RICE UNIVERSITY

High Performance Distributed Denial-of-Service
Resilient Web Cluster Architecture

by

Supranamaya Ranjan

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE

Z/Z%/éé

Dr. Edward W. Knightly
Associate Professor, Chair
Electrical and Computer Engineering

A’M

Dr. Petér Druschel

Professor

Compu}er Science
Dr. T. S(/ Eugene Ng e
Assistant Professor
Computer Science

Houston, Texas

October, 2005

UMI Number: 3216765

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3216765
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

High Performance Distributed Denial-of-Service
Resilient Web Cluster Architecture

Supranamaya Ranjan

Abstract

Though the WWW has come a long way since when it was monikered the World Wide
Wait, it is still not reliable during heavy workload conditions. Overloads due to flash
arrival of users or diurnal workload patterns are known to exponentially increase
download times. More recently, online banks and portals have been the target of
Distributed Denial-of-Service (DDoS) attacks, which send a deluge of requests and
drive away the legitimate users. This dissertation proposes a web hosting architecture
consisting of a grid of clusters, to provide high-performance in the presence of standard
overload conditions as well as resilience during attacks.

The architecture’s high-performance component is provided by a server selection
framework, Wide-Area ReDirection (WARD), which efficiently multiplexes resources
across the cluster grid. Traditional approaches assume that minimizing network hop
count minimizes client latency. In contrast, WARD'’s server selection algorithm for-
wards requests to the server that minimizes the total of estimated network and server
delays. WARD is better-suited to handling overload conditions in dynamic web con-
tent, which are known to stress compute resources more than the network. Using a
combination of analytical modeling and testbed experiments, it’s shown that delay
savings by redirecting requests to an under-loaded cluster can far outweigh the over-

head in inter-cluster network latency. For instance, for an e-commerce site with 300

concurrent clients, redirection reduces download times from 5 to 2.3 seconds.

The architecture’s DDoS-resilience is provided by DDoS-Shield, consisting of a
suspicion assignment mechanism and a scheduler. Assuming sophisticated attackers,
the possible attacks are characterized as either request flooding, asymmetric or re-
peated one-shot, on the basis of the application workload parameters exploited. In
contrast to prior work, the suspicion mechanism assigns a continuous valued vs. bi-
nary suspicion measure to each client session, and the scheduler utilizes these values
to determine if and when to schedule a session’s requests. Testbed-driven experiments
demonstrate the potency of these resource attacks as well as evaluate the efficacy of
the counter-mechanism. For instance, an asymmetric attack effected to overwhelm the
database CPU, increases download times from 0.15 to 10 seconds, while DDoS-Shield

is shown to improve performance to 0.8 seconds.

Acknowledgments

“Every search begins with the beginner’s luck, and ends with the victor’s being severely
tested. ”

These lines from The Alchemist [1], succinctly capture the five and a half year
journey that this dissertation has been. While fate and my quest for knowledge
conspired together to bring me to Rice University in August 2000, the pursuit was
defined completely much later under the expert mentorship of my advisor, Professor
Edward Knightly. I would like to thank Prof Knightly, for providing me with this great
opportunity and for building the right environment at Rice Networks Group (RNG)
for independent thinking and quality research. Our interactions shaped my inchoate
thoughts into the polished form that is this dissertation. Our weekly discussions were
crucial in keeping this dissertation on the right track and would bring me out of the
blind alleys I would often turn into. The intellectual aspect to our interactions was
only one side to the story, I have learnt so much more from him about things as varied
as efficiency, diligence and professionalism to name a few. But above all, thanks for
believing in me all this while.

I am thankful to my dissertation committee members, Professor Peter Druschel
and Professor Eugene Ng for their help and guidance. Constant communication with
them regarding the status of my dissertation was a great exercise in making my
thoughts coherent, while their suggestions gave this dissertation the sheen that it

has.

This dissertation encompasses collaborations and friendships built with some great
researchers. I am grateful to Roger Karrer for the insightful discussions we had during
the spring of 2003, which led to the germination and eventual fruition of our work
on wide-area redirection and above all for the fun time we had while presenting this
work at Infocom in Hong Kong. I am indebted to Cristiana Amza, Alan Cox, Willy
Zwaenepoel and several other researchers from the Rice CS Systems Group, for their
feedback on wide-area redirection as well as providing me with the initial TPC-W
implementation upon which I built and tested wide-area redirection and DDoS-Shield.
I am deeply grateful to Mustafa Uysal and Ram Swaminathan for the intense rounds
of discussions we had during the spring of 2005, leading to the development of ideas
mentioned in DDoS-Shield. Ram’s Socratic style of discussions were monumental in
clarifying my thoughts on anomaly detection. In him I also found a mentor with
whom I could discuss various issues related to a career in research, thanks Ram.

Weekly meetings with RNG provided me with a great forum to present ideas and
gain important feedback. The RNG was the toughest audience to the presentations I
made related to this dissertation and their critical eye for detail helped me hone my
presentation skills tremendously. Above all, I gained wonderful friends, whom words
are not enough to thank: Aleksander, for the great time we had during the summer of
2003 stealing grapes (while discussing research ofcourse!) in Napa Valley; Violeta, for
her great friendship during the tough times of 2005, we survived; Joseph, for being a
great office-mate and for that infectious enthusiasm; Theodoros, for being a reliable
friend and the numerous discussions over beer about life and such; Dee, for her help
with all things administrative and the life-saving provisions of espresso and food; and
all the other group members, Abdul, Ashu, Bahar, Farbod, Jingpu, Joshua, Omer,

Ping and Rahul for their constant support and encouragement.

vi

My time in Houston was made ever memorable by the wonderful friends I made
during my stay here, without whom the smooth transition into the American life
wouldn’t have been what it was: C. Vikram, Mani and Robert for the blast we
managed to have despite the graduate workload at Rice; Aditya, Auleen, Don, Feby,
Gullu, Ingar, Kanodia, Kiran, Nitin, Rajesh, Rajeshwari, Shreya and Shubha for
being the best friends ever; Talwar uncle and Rita aunty for being the guardian
angels and my spiritual gurus; and the dearest, my Viqulia, for her love and for being
ever understanding, with whom I shared all the joys and sorrows that accompanied
this dissertation, without whom all the celebrations wouldn’t have been worth it and
moments of dejections would have been unbearable.

I dedicate this dissertation to my family which was more overjoyed than me at its
completion. My mother, also my first teacher, who doesn’t know anything technical
about computers or networks, would probably be the only person to read this disser-
tation cover to cover. My father, himself a PhD in Physics, the pride in his eyes is
my reward. The happiness of badi ma, bade pa and my cousins Rakesh, Ravi and
Shashi, I will always remember. And my ever loving sister, Sunny, the cheerful glee

of her voice on hearing the news, I will treasure forever.

-Om -

Contents

Abstract
Acknowledgments

List of Illustrations

Introduction

1.1 Motivation e

1.2 Non-attack Outage Conditions

1.3 Attack Outage Conditions

1.4 Contributions
1.4.1 Wide Area Redirection Architecture.
1.42 DDoSShield.

Background

Wide Area Redirection Architecture

3.1 Redirection Architecture and Algorithm
3.1.1 System Model
3.1.2 Redirection algorithm,

3.2 Performance Model o

3.3 Numerical results o
3.3.1 The case for wide area redirection

3.3.2 Server load versus network latency

1i

iv

© O O o~

11

15

333 Servicetime L 26
3.3.4 Measurement errors 28
3.4 Testbed implementation and experiments 32
341 WARD Testbed 32
3.4.2 Experimental Setup. 36
3.4.3 Experiments 36
3.5 Related Work oo oo 44
DDoS-Shield 47
4.1 Attacker, Victim and Defense System Models 47
4.1.1 Attacker Modelo 47
4.1.2 Victim Modelo 50
4.1.3 Defense Model oL 52
4.2 Vulnerability to Attacks 53
42.1 E-Commerce Testbed 53
422 Attack Potency 56
4.2.3 Attacker Strategies 61
4.3 Quantifying Attack Suspicion 63
4.3.1 Legitimate Client Profiles 64
4.3.2 Detection of Session Arrival Misbehavior 66
4.3.3 Detection of Request Arrival Misbehavior 67
4.3.4 Detection of Session Workload Misbehavior 67
4.4 Scheduler Design for DDoS-Shield 78
4.4.1 Scheduling Algorithms 80
4.4.2 Online Rate-Setting Algorithm 81

4.4.3 Performance Evaluation 81

4.5 Related Work
4.5.1 Detecting DDoS attacks . .

4.5.2 Counter-DDoS Mechanisms

5 Conclusions

Bibliography

ix

88
88
89

91

93

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

INlustrations

IDC Four Tier Architecture

Server Selection using WARD
cluster system model.o o oL
Comparison of the total cluster delay with and without wide area
redirection
Remote redirection ratio 1 — « for different end-to-end latencies A
and server loads p. o
Remote redirection ratio 1 — o for different service times Z and server
loads p. o
Remote redirection ratio 1 — « for different coefficient of variations ¢
and server loads p. oL
Remote redirection ratio 1 — « for different network measurement
EITOTS 0.« v v v v e e e e e e
Total delay for different network measurement errors 6.
Remote redirection ratio 1 — o for different server load measurement

EITOIS €.« v v 0 e e e e e e e e e e e e e e e e

3.10 Total delay for different server load measurement errorse.

3.11 Testbed

3.12 Network Subnets with WAN delays emulated by NISTNET

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

4.1

4.2

4.3

4.4

Mean database query response times vs mean database CPU load for
the 30 read-only MySQL queries in the browsing mix of the TPC-W
benchmark.
Mean database CPU load as a function of the number of concurrent
clients ().
Mean request response time as a function of A and the number of
concurrent clients (n)
Remote redirection ratio as a function of A and the number of
concurrent clients (n). L
90 %-iles of response time as a function of A and the number of
concurrent clients (n) L
Throughput obtained for various system configurations
Model verification: 1 cluster system
Model verification: remote redirection ratio

Model verification: mean response time

Victim system model: web cluster hosting a web application.

Defense system model: DDoS-Shield
Heterogeneity in processing times for different dynamic content
requests in online bookstore application.
Probability of occurrence of a request type in a client session for
browsing, shopping and ordering sessions. Browsing sessions send
only 5% requests for pages that involve write queries to the database
server, while shopping and ordering sessions send an increasing

percentage of such requests. oL

xi

4.5

4.6

4.7

4.8

4.9

xii

Effect of most potent request flooding attack (attacker think-time=0

sec) and asymmetric request-flooding attack (attacker uses

“BestSellers” script) on 100 normal sessions. 57
Variations in attacker strategies. The figures show the performance

impact on 100 normal sessions. In (a), the attacker uses 200 attack
sessions to launch a request flooding (browsing profile) and

asymmetric request flooding (BestSellers script) attack, while varying

the request inter-arrival times as [0 — 7] seconds. In (b), the attacker

uses 300 attack sessions sending requests as fast as possible, while

varying the attack workload. In (c), the attacker uses only one

session at a time, sending one BestSellers request per session and

varies the inter-session time from [0 — 0.5] seconds. 59
CDF for inter-arrival times for query-arrivals at the database server

for different attacks. The number of normal browsing sessions is 100

in each scenario. The no attack case has 0 attackers, while the

asymmetric request-flooding corresponds to 300 attack sessions with
request think-time of 0 seconds. The repeated one-shot attack

corresponds to an attack session being opened immediately (0)

seconds after closing the previous session. 61
Cumulative Distribution Function for request inter-arrival time:

P(X, < z) with varying session lengths or sample sizes ‘n’. 65
Mean of KL-distance of “browsing”, “shopping” and “ordering”

sessions with increasing sample-sizesn. 74

4.10 Average suspicion probability of a normal or attack session with

increasing number of requests seen in the session. 75

4.11 State Diagram for a session in scheduler queve 79

4.12 Effect of various scheduling policies and scheduler service rates on 100
normal browsing sessions in the presence of 300 request flooding
attack sessions. e

4.13 Effect of various scheduling policies and scheduler service rates on 100
normal sessions under most-potent 300 asymmetric attack sessions.

4.14 Performance of DDoS-Shield on protecting 100 normal sessions when
under attack by lower-potency attacker strategies. DDoS Shield uses

LSF scheduler and scheduler service rate set at 15 requests/second.

xiii

84

86

Chapter 1

Introduction

1.1 Motivation

The World Wide Web (WWW) has come of age since its inception, when the first web
page was served from the first web server at CERN in the early 1990’s. The WWW
denizens of today increasingly rely upon it for obtaining and publishing information,
conducting commerce, interacting socially, and seeking entertainment. This increas-
ing reliance on the WWW as a ubiquitous medium becomes ever more apparent
whenever there is a disruption in the availability of a certain web service. Further-
more, due to the much higher access network bandwidths today than a decade ago,
clients of web services have much higher expectations with the service quality and
hence are less tolerant to degradation in throughput or access times.

The disruptions and degradations in a web service can be accounted for by one of
the following three overload conditions: (1) Time-of-Day effect which is the diurnal
variation in traffic observed at most web sites; (2) Flash Crowd arrivals which is
a sudden surge in legitimate users of a web service and; (3) Distributed Denial-of-
Service (DDoS) attacks which are deliberate attempts to overload a web service. Thus,
this dissertation proposes a novel web cluster architecture to host applications which
optimizes the client access times inspite of the presence of either of these overload
traffic conditions. The architecture is a global-scale grid of clusters, each cluster
hosting the same content and inter-connected to other clusters through custom high-

bandwidth links. A majority of the contemporary e-commerce companies host their

services on similar architectures. For instance, according to a recent (January 2005)
interview on CBS’s 60 minutes, the search-engine giant Google is known to use 100,000
servers spread across 60 clusters. Optimizing the client access times for the web
applications for all kinds of traffic is challenging owing to several reasons: distributed
nature of the applications, inaccuracies in predicting traffic-load and classifying traffic
as legitimate or malicious.

A few observations motivate this dissertation greatly. First, the need for an effi-
cient end-system is highlighted by the observation that the bottlenecks in accessing
a web service are shifting away from the network to the compute resources of the
service. There is far greater bandwidth today at the core of the Internet as well as
network access points than two decades ago. Moreover, most of the bandwidth in the
Internet core is over-provisioned {2, 3] due to which delays across network backbones
are increasingly dominated by speed-of-light delays, with minimal router queuing
delays.

Moreover, the increasing complexity, scale and size of offered web services adds to-
wards the higher resource consumption and hence bottlenecks at the end-systems. For
instance, one of the important brand differentiation strategies adopted by e-commerce
sites is personalizing content to a user’s preferences or locality. Serving personalized
content often requires generating the content dynamically using PHP, JSP, CGI or
other application server methods, after taking the user’s preferences, past history and
geographic location into account. Common examples of personalized content include
generating a list of top-selling books or movies in the genre of preference of a cer-
tain user. Another important use of generating content dynamically is the ability
to embed real-time data e.g., generation of latest stock quotes at brokerage sites or
the generation of latest auction price at e-auction sites. Generating dynamic pages

requires interfacing with a database server and obtaining the relevant data in real-

time i.e., as and when the page is requested by a user. In contrast, static content
which change rarely during consecutive visits to the same page, such as images and
text are served directly from the web server, without the need for any interfacing
with the database. Most of the current cluster architectures are engineered towards
serving static content efficiently, however, since dynamic content generation is much
more compute intensive in contrast with static content, there is a pressing need for
a rethink in the design of a cluster architecture geared towards dynamic content.
Thus, the scope of the architecture introduced here is restricted to dynamic content
web-sites.

Specifically, the dissertation minimizes client download times during overload con-
ditions by considering them as either non-attack outage conditions (standard time-
of-day variations or flash crowds) or, attack outage conditions (DDoS attacks) and
developing a framework to handle each of them. First, the non-attack outage con-
ditions are handled by viewing the grid of clusters as a global resource pool and
efficiently utilizing the resources in this pool. This is done by a server selection pro-
tocol namely Wide Area Redirection of Dynamic Content (WARD), which redirects
requests to the best server, which could be either in the local cluster or one of the
clusters remote to the user. Thus, if a certain cluster is overloaded either due to the
sudden popularity of the application in the corresponding geographic region or due
to the fact that it is day time in this region, then requests can be redirected away
to potentially under-loaded remote clusters. Second, this dissertation proposes a
mechanism, namely DDoS-Shield to limit the impact of DDoS attacks which overload
cluster resources. The counter-mechanism consists of anomaly detection techniques
which assign a measure of suspicion to each client session. However, we can only
detect attack sessions with absolute certitude after observing them for a long time,

by which time the damage is done. Hence, the counter-mechanism also consists of

a scheduling framework in which sessions are monitored from inception, and their
service rates reduced as and when their suspicion values increase. Moreover, to limit
the impact due to false-positives (legitimate sessions interpreted as malicious), the
scheduler never drops a session whenever there is adequate capacity in the system.
The rest of this chapter discusses the contributions made through this dissertation
in greater details. Sections 1.2 and 4.2 discuss time-of-day variations, flash crowds and
DDoS attacks in the following details: the performance degradation characterized by
each; the current state-of-the art techniques in handling each and; the limitations of
the current techniques. Finally, the chapter is ended by Section 1.4, which summarizes

the contributions made through this work.

1.2 Non-attack Outage Conditions

There are numerous incidents that highlight the performance impact of overloads due
to time-of-day variations or flash crowd effects. This section discusses evidence that
indicate the same and also presents the limitations of current approaches.

Several workload analysis studies [4][5] of e-commerce web sites indicate the pres-
ence of a strong diurnal variation in web traffic also known as the time-of-day effect.
Web traffic has been found to vary by a factor of between 2 and 20 throughout the
day, peaking during the day and troughing during the night. Current web cluster
architectures are manually configured and cannot automatically adapt to these work-
loads. When these architectures are provisioned to handle the average workload, they
suffer significant performance degradation when loads exceed capacity. In contrast, if
these architectures are provisioned to handle the peak workload, they result in poor
resource utilization for most of the time.

Sudden arrival of users at a site i.e., flash crowd events impact performance sig-

nificantly due to the unexpected time of arrivals or magnitude of arrivals or both.

