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Abstract

We propose a new algorithm for general constrained derivative-free op-
timization. As in most methods, constraint violations are aggregated into a
single constraint violation function. As in filter methods, a threshold, or bar-
rier, is imposed on the constraint violation function, and any trial point whose
constraint violation function value exceeds this threshold is discarded from
consideration. In the new algorithm, unlike the filter method, the amount of
constraint violation subject to the barrier is progressively decreased as the
algorithm evolves.

Using the Clarke nonsmooth calculus, we prove Clarke stationarity of the
sequences of feasible and infeasible trial points. The new method is effective
on two academic test problems with up to 50 variables, which were prob-
lematic for our GPS filter method. We also test on a chemical engineering
problem. The proposed method generally outperforms our LTMADS in the
case where no feasible initial points are known, and it does as well when
feasible points are known.
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1 Introduction

In [5], we modified the filter approach pioneered by Fletcher and Leyffer [15]
to treat general nonlinear constraints without derivatives by a generalized pattern
search (GPS-filter) algorithm. A filter aggregates all constraints into a single con-
straint violation function and treats the optimization problem as an unconstrained
biobjective problem with priority given to feasibility versus a low objective func-
tion value.

The convergence results we were able to provide for the GPS-filter method
are limited by the GPS restriction to a fixed finite set of directions in which the
space of variables is explored locally. We gave some pathological cases in which
the sequence of GPS-filter iterates fails to produce limit points that satisfy desir-
able optimality conditions. Still, the GPS-filter has solved some difficult industrial
problems despite less than desired theoretical support [2, 5, 20, 22, 21].

The mesh adaptive direct search class (MADS) class of algorithms [6] gener-
alizes GPS [26, 4] by removing the restriction of the local exploration of the space
of variables to a fixed finite set of directions. This enables the algorithm to handle
constraints, including nonlinear ones, by the extreme barrier approach in which in-
feasible points are simply rejected from consideration. We will call this algorithm
MADS-EB, where EB stands forextreme barrier.

Specific MADS-EB limit points satisfy optimality conditions that depend on
the local smoothness of the objective function under a constraint qualification by
Rockafellar [25], i.e., that the hypertangent cone to the feasible region is nonempty
at the limit point. This is a weaker constraint qualification than is usually assumed
for derivative-based methods such as SQP. For a strictly differentiable [18] ob-
jective function, the convergence analysis shows that MADS-EB generates limit
points that are KKT points. If the objective function is only Lipschitz near the
limit point, then it is a Clarke stationary point.

In this paper, we propose to combine ideas from the GPS-filter and MADS-EB
approaches for general nonlinear optimization

min
x∈Ω

f (x) (1)

whereΩ = {x∈ X : c j(x)≤ 0, j ∈ J} ⊂Rn and f ,c j : X→R∪{∞} for all j ∈ J =
{1,2, . . . ,m}, and whereX is a subset ofRn. Some useful terminology differen-
tiates between constraints that must always be satisfied, such as those that define
X, and constraints that need only be satisfied at the solution, such as thec j(x)≤ 0.
The former areclosedconstraints and the latter areopenconstraints.

Our proposed approached is called MADS with a progressive barrier, MADS-
PB. No differentiability assumptions on the objective and constraints are required
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to apply this new algorithm. However, the strength of the optimality results at a
limit point x̂ is closely tied to the local smoothness of the functions and to prop-
erties of the tangent cones toΩ andX at x̂. MADS-PB is shown theoretically and
numerically to work for all the cautionary examples we gave for the GPS-filter
method. As for MADS-EB, we prove convergence of MADS-PB to Clarke sta-
tionary points.

We call the algorithm proposed here aprogressive barrieralgorithm, as op-
posed to anextreme barrieralgorithm. The distinction is as follows. An extreme
barrier algorithm rejects all infeasible trial points. A progressive barrier algorithm
places a threshold on the constraint violation it allows, and progressively tightens
this threshold as the algorithm progresses. We do not use a filter, but we do use
the notion of dominance fundamental to filters to determine adaptively how to re-
duce the constraint violation threshold at each iteration. The user has the discretion
within MADS-PB to specify certain constraints to be closed and always treated by
the extreme barrier approach.

Given the strength of the MADS-EB convergence results and the positive re-
ports we hear from users, it is reasonable to ask what motivates us to undertake
this research rather than to abandon the filter in favor of the barrier for constraints.
There are several reasons.

• First, the MADS-EB approach requires a feasible starting point. Yet for some
practical problems like the aircraft planform results given in [2], there is no
initial feasible point. In fact, the first feasible point found by the GPS-filter
was acceptable as a solution. In the MADS-PB method, a user can decide
to treat a constraint as open until it becomes feasible and then move it into
the closed constraints, which are treated by the extreme barrier approach and
whose feasible region definesX.

• Second, some users have observed that the GPS-filter method provides use-
ful information about the sensitivity of the solution with respect to the con-
straints. The extreme barrier approach does not provide that information, but
MADS-PB does.

• Third, in an industrial optimization context, the functions defining the prob-
lem often are provided as a black-box computer codes. The codes read input
variables and output some values, or else they may fail to return a value for
various reasons. In this case, the function value is set to infinity. There are
sometimes constraints that return a boolean value that indicates feasibility
or not without quantifying the infeasibility. There might also be some con-
straints that must be satisfied in order for the simulation to work because the
objective functionf or some constraintsc j might not be defined outsideX.
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These Boolean constraints are incorporated in the setX, andX is handled
by the proposed algorithm through the barrier approach. Other constraints
quantify the amount by which they are violated, and so they may be treated
by a filter or progressive barrier if the user desires.

• It is not unreasonable to expect in nonlinear optimization that allowing con-
straint violations in the course of solving a problem often enables one to
solve the problem with fewer function and constraint evaluations. This might
happen if the domain is disjoint, or if feasibility at every step requires the it-
eration to take small steps along an erratic boundary to get into a better part
of the feasible region. Of course this might be mitigated in some problems
for which checking the constraints may be less expensive than computing
the objective function, and neither MADS version asks for function values
at points outsideX [19].

Thus, we are providing the user with options by extending MADS-EB to the
MADS-PB algorithm, including the option of deciding which constraints
should be satisfied before evaluating the objective function.

The paper is organized as follows. The next section describes the new MADS-
PB algorithm. Section 3 breaks down the convergence analysis into three cases.
First it analyzes subsequences of feasible iterates; the results are similar to those of
MADS-EB [6]. Second, subsequences of infeasible iterates are considered; results
on a measure of the constraint violations are presented. Finally, we analyze the case
where a subsequence of infeasible iterates converges to a feasible point. Numerical
results are presented in Section 4 on three test problems.

2 A MADS algorithm with a progressive barrier

MADS-PB is an iterative algorithm, and the iteration counter is denoted by the
index k ∈ N. We will useVk ⊂ X ⊆ Rn to represent the set of points where the
f and allc j function values have been evaluated by the start of iterationk. This
means that they satisfy the closed constraints. Each setVk contains a finite number
of points. The set of initial points isV0. It may contain feasible and infeasible
points with respect to the open constraints.
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2.1 The barrier on constraint violation

Adapting the filter terminology [15] to a mixture of open and closed constraints,
we define the constraint violation function

h(x) :=

 ∞ , if x /∈ X

∑
j∈J

(max(c j(x),0))2 , otherwise.

With this definition,h : Rn→ R∪{∞} is a nonnegative function, andx∈Ω if and
only if h(x) = 0. Moreover, if 0< h(x) < ∞ thenx∈X\Ω. The constraint violation
function could have been defined in other ways - the`1 norm is commonly used.
We favor the squared violations since it was shown in [5] that this performs better
in the present context, as it passes on any smoothness of the constraints toh.

