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ABSTRACT

Applying the Short-Time Direct Directed Transfer Function to Human

Electrocorticographic Recordings from a Language Task

by

Meagan Lee Whaley

This thesis applied the short-time direct directed transfer function (SdDTF) to

time series data recordings from intracranial electrodes that measure the brain’s elec-

trical activity to determine the causal influences that occurred between brain regions

during a speech production task. The combination of high temporal and spatial

resolution of the electrocorticography (ECoG) recordings directly from the cortex

render these measurements of brain activity desirable, particularly when analyzing

the fine cognitive dynamics involved in word generation. This research applied a

new method to characterize the SdDTF results by compressing across time and high

gamma frequencies, generating adjacency matrices, and graphing them to visualize

the influences between anatomical regions over the duration of the entire task. This

consolidated SdDTF analysis technique allowed for data from a total of seven patients

to be combined, generating results which were consistent with current speech produc-

tion models. The results from this thesis contribute to the expansion of language

research by identifying areas relevant to word generation, providing information that

will help surgeons avoid irreparable damage to crucial cortex during brain surgery.
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Chapter 1

Introduction

1.1 Connecting Language to Time Series

This research used recordings from intracranial electrodes to determine the causal

influences between brain regions that occurred during a word generation task. The

intracranial electrodes were implanted in patients who suffered from recurring seizures

not successfully managed by medication, a condition referred to as intractable epilepsy.

If the source of recurrent seizures can be localized to a specific region of the brain,

one treatment option is the removal of the problematic brain tissue through resective

surgery. Prior to resection, the seizure onset location is more precisely determined by

implanting grids of electrodes on the outer surface of the brain and monitoring “cere-

bral activity” over a period of days (Ritaccio et al. [16]). The technique of recording

from intracranial electrodes is referred to as electrocorticography, or ECoG. Although

invasive, this ECoG is implemented because it provides the “best spatial and temporal

resolution of epileptiform activity” [16].

While being monitored for seizure localization, the seven patients who partici-

pated in this study consented to complete a series of language and memory tasks.

This research analyzed the intracranial electrode recordings from a verb generation
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task called Wordstem to investigate the mechanisms involved in processing a visual

stimulus to produce a verbal response. When it comes to understanding the under-

lying mechanisms involved in language production, humans are the ideal candidates

to study, which is why “language is understood far less than sensation, memory, or

motor control, because language has no animal homologs, and methods appropriate

to humans [functional magnetic resonance imaging (fMRI), studies of brain-damaged

patients, and scalp-recorded potentials] are far coarser in space or time than the un-

derlying causal events in neural circuitry” (Sahin [18]). Therefore, the patients being

monitored for seizure localization offer a unique opportunity in the field of language

research, as the ECoG recordings are more resolute in time and space.

This work investigated the neural activations that occurred during the process

of responding to a collection of visual stimuli through speech. According to Sahin

et al., Levelt, Roelofs, and Meyer constructed “the most comprehensive model of

speech production,” which contains multiple sequential stages, each with a specific

and unique purpose and a duration on the order of milliseconds (Sahin et al. [18];

Levelt et al. [12]). Hence, temporal precision is an important factor to consider when

addressing questions of the dynamics involved in language production. Additionally,

high spatial resolution is ideal when identifying the roles of regions during tasks, as

areas of the brain that are near to each other (within 1 cm) may have vastly different

functionalities (Edward et al. [7]).

While this research studied ECoG recordings generated by “electrical activity of
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the brain,” it is important to explore other recording methods (Nunez and Katznelson,

Ch. 1 [15]). Electroencaphalography (EEG), fMRI, and magnetoencephalography

(MEG) are three recording techniques that share the attractive quality of being non-

invasive, painfree procedures. They differ in the sources of activation being measured,

as well as the precision of the measurements. EEG is a method of recording electric-

ity generated by synchronous activity of large groups of neurons through electrodes

placed on the scalp, which allows for high spatial coverage (Nunez and Katznelson

[15]). The tissue and bone separating the brain from the electrodes averages the

neuronal activity, thus EEG loses any asynchronous behavior or activity from smaller

populations of neurons. While scalp electrodes can potentially record from a wide

range of regions, the physiological interference and averaging render this technique

suboptimal (Ritaccio et al. [16]).

