A THEOREM ON PERIODS OF INTEGRALS
OF ALGEBRAIC MANIFOLDS

by Phillip A. Griffiths

1. I want to state and prove a theorem about a certain transcendental
invariant, the period matrix," which is attached to every non singular al-
gebraic manifold ¥V < Py. In order to illustrate the basic ideas and avoid
a lot of discussion about general algebraic manifolds, let me do things in
case V is an algebraic surface, ie., dim V = 2,

What I am interested in is algebraic families of algebraic surfaces.

Example. Let £° &% E2¢E° be homogeneous coordinates in Py. Then
an algebraic surface ¥V < P of degree n is given by
% . Ainililsz(éo)io(é1)“(52)‘2(‘:3)i3 = 0.
fotiy+iztia=n
The A;,:,;, are determined up to a non zero constant, and so correspond
uniquely to a point 1 = [+, A;,...i,,---] in some big Py. We write ¥, for
the surface with the above equation and may think of {V}}, .p, as an
algebraic family of algebraic surfaces.

Now, still looking at this example, a ‘‘general” V, = Py will be non
singular. More precisely, there exists a hypersurface H < Py, such that
V, is non singular for Ae P, — H.

In general, an algebraic family of algebraic surfaces is given by poly-
nomial equations

JACREN SHY AT A R
gp(’loi'“s‘lM) =0

with parameter space a non singular projective algebraic manifold B,
and then our family is {V;}, . with V; non singular for le B— H = B*,

2. In our family {V,},., we let V be a typical non singular surface.
We want to define the period matrix Q(V) of V. For this we first choose
a basis y;,+,7, for H,(V,Z) (mod torsion). There is a distinguished class
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y given by the homology class of Py_,:V where Py_, = Py is a generic
hyperplane:

To see how unique this choice of basis is, suppose for example that B is a
curve:

Here H is the finite set A, -+, ¢ of critical points where V,, is singular.
Then the basis of H,(V,Z) is determined up to the action of the fundamental
group m,(B*) on Hy(V,Z) where B* = B— {1,,---,A¢} and n,(B*) acts by
displacing cycles around a closed path on B*. Such an action is given
by an integral matrix Ty, = X;_ T, where i) Ty =y and ii) TQ'T = Q
where Q = (y, ' 7,) is the intersection matrix on H,(V,Z). We let T be the
group of all such matrices.

Now choose a basis w',--,w™ for the holomorphic 2-forms on V. This
basis is determined up to @ = X . Afw’, det A % 0. We then form

the period matrix
[ (m‘ fw' )
l.Yl .?b
[m,n
v

Q:

f mﬂl
b

This matrix satisfies?
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) Q0'Q =0

) Q0Q >0
l!’!(ﬂ.) depends holomorphically on A and

} Riemann bilinear relations,

(€))
dQQ'Q = 0  (infinitesimal period relation).

It is determined up to the equivalences3
(4) Q~ AQ, detA £ 0;
&) Q~ QT, Tel.

3. With these preliminaries we can state our theorem. Let D be the
complex manifold of all matrices Q which satisfy (1), (2), and with the equiv-
alence relation (4). We call D the period matrix domain. It can be proved
that:*

The group I' acts properly discontinuously on D so that
D/I" is an analytic space (in fact, D/I" is locally the quotient
of a polycylinder factored by a finite group).

We should think of D/I" as the totality of all possible (inequivalent)
period matrices which might turn up as an Q(V,) for 1e B*.

Main Theorem. Let ¢:B* — D/I" be the period mapping, and let
¢(B*) = DT be the image of B* (= all period matrices Q(V,) for Ae B¥).
Then the closure ﬁfi’?) < D|T is an analytic set in which ¢(B*) is a Zariski
open set.

In more concrete terms, given Q,e D there exists a neighborhood U
of Q, in D and local analytic functions F(Q), G,(Q) defined for Qe U
such that a given potential period matrix Q is an Q(V,) if, and only if,
F(Q) =0, G,(Q)#0.

4. The proof of the main theorem is based on hyperbolic complex
analysis (to be explained) with the essential ingredient being the infinites-
imal period relation (3).