We introduce the non-negative barrier parameterhmax
k , which is set at each

iteration. Any trial point whose constraint violation function value exceedshmax
k is

rejected from consideration. The barrier parameterhmax
k is non-increasing with the

iteration numberk; the rules for updating it at the end of an iteration are presented
in Section 2.4. In [6], an extreme barrier is used, i.e.,hmax

k = 0 for all k, and every
infeasible trial point is rejected from consideration.

The initial barrier parameterhmax
0 ≥ 0 can be fixed by the user. Alternatively,

the default value implemented in our code ishmax
0 = ∞. In the numerical results,

we will see that settinghmax
0 to a smaller value can be useful when the initial points

are all feasible.
The algorithm proposed here does not require that the initial points are feasi-

ble with respect to the open constraintsc j , j ∈ J. The algorithm can be applied
to a problem that satisfies only the first of the following assumptions. Its analysis
requires the remaining two assumptions. We will say more about the second and
third assumptions when we repeat them as they come into play. In particular, the
hypertangent and generalized derivative are defined in Section 3. We list them for-
mally here to refer to them all together later.

A1 : There exists some pointx0 in the user-provided setV0 such thatx0 ∈ X,
f (x0) < ∞ andh(x0) < hmax

0 .

A2 : All trial points considered by the algorithm lie in a bounded set.

A3 : For every hypertangent directionv∈ TH
Ω (x̂) 6= /0, there exists anε > 0 for

whichh◦(x;v)< 0 for all x∈ {x∈ X∩Bε(x̂) : h(x) > 0}.

The algorithm and its analysis partition the trials point into two sets: the fea-
sible and the infeasible points. The infeasible ones that do not satisfy the closed
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constraintsx∈ X are rejected through the barrier approach. The infeasible ones in
Ω\X are be treated differently. We next introduce definitions of best feasible and
infeasible incumbents at iterationk.

2.2 Feasible and infeasible incumbents

At the start of iterationk, two sets of incumbent solutions are constructed from the
setVk. The first one is the set of feasible incumbents. It consists of the feasible
points found by the start of iterationk that have the best objective function value.

Definition 2.1 At iteration k, the set offeasible incumbent solutionsis defined to
be

Fk = {argmin
x∈Vk

{ f (x) : h(x) = 0}}.

The set of infeasible incumbent solutions is constructed with the notion of dom-
inance used by filter algorithms [15, 5]. We first introduce the set of infeasible
undominated points.

Definition 2.2 At iteration k, the set ofinfeasible undominated pointsis defined to
be

Uk = {x∈Vk \Ω : 6 ∃y∈Vk \Ω such that y≺ x},

where y≺ x signifies that h(y) < h(x) and f(y)≤ f (x), or that h(y)≤ h(x) and
f (y)< f (x).

The set of infeasible incumbent solutions is constructed using the set of un-
dominated infeasible pointsUk, and the barrier parameterhmax

k .

Definition 2.3 At iteration k, the set ofinfeasible incumbent solutionsis defined to
be

Ik = {argmin
x∈Uk

{ f (x) : 0 < h(x)≤ hmax
k }}.

These two sets,Fk andIk, allow definition of the incumbent values at iteration
k. The incumbent feasiblef -value is defined to be

f F
k =

{
∞ if Fk = /0
f (x), for anyx∈ Fk otherwise,

(2)

5



and the incumbent infeasibleh and f -value are

(hI
k, f I

k) =
{

(∞,∞) if Ik = /0
(h(x), f (x)), for anyx∈ Ik otherwise,

(3)

Figure 1 illustrates the construction of the incumbent values at iterationk. The
circles represent the images of all 13 trial points generated by the algorithm by
the start of iterationk, i.e., the setVk. The barrier on the constraints rejects all
three trial points that map outside of the shaded area. The set of undominated
infeasible trial pointsUk is indicated by arrows. It contains four elements, three of
them with a constraint violation function value less thanhmax

k . The one with the
best objective function value is(hI

k, f I
k). Notice that this new incumbent was not

necessarily generated during iterationk−1. It belongs toVk, but could have been
generated at any iteration prior to iterationk. The role of the parameterρ appearing
in the right part of the figure is detailed in Section 2.5.

6f

-
h0

ρ
f F
k

hmax
k

bb b
↗

b

b
↗

b
b

↗
(hI

k, f
I
k)

b

b b
b

b

b
↗

Figure 1:New incumbent values at iterationk.

An immediate result is that ifFk 6= /0 at some iterationk, thenF̀ 6= /0 at every
iteration`≥ k. We propose in Section 2.4 an update rule forhmax

k that ensures the
analogue result forIk.

Once the incumbents setsFk andIk and incumbent values(0, f F
k ) and(hI

k, f I
k)

are updated by the above definitions at the start of an iteration, the goal during the
iteration is to change one of the incumbents. This occurs naturally when a trial
point that dominates one of the incumbents is generated. When no such points are
generated during an iteration, other measures must be taken. If the setVk+1 contains
an infeasible point with a smaller constraint violation function value thanhI

k, then
the barrier parameter is reduced to the largest value less thanhI

k. Otherwise, the
algorithm will refine the exploration in the space of variables. The next section
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details how the algorithm explores the space of variables. Section 2.4 describes the
parameter update rules.

2.3 Description of an iteration : the SEARCHand POLL steps

In GPS, MADS-EB and the present algorithm, every trial point must be chosen on
an underlying mesh defined on the space of variables whose fineness or coarseness
is dictated by a nonnegative scalar called themesh size parameter∆m

k .

Definition 2.4 At iteration k, the current mesh is defined to be the following union:

Mk =
⋃

x∈Vk

{x+∆m
k Dz : z∈ NnD} ,

where D= GZ ∈ Rn×nD is a positive spanning matrix1, for some non-singular
matrix G∈ Rn×n and integer matrix Z∈ Zn×nD .

Note thatD,G andZ are fixed matrices, independent of the iteration numberk.
Frequent choices for these matrices areG = In, then×n identity matrix andD =
Z = [In − In]. For convenience, the matrixD will often be treated as a set:d ∈ D
signifies thatd is a column ofD. The mesh structure allows a convergence analysis
without requiring sufficient decrease conditions to accept new incumbent solutions.

There is great algorithmic flexibility in searching for new incumbent solu-
tions. Each iteration is divided into two steps: theSEARCH and POLL steps. In
the SEARCH step, any number of trial points may be generated, as long as these
points belong to the meshMk, and that the strategy to identify them terminates in
finite time.

TheSEARCHstrategy may, for example, be based on a heuristic exploration of
the domain, or it may employ surrogate functions based on response surfaces, in-
terpolatory models or simplified physics models.Surrogates are most often tailored
for specific applications, see, e.g., [5, 7, 9, 19, 20, 22]. Let us simply denote bySk

the finite set of mesh points used in theSEARCHstep at iterationk.
Unlike the freedom of theSEARCHstep, thePOLL step is more rigidly defined.

It consists of a local exploration around incumbent solutions inFk and Ik. The
POLL step depends on another nonnegative scalar called the poll size parameter
∆p

k . There is some flexibility in the choice of the poll size parameter. It must,
however, be tied to the mesh size parameter in a way that satisfies:

lim
k∈K

∆m
k = 0 if and only if lim

k∈K
∆p

k = 0, for every infinite subset of indicesK. (4)

1 nonnegative linear combinations of the columns ofD spanRn, see [13].
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For example, one may set∆p
k =

√
∆m

k (as in [6]) so that the poll size parameter goes
to zero slower than the mesh size parameter. The original idea of a frame is from
[11, 23, 24], and it is more general than the version given below.

Definition 2.5 At iteration k, Dk(x) is said to be a set of frame directions around
a frame center x∈Vk if Dk(x) is a finite set of directions inNn such that for each
d ∈ Dk(x),

• d 6= 0 can be written as a nonnegative integer combination of the directions
in D, and d= Du for some vector u∈ NnD that may depend on the iteration
number k and on x;

• the distance from the frame center x to x+∆m
k d is bounded above by a mul-

tiple of the poll size parameter:∆m
k ‖d‖ ≤ ∆p

k max{‖d′‖ : d′ ∈ D}.