As a result, users delay each other by several orders of magnitude, sometimes even
denying access completely to some of them. The inefficacy of web sites to protect
from flash crowd events was made evident during the World Trade Center attacks
on September 11, 2001. Millions of people tried to access information from news
sites such as BBC.com and CNN.com simultaneously and either encountered delays
as large as several tens of minutes or were never able to access the page requested.
Similar flash crowd events have been reported when a particular web page attains
popularity on being linked from news sites such as Slashdot [6], thereby leading to
the alternate term “slashdot effect” for these events. One of the first known flash
crowd effect, was the now famous Victoria Secret webcast in 1999, during which mil-
lions of users logged into the video stream of a fashion show. Although the arrival
time of the users was known, the magnitude of arrivals wasn’t. Thus, the web site
which wasn’t provisioned adequately to handle the workload, suffered huge delays.

Several approaches have been proposed for improving the client access times dur-
ing such overload conditions at static content web sites. Content Distribution Net-
works such as Akamai [7], Digital Island [8] and Mirror Image [9] deal with the
overload events under the assumption that the network is the bottleneck. Hence,
they are based on the premise that minimizing the network hop-count reduces the
client latencies. The primary objective of CDNs, as well as of mirroring and caching
strategies, is to reduce the network latencies between the clients and the data they
are accessing. This is done in two ways: Firstly, by directing clients to the closest
server [10-15] and secondly, by placing the most popular urls on replicas closer to
hot-spots [16, 17].

In comparison, not much progress has been made on protecting dynamic content
web sites from either going down either under flash crowd arrival of users or due to

the standard time-of-day patterns. One of the most common approaches is caching of

dynamically generated pages so that subsequent requests towards the same page does
not incur computational work at the application and database servers. Caching can
occur at either the client-side with expiration times set using cookies. Alternately,
dynamic pages can be cached at the front-end to the cluster such as the reverse-proxy
and these pages can be expired when the database receives update queries on one of
the fragments embedded in the page [18]. However, caching solutions either result in
stale data being served to the clients or add to the complexity of site development
and management.

Thus, this dissertation introduces a solution for hosting dynamic content web
sites with the intent of protecting them from performance degradation during these
non-attack overload conditions. The sites are hosted on clusters inter-connected with
custom high bandwidth links thereby forming a global grid. Note that most of the
popular Internet sites such as Google, Yahoo, Amazon and Microsoft are hosted on
similar global grids. This dissertation proposes a novel architecture namely, Wide-
Area Redirection Architecture (WARD), for statistically multiplexing the infrastruc-
ture resources effectively during overload events. WARD includes an algorithm based
on evidence from the test bed that server processing time for dynamic content on
moderately- to heavily-loaded servers can exceed network delays by an order of mag-
nitude. Thus, dispatchers at an overloaded cluster redirect requests away to another
cluster where the request can be served quicker. WARD allows for selection of the
best server i.e., one which minimizes the network plus server processing delays in

accessing content.

1.3 Attack Outage Conditions

Distributed Denial of Service (DDoS) attacks pose an ever greater challenge to the

Internet today with increasing sophistication of the attackers. Studies [19] estimate

that DDoS attacks caused billions of dollars in revenue losses in 2003. Primarily,
DDoS attacks are being used as a means to “cyber-extortion” of money from online
merchants. Several such extortion attempts targeting online banks, online gaming
sites and credit card processing firms have been reported in 2004. In one incident,
WorldPay, a credit card processing firm was brought down for months, after their
refusal to pay the “DDos Mafia” for their protection.

DDoS attackers are gaining sophistication in both the amount of resources as
well as the attack methodologies adopted. Recent studies [19][20] estimate existence
of farms of compromised hosts, popularly known as “botnets” as large as 60,000
machines. Most of these machines are those which were previously compromised
by a virus or worm such as CodeRed, Slammer or MS-Blast, and the attacker has
set up a back-door entry into the machines through an Internet Relay Chat (IRC)
channel. Usually with just a few commands through IRC, the attacker can direct
these machines to start sending a flood of requests towards the victim system. A
recent (May 2004) attack targeted towards the content distribution network Akamai,
revealed the influence of attackers and the size of botnet used for launching the
attack. In this instance, Akamai was able to trace-back the ip-address of the machine
controlling the botnet, restoring access to its customer sites after approximately 90
minutes. However, future attacks may utilize a wide-array of morphing techniques,
such as reducing the attack-rate or switching across different sets of botnets, thereby
making attacks more difficult to distinguish. Moreover, SYN flood attacks, by large
the most popular DDoS attack so far, are giving way to sophisticated application-
layer (layer-7) attacks. In an attack code named CyberSlam by the FBI, an online
merchant employed an alleged “DDoS mafia” to launch an HTTP flood towards his
competitors’ web sites by downloading large image files when a regular SYN flood

failed to bring the site down [21].

Most attacks so far have targeted network bandwidth around Internet subsystems
such as routers, Domain Name Servers, or web cluster. However, with increasing com-
putational complexity in Internet applications as well as larger network bandwidths
in the systems hosting these applications, server resources such as CPU or I/O band-
width have been found to become the bottleneck much before the network. Antici-
pating a future shift in the trend of DDoS attacks from network to server resources,
this dissertation explores the vulnerability of Internet applications to sophisticated
layer-7 attacks and develops counter-attack mechanisms.

In studying new classes of attacks, this dissertation considers a well-secured sys-
tem that has defenses against both (1) intrusion attacks, i.e., attacks which exploit
software vulnerabilities such as buffer overflows and (2) protocol attacks, i.e., attacks
that exploit protocol inconsistencies to render servers inaccessible (e.g., hijacking DNS
entries or changing routing). In such a scenario, the only way to launch a successful at-
tack is for attackers to evade detection by being non-intrusive and protocol-compliant,
and yet overwhelm the system resources while posing as legitimate clients of the ap-
plication service. Hence, the only parameters available for the attacker to exploit are
those for the application workload.

Operating under the methodology that for the best defense, one must assume
the worst adversary, this dissertation assumes sophisticated layer-7 attacks which are
protocol-compliant and non-intrusive. Since, the only possible way to overload a
system in a protocol-compliant and non-intrusive manner is to send requests that are
legitimate, these attacks must exploit certain workload parameters. For instance, an
attack session may send requests at rates higher than normal or, an attack session may
send higher proportion than normal of those requests which are resource-intensive.
Thus, as a first step in protecting from these attacks, they are classified into several

types on the basis of the workload parameters exploited.

This dissertation integrates DDoS-resilience into the proposed cluster architec-
ture to protect the hosted site from protocol-compliant non-intrusive layer-7 at-
tacks. DDoS-resilience comes from the following two components: First, a statistical
anomaly detector based on standard as well as certain introduced statistical tech-
niques, detects whether a session is malicious or legitimate and assigns it a suspicion
probability; Second, a DDoS-scheduler uses the continuous measure of suspicion to

schedule sessions into the cluster in accordance with their suspicion.

1.4 Contributions

As its main contribution, this dissertation introduces a cluster architecture for hosting
dynamic content web sites which is both high-performance and DDoS-resilient. The
rest of this section enlists the contributions made through this dissertation in each of

the two components of the cluster architecture: Wide Area Redirection Architecture

and; DDoS Shield.

1.4.1 Wide Area Redirection Architecture

This dissertation introduces WARD (Wide Area Redirection of Dynamic content),
a novel architecture for redirection of dynamic content requests from an overloaded
cluster to a remote replica. The key objective is to minimize end-to-end client delays
by determining at the cluster whether the total networking plus server processing
delay is minimized by servicing the request remotely (via redirection) or locally. In
particular, in this architecture, client requests are first routed to an initial cluster
via any mechanism available today (e.g., from simple DNS round-robin to more so-
phisticated server selection schemes, as described in [14]). Upon arrival at the initial
cluster, a request dispatcher uses a measurement-based delay-minimization algorithm

to determine whether to forward the request to a remote or local server. Thus, unlike

10

previous approaches (see Section 4.5), WARD performs cluster-driven request redi-
rection, integrates networking and server processing delays and thereby minimizes the
total delay, and requires no changes to clients, DNS or web servers.

Next, the dissertation proposes an analytical model to characterize the effects of
wide area request redirection on end-to-end delay. The model consists of a system
of dispatchers, M/G/1 queues that represent servers, and inter-server delays that
capture the cost of redirecting to a remote cluster. With this model, we derive an ex-
pression for the optimal percentage of requests that should be dispatched to a remote
cluster replica under given server and network characteristics. Moreover, we compute
the expected average request response time under this dispatching policy. We then
perform a systematic performance analysis to study the impact of key performance
parameters such as server load, inter-cluster network latency, and measurement errors
that can be expected in realistic systems.

Finally, the dissertation describes a testbed consisting of (1) clients emulating
an e-commerce workload based on TPC-W benchmark [22], (2) wide area network
links emulated via Nistnet {23], (3) a web server tier, (4) a request dispatcher that
performs remote and local redirection via the algorithms as described above, and (5)
a database tier that processes requests. With this testbed, we perform a number of
experiments with example findings as follows. First, we find that that the analytical
model provides a close match with experimental results for server loads up to 70%.
For higher loads, effects unique to the implementation (e.g., frequent database table
conflicts) lead to a deviation of predicted and measured values. Second, in spite of
the differences, both model and implementation results indicate significant gains of
the cluster request redirection technique. For example, for an e-commerce site with
300 concurrent clients, wide area redirection reduces the mean response time by 54%,

from 5 sec to 2.3 sec.

11
1.4.2 DDoS Shield

As its next contribution, this dissertation proposes a framework called DDoS-Shield,
to protect a generic end-system such as web clusters from DDoS attacks. First, it
explores the entire range of workload parameters that an attacker can exploit to
characterize layer-7 resource attacks into three classes: (1) request flooding attacks
that send requests at rates higher than normal; (2) asymmetric attacks that exploit
asymmetry in workload to send heavier requests towards the application; and (3) re-
peated one-shot attacks, a degenerate case of asymmetric attacks in which the attacker
spreads its workload across multiple sessions instead of multiple requests per session
and initiates sessions at rates higher than normal. Thus, an HTTP flood can stress
the network resources by organizing itself as a request flooding attack, if each session
sends requests to download images at very high rates. The HTTP flood can stress
the server resources as an asymmetric attack, if the attack sessions send requests
involving high-computation database queries or, as a repeated one-shot attack, when
each asymmetric attack session sends only one or several heavy requests per session.

As a proof-of-concept evaluation of this framework of attack classification, we eval-
uate server attacks on web applications. These server attacks are based on the obser-
vation that web applications, typically those that involve dynamic content, i.e., un-
cacheable content that is generated dynamically per client request, bottleneck on their
server resources much before the network [24][25]. Furthermore, we show that dy-
namic content presents a substantial heterogeneity in request processing times among
request types which can be exploited to initiate asymmetric attacks. While the above
attack classes are known to exist in the case of HTTP floods, this dissertation is the
first to demonstrate the existence of these attack classes for server resources and to

implement and compare them experimentally.

12

Since the attackers mimic legitimate requests, attack sessions are indistinguish-
able from legitimate sessions via sub-layer-7 techniques. For instance, if the attackers
use valid IP-addresses from botnets, both server and network attacks would pass
undetected by ingress-filtering approaches which check for spoofed source addresses.
Further, server attacks would pass undetected by mechanisms that only detect net-
work anomalies. Thus, as the next contribution, we design a comprehensive suspicion
assignment mechanism to detect layer-7 misbehavior across the parameters of session
arrivals, session request arrivals and session workload profiles. In this regard, our con-
tributions are the following: First, in contrast to traditional anomaly detectors which
output binary decisions while bounding the detection and false-positive probabilities,
we assign a continuous measure of suspicion to a session which is updated after every
request. Correctness of the suspicion assignment mechanism is ensured by showing
both analytically and experimentally that the suspicion values converge to either 0
or 1 as a sufficiently large number of requests per session are observed. Next, for
asymmetric attacks, we introduce a set of soundness principles, that a metric must
obey to assign suspicion values consistently across workload deviations. Finally, we
present an algorithm that combines the suspicion in each of the three parameters to
assign an aggregate suspicion measure to each session.

Next, we design a counter-mechanism namely, DDoS-Shield, that uses the sus-
picion assignment mechanism as an input to a DDoS-resilient scheduler designed to
thwart attack sessions before they overwhelm system resources (see Figure 4.2). The
DDoS-resilient scheduler combines the suspicion assigned to a session and the cur-
rent system workload, to decide when and if a session is allowed to forward requests.
The contributions here are the following: First, we develop scheduling policies, Least
Suspicion First (LSF) and Proportional to Suspicion (PSS) Share, which account for

suspicion in the scheduling decision. As a baseline for comparison, we also implement

13

and study suspicion-agnostic policies such as per-session Round Robin and Shortest
Job First (SJF) and First Come First Serve (FCFS) among all requests. Second, we
demonstrate the importance of limiting the aggregate rate (over all sessions) at which
the scheduler forwards requests to the application system, and we develop an online
algorithm to set this rate.

Finally, we effect the three classes of attacks on an experimental testbed host-
ing an online bookstore implemented using a web server tier, application tier and a
database tier (see Figure 4.1). Legitimate client workload is emulated through an e-
commerce benchmark [22]. Using this testbed a number of experiments are performed
to characterize the potency of the attack classes as well as to evaluate the efficacy of

the counter-mechanism, DDoS-Shield. The summary findings are the following:

e Workload asymmetry attacks are more potent compared to request flooding

attacks, since they stress the servers significantly more in comparison.

e The repeated one-shot variant of asymmetric attacks are the most potent of the
three attack classes due to their ability to get a much larger query flood towards

the backend database tier.

e Experimental evaluation of DDoS-Shield indicates that both scheduling policy
and scheduler service rate are integral to an effective counter-DDoS mecha-
nism. The best performance is obtained under the suspicion-aware schedulers,
LSF and SPP, when the scheduler service rate is appropriately limited to 15

requests/second.

e Experiments indicate that 100 legitimate clients with an average response time
of 0.1 seconds under no attack, are delayed to response times of 3, 10 and 40
seconds under the most potent request flooding, asymmetric and repeated one-

shot attacks respectively. Furthermore, the efficacy of DDoS-Shield is evident

14

in that the performance under each of these attacks is improved to 0.5, 0.8 and

1.5 seconds respectively.

The rest of this disseration is organized as follows: Chapter 2 presents the back-
ground on multi-tier architectures used for web clusters today; Chapter 3 discusses the
Wide Area Redirection Architecture developed to multiplex the resources across the
cluster-grid to limit the performance impact due to non-attack overload conditions;
Chapter 4 discusses DDoS-Shield, the architecture component which protects legit-
imate clients from protocol-compliant, non-intrusive layer-7 DDoS attacks. Finally,

Chapter 5 summarizes the conclusions and discusses future research directions.

15

Chapter 2

Background

Figure 4.1 depicts the four-tier architecture prevalent in today’s IDCs. To illustrate
this architecture, consider the requests of an e-commerce session. First, the access

tier routes requests to the correct server cluster and performs basic firewall functions

/a,ccess edge routers
tier —
routing
authentication, DNS, switches
intrusion detect, VPN)
web cache 1st level firewall
web load balincing\
i itches
tier swil
955
servers

web page storage
L (NAS) 2nd level firewall

(“application

tier __/
=g (-

switches

=1 application

servers
files

(NAS) switches

-

database
tier

database
SQL servers

storage area
network
(SAN)

Figure 2.1 : IDC Four Tier Architecture

such as intrusion detection. Second, upon arriving at the web tier, load balancers
may parse the request’s URL and route it to a web server typically according to a
load-balancing policy (e.g., using round robin or more sophisticated policies as in

reference [26]). If the request is for a static web page, a server in the web tier serves

16

the requested page. If the request is for an e-commerce functionality, it is routed to
the application tier. The application tier orchestrates access to the database tier for
operations such as purchase processing or maintaining the contents of the shopping
cart. The application server also stores the state of the session such as the contents

of the shopping cart.

17

Chapter 3

Wide Area Redirection Architecture

This chapter introduces WARD, (Wide Area Redirection of Dynamic Content, a
framework to efficiently multiplex resources across multiple clusters by utilizing a
novel server selection algorithm. The rest of this chapter is organized as follows.
Section 3.1 describes the system architecture for wide area request redirection. Sec-
tion 3.2, develops a queuing model to study the architecture and Section 3.3 presents
numerical studies of the fraction of requests dispatched remotely and the expected
response times under varying system scenarios. Next, our testbed implementation
and measurements are described in Section 3.4. Finally, Section 4.5 discusses the

related work.

3.1 Redirection Architecture and Algorithm

This section describes the system model for WARD, and presents a measurement-
based redirection algorithm.

3.1.1 System Model

In WARD, services and applications are replicated across all the clusters, connected
using custom high-bandwidth links. Once a client request arrives at the initial

cluster,! A dispatcher as illustrated in Figure 3.1 can potentially redirect the request

1Selection of the initial cluster can be static or dynamic via DNS round robin or via more

sophisticated policies such as [12,27, 28].

18

to a remote cluster according to the algorithm presented below. The objective of the
redirection algorithm is to redirect requests only if the savings in the request’s pro-
cessing time at the remote cluster overwhelm the network latency incurred to traverse
the backbone in both the forward and reverse path. In this way, end-to-end client de-
lays can be reduced while requiring changes only to the dispatcher, and leaving other

elements unchanged. WARD therefore provides a foundation for spatial multiplexing

2]
A

/.4 o
/ o .

/7 Internet

. _,/"
remote IDC

‘ . 1 web tier
k | I
. i ! y .
web tier ' | application tier :
. R ~
R SRS § R AN S
application ! N \'/ i
tier) / "1 database tier ;

ST ' ——
‘ ? { " remote dispatching
Dispatcher

focal dispatching
=T

database tier
! . ———— request
N —» reply

Figure 3.1 : Server Selection using WARD

of cluster resources. Namely, as a particular cluster becomes a hot-spot due to flash
crowds [29,30] or time-of-day effects [31], load can be transparently redirected to
other clusters while ensuring a latency benefit to clients. For example, client access
patterns have been observed to follow time-of-day patterns where server utilization
varies with a diurnal frequency. This effect can be exploited such that no cluster has
to provision for the peak demand. Thus, when the workload to one cluster is peaking,
the workload at an cluster several time zones away will be much lower, enabling a

significant performance improvement by allowing redirection among clusters.

