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Abstract

We propose a new algorithm for general constrained derivative-free op-
timization. As in most methods, constraint violations are aggregated into a
single constraint violation function. As in filter methods, a threshold, or bar-
rier, is imposed on the constraint violation function, and any trial point whose
constraint violation function value exceeds this threshold is discarded from
consideration. In the new algorithm, unlike the filter method, the amount of
constraint violation subject to the barrier is progressively decreased as the
algorithm evolves.

Using the Clarke nonsmooth calculus, we prove Clarke stationarity of the
sequences of feasible and infeasible trial points. The new method is effective
on two academic test problems with up to 50 variables, which were prob-
lematic for our GPS filter method. We also test on a chemical engineering
problem. The proposed method generally outperforms our LTMADS in the
case where no feasible initial points are known, and it does as well when
feasible points are known.
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1 Introduction

In [5], we modified the filter approach pioneered by Fletcher and Leyffer [15]
to treat general nonlinear constraints without derivatives by a generalized pattern
search (GPS-filter) algorithm. A filter aggregates all constraints into a single con-
straint violation function and treats the optimization problem as an unconstrained
biobjective problem with priority given to feasibility versus a low objective func-
tion value.

The convergence results we were able to provide for the GPS-filter method
are limited by the GPS restriction to a fixed finite set of directions in which the
space of variables is explored locally. We gave some pathological cases in which
the sequence of GPSfilter iterates fails to produce limit points that satisfy desir-
able optimality conditions. Still, the GPS-filter has solved some difficult industrial
problems despite less than desired theoretical suppaortl[2] 5, 20,122, 21].

The mesh adaptive direct search class (MADS) class of algorithms [6] gener-
alizes GPS[26,/4] by removing the restriction of the local exploration of the space
of variables to a fixed finite set of directions. This enables the algorithm to handle
constraints, including nonlinear ones, by the extreme barrier approach in which in-
feasible points are simply rejected from consideration. We will call this algorithm
MADS-EB, where EB stands faxtreme barrier.

Specific MADS-EB limit points satisfy optimality conditions that depend on
the local smoothness of the objective function under a constraint qualification by
Rockafellar[25], i.e., that the hypertangent cone to the feasible region is nonempty
at the limit point. This is a weaker constraint qualification than is usually assumed
for derivative-based methods such as SQP. For a strictly differentiable [18] ob-
jective function, the convergence analysis shows that MADS-EB generates limit
points that are KKT points. If the objective function is only Lipschitz near the
limit point, then it is a Clarke stationary point.

In this paper, we propose to combine ideas from the GPS-filter and MADS-EB
approaches for general nonlinear optimization

min  f(x) (1)
whereQ = {xe X:¢j(x) <0,j€J} cR"andf,c; : X - RU{eo} forall j e J=
{1,2,...,m}, and whereX is a subset oR". Some useful terminology differen-
tiates between constraints that must always be satisfied, such as those that define
X, and constraints that need only be satisfied at the solution, such g$xthe 0.

The former arelosedconstraints and the latter anpenconstraints.

Our proposed approached is called MADS with a progressive barrier, MADS-

PB. No differentiability assumptions on the objective and constraints are required



to apply this new algorithm. However, the strength of the optimality results at a
limit point X is closely tied to the local smoothness of the functions and to prop-
erties of the tangent cones@andX atX. MADS-PB is shown theoretically and
numerically to work for all the cautionary examples we gave for the GPS-filter
method. As for MADS-EB, we prove convergence of MADS-PB to Clarke sta-
tionary points.

We call the algorithm proposed herepeogressive barrieralgorithm, as op-
posed to arextreme barrieralgorithm. The distinction is as follows. An extreme
barrier algorithm rejects all infeasible trial points. A progressive barrier algorithm
places a threshold on the constraint violation it allows, and progressively tightens
this threshold as the algorithm progresses. We do not use a filter, but we do use
the notion of dominance fundamental to filters to determine adaptively how to re-
duce the constraint violation threshold at each iteration. The user has the discretion
within MADS-PB to specify certain constraints to be closed and always treated by
the extreme barrier approach.

Given the strength of the MADS-EB convergence results and the positive re-
ports we hear from users, it is reasonable to ask what motivates us to undertake
this research rather than to abandon the filter in favor of the barrier for constraints.
There are several reasons.

e First,the MADS-EB approach requires a feasible starting point. Yet for some
practical problems like the aircraft planform results giveriin [2], there is no
initial feasible point. In fact, the first feasible point found by the GPS-filter
was acceptable as a solution. In the MADS-PB method, a user can decide
to treat a constraint as open until it becomes feasible and then move it into
the closed constraints, which are treated by the extreme barrier approach and
whose feasible region defin&s

e Second, some users have observed that the GPS-filter method provides use-
ful information about the sensitivity of the solution with respect to the con-
straints. The extreme barrier approach does not provide that information, but
MADS-PB does.

e Third, in an industrial optimization context, the functions defining the prob-
lem often are provided as a black-box computer codes. The codes read input
variables and output some values, or else they may fail to return a value for
various reasons. In this case, the function value is set to infinity. There are
sometimes constraints that return a boolean value that indicates feasibility
or not without quantifying the infeasibility. There might also be some con-
straints that must be satisfied in order for the simulation to work because the
objective functionf or some constraints; might not be defined outside.
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These Boolean constraints are incorporated in theXseind X is handled

by the proposed algorithm through the barrier approach. Other constraints
qguantify the amount by which they are violated, and so they may be treated
by a filter or progressive barrier if the user desires.

e Itis not unreasonable to expect in nonlinear optimization that allowing con-
straint violations in the course of solving a problem often enables one to
solve the problem with fewer function and constraint evaluations. This might
happen if the domain is disjoint, or if feasibility at every step requires the it-
eration to take small steps along an erratic boundary to get into a better part
of the feasible region. Of course this might be mitigated in some problems
for which checking the constraints may be less expensive than computing
the objective function, and neither MADS version asks for function values
at points outsid& [19].

Thus, we are providing the user with options by extending MADS-EB to the
MADS-PB algorithm, including the option of deciding which constraints
should be satisfied before evaluating the objective function.

The paper is organized as follows. The next section describes the new MADS-
PB algorithm. Sectiop]3 breaks down the convergence analysis into three cases.
First it analyzes subsequences of feasible iterates; the results are similar to those of
MADS-EB [6]. Second, subsequences of infeasible iterates are considered; results
on a measure of the constraint violations are presented. Finally, we analyze the case
where a subsequence of infeasible iterates converges to a feasible point. Numerical
results are presented in Sectjgn 4 on three test problems.

2 A MADS algorithm with a progressive barrier

MADS-PB is an iterative algorithm, and the iteration counter is denoted by the
indexk € N. We will useVx ¢ X C R" to represent the set of points where the

f and allc; function values have been evaluated by the start of iter&tiofhis
means that they satisfy the closed constraints. Eacl seintains a finite number

of points. The set of initial points i¥y. It may contain feasible and infeasible
points with respect to the open constraints.