This last definition is the fundamental difference between GPS and MADS. In
GPS, the directions in the setDk are restricted to be chosen from the fixed setD. In
MADS, the number of candidates directions inDk(·) grows without bound as∆m

k
goes to zero.

In MADS-EB, the POLL set was always constructed around a feasible point
since any infeasible point was rejected by the barrier. In the present MADS-PB
approach, we need to adapt the definition of thePOLL set.

Definition 2.6 At iteration k, thePOLL set Pk is defined to be

Pk =


Pk(xF

k ) for some some xF
k ∈ Fk, if Ik = /0

Pk(xI
k) for some some xI

k ∈ Ik, if Fk = /0
Pk(xF

k )∪Pk(xI
k) for some some xF

k ∈ Fk and xIk ∈ Ik, otherwise,

where Pk(x) = {x+∆m
k d : d ∈ Dk(x)}∩X ⊂Mk is called a frame around x.

Figure 2 illustrates an example in which both a feasiblexF
k and an infeasible

incumbentxI
k solution exist. In the figure, the feasible regionΩ is delimited by the

nonlinear curves, andX = R2. The mesh is constructed using∆m
k and is represented

by the intersection of all thin lines. The poll set is constructed by taking some mesh
points inside the two regions delimited by the thick lines, based on∆p

k > ∆m
k . In this

example, the frame around the feasible incumbent is constructed using the positive
spanning set of directionsDk(xF

k ) = {(−3,4)T ,(4,0)T ,(−1,−4)T} and the frame
around the infeasible one is built using a single directionDk(xI

k) = {(3,−4)T}.
Therefore, the poll setPk is the union of the framesPk(xF

k ) = {p1, p2, p3} with
Pk(xI

k) = {p4}. Implementable strategies of constructing the poll setPk are pre-
sented in Section 2.5.
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Figure 2:A MADS POLL setPk = Pk(xF
k )∪Pk(xI

k) = {p1, p2, p3}∪{p4}.

2.4 Parameter update at the end of an iteration

After the POLL and SEARCH steps are completed, the algorithm has evaluatedf
andh at one or more trial points. At the end of iterationk, Vk+1 contains all the
trial points since the algorithm was initiated. The function values of the points in
Vk+1 govern the way that the mesh size∆m

k+1 and the barrierhmax
k+1 parameters are

updated.
The way this is done depends on the result of iterationk. There are three possi-

bilities: the iteration may bedominating, improving, orunsuccessful. A dominating
iteration generates a trial point that dominates an incumbent. An improving itera-
tion is not dominating, but it improves the feasibility of the infeasible incumbents,
and so it replaces the infeasible incumbent set. Unsuccessful iterations are neither
dominating nor improving. These three types of iterations are detailed below and
illustrated by having a point ofVk+1 in the appropriate shaded area of Figure 3.

• Iterationk is said to bedominatingwhenever a trial pointy∈Vk+1 that dom-
inates an incumbent is generated, i.e., when

h(y) = 0 and f (y)< f F
k , or y≺ x for all x∈ Ik.

• Iterationk is said to beimproving if it is not dominating, but if there is an
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Dominating iteration

∆k+1≥ ∆k

hmax
k+1 = hI

k

6f

-
h0

f F
k

b

(hI
k, f

I
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b

Improving iteration

∆k+1 = ∆k

hmax
k+1 < hI

k

6f

-
h0

f F
k

r

(hI
k, f

I
k)

r

Unsuccessful iteration

∆k+1 < ∆k

hmax
k+1 = hI

k

Figure 3: Mesh size and barier parameter update rules.

infeasible solutiony∈Vk+1 with a strictly smaller value ofh, i.e., when

0 < h(y)< hI
k and f (y)> f I

k.

• Iterations that are neither dominating nor improving are calledunsuccessful
iterations. This happens when every trial pointy∈Vk+1 is such that:

h(y) =0 and f (y)≥ f F
k , or h(y) =hI

k and f (y)≥ f I
k, or h(y)> hI

k.

To clarify these ideas, we refer to Figure 2 to illustrate various constructions.
Assume that at iterationk the incumbent sets areFk = {xF

k } andIk = {xI
k} and that

Vk+1 = {xF
k ,xI

k, p1, p2, p3, p4}, and that no other points have been generated so far.
Let us consider the infeasible points. In the case where 0< h(p1) < h(p4) < h(xI

k)
and f (p1) > f (p4) > f (xI

k), then the next infeasible incumbent set would beIk+1 =
{p4}, and iterationk would be improving becauseh(p4) < (h(xI

k) but p4 6≺ xI
k. The

iteration would have been dominating if insteadf (p4) ≤ f (xI
k), or of course, if

either f (p2) or f (p3) were strictly less thanf (xF
k ).

The classification of the iterations dictates the way that the mesh and poll size
parameters are updated from one iteration to another. More precisely, given a fixed
rational numberτ > 1, and two integersw− ≤ −1 andw+ ≥ 0, the mesh size
parameter is updated as follow:

∆m
k+1 = τwk∆m

k (5)

for somewk ∈


{0,1, . . . ,w+}, if iterationk is dominating

{0}, if iterationk is improving
{w−,w−+1, . . . ,−1}, if iterationk is unsuccessful.
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Typical choices [6] areτ = 4, andw+ =−w− = 1.
The update rules for the barrier parameter are:

hmax
k+1 =

{
max

y∈Vk+1

{h(y) : h(y)< hI
k} if iterationk is improving

hI
k otherwise.

(6)

There are three sub-cases when an iteration is dominating. First, it is possible that a
trial point that improves the feasible incumbent is generated, and that no trial point
dominates the infeasible one. In that case, the consequence of the update rules is
that (hI

k+1, f I
k+1) = (hI

k, f I
k) but f F

k+1 < f F
k . Second, it is possible that a dominant

trial point t with h(t) = hI
k > 0 is generated. In that case, the consequence of the

update rules is thathI
k+1 = hI

k but f I
k+1 < f I

k. The last possibility is thathI
k+1 < hI

k
and f I

k+1≤ f I
k.

Consequences of the barrier parameter update rule (6) are thathmax
k is non-

increasing with respect tok, and if Ik 6= /0 thenI` 6= /0 at every iteratioǹ ≥ k.
Figure 4 summarizes our new MADS-PB algorithm. Notice that if the initial

setV0 contains a feasible point, and ifhmax
0 = 0, then the algorithm reduces to

MADS-EB [6].
This high-level description of the algorithm contains in the initialization phase

an optional frame center triggerρ, which is discussed in the next section.
Remark: In practice, some users may wish to allow soft constraints in problem (1).
Then one can apply the method described in this paper to the optimization problem
minx{ f (x) : h(x)≤ hmin}wherehmin> 0 is a user-selected threshold on the function
h under which any trial point is considered feasible. This may be done by redefin-
ing dominating and improving iterations by replacingh(x) = 0 by h(x)≤ hmin and
h(x) > 0 byh(x) > hmin.

2.5 A frame center selection rule

We refer the reader to Section 4.1 of [6] for an explicit way to construct the positive
basisDk used to construct a frame. This construction depends only on the mesh and
poll size parameters∆m

k and∆p
k , and it satisfies the requirements of Definition 2.6.

The setDk is constructed by first generating a directionbk, and then completing it

to a positive basisBk. This is done is such a way that∪∞
k=1

{
bk
‖bk‖

}
is dense in the

unit sphere with probability 1 (see Theorem 4.3 in [6] and [3]). MADS with this
choice ofDk is called LTMADS.

