
vedge � n̂ ¼ ��a � 
�m; i.e.,

@tyf;b ¼ �ð��f;b
a � 
�f;b

m Þ: (8)

This result can be rigorously justified in some limits by
solving the Stokes equation [Eq. (2)] in the presence of a
planar front. If �=‘h � 1 (sharp interface limit) and

Lcell � ‘h, where ‘h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0=�

p
, we find � ¼ �0

a=4�0

and 
 ¼ �0
m‘h=2�0 (see Supplemental Material [36]).

This limit is not necessarily applicable, as we have ‘h �
63 
m> Lcell. Nevertheless, Eqs. (6)–(8) capture the
essential features of periodic migration in Fig. 1. We
simulate them (Fig. 2) and compare the 1D simulation to
the center line of Fig. 1.

Our 1D model shows how the cell’s shape changes and

polarization are coupled. The cell shrinks if @tLcell ¼
@tðyf � ybÞ ¼ �ð�f

a þ �b
aÞ � 
ð�f

m þ �b
mÞ is negative. To

find when this is true, we need �f;b
a . We use the analysis of

Mori et al. [39,41], who proposed the wave-pinning
reaction-diffusion model we apply in Eq. (6). Their solu-
tions would be exact if � ! 0 (sharp interface limit) and
the cell were slow moving, Pe � 1. Pe is not small, but
these solutions provide a valuable qualitative guide to the
cell’s polarization as a function of its size. We use the

simplified reaction kinetics ~fð�a; �
cyt
a Þ 	 �k�að�a �

hÞð�a �m�cyt
a Þ, which reproduce the phenomenology of

the full kinetics and permit analytical solutions. h and m
are parameters related to the steady states of �a [39]. Mori
et al. find two homogeneous and linearly stable steady
states, �aðyÞ ¼ 0 and �aðyÞ ¼ mNtot

a =Lcellð1þmÞ, where
Ntot

a ¼ R
L
0 dyð�a þ �cyt

a Þ is the conserved total number of

actin promoter molecules in either the membrane-bound or

cytosolic form [Ntot
a ¼ R

ddrð�a þ �
cyt
a Þ� in the phase

field model]. Reference [39] also finds a polarized state
with a stationary front connecting a region with �a ¼ 2h to
�a ¼ 0; the length of the region with large �a is yp ¼
ðNtot

a =2hÞ � ðLcell=mÞ. The cell can only polarize if yp <

Lcell, i.e., Lcell > Ldepol 	 mNtot
a =2hðmþ 1Þ. This causes

the cell to depolarize at small lengths, partially answering
question (2) above.
Why does the cell not immediately repolarize when

Lcell >Ldepol? The homogeneous state �aðyÞ ¼
mNtot

a =Lcellð1þmÞ is linearly stable; even though the
cell can support a polarized state if Lcell >Ldepol, it will

not reach that state without a perturbation beyond a certain
threshold. Numerically evaluating Eq. (6) in a cell of fixed
size, we find that this threshold decreases with increasing
cell size; larger cells are easier to polarize. [For the full

kinetics fð�a; �
cyt
a Þ, this threshold can decrease to zero

[41].] Others [42–44] have also suggested that cell shape
influences signaling, polarization, and response to stimuli.
What perturbation causes the cell’s repolarization?

Within the 1D model the only possibility is the moving
edge. If a cell edge expands faster than �a can be trans-
ported by diffusion or converted from cytosolic form, �a

will be depleted near the expanding edge. Explicitly, if we
numerically solve Eq. (6) for an initially homogeneous cell
with one edge expanding, the cell always polarizes to a
state with low �a near the expanding edge. Depletion sets
the direction in which the repolarization occurs. As the cell
expands, both edges have high �a, but one has lower �m

(Figs. 1 and 2). The edge normal velocity is set by Eq. (8):
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FIG. 2 (color online). Two- and one-dimensional models show
highly similar behavior. Top: Center line of Fig. 1 a–d with �
(black solid line), ��a (green dashed line), and ��m (red dash-
dotted line); axis is shifted for comparison to middle plot,
Middle: 1D model at comparable points in the periodic cycle
(A)–(D). Bottom: Plot of position and size of periodically
migrating 1D cell.
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actin polymerization causes expansion, but local contrac-
tion from myosin decreases the edge’s velocity. Therefore,
the edge with low �m expands faster, leading to more
depletion of �a near that edge. When this depletion crosses
the threshold of patterning, a polarized state forms with
low �a near the quickly moving edge, and high �a near the
slowly moving edge: the cell polarizes in the direction of
higher myosin. Myosin keeps the memory of the cell’s
direction: if it becomes uniform before the cell repolarizes,
this information is lost.