2.1 The barrier on constraint violation

Adapting the filter terminology [15] to a mixture of open and closed constraints,
we define the constraint violation function

0, if x¢X
h(x) = Z(max(cj(x),O))z, otherwise.

i€

With this definition,h : R" — RU {0} is a nonnegative function, ande Q if and
only if h(x) = 0. Moreover, if 0< h(x) < o thenx € X\ Q. The constraint violation
function could have been defined in other ways -£heorm is commonly used.
We favor the squared violations since it was shown_in [5] that this performs better
in the present context, as it passes on any smoothness of the constrhints to

We introduce the non-negative barrier paramég?, which is set at each
iteration. Any trial point whose constraint violation function value excegdis
rejected from consideration. The barrier parambf€¥is non-increasing with the
iteration numbek; the rules for updating it at the end of an iteration are presented
in Sectio@. In[[6], an extreme barrier is used, 3" = 0 for all k, and every
infeasible trial point is rejected from consideration.

The initial barrier parameten'® > 0 can be fixed by the user. Alternatively,
the default value implemented in our codenf§* = . In the numerical results,
we will see that setting{'®* to a smaller value can be useful when the initial points
are all feasible.

The algorithm proposed here does not require that the initial points are feasi-
ble with respect to the open constrainis j € J. The algorithm can be applied
to a problem that satisfies only the first of the following assumptions. Its analysis
requires the remaining two assumptions. We will say more about the second and
third assumptions when we repeat them as they come into play. In particular, the
hypertangent and generalized derivative are defined in Ségtion 3. We list them for-
mally here to refer to them all together later.

Al: There exists some poing in the user-provided safy such thatxg € X,
f(Xo) < o andh(xp) < hg'®*.

A2 : All trial points considered by the algorithm lie in a bounded set.

A3 : For every hypertangent directione T} (X) # 0, there exists as > 0 for
whichh®(x;v) < 0 for all x € {x € XN Bg(X) : h(x) > 0}.

The algorithm and its analysis patrtition the trials point into two sets: the fea-
sible and the infeasible points. The infeasible ones that do not satisfy the closed



constraintsx € X are rejected through the barrier approach. The infeasible ones in
Q\ X are be treated differently. We next introduce definitions of best feasible and
infeasible incumbents at iteratidn

2.2 Feasible and infeasible incumbents

At the start of iteratiork, two sets of incumbent solutions are constructed from the
setVk. The first one is the set of feasible incumbents. It consists of the feasible
points found by the start of iteratidathat have the best objective function value.

Definition 2.1 At iteration k, the set ofeasible incumbent solutions defined to
be

Fo = {argxrg\i/kn{f(X) : h(x) =0}}.

The set of infeasible incumbent solutions is constructed with the notion of dom-
inance used by filter algorithms [15, 5]. We first introduce the set of infeasible
undominated points.

Definition 2.2 At iteration k, the set dhfeasible undominated poinisdefined to
be
U = {xeW\Q : Ay e V\Q such that y< x},

where y=< x signifies that hy) < h(x) and f(y) < f(x), or that hfy) < h(x) and
fy) < f(x).

The set of infeasible incumbent solutions is constructed using the set of un-
dominated infeasible pointd, and the barrier parametigf'®.

Definition 2.3 Atiteration k, the set ahfeasible incumbent solutions defined to
be

Ik = {argxrgdn{f(x) 1 0< h(x) <h?®}}.

These two setds; andly, allow definition of the incumbent values at iteration
k. The incumbent feasiblé-value is defined to be

f(x), foranyxe R, otherwise,

)



and the incumbent infeasibleand f-value are

loely (00, 00) if k=0
(M. fie) = { (h(x), f(x)), foranyx € Iy otherwise, 3)

Figure[1 illustrates the construction of the incumbent values at iteriatihe
circles represent the images of all 13 trial points generated by the algorithm by
the start of iteratiork, i.e., the seW,. The barrier on the constraints rejects all
three trial points that map outside of the shaded area. The set of undominated
infeasible trial pointdJy is indicated by arrows. It contains four elements, three of
them with a constraint violation function value less thghi*. The one with the
best objective function value i$}, f}). Notice that this new incumbent was not
necessarily generated during iteration 1. It belongs tdv, but could have been
generated at any iteration prior to iteratianl he role of the parameterappearing
in the right part of the figure is detailed in Sectjon|2.5.

h
Figure 1:New incumbent values at iteratidn

An immediate result is that # # 0 at some iteratiork, thenF, £ 0 at every
iteration? > k. We propose in Sectidn 2.4 an update ruleHpf* that ensures the
analogue result fol.

Once the incumbents sefs andly and incumbent value®, f7) and (h}, f})
are updated by the above definitions at the start of an iteration, the goal during the
iteration is to change one of the incumbents. This occurs naturally when a trial
point that dominates one of the incumbents is generated. When no such points are
generated during an iteration, other measures must be taken. If iy sebntains
an infeasible point with a smaller constraint violation function value tijathen
the barrier parameter is reduced to the largest value Iesshﬂna@therwise, the
algorithm will refine the exploration in the space of variables. The next section
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details how the algorithm explores the space of variables. S¢ctipn 2.4 describes the
parameter update rules.

2.3 Description of an iteration : the SEARCHand POLL steps

In GPS, MADS-EB and the present algorithm, every trial point must be chosen on
an underlying mesh defined on the space of variables whose fineness or coarseness
is dictated by a nonnegative scalar calledrnesh size parametéy;’.

Definition 2.4 At iteration k, the current mesh is defined to be the following union:

Mc = J {x+AfDz:ze N®}

XEVk

where D= GZ € R™™ s a positive spanning matﬁ}x for some non-singular
matrix Ge R"*" and integer matrix Z zZ"*"™.

Note thatD,G andZ are fixed matrices, independent of the iteration nuniber
Freqguent choices for these matrices @re: I, then x n identity matrix andD =

Z =[lIn —Ip). For convenience, the matrix will often be treated as a set:c D
signifies that is a column oD. The mesh structure allows a convergence analysis
without requiring sufficient decrease conditions to accept new incumbent solutions.

There is great algorithmic flexibility in searching for new incumbent solu-
tions. Each iteration is divided into two steps: theARCH andPOLL steps. In
the SEARCH step, any number of trial points may be generated, as long as these
points belong to the medWy, and that the strategy to identify them terminates in
finite time.

The SEARCH strategy may, for example, be based on a heuristic exploration of
the domain, or it may employ surrogate functions based on response surfaces, in-
terpolatory models or simplified physics models.Surrogates are most often tailored
for specific applications, see, e.d., [5, 7, 9,[19,20, 22]. Let us simply dende by
the finite set of mesh points used in theARCHstep at iteratiork.

Unlike the freedom of theEARCHSstep, thepoLL step is more rigidly defined.

It consists of a local exploration around incumbent solutionbgimndly. The

POLL step depends on another nonnegative scalar called the poll size parameter
AE. There is some flexibility in the choice of the poll size parameter. It must,
however, be tied to the mesh size parameter in a way that satisfies:

LirEAE‘ =0 ifand only if direr,f = 0, for every infinite subset of indicds. (4)
S <

1 honnegative linear combinations of the column®afpanik”, see[[13].



For example, one may sélf = /& (as in [6]) so that the poll size parameter goes
to zero slower than the mesh size parameter. The original idea of a frame is from
[11,123]24], and it is more general than the version given below.

Definition 2.5 At iteration k, Ox(X) is said to be a set of frame directions around
a frame center x V if Dk(X) is a finite set of directions ilN" such that for each
d € Dk(x),

e d =£ 0 can be written as a nonnegative integer combination of the directions
in D, and d= Du for some vector & N™ that may depend on the iteration
number k and on Xx;

e the distance from the frame center x te-Q}'d is bounded above by a mul-
tiple of the poll size parameteny||d|| < Af max{||d|| : d’ € D}.