fMRI is an imaging technique with high spatial coverage and resolution, and its

measurements are generated by the blood flow that occurs in response to an “event”

(in the context of this research, the event is each visual stimulus). However, fMRI

is limited in its temporal resolution because hemodynamic responses (resulting from

blood movement) are more delayed than electrical responses in the brain, resulting

in a time lag in the fMRI measurements. Hence, it may be less preferable than

more temporally precise methods (Brookes et al. [1]). MEG is another imaging

technique, but it measures “magnetic fields which are produced by electrical activity

of the brain” (Cohen [2]). Alternative to fMRI, MEG has high temporal resolution
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but it suffers from less spatially resolute measurements (Levelt et al. [13]; Edwards

et al. [7]). As previously mentioned, highly precise recording techniques are ideal

when studying language, so although scalp EEG, fMRI, and MEG are noninvasive

methods capable of wide spatial coverage, they lack the combination of high spatial

and temporal resolution desired for this research.

Electrocorticography, the more invasive analogue of EEG, offers a rare oppor-

tunity to overcome issues of “coarse” measurements encountered with fMRI, scalp

EEG, or MEG (Sahin [18]; Ritaccio et al. [16]). It is defined as the process of

“recording the EEG directly from the surface of the brain” (Ritaccio et al., [16]). As

the electrodes are surgically implanted on the brain, skull and tissue are bypassed,

reducing physiological interference in the recordings. Additionally, the sampling rate

used for the recordings analyzed in this research was 1000Hz (one data point per

millisecond), yielding measurements capable of capturing more enhanced temporal

dynamics than fMRI. Finally, ECoG recordings are capable of capturing more dy-

namical and localized behavior, such as asynchronous neuronal activity lost by scalp

EEG or “electrophysiological signals” caused by smaller groups of neurons (Ritaccio

et al. [16]).

It is important to note that ECoG recordings do indeed suffer in some aspects.

First, 60Hz “noise” due to electrical recording equipment and/or epileptiform activity

(seizure-like brain activity occurring between seizures) are undesirable entities that

can (and frequently do) taint the recordings (see Section 2.1 for how data is handled to
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address these issues). In addition, these recordings are incapable of capturing activity

at the single-neuron level, which may be a drawback in some lines of research. Lastly,

electrode locations are selected for medical purposes (paying no mind to language

research), so lack of spatial coverage is a pervasive issue in ECoG research (Edwards

et al. [7]; Crone et al. [11] and [10]). However, due to the number of patients

involved in this study, the combined spatial coverage of their electrodes makes this

less of a concern. Despite these disadvantages (including the obvious invasiveness

of the implantation procedure), recordings from intracranial electrodes are viewed

as offering the high spatial and temporal precision desired when studying speech

production.

The precise ECoG recordings studied in this research measured neuronal activ-

ity under electrodes generated during the Wordstem task. In general, “synchronized

rhythmic discharges” of neurons are seen in the ECoG recordings via oscillatory be-

havior and “are of interest because they indicate organized activity” (Singer [20]).

Research in oscillatory behavior of neuronal populations has led to the identification

of frequency ranges that are characteristic of specific behaviors. For instance, ac-

tivity in the delta range (0.5 − 4Hz) occurs during sleep, and activity in occipital

areas around 10Hz (within the alpha range) is observed during stages of drowsiness

or relaxedness. Higher frequency ranges (> 15Hz) are “particularly pronounced in

awake performing brains” and have been linked to tasks requiring sensory and motor

processing (Singer [20]).
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More complicated tasks (such as word production) require the recruitment of

larger networks of neurons, and neural activity at higher oscillations is believed to be

significant during such tasks. The gamma frequency range (defined in this research

to be 30−240Hz) is widely studied in ECoG language research, as oscillations in this

range are believed to indicate the presence of large-scale cortical processing and to be

involved in “task-dependent activations” (Edwards et al. [7]). Indeed, ECoG studies

investigating this frequency range have drawn valid conclusions about activations

occurring during language tasks (Singer [20]; Crone et al. [10], [11]; Edwards et al.