We have now answered our questions from above.
(1) Cell shape is set by �a and �m via Eq. (8), and this is
controlled by the cell polarization. (2) At small cell sizes,
Eq. (6) does not support a polarized state, but as the cell
expands, the polarized state and homogeneous state are
both stable. Polarization requires a perturbation to �a

larger than a threshold, which decreases as the cell grows.
(3) Repolarization is initiated by depletion of �a near an
expanding cell boundary; myosin makes the previous
‘‘back’’ of the cell expand more slowly, ensuring the cell
polarizes in a direction opposite to its previous movement.

We calculate the amplitude of periodic migration ana-
lytically by using the results of [39] and making some
additional assumptions. We assume the cell depolarizes
at length Ldepol as above and repolarizes in the direction

of high myosin at a critical length L
. The value of L

would depend on the details of the cell’s motion, the
diffusion coefficient Da, and the threshold for perturba-
tions. We expect that the dominant contribution to the
cell’s displacement over time will be the distance that it
crawls while polarized; when the cell is polarized, it con-
tracts. We can then approximate the amplitude of periodic
migration as A ¼ vc:m:tcontract, where vc:m: is the cell center
of mass velocity in the contraction phase, and tcontract the
time required to contract from L
 to Ldepol. Using Eq. (8)

and the results of [39], we find that in the polarized state,
@tLcell � 2h�� 
ð2m0 � 2hÞ (assuming the myosin is at
its equilibrium value �m ¼ m0 � �a). Similarly, vc:m: �
hð�þ 
Þ. We find

A ¼
�
L
 � Ldepol

2

�
�þ 1

�c � �
; (9)

where � ¼ �=
 and �c ¼ ðm0 � hÞ=h. For the cell to
contract while polarized, � < �c. The cell must also
grow while unpolarized for periodic migration to occur;
this condition depends on Ntot

a .
For the amplitude of periodic migration to become large,

protrusion and retraction must be balanced so that �� �c

is small. However, this requirement can be weakened by
the cell’s internal dynamics, which we have mostly
neglected in deriving Eq. (9). If we assume a large viscous
resistance to changes in size, we suppress the rate of
contraction and expansion by a factor �, where � � 1. If
the cell’s contraction is slowed, but crawling is not, the
amplitude of periodic migration increases significantly, as

tcontract � 1=�, and A � tcontractvc:m:, so A� 1=� becomes
large.
Additional emergent behaviors.—Depending on initial

conditions and micropattern width, other behaviors are
observed. These include steady crawling, turning, and
bipedal motion (see Supplemental Material [36]). The
bipedal motion resembles that seen theoretically and ex-
perimentally by Barnhart et al. [45]. Turning has been
studied by Rubinstein and co-workers [46,47]; see also
Ref. [19]. We plan to address the origin of these effects
within our model in future work.
If periodic migration in [5] arose through precisely the

mechanism we have described, the cell area would oscil-
late with a period half that of the cell’s migration and
myosin reorientation would lag the reversal of cell direc-
tion (Figs. 1 and 2). It would be interesting to experimen-
tally quantify total surface area and myosin localization of
periodically migrating cells. We present this study primar-
ily as an example of complex behaviors that develop when
cell polarization is coupled to cell shape. However, our
mechanism of periodic migration may be more general if
cell polarization is coupled to other mechanical properties.
Cell-surface adhesion is a natural choice, as periodic mo-
tion arises in [5] when the adhesion protein zyxin is
depleted. If cells only polarize when sufficiently adherent
to the surface, and this adhesion changes with cell motion,
our periodic migration scheme may be recapitulated with
adhesion in place of cell area.
Periodic migration as observed in our simulations is a

new, interesting, and tractable example of the complex
dynamics resulting from coupling cell shape and polarity.
Periodic migration requires a balance between contraction
and protrusion [Eq. (9)], but its existence is robust to many
model details. Within our larger model, individual adhe-
sions can be neglected, as can the �a dependence of
Dm. In the 1D model, we have ignored hydrodynamics
entirely. Removing features or varying parameters (see
Supplemental Material [36]) changes migration amplitude,
but if the fundamental aspects illustrated by the 1D model
are present, periodic migration exists. Therefore, we
believe periodic migration could be observed in other
models of eukaryotic cell motility that couple polarity
and cell shape [11,26,32,44,48], especially those using
the wave-pinning polarity mechanism [39]. Randomly
occurring reversals without periodicity have been observed
by Ziebert and Aronson [49]; their model may only lack a
memory. Our one-dimensional model suggests the essen-
tial elements required for periodic migration, and empha-
sizes the role of myosin in preserving the memory of the
cell’s initial direction. Our model for cells on adhesive
micropatterns and the analytical tools we developed to
study periodic migration may be useful in understanding
more complex behavior on micropatterns, including ‘‘di-
mension sensing’’ [10], response of fibroblasts to cross-
hatched patterns [1], and polarization in response to
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asymmetric micropatterns [7–9]. In all of these cases, cell
polarity is coupled to the underlying micropattern. The
coupling of micropattern shape, cell shape, and cell polar-
ization studied here will be essential to a deeper under-
standing of these problems.
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Biological Physics.
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