This last definition is the fundamental difference between GPS and MADS. In
GPS, the directions in the 9Bt are restricted to be chosen from the fixed3etn
MADS, the number of candidates directionsDR(-) grows without bound aAy!
goes to zero.

In MADS-EB, thepPoLL set was always constructed around a feasible point
since any infeasible point was rejected by the barrier. In the present MADS-PB
approach, we need to adapt the definition oftloe L set.

Definition 2.6 At iteration k, thePoLL set R is defined to be

P(xf) for some somefxe F, if Iy =0
R = P(x) for some somepe Iy, if F =0
P(xE ) UPRK(X,) for some somefxe R and %, € Iy, otherwise,

where R(x) = {x+Afd : d € Dx(x)} N X C M is called a frame around x.

Figure@ illustrates an example in which both a feasilﬁleand an infeasible
incumbentx, solution exist. In the figure, the feasible regins delimited by the
nonlinear curves, and = R?. The mesh is constructed usinfj and is represented
by the intersection of all thin lines. The poll set is constructed by taking some mesh
points inside the two regions delimited by the thick lines, basequaﬂ AR Inthis
example, the frame around the feasible incumbent is constructed using the positive
spanning set of directiorBx(Xt ) = {(—3,4)7,(4,0)T,(—~1,-4)"} and the frame
around the infeasible one is built using a single direciix}) = {(3,—-4)"}.
Therefore, the poll se is the union of the frameB’k(xE) = {p1, P2, p3} with
P«(xt) = {psa}. Implementable strategies of constructing the pollRetre pre-
sented in Section 2.5.
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Figure 2:A MADS PoLL setP = P(xf ) UR(X) = {pt, p?, p} U {p*}.

2.4 Parameter update at the end of an iteration

After the POLL and SEARCH steps are completed, the algorithm has evaludted
andh at one or more trial points. At the end of iteratiknVi, 1 contains all the
trial points since the algorithm was initiated. The function values of the points in
Vi1 govern the way that the mesh sia@, ; and the barrieh’®‘ parameters are
updated.

The way this is done depends on the result of iteratiofhere are three possi-
bilities: the iteration may bdominating, improving, ounsuccessful. A dominating
iteration generates a trial point that dominates an incumbent. An improving itera-
tion is not dominating, but it improves the feasibility of the infeasible incumbents,
and so it replaces the infeasible incumbent set. Unsuccessful iterations are neither
dominating nor improving. These three types of iterations are detailed below and
illustrated by having a point &fi,1 in the appropriate shaded area of Figure 3.

e lterationk is said to bedominatingwhenever a trial poing € Vi, 1 that dom-
inates an incumbent is generated, i.e., when

h(y)=0 and f(y)< ff, or y=<x forall x& .
e lterationk is said to bamprovingif it is not dominating, but if there is an
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Dominating iteration Improving iteration Unsuccessful iteration

By

(1) (et

h 0 h 0
Dyy1 > Dy Dyy1 = Dy Dyy1 < Dy
=1 < i

Figure 3: Mesh size and barier parameter update rules.

infeasible solutiory € Vi1 with a strictly smaller value df, i.e., when

0< h(y) < hl and f(y)> f.

e lterations that are neither dominating nor improving are caliesliccessful
iterations. This happens when every trial pojrt Vi, 1 is such that:

h(y)=0 and f(y)> fF, or h(y)=h, and f(y)>fl, or h(y)>h.

To clarify these ideas, we refer to Figurie 2 to illustrate various constructions.
Assume that at iteratiokthe incumbent sets af = {xt } andlx = {X,} and that
Vierr = (€, %, pt, p2, p3, p*}, and that no other points have been generated so far.
Let us consider the infeasible points. In the case whetehQpt) < h(p*) < h(x})
andf(p') > f(p* > f(x), then the next infeasible incumbent set wouldhe =
{p*}, and iteratiork would be improving becaus®p*) < (h(x,) but p* £ .. The
iteration would have been dominating if inste&gp*) < f(x,), or of course, if
either f (p?) or f(p®) were strictly less tharfi(xf ).

The classification of the iterations dictates the way that the mesh and poll size
parameters are updated from one iteration to another. More precisely, given a fixed
rational number > 1, and two integersv- < —1 andw' > 0, the mesh size
parameter is updated as follow:

AT, = T (5)
{0,1,...,w'}, if iterationk is dominating
for somewy € {0}, if iterationk is improving
{w,w +1,...,—1}, ifiterationkis unsuccessful.
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Typical choices[[6] are = 4, andw™ = —w~ = 1.
The update rules for the barrier parameter are:

(6)

max{h - h(y) < h if iterationk is improvin
ey _ { maxth(y) : hy) <hi} proving

hi otherwise.

There are three sub-cases when an iteration is dominating. First, itis possible that a
trial point that improves the feasible incumbent is generated, and that no trial point
dominates the infeasible one. In that case, the consequence of the update rules is
that (i, 4, fi, 1) = (h, f}) but f7; < f7. Second, it is possible that a dominant
trial pointt with h(t) = h} > 0 is generated. In that case, the consequence of the
update rules is that, , = h} but f\, , < f}. The last possibility is thatt}  , < hj,
andfy, , < f.

Consequences of the barrier parameter update [rhile (6) aréifais non-
increasing with respect tq and iflx # 0 thenl, # 0 at every iteratiorf > k.

Figure[4 summarizes our new MADS-PB algorithm. Notice that if the initial
setVp contains a feasible point, and I1'|6nax = 0, then the algorithm reduces to
MADS-EB [6].

This high-level description of the algorithm contains in the initialization phase
an optional frame center trigger which is discussed in the next section.

Remark: In practice, some users may wish to allow soft constraints in profplem (1).
Then one can apply the method described in this paper to the optimization problem
min{ f(x) : h(x) < h™"} whereh™" > 0 is a user-selected threshold on the function

h under which any trial point is considered feasible. This may be done by redefin-
ing dominating and improving iterations by replacimg) = 0 by h(x) < h™" and

h(x) > 0 by h(x) > h™n,

2.5 A frame center selection rule

We refer the reader to Section 4.1 of [6] for an explicit way to construct the positive
basisDy used to construct a frame. This construction depends only on the mesh and
poll size parameterdy’ andAE, and it satisfies the requirements of Defini 2.6.
The setDy is constructed by first generating a directlm and then completing it
to a positive basi8. This is done is such a way thaf_; {ﬂgﬁ} is dense in the
unit sphere with probability 1 (see Theorem 4.3[ih [6] and [3]). MADS with this
choice ofDy is called LTMADS.

At each iteration, there are either one or two frame centers. Vihen0 or
Iy = 0, then there is only one frame center, cak’it and it is arbitrarily chosen in
whichever off or I is nonempty (by Al). That frame center is then called the
primary frame center. TheoLL set will simply beP = P(x}) = {x! +Ald : d €
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A MADS-PB ALGORITHM FOR CONSTRAINED OPTIMIZATION

e INITIALIZATION (given a set of initial point¥y that satisfies assumption Al):
— Define the mesh matricéandZ as in Definitiogzkl, and mesh parameters
T,w~ andw" as in equatior] (5), and-@ AT < Af.
— (Optional) Define the frame trigg@r> 0 as in Definitiorf 2.J7.
— Set the iteration countér— O.

e INCUMBENT DEFINITION: Define the incumbent sefs and I, as in Defini-
tions[2.] and[ 2]3, and incumbent valugs and (h}, f}) as in Equations] (2
and [3).

e SEARCH: Evaluateh and f on a finite setS of trial points inX on the current
meshMy as in Definitio{ Z.4. This step is optional, i.&,= 0 is allowed. If an
improving or dominating point is found i, then theSEARCH may terminate|,
skip the next - BLL - step, and go directly to theARAMETER UPDATE step.
Otherwise the algorithm must go to theLL step.