[7]). Motivated by these studies, the 60−150Hz subset of the high gamma frequency

range was selected for this study.

While the ECoG studies researched for this thesis converge on analyzing high

gamma frequencies, they differ in the analysis techniques. Some studies addressed

questions of “when” and “where” activations occur, while other studies addressed

deeper issues, such as causal influences occurring between regions during the ad-

ministered task. This research took the latter approach, and Granger causality is a

foundational tool for this type of analysis.

Granger causality begins with the concept that a time series signal (such as an

ECoG recording from one electrode) at time t can be modeled as a linear combination

of the same signal at a discrete set of prior time points, plus some additional error.

If the incorporation of a second series (such as an ECoG recording from another

electrode) into the model improves the variance of the original error, the second
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series is said to have a “causal influence on the first” (section 17.5, Schelter [6]).

This concept can be extended to multi-dimensional models, where causal flow can

be transferred through intermediate signals (section 17.5, Schelter [6]). This idea

has powerful implications when applied to electrophysiological recordings, for if the

model were generated from recordings from specific regions of the brain during a

language task, the resulting causal influences would be indicative of the mechanisms

and interrelations involved in speech production.

Studying high gamma frequencies was previously stressed, so determining a method

to extend the causal analysis from the time domain to the spectral domain was of

great importance. Beginning in the time domain, the Multivariate Autoregressive

model (MVAR) was the technique used because it allows for simple transformations

to frequency representations. The short-time direct directed transfer function (Sd-

DTF) was used as the primary method of analysis in the frequency domain firstly

because it is easily derived from the MVAR model. More importantly, the SdDTF

was selected because it is a method of measuring the “directions, intensities, and spec-

tral contents of direct causal interactions between signals” [10]. The results from the

SdDTF applied to ECoG data, therefore, provide information about the direct causal

influences occurring between regions underneath electrodes at specific frequencies,

which aligns with the goal of identifying cortical locations most relevant to speech

production during a language task.

Upon solving for the SdDTF values from the ECoG time series data, a simplifi-
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cation across time and frequency was made to enable consolidation across all seven

patients and to perform graphical analysis to visualize the causal influences. Following

implementation, this technique was verified with results that are in line with current

models of speech production. Before proceeding, however, a brief statistical frame-

work will be presented in the following section, as these concepts are fundamental to

the derivation of the time series model.

1.2 Statistical Framework for Time Series

For a total of N equally-spaced time points, the electrophysiological recordings from

M electrodes are defined as the time series X ∈ RM×N . The time domain is the same

for each electrode from each patient, and it was selected such that the experimental

trials (including pre-stimulus to articulation time) were covered. In order to quantify

the interactions between the data from all electrodes, an analytic representation, or

model, is desired, preferably one that will facilitate analysis in the frequency domain.

The phenomenological linear model is a simple and natural place to begin, and follow-

ing the lead of other works that analyzed ECoG data, the Multivariate Autoregressive

model (MVAR) was selected (Crone et al., [10] and [11], Ding et al., [5]).

The derivation of the MVAR model begins with assumptions about the statistical

properties of each time series. Hence, definitions and motivation will be provided

before proceeding (the notational conventions and order of definitions follow section

4.3 of Marple [17]).



9

Let X i(t) denote the ith trial at time t of a random process X ∈ R1×N (such as a

recording from a single electrode over multiple trials of a language task). For N total

trials, the mean or expected value at time t is defined as

E [X(t)] =
1

N

N∑

j=1

Xj(t) ≡ X(t).

The autocorrelation of a random process X at times t and s is given by

rXX(t, s) = E [X(t)X∗(s)] .

For two random processes X and Y, the cross correlation function is

rXY (t, s) = E [X(t)Y ∗(s)] .

Some texts include a normalization factor in the correlation functions, but following

Marple’s text, this factor is excluded. The autocovariance at times t and s is

cXX(t, s) = E
[(
X(t)−X(t)

) (
X∗(s)−X

∗

(s)
)]

= E [X(t)X∗(s)]−X(t)X
∗

(s)

= rXX(t, s)−X(t)X
∗

(s).