19
3.1.2 Redirection algorithm

The objective of the redirection algorithm is to minimize the total time to service a
request. Namely, if a request arrives at cluster k, then the objective is to dispatch

the request to cluster j satisfying
argmin; (2 Ay; + Tj) (3.1)

where Ay; denotes the network delay between cluster k£ and j and Tj is the request’s
service time at cluster j.

In practice, the actual service time at each remote cluster T; cannot be known
in advance. Yet, it can be estimated from the average load at cluster j as well as
the request type. Thus, a measurement-based algorithm is employed in which the
average T; is estimated from p;, the mean load at cluster j, as well as the request
type. In WARD, this is achieved by measuring a mean delay vs. load profile for
each request type. clusters then periodically exchange load information to refine
their estimates of each others’ processing delays. In contrast, Ay; remains relatively
static among clusters due to their high-speed interconnection links. Thus, on request
arrival, the dispatcher uses the measured load at cluster j on the delay vs. load profile
corresponding to this request’s type to estimate the total service time on cluster j.

Next, let’s consider a second policy which does not make a decision on a per
request basis but rather computes a fraction of requests to be remotely dispatched.
In particular, we show in the next section, that under certain simplifications there is an
optimal ratio of requests that should be remotely dispatched in order to minimize the
delay of all requests. Once this ratio is known, the dispatcher can simply remotely
redirect a request with the computed probability. These two redirection policies
are referred to as per-request redirection (or, equivalently per-query redirection) and

probabilistic redirection.

20

IDC1 M/G/1 1
- ‘ o]
. dispatcher ¢, i i
requests- . : M—Q_'»
PN . / ‘ "
* % :
. ; OLnl .
. ; R I e—
AN NG
dispatcher O A N
IDCn ‘ M/G/1

Figure 3.2 : cluster system model.

3.2 Performance Model

This section develops a performance model for wide area redirection. The method-
ology adopted is the following. First, for a given workload, mean and variance of
service time, and network latency, an expression is derived for the delay-minimizing
fraction of requests that a dispatcher should redirect to remote clusters. Next, the
average total response time including service- and waiting-times and end-to-end net-
work latency is computed. Finally, a systematic performance analysis is performed
to estimate the optimal dispatching ratios o* and to predict the expected average re-
quest response time under varying parameters, such as the server load, the end-to-end
network latency and the average request service time.

Figure 3.2 illustrates the system model for WARD. We model request arrivals
at cluster ¢ as a Poisson process with rate A\; and consider a single bottleneck tier
modeled by a general service time distribution having mean 7; and variance o?.

We consider a redirection algorithm in which a request is redirected from cluster
J to cluster ¢ with probability aj;, i.e., we consider probabilistic redirection. Denote
E[T;] as the expected total delay for servicing a request at cluster ¢, and denote Ay
as the one-way end-to-end network latency for a request sent from cluster j to cluster

1.

21

For the general case of a system of n cluster replicas, denote A = {oq1,..., %5, -+, @nn}
as a matrix of request dispatching fractions, E[T] = {Ty,..., T} as the vector of all
total delays at a cluster bottleneck tier and D = {2A41,..., A + Ay, ..., 2404}
as a matrix of round-trip times from cluster ¢ to cluster j and back. Furthermore,
denote L = {)A1,..., A\n} as a vector of request arrival rates at the cluster dispatch-
ers, X = {X1,...,Xn} as the average service time, C = {cy,...,cn} as the vector of

squared coefficient of variation for the service times, with ¢; = o2 /%7,

Lemma 1 The mean service time for the redirection policy using a dispatching frac-
tion A is given by:

. e, A LXa+cy)
ET|=A X+ 20— (A LX) +A-D (3.2)

Proof: The total service time is composed of 3 durations: (i) the network latency
of transferring the request to and from the remote cluster (ii) the queuing time at the
cluster and (iil) the service time at the cluster.

For symmetry reasons, in the following equations, we attribute the “costs” to the
receiving cluster ¢. First, we assume that the network latency between the dispatcher
and a local cluster A;; = 0 and hence, network latency is incurred only by requests

dispatched to a remote cluster:
Ozji(Aji + AIJ) (33)

Second, consider the mean waiting time for a request in a cluster queue before being

serviced. In general, the waiting time for for an M/G/1 queue is:

pZ(1+ c?)

21— p) (3.4)

with p = A\Z.

22

For any cluster ¢, the arrival rate A is the sum of the requests that are dispatched
from all clusters j to cluster 7, i.e., \; = Zj ajAj. With this A, Equation (3.4) can

be rewritten for a single cluster ¢ as:

(2 0T (L + ¢f)

- 3.5
2(1 = (22 0A)Ts) (3:5)
Finally, the service time for a request at cluster 7 is given by
Ctjifi (36)
The addition of these 3 terms for a set of clusters yields Equation (3.2). |

From Equation (3.2), we can compute the optimal dispatching ratios that minimize
the service times over all requests. In particular, let A = {a},,...,0%,} denote the

matrix of optimal request dispatching ratios.

Proposition 1 The optimal dispatching ratios A* are given by:

8, - (A-LX(1+C? B
8_&(A.X+ 20— (A LX) +A-D)=0 (3.7)

with E[T] defined in Equation (3.2).

To solve Equation (3.7) for all aj;, we use the following constraints to reduce
the number of unknowns. First, we clearly have that Zj aj, = 1. Second, A; >
Aj = aj; = 01le, when considering 2 clusters with different A, under steady-state
conditions, no requests will be dispatched from the cluster with a smaller arrival rate
to the cluster with a higher arrival rate.

The optimal dispatching ratios A* can be used to predict the average request

service time for a system of cluster replicas.

23

Proposition 2 The ezpected request service time under optimal dispatching ratios is

given by:
v (ATDX+Cy L,
ET]=A"-X+ - TX +A*-D (3.8)

Proof: Equation (3.8) follows from Lemma 1 and by using the optimal dispatch-

ing ratios from Equation (3.7).]

3.3 Numerical results

This section first shows that wide area redirection is effective in reducing the total

access delay. Next, the key performance factors that affect the total delay are studied.
The grid is assumed to consist of 2 clusters with each replica having the same

average request service time Z. Furthermore, we assume a symmetric network with

wide area latency between the two clusters: A = A1y = Ay, Finally, we set Ay = 0,

which satisfies A1 > Ay = ag; = 0, and denote X := A; and o* := aj, for simplicity.
The dispatching ratio is computed based on Equation (3.2):

aAT?(1 + ¢?)

Blh) =oZ+ 525

(3.9)

(1 —a)AZ2(1 +c?)
2(1 = (1 —a)Az)

Equations (3.9) and (3.10) are solved according to Proposition 1 to obtain the

E[T) = (1-a)T + 12(1—a)A (3.10)

optimal dispatching ratio o*. Henceforth, we refer to the term 1 — a* as the remote
redirection ratio, i.e. the fraction of requests dispatched remotely. Then, according

to Proposition 2, the expected total delay of the cluster system is given by:

a*AZ2(1 + c?)
2(1 - a*AT)

(1—a*)AZ%(1 +)
2(1 — (1 — a*)AT)

ET" =a"'T + +(1-a")z

(3.11)

+2(1—-a"A

24

04 T T T
[[+] o =} ol ¢

T WARD (p=U0.5]
0.35- © No Redirection (p=0.5)
~x~ WARD {p=0.75)

% No Redirection (p=0.75}
0.3r ~3~ WARD (p=0.9)
© No Redirection (p=09)

Total delay [sec]

0.05
Q

50 100 150 260 250
End-to—end latency A [msec]

Figure 3.3 : Comparison of the total cluster delay with and without wide area redi-
rection

If not otherwise stated, the following default values are used: T = 42.9 msec,
o = 40.1 msec, where these values were obtained from the testbed and A = 36 msec,
which corresponds to a speed-of-light latency for two clusters separated by 6 time-
zones at 45° latitude. ? we will use p = AT to denote the total load on all clusters. For
clusters without redirection, p corresponds to the server load on the bottleneck tier,
whereas WARD can split this load among the local and remote clusters. To obtain a

given value of p, the arrival rate A will be scaled, with T remaining fixed.

3.3.1 The case for wide area redirection

First, we provide evidence that wide area redirection is able to decrease the user-
perceived total delay. We calculate the total delay of WARD using Equations (3.7)

and (3.8) and compare it to the total delay of a cluster without redirection. Figure 3.3

2Given the circumference of earth at 45° latitude as 28335 km and the speed-of-light through
optical-fiber as 205 km/sec, the one-way latency across 1 time-zone can be calculated as: 28335/(205x

24) ~ 6 msec.

25

Remote redirection ratio (1—o)

0 & & &

0 5 200 250

Q 100 150
End~to—end latency A [msec]

Figure 3.4 : Remote redirection ratio 1 — « for different end-to-end latencies A and
server loads p.

shows the total delay as a function of the end-to-end latency and different system loads
p.

For a load p = 0.5, improvements are achieved only when the end-to-end latency
A < 25 msec. For A > 25 msec, the redirection cost exceeds the processing time so
that all requests are serviced locally. However, a significant improvement is achievable
for higher loads. For a moderate load of p = 0.75 and A < 50 msec, the total delay
is reduced from 0.16 sec to <0.13 sec using WARD, an improvement of > 18%. For a
heavily loaded system with p = 0.9 and when A < 50 msec, the total delay is reduced
from 0.38 sec without redirection to <0.15 sec using WARD, an improvement of >
60%. Moreover, for loads p > 0.9, still higher improvements are predicted by the

model.

3.3.2 Server load versus network latency

Next, we study the influence of server load and the network latency on the redirection

decision. An increased network latency implies a higher overhead to send a request

26

to a remote cluster and here we quantify the network latencies for a given server load,
until which gains can be expected out of redirection. The influence of the latency A
for different server loads p on the optimal redirection ratio (Equation (3.7)) is shown
in Figure 3.4. Each curve depicts a value of server load p and the x-axis denotes the
network latency A between two clusters.

Results with a latency A = 0 therefore correspond to a cluster with 2 local servers.
Observe that in this case, the remote redirection ratio 1 — «, is 0.5 independent of
the server load. Since no latency costs are incurred, the optimal strategy is to equally
balance the load on the two local servers. We make two further observations: Firstly,
for a given network latency, the model redirects a greater number of requests as the
server load increases. Secondly, for a given server load, the redirection ratio decreases
as the network latency is increased and goes to zero, when the cost of network latency
exceeds the gain in server processing time due to redirection. For a non-heavily loaded
system (p = 0.5), it is of advantage to redirect only when the network latency A < 25
msec, while for a moderate load of p = 0.75, redirection is of an advantage for latency
as high as 150 msec. For p > 0.9, the model predicts redirection ratios of 0.2 for

latency as high as 250 msec.

3.3.3 Service time

Figure 3.5 illustrates the effect of the request service time mean T on the remote
redirection ratio. The x-axis denotes the server load p and each curve denotes a
different mean service time. For a small service time T = 10 msec, the remote
redirection ratio 1 — « is 0 for server loads up to p = 0.7. Only above this high load
does the dispatcher send requests to a remote cluster because the redirection costs

exceed the service time on the local cluster.

27

—=— x=10 msec

=~ x=50 msec

—6— x=100 msec

—— x=500 msec
-9~ x=1sec

Remote redirection ratio (1-o)

0.05-

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Server load (p)

Figure 3.5 : Remote redirection ratio 1 — « for different service times T and server
loads p.

Remote redirection ratio (1-o.)

3 4 5 8 7
Coefficient of variation ¢

Figure 3.6 : Remote redirection ratio 1 — « for different coefficient of variations ¢ and
server loads p.

When the request service time T increases, the remote redirection ratio increases
for a given server load p. For service times of 50 msec, which is close to the testbed
value, an increase in the redirection ratio starts at p = 0.5. Finally, for T = 1 sec, the

ratio stays above 42%.

28

Figure 3.6 shows the effect of the coeflicient of variation ¢ on the remote redirection
ratio. It can be expected that an increase in variance leads to an increase in the
redirection ratio. Figure 3.6 shows the greatest influence of the variance when ¢
increases from < 1 to 1 for p > 0.75.

Hence, the model predicts an increase in remote redirection ratios when either the
service time or the coefficient of variation increases. This allows us to predict that
future e-commerce sites designed with greater complexity in their dynamic content

would achieve still higher performance gains on using wide area redirection.

3.3.4 Measurement errors

The dispatcher bases its redirection decision on 2 measured values: the network
latency A and the server load p. So far, we have assumed that perfect information
is available for this decision. In this section, we study the impact of measurement
errors on the effectiveness of the algorithm and quantify it in terms of error tolerance
defined as the percentage error ¢ that increases the total delay by at most 2%.
First, we study the impact of network latency errors as follows. Let A denote
the true inter-cluster network latency and A = A + § the measured value, and D
the corresponding round-trip time matrix. The dispatcher calculates the dispatching

ratios using D (Equation (3.2))

. e, A DXa+cy -
ET=A X+ - (A DX +A-D (3.12)

For the calculation of average total delay, Equation (3.8) is used with the true
latency values D. The effects of measurement error in network latency on the remote
redirection ratio (1 —) and the resulting average request response time are shown in
Figures 3.7 and 3.8 respectively. Each curve denotes a different (true) latency A, and

the x-axis denotes the error §, in percent of A. A value of 0 on the x-axis corresponds

29

=50 msec
—— A=100 msec
045 —5— A=250 msec

—— A=

Remote redirection ratio (1-a)

s

0.05 L : L
-80 -60 -40 -20

0 20 40 80 80
Measurement error § [%]

Figure 3.7 : Remote redirection ratio 1 — a for different network measurement errors

d.

0.65 y
=50 msec
—* A=100 msec
06 -6~ A=250 msec
—— A=
0.55- 4
o 05F 4
Q
2,
>045-
8
5]
D o4r
]
°
=035+
03r W]
025+ B
e — 8
0.2 L I i 5 n n
-80 ~-60 =40 -20 0 20 40 60 80

Measurement error 8 [%]

Figure 3.8 : Total delay for different network measurement errors d.

30

o
1%
&

=& p=05
—— p=0.75
- =09
—— p=005

o
w

0.25F

Remote redirection ratio (1-c)

o
o
[

" " &
-20 -15 -10 -5 10 15 20

0 5
Measurement error ¢ [%)

Figure 3.9 : Remote redirection ratio 1 — « for different server load measurement
eITOrS €.

to perfect end-to-end latency information. The server load is set to p = 0.95.

Figure 3.7 shows that the redirection ratio changes more for negative ¢ than for
the corresponding positive . The reason is that the redirection ratio does not grow
linearly with the end-to-end latency, as shown in Figure 3.4. As a consequence of the
asymmetry, the total delay increases more for negative §, as shown in Figure 3.8. Note,
however, that the response times are not highly sensitive to latency measurement
errors and the the error tolerance is quite high at £20%.

Likewise, we consider a scenario when the dispatcher has inaccurate server load
measurements, e.g., due to delays in receiving the measurements. In this scenario,
the measured load at the dispatcher is given by p = 2T, with A= A +¢ (where € is
in percent of the correct load p) and the corresponding measured arrival rate by L.
The network latency is set to A = 500 msec.

First, consider the case of measurement error ¢ > 0, when the dispatcher assumes
the server load to be higher than what it is and hence it redirects more requests

than the optimal. Figure 3.9 shows that the remote redirection ratio increases almost

31

=T
== =05

o
»

o
o
T

o
n
T

Total delay [sec]

o
w
T

o2 o, . e

i ; L
-20 -15 -10 15 20

-5 0 5 10
Measurement error ¢ [%]

Figure 3.10 : Total delay for different server load measurement errors e.

linearly for p > 0.9, while for p = 0.75 the ratio doesn’t start increasing until € > 5%.
The extra redirections incur additional network latencies and hence the total delay
also increases linearly in Figure 3.10. In particular, for p > 0.9, the error tolerance
is +1.5%. Next, consider negative ¢, when the dispatcher assumes the local server
load to be less than the actual value and hence redirects pessimistically. As a result,
the load on the local server incurs greater processing times at the local cluster. As
expected, Figure 3.10 shows that at high server loads p > 0.9, the total delay is more
sensitive for negative ¢ with an error tolerance of ~ —0.5%.

Thus, comparing the impact of latency and server measurement errors, the error
tolerance for latency is high at =20% while that for server load is an order of magni-
tude lower at +1.5, —0.5%. Moreover, for network latency A < 500 msec, we measure
higher tolerance to errors in server load measurements. Thus, our conclusions are that
(1) greater accuracy is needed in server load measurements than network latency and
(2) cluster-driven redirection can have greater robustness than existing client-driven

schemes as clusters can obtain accurate server load information when compared to

32

clients, client-side proxies, or DNS servers.

3.4 Testbed implementation and experiments

This section describes the prototype implementation and testbed experiments of the
WARD architecture. The results provide a proof-of-concept demonstration of wide
area cluster-driven redirection, experiments into the testbed’s key performance fac-

tors, and validate the performance model.

3.4.1 WARD Testbed

Web/Application Database Database
Servers Dispatcher Servers

IDC ,
e

N ",1\ g \

\ //

Clients W[l Router
e . i / \ -
i ;‘ = == =
» | = =
/ -—— LVA
IDC ,

Figure 3.11 : Testbed

The testbed, depicted in Figure 3.11, consists of a cluster of Intel Pentium IV 2.0
GHz processor machines running Linux 2.4.18-14, with 512 MB SDRAM, and a 30
GB ATA-66 disk drive. One machine is configured as a router and runs Nistnet [23],
an IP-layer network emulation package. Figure 3.12 shows how the router separates
the machines into three domains, one for the client and two for the clusters. This
setup allows variation of the network conditions (delay and bandwidth) between the

client and the clusters as well as between clusters.