~

e PoLL: Evaluateh andf on the poll seb of trial points inX on the current mesh
My as in Definitior[ 2.5 (optional: use Definitipn P.7). This step may termipate
opportunistically.

e PARAMETER UPDATE

— DefineV, 1 to be the union of4 with the sets of points iX visited in the
SEARCHandPOLL steps.

— Classify the iteration as being dominating, improving, or unsuccessful, and
updateAy ; according to equatiof (5), adf, ; according to[(4).

- Update the barrier parameteff?‘ as in equatiorﬂG).

— Increase&k < k+ 1 and go back to theNCUMBENT DEFINITION step.

Figure 4: A MADS-PB algorithm for constrained optimization

Dk(x')} whereDy(x!) is the positive basis constructed in [6] (it is denotedigy
in that reference).

In the event that botFy or I, are nonempty, aecondaryframe centex? will
be chosen as well aspimary poll center. The next definition provides a practical
rule to choose which are the primary and secondary frame centers. It is based on
another (optional) user supplied paramgter O called theframe center trigger.

Definition 2.7 (Frame center selection rule)Let p > 0 be a given constant and
suppose that= 0 and k # 0. If fT —p > f/, then the primary poll centerix

is chosen iny and the secondary poll centeﬁ is chosen in . Otherwise the

primary poll center ¥ is chosen in Fand the secondary poll centeg is chosen in

Ik.
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The dashed horizontal line in Figyrg 1 just below the feasible incumbent repre-
sentsf = ko —p. On that particular example, the frame center selection rule would
choose the primary poll center in the infeasible incumbent,sethere are both
theoretical and computational reasons for this approach. The following corollary to
a later result shows the theoretical value of the frame center selection rule. In this
corollary, we use the notion of a refining sequence familiar to readers of our earlier
papers. We will define it later, but for now suffice it to say that refining sequences
are the ones for which our strongest convergence results apply, and refined points
are our solutions.

Corollary 2.8 Suppose that assumptions A1, A2 and A3 hold, then there can not be
a refining subsequence of infeasible primary poll centers satisfying the poll trigger
condition that converges to a feasible refined point.

Proof. The proof is immediate from Theorgm 312, since the feasible points guar-
anteed by that theorem would negate the poll trigger condition. n

If the infeasible incumbent is beIO\i\[ — p, then we might hope that by em-
phasizing it as the primary poll center we can reach a better part of the feasible
region than the one containing the feasible incumﬂent.

3 Convergence analysis

The MADS-PB algorithm can be applied to any nonlinear problem of the foym (1)
provided that assumption Al is satisfied. There are two possible behaviors for
the iterates produced by the algorithm. One possibility is that the iterates go un-
bounded, in which case no necessary optimality conditions may be guaranteed. We
repeat the standard assumption from Segtioh 2.1 that the iterates remain bounded.

A2 : All trial points considered by the algorithm lie in a bounded set.

This assumption may be reformulated in our notation as follows: There exists
some bounded set IR" containingVi for everyk. By its definition,Vi does not
contain any points that violate any of the closed constraints. Thus, it is easy to en-
sure A2 is satisfied by having membership in a bounded set as a closed constraint.
Indeed, engineering problem statements usually have bounds on all the optimiza-
tion variables.

2We are indebted to Dr. Paul Frank of the Boeing Company for suggesting the utility of this
strategy in the context of the GPS-Filter algorithm giveri_in [5].
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Combining assumption A2 with the mesh structure was shownlin [6] to be
enough to ensure that limipA” = 0. Our main interest will be in the subsequence
of frame centers for which the corresponding mesh size parameters converge to
zero.

DefineU C N to be the subset of iteration indices corresponding to unsuccess-
ful iterations. ThePoOLL step generates trial points around either or both feasible
and infeasible incumbents. kfe U, and polling was done aroun§j € F, thenxf,
is called afeasible minimal frame center. K< U, and polling was done around
X € Iy, thenx, is called arinfeasible minimal frame center. We need to study both
type of frame centers separately, but notice th&tdfU then the iteration neces-
sarily has a minimal frame centers of both types — unless either incumbent set is
empty.

Definition 3.1 A subsequence of the MADS-PB minimal frame cenfetguex
for some subset of indices® U, is said to be aefining subsequendé{AE}keK
converges to zero.

The limitX of a convergent refining subsequence is called a refined point. If
IimkeLg—t exists for some subsetd K with poll direction ¢ € Dg(x«), and if
Xk +Ap'de € X for infinitely many ke L, then this limit is said to be a refining
direction forx.

The analysis relies on the following definitions. The Clarke generalized deriva-
tive of f atxXe Q in the directionv € R" is defined as

fy+tv) -~ f(y)

f(Xv) = limsup :

y—% yeX
t]0,y+tve X

This definition from Jahn_[17] generalizes the original one by Clarke [10] to the
case wherd is not defined outsid¥. Similarly, we say that a function is locally
Lipschitz if it is Lipschitz with a finite constant in some nonempty neighborhood
intersected withx.

Our convergence results involve different types of tangent cones. As in the
MADS analysis[[6], the most important one for the present context is the hypertan-
gent conel[25] td) atX:

TSR = {veR":3e>0suchthay+twe Q
forally € QNBg(X),w e Bg(v) and O< t < €}.

The analysis is divided into three cases. First, Se¢tion 3.1 considers the case
where the algorithm generates a convergent feasible refining subsequence. We give

14



conditions under which the Clarke derivative fofs non-negative in the hypertan-
gent cone tAQ at the feasible refined point. Second, we analyze the funttion

in Sectior{ 3.2. We give conditions under which the Clarke derivativeisfnon-
negative in the hypertangent cone to the closed constrairgsa refined point.
Finally in Section$ 3]3 ar[d 3.4, we look at the case where the algorithm generates
an infeasible refining subsequence converging to a point on the boundary\é
propose conditions in the form of an external constraint qualification under which
the Clarke derivative off is non-negative in the hypertangent coneCat the
refined point. Thus, since the Clarke tangent cone is the closure of the hypertan-
gent cone, when the latter is nonempty, all three cases result in a proof of Clarke
stationarity. We finally briefly summarize our results in secfion 3.5.

3.1 A feasible refining subsequence: results fof

The analysis presented in this subsection is similar to thét!of [6] where all con-
straints are treated through the barrier. The following lemma from elementary
analysis will be useful.

Lemma 3.2 If {a} is a bounded real sequence afby} is a convergent real
sequence, thelimsup, (ax + bx) = limsup, ax + limy by.

Theorem 3.3 Suppose that assumptions Al and A2 hold, and that the algorithm
generates a refining subsequen{oé}keK with xﬁ € kK converging to a refined
pointX~ in Q, near which f is Lipschitz. If & T (X7) is a refining direction for

%7, then P(X7;v) > 0.