The cross covariance is the analogous covariance function for two random processes,

X and Y, and it is defined as

cXY (t, s) = E
[(
X(t)−X(t)

) (
Y ∗(s)− Y

∗

(s)
)]

= E [X(t)Y ∗(s)]−X(t)Y
∗

(s)

= rXY (t, s)−X(t)Y
∗

(s).
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Two random processes are uncorrelated if cXY (t, s) = 0 for all t and s (section 4.3,

Marple [17]). Stationary processes are a special class of processes whose statistical

properties do not vary with time. Wide-sense stationary processes are a sub-

set of stationary processes characterized by time-independent mean and correlation

functions:

X(t) = X

rXX(t, t + τ) = rXX(τ) ∀t.

Similarly, the cross correlation function of jointly wide-sense stationary processes is

time independent:

rXY (t, t + τ) = rXY (τ) ∀t.

Important properties of the correlation functions of wide-sense stationary processes

include

rXX(−t) = r∗XX(t) (1.1)

rXY (−t) = r∗Y X(t). (1.2)

Ergodic processes are a class of random processes whose ensemble averages can be

replaced by time averages; hence, meaningful statistics may be drawn from a single

trial. Furthermore, such processes may be autocorrelation ergodic, a property

that will prove useful when working with empirical data (section 4.4, Marple [17]).

For a time lag of m, a consequence of an autocorrelation ergodic random process is

lim
M→∞

1

2M + 1

M∑

n=−M

X(n +m)X∗(n) = rXX(m). (1.3)
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Given a wide-sense stationary, zero mean, autocorrelation ergodic time series X at

time t and lag k with dimension n (where n is the total number of channels, and Xi

denotes the ith component of X), we define the multidimensional expectation (over

time) between X(t) and X∗(t− k) as

E [X(·)X∗(· − k)] =




E [X1(·)X
∗

1(· − k)] . . . E [X1(·)X
∗

n(· − k)]

E [X2(·)X
∗

1(· − k)] . . . E [X2(·)X
∗

n(· − k)]

. . . . . . . . .

E [Xn(·)X
∗

1 (· − k)] . . . E [Xn(·)X
∗

n(· − k)]




=




cX1X1
(t, t− k) . . . cX1Xn

(t, t− k)

cX2X1
(t, t− k) . . . cX2Xn

(t, t− k)

. . . . . . . . .

cXn,X1
(t, t− k) . . . cXnXn

(t, t− k)




=




rX1X1
(t, t− k) . . . rX1Xn

(t, t− k)

rX2X1
(t, t− k) . . . rX2Xn

(t, t− k)

. . . . . . . . .

rXn,X1
(t, t− k) . . . rXnXn

(t, t− k)




≡ RXX(−k),

where RXX(−k) is the covariance matrix of X at lag k. Note that the covariance

matrix is equivalent to the correlation matrix in this instance because the process is

assumed to have zero mean. In summation, for a wide-sense stationary, zero mean,
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autocorrelation ergodic time series X,

E [X(t)X∗(t− k)] = RXX(−k) = R∗

XX(k) (1.4)

where stationarity (specifically (1.2)) allowed for the symmetric property.

The early definitions of this section can thus be easily be extended to multidimen-

sional random processes. The definitions and notational conventions presented will be

used when deriving the time series model in the following chapter, which also explores

topics of data collection, preprocessing, implementation, and analysis techniques.
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Chapter 2

Methods

2.1 Experimental Data Acquisition and Methods

This thesis defined the recordings from intracranial electrodes as time series to deter-

mine the causal influences occurring between brain regions during a specific language

task. The time series recordings were obtained from grids of electrodes implanted

in seven patients for seizure localization (see Figure 2.1). Hence, using the notation

from Chapter 1, X(t) is a multi-dimensional matrix of time series data, whose ith

row represents the ECoG recording of the ith electrode at time t. For more detailed

information concerning equipment, surgical implantation, and imaging techniques for

electrode localization, see Conner et al. [3].