At each iteration, there are either one or two frame centers. WhenFk = /0 or
Ik = /0, then there is only one frame center, call itx1, and it is arbitrarily chosen in
whichever ofFk or Ik is nonempty (by A1). That frame center is then called the
primary frame center. ThePOLL set will simply bePk = Pk(x1) = {x1 +∆m

k d : d ∈

11
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A MADS-PB ALGORITHM FOR CONSTRAINED OPTIMIZATION

• INITIALIZATION (given a set of initial pointsV0 that satisfies assumption A1):
– Define the mesh matricesG andZ as in Definition 2.4, and mesh parameters

τ, w− andw+ as in equation (5), and 0< ∆m
0 ≤ ∆p

0.

– (Optional) Define the frame triggerρ > 0 as in Definition 2.7.

– Set the iteration counterk← 0.

• INCUMBENT DEFINITION: Define the incumbent setsFk and Ik as in Defini-
tions 2.1 and 2.3, and incumbent valuesf F

k and (hI
k, f I

k) as in Equations (2)
and (3).

• SEARCH: Evaluateh and f on a finite setSk of trial points inX on the current
meshMk as in Definition 2.4. This step is optional, i.e.,Sk = /0 is allowed. If an
improving or dominating point is found inSk, then theSEARCH may terminate,
skip the next - POLL - step, and go directly to thePARAMETER UPDATE step.
Otherwise the algorithm must go to thePOLL step.

• POLL: Evaluateh and f on the poll setPk of trial points inX on the current mesh
Mk as in Definition 2.6 (optional: use Definition 2.7). This step may terminate
opportunistically.

• PARAMETER UPDATE:
– DefineVk+1 to be the union ofVk with the sets of points inX visited in the

SEARCHandPOLL steps.

– Classify the iteration as being dominating, improving, or unsuccessful, and
update∆m

k+1 according to equation (5), and∆p
k+1 according to (4).

– Update the barrier parameterhmax
k+1 as in equation (6).

– Increasek← k+1 and go back to the INCUMBENT DEFINITION step.

Figure 4: A MADS-PB algorithm for constrained optimization

Dk(x1)} whereDk(x1) is the positive basis constructed in [6] (it is denoted byDk

in that reference).
In the event that bothFk or Ik are nonempty, asecondaryframe centerx2 will

be chosen as well as aprimarypoll center. The next definition provides a practical
rule to choose which are the primary and secondary frame centers. It is based on
another (optional) user supplied parameterρ > 0 called theframe center trigger.

Definition 2.7 (Frame center selection rule)Let ρ > 0 be a given constant and
suppose that Fk 6= /0 and Ik 6= /0. If f F

k − ρ > f I
k, then the primary poll center x1

k
is chosen in Ik and the secondary poll center x2

k is chosen in Fk. Otherwise the
primary poll center x1k is chosen in Fk and the secondary poll center x2

k is chosen in
Ik.

12



The dashed horizontal line in Figure 1 just below the feasible incumbent repre-
sentsf = f F

k −ρ. On that particular example, the frame center selection rule would
choose the primary poll center in the infeasible incumbent setIk. There are both
theoretical and computational reasons for this approach. The following corollary to
a later result shows the theoretical value of the frame center selection rule. In this
corollary, we use the notion of a refining sequence familiar to readers of our earlier
papers. We will define it later, but for now suffice it to say that refining sequences
are the ones for which our strongest convergence results apply, and refined points
are our solutions.

Corollary 2.8 Suppose that assumptions A1, A2 and A3 hold, then there can not be
a refining subsequence of infeasible primary poll centers satisfying the poll trigger
condition that converges to a feasible refined point.

Proof. The proof is immediate from Theorem 3.12, since the feasible points guar-
anteed by that theorem would negate the poll trigger condition.

If the infeasible incumbent is belowf F
k −ρ, then we might hope that by em-

phasizing it as the primary poll center we can reach a better part of the feasible
region than the one containing the feasible incumbent.2

3 Convergence analysis

The MADS-PB algorithm can be applied to any nonlinear problem of the form (1)
provided that assumption A1 is satisfied. There are two possible behaviors for
the iterates produced by the algorithm. One possibility is that the iterates go un-
bounded, in which case no necessary optimality conditions may be guaranteed. We
repeat the standard assumption from Section 2.1 that the iterates remain bounded.

A2 : All trial points considered by the algorithm lie in a bounded set.

This assumption may be reformulated in our notation as follows: There exists
some bounded set inRn containingVk for everyk. By its definition,Vk does not
contain any points that violate any of the closed constraints. Thus, it is easy to en-
sure A2 is satisfied by having membership in a bounded set as a closed constraint.
Indeed, engineering problem statements usually have bounds on all the optimiza-
tion variables.

2We are indebted to Dr. Paul Frank of the Boeing Company for suggesting the utility of this
strategy in the context of the GPS-Filter algorithm given in [5].
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Combining assumption A2 with the mesh structure was shown in [6] to be
enough to ensure that liminfk ∆m

k = 0. Our main interest will be in the subsequence
of frame centers for which the corresponding mesh size parameters converge to
zero.

DefineU⊆ N to be the subset of iteration indices corresponding to unsuccess-
ful iterations. ThePOLL step generates trial points around either or both feasible
and infeasible incumbents. Ifk∈U, and polling was done aroundxF

k ∈ Fk, thenxF
k

is called afeasible minimal frame center. Ifk ∈ U, and polling was done around
xI

k ∈ Ik, thenxI
k is called aninfeasible minimal frame center. We need to study both

type of frame centers separately, but notice that ifk ∈ U then the iteration neces-
sarily has a minimal frame centers of both types – unless either incumbent set is
empty.

Definition 3.1 A subsequence of the MADS-PB minimal frame centers,{xk}k∈K

for some subset of indices K⊆ U, is said to be arefining subsequenceif {∆p
k}k∈K

converges to zero.
The limit x̂ of a convergent refining subsequence is called a refined point. If

limk∈L
dk
‖dk‖ exists for some subset L⊆ K with poll direction dk ∈ Dk(xk), and if

xk + ∆m
k dk ∈ X for infinitely many k∈ L, then this limit is said to be a refining

direction forx̂.

The analysis relies on the following definitions. The Clarke generalized deriva-
tive of f at x̂∈Ω in the directionv∈ Rn is defined as

f ◦(x̂;v) = limsup
y→ x̂, y∈ X

t ↓ 0, y+ tv∈ X

f (y+ tv)− f (y)
t

.

This definition from Jahn [17] generalizes the original one by Clarke [10] to the
case wheref is not defined outsideX. Similarly, we say that a function is locally
Lipschitz if it is Lipschitz with a finite constant in some nonempty neighborhood
intersected withX.

Our convergence results involve different types of tangent cones. As in the
MADS analysis [6], the most important one for the present context is the hypertan-
gent cone [25] toΩ at x̂:

TH
Ω (x̂) = {v∈ Rn : ∃ε > 0 such thaty+ tw∈Ω

for all y∈Ω∩Bε(x̂),w∈ Bε(v) and 0< t < ε}.

The analysis is divided into three cases. First, Section 3.1 considers the case
where the algorithm generates a convergent feasible refining subsequence. We give

14



conditions under which the Clarke derivative off is non-negative in the hypertan-
gent cone toΩ at the feasible refined point. Second, we analyze the functionh
in Section 3.2. We give conditions under which the Clarke derivative ofh is non-
negative in the hypertangent cone to the closed constraintsX at a refined point.
Finally in Sections 3.3 and 3.4, we look at the case where the algorithm generates
an infeasible refining subsequence converging to a point on the boundary ofΩ. We
propose conditions in the form of an external constraint qualification under which
the Clarke derivative off is non-negative in the hypertangent cone toΩ at the
refined point. Thus, since the Clarke tangent cone is the closure of the hypertan-
gent cone, when the latter is nonempty, all three cases result in a proof of Clarke
stationarity. We finally briefly summarize our results in section 3.5.

3.1 A feasible refining subsequence: results forf

The analysis presented in this subsection is similar to that of [6] where all con-
straints are treated through the barrier. The following lemma from elementary
analysis will be useful.