Proof. Let {xk Frek with xk € K be a feasible refining subsequence converging to
£F e Qandv=limyc, ¢ o € TS (%) be arefining direction fax™ with dy € Dy(x{)
for everyk € L. For eaclk € L, define

dk .
tx = AF|dk]| — O and yi = X +tk(||d ” V> — % )

(the fact thatty — O follows from the last bullet of Definitioh 2/5). Sinckis
Lipschitz with constank > 0 nearx™, it follows that

‘f(xk)—f Yk)

Y

H X

which then converges to 0. This will be our sequeiibg} of Lemma 3.2 in go-
ing from the first to the second line below. Adding and subtracfi(‘@) to the
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numerator of the definition of the Clarke derivative, one gets

_ F Fy _
fosFv) > |imsupf(yk+tkv) f(xﬁ)”(xk) )
kel k

_fE Fy_
= |imsupf(yk+tkv) f(xk)_Him Fx) — k)
kel ty kel ty
f(XE +AMd) — f(xF F(XE)_ f
using eq.[(f) = limsup 04 80 = 104, iy TO5%) = T >0
kel tk kel ty

For sufficiently largek € L, X, +AQ'dk € Q sincevis an hypertangent direction.
Therefore, the last inequality follows from the fact thigtl, +Aldy) was evaluated
and compared by the algorithm thE), butx,f is a feasible minimal frame cenir.

The case where the set of refining directions is dense in a nonempty hypertan-
gent cone td2 ensures Clarke stationarity:

Corollary 3.4 Suppose that assumptions Al and A2 hold, and the algorithm gen-
erates arefining subsequenp{}keK with XE € F converging to a feasible refined
pointX™ in Q, near which f is Lipschitz. If the set of refining directions #bris
dense in § (%) # 0, thensF is a Clarke stationary point fof {1).

Proof. The assumptions ensure tht(XF;v) > 0 for a set of directions which

is dense in the closure @' (7). Furthermore, the closure of the hypertangent
cone coincides with the Clarke tangent cone wherever the hypertangent cone is
nonempty([25]. "

3.2 A convergent infeasible refining subsequence: results for

Before considering thé values for an infeasible refining sequence, we examine the
constraint violation functiorh at limits of refining subsequences. There are two
possibilities for the value at a refined poiit One possibility is thah(X') = 0.
This means that there is a nonempty feasible region and that the algorithm pro-
duced a global minimizer df over the domaiiX defined by the closed constraints.
Otherwisex" satisfies some necessary conditions to be a local minimizer of

The issue of local versus global minimizer is not the main point here. After all,
in analyzing SQP iterations, one generally makes strong assumptions like linear
independence of constraint gradients, which ensures that any local minimizer of
is a global minimizer. Since we do not assume continuous differentiability, we will
not make that specific assumption to ensure there are no local minimizecvef
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X. The real point of this section is to show what happens when there is an empty
feasible region. In either case, the following result shows that we do find a Clarke
stationary point foh.

Theorem 3.5 Let assumptions Al and A2 hold, and assume that the algorithm
generates a refining subsequer&g}kex With X, € I converging to a refined point

% in X near which h is Lipschitz. If g T () is a refining direction fox', then
h°(x';v) > 0.

Proof. Let {X, }kek With X, € Ik be an infeasible refining subsequence converging to
R € X andv = limye. llg_tﬂ € T (R') be a refining direction fox'; with dg € Dk(x})
for everyk € L. If h()‘(') = 0, then the result is trivial. Otherwise, the remainder of
the proof is identical to that of Theorgm B.3, whtand X playing the roles off
andQ, respectively. n

The next corollary’s proof is essentially identical to that of Corolfary 3.4.

Corollary 3.6 Suppose that assumptions Al and A2 hold, and the algorithm gen-
erates an infeasible refining subsequer{txg}keK with x{( € Iy converging to a
refined pointk' in X, near which h is Lipschitz. If the set of refining directions for
R is dense in {' (') # 0, thenk' is a Clarke stationary point for

min  h(x). (8)

xeX

Proof. The assumptions ensure tﬁﬁi()?' ;V) > 0 for a set of directions which

is dense in the closure at'(X'). Furthermore, the closure of the hypertangent
cone coincides with the Clarke tangent cone, wherever the hypertangent cone is
nonempty([25]. "

3.3 An external constraint qualification

The remaining case that needs to be analyzed further is when MADS generates an
infeasible refining subsequence converging to a feasible poideally, we would

like to show that the Clarke derivative 6fis nonnegative at for all hypertangent
vectors. The following example shows that without additional assumptions on the
constraints that there might be a descent directi@nTd! (X) for f. After this
motivating example, we will supply an adequate additional assumption and relate
it to a common constraint qualification for SQP.
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Example 3.7 Consider the optimization problem R:

min  f(x) =x
xeR (9)
s.t. ck) <0,
where
cx) = 0 if x <0,
T 4 MWpP(v(x) ifx >0,

with p(x) = —1260+ 4440x— 6015% 4 39358 — 1245x% + 153 and where/(x) =
—|log,(3)] and vx) = ng)x. These particular functions where chosen so that

p(1) =8, p() p(2) = 16
P(1)=0, p(3)=0, P2 =

and for any x> 0, the value€(x) € Z and v) €]1, 2] are the unique integer and
scalar such that x= 3 x 2-/®y(x).

Figure[§ illustrates the function c for sonfec Z. One can verify that c is
differentiable onR, that its derivative is Lipschitz continuous, and that for any
¢ €7, x=4x2"is the unique minimizer of ¢ on the intery8lx 2,5 x 27°].
The feasible region for this problem is simgly=] — c0, 0] with X = R.

2564~
c(x)
64 x4t
16x4-¢ a5, 8%,
Ax4-! A~ 7S e SN
0 tp=2x2-¢ 3x2-¢ Xgr=4x2-¢ 6x2-¢

=X3+1=X30+2
Figure 5:A differentiable constraint functioa(x).

The MADS instance considered here is tailored to produce a bad limit point.
At each three iterations, starting at iterati@ a SEARCHSstep is conducted. More
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precisely, at iteration k= 3¢+ 2 for somel € N, the SEARCH generates the trial
point t = X — 275AM with A = (AP)2. At other iterations thesEARCH step
is empty. The poll size parameter satisﬁk{s: \/EE‘ is doubled at dominating
iterations and halved at unsuccessful ones (i.e:,4, Wc=w" =1orwg=w =
—1in equation[(})).

MADS is initiated at = 4 with A = A} = 1and D= [1, —1]. The initial point
Xo is the unique minimizer of c in the intervi@,5] and therefore theoLL step at
iteration O fails to generate a new incumbent. Iterati@rstarts at X = Xp with
an even smaller poll size paramet&f = 1, thus iterationl is also unsuccessful.
Iteration 2 starts at » = x; with mesh and poll size parametex$' = 1—16 andAP =
%1- TheseARCHSstep at iteration k= 3/+ 2 with ¢/ = 0 generates the trial point &=
Xp — 25A2m =4 % = 2, which is more feasible than xand has a better objective
function value f. Iteratior® is thus dominating, and iteratio® starts at % = 2
with parameterd\]' = 7 andAf = 3.

For ¢/ € N, we will refer to iterations3¢,3¢/+ 1 and3/+ 2 as the/th cycle.

Proposition 3.8 For any integer? > 0, the iterates of cyclé generated by the
above instance of MADS satisfy,x= X3/11 = Xar12 = 4 x 2~ and the poll size
parameters satistpf, = 2-¢, A}, | =21 andA], , =272

Proof. The proof is done by induction agh We already verified in above that the
result holds for cyclé = 0.