The ECoG data for this study was obtained from recordings taken during the

Wordstem language task, which required the subjects to verbally form complete words

from incomplete words presented on a computer monitor. Every patient was shown a

diverse collection of visual stimuli (approximately 80 total trials, with one trial being

a single stimulus), and the subjects were to verbally respond to each stimulus with

the first word that came to mind that transformed the word fragment into a complete

action word. For example, the stimulus “RU ” could be completed with “RUN” or-
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Figure 2.1 : Picture taken during surgical implantation of electrodes (Tandon, [21]).

“RUIN” for a correct response, but “RUM” would be counted as incorrect, as it is

not an action word. No restriction was placed on the length of the response word.

Following the data exportation into Matlab, each trial and electrode was manually

reviewed using in-house software to exclude those with excessive epileptiform activity,

60 Hz noise, and areas to be resected from the analysis. Additionally, incorrect trials

(those answered with non-action words or those with no response) were excluded.

Table 2.1 below summarizes the final electrode and trial counts for each patient used

in this study. While reviewing literature for this research, some studies included a

subset of implanted electrodes, but Mullen states that it is ideal to use “all available

variables” [14]. As such, data from all available electrodes was used in constructing

each model.

Each trial was shifted in time such that the initial presentation of stimulus cor-

responded to 0 ms, and the overall epoch analyzed for each trial was from −500ms
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Patient ID Number of Electrodes Number of Trials

ta355 86 49

ta356 79 56

ta401 87 44

ta408 62 53

ta439 91 59

ta442 94 46

ta451 72 51

Table 2.1 : Final electrode and trial counts for each subject following the exclusion

of incorrect trials and channels with excessive 60Hz noise or epileptiform activity.

to 2500ms. Figure 2.2 depicts a trial averaged ECoG recording during the −500 to

2500ms epoch recorded from an electrode implanted in the pars triangularis gyrus of

a patient during the Wordstem task.

This Figure illustrates the time series data prior to applying computational anal-

ysis. The goal of this research is to gain meaning from such series, in particular

determining causal influences present in the underlying brain regions that occur dur-

ing language production. The first step in such an analysis is to build a model of the

time series data, and the method selected for this research is presented in the next

section.
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Figure 2.2 : The trial average of a single electrode ±2 standard errors of the mean of

time series signals recorded during the Wordstem task, with trial average articulation

onset (or reaction time) indicated by the vertical dashed line.

2.2 Derivation of Time Series Model

The Multivariate Autoregressive model stands as the basis for modeling the experi-

mental data, and it relies on the statistical background presented in the Section 1.2.

Assuming initial assumptions are met, the MVAR model expresses the data at the

current time as a linear combination of prior data, plus additional error. This sim-

ple representation allows for straightforward analysis in the frequency domain, and

as high gamma frequencies are of particular interest in this research, MVAR is an

attractive and natural method to use.

Given a wide-sense stationary, zero mean, autocorrelation ergodic time series X at
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time t with dimension n, the goal of the model is to determine coefficients A(j) ∈ Rn×n

and model order p such that

X(t) +

p∑

j=1

A(j)X(t− j) = ε(t), (2.1)

where ε(t) is a zero mean error term uncorrelated with any of the prior time series

data, that is, for j > 0,

E
[
(ε(t)− ε)

(
X(t− j)−X

)
∗

]
= RεX(t, t− j)− εX

∗

= RεX(−j)

= 0.

Note that for this research, dimension n varies by patient and corresponds to the

number of electrodes implanted (see Table 2.1), where at fixed time t, X(t) is an n-

dimensional vector, with the ith entry corresponding to the electrophysiological data

recorded from electrode i at time t.

The first unknowns solved for in (2.1) are the coefficient matrices, and their deriva-

tion will follow Ding’s 2006 work (section 17.5, [6]). For a given model order p and

k = 1, 2, . . . p, first right multiply (2.1) by X∗(t− k)

X(t)X∗(t− k) +

p∑

j=1

A(j)X(t− j)X∗(t− k) = ε(t)X∗(t− k).

Next, expectations are taken over trials, but by ergodicity, this is equivalent to ex-

pectations over time:

E

[
X(t)X∗(t− k) +

p∑

j=1

A(j)X(t− j)X∗(t− j)

]
= E [ε(t)X∗(t− k)] .
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By linearity of E[·], the equation becomes:

E [X(t)X∗(t− k)] +

p∑

j=1

A(j)E [X(t− j)X∗(t− k)] = E [ε(t)X∗(t− k)] .