Lemma 3.2 If {ak} is a bounded real sequence and{bk} is a convergent real
sequence, thenlimsupk(ak +bk) = limsupk ak + limk bk.

Theorem 3.3 Suppose that assumptions A1 and A2 hold, and that the algorithm
generates a refining subsequence{xF

k }k∈K with xF
k ∈ Fk converging to a refined

point x̂F in Ω, near which f is Lipschitz. If v∈ TH
Ω (x̂F) is a refining direction for

x̂F , then f◦(x̂F ;v)≥ 0.

Proof. Let {xF
k }k∈K with xF

k ∈ Fk be a feasible refining subsequence converging to
x̂F ∈Ω andv= limk∈L

dk
‖dk‖ ∈TH

Ω (x̂F) be a refining direction for ˆxF with dk∈Dk(xF
k )

for everyk∈ L. For eachk∈ L, define

tk = ∆m
k ‖dk‖→ 0 and yk = xF

k + tk

(
dk

‖dk‖
−v

)
→ x̂F (7)

(the fact thattk → 0 follows from the last bullet of Definition 2.5). Sincef is
Lipschitz with constantλ > 0 near ˆxF , it follows that∣∣∣∣ f (xF

k )− f (yk)
tk

∣∣∣∣ ≤ λ
∥∥∥∥ dk

‖dk‖
−v

∥∥∥∥ ,

which then converges to 0. This will be our sequence{bk} of Lemma 3.2 in go-
ing from the first to the second line below. Adding and subtractingf (xF

k ) to the
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numerator of the definition of the Clarke derivative, one gets

f ◦(x̂F ;v) ≥ limsup
k∈L

f (yk + tkv)− f (xF
k )+ f (xF

k )− f (yk)
tk

= limsup
k∈L

f (yk + tkv)− f (xF
k )

tk
+ lim

k∈L

f (xF
k )− f (yk)

tk

using eq. (7) = limsup
k∈L

f (xF
k +∆m

k dk)− f (xF
k )

tk
+ lim

k∈L

f (xF
k )− f (yk)

tk
≥ 0

For sufficiently largek∈ L, xF
k +∆m

k dk ∈Ω sincev is an hypertangent direction.
Therefore, the last inequality follows from the fact thatf (xF

k +∆m
k dk) was evaluated

and compared by the algorithm tof (xF
k ), butxF

k is a feasible minimal frame center.

The case where the set of refining directions is dense in a nonempty hypertan-
gent cone toΩ ensures Clarke stationarity:

Corollary 3.4 Suppose that assumptions A1 and A2 hold, and the algorithm gen-
erates a refining subsequence{xF

k }k∈K with xF
k ∈Fk converging to a feasible refined

point x̂F in Ω, near which f is Lipschitz. If the set of refining directions forx̂F is
dense in THΩ (x̂F) 6= /0, thenx̂F is a Clarke stationary point for (1).

Proof. The assumptions ensure thatf ◦(x̂F ;v)≥ 0 for a set of directionsv which
is dense in the closure ofTH

Ω (x̂F). Furthermore, the closure of the hypertangent
cone coincides with the Clarke tangent cone wherever the hypertangent cone is
nonempty [25].

3.2 A convergent infeasible refining subsequence: results forh

Before considering thef values for an infeasible refining sequence, we examine the
constraint violation functionh at limits of refining subsequences. There are two
possibilities for the value at a refined point ˆxI . One possibility is thath(x̂I ) = 0.
This means that there is a nonempty feasible region and that the algorithm pro-
duced a global minimizer ofh over the domainX defined by the closed constraints.
Otherwise, ˆxI satisfies some necessary conditions to be a local minimizer ofh.

The issue of local versus global minimizer is not the main point here. After all,
in analyzing SQP iterations, one generally makes strong assumptions like linear
independence of constraint gradients, which ensures that any local minimizer ofh
is a global minimizer. Since we do not assume continuous differentiability, we will
not make that specific assumption to ensure there are no local minimizers ofh over
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X. The real point of this section is to show what happens when there is an empty
feasible region. In either case, the following result shows that we do find a Clarke
stationary point forh.

Theorem 3.5 Let assumptions A1 and A2 hold, and assume that the algorithm
generates a refining subsequence{xI

k}k∈K with xI
k ∈ Ik converging to a refined point

x̂I in X near which h is Lipschitz. If v∈ TH
X (x̂I

k) is a refining direction forx̂I , then
h◦(x̂I ;v)≥ 0.

Proof. Let {xI
k}k∈K with xI

k ∈ Ik be an infeasible refining subsequence converging to
x̂I ∈ X andv= limk∈L

dk
‖dk‖ ∈ TH

X (x̂I ) be a refining direction for ˆxI , with dk ∈Dk(xI
k)

for everyk∈ L. If h(x̂I ) = 0, then the result is trivial. Otherwise, the remainder of
the proof is identical to that of Theorem 3.3, withh andX playing the roles off
andΩ, respectively.

The next corollary’s proof is essentially identical to that of Corollary 3.4.

Corollary 3.6 Suppose that assumptions A1 and A2 hold, and the algorithm gen-
erates an infeasible refining subsequence{xI

k}k∈K with xI
k ∈ Ik converging to a

refined pointx̂I in X, near which h is Lipschitz. If the set of refining directions for
x̂I is dense in THX (x̂I ) 6= /0, thenx̂I is a Clarke stationary point for

min
x∈X

h(x). (8)

Proof. The assumptions ensure thath◦(x̂I ;v)≥ 0 for a set of directionsv which
is dense in the closure ofTH

X (x̂I ). Furthermore, the closure of the hypertangent
cone coincides with the Clarke tangent cone, wherever the hypertangent cone is
nonempty [25].

3.3 An external constraint qualification

The remaining case that needs to be analyzed further is when MADS generates an
infeasible refining subsequence converging to a feasible point ˆx. Ideally, we would
like to show that the Clarke derivative off is nonnegative at ˆx for all hypertangent
vectors. The following example shows that without additional assumptions on the
constraints that there might be a descent directionv ∈ TH

Ω (x̂) for f . After this
motivating example, we will supply an adequate additional assumption and relate
it to a common constraint qualification for SQP.
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Example 3.7 Consider the optimization problem inR1:

min
x∈R

f (x) = x

s.t. c(x)≤ 0,
(9)

where

c(x) =
{

0 if x≤ 0,

4−`(x)p2(v(x)) if x > 0,

with p(x) =−1260+4440x−6015x2+3935x3−1245x4+153x5 and wherè (x) =
−blog2(

x
3)c and v(x) = 2`(x)

3 x. These particular functions where chosen so that

p(1) = 8, p(4
3) = 4, p(2) = 16

p′(1) = 0, p′(4
3) = 0, p′(2) = 0.

and for any x> 0, the values̀(x) ∈ Z and v(x) ∈]1, 2] are the unique integer and
scalar such that x= 3×2−`(x)v(x).

Figure 5 illustrates the function c for somè∈ Z. One can verify that c is
differentiable onR, that its derivative is Lipschitz continuous, and that for any
` ∈ Z, x = 4×2−` is the unique minimizer of c on the interval[3×2−`,5×2−`].
The feasible region for this problem is simplyΩ =]−∞,0] with X = R.

0 t`=2×2−` 3×2−` x3`=4×2−`

=x3`+1=x3`+2
6×2−`

∆p
3`︷ ︸︸ ︷ ∆p

3`︷ ︸︸ ︷4×4−`
16×4−`

64×4−`

256×4−`

c(x)

Figure 5:A differentiable constraint functionc(x).

The MADS instance considered here is tailored to produce a bad limit point.
At each three iterations, starting at iteration2, a SEARCHstep is conducted. More
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precisely, at iteration k= 3`+ 2 for somè ∈ N, the SEARCH generates the trial
point t̀ = xk− 2`+5∆m

k with ∆m
k = (∆p

k)
2. At other iterations theSEARCH step

is empty. The poll size parameter satisfies∆p
k =

√
∆m

k is doubled at dominating
iterations and halved at unsuccessful ones (i.e.,τ = 4, wk = w+ = 1 or wk = w− =
−1 in equation (5)).