33

Q&J Servers

: i) Nisthet i i | i
10/400 Mbps siw 1 10/100 Mhps siw
: Liatenc \I
1 4
| PR L Router fri= = = = = I

A
--I-'"-"'\
7 Internet 4
.4}-'1

Figure 3.12 : Network Subnets with WAN delays emulated by NISTNET

Each cluster hosts a multi-tiered implementation of an e-commerce application
(online-bookstore). The web tier consists of Apache web servers [32] and dynamic
content is coded using PHP scripts [33] at the application tier. Access to a 4 GB

database of customers and books is provided by a MySQL server [34].

Database dispatcher

A key aspect of the WARD architecture is the dispatcher which makes the decision
whether to service a request at the local or a remote cluster. On this testbed, the
database tier becomes the bottleneck first, due to the substantial processing demands
of complex database queries [35]. We therefore implemented the dispatcher with
remote redirection capabilities in front of the database.®

While the objective of the database dispatcher is to minimize the response time of
the queries, its dispatching capabilities are restricted by consistency constraints. The

dispatcher addresses the consistency issues by two means: maintaining an identical

31In the implementation, we provide the web and application tiers with sufficient resources such

that the database tier is indeed the bottleneck.

34

total ordering of writes at all database servers, and a read-one write-all dispatching
strategy. To maintain an identical total ordering of writes at all database servers,
each write query is assigned a unique sequence number, and the database servers
process the writes in the order of the sequence numbers. In the read-one write-all
dispatching strategy, write queries are sent to all database servers, and the response
is returned as soon as one of the database servers has processed the write. Hence,
database consistency is maintained asynchronously. A read query is sent to one of
the database servers where the corresponding conflicting writes have been processed
using a scheduling strategy described as conflict-aware [35]. This asynchronously-
maintained consistency along with conflict-aware scheduling has been shown to scale
to higher throughputs compared to the synchronous consistency algorithms.

However, though conflict-aware scheduling limits the server set available for wide
area dispatching for read queries, two factors outweigh this limitation. Firstly, read
queries have a larger service time than write queries and secondly, e-commerce work-
loads have a significantly higher percentage of read queries [36].

WARD allows a general framework to implement remote redirection at any tier.
Though we implemented it in front of the database tier, it could equivalently be
done in front of the web/application tier, in which case an entire request would be
redirected instead of database queries. Request redirection would incur less of network
overhead, but it would constrain the queries to the local database servers, whereby
the advantages due to remote redirection of queries would not be realized. We do not
explore request redirection versus query redirection in this dissertation, and instead

focus on the performance gains of remote redirection in general.

35
Redirection Algorithms

Under the consistency constraints, the database dispatcher directs read queries to
the database server with the least expected response time as follows. First, from
the list of clusters, all those which have unprocessed conflicting writes are excluded
using conflict-aware scheduling. From the remaining clusters, the dispatcher selects
an cluster by using either the per-query or, the probabilistic redirection policy. In the
per-query redirection policy, the dispatcher calculates the expected response time by
using measured loads of database tiers to determine if the latency overhead incurred
by remote dispatching is outweighed by the savings in server processing time. In the
probabilistic policy, the dispatcher uses the optimal redirection ratio computed by the
model and dispatches queries with that probability. We implement the probabilistic
policy such that given a number of clients, it is configured for the redirection ratio

predicted by the model and hence it doesn’t use the online server load measurements.

TPC-W workload

For the experimental workload, we utilize the TPC-W benchmark [22] to represent
an e-commerce workload characterizing an online bookstore site. We use the imple-
mentation developed for reference [37].

The workload for TPC-W is generated by a client emulator which generates the
requests specified in the browsing mix of TPC-W.* The client emulator opens a set
of n user sessions which last 15 minutes. Each session opens a persistent HTTP
connection to the web server and sends a sequence of requests to the cluster. Between
two requests, the user waits for a configurable parameter termed think time before the

next request is generated. The mean think time, which was set to 7 sec, together with

4Browsing mix consists of 95% read queries and 5% writes.

36

the number of users, defines the request arrival rate at the cluster. Note here that a
PHP script can contain multiple database queries. The extraction and serialization of
the queries is done by the application tier. Due to the fact that each request consists
of several embedded queries, their arrival distribution and rate at the database are

different from those generated by the client emulator.

3.4.2 Experimental Setup

The input parameters in the experimental study are the inter-cluster link latency
which are varied through the Nistnet module and the number of clients which arrive
at each cluster. The parameters measured are request response time as perceived by
the clients, query response time as perceived by the database dispatcher and remote
redirection ratio as achieved by the database dispatcher. Request response time is
defined as the time elapsed between the generation of a request and the return of
the last byte of the response to the client. Query response time is defined as the
time period between the sending of a query by the dispatcher to the database and
the reception of the response by the dispatcher. We measure the mean- and 90-%ile
request (query) response time for all requests (queries) generated during the entire
duration of an experiment. Remote redirection ratio is defined as the fraction of the

number of queries sent by the dispatcher to a remote database server.

3.4.3 Experiments

Here, we first present the offline technique to configure the per-query redirection policy
with the query response time characteristics. Second, we quantify the performance
benefits of the WARD architecture by exploring the trade-off between the load on
the local database server and wide area link latency. Third, we compare performance

gains predicted by the analytical model of section 3.2 with those obtained via testbed

37

e
o
al

o
T

I

Mean query response time (sec)
(o]

n
T

. . M
o i M : . p i PSS)
1 20 30 40 50 60 70 80 90 100
Mean CPU load on database server (%—age)

Figure 3.13 : Mean database query response times vs mean database CPU load for
the 30 read-only MySQL queries in the browsing mix of the TPC-W benchmark.

measurements.

Offline measurement of query response time characteristics

In these experiments, we measure the response time as a function of CPU load, a
key input to the per-query redirection policy. We use one cluster with access to one
local database server. The execution time for a query depends on the number and
type of other queries executing at the same time on the database server, which can
be abstracted as the workload entering the system. Hence, we vary the CPU load on
the database server by increasing the number of clients. In each case, we measure
the mean execution time for each of the 30 read-only MySQL queries. The resulting
delay-load curve as illustrated in Figure 3.13 is then used in the per-query redirection

policy.

38

o
}=1

.
s

801 /
70F / R
X -t
50~ / e
/ .

40r * =
30+ o
L
201 :
["—— No-Redirection
10F —~5— WARD (A = 50 msec)

0 50 100 150 200 250 300 350
Number of concurrent clients (n)

Mean CPU load on local database server (%—age)

Figure 3.14 : Mean database CPU load as a function of the number of concurrent
clients (n).

WARD Performance Gains

In this experiment we quantify the performance gains achieved by the per-query redi-
rection policy by considering the trade-off between the two parameters of wide area
link latency and CPU load on the local database server.

We compare the following two architectures: (1) No-Redirection architecture with
two clusters, each of which has access to one local database server and doesn’t employ
wide area redirection and (2) WARD architecture with two clusters, each of which
has access to one local and one remote database server and the latency between
the two clusters is A varied as 0, 25, 50 and 100 msec. In both architectures, the
workload arrives at only one cluster, termed “local,” whereas the workload of the
remote cluster is solely created by dispatched requests. We expect such zero-load
conditions on remote clusters several time-zones away due to the time-of-day effects.

Figure 3.14 compares the local server CPU of a cluster without redirection to
WARD with an inter-cluster latency of 50 msec. In the No-Redirection architecture,

the CPU load on the database tier reaches 90% for 200 concurrent users. In contrast,

39

o
T
1
'
1
)
|
1

-
'
1
'
|
'
|
]

'y
1
|
1
'
1
1
|

L3
1
1
'
1
|
1
]

.

WARD (n=150) l
~=— WARD (n=200) J
—— WARD (n=300) i

- No-Redirection (n=150)
-0~ No-Redirection (n=200) .
- - No-Redirection (n=300) |

EN
T

w
T

N
K
L L

Mean request response time (sec)

|

0 20 80 100

40 60
End-to-end latency A (msec)

Figure 3.15 : Mean request response time as a function of A and the number of
concurrent clients (n)

07 [
—-&~ n=100
08 o n=200 |- A
—x— n=300
) - n=400
= 0.
o
c
<]
B 04
£
o
203t i
i) y
g ,
502k
o
01 l
0 I . | ;

20 40 80 80 100
End-to-end latency [A] (msec)

Figure 3.16 : Remote redirection ratio as a function of A and the number of concurrent
clients (n).

WARD keeps the local database server load below 60% even for 350 concurrent users.

The high CPU load on the database server in the No-Redirection architecture in-
creases the mean request response time, as shown in Figure 3.15. For 300 concurrent
users, the mean request response time reaches 5 sec. In contrast, the mean request

service time of WARD is 2.3 sec for an inter-cluster latency of 50 msec, a 54% re-

40

X
Ll
t
+
—u

- WARD (n=150)

—a— WARD (n=200)

! | —e— WARD (n=300)
No-Redirection (n=150)

-1- No-Redirection (n=200)

-+ - No-Redirection (n=300)

o
-1

(o]
T

'
T

\

90—%ile request response time (sec)
\ f=]

0 20 40 80 80 100
End-to—end latency A (msec)

Figure 3.17 : 90 %-iles of response time as a function of A and the number of
concurrent clients (n)

\
7]

w
<

N
o
=1

n
=]
T

= No-Redirecfion
—o—- WARD (A=0)
—— WARD (A=50 msec)
8- WARD (A=100 msec)

o
T

5]
T

(=

100 200 300 400 500 600
Number of concurrent clients (n)

Throughput (number of requests serviced per second
P o

Figure 3.18 : Throughput obtained for various system configurations

duction. Figure 3.16 shows that WARD’s redirection policy dispatches 24% of the
database queries to the remote cluster in this case.

The performance gains of using wide area redirection increases with increasing
CPU load on the local database server. For 150, 200 and 300 concurrent users, the

gain achieved is 17, 40 and 54%. In this case, 150 users corresponds to a moderate

41

load (80%) while 300 users corresponds to a heavily loaded local server (92%) with
reference to the figure 3.14. Hence, to conclude, wide area redirection is of advantage
for both long-term provisioning of resources when a web site wants to maintain a
moderate load and for short-term bottlenecks due to flash-crowds. Similarly, the re-
mote redirection ratio (Figure 3.16) as well as the 90-%ile response times (Figure 3.17)
increase with the number of concurrent users. Therefore, WARD achieves a higher
throughput than a system without redirection, as shown in Figure 3.18.

Thus, this experiment quantifies the performance gains of wide area redirection of
dynamic content. Once a local server is overloaded, remote dispatching can be highly

effective for network delays as high as 100 msec.

Model validation and redirection policies

Next, we validate the analytical model of Section 3.2 with testbed results for both
redirection policies. In particular, we compare the redirection ratios and total re-
sponse times of a system with two cluster replicas. For the model, we use Equa-
tions (3.9), (3.10) as well as Equation (3.11) from Section 3.3 with T = 42.9 msec and
o = 40.1 msec, as measured on an unloaded database server in our testbed.

Figure 3.19 compares the mean query response time of the model and the imple-
mentation on a single cluster, as a function of the server load p. The figure indicates
that the model matches the measured query response time for p < 0.7 within £10%.
Beyond this load, the model deviates from the implementation because: (1) our
M/G/1 model doesn’t take read-write conflicts into account due to which queries
may take longer to process that what the model predicts and (2) at high loads there
are more queries and thereby greater number of conflicts.

Next, we compare the model with the two implemented redirection policies: (1) prob-

abilistic, and (2) per-query. The per-query policy receives the CPU load measurements

42

045¢ o MIGH
4= per—-query and probabilistic policy

Mean query response time (sec)
o
N
(4]

I B—

0 0.2 0.4 0.6 0.8
Total (local+remote) database server load p

Figure 3.19 : Model verification: 1 cluster system

o
o

~&— model
—+— probabilistic policy
- per-query policy

o

S

o
T

Remote redirection ratio (1-o)
(=] o (=}
o L o pv o » ©
- (] N wn (53 (3 B
s e

o

=3

[
T

0z . 0.8 1
Total (local+remote) database server load (p)

=}
D

Figure 3.20 : Model verification: remote redirection ratio

every 5 sec and we set the inter-cluster latency to be 25 msec in all the experiments.

Figures 3.20 and 3.21 compare the remote redirection ratio and query response
time as a function of the system load. The redirection ratios of the model and the
probabilistic policy are close because this policy bases itself upon the optimal values
predicted by the model. On the other hand, the per-query policy begins redirecting

earlier and redirects more queries until p < 0.5 compared to both the model and

43

0.5 ¥
0.45- « - probabilistic policy (No Redirection)
’G —»— probabilistic policy (WARD)
Q 04r o per—-query policy (WARD)
2oast
- +
® 03r
c
g 1
m025
e
2 0 .
5]
30.15
c
3 o1 .
= -
e e
0.05 .. R —
0
0 0.2 04 0.6 08 1

Total (I‘ocal+remot'e) database server load p

Figure 3.21 : Model verification: mean response time

probabilistic policy. The reason for this behavior is that heavy queries are more
sensitive to load as shown in Figure 3.13, and hence it is of increasing value to
redirect them at comparatively lower system loads. Hence a lower mean response
time for the per-query policy is observed for p < 0.5 in Figure 3.21. When p > 0.5,
the probabilistic policy redirects more queries than the per-query policy and hence
yields lower response times. This difference can be attributed to the fact that the the
measurement interval of 5 sec is too coarse grained to capture the small oscillations
in CPU load. A better response time can be expected for smaller measurement
intervals, but an optimal tradeoff has yet to be found between measurement accuracy
and measurement overhead.

Three conclusions can be drwan from the validation of our performance model.
First, the model and implementation match well for loads p < 0.7. Second, the
model characterizes the basic behavior of the WARD system with a closer match
for the probabilistic policy than the per-query policy largely because the model and
probabilistic policy do not distinguish among queries. Third, measurement-based

redirection policies open new optimization questions that require future work.

44

3.5 Related Work

Approaches to minimize web access times can be separated into different groups:
resource vs. request management and, for the latter, client-side vs server-side redi-
rection.

One approach to minimizing web access times is to ensure that enough resources
are available at clusters. Server migration assigns servers that are unused or lightly
loaded within a cluster to hosted applications that are suffering from high usage [31].
Server migration involves transfer of the application state from an existing server to
a new server and hence migration times are on the order of 10 minutes. Therefore,
server migration is a means to avoid bottlenecks over a long period of time (minutes
or hours), e.g., following time-of-day patterns. In contrast, WARD is not only able to
address long-term bottlenecks (at the additional redirection costs), but it is able to
address short-term bottlenecks, e.g., due to flash-crowds, as well. Server sharing, as
applied to content distribution by e.g. Villela et al. [38], is similar to server migration,
except that a fraction of the resources are assigned. This option is not applicable to
the architecture here because we assume that only entire servers, but not fractions of
them, are assigned to individual sites. However, both server migration and sharing
are orthogonal approaches to request redirection, and this dissertation advocates a
combination of the mechanisms.

A significant body of research has focused on client-side mechanisms such as re-
quest redirection in CDNs [14, 39], server selection techniques [12,27], caching [40],
mirroring, and mirror placement [16,41]. Such techniques are based on the premise
that the network is the primary bottleneck. However, this dissertation has shown
that serving dynamic content shifts the bottleneck onto the cluster. Thus, while such

schemes can be applied to finding the best initial cluster, WARD’s cluster-driven

45

redirection is essential to jointly incorporate server and network latencies.

One of the most popular CDNs, Akamai [7] employs a client-side redirection pol-
icy, which integrates server-load into the server selection algorithm, using a parallel
download approach. Akamai’s solution for handling static content can be described
as follows: First, a client is redirected to a server by a client-proxy, also known as an
Akamai Data Center (DC) [42]. The Akamai DCs’ form an overlay network and use
ping to estimate link latencies among themselves as well as the Content Provider (CP)
sites. When a client requests a name-server mapping for a particular CP site, then
it is returned three routes: direct, best two-hop and second best two-hop to servers
hosting the content. Then, the client then starts download on all three routes simul-
taneously and continues the download on the fastest one among them. In summary,
Akamai first selects three servers on the basis of network-proximity and then accounts
for the server-load as well by racing all the three routes. In contrast, in WARD, a
client opens a single connection with a local cluster (with potential redirection to a
remote cluster), thereby avoiding the overhead inherent in multiple connections.

Most of the current day CDN algorithms target the problem of server selection
for static content, while for dynamic content they assume that most of it is cacheable
and hence the algorithm for server selection for dynamic content is a direct extension
of that for static. In particular, Akamai uses EdgeSuite [?] mechanism for serving
dynamic content, by interpreting each webpage to be composed of various fragments,
which could be of either static, cacheable dynamic or uncacheable dynamic types.
Thus, a redirector with FdgeSuite enabled could select the closest server for serving
the static and cacheable dynamic fragments while sending the uncacheable dynamic
fragments to the origin server. The redirector then assembles the responses for all the
fragments and returns it to the user. The redirectors in EdgeSuite are thus equivalent

to the dispatchers in WARD, with the distinction that there is one redirector per

46

network subnet in EdgeSuite while there is one dispatcher per origin-site cluster in
WARD. Moreover, EdgeSuite assumes only one location for the origin cluster (or,
server) and hence WARD can be considered as a mechanism which extends and
complements EdgeSuite in selection of the best origin cluster for the uncacheable
dynamic fragments.

A combination of client-side and server-side redirection is also possible and bene-
ficial if the bottleneck is not clearly identified or varying over time. Such a combined
architecture is presented by Cardellini et al. [43]. Their server-side redirection mecha-
nism may redirect entire web requests using HT'TP-redirection if the CPU utilization
exceeds a certain threshold. They conclude that server-side redirection should be used
selectively. In contrast, this dissertation introduces server-side redirection as a funda-
mental mechanism for current and future clusters. The redirection mechanism is not
threshold-based, but is able to optimize cluster response times for all CPU utilization
values. Moreover, Cardellini et al., design policies which consider network proximity
and server load in isolation while the redirection policy proposed here integrates the
two. Finally, rather than equating redirection to HT'TP-redirect, WARD considers
the dispatcher as a basic building block within the cluster architecture, which can

redirect requests at any tier.