Because ε(t) is uncorrelated with the prior time series data, the right-hand side is

zero, so by definition (1.4), the system is reformulated as:

RXX(−k) +

p∑

j=1

A(j)RXX(j − k) = 0, k = 1, . . . , p, (2.2)

which are known as the Yule-Walker equations. Equation (2.2) consists of precisely

p matrix equations for the p unknown coefficient matrices.

The model order (p in Equation (2.1)) is the remaining unknown variable needed

to solve for the MVAR model, and it depends on the auto covariance of ε(t):

Σ ≡ E [ε(t)ε∗(t)] .

The “best” (standard practice) order corresponds to the value which minimizes the

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). Hence,

Equation (2.1) is solved over a range of orders, the AIC and BIC values are determined

for each order, and the order that minimizes the AIC or BIC is used when solving

the final MVAR model.

For dimension n and order m, these criteria are defined as

AIC(m) = 2 ln(det Σ(m)) +
2n2m

Ntotal

(2.3)

BIC(m) = 2 ln(det Σ(m)) +
2n2m log(Ntotal)

Ntotal

, (2.4)
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where Ntotal is the total number of data points across all trials (section 17, Ding et al.

[6]). Both values do not necessarily obtain minima at the same order, and Ding et al.

claim that BIC may be better suited for ECoG studies, as Ntotal is typically larger in

this field (section 17, Ding et al. [6]). The Σ(m) notation is used to emphasize the

dependence of Σ on the model order, as the covariance matrix is not constant across

all orders. Refer to Table 2.3 for the AIC and BIC values used for the empirical data.

Now that all of the necessary pieces to represent the time series data as in Equation

(2.1) have been presented, we must quantify causal influence before extending the

analysis into the frequency domain, and Granger Causality is the concrete tool for

this quantification.

2.3 Quantifying Causal Influence

Granger Causality is a quantification of the concept of causal influence, which was

introduced in Section 1.1. It can be applied to multi-channel time series data to

determine direct influences within the system, and the two-channel system is a simple,

illustrative starting point.

Let X, Y ∈ R1×N be two time series such that their MVAR models are:

p1∑

j=0

A(j)X(t− j) = ε1(t) var(ε1(t)) = Σ1 (2.5)

p2∑

j=0

B(j)Y (t− j) = η1(t) var(η1(t)) = Γ1 (2.6)

where var denotes variance and is indicative of the error of the model. Upon increasing
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the dimension of models, the new, 2-dimensional MVAR model is formulated:

p3∑

j=0




Ã(j) C̃(j)

B̃(j) D̃(j)







X(t− j)

Y (t− j)


 =




ε2(t)

η2(t)




var(ε2(t)) = Σ2

var(η2(t)) = Γ2

. (2.7)

Letting Υ2 be the covariance between X and Y, the full covariance matrix for the

2-dimensional MVAR model is

Σ =




Σ2 Υ2

Υ2 Γ2


 (2.8)

Recall that if the addition of a second series significantly reduces the error of the

original model, then the second series is said to have a causal influence on the first.

In the case of this bivariate MVAR model, the causal influence that series Y has on

series X is defined as:

FY→X = ln
Σ1

Σ2
(2.9)

Hence, if the variance of X (defined as the error of the original 1-dimension model,

Σ1) has not improved with the inclusion of Y and Σ2 = Σ1, then FY→X = 0, which

signifies a lack of causal influence from Y to X. Alternatively, if the error has improved

and Σ2 < Σ1, then
Σ1

Σ2

> 1, and FY→X will be nonzero. Similarly, the causal influence

that series X has on series Y is defined as:

FX→Y = ln
Γ1

Γ2
(2.10)

which can be interpreted in the same manner as FY→X (section 17.5, Ding et al. [6]).