MADS is initiated at x0 = 4with ∆m
0 = ∆p

0 = 1and D= [1, −1]. The initial point
x0 is the unique minimizer of c in the interval[3,5] and therefore thePOLL step at
iteration 0 fails to generate a new incumbent. Iteration1 starts at x1 = x0 with
an even smaller poll size parameter∆p

1 = 1
2, thus iteration1 is also unsuccessful.

Iteration2 starts at x2 = x1 with mesh and poll size parameters∆m
2 = 1

16 and∆p
2 =

1
4. TheSEARCHstep at iteration k= 3`+2 with ` = 0 generates the trial point t` =
x2−25∆m

2 = 4− 32
16 = 2, which is more feasible than x2 and has a better objective

function value f . Iteration2 is thus dominating, and iteration3 starts at x3 = 2
with parameters∆m

3 = 1
4 and∆p

3 = 1
2.

For ` ∈ N, we will refer to iterations3`,3`+1 and3`+2 as thè th cycle.

Proposition 3.8For any integer` ≥ 0, the iterates of cyclè generated by the
above instance of MADS satisfy x3` = x3`+1 = x3`+2 = 4× 2−` and the poll size
parameters satisfy∆p

3` = 2−`, ∆p
3`+1 = 2−`−1 and∆p

3`+2 = 2−`−2.

Proof. The proof is done by induction oǹ. We already verified in above that the
result holds for cyclè = 0.

Suppose that iteration k= 3` is initiated with x3` = 4× 2−` and ∆p
3` = 2−`.

At that point f(x3`) = 2−`+2 and c(x3`) = 16× 4−`. As mentioned above, x3` is
the unique minimizer of c in the interval[xk−∆p

k ,xk−∆p
k ] = [3×2−`,5×2−`] and

therefore thePOLL step at iteration3` fails to generate a new incumbent. Iteration
3`+ 1 starts at x3`+1 = x3` with even smaller poll size parameter∆p

3`+1 = 2−`−1,
thus iteration3`+ 1 is also unsuccessful. Iteration3`+ 2 starts at x3`+2 = x3`+1

with poll size parameter∆p
3`+2 = 2−`−2. TheSEARCHstep at iteration k= 3`+2

generates the trial point

t` = x3`+2−2`+5∆m
3`+2 = x3`+2−2`+5(∆p

3`+2)
2

= 4×2−`−2`+5×2−2`−4 = 2×2−`,

where c(t`) = 4×4−` < c(x3`+2) = 16×4−` and f(t`) < f (x3`+2). Therefore iter-
ation3`+2 is dominating, and iteration3(`+1) starts at x3(`+1) = t` = 4×2−`−1

with ∆p
3(`+1) = 2−`−1.

The previous proposition shows that the entire sequence of MADS frame cen-
ters are infeasible and converge tôx = 0, a feasible point on the boundary of
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Ω =]−∞,0]. The hypertangent cone toΩ at x̂ is nonempty and contains descent
directions for the objective function f(x) = x. In fact, every hypertangent direction
is a descent direction for f since f◦(x̂;v) = f ′(x̂;v)< 0 for every v∈ TH

Ω (x̂).

The above example shows that in order to derive stronger convergence results,
one must make an additional assumption. We propose the following constraint
qualification, whereBε(·) denotes a ball of radiusε.

A3 : For every hypertangent directionv∈ TH
Ω (x̂) 6= /0, there exists anε > 0 for

whichh◦(x;v)< 0 for all x∈ {x∈ X∩Bε(x̂) : h(x) > 0}.

Example 3.7 fails to satisfy assumption A3 sinceh′(7×2−`; −1) > 0 for any
` ∈ N. We discuss this assumption for the remaining of this subsection. In [6],
we studied the case where the MADS algorithm treats all constraints by the barrier
approach, i.e.,X = Ω. We assumed the existence of an hypertangent vector at a
putative solution ˆx as a constraint qualification. We showed in the continuously
differentiable case that this is equivalent to the Gould and Tolle or Mangasarian
and Fromovitz constraint qualification with no equality constraints, see [16, 8].
We restate that result here because we will need it in our investigation of A3.

Theorem 3.9 (from [6]) Let C: Rn→Rm be continuously differentiable at a point
x̂ ∈ Λ = {x ∈ Rn : C(x) ≤ 0}, and letA(x̂) = {i ∈ {1,2, . . . ,m} : ci(x̂) = 0} be
the active set at̂x. If v∈ Rn is a hypertangent vector toΛ at x̂ then∇ci(x̂)Tv < 0
for each i∈ A(x̂) such that∇ci(x̂) 6= 0. Furthermore, if∇ci(x̂)Tv < 0 for each
i ∈ A(x̂), then v∈ Rn is a hypertangent vector toΛ at x̂.

As we saw in Section 3.1, the existence of a hypertangent vector was sufficient
for us to prove strong results for a refining sequence of feasible iterates, and the
previous theorem relates this assumption to assumptions onC(x) that are weaker
than those usually assumed for SQP.

The following theorem relates the constraint qualification A3 to assumptions
on C(x) under continuous differentiability. These assumptions are weaker than
assuming that∇ci(x̂) 6= 0 for all i ∈ A(x̂), which is in turn weaker than a common
SQP assumptionm≤ n andC′(x̂) has full rank.

Theorem 3.10 Let C: Rn→ Rm be continuously differentiable at a pointx̂∈Ω =
{x∈ X : C(x)≤ 0}, and assume that THΩ (x̂) 6= /0. Assume that there is anε > 0 for
which

∀x∈ X∩Bε(x̂) with C(x) � 0, ∃i ∈ A(x̂) for which ci(x) > 0 and∇ci(x̂) 6= 0.

Then Assumption A3 holds.
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Proof. Let v∈ TH
Ω (x̂), Then by Theorem 3.9,∇ci(x̂)Tv < 0 for eachi ∈ A(x̂) with

∇ci(x̂) 6= 0. By continuity,∃ε > 0 such that for everyx∈ X∩Bε(x̂), we still have
that∇ci(x)Tv < 0 for eachi ∈ A(x̂) with ∇ci(x̂) 6= 0.

By takingε even smaller if necessary, we can ensure that fori /∈A(x̂) , ci(x) < 0
for x ∈ X ∩Bε(x̂). Now let x be such a point for whichh(x) > 0, which implies
C(x) � 0. Then, by hypothesis, there must be at least onei ∈ A(x̂) for which
ci(x) > 0 and∇ci(x̂) 6= 0. Thus∇ci(x̂)Tv< 0, and by the choice ofε, ∇ci(x)Tv< 0
as well.

Sinceh(x) = ∑m
1 (max(c j(x),0))2, we have from [14] that

h◦(x;v) = ∇h(x)Tv = 2·vTC′(x)TW(x)C(x) , (10)

whereW(x) is a diagonal matrix with zeros in theith position whenci(x)≤ 0 and
ones whenci(x) > 0. Thus, (10) is nonpositive since it is the inner product of a
nonpositive vector 2·vTC′(x) and a nonnegative vectorW(x)C(x). Furthermore, it
is nonzero because for at least onei ∈ A(x̂) the ith components of the two vectors
are nonzero. Thush◦(x;v)< 0.

3.4 A convergent infeasible refining subsequence: result onf and h

We show here that under Assumption A3, the algorithm generates infinitely many
feasible points. Consequently, there exists a feasible refining subsequence, and thus
the convergence results of Section 3.1 may be applied to that feasible subsequence.
We first need the following lemma.

Lemma 3.11 Let v∈ TH
X (x̂)∩TH

Ω (x̂), be such that assumption A3 is satisfied. Then
there exists a scalarδ > 0 such that if y∈ X∩Bδ(x̂), and h(y) > 0 and w∈ Bδ(v)
and0 < t < δ, then h(y+ tw)< h(y).