Let us suppose first that B is a curve and let us take a look at the period
mapping around a critical point:

A* = punctured disc 0 < |4| <e.

l ¢

DT
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Displacing cycles around the origin gives the Picard-Lefschetz transfor-
mation T:H(V,Z) — H,(V,Z). The first step in the proof is to show that:

(6) ¢:A* — D|T" extends across the origin if T is of finite order.

This says intuitively that, even though ¥, may have nasty singularities,
the homological assumption T = I implies that we can still define its
period matrix as lim,_.,Q(4) = Q(0)e D/T.

We will not prove (6) now but will come back to it later. Using (6) we
may then assume that our period mapping ¢:B* — D/I" has the property
that all Picard-Lefschetz transformations around critical points are of
infinite order. With this assumption we will prove

@) ¢:B* - D|I" is a proper holomorphic mapping.

If this is done, a standard result (proper mapping theorem) in several
complex variables says that ¢(B*) is an analytic set, and then the Main
Theorem is clear.

We shall prove (7) by contradiction. If it is false, then there is a compact
set K < DT such that ¢~ '(K) is non compact in B*. From this we find:

There exists a punctured disc A* around a critical point
(8) and a sequence {4,} € A* with 4, — 0 such that ¢(1,) = x,
tends to a point xeD(I".

We must show that (8) leads to trouble.

Let =: D — D|I" be the projection and let X e D lie over x; i.e., n(%) = x.
For simplicity suppose also that ¥ is not a fixed point of any Sel'—at
worst the stabilizer I'; of X is a finite subgroup of I'. Then = '(x) = [ Js.rS¥
and we can choose a small neighborhood U of x such that z~'(U) is the
disjoint union | J.rS+U where U is a neighborhood of % lying over U.
The picture is

Around /A, we choose a small disc A and lift ¢ to a holomorphic mapping
@;A -
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In fact we may think of $(4) as the period matrix Q(1) = (Jy,»@ (D) of
the surface V; for 1 in A. Now analytic continuation of the local mapping
é: A - D around the circle o, passing through A, brings $(1) back to
T (1) where T: Hy(V,,,Z) = Hy(V, ,Z) is the Picard-Lefschetz trans-
formation around the origin. A priori we might have a picture

(0—")
S S ———. q‘)
T ‘En
=
Ty

—— U
xll

However, suppose we can prove:

There exists a I'-invariant hermitian metric ds3 on D such
(9) that ¢:A* » D|T" satisfies ¢*ds < ds? where ds2, is
the complete metric of constant negative curvature on A¥.

Then we will be done, because i) the circle o, passing through A, has
(non euclidean) length
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144(02) :

log ——
1

and so I,4(0,) — 0 as n — 00; ii) using this together with (9), for the length
I(@(c,)) of the image curve of o, under ¢ we have Iy(¢(o,)) = Oasn — o0 ;
iii) it follows that ¢(c,) lies entirely in U for large enough n since the
distance d,(U,SU) = 6 > 0 is bounded below for all Sel’, S # I; and
iv) if ¢(,) lies entirely in U, then %, is a fixed point of T, which is impos-
sible since T has infinite order.

Thus the whole point really is to prove (9), which we may designate
as the distance decreasing property of [¢. The idea is to use a suitable
version of the Schwarz-Ahlfors-Pick Theorem, which says that if we have
a holomorphic mapping ¢:A* — X where A* has the canonical metric
dsi. of constant negative curvature —1 and X is a complex hermitian
manifold whose ds% has holomorphic sectional curvatures all < —1, then
d*dsy < dsp.

In the problem at hand it can be seen that there is no such I'-invariant,
negatively curved metric on D. However, the [I-invariant metric
Trace(d(H-'0H)), where H(Q) = QQ'Q, turns out to have all holomorphic
sectional curvatures £ —1 in the subspace dQQ'Q = 0 of the tangent
space Ty to D at the point Q. Using the infinitesimal bilinear relation (3)
we see then that ¢ is in fact negatively curved in the sense that
Kp(¢,0/04) £ —1 where K, is the sectional curvature in the 2-plane
¢4 0)0A \ $40]02 in D. From this we can mildly generalize the proof of
the Schwarz-Ahlfors-Pick Theorem to our situation so that we can prove
(9) and are done.