Suppose that iteration & 3¢ is initiated with %, = 4 x 2~¢ and A}, = 2.
At that point f(xg) = 272 and cfxa;) = 16 x 4~ ‘. As mentioned abovegxis
the unique minimizer of ¢ in the intervid — AL, %« — Af] = [3x 27,5 x 2~/] and
therefore theeoOLL step at iteratiorB/ fails to generate a new incumbent. Iteration
3¢+ 1 starts at %,.1 = X3, with even smaller poll size parame'rA@ZJrl =21
thus iteration3/-+ 1 is also unsuccessful. lteratiddy + 2 starts at %, 2 = Xapy1
with poll size parametedl, , = 27~2. ThesEARCHstep at iteration k= 3¢+ 2
generates the trial point

tr = Xau2— 205, = Xa2—27°(05,,,)°
= 4x 212027 = 2 27

where cfy) = 4x 47" < c(xap2) = 16x 4~ and f(t;) < f(xse,2). Therefore iter-
ation 3/+ 2 is dominating, and iteratioB(/ + 1) starts at %(,,.1) =t; = 4 x 21

with Ag =21 n

(0+1)

The previous proposition shows that the entire sequence of MADS frame cen-
ters are infeasible and converge fo= 0, a feasible point on the boundary of
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Q =] —«,0]. The hypertangent cone @ at X is nonempty and contains descent
directions for the objective functionxt) = x. In fact, every hypertangent direction
is a descent direction for f since (& v) = f’(%;v) < 0 for every ve T} (X).

The above example shows that in order to derive stronger convergence results,
one must make an additional assumption. We propose the following constraint
qualification, wherdg(-) denotes a ball of radius

A3 : For every hypertangent directionc T4 (X) # 0, there exists ae > 0 for
whichh®(x;v) < 0 for all x € {x € XNBg(X) : h(x) > 0}.

Exampld 3.J fails to satisfy assumption A3 sirié€7 x 2-¢; —1) > 0 for any
£ € N. We discuss this assumption for the remaining of this subsectiori.] In [6],
we studied the case where the MADS algorithm treats all constraints by the barrier
approach, i.e.X = Q. We assumed the existence of an hypertangent vector at a
putative solutionxas a constraint qualification. We showed in the continuously
differentiable case that this is equivalent to the Gould and Tolle or Mangasarian
and Fromovitz constraint qualification with no equality constraints, [see [16, 8].
We restate that result here because we will need it in our investigation of A3.

Theorem 3.9 (from [€]) LetC: R" — R™ be continuously differentiable at a point
xeN={xeR" : C(x) <0}, and let4(X) = {i € {1,2,...,m}: ci(X) = 0} be
the active set ak. If ve R" is a hypertangent vector t at X thenOci(X)Tv < 0
for each ic A4(R) such thatOci(X) # 0. Furthermore, iffc;(X)Tv < O for each

i € 4(X), then ve R" is a hypertangent vector th at X.

As we saw in Section 3|1, the existence of a hypertangent vector was sufficient
for us to prove strong results for a refining sequence of feasible iterates, and the
previous theorem relates this assumption to assumptio@arthat are weaker
than those usually assumed for SQP.

The following theorem relates the constraint qualification A3 to assumptions
on C(x) under continuous differentiability. These assumptions are weaker than
assuming thaflci(X) # 0 for all i € A4(X), which is in turn weaker than a common
SQP assumptiom < n andC’(X) has full rank.

Theorem 3.10 Let C: R" — R™ be continuously differentiable at a poike Q =
{xe X : C(x) <0}, and assume that;f(x) # 0. Assume that there is &> 0 for
which

Vx € XN Bg(X) with C(x) £ 0, Ji € A4(X) for which g(x) > 0 and Oc;(X) # 0.

Then Assumption A3 holds.
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Proof. Letv € T} (%), Then by Theorerh 3/]ci(X)"v < 0 for eachi € A(X) with
Oci(X) # 0. By continuity,3e > 0 such that for everyx € X N Bg(X), we still have
thatOcj(x)Tv < O for eachi € 4(X) with Oc;(X) # 0.

By takinge even smaller if necessary, we can ensure that¢of(X) , ¢i(x) <0
for x € XN Bg(X). Now letx be such a point for which(x) > 0, which implies
C(x) £ 0. Then, by hypothesis, there must be at least iose4(X) for which
ci(x) > 0 andOc (X) # 0. ThusOc; (%) Tv < 0, and by the choice af, Oci(x)'v< 0
as well.

Sinceh(x) = 7' (max(c; (x),0))?, we have from[[14] that

h°(x;v) = Oh(x)Tv=2-v'C'(x) TW(X)C(x) , (10)

whereW(x) is a diagonal matrix with zeros in thth position wherc;(x) < 0 and
ones whert;(x) > 0. Thus, ) is nonpositive since it is the inner product of a
nonpositive vector 2vTC’(x) and a nonnegative vectd(x)C(x). Furthermore, it

is nonzero because for at least are4(X) theith components of the two vectors
are nonzero. Thus’(x;v) < 0. "

3.4 A convergent infeasible refining subsequence: result ohand h

We show here that under Assumption A3, the algorithm generates infinitely many
feasible points. Consequently, there exists a feasible refining subsequence, and thus
the convergence results of Sectjion 3.1 may be applied to that feasible subsequence.
We first need the following lemma.

Lemma 3.11 Letve T ()N TS (R), be such that assumption A3 is satisfied. Then
there exists a scala¥ > 0 such that if y¢ XN Bs(X), and hfy) > 0 and we Bs(v)
and0 <t < &, then hyy+tw) < h(y).

Proof. Letv € T (X) N T4 (X), ande > 0 be small enough so that assumption A3 is
satisfied. Suppose that the result is false, i.e., that fodany), there exists some
Ys € XN Bgs(X), with h(ys) > 0 and somavs € Bs(v) and some & ts < & such that
h(ys +tsws) > h(ys).

Then, if & is sufficiently small, themws € T (R) N TS (R), and the entire line
segment = [ys,Ys + tsws) is contained inX N Bs(X) (by definition of the hyper-
tangent cone tX). AssumptionA3 ensures that is Lipschitz continuous on.
Theorem 2.3.7 of Clarke [10] ensures that there is sarad and some, in the
generalized gradiemh(u) such thate;wgz = h(ys+tsws) — h(ys) > 0. Therefore,
by definition of the generalized gradiet,(u;ws) > w3 Z > 0. This contradicts
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assumption A3. -

The previous lemma provides sufficient conditions under whidkcreases in
some directiorw. It will be used in the proof of the next result by substituting
y = X, t = A|dk|| andw = ﬁ.

Theorem 3.12 Let assumptions Al, A2 and A3 hold, and assume that the algo-
rithm generates an infeasible refining subseque{x@@keK converging to a fea-

sible refined poink in Q with refining direction ve T (X) N TH (). Then, there
exists a feasible refining subsequence for which the conclusions of Theoiem 3.3
and Corollary[3.4 hold:

If v e T (X7) is a refining direction fok™, then £ (%F;v) > 0.

If the set of refining directions fof™ is dense in §'(X7) # 0, thenXF is a
Clarke stationary point for (1).

Proof. LetX € Q be the feasible limit of an infeasible refining subsequeixck
with refining directionv € T (R) N TH(X). But whenk € K is sufficiently large,
Assumption A3 and Lemn{a 31 ensures tjat Al'd, € X sincev € T{!(R), and
thath(x} +Af'dy) < h(x,) for some polling directiorl € Dx.

If h(x, +AQdk) > O then iteratiork would be either dominating or improving,
as a new infeasible incumbent would be generated. Therefore, foreal C U
sufficiently Iargeh(x{( + AR'dy) = 0 for some frame directiody € Dy.