47

Chapter 4

DDoS-Shield

This chapter presents DDoS-Shield, the framework to protect a generic end-system
from resource attacks. The rest of this chapter is organized as follows. Section 4.1
describes the victim, attacker, and defense models used to study layer-7 attacks. Sec-
tion 4.2 describes the experimental testbed and characterize the performance impact
on legitimate client sessions due to the three attack classes. Section 4.3 and Sec-
tion 4.4 detail the design of the suspicion assignment mechanism and DDoS-resilient
scheduler respectively as well as present their experimental evaluation. Finally, we

discuss related work in Section 4.5.

4.1 Attacker, Victim and Defense System Models

This section first describes the attacker model for effecting the protocol-compliant,
non-intrusive layer-7 attacks. Next, it presents the victim system over which the
performance impact of these attacks is quantified. Finally, it outlines a defense model

for detecting and circumventing these new attack classes.

4,1.1 Attacker Model

The goal of the attacker is to overwhelm one or more server resources so that the
legitimate clients experience high delays or lower throughputs; effectively reducing
or eliminating the capacity of the servers to its intended clients. The attacker uses

the application interface to issue requests that mimic legitimate client requests, but

48

whose only goal is to consume server resources. We assume that the application
interface presented by the servers is known (e.g., HTTP, XML, SOAP) or can be
readily discovered (e.g., UDDI or WSDL).

We consider session-oriented connections to the server e.g., HI'TP /1.1 session on
a TCP connection with the server. We assume that the attacker has commandeered
a very large number N of machines distributed across a wide-range of geographical
areas, organized into server farms popularly known as “botnets”. For initiating a
TCP session, an attacker can either use the actual IP address of the machine or spoof
an address different from any of the addresses in the botnet. Thus, we do not make
any assumptions regarding the set of IP addresses accessible by the attacker, and
the attacker can potentially use a different IP address for each new session that he
initiates.

We assume that the system has sufficient capacity to support a number of concur-
rent client sessions much larger than N. Thus, if the attacker were to initiate normal
sessions concurrently from each of the N machines from the botnet, the system could
serve the sessions within acceptable response-times. On the attacker side, we assume
that the malicious client machines consume much less resources to issue requests com-
pared to the amount of resources servers spend processing those requests. In essence,
this means that the attackers are not limited by resource constraints in their ability
to effect layer-7 DDoS attacks.

Using the workload parameters that the attacker can exploit to effect layer-7

attacks, these attacks can be characterized into the following three classes:

e Request Flooding Attack: In this class of attack, the attacker increases the

rate at which each client machine issues requests.

¢ Asymmetric Workload Attack: In this class of attack, each attack session

49

sends a higher proportion of those requests which are more taxing for the server
in terms of one or more specific resources. The request rate within a session is
not necessarily higher than normal. This attack differs from request-flooding
attack as follows: (1) causes more damage by selectively sending heavier re-
quests; and (2) is a lower-rate attack and hence involves less work on part of

the attacker e.g., attacker needs fewer sessions to cause equivalent damage.

¢ Repeated One-Shot Attack: This attack class is a degenerate case of the
asymmetric workload attack, where the attacker instead of sending multiple
heavy requests per session, sends only one heavy request in a session. Thus, the
attacker spreads its workload across multiple sessions instead of across multiple
requests in a few sessions. The benefits of spreading are that the attacker is able
to evade detection and potential service degradation to the session by closing it

immediately after sending the request.

The asymmetric request flooding attack and its variants exploit the heterogeneity
in processing times for different request types. The attacker can obtain the informa-
tion about server resources consumed by different legitimate request types through
extensive monitoring and profiling. This dissertation assumes the worst case scenario
that the attacker knows the full profiling data, and therefore can choose sending re-
quests such that the amount of server resources consumed per request is maximized.
However, in general, this type of information can only be obtained through profiling
and timing the server responses from outside. For instance, to obtain the average
server processing time per requested page, the attacker uses a web-crawler to ob-
tain the total (network-+server) delay in processing a request. To remove the effects
of varying server loads on the server processing times, these measurements may be

averaged over different times of the day.

50
4.1.2 Victim Model

The victim system is modeled as an e-commerce application hosted on a web cluster,
which consists of multiple-tiers for processing requests, as shown in Figure 4.1. First,
define an e-commerce session as an HTTP /1.1 session over a TCP socket connection
that is initiated by a client with the web server tier. HTTP/1.1 sessions are per-
sistent connections and allow a client to send requests and retrieve responses from
the web-cluster without suffering the overhead of opening a new TCP connection per
request. Each request in a session may generate additional processing in the applica-
tion and the database tiers, depending on the request (or request type). We assume
that a request consumes varying amount of resources from each tier (possibly none),
consisting of CPU, memory, storage, and network bandwidth. Recall that the goal
of the attacker is to push resource usage in one of the tiers to its maximum limit, so

that the system capacity for serving clients is diminished.

Content Distribution Networks
~X_| (DNS or Akamai)

~

Reverse Proxy/
8 @ Web Load Balancerj

£ N T

A

Web/Application

8 @ @ Servers

S —— J

T

Database

P Load Balancers

O B & s

Figure 4.1 : Victim system model: web cluster hosting a web application.

o1

A legitimate HTTP/1.1 session consists of multiple requests sent during the life-
time of the session. Requests are either sent in a closed-loop fashion, i.e., the client
sends a request and waits for the response before sending the next request, or they
are pipelined, i.e., the client could send multiple requests without waiting for their
response and thus have more than one request outstanding with the server. A page
is typically retrieved by sending one main request for the textual content and several
embedded requests for the image-files embedded within the main page. Main requests
are typically dynamic and involve processing at the database tier while embedded
requests are static since they only involve processing at the web-cluster tier.

A client request is processed as follows: First, the client’s initial request for a
connection is routed by a client-side redirection mechanism such as DNS Round-
Robin or Akamai to a reverse-proxy server. The reverse proxy server parses the
request’s URL and routes the request to a web server typically according to a load-
balancing policy (e.g., using round robin or more sophisticated policies as in [26]). If
the request is for a static web page or an image file, a server in the web tier serves
the requested page. If the request is for an e-commerce functionality, it is served by
an application script such as PHP, JSP or Javascript. Such requests typically consist
of one or more database queries, the results of which are collated together to produce
the response page. These requests are called as dynamic requests. Each database
query emanating from a dynamic request is forwarded to a database server using a
load-balancing strategy [24][37].

Each of the tiers in the system consist of multiple resources: computation, storage
and network bandwidth, which are limited in amount. We assume that all tiers
continuously monitor the resources in the tier and periodically generate resource
utilization reports as well as the overall system statistics at the application layer such

as throughput and response time. The system is said to be under a resource attack

52

when a surge in a resource usage is accompanied by reduction in throughput and

increase in response time without an apparent DDoS attack detected in lower layers.

Suspicion P;
4 fnin Y
Session ' w7 Scheduling
- | Policy
N sessions . X
V7 Scheduler
M Service Rate: r
per—session
queue length: 1
~—
Suspicion
Assignment Mechanism DoS—Resilient Scheduler

Figure 4.2 : Defense system model: DDoS-Shield

4.1.3 Defense Model

This dissertation introduces a counter-mechanism to protect the application from
layer-7 DDoS attacks and provide adequate service to legitimate clients even during
an attack. The defense model consists of a DDoS-Shield which is integrated into the
reverse-proxy and thus intercepts attack requests from reaching the web-cluster tiers
behind the reverse-proxy. The DDoS-Shield examines requests belonging to every
session, parses them to obtain the request type and maintains the workload- and
arrival-history of requests in the session. Figure 4.2 shows the architecture for DDoS-
Shield consisting of: (1) Suspicion assignment mechanism which uses the session
history to assign a suspicion probability p; to every client session ¢ as described in
Section 4.3; and (2) DDoS-resilient scheduler that decides which sessions are allowed
to forward requests and when depending on the scheduling policy and the scheduler

service rate, as discussed further in Section 4.4.

53

4.2 Vulnerability to Attacks

This section characterizes the effectiveness of layer-7 DDoS attacks in overwhelming
the server resources on an e-commerce application. It first quantifies the variation
in processing times for different requests and then mount each of the three classes of

layer-7 DDoS attacks to demonstrate the potency of each attack class.

4.2.1 E-Commerce Testbed

The example e-commerce application considered is an online bookstore hosted on
a multi-tiered architecture consisting of three web servers and one database server.
The implementation uses Apache as web server, PHP scripting to implement the
application logic, and MySQL to implement the database server. The networking
infrastructure consists of 100 Mbps links for both the access links to the system and
for the connections between tiers. The servers are Intel Pentium IV 2.0 GHz processor
machines running Linux 2.4.18 kernel with 512 MB SDRAM and a 30 GB ATA-66
disk drive.

Recall that the effectiveness of an asymmetric workload attack arises from large
differences in processing times of different request types. To explore whether this is
possible for the online bookstore implementation, we profiled the processing times
of individual request types to identify requests with high resource consumption on
the server. Figure 4.3 shows the response times perceived across different types of
requests for the online-bookstore application on our experimental system. Note that
the most expensive request is about 8 times more expensive than the cheapest request.
Expensive request types such as “BestSellers” involve heavy CPU processing on the
database server since they initiate queries that involve table join operations across
multiple tables followed by a sort operation to obtain a list of top-selling books.

Next, we attempt to quantify the potency of various layer-7 DoS attacks in this

54

N

4

]
BuyConjrm

-
o
T

ShoppingCart

BuyRequest

BestSellers

AdminRequest
NewProducts

SearchResult

SearchRequest
OrderDisplay
ProductDetail

Average response
time for request type (sec)

CustomerRegistration

o
[9)]
T
AdminConfirm
Orderlnquiry

Request type

Figure 4.3 : Heterogeneity in processing times for different dynamic content requests
in online bookstore application.

————— T — T — T —
5 g f M \Wkid=Browsing
% qg; & Wkld=8hopping
$025F (4 3 . L1 Wkid=Ordering]
@ g 3L 3z
© @ = O
0 a
< & £
2% T
z o &, 29
k7] § 3 5 $ £ £
a = o = X a =
$015r g £ 3 2§ %
o 0 2 B 23] 8
0] I é’ g >
[
[P & 4]
© 01 | QE) J
= E _ 2 7
= S [£ 4]
Q 5] > =
So0sr @ g 1
] E Q £
e £ g g
LS |2
0 B R 1 BE .
Request Type

Figure 4.4 : Probability of occurrence of a request type in a client session for browsing,
shopping and ordering sessions. Browsing sessions send only 5% requests for pages
that involve write queries to the database server, while shopping and ordering sessions
send an increasing percentage of such requests.

55

system. The following metrics are used to measure the potency of an attack: (1)
CPU utilization on the web and database tiers — the main resource being attacked
in our experiments; (2) average response time of requests as an indication of how
much slow down a legitimate client will experience; and (3) average throughput in
requests,/second achieved per normal client session. The ease of mounting a layer-7
DoS attack at the attacker end point is quantified by: (1) the number of unique IP
addresses; and (2) aggregate bandwidth needed to launch the attack.

The workload of a legitimate client session is emulated using the session types
shown in Figure 4.4 based on the TPC-W benchmark [22]. In particular, in each
experiment, we use 100 HTTP/1.1 sessions, 33% in each of browsing, shopping and
ordering profiles, to represent the legitimate client population. Legitimate clients
generate new sessions using an exponential distribution with mean of 0.2 seconds.
Requests are submitted to the web servers using exponentially distributed think times
with a mean of 7 seconds between receiving a response and issuing the next request.

Each of the three types of attacks are generated as follows: First, the request flood-
ing attack is mounted by decreasing the think-times between requests to values lower
than the normal 7 seconds. For maximal potency, the think-times are decreased to 0,
thereby, generating the requests as fast as possible. Second, the asymmetric workload
attack is generated using one of the expensive request types. The “BestSellers” script
is used for this purpose. This attack is mounted with the normal think-time of 7
seconds between requests first, and then combined with the request flooding attack
by reducing the think-times to 0. For each experiment involving request flooding or
asymmetric request flooding attacks, we vary the number of attack sessions from 0
to 300 sessions to simulate “no attack” and “large attack” scenarios respectively. Fi-
nally, the repeated one-shot attack is mounted by repeatedly generating single request

sessions for the “BestSellers” script using inter-arrival time between sessions smaller

56

than the legitimate mean 0.2 seconds. Once the response to the single request is

received by the attacker, it closes the session and creates a new one.

4.2.2 Attack Potency

Figure 4.5 shows the results from the experiments designed to quantify the potency
of each type of attack. Our results indicate that the response time of normal sessions
increases from 0.1 seconds under no attack to as high as 3 and 10 seconds when there
are 300 attack sessions in the request flooding and asymmetric request-flooding at-
tacks respectively. Thus, assuming that user patience for web page download times is
5 seconds [44], an asymmetric attack would also drive legitimate users away from the
web site. Furthermore, the throughput of each normal session in terms of requests
completed per second per session also drops drastically from 0.14 to 0.065 and 0.042
under request flooding and asymmetric request-flooding attacks respectively. More-
over, the repeated one-shot attack is much more potent than any other attack-classes
as seen from Figure 4.6(c). In the most potent form of the attack, when the attacker
waits 0 seconds between closing and opening another session, the average response
time per normal client session increases to as high as 40 seconds.

Both repeated one-shot and asymmetric attacks make the database server CPU
the bottleneck, driving the CPU loads to almost 100%, in their most potent forms.
However, the asymmetric attack is limited in sending a query flood towards the back-
end database server since the web server serves only one request at a time per session.
In contrast, the repeated one-shot attack is successful in sending a larger query flood
towards the database server, since the attacker after being blocked on a session, opens
yet another session and sends another request which translates into more queries to-
wards the database server. This query flood leads to much higher queuing delays at

the database server which explains the higher potency for repeated one-shot attacks.

Attackers request bandwidth (Mbps)

(

T

o 12

r — No attack

2 --3%--- Request fiooding attack

2 10 plomXe Asymmetric request flooding attack

2

E ooy “ |
: X

5 6f |
[

E

- S »
Z’. W U

9 2T et J
g e N

g e

o

g : : | _
: 100 150 200 250 300

Number of attack sessions

a) Average response time

—— Request flooding attack
--X--- Asymmetric request flooding attack (open-loop

¥ Asymmetric request flooding attack (closed-lodp)

50 100 150
Number of attack sessions

(c) Attacker request bandwidth (Mbps)

Average CPU load
on database-tier

100

—+— No attack
--X%-- Request flooding attack
Lo ¥ Asymmetric Request flooding attack

50 100 150 200
Number of attack sessions

(e) Database CPU load

250 300

Average throughput per
normal session (requests/sec)

Average CPU load

Aggregate response bandwidth (Mbps)

37

" No attack
--¥%--- Request flooding attack
¥ Asymmetric request flooding attack

50 100 150
Number of attack sessions

(b) Throughput (requests/sec)

40
35
30

25

“—"No attack
---X--- Request flooding attack

-~ ¥ Asymmetric request flooding attack

n " L " L

50 100 150 200
Number of attack sessions

250 300

(d) Aggregate response traffic (Mbps)

on web-tier

100

80

60

' ' ' No attack —+—
Request flooding attack =-----
Asymmetric Request flooding attack %

50 100
Number of attack sessions

(f) Web Server CPU load

150 200 250

Figure 4.5 : Effect of most potent request flooding attack (attacker think-time=0 sec)
and asymmetric request-flooding attack (attacker uses “BestSellers” script) on 100
normal sessions.

58

Figure 4.7 depicts the inter-arrival times between queries received at the database
server. The figure shows that 90% of queries arrive within 10 msec of the previous
query for the repeated one-shot attack, compared to the 80% for the asymmetric
attack.

Important points to be noted are:

e Agymmetric request-flooding is much more potent than normal request flooding
attack since it succeeds in making the database CPU the bottleneck, as observed
from Figure 4.5(d). In contrast, the normal request flooding attack never makes
the database CPU the bottleneck and only succeeds in increasing the web server
CPU loads to as high as 70%. Since, in the online-bookstore implementation,
the database server is more sensitive to heavy loads than the web server, the

asymmetric request-flooding attack delays normal sessions significantly more.

e Further note that during the normal request flooding attacks, the database and
web server CPU loads become constant (85% and 70% respectively) instead of
continually increasing upto 100%. This can be attributed as an artefact of our
implementation, which consists of a limited number of TCP socket connections
between the database dispatcher and database server. Thus, due to this effect
along with the closed-loop behavior of Apache on sessions, the client sessions are
sometimes stalled while waiting for database queries to be sent by the dispatcher
to the database server. Moreover, this happens only during normal request
flooding attacks and not the asymmetric flooding attacks since there is a much
greater volume of requests sent in the normal flooding attack (Figure 4.5(c))

and hence the TCP sockets are more stressed.

e All attacks are server attacks and the network-access link to the cluster (100

Mbps) is never overwhelmed as observed from Figure 4.5(f). The reason that

59

8 r T : T T T T T T T
—— Request flooding attack 10
7L --%--- Asymmetric request flooding attack .-
e Homana e gt Wemrmanenn e
u—A Froreennens e R —_ 8
23 ° 28
ES =
= 5t ®
on L =N’
58 ¢
0% 3} g8 4
=2 S5
o [s] oc
oc 2
3: <0
2 .
O 1 1 1 1 L
7 6 5 4 3 2 1 0 Browsing B-N-H-P-8 B-N-H-P B-N-H B-N B
Request inter-arrival time for an attack session (sec) Variations of Asymmetric Attacks
(a) Request-flooding strategies (b) Asymmetric attack strategies

40 T T T T T T T T T

35

25

20 F

Average response time
of normal sessions (sec)

10

.

0 ; ; =
0 005 01 015 02 025 03 035 04 045 05
Session inter-arrival time of attack sessions (sec)

(c) Repeated one-shot attack strategies

Figure 4.6 : Variations in attacker strategies. The figures show the performance
impact on 100 normal sessions. In (a), the attacker uses 200 attack sessions to launch
a request flooding (browsing profile) and asymmetric request flooding (BestSellers
script) attack, while varying the request inter-arrival times as [0 — 7] seconds. In (b),
the attacker uses 300 attack sessions sending requests as fast as possible, while varying
the attack workload. In (c), the attacker uses only one session at a time, sending one
BestSellers request per session and varies the inter-session time from [0 — 0.5] seconds.