5. The points left open in the above argument are: i) the possibility
that % might be a fixed point of some SeI', S ¢ I (inthat case, the stability
group I's is a finite group, n='(x) = s eryr, S X, =" (U) = Us ey, S0
and the argument proceeds essentially as before); ii) the assumption that
the parameter space B is a curve; and iii) the assertion (6) that the period
map extends across critical points where the local Picard-Lefschetz trans-
formation is of finite order.

To prove (6) we may go to a finite covering of A*, ramified at the origin,
and assume that we have then a single-valued holomorphic mapping
¢:A* - D which satisfies the infinitesimal bilinear relation (3) and is
consequently negatively curved in the sense described above. We want
to extend ¢ across the origin. This is more or less the problem of trying
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to prove the usual Riemann extension theorem (where D = A is a disc)
without using Laurent series, but instead utilizing only the generalized
Schwarz lemma. The only proof I know is based on the following two facts:

There exists a properly discontinuous group [ of auto-
(10) morphisms of D such that I* acts without fixed points and
the quotient space D[T" is compact.

In fact, for the period matrix domain D we can write down T explicitly.
Or we could quote a general theorem of Borel and Harish-Chandra on
the existence of such I'.

The composed mapping ¢:A*—+D/f is still negatively
curved and maps into a compact manifold. Under these

(11) conditions, Mrs. M. Kwack (Berkeley thesis) has proved
that ¢ extends to the whole disc,

Once we have an extension of ¢:A* — D[I* we can lift this around the
origin to get an extension of ¢:A* — D.

There remains finally the question of what to do when the parameter
space B has arbitrary dimension. If H is the subvariety of points 1eB
for which V, is singular, it is clear that we can blow up B along H without
changing the problem. Thus, applying Hironaka we may assume that
H = H; +:++ H, where the H; are non singular divisors on B which
cross transversely. If T; is the Picard-Lefschetz transformation on H,(V,Z)
obtained by displacing cycles around a loop surrounding H;, then as
before we can locally extend the period mapping across H; whenever T;
is of finite order. Thus we may assume that we have

¢:B—(H, + -+ H)—> DIl

where each Picard-Lefschetz transformation T; is of infinite order. As
before, we want to prove now that ¢ is proper.

In the above argument when dimB =1, a neighborhood in
B—(H{+ -+ H)) of a critical point H; was a punctured disc. Now
such a neighborhood is of the form (A*)"x A"""=A* x..-x A* x

e o

Ax -+ x A where the A* are punctured discs and the A are ordinary discs.
\._..___.Y____J

However (A*)" x A" still has an obvious complete metric of negative
holomorphic sectional curvatures, and so we can proceed as before.
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6. 1 want to give some concluding remarks and applications.

The first is that the above theorem and proof illustrate the following
general principle: The global study of periods in an algebraic family of
algebraic varieties fits into the general subject of hyperbolic complex
analysis; which is by definition the study of negatively curved holo-
morphic mappings between complete hermitian complex manifolds.

Such mappings are distance decreasing (Schwarz-Ahlfors-Pick), volume
decreasing (Chern), and in general enjoy very strong rigidity properties.
For example we mention the following

Rigidity Theorem. Let {V;}, .5 and {V;}, .5 be two families of
algebraic varieties with the same parameter space B. Suppose that
at one point l,eB we have ¥, = V;, = V and that, using this
identification, the fundamental group =,(B*,4,) acts the same
on H*(V,,,Z) and H*(V],Z). Then the two period mappings
¢:B* — DII" and ¢':B* — D/I" are the same.

(12)

(In case V is an abelian variety this theorem is due to Grothendieck
and Borel-R. Narasimhan.)

Another example of the very strong global properties of the period map-
ping is the following result of Borel, which is proved using hyperbolic
complex analysis and reduction theory:

Extension Theorem (Borel). Let {V,};, .5 be an algebraic
family as above and assume that i) the divisor H = B of
points corresponding to singular ¥, has normal crossings,
(13) and ii) the period matrix domain D is hermitian symmetric.

P
Then there exists a compactification DI’ of D/I' (Baily-
Borel) and the period mapping ¢:B—H/—>\D,’l" extends

uniquely to a holomorphic mapping ¢:B — D/I".

In case V is a curve this result is due to Mayer-Mumford. The period
matrix domain D is hermitian symmetric in case g = 1 (periods of holo-
morphic one forms) but is generally not hermitian symmetric if g > 1.