We have shown that infinitely many feasible points neare generated by
the algorithm. Thus, there exists a feasible refining subsequence for which Theo-
rem[3.3 and Corollary 3]4 hold. n

To illustrate this last theorem, consider the simple example of minimizing the
convex functionf(x) = (x+ 1?2 subject to a single linear constraixt< 0 with
infeasible starting pointg = 1. The sequence of feasible frame cemémf any
MADS-PB instance will converge to the strictly feasible global optimiZes"—Tt
The entire sequence of infeasible frame centbcs)nverges to the feasible solution
%' = 0 on the boundary o). Polling around the infeasible frame centers will
generate some feasible points close'te- D, but these feasible points will usually
not improve the current feasible incumbent (which will be located near the global
minimizerx™ = —1). However, there are some feasible descent directions &br
. The point of this last observation is that Theofen 3.3 and Cordllaty 3.4 may be
applied to the limit of feasible frame centeds= —1t, and not tax" = 0.
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3.5 A hierarchical convergence analysis

The convergence results presented above may be summarized as follows. Under
assumption Al, the possible outcomes of applying the MADS-PB algorithm to
problem () are

-i- The sequence of frame centers is unbounded.

-ii- Under assumption A2, there exists a convergent refining subsequence, con-
verging to some refined poimt ~

-ili- In addition to -ii-, if X € X and if h is Lipschitz nearx,” and if the set of
refining directions is dense i} (X) # 0 thenx'is a Clarke stationary point
for the minimization ofh overX.

-iv- In addition to -ii-, if X€ Q C X and if h is Lipschitz neax,”and if the set
of refining directions is dense Y (X) # 0, and if the refining subsequence
contained infinitely many feasible frame cer@tﬂenx“is a Clarke station-
ary point for the minimization of overQ.

The results -iii- and -iv- require that the set of refining directions of the both
feasible and infeasible refining subsequences formed a dense set of directions. This
is ensured by the LTMADS way of defining the polling directionis [6].

The above convergence analysis may be pushed further by assuming more on
the differentiability off and on the nature of the tangent cones. We refer the reader
to [6] for definitions ofstrict differentiability,regularity and of thecontingent cone.

With these notions, we may extend the hierarchy of convergence results to:

-v- In addition to -iii-, if his strictly differentiable ak,"thenx’is a Clarke KKT
stationary point for the minimization dfoverX.

-vi- In addition to -iv-, if f is strictly differentiable ak,“thenxis a Clarke KKT
stationary point for the minimization df overQ.

-vii- In addition to -iii-, if X is regularx; thenxXis a contingent stationary point
for the minimization ot overX.

-viii- In addition to -iv-, if Q is regular ak; thenx’is a contingent stationary point
for the minimization off overQ.

-ix- If -v- and -vii- hold, thenx"is a contingent KKT stationary point for the
minimization ofh overX.

3 Assumption A3 is sufficient, but not necessary, to ensure the existence of infinitely many feasi-
ble frame centers.
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-x- If -vi- and -viii- hold, thenX'is a contingent KKT stationary point for the
minimization of f overQ.

The proof of the results -v- through -x- are practically identical to the similar
results in[[6], and are omitted here.

4 Numerical results

We compare four types of runs. The first three use methods already in the litera-
ture: GPS under the extreme barrier approach([26, 4], GPS with the filter approach
described in[[b] and LTMADS with the extreme barrier approach [6]. The two
other runs are both with the present MADS-PB approach with a standard primary
poll set. They are differentiated by using either one or two secondary poll direc-
tions and labelled as LTMADS-PB 1 and LTMADS-PB 2, respectively. Due to the
randomness present in the LTMADS algorithm, the reported results are the average
of five distinct calls with different random seeds.

In all runs, the default parameters are usBd= [lx — ly] is the standard 2n
set of coordinate directions, in GPS the poll points are reordered by success, and
in LTMADS the opportunisticsEARCHis performed (these strategies are detailed
in [6]). The frame around the secondary poll center will be constructed using either
the single direction-b(¢) from page 203 of[[6], or the two opposite directions
—b(¢) andb(?).

We consider three different problems. The first two are there to compare the
behavior of the algorithm on convex and non-convex problems of dimensions rang-
ing from 5 to 50. These two problems can easily be solved analytically to ensure
that we know the correct solution. The third problem is an engineering problem
with a black box function.

For all three problems, we report results from both feasible and infeasible
starting points. The runs that use the extreme barrier approach from an infeasi-
ble point are performed in two phases: First, a feasible point is found by solving
the problem|[(B) using GPS-EB or LTMADS-EB and stopping as soon as a point
with h(x) = 0 is found. Second, this feasible point is used as starting point for
solving problem[(Jl). The number of function evaluations of both steps are taken
into account.

We give plots of the progression of the incumbent feasible objective function
value versus the number of evaluations.

4.1 Linear optimization on an hypersphere

The following convex optimization problem was posed.in [6].
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n
{2&{1 _lei Starting points :
s Feasible (0,0,0,...,0,0)
s.t. lei2§3n, Infeasible (3,3,3,...,3,3).
i=

There is a single global optimal solution to that probleth= —+/3 for all i and
f(x*) = —v/3n. The purpose of this simple example is to illustrate the effect of the
dimension. We will test the values= 5,10,20 and 50 on two sets of runs. The
algorithm terminates at the 606hunction evaluation.

Figureq 6 and |7 illustrate the behavior of the algorithm from the feasible and
infeasible starting points, respectively.

n=5 n=10
0 0
O GPS-EB
o + GPS filter
-5 LTMADS-EB
LTMADS-PB 1
w 4 — LTMADS-PB 2
-10
-6
-15
-8
0 1000 2000 3000 0 2000 4000 6000
Number of evaluations Number of evaluations
n=20 n=50
0 0
-5
-20
-10
w 15 w —40
-20
_o5 -60
-30
-80
0 2000 4000 6000 8000 10000 12000 0 1 2 3
Number of evaluations Number of evaluations , 1¢*

Figure 6: Progression of the objective function value vs the number of evaluations
on a convex problem from a feasible starting point.
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n=5 n=10

0 0
O GPS-EB
o + GPS filter
_5 LTMADS-EB
LTMADS-PB 1
- -4 — LTMADS-PB 2
-10
-6
-15
-8
0 1000 2000 3000 0 2000 4000 6000
Number of evaluations Number of evaluations
n=20 n=50
0 0
-5
-20
-10
o -15 o —40
-20
-25 -60
-30
-80
0 2000 4000 6000 8000 10000 12000 0 1 2 3
Number of evaluations Number of evaluations , 14

Figure 7: Progression of the objective function value vs the number of evaluations
on a convex problem from an infeasible starting point.

One can observe that all runs involving LTMADS converge to the global min-
imizer. The GPS runs are very similar and converge to a suboptimal point on the
boundary of the domain.