60

the aggregate download traffic saturates much before 100 Mbps is the web or
database server CPUs being overwhelmed. Since, asymmetric attacks bottle-
neck at the database servers, the download traffic is much less at 8 Mbps com-

pared to 31 Mbps for request flooding attacks.

e The increase in response times is not caused by the system being overloaded
due to too many client sessions; the slowdowns are directly attributable to the
system doing more work as a response to attack requests. Observe that the
response times for the normal sessions are almost constant at 100 msec when
the attackers behave exactly like normal sessions, i.e., have same workload as

well as think-time profiles.

e The asymmetric workload attack is a low-rate attack, since it requires a lesser
number of attack sessions to inflict damage of similar magnitude. Also, all at-
tacks are quite easy to implement since (1) they require access to approximately
300 unique IP-addresses, easily obtainable using current-day server farms or
botnets and (2) the maximum aggregate bandwidth needed to launch an attack
is 5 Mbps upstream for requests and 26 Mbps downstream for response traffic,

easily achievable using current-day access networks.

e Lastly, note that changing the baseline normal client workload from 100 client
sessions causes a corresponding linear change in the number of attack sessions

needed to cause similar damage.

Intuitively, one may think that an attack which pipelines requests without waiting
for their responses would cause more damage than the attack which sends its requests
in a closed-loop. However, Apache web servers only service one request per session at
a time. Hence, even though an attack session may send multiple requests, they end up

waiting in Apache’s per-session queue, until Apache has completely serviced the last

61

request, which may involve sending database queries and receiving their responses.
As a result, attackers that generate requests in an open-loop without waiting for the
responses to arrive are only slightly more effective than closed-loop attack sessions.
Moreover, these open loop attacks are higher rate attacks and hence easily detectable
compared to closed loop attacks. Observe from Figure 4.5(c), than an asymmetric
open loop attack sends ~ 4 Mbps of request traffic compared to the much lower 0.4

Mbps by an equivalent closed loop attack, for similar damage.

o, —¥— No Attack
-&— Asymmetric Request flooding Attack|
Repeated One-Shot Attack

. L] .] | | ! ;
0 100 200 300 400 500 600 700 800 900 1000
Query Inter-Arrival Time (msec)

Figure 4.7 : CDF for inter-arrival times for query-arrivals at the database server for
different attacks. The number of normal browsing sessions is 100 in each scenario.
The no attack case has 0 attackers, while the asymmetric request-flooding corresponds
to 300 attack sessions with request think-time of 0 seconds. The repeated one-shot
attack corresponds to an attack session being opened immediately (0) seconds after
closing the previous session.

4.2.3 Attacker Strategies

Since the most potent attacks are also the most deviant from normal behavior and
hence most easily detectable, the attacker may employ lower-potency attacks to evade
detection and hence guarantee success. Next, we assess the damage caused by these

lower-potency attacks.

62

o Variable request-arrival rate: Instead of sending requests as fast as possible
(attack think-time=0 sec), the attacker decreases its request-rate. Observe from
Figure 4.6(a), that the asymmetric request-flooding attack still causes similar
damage to the normal sessions even when the attack sessions send requests at
periods as large as 7 seconds. This validates our hypothesis that asymmetric
attacks are more potent due to their workload-asymmetry rather than rate-

asymmetry.

o Variable session workload: Instead of sending only the heaviest BestSellers re-
quests in a session, the attacker morphs its sessions into profiles increasingly
similar to the normal profiles. Thus, with reference to Figure 4.3, suppose an
attacker picks up the following request types in decreasing order of processing
times: BestSellers > NewProducts > Home > ProductDetail > Search. The
following attacker strategies are investigated: (1) B: 100% BestSellers requests,
(2) B-N: equal number of BestSellers and NewProducts requests and similarly,
(3) B-N-H, (4) B-N-H-P, (5) B-N-H-P-S. Figure 4.6(b) shows the damage
caused to 100 normal sessions by 300 attack sessions. In each experiment, the
attack sessions send requests as fast as possible using one of the workload pro-
files mentioned above. As observed, the damage decreases consistently as the
attack sessions dilute the proportion of the heaviest BestSellers requests, ap-
proaching the potency of the normal request flooding attacks which have the

same workload profile as the legitimate clients.

e Variable inter-session arrival time: In the repeated one-shot attack, the attacker
may emulate slower inter-session rates by increasing the waiting time between
closing and opening the next session. Figure 4.6(c) shows that the attack po-

tency decreases consistently with increasing inter-session time between attack

63

sessions. Furthermore, when the attack session uses the same inter-arrival time

as normal sessions (0.2 seconds), there is no performance degradation.

4.3 Quantifying Attack Suspicion

Because attackers cannot be distinguished from non-malicious clients with 100% cer-
titude, our objective is to provide a mechanism to tag each session with a continuous
measure of suspicion. In our architecture, this value is then used by a request sched-
uler to determine when and if to service a particular request.

The suspicion-assignment problem is formulated by first performing measurements
to characterize the set of distributions that define legitimate behavior. The suspicion
of a session is then calculated on the basis of the probability that it was generated
from one of the legitimate distributions. Recall from Section 4.2 that attacks suc-
ceed by altering either of the session parameters of session inter-arrival time, request
inter-arrival time or session workload-profile. Thus, we design suspicion assignment
techniques to assign a suspicion measure to a session with respect to each of these
parameters. These individual values are then combined into one suspicion measure
for the session.

First, this section describes the offline phase in which the legitimate client behavior
profiles are built from system logs. Next, it describes suspicion assignment techniques
corresponding to each of the three kinds of deviations from normal behavior, followed
by an algorithm to combine their outputs. Finally, this section is concluded by
presenting testbed results to evaluate the performance of our suspicion assignment

techniques.

64
4.3.1 Legitimate Client Profiles

In this phase, information is extracted from the system logs to build profiles for
legitimate client behavior with respect to each of the following workload parameters:
session inter-arrival times; request inter-arrival times and; session workload profile.
The system logs store the number of requests per session and the resources consumed
by a request for each of the resources: CPU, disk and network bandwidth.

This dissertation assumes stationarity in the system logs and hence the behavior
profiles extracted are assumed to be invariant with respect to either time or day effects.
However, e-commerce traffic can be expected to vary across either the time-of-day,
with more traffic expected during the day than night or the day-of-year, with more
traffic expected during Christmas or other shopping seasons. Thus, while designing
more sophisticated systems, a set of legitimate profiles can be built corresponding to
time-of-day and day-of-year.

Further, this dissertation assumes that the system logs used for building the pro-
files are not influenced by attackers. However, note that a wily attacker may inject
a certain “attacker favorable” traffic pattern into the system logs with the objective
of swaying the system’s suspicion assignment mechanism in to his favour. This may
be done by sending requests following a certain pattern at a rate that is below the
radar of the suspicion assignment mechanism, over an extended period of time. These
attacks can be countered either by using a statistically more-significant number of ob-
servations to build the profiles or by using stricter confidence intervals. However, by
assuming unadulterated system logs, these attacks are rendered out of scope from

this dissertation.

e Session Inter-Arrival Distribution: We extract the session inter-arrival

times between consecutive sessions to obtain the distribution A by which these

65

X <=
<7 %)

CDF: P(X

W 2w
om

1458

10 15 20 25
Sample Mean Inter-Arrival Time (x)

5

Figure 4.8 : Cumulative Distribution Function for request inter-arrival time: P(X,, <
x) with varying session lengths or sample sizes ‘n’.

times are distributed. In particular, due to our workload generator, this distri-

bution A is exponential with mean 0.2 seconds.

¢ Request Inter-Arrival Distribution: First, we extract all sessions of length
smaller than or equal to n requests. Next, we obtain the request inter-arrival
times between consecutive requests across all these sessions, to obtain a sample
distribution of request inter-arrival time: X,. This is done for all values of n =
[2 —60] to obtain several sample distributions, as shown in Figure 4.8. Observe
that with increasing sample sizes n, the distribution X, tends to an exponential
distribution with mean of 7 seconds, corresponding to the distribution used in

our workload generator.

e Session Workload Profile: Using the resource consumption for a request
for each resource type (CPU, disk, network), a standard centroid-clustering
algorithm [45][46] can be used to obtain workload profiles for legitimate sessions

as follows: First, requests with similar resource consumption for a resource

66

are grouped into several request-resource classes. Next, sessions with similar

proportion of requests per request-resource class are grouped into several session
types.

Recall that in our system, the attacks overwhelm the CPU resources on the
database tier. Hence, we extract the database CPU clock cycles consumed by
each request from the logs and cluster requests with similar CPU utilization.
Starting with all the requests from the logs, each defining their own cluster,
we group requests with similar CPU utilization at every iteration to obtain a
decreasing number of clusters. This is done until a normalized ratio between the
inter- and intra-cluster distances [45] reaches a local maxima, thus obtaining a
set of r request types: Uj_;{a;}; identified by their average CPU utilization.
Similarly, sessions defined as a histogram on the set U_;{a;} of request classes,

are clustered to obtain an optimal set of ¢ session types: U_;{G;}.

In our example online-bookstore implementation, the clustering algorithm groups
requests into 14 request classes. Incidentally, each of these request classes also
corresponds to a particular type of page that was being requested e.g., Home and
BestSellers. Sessions are clustered into 3 session types, identified as: browsing,

shopping and ordering (see Figure 4.4).

4.3.2 Detection of Session Arrival Misbehavior

Recall that a repeated one-shot attack’s potency is due to the higher than normal

session arrival rates. Hence, detection of these attacks is based on detecting increases

in session inter-arrival times. Upon the arrival of a new session ¢, we first calculate

the difference between its arrival time and that of the last session: ;. Then, using

the distribution A for legitimate session arrival times, we assign it a seed suspicion

67

fsession(?) as the probability that we would have observed session inter-arrival times
larger than ;! fsession(?) = 1 — P(A < o).

This method has high false-positives since a legitimate session that arrives in
between two consecutive one-shot sessions would also be assigned a high seed sus-
picion. However, the latter half of this section, presents an algorithm to reduce the

performance impact due to these false-positives.

4.3.3 Detection of Request Arrival Misbehavior

A request flooding attack succeeds by sending requests at rates higher than normal.
Hence, detection of these attacks is based on detecting decreases in inter-arrival time
between successive requests in a session.

On observing the nth request in a session, we assign its suspicion as follows: (1)
calculate the mean inter-arrival time p over n requests seen in the session so far; (2)
use sample distribution X,, shown in Figure 4.8 to assign suspicion as: Jrequest(t) =
1—P(X,, < p). Thus, the suspicion measure for an attack-session which sends requests
once every 1 seconds would be 0.8 after 5 observations, quickly increasing to 0.92 after

10 observations, asymptotically getting closer to 0.99 with further observations.

4.3.4 Detection of Session Workload Misbehavior

Recall that in asymmetric attacks, the attacker exploits heterogeneity in the server
processing times of requests and selectively sends more requests towards the heavy
request classes. Thus, a system under attack would see sessions with a higher than
normal proportion of requests for certain request classes. Hence, detection of asym-
metric attacks is based on detecting deviations in the workload profile of sessions.
Given, a set US_;{G;} of c ideal session types, detection of workload misbehavior

is formulated as an online estimation of the probability that the requests belonging to

68

a session is distributed as one of the legitimate or ideal session types G;. Initially, we
assume there is only one ideal session-type G. Due to the discrete number of request
types, an equivalent problem is observing a series of throws of a dice with r faces and
generating distribution G, and estimating whether the observed series is generated
from the distribution G.

Given an ideal session type G, a suspicion measure assigns suspicion numbers to a
session s by using (1) the length of the session n and (2) the deviation d of the session
from ideal behavior as captured by a distance metric between the session type and
the ideal type. Next, a framework for soundness of a workload suspicion measure is
developed, using which a measure can ensure consistency in assignment of suspicions
across workload deviations.

A desirable distance metric disassociates length from deviation and assigns ses-
sions which have the same deviation from ideal type, an equal distance, irrespective
of their lengths. The other properties that we desire in a distance metric are that
distance grows with deviation from the ideal type and distance between a type and
itself is 0. This dissertation considers two candidate distance metrics to illustrate the
properties: Kullback Leibler (KL) distance metric from information-theory {47] and a
metric developed here, called Residue Factor (RF) metric.

Let 0 = Ul_;{a;} denote the set of r request classes. Denote a session s as a
histogram on the number of requests n(a;) seen per request class: s = U_;{n(a;)}.
Similarly, define a session type 7'(s) as a histogram on the fraction of requests N(a;) =

%i—) seen per request type: T(s) = Uj_;{N(a;)}; where n is the total number of
14

requests seen in the session: n = > n(a;). Further, define the ideal session type
i=1

G = U™, {G(a;)}, where G(a;) denotes the fraction of requests of request type a; and

éa(an _1

69

Distance Metrics

Definition 1 The KL distance between the session type T'(s) characterizing a session
s and the ideal distribution G that it is expected to be derived from is defined as:
N a;
KLTEI6) = 3 M) log 3. (41)

a; €0

Next, we define a Residue Factor (RF) distance by extracting the greatest common

factor (gef) of G present in session s: gef = min|n(a;)/G(a;)|. Now, define residue
res = ;{n(ai) —gef G(a;)}

Definition 2 The RF-distance metric between a session s and ideal type G is defined

as:

RF(s||G) = g—f (4.2)

Intuitively, the greatest common factor and residue represent the subtypes within
session s that are good and bad with respect to the type GG. Hence, the RF-distance
penalizes a type for deviating away from G (as captured by the residue) while reward-
ing it in proportion to the length for which it was well-behaved (as captured by gcf).
The case where there is no good subtype, i.e., gcf = 0 can be handled separately.
Observe that both KL-distance and RF-distance have the properties desirable in a
distance metric. Let’s illustrate with an example on two request classes: ¢ = 0,1 and
ideal distribution G : Bernoulli(c), (po, 1) = (0.5,0.5). If the session s has the same
type as the distribution G, then both distance metrics assign distance 0. Sessions

of type (0.8,0.2) such as (4,1),(8,2)...k(0.8,0.2) are assigned KL-distance of 0.193

70

and RF-distance of 1.5, irrespective of length. Moreover, their distance is less than

that assigned to sessions of type (0.9,0.1), in which case the KL-distance is 0.368 and

RF-distance is 4.

Soundness

A suspicion measure f is said to be sound, and hence consistent in assigning suspicion

across workload misbehavior, if it obeys the following properties:

e Zero-Distance Property: A session s with the same type as the ideal session

type is always assigned a suspicion number of 0, irrespective of its length n.
T(s)=G = f(s)=0 Vne[l,o0) (4.3)

That is, if a session has the same type as the ideal, its deviation from the ideal

type is 0, and hence its suspicion is 0.

Distance-Proportionality Property: Amongst all sessions of the same length
n, a session which deviates more from the ideal session type is assigned a higher
suspicion. Thus, given two sessions s; and sp of lengths n; and n, and distances

from ideal type d; and d, respectively:
ny = na, di >dy = f(Sl) > f(Sg) (44)
That is, greater deviation from the ideal type signifies greater suspicion.

Length-Proportionality Property: If two sessions have the same type which
is different from the ideal type, then the session with greater length is assigned
higher suspicion. Thus, given two sessions s; and s, of lengths n; and n, and

distances from ideal type d; and dy respectively:

T<81> = T(SQ) # G, ny > nNg — f(Sl) > f(Sz) (45)

71

That is, with an increased number of observations, the suspicion probability

converges towards its true value.

There are several possible metrics f which satisfy the properties of soundness. To
establish the veracity of the properties, let’s first consider an intuitive enumeration

metric to assign suspicion numbers.

Enumeration Metric

This method exhaustively enumerates all possible session types of length n and sorts
these types by their probability of occurrence. Using basic combinatorial theory, the
probability of occurrence of a session type T'(s) assuming generating distribution G is
given as the product of the number of sessions/sequences which have this type (given
by multinomial coefficient) and the probability of observing any one of these sessions
(given by product of probability of observing alphabet a; n(a;) times).

n!

PH(T(s)) = P(T(s)|G).

n(ay)n(a)l...n(a,)! (4.6)
P(T(s8)|G) = G(a)™...G(a,)™").

Definition 3 Hence, by the enumeration metric, the suspicion associated with ses-
sion s of type T'(s) is defined as the probability of finding other types of same length

n which have a higher probability of occurrence.

ferum(s) =Y P™(7}"), where 7 : PM(r}") > P"(T(s)) (4.7)

72

The enumeration metric satisfies all the properties of soundness.

Proof:

o Zero-distance Property: Note that if a session s has the same distance as the
ideal distribution G, then amongst all the sessions of same length n, it will be
assigned the highest probability of occurrence: P"(7T'(s)). Thus, from Defini-
tion 3, it will be assigned a suspicion of 0, since there are no types with a higher

probability of occurrence than P"*(T(s)).

e Distance-Proportionality Property: Method of Types [48] provides an asymp-

totic bound on the occurrence probability P™(T(s)) as follows:
P™(T(s)) a2 e MHLITGIGD), (4.8)

Using this bound, if two sessions have same length n, then the session with larger
KL-distance would have lower occurrence probability, and hence by Definition 3,

a higher suspicion.

e Length-Proportionality Property: Using the same bound as in Equation 4.8,
it is easy to verify that enumeration also satisfies the length-proportionality
property. Thus, if two sessions have the same KL-distance from legitimate
distribution, then the longer session would have lower occurrence probability

and hence by Definition 3, a higher suspicion.

Note that these suspicion values are asymptotically correct, i.e.,

lim f(T(s))=01if T(s)=G
noee (4.9)
=1if T(s)#G

73

Moreover, by associativity of the properties of distance- and length-proportionality,
the most-anomalous type, i.e., the one with the largest KL-distance converges to 1
the earliest, followed by the 2"¢-most anomalous session-type and so on.