Proof. Let v∈ TH
X (x̂)∩TH

Ω (x̂), andε > 0 be small enough so that assumption A3 is
satisfied. Suppose that the result is false, i.e., that for anyδ > 0, there exists some
yδ ∈ X∩Bδ(x̂), with h(yδ) > 0 and somewδ ∈ Bδ(v) and some 0< tδ < δ such that
h(yδ + tδwδ)≥ h(yδ).

Then, if δ is sufficiently small, thenwδ ∈ TH
X (x̂)∩TH

Ω (x̂), and the entire line
segmentI = [yδ,yδ + tδwδ] is contained inX ∩Bδ(x̂) (by definition of the hyper-
tangent cone toX). AssumptionA3 ensures thath is Lipschitz continuous onI .
Theorem 2.3.7 of Clarke [10] ensures that there is someu ∈ I and someζ in the
generalized gradient∂h(u) such thattδwT

δ ζ = h(yδ + tδwδ)−h(yδ)≥ 0. Therefore,
by definition of the generalized gradient,h◦(u;wδ) ≥ wT

δ ζ ≥ 0. This contradicts

21

• 



assumption A3.

The previous lemma provides sufficient conditions under whichh decreases in
some directionw. It will be used in the proof of the next result by substituting
y = xk, t = ∆m

k ‖dk‖ andw = dk
‖dk‖ .

Theorem 3.12 Let assumptions A1, A2 and A3 hold, and assume that the algo-
rithm generates an infeasible refining subsequence{xI

k}k∈K converging to a fea-
sible refined point̂x in Ω with refining direction v∈ TH

X (x̂)∩TH
Ω (x̂). Then, there

exists a feasible refining subsequence for which the conclusions of Theorem 3.3
and Corollary 3.4 hold:

If v ∈ TH
Ω (x̂F) is a refining direction for̂xF , then f◦(x̂F ;v)≥ 0.

If the set of refining directions for̂xF is dense in THΩ (x̂F) 6= /0, then x̂F is a
Clarke stationary point for (1).

Proof. Let x̂∈Ω be the feasible limit of an infeasible refining subsequence{xI
k}k∈K

with refining directionv ∈ TH
X (x̂)∩TH

Ω (x̂). But whenk ∈ K is sufficiently large,
Assumption A3 and Lemma 3.11 ensures thatxI

k +∆m
k dk ∈ X sincev∈ TH

X (x̂), and
thath(xI

k +∆m
k dk) < h(xI

k) for some polling directiondk ∈ Dk.
If h(xI

k +∆m
k dk) > 0 then iterationk would be either dominating or improving,

as a new infeasible incumbent would be generated. Therefore, for allk ∈ K ⊆U
sufficiently large,h(xI

k +∆m
k dk) = 0 for some frame directiondk ∈ Dk.

We have shown that infinitely many feasible points near ˆx are generated by
the algorithm. Thus, there exists a feasible refining subsequence for which Theo-
rem 3.3 and Corollary 3.4 hold.

To illustrate this last theorem, consider the simple example of minimizing the
convex functionf (x) = (x+ π)2 subject to a single linear constraintx≤ 0 with
infeasible starting pointx0 = 1. The sequence of feasible frame centersxF

k of any
MADS-PB instance will converge to the strictly feasible global optimizer ˆxF =−π.
The entire sequence of infeasible frame centersxI

k converges to the feasible solution
x̂I = 0 on the boundary ofΩ. Polling around the infeasible frame centers will
generate some feasible points close to ˆxI = 0, but these feasible points will usually
not improve the current feasible incumbent (which will be located near the global
minimizer x̂F =−π). However, there are some feasible descent directions forf at
x̂I . The point of this last observation is that Theorem 3.3 and Corollary 3.4 may be
applied to the limit of feasible frame centers ˆxF =−π, and not to ˆxI = 0.
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3.5 A hierarchical convergence analysis

The convergence results presented above may be summarized as follows. Under
assumption A1, the possible outcomes of applying the MADS-PB algorithm to
problem (1) are

-i- The sequence of frame centers is unbounded.

-ii- Under assumption A2, there exists a convergent refining subsequence, con-
verging to some refined point ˆx.

-iii- In addition to -ii-, if x̂ ∈ X and if h is Lipschitz near ˆx, and if the set of
refining directions is dense inTH

X (x̂) 6= /0 thenx̂ is a Clarke stationary point
for the minimization ofh overX.

-iv- In addition to -ii-, if x̂ ∈ Ω ⊆ X and if h is Lipschitz near ˆx, and if the set
of refining directions is dense inTH

Ω (x̂) 6= /0, and if the refining subsequence
contained infinitely many feasible frame centers3, thenx̂ is a Clarke station-
ary point for the minimization off overΩ.

The results -iii- and -iv- require that the set of refining directions of the both
feasible and infeasible refining subsequences formed a dense set of directions. This
is ensured by the LTMADS way of defining the polling directions [6].

The above convergence analysis may be pushed further by assuming more on
the differentiability of f and on the nature of the tangent cones. We refer the reader
to [6] for definitions ofstrict differentiability,regularityand of thecontingent cone.
With these notions, we may extend the hierarchy of convergence results to:

-v- In addition to -iii-, if h is strictly differentiable at ˆx, thenx̂ is a Clarke KKT
stationary point for the minimization ofh overX.

-vi- In addition to -iv-, if f is strictly differentiable at ˆx, thenx̂ is a Clarke KKT
stationary point for the minimization off overΩ.

-vii- In addition to -iii-, if X is regular ˆx, thenx̂ is a contingent stationary point
for the minimization ofh overX.

-viii- In addition to -iv-, if Ω is regular at ˆx, thenx̂ is a contingent stationary point
for the minimization off overΩ.

-ix- If -v- and -vii- hold, then ˆx is a contingent KKT stationary point for the
minimization ofh overX.

3 Assumption A3 is sufficient, but not necessary, to ensure the existence of infinitely many feasi-
ble frame centers.
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-x- If -vi- and -viii- hold, then x̂ is a contingent KKT stationary point for the
minimization of f overΩ.

The proof of the results -v- through -x- are practically identical to the similar
results in [6], and are omitted here.

4 Numerical results

We compare four types of runs. The first three use methods already in the litera-
ture: GPS under the extreme barrier approach [26, 4], GPS with the filter approach
described in [5] and LTMADS with the extreme barrier approach [6]. The two
other runs are both with the present MADS-PB approach with a standard primary
poll set. They are differentiated by using either one or two secondary poll direc-
tions and labelled as LTMADS-PB 1 and LTMADS-PB 2, respectively. Due to the
randomness present in the LTMADS algorithm, the reported results are the average
of five distinct calls with different random seeds.

In all runs, the default parameters are used:D = [Ik − Ik] is the standard 2n
set of coordinate directions, in GPS the poll points are reordered by success, and
in LTMADS the opportunisticSEARCH is performed (these strategies are detailed
in [6]). The frame around the secondary poll center will be constructed using either
the single direction−b(`) from page 203 of [6], or the two opposite directions
−b(`) andb(`).

We consider three different problems. The first two are there to compare the
behavior of the algorithm on convex and non-convex problems of dimensions rang-
ing from 5 to 50. These two problems can easily be solved analytically to ensure
that we know the correct solution. The third problem is an engineering problem
with a black box function.

For all three problems, we report results from both feasible and infeasible
starting points. The runs that use the extreme barrier approach from an infeasi-
ble point are performed in two phases: First, a feasible point is found by solving
the problem (8) using GPS-EB or LTMADS-EB and stopping as soon as a point
with h(x) = 0 is found. Second, this feasible point is used as starting point for
solving problem (1). The number of function evaluations of both steps are taken
into account.

We give plots of the progression of the incumbent feasible objective function
value versus the number of evaluations.