The feasible domain for this problem is convex and full-dimentional. Thus,
LTMADS-EB has no difficulty finding a feasible point from an infeasible start.
LTMADS-PB behaves similarly except for= 50 when starting from a feasible
point. The logs of the runs reveals that a similar behavior occurs in two of the five
LTMADS-PB runs with a single secondary direction, and in one of the runs with
two secondary directions. The behavior is that the first infeasible trial point gener-
ated has a large value bf Then, for several iterations, the infeasible incumbents
are the primary poll centers, and a lot of function evaluations are used to move
back toward the domain.
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To investigate the role of the initial barrier parameter, we have made some
runs on the problem witim = 50 from the feasible starting point settihg®* to
0,100,1000,10000 and 100000. These are illustrated on Figlire 8 zooming in on
the first 15000 function evaluations. The first infeasible trial point generated by
LTMADS always has arh value inferior to 10000, and therefore the runs with
h'®*=10000,100000 oro are identical. Settingy'®*= 0 is equivalent to applying
LTMADS EB, which in this case turns out to be among the best strategies. It also
appears in this case that the use of a single secondary direction is preferable to
using two such directions. This suggests the following strategy for the choice of
hg'®*: Set it to zero if there is no infeasible starting point, otherwise set it to infinity.

One secondary direction Two secondary directions
0 0
@20 (EB)
-10 -10 _ _ _hT7®=100
....... h(™® = 1000
-20 -20 hy @ = 10000
-30 -30
-40 -40
-50 -50
-60 -60
-70 -70
80 ~ -80 -~
_ l L]
0 5000 10000 15000 0 5000 10000 15000
Number of evaluations Number of evaluations

Figure 8: Progression of the objective function value vs the number of evaluations
on a 50 variable convex problem from an feasible starting point with various values
of hg'®

4.2 Linear optimization over a non-convex set

Consider the optimization of a linear function over a non-convex domain:

)’(QJQ Xn Starting points :
n n Feasible (n,0,0,...,0,0)
st i;(x' 1 ZX”Ll Infeasible (n,0,0,...,0,—n).
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There is a single optimal solution to that problexh:= (1,1,1,...,1,1—n)T with

) ) ’c

f(x*) = 1—n. The algorithm terminates at the 6®runction evaluation.

Figure§ 9 and 10 illustrate the behavior of the algorithm from the feasible and
infeasible starting point, respectively.

Again, both GPS runs, from the feasible and infesasible starting points, fail to
approach the global solution because. GPS always generates trial points along the
same fixed directions.

n=5 n=1 0
0 0
O GPS-EB
) + GPS filter
-1 LTMADS-EB
LTMADS-PB 1
— o w 4 LTMADS-PB 2
-6
-3
-8
-4
0 1000 2000 3000 0 2000 4000 6000
Number of evaluations Number of evaluations
n=20 n=50
0 0
-10
-5
-20
— _10 —
-30
-15 -40
| . . .
0 2000 4000 6000 8000 10000 12000 0 1 2 3
Number of evaluations Number of evaluations , 1¢*

Figure 9: Progression of the objective function value vs the number of evaluations
on a non-convex problem from a feasible starting point.

From the feasible starting point, both the extreme and progressive barrier ap-
proach produce similar results, as expected. However, the usefulness of the pro-
gressive barrier approach is confirmed when starting from the infeasible point. Ta-
ble[4.2 gives the average number of function evaluations to generate a first feasible
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solution and the objective function value at this feasible point. It also gives the best
value found by the end of the run. These statistics are given for both LTMADS-
EB and LTMADS-PB. Both strategies where there are a single and two secondary
directions are combined since they give similar results.

n=5 n=10
0 0
O GPS-EB
2 + GPS filter
-1 LTMADS-EB
LTMADS-PB 1
— o o 4 LTMADS-PB 2
-6
-3
-8
-4
0 1000 2000 3000 0 2000 4000 6000
Number of evaluations Number of evaluations
n=20 n=50
0 0
-10
-5
-20
— _10 S
-30
-15 -40
0 2000 4000 6000 8000 10000 12000 0 1 2 3
Number of evaluations Number of evaluations , {4

Figure 10: Progression of the objective function value vs the number of evaluations
on a non-convex problem from an infeasible starting point

Let us analyze the situation whare- 50 in more detail because this is our first
example to illustrate the effectiveness of the progressive barrier approach. The ex-
treme barrier strategy required on average 1004 evaluations to generate a feasible
point while solving[(8). The average objective function value wag 2 (all values
were between-4 and—33). LTMADS-PB required 2402 evaluations (more than
twice the number of evaluations) to reach feasibility. But, since the progressive
barrier approach gives some importance to the objective function while searching
for a feasible solution, it always generated a solution whose valud@0. Ob-
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LTMADS-EB LTMADS-PB
n First feasible sol| Best sol|| First feasible sol| Best sol
#evals f-value| f-value|| #evals f-value| f-value

5 18.8 -0.4) -3.766 29.0 -2.6| -3.992
10 49.0 -1,4) -8,896 76.2 -7.2] -8.981
20| 181.2 -8.0| -18.680|| 374.2 -16.8| -18.974

50 || 1004.0 -22.2| -45.902 || 2401.9 -46.0| -48.795

Table 1: Comparison of LTMADS with an extreme barrier and a progressive barrier

serve that this value is better than any generated by LTMADS-EB even af@0®0,
evaluations, and the average function value at the 2402-th evaluation of LTMADS-
EB is only —25481. Clearly the progressive barrier approach used its strategy of
trying to decrease both andh to go to a better part of the feasible region as we
hoped.

4.3 Optimization of a styrene production process

In [1], we model the optimization of a styrene process production process with 8
continuous variables, and 4 closed yes-no constraints and 7 open constraints. Each
call to the black box requires between 1 and 3 seconds and still may fail to return a
value for some input parameters. The c++ code is freely available [12] and can be
used by designers of other derivative-free methods. The starting points are

Feasible (0.54,0.66,0.86,0.08,0.29,0.51,0.32,0.15)
Infeasible (0.44,0.99,0.76,0.39,0.39,0.48,0.43,0.05).

Figureq 1L illustrate the behavior of the algorithm from both starting points.

Once again, the LTMADS runs outperform the GPS ones. The LTMADS-EB
and LTMADS-PB runs from the feasible starting point again are similar to each
other. The LTMADS-PB runs with one or two secondary directions are also simi-
lar. Once that feasibility is reached, LTMADS-PB reduces the feasible incumbent
function value faster than LTMADS-EB.
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Figure 11: Progression of the objective function value vs the number of evaluations
on the styrene problem.

5 Discussion

The objective of this paper was to present an alternative to the barrier approach to
handle constraints in the context of the MADS algorithm. Our algorithm allows
infeasible points whose constraint violation function value is below a threshold
hy'®* that depends adaptively on the iteration numkerThis threshold is non-
increasing with respect k. When an initial feasible point is known, setting this
value to zero reduces the algorithm to MADS-EB [6].

Our numerical experiments suggest that our new approach is not necessarily
better than LTMADS-EB when a feasible starting point is known. Thus, a user
might seth]® to a small value, or perhaps even to 0, when a feasible starting
point is given. In the test problems that we considered, the sequence of feasible
and infeasible incumbents were converging to the same solution. There was a case
where a lot of infeasible solutions were generated. This indicates the utiligA6f
as a control.

The main use of our new approach is for non-convex problems where no initial
feasible point is known. In all these cases, LTMADS-PB converged faster than a
two-phase LTMADS-EB approach. The two-phase approach neglects the objective
function in the first phase and generates a first feasible point with a larger objective
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function value. The LTMADS-PB approach takes more time to reach feasibility,
but this first feasible point is usually much closer to the global solution.

We need more tests, but we tentatively conclude that since LTMADS-PB is

better from infeasible starts and about the same from feasible starts, it is the better
choice. The earlier GPS approaches seem to be noncompetitive. However, the
artful use of surrogates can make all these algorithms more effective for difficult
problems. See [2]5] for some GPS-filter results illustrating this point.
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