The method of enumeration is accurate but computationally infeasible. Even
for the online bookstore benchmark, where the number of request-classes is r = 14,
to consider sessions of length n = 30, the number of types needed is a very large
polynomial = =22 = 3.65 x 101,

There are several possible measures f which satisfy the properties of soundness,
even though the suspicion measures assigned by them may not be accurate as the
enumeration measures. We next consider a class of suspicion measures which are

derived directly from the properties of soundness, and hence correct, while also being

computationally efficient.
Length Distance Product (LDP) Measure

Definition 4 Define a Length Distance Product (LDP) measure as one which assigns
suspicion to a session s of type T(s) as the product of its length and distance from
the ideal type G. Substituting by the two distances of KL-distance and RF-distance

considered in this dissertation, we get the following equivalent measure definitions:

7 (s) =n KL((T(s)||G)
(4.10)
i¥(s) = n RF(S|G)

If there are multiple ideal distributions or types: US_;{G;}, each of them equally
likely then the LDP measure is defined with respect to the distribution which is the

closest in terms of distance:

74

K4(s) = n min(KL((T()][G))
(4.11)
£7(s) = n min(RF((s1]Gy)))

Since by definition the LDP measures are proportional to distance and length, it
is easy to see that they obey all the properties of soundness. The suspicion values
assigned by LDP measures are no longer contained within 0 and 1. However, it is rel-
atively straightforward to do so by choosing a very large number N and normalizing

as follows:

25 i T ; ; ! T ;

mean (browsing)
: : ¢ | =8 mean (shopping)

ot i [—0— mean {ordering) o
: : : . std-devn (browsing)

KL distance

0.5

o} 5 10 15 20 25 30 35 40
Number of requests in session

Figure 4.9 : Mean of KL-distance of “browsing”, “shopping” and “ordering” sessions
with increasing sample-sizes n.

Our online bookstore implementation consists of three ideal distributions: Gyrowsing.
Gshopping and Gordering @S shown in Figure 4.4. Figure 4.9 shows the average KL-

distance of a browsing session with respect to Girowsing With increasing number of

75

requests n. Note that the KL-distance of a legitimate session with its ideal distribu-

tion converges to 0 with increasing number of requests n.

Average Request-Arrival
Suspicion Probability

0.8

06

0.4

0.2

g
RV
PSR L0 L G
o
oo
%

X

D ===

——+— Normal Sessions
- Attack Session (7 sec)
womes Attack Session (5 sec)

s~ Attack Session (3 sec)
e Session (0 sec)

0.2 1

Average KL-Suspicion Probability

N

L 1

5 10

15 20
Number of Requests

(a) Request flooding attacks

25

—— Normal Sessions

----w==e Aftack Session (B)

----- w»--- Attack Session (B-N-H)
—8— Aftack Session (B-N-H-P-S)

\

0
30 5

Number of Requests

(b) Asymmetric attacks

—+— Normal Sessions

----w--- Attack Sessions (0 sec)

«emens Attack Sessions (0.01 sec)

-8 Attack Sessions (0.1 sec)
-—=--_Aftack Sessions (0.2 sec) _

x
09 1
£ osf
8
.8 0.7 |
o
L 06t
3
3 o5t
[=%
]
2 o4t
% 03+
[}
2 o2t
01}
0 1

5

(c) Repeated one-shot attacks

10 15 20
Number of Requests

25

30

10 15 20 25 30 35 40 45 50 55 60

Figure 4.10 : Average suspicion probability of a normal or attack session with in-
creasing number of requests seen in the session.

Assignment of Net Suspicion

We next describe an algorithm to aggregate the suspicion measures across the vari-

ous misbehaviors into one suspicion measure per session. Given a session s, denote

76

the seed suspicion that was assigned to this session on its arrival by feession(s). As
the session proceeds in sending requests, after observing n requests, it is assigned a
suspicion measure by each of the request arrival and workload misbehavior detectors
as: froguest(s) ;and f7(s). Thus, using a suspicion weighting parameter 0 < 3 < 1,

we define the net suspicion measure f™(s) as follows:

f(8) = feession(s) * (B fL(s) + (1 = B) frequesi(s)) (4.12)

Note that net suspicion is contained within 0 and 1, and has the following desirable

features:

o As discussed earlier, there is a high false-alarm rate in the session arrival mis-
behavior detector, and hence legitimate sessions which get caught between suc-
cessive one-shot attack sessions may be flagged with a high seed suspicion.
Hence, if the session were really legitimate, then it would obey the workload
and request-arrival profiles and hence would get a chance to improve its sus-
picion. In contrast, if the session is part of a repeated one-shot attack then it
will be given a high seed suspicion and even if it goes away after sending one

request, it would have been serviced with lower quality.

e The suspicion of a session with respect to workload- or request-arrival suspicion
is weighted by the parameter 0 < § < 1, which is set depending on which
of the two suspicion measures has potential for greater damage to the system.
Let’s illustrate with an example: consider two sessions ¢ and j with suspicion
probabilities (fr, frequest) @s (0.2,0.8) and (0.8,0.2) respectively. If workload-
misbehavior is considered more potent, then weighing them with 8 > 0.5 would
consider session 7 more suspicious. Similarly, if request misbehavior is con-

sidered more potent, then setting 3 < 0.5 would consider session j as more

77

suspicious. We chose to weigh both misbehaviors equally, and hence 5 = 0.5 in

our systemi.

Performance of Suspicion Assignment

We next provide numerical results for the performance of the suspicion assignment

techniques on attacks launched against our online-bookstore implementation. Fig-

ure 4.10 shows the behavior of suspicion measure with increasing number of requests

in a session. Notice that the scheme obeys the properties of soundness in that the

suspicion of a session either converges to 0 or 1 with more observations, depending

on whether the session is legitimate or malicious. The following observations can be

made:

o In either request flooding or asymmetric attacks, the attack sessions can be
distinguished from normal sessions after 4 requests on an average. Thus, a

counter-DDoS policy could start punishing attack sessions from very early on.

Normal sessions converge to suspicion of 0 with respect to the request-arrival and

workload after 17 and 57 requests respectively as seen from Figure 4.10(a),(b).

A request flooding attack session sending requests at think-times of 0 seconds,
is detected with certitude of 1.0 after 5 requests on an average. Moreover, the
lower the attack rate i.e., the higher the value of think-time used by an attack

session, the more observations are needed to detect it with certainty.

An asymmetric attack session sending BestSellers requests is detected with sus-
picion probability of 1.0 after 8 requests on an average. Moreover, if the attacker
morphs his identity by mixing other request types in an attack session, then the
number of observations needed to detect the attack session with certainty in-

creases.

78

o Attack sessions involved in repeated one-shot attack of highest potency (inter-
session time=0) are assigned seed suspicion of 0.95 on an average. Normal
sessions also start with similar seed suspicions but the effect of high initial
suspicion is diluted by the lower suspicions assigned to them by the request-

arrival and workload suspicion assignments.

4.4 Scheduler Design for DDoS-Shield

This section presents the DDoS-resilient scheduling policy of DDoS-Shield, which
combines the continuous measure of suspicion assigned by the suspicion mechanism
with the current system workload to decide whether and when a session is allowed to
forward requests (see Figure 4.2). The DDoS-resilient scheduler is integrated into the
reverse proxy, and can thus intercept requests belonging to malicious sessions much
before they overwhelm the system resources.

The maximum aggregate rate at which the scheduler forwards requests to the web
cluster is a configurable parameter called the scheduler service rate: r requests/second.
Each session has a backlog queue for requests which haven’t been forwarded to the
web cluster and requests are dropped using a Drop-Tail policy when the length of
the queue exceeds a configurable parameter per-session queue length: [. Whenever,
the current output rate is less than the schedulef service rate, using a scheduling
policy, the scheduler picks a session from amongst the eligible sessions and forwards
its’ Head-of-Line (HoL) request to the web cluster.

We determine the eligibility criterion for a session by having only one outstanding
main request per session. Recall that main requests are typically requests for the
dynamic page and are followed by embedded requests for static content, typically
image files that are embedded in the page. Thus, a session is considered eligible for

scheduling only if its last main request has been serviced by the web cluster and the

79

response sent to the client. This is in agreement with the behavior of the Apache web
server, which also services only request per session at any time.

Figure 4.11 shows the state diagram for a session in the scheduler queue. A new
session starts in the state Allow All and once it is scheduled by the scheduler, its main
request is forwarded to the web tier, after which the session’s state is changed to Allow
Embedded-Only. In accordance with the HTTP/1.1 specification for pipelining, any
embedded requests sent by the client are forwarded to the web tier, irrespective of
whether the main request has been serviced or not. However, if we receive another
main request, it is kept waiting in the session queue'. On receiving the response for
the main request, the session is made eligible for being scheduled again, by changing
its state to Allow All, after which the HoL main request in this session’s queue can

be forwarded when the session is scheduled again.

Send Main=Request Send Embedded—Requests

Allow
» Embedded—Only

Receive response for Main—Request

Scheduwled
Eligible for @
Scheduler

Figure 4.11 : State Diagram for a session in scheduler queue

mbedded—Requests

'Hence, w.r.t. a client which sends pipelined main requests, we are still HT'TP/1.1 compliant, in

that requests now wait in the reverse proxy server queue instead of Apache queue.

80

4.4.1 Scheduling Algorithms

The following scheduling algorithms are considered:

e First-Come First-Serve (FCFS) Scheduler: The FCF'S scheduler schedules
the session with the earliest arrived HoL request from amongst all the eligible

sessions.

e Round-Robin Scheduler: After scheduling an eligible session once, the Round-
Robin scheduler schedules it again only after it becomes eligible again and after

all other eligible sessions have been scheduled before it.

e Shortest Job First (SJF) Scheduler: The scheduler selects the session
whose HoL request has the lowest estimated service time. The service time of

a request is estimated on the basis of its request type as shown in Figure 4.3.

e Lowest Suspicion First (LSF) Scheduler: The cost-optimal scheduler is
one which obtains a schedule such that for the IV eligible sessions in the system
at any time, each with suspicion probability as p;, their average response time

d; realizes the following objective function:

minZ(l — pi)(ds) (4.13)

Intuitively, this objective function maximizes the sum total of suspicion proba-
bilities (p;) for requests queued at the DDoS scheduler so that those with low
suspicion are forwarded to the web cluster. Thus, the cost-optimal scheduler is
a strict-priority scheduler which selects the top sessions after sorting them in

decreasing order as: (1 —p1) > (1 —p2)--- > (1 —pn).

81

e Proportional to Suspicion Share (PSS) Scheduler: The cost-optimal
scheduler may result in starving sessions with high suspicion probability p;.
Hence we also design a maz-min fair algorithm with the fairness objective of
assigning forwarding-rates r; to sessions in proportion to their confidence prob-
abilities 1 — p;:

= (4.14)

Note that the FCFS, Round-Robin and SJF schedulers are agnostic to suspicion
probabilities, and hence they serve as baseline for performance evaluation against the

scheduling policies: LSF and PSS which use suspicion probabilities.

4.4.2 Online Rate-Setting Algorithm

Next, we propose an online algorithm to set the scheduler service rate r of the sched-
uler as a function of the sum of confidence probabilities of the active sessions at
any time. Assume there are N eligible sessions at the scheduler at time ¢. Denote
the 95%ile of the throughput in terms of completed requests/second achieved by
a legitimate session under no attacks as 7rpg95. The scheduler service rate r is ad-
justed every update-interval using an Exponential Weighted Moving Average func-
tion: 7 = a*r—+(1—a)*7pey. The rate r,e, is the sum of the individual session-rates:
Tnew = va r;, each of which is obtained as a linear function of the session’s suspicion

probability as follows: r; = (1 — p;)ro.05.

4.4.3 Performance Evaluation

First, we establish through experiments that to be effective, a counter-DDoS mech-
anism needs both scheduling and rate limiting. We compare the suspicion-aware

scheduling policies, LSF and PSS against the suspicion-agnostic policies, Round Robin

82

and FCFS and also vary the scheduler service rates in each experiment. The per-
session queue length is fixed at 100 requests. We also compare the performance of
the scheduling algorithms against two baseline scenarios: (1) No Attack when there
are 0 attack sessions; and (2) No Defense when all the attack sessions are present but
no defense strategy is used, i.e., the scheduler is FCF'S with per-session queue lengths

set to infinity.

weyeen Attack (PSS)
o5 [Y Attack (SJF) L
\- —E— Aftack (Round R
-~~~ Attack (FCFS)

"
2 E% --© No attack (LSF)
15 S h\

30 —
% —F— AHack (LSF)

0

bin)

‘‘‘‘‘

WP L T

Average response time of normal sessions (sec)

0 = =505 :
10 20 30 4 50 60 70 80 90 100
Scheduler service rate (requests/sec)

Figure 4.12 : Effect of various scheduling policies and scheduler service rates on 100
normal browsing sessions in the presence of 300 request flooding attack sessions.

Request-flooding Attack

Let’s first consider the most potent request-flooding attack using 300 attack sessions

on 100 normal sessions, shown in Figure 4.12. The main conclusions we draw are:

e The combined strategy of using scheduling along with a rate limiter is quintessen-
tial to DDoS-Shield. Thus, the best performance is obtained on using a LSF
or PSS scheduler with scheduler service rate set in the range [15 — 50] re-

quests/second.

83

e DDoS-Shield is effective in thwarting the request flooding attack, as evident
from the fact that performance improves to 0.5 seconds from the 3 seconds under
no defense. Further, note that there is minimal penalty due to false positives
(legitimate sessions being delayed) or, false negatives (malicious sessions being
admitted), and DDoS-Shield’s performance of 0.5 seconds compares favourably

with the lower-bound performance under no attack of 0.1 seconds.

e The LSF and PSS schedulers perform the best, with LSF slightly better. The
Round-Robin and FCFS schedulers are agnostic to suspicion probabilities and

still admit many malicious sessions leading to significantly lower performance.

e SJF is still better than FCFS and Round-Robin, however, worse than the suspi-
cion aware schedulers. The reason being that in request flooding attack, requests
of type (hence size) same as the legitimate client sessions are used and hence ad-
mitting requests on the basis of their estimated size does not necessarily protect

from the attack.

e However, even the performance achieved by using the best schedulers (LSF,
PSS) degrades, improves and again degrades with increasing service rates. This
is on account of the fact that at lower scheduler service rates, normal sessions
are not allocated enough service, while at higher rates, many attack sessions

are admitted.

e All scheduling algorithms converge to an average response time of 2.2 seconds
at service rates greater than 100 requests/second. Even then, their performance
compares better than no defense (FCFS, | = oo) performance of 3 seconds, since
due to smaller session queues (I = 100), they drop several requests belonging to

attack sessions.

84

e When online rate-setting algorithm is used along with the LSF scheduling policy,

we get similar performance improvements at around 0.5 seconds. The average

service rate set by online rate setting was 17 requests/second when we used

a = 0.3 and updated the rate every 10 seconds.

15

0 T r T
3 —f- Attack (LSF)
wue9éeee Altack (PSS)
P e Aftack (SJF)
., --E-- Attack (Round R
-~ Attack (FCFS)
00 L -+ No attack (LSF)
NN

bin)

Average response time of normal sessions (sec)

10 12 14

Scheduler service rate (requests/sec)

(a) Asymmetric attack (response time)

18 20 22 24

Average CPU load on database-tier

100

80 -

60 -

40t

20 r

——Attack (LK)
....x....
....*...

=<Attack tRound R

Attack (PSS)
Attack (SJF)

Attack (FCFS)

bin)

15

20

25

Aggregate output rate (requests/sec)

(b) Asymmetric attack (DB CPU load)

Figure 4.13 : Effect of various scheduling policies and scheduler service rates on 100
normal sessions under most-potent 300 asymmetric attack sessions.

Asymmetric Attack

DDoS-Shield improves the performance under the most-potent asymmetric attack

from 10 seconds to 0.8 seconds, as seen from Figure 4.13(a). Note that under asym-

metric attacks, the performance of DDoS-Shield is much more sensitive to admittance

of attack sessions. At service rates higher than 17 requests/sec, the response times

increase sharply for even the best scheduling algorithms (LSF, PSS), with their perfor-

mance becoming similar to that of the baseline schedulers (FCFS and Round-Robin).

The reason is that at high service rates, a slight increase in admittance of attack

sessions drives the database server CPU loads to as high as 100%, as depicted in

85

Figure 4.13(b).

Another important observation derived from Figure 4.13(a) is that our suspicion
aware schedulers perform as good as the baseline SJF scheduler at service rates lower
than 17 requests/sec. This is expected, since the asymmetric flooding attack works
by sending heavy requests and hence scheduling in the light requests first is an ef-
fective strategy to protect from these attacks. However, at higher service rates, SJF
performs better than the suspicion aware schedulers, which is a side-effect of more
false-negatives being admitted by the suspicion aware schedulers. Although SJF per-
forms the best under certain service rates against the most-potent asymmetric attacks,
we do not expect the same behavior under the less-potent or morphed asymmetric
attacks. For instance, under an asymmetric attack which sends the lightest requests,
say SearchRequest (Figure 4.3), the SJF policy would admit them before the legiti-
mate client requests, and hence can be expected to perform worse in comparison with

our suspicion aware schedulers.

Repeated One-shot Attack

Similarly, for repeated one-shot attacks, DDoS-Shield improves the performance under
the most-potent attack (inter-session time=0 seconds) from 40 seconds to 1.5 seconds.
The best performance is achieved using LSF scheduler at scheduler service rates

around 15 requests/second.

Low Potency Attacker Strategies

Recall from discussions in Section 4.3 that lower potency attacks are more difficult
to detect than high potency attacks. Hence, to demonstrate the efficacy of DDoS-
Shield in thwarting low potency attacks, we evaluate the performance under varying

request flooding and varying asymmetric attack strategies. Using the scheduling

Average response time of normal sessions (sec)

8 T T T -
~—— No defense |
; - Defense (StrictPriority)
/"\
6
5
4
3 e
2
b
0
7 8 5 4 3 2 1 0

Request inter-arrival time for an attack session {sec)

(a) Variations in think-time

40

86

| No defense
g Lo Defense (StrictPriority)

Average response time of normal sessions (sec)

0
Browsing B-N-H-P-S B-N-H-P B-N-H B-N
Variations of Asymmetric Attacks

(b) Variations in workload profile

—— No defensé
—--*--- Defense (StrictPriority

)

35

30

25 -

20

15

Average response time
of normal sessions (sec)

10

5

i

o i
05 045 04 035 03 0

25 02 015 01 005 O

Session inter-arrival time of attack sessions (sec)

(c) Repeated one-shot attacks

Figure 4.14 : Performance of DDoS-Shield on protecting 100 normal sessions when
under attack by lower-potency attacker strategies. DDoS Shield uses LSF scheduler
and scheduler service rate set at 15 requests/second.