As an application of our main theorem we mention the following:

Application. Let V < Py be a polarized algebraic manifold
and suppose that V has a variety of moduli {V,}; .5« (V=1V,,

(14) for some A, € B*). Then the set of period matrices Q(V') e D|T"
corresponding to all algebraic manifolds V' which are de-
formations of V forms an analytic set,
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For example, V has a variety of moduli if i) V is a curve (Mumford),
or ii) Vis a surface with positive canonical bundle (Matsusaka-Mumford).

7. This is an addendum to the results given above, There I have used
the fact that the period map was negatively curved to conclude that it was
distance decreasing (outside a compact set; cf. note 6). However, in our
case the period mapping ¢:B* — D|I" is also volume decreasing—this
fact seems to be somewhat more subtle than the distance decreasing prop-
erty. Assuming as always that our divisor H < B has only normal cross-
ings and using the fact that the hyperbolic volume of (A*)" x A" is
finite, we have the following:

Complement to Main Theorem. Let ¢:B* — D/I’ be the
period mapping as in the statement of the main theorem.
(15) Then the closure ¢(B*) of ¢(B*) in D|I" is an analytic set with

finite volume v,,(_qb_(h?)), where v, is computed from the
complete hermitian structure on D.

We remark that the volume v,(D/I") of D/I is finite (Borel and Harish-
Chandra), but since D/I" is non compact this does not necessarily mean
that the volume of a closed subset of D/I" is finite.

This volume business is also probably relevant as regards Borel’s ex-
tension theorem (13). Namely, as mentioned, his proof uses the whole
of reduction theory and we might like to find an argument which uses
only hyperbolic function theory. A little reflection will show that we can

3 A
at most hope to prove that ¢ extends to a rational map ¢:B — DT,

since there may be trouble about whether or not D/I" is a minimal model

and it seems that only explicit information on the compactification can help
out on this point.

At any rate here is an incomplete function-theoretic argument to prove
the

Weak Extension Theorem. With the notations and as-
(16) sumptions of (13), the period map extends to a mero-

morphic map ¢:B —rJ_'/),J’F.

= /\ - 2
Proof. Let M be D/, M be DT, and A = M — M. Then M and 4
are analytic sets and we claim the following

(17) Lemma. The graph G(¢) is a closed analytic subset of
(Bx M)—(H x A).
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Proof. We will only prove that G(¢) is closed. If not there is a sequence
(A,» #(4,) € G(¢p) which converges to a point (A,x) in B x M which is not
in G(¢). We let x, = ¢(4,). We may assume that A, — 1 in B and
x,—>xin M. If AeB— H, then x = ¢(1). Thus Ae H and we have a
sequence {4,} in B—H such that 4, —» leH and ¢(4,) = x,»>xeM
(since (1,x)eB x M — H x A). This is the same situation (8) that led to
a contradiction before,

Now the graph G(¢) =B x M and the volume v, (G(¢)) < vy +
v (d(B*)) < oo since ¢ is volume decreasing. Thus we have the situation:

(18) Gc(Bx M)—(H x A) is an analytic set with vy, ,4(G) < 0.
If instead of (18) we had:

G = (Bx M)—(H x A) is an analytic set with #(G) < co where
(18’) # is the appropriate dimensional Hausdorff measure on
Bx M,
then we could use Bishop’s theorem (cf. the Springer notes by Stoltzen-
berg) to conclude thatG = B x M is an analytic set, which is what we want.
Now it seems quite likely that (18) = (18') since vy, is computed with
respect to a dsz x dsi, where dsZ is complete. We do not as yet have a
proof of (18) = (18") ((18’) is true a fortiori by Borel’s theorem) and so
will stop here.

NOTES

1. Our general reference is the author’s paper, “On the Periods of Integrals on Alge-
braic Manifolds,” Rice University Studies, Vol. 54, No. 4 (1968), 21-38.

2. Ibid., p. 28.

3. Ibid., p. 22.

4, Ibid., p. 23.

5. Ibid., p. 34.

6, This is somewhat of a simplification. Actually ¢p:B*—D|T is only negatively curved
outside a suitable compact set K< B*. It is clear that this is all that really matters.
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