4.1 Linear optimization on an hypersphere

The following convex optimization problem was posed in [6].
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min
x∈Rn

n

∑
i=1

xi

s.t.
n

∑
i=1

x2
i ≤ 3n,

Starting points :
Feasible (0,0,0, . . . ,0,0)
Infeasible (3,3,3, . . . ,3,3).

There is a single global optimal solution to that problem:x∗i = −
√

3 for all i and
f (x∗) =−

√
3n. The purpose of this simple example is to illustrate the effect of the

dimension. We will test the valuesn = 5,10,20 and 50 on two sets of runs. The
algorithm terminates at the 600nth function evaluation.

Figures 6 and 7 illustrate the behavior of the algorithm from the feasible and
infeasible starting points, respectively.
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Figure 6: Progression of the objective function value vs the number of evaluations
on a convex problem from a feasible starting point.
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Figure 7: Progression of the objective function value vs the number of evaluations
on a convex problem from an infeasible starting point.

One can observe that all runs involving LTMADS converge to the global min-
imizer. The GPS runs are very similar and converge to a suboptimal point on the
boundary of the domain.

The feasible domain for this problem is convex and full-dimentional. Thus,
LTMADS-EB has no difficulty finding a feasible point from an infeasible start.
LTMADS-PB behaves similarly except forn = 50 when starting from a feasible
point. The logs of the runs reveals that a similar behavior occurs in two of the five
LTMADS-PB runs with a single secondary direction, and in one of the runs with
two secondary directions. The behavior is that the first infeasible trial point gener-
ated has a large value ofh. Then, for several iterations, the infeasible incumbents
are the primary poll centers, and a lot of function evaluations are used to move
back toward the domain.
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To investigate the role of the initial barrier parameter, we have made some
runs on the problem withn = 50 from the feasible starting point settinghmax

0 to
0,100,1000,10000 and 100000. These are illustrated on Figure 8 zooming in on
the first 15000 function evaluations. The first infeasible trial point generated by
LTMADS always has anh value inferior to 10000, and therefore the runs with
hmax

0 = 10000,100000 or∞ are identical. Settinghmax
0 = 0 is equivalent to applying

LTMADS-EB, which in this case turns out to be among the best strategies. It also
appears in this case that the use of a single secondary direction is preferable to
using two such directions. This suggests the following strategy for the choice of
hmax

0 : Set it to zero if there is no infeasible starting point, otherwise set it to infinity.
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Figure 8: Progression of the objective function value vs the number of evaluations
on a 50 variable convex problem from an feasible starting point with various values
of hmax

0 .

4.2 Linear optimization over a non-convex set

Consider the optimization of a linear function over a non-convex domain:

min
x∈Rn

xn

s.t.
n

∑
i=1

(xi−1)2≤ n2≤
n

∑
i=1

(xi +1)2,

Starting points :
Feasible (n,0,0, . . . ,0,0)
Infeasible (n,0,0, . . . ,0,−n).
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There is a single optimal solution to that problem:x∗ = (1,1,1, . . . ,1,1−n)T with
f (x∗) = 1−n. The algorithm terminates at the 600nth function evaluation.

Figures 9 and 10 illustrate the behavior of the algorithm from the feasible and
infeasible starting point, respectively.

Again, both GPS runs, from the feasible and infesasible starting points, fail to
approach the global solution because. GPS always generates trial points along the
same fixed directions.
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Figure 9: Progression of the objective function value vs the number of evaluations
on a non-convex problem from a feasible starting point.

From the feasible starting point, both the extreme and progressive barrier ap-
proach produce similar results, as expected. However, the usefulness of the pro-
gressive barrier approach is confirmed when starting from the infeasible point. Ta-
ble 4.2 gives the average number of function evaluations to generate a first feasible
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solution and the objective function value at this feasible point. It also gives the best
value found by the end of the run. These statistics are given for both LTMADS-
EB and LTMADS-PB. Both strategies where there are a single and two secondary
directions are combined since they give similar results.
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Figure 10: Progression of the objective function value vs the number of evaluations
on a non-convex problem from an infeasible starting point

Let us analyze the situation wheren= 50 in more detail because this is our first
example to illustrate the effectiveness of the progressive barrier approach. The ex-
treme barrier strategy required on average 1004 evaluations to generate a feasible
point while solving (8). The average objective function value was−22.2 (all values
were between−4 and−33). LTMADS-PB required 2402 evaluations (more than
twice the number of evaluations) to reach feasibility. But, since the progressive
barrier approach gives some importance to the objective function while searching
for a feasible solution, it always generated a solution whose value is−46.0. Ob-
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LTMADS-EB LTMADS-PB
n First feasible sol Best sol First feasible sol Best sol

# evals f -value f -value # evals f -value f -value

5 18.8 -0.4 -3.766 29.0 -2.6 -3.992
10 49.0 -1,4 -8,896 76.2 -7.2 -8.981
20 181.2 -8.0 -18.680 374.2 -16.8 -18.974
50 1004.0 -22.2 -45.902 2401.9 -46.0 -48.795

Table 1: Comparison of LTMADS with an extreme barrier and a progressive barrier

serve that this value is better than any generated by LTMADS-EB even after 50,000
evaluations, and the average function value at the 2402-th evaluation of LTMADS-
EB is only−25.481. Clearly the progressive barrier approach used its strategy of
trying to decrease bothf andh to go to a better part of the feasible region as we
hoped.

4.3 Optimization of a styrene production process

In [1], we model the optimization of a styrene process production process with 8
continuous variables, and 4 closed yes-no constraints and 7 open constraints. Each
call to the black box requires between 1 and 3 seconds and still may fail to return a
value for some input parameters. The c++ code is freely available [12] and can be
used by designers of other derivative-free methods. The starting points are

Feasible (0.54,0.66,0.86,0.08,0.29,0.51,0.32,0.15)
Infeasible (0.44,0.99,0.76,0.39,0.39,0.48,0.43,0.05).

Figures 11 illustrate the behavior of the algorithm from both starting points.
Once again, the LTMADS runs outperform the GPS ones. The LTMADS-EB

and LTMADS-PB runs from the feasible starting point again are similar to each
other. The LTMADS-PB runs with one or two secondary directions are also simi-
lar. Once that feasibility is reached, LTMADS-PB reduces the feasible incumbent
function value faster than LTMADS-EB.
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Figure 11: Progression of the objective function value vs the number of evaluations
on the styrene problem.

5 Discussion

The objective of this paper was to present an alternative to the barrier approach to
handle constraints in the context of the MADS algorithm. Our algorithm allows
infeasible points whose constraint violation function value is below a threshold
hmax

k that depends adaptively on the iteration numberk. This threshold is non-
increasing with respect tok. When an initial feasible point is known, setting this
value to zero reduces the algorithm to MADS-EB [6].

Our numerical experiments suggest that our new approach is not necessarily
better than LTMADS-EB when a feasible starting point is known. Thus, a user
might sethmax

0 to a small value, or perhaps even to 0, when a feasible starting
point is given. In the test problems that we considered, the sequence of feasible
and infeasible incumbents were converging to the same solution. There was a case
where a lot of infeasible solutions were generated. This indicates the utility ofhmax

0
as a control.

The main use of our new approach is for non-convex problems where no initial
feasible point is known. In all these cases, LTMADS-PB converged faster than a
two-phase LTMADS-EB approach. The two-phase approach neglects the objective
function in the first phase and generates a first feasible point with a larger objective
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function value. The LTMADS-PB approach takes more time to reach feasibility,
but this first feasible point is usually much closer to the global solution.

We need more tests, but we tentatively conclude that since LTMADS-PB is
better from infeasible starts and about the same from feasible starts, it is the better
choice. The earlier GPS approaches seem to be noncompetitive. However, the
artful use of surrogates can make all these algorithms more effective for difficult
problems. See [2, 5] for some GPS-filter results illustrating this point.
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