87

policy LSF and the service rate set at 15 requests/second, DDoS-Shield maintains the
performance of normal sessions at 0.8 seconds, even when the attack rate was varied
by changing the think-time over [0—7] seconds. Similarly, DDoS-Shield maintains the
performance of normal sessions at 0.5 seconds, even when 300 attack sessions morph
their workload profile by employing lighter requests alongside the heavy BestSellers
requests. Finally, DDoS-Shield maintains performance at 1.5 seconds, even when the
repeated one-shot attack is varied by changing the attacker inter-session times.

The success of DDoS-Shield in thwarting lower potency attacks as well as high
potency ones, is on account of the suspicion assignment mechanism being able to
differentiate between legitimate and malicious sessions from very early on. Recall from
Figure 4.10(a) that even though lower-rate or lower-intensity attacks are detected with
certitude much later than their high potency counterparts, on an average they are
assigned higher suspicion than normal sessions after only 4 requests. Hence, they are
quickly given lower priority service by the LSF scheduler compared to the legitimate

sessions.

Summary of Results

The main conclusion drawn from our experimental investigation of DDoS-Shield is
that to be effective a counter-mechanism must employ both rate-limiting and schedul-
ing. Furthermore, suspicion aware schedulers are more effective than suspicion ag-
nostic schedulers in admitting the legitimate requests and delaying the malicious
ones. Lastly, DDoS-Shield with the suspicion aware policies protects under both the
most-potent as well as the less-potent and morphed attack scenarios, due to the sus-
picion assignment mechanism being able to quickly differentiate between legitimate

and malicious sessions.

88

4.5 Related Work

CERT [49] classifies denial of service attacks in three broad categories: 1) attacks
aimed at consumption of scarce resources such as network bandwidth or CPU; 2) at-
tacks aimed at destruction or alteration of configuration information; and 3) attacks
aimed at physical destruction or alteration of network components. This dissertation
focuses on a class of attacks in the first category, namely attacks mounted at the
application layer (layer-7) with attackers posing as legitimate clients of the service.
The attack classes we consider overwhelm server resources in the web cluster and
hence are distinct from earlier attacks that have primarily targeted network connec-

tivity. Most recent examples of network attacks mimicked flash crowds using zombie

clients [50][21].

4.5.1 Detecting DDoS attacks

The first step in thwarting a DDoS attack is to detect it. Existing detection mecha-
nisms operate at the network level to detect DDoS floods in the network [51-53]. For
example, the anomaly detection system in [54] assigns every packet a score based on
the probability of it being a legitimate packet given the attribute values it carries.
The attacks we are focusing in this dissertation cannot be detected by these tools as
they do not necessarily flood the network with high volumes of traffic.

Other detection mechanisms attempt to catch intrusions both at the network and
the host level [55]. While the attacks in this dissertation do not rely on intrusions at
the victim, effective intrusion detection makes it difficult for the attackers to comman-
deer client machines, and hence could only act as a first-step defense with reference
to our attacks.

Distinguishing a DDoS attack from a flash crowd has also proven difficult. Two

properties to make the distinction is identified in [30]: (1) DoS event is due to increase

89

in the request rates for a small group of clients while flash crowds are due to increase
in number of clients; and (2) DoS clients originate from new client clusters 2 as
compared to flash crowd clients which originate from clusters that had been seen
before the flash event. These characteristics may not help distinguish the attacks
discussed in this dissertation since (1) it is difficult to associate amount of resources
consumed to a client machine and (2) botnets consisting of geographically wide-
spread machines are increasingly likely to belong to known client clusters. In contrast,
our suspicion assignment mechanism observes the behavior of the clients to detect
suspicious activity.

Our suspicion assignment mechanism relies on statistical methods. However, our
problem formulation differs from similar techniques, such as sequential hypothesis
testing [56][57] in two respects: First, we define only one hypothesis for legitimate
behavior, and the hypothesis for malicious behavior is interpreted as anything which
does not follow the legitimate hypothesis. Thus, not relying on an alternate hy-
pothesis for the attackers gives our scheme the ability to detect misbehaviors not
seen yet. Second, unlike sequential tests which output binary decisions of legitimate
or malicious, while bounding detection and false-positive probabilities, we output a
continuous measure of suspicion. This gives our scheme the ability to start penal-
izing misbehaving sessions as soon as their suspicion becomes distinct from that of

legitimate sessions.

4.5.2 Counter-DDoS Mechanisms

Kandula et. al. in [50] design a system to protect a web cluster from DDoS at-

tacks by (1) designing a probabilistic authentication mechanism using CAPTCHAs

2A Client cluster is defined as a group of topologically close clients, identified via BGP routing

tables.

90

(acronym for “Completely Automated Public Turing test to tell Computers and Hu-
mans Apart”) and (2) designing a framework that optimally divides the time spent
in authenticating new clients and serving authenticated clients. Requiring all users to
solve graph puzzles has the possibility of annoying users and introducing additional
service delays for legitimate users. This also has the effect of denying web crawlers
access to the site and as a result search engines may not be able to index the content.
Finally, new techniques may render the graphical puzzles solvable using automated
methods [58]. The DDoS-Shield does not depend on Turing tests; instead, it uses
statistical methods to detect attackers and employs rate-limiting through request
scheduling as the primary defense mechanism. However, Turing tests are comple-
mentary to DDoS-Shield and their result could be used as an input to decide the seed
suspicion of a session, where sessions which pass the test start with a lower suspicion
and vice-versa.

The technique of rate-limiting unwanted or hostile traffic has often been used
as a counter-measure against DDoS attacks. For example, network packets deemed
suspicious could be dropped [54] or rate-limited [59]. Class-based queuing scheme
used in [60] uses a load balancer to block or limit the service to client IP addresses
depending on their bandwidth consumption patterns. Similarly, probabilistic queuing
scheme in [61] uses a randomized LRU cache to regulate bandwidth consumption to
malicious clients. At the infrastructure level, schemes for routers to cooperatively
block malicious traffic were proposed [62]. These techniques are all geared towards
preventing large bandwidth flows reminiscent of today’s DDoS attacks; in contrast,
by rate limiting the work a server cluster performs we can prevent attacks on both
network bandwidth as well as those that are aimed at other types of system resources,

such as CPU or storage.

91

Chapter 5

Conclusions

This dissertation first characterized the reasons for disruption and performance degra-
dation in web services as due to traffic overload conditions, and then designed a web
hosting architecture using which web services can optimize client access times de-
spite the presence of these conditions. The major contributions and findings of this
dissertation are summarized below.

Standard overload conditions such as flash crowd arrivals and time-of-day varia-
tions increase client access latencies much larger than the average user patience while
downloading content estimated at around 5 seconds. As its first contribution, in
Chapter 3, this dissertation presented WARD, a framework for wide-area redirection
of dynamic content requests. The objective of WARD is to minimize the end-to-end
latency of dynamic content requests by jointly considering network and server delays.
Thus, WARD can effectively multiplex resources across the entire cluster grid, thereby
avoiding performance degradation in the presence of the standard overload conditions.
Chapter 3 further described an analytical model and a proof-of-concept implementa-
tion which demonstrated significant reductions in average request response times. For
example, for a cluster implementation running an e-commerce site and serving 300
concurrent users, WARD was shown to reduce average response times by 54% from 5
sec to 2.3 sec, while redirecting requests away to a cluster 50 msec away. Moreover,
the analytical model predicted significant performance improvements if the complex-

ity of dynamic content processing in web requests would increase in terms of either

92

the mean or the variance in service times. WARD is especially suited to prevent
increased response times due to short-term bottlenecks, e.g., caused by flash crowds.
If the latency costs of redirection are not excessively high, WARD can also be used
to exploit long-time-scale trends such as time-of-day driven workloads, and thereby
avoid expensive over-provisioning of clusters. Finally, WARD is an orthogonal so-
lution to client-side redirection and server migration policies and can therefore be
seamlessly integrated with such approaches.

DDoS attackers have been amassing vast amount of resources into server farms
also popularly known as botnets. Moreover, attacks are becoming more sophisticated
and consequently more difficult to detect. Thus, as its second contribution, this dis-
sertation in Chapter 4, explored the vulnerability of systems to one such class of
sophisticated attacks. These attacks are protocol-compliant as well as non-intrusive
and mimic legitimate clients of the service with the intention of overwhelming the
system’s resources. Thus, this dissertation presented a framework to classify resource
attacks as one of request flooding, asymmetric workload, repeated one-shot attacks
or combinations there-of, on the basis of the application workload parameters ex-
ploited. Since, these resource attacks are un-detectable via sub-layer-7 techniques,
this dissertation developed DDoS-Shield, a counter-mechanism which assigns suspi-
cion probability to a session in proportion to its deviation from legitimate behavior
and uses a DDoS-resilient scheduler to decide whether the session is serviced and
when. An example web application hosted on an experimental testbed, was used to
demonstrate the potency of these attacks as well as the efficacy of DDoS-Shield in
preventing them. While, the attacks on our online bookstore implementation stressed
the server resources the most, our attacker model as well as counter-mechanism are

general and easily extensible to other resources.

[1]
2]

3]

93

Bibliography

P. Coelho, The Alchemist.

A. Odlyzko, “Data networks are mostly empty and for good reason,” IT Pro-
fessional, vol. 1, no. 2, pp. 67-69, Mar. 1999.

C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,
and C. Diot, “Packet-level Traffic Measurement from the Sprint IP Backbone,”
IEEFE Network Magazine, 2003, To be published.

M. Arlitt, D. Krishnamurthy, and J. Rolia, “Characterizing the scalability of a
large web-based shopping system,” ACM Transactions on Internet Technology,
vol. 1, no. 1, pp. 44-69, Aug. 2001.

M. Arlitt and C. Williamson, “Internet web servers: Workload characterization
and performance implications,” IEEE/ACM Transactions on Networking, vol.

5, no. 5, Oct. 1997.

“Slashdot,” http://www.slashdot.com.

“Akamai,” http://www.akamai.com.

“Digital Island,” http://www.digitalisland.net.

“Mirror Image Internet,” http://www.mirror-image.com.

J.D. Guyton and M.F. Schwartz, “Locating nearby copies of replicated internet
servers,” in Proceedings of ACM SIGCOMM’95, Cambridge, MA, Aug. 1995.

[11]

[12]

[16]

[17]

[18]

[19]

94

A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of dns-based server
selection,” in Proceedings of IEEE INFOCOM’01, Anchorage, AK, Apr. 2001.

7. Fei, S. Bhattacharjee, E.W. Zegura, and M.H. Ammar, “A novel server se-

lection technique for improving the response time of a replicated service,” in

Proceedings of IEEE INFOCOM’98, San Francisco, CA, Mar. 1998.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy,
“Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web,” in ACM Symposium on Theory of
Computing, May 1997, pp. 654-663.

L. Wang, V. Pai, and L. Peterson, “The effectiveness of request redirection on

cdn robustness,” in Proceedings of OSDI’02, Boston, MA, Dec. 2002.

M. Karlsson and M. Mahalingam, “Do we need replica placement algorithms
in content delivery networks,” in 7th International Workshop on Web Content

Caching and Distribution (WCW), August 2002.

Y. Chen, R.H. Katz, and J.D. Kubiatowicz, “Dynamic replica placement for
scalable content delivery,” in Proceedings of IPTPS’02, Cambridge, MA, Mar.
2002. '

L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server

replicas,” in Proceedings of IEEE INFOCOM’01, Anchorage, AK, Apr. 2001.

S. Mittal, “A consistent and transparent solution for caching dynamic web con-

tent,” in Masters Thesis, Rice University, Houston, TX, May 2005.

President’s Information Technology Advisory Committee, “Cyber security: A

crisis of prioritization,” www.nitrd.gov/pitac/reports/index.html.

[20]

[21]

[22]
[23]

[24]

[28]

[29]

95

The Honeynet Project and Research Alliance, “Know your enemy: Tracking

botnets,” http://www.honeynet.org.

California Central District, “United states vs jay echouafni et al. (operation

cyberslam),” www.usdoj.gov/criminal/fraud/websnare.pdf.
“TPC-W: Transaction Processing Council ,” http://www.tpc.org.
“NISTNET: Network Emulation,” http://snad.ncsl.nist.gov/itg/nistnet/.

S. Ranjan, R. Karrer, and E. Knightly, “Wide area redirection of dynamic

content in internet data centers,” in Proceedings of Infocom, HongKong, 2004.

C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel, “Bottleneck characterization of dynamic web

site benchmarks,” Tech. Rep. TR-02-391, Rice University, Feb. 2002.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable content-aware
request distribution in cluster-based network servers,” in Proceedings of the

USENIX 2000 Annual Technical Conference, June 2000.

R.L. Carter and M. Crovella, “Server selection using dynamic path character-
ization in wide-area networks,” in Proceedings of IEEE INFOCOM’97, Kobe,
Japan, Apr. 1997.

“Cisco Distributed Director,”

http://www.cisco.com/warp,/public/cc/pd/cxsr/dd/index.shtml.

V. N. Padmanabhan and K. Sripanidkulchai, “The case for cooperative net-
working,” in Ist International Workshop on Peer-to-Peer Systems (IPTPS’02),
Cambridge, MA, Mar. 2002.

[30]

[36]

[38]

96

J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of
service attacks: Characterization and implications for CDNs and web sites,” in
Proceedings of the International World Wide Web Conference. May 2002, pp.
252-262, IEEE.

S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “Qos-driven server migration for

internet data centers,” in Proceedings of IWQo0S’02, Miami, FL, May 2002.
“The Apache Software Foundation,” http://www.apache.org.

“PHP Scripting Language,” http://www.php.net.

“MySQL Database Server,” http://www.mysql.com.

C. Amza, A. Cox, and W. Zwaenepoel, “Scaling e-commerce sites,” Tech. Rep.

TR-02-390, Rice University, Houston, TX, Feb. 2002.

C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel, “Specification and implementation of dy-
namic content benchmarks,” in Proceedings of the 5th IEEE Workshop on Work-
load Characterization (WWC-5), Austin, TX, Nov. 2002.

C. Amza, A. Cox, and W. Zwaenepoel, “Conflict-aware scheduling for dynamic
content applications,” in Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS’08), Seattle, WA, Mar. 2003.

D. Villela and D. Rubenstein, “Performance analysis of server sharing collectives
for content distribution,” in Proceedings of IWQoS’03, Monterrey, CA, June
2003.

[39]

[41]

[44]

[45)

[46]

[47]

97

J. Kangasharju, K.W. Ross, and J.W. Roberts, “Performance evaluation of redi-
rection schemes in content distribution networks,” Computer Communications,

vol. 24, no. 2, pp. 207-214, Feb. 2001.

D. Karger, A. Sherman, A. Berkhemier, B. Bogstad, R. Dhanidina, K. Iwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching with consistent hashing,”
in Eighth International World Wide Web Conference, May 1999.

S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror
placement on the internet,” in Proceedings of IEEE INFOCOM’01, Anchorage,
AK, Apr. 2001, pp. 31-40.

“Why traditional routing is not always the best method,” http://www-
math.mit.edu/ steng/18.996/lecture9.ps.

V. Cardellini, M. Colajanni, and P. S. Yu, “Geographic load balancing for scal-
able distributed web systems,” in Proceedings of MASCOTS 00, San Francisco,
CA, Aug. 2000.

N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating user-perceived quality into
web server design,” in Proceedings of the 9th International World Wide Web
Conference, Amsterdam, Netherlands, May 2000.

T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” Com-

munications in Statistics, vol. 3, pp. 1-27, 1974.

G. W. Milligan and M. C. Cooper, “An examination of procedures for determin-
ing the number of clusters in a data set,” Pyschometrika, vol. 50, pp. 159-179,
1985.

Cover and Thomas, ”Elements of Information Theory”, Wiley, 1991.

98

[48] I. Csiszar, “The method of types,” IEEE Transactions on Information Theory,
vol. 44, pp. 2505-2523, 1998.

[49] “http://www.cert.org,” 2005.

[50] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger, “Botz-4-sale: Surviving
organized ddos attacks that mimic flash crowds,” in Proceedings of Symposium

on Networked Systems Design and Implementation (NSDI), Boston, May 2005.

[51] L. Ricciulli, P. Lincoln, and P. Kakkar, “TCP SYN flooding defense,” in CNDS,
1999.

[52] “Service provider infrastructure security: detecting, tracing, and mitigating

network-wide anomalies,” http://www.arbornetworks.com, 2005.
[53] “Mazu profiler,” http://www.mazunetworks.com, 2005.

[54] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, “Packetscore: Statistics-based
overload control against distributed denial-of-service attacks,” in Proceedings of

Infocom, HongKong, 2004.
[55] “Tripwire enterprise,” http://www.tripwire.com, 2005.
[56] A. Wald, Sequential Analysis, J. Wiley and sons, New York, 1947.

[57] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan detection

using sequential hypothesis testing,” in Proceedings of IEEE Symposium on

Security and Privacy, Oakland, May 2004.

[58] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: Breaking a

visual captcha,” IEEE Computer Vision and Pattern Recognition, 2003.

99

[59] A. Garg and A. L. N. Reddy, “Mitigating denial of service attacks using gos
regulation,” in Proceedings of International Workshop on Quality of Service

(IWQoS), 2002.

[60] F. Kargl, J. Maier, and M. Weber, “Protecting web servers from distributed
denial of service attacks,” in World Wide Web, 2001, pp. 514-524.

[61] S. Voorhies, H. Lee, and A. Klappenecker, “A probabilistic defense mechanism

against distributed denial of service attacks,” .

[62] K. Argyraki and D.R. Cheriton, “Active internet traffic filtering: Real-time
response to denial-of-service attacks,” in Proc. of USENIX Annual Technical

Conference, April 2005.