Continuing with the bivariate case, causality is next formulated in the frequency

domain, where the discrete Fourier transform of Equation (2.1) is taken to derive the
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transfer function. Rewriting Equation (2.1) with A(0) = Id(n), where Id(n), is the

n× n dimensional identity matrix:

p∑

j=0

A(j)X(t− j) = ε(t).

Inserting convolution notation, this equation is equivalent to:

A(t) ⋆ X(t) = ε(t).

Take the Fourier transform of both sides of the equation, use the convolution property,

and solve for X̂(ω):

X̂(ω) = Â(ω)
−1
ε̂(ω),

where Â−1 is defined to be the transfer function H (Crone et al., [10], Kamiński et

al. [9]):

H(ω) ≡ Â(ω)
−1

=

(
p∑

j=0

A(j)e−i2πjω∆t

)
−1

(2.11)

A nonzero element in the (i, j)th entry of the transfer function indicates the transfer

of Granger causality from channel j to channel i at a particular frequency (Kamiński

et al., [9]). As transfer is not necessarily equal in opposite directions, note that H

is asymmetric. One additional aspect of the transfer function is that it does not

compensate for indirect, intermediate transference, as is the case pictured in Figure

2.3 where Node 2 behaves as the intermediate vehicle of signal transference from Node

1 to Node 3 (Crone et al., [10]).

The spectral matrix, SXX , is necessary for the formulation of Granger causality in

the spectral domain, and it is defined as the Fourier transform of the autocorrelation
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Node 1

Node 2

Node 3

Figure 2.3 : Example of intermediate, indirect causal transfer from Node 1 to Node

3 via Node 2. The transfer function would not distinguish this scenario from a direct

transfer from Node 1 to Node 3. A numerical example is implemented to further

illustrate this scenario.

of X. Its formula is given by

SXX(ω) ≡ R̂XX(ω) = H(ω)ΣH∗(ω), (2.12)

with the following partition in the bivariate example

SXX(ω) =




sXX(ω) sXY (ω)

sY X(ω) sY Y (ω)


 .

In order to distinguish between changes due to internal sources (or “intrinsic”

power increases) or the other series of the model (“causal” power increases), a trans-

formation is performed on the Fourier transform of the MVAR model (section 17.5,
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Ding et al., [6]). The first transformation matrix is

P1 =




1 0

−Υ2

Σ2

1


 . (2.13)

Beginning with the Fourier transform of Equation (2.1):

Â(ω)X̂(ω) = ε̂(ω).

Left multiply by P1, and take the inverse to solve for X̂(ω):

X̂(ω) =
(
P1Â(ω)

)
−1

P1ε̂(ω),

which yields a new transfer function, H(ω) ≡
(
P1Â(ω)

)
−1

. Similar to the spectral

matrix, let H have the following decomposition:

H(ω) =




hXX(ω) hXY (ω)

hY X(ω) hY Y (ω)


 .

From these definitions, the causal influence from Y to X is defined as

fY→X(ω) = ln
sXX(ω)

hXX(ω)Σ2h
∗

XX(ω)
, (2.14)

where the numerator is interpreted as the intrinsic power of X plus the causal power

of X attributable to Y, and the denominator is simply the intrinsic power of series X

at frequency ω. Hence, if the causal power Y on X is negligible, this will render a zero

fY→X . A nonzero causal power will correspondingly yield nonzero causal influence

fY→X .
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In order to determine the causal influence of Y due to X, a second transformation

matrix P2 is introduced:

P2 =




1 −Υ2

Γ2

0 1


 . (2.15)

Following the same steps, a second transfer function, H̃(ω) ≡
(
P2Â(ω)

)
−1

is found

for the bivariate case:

H̃(ω) =




h̃XX(ω) h̃XY (ω)

h̃Y X(ω) h̃Y Y (ω)


 ,

such that the causal influence from X to Y is defined as:

fX→Y (ω) = ln
sY Y (ω)

h̃Y Y (ω)Γ2h̃
∗

Y Y (ω)
. (2.16)

The interpretation of Equation (2.16) follows the same concept as Equation (2.14),

such that the numerator includes intrinsic and causal power, whereas the denomi-

nator only includes the intrinsic power of series Y. Hence, if X has no causal power

contributions to series Y, fX→Y = 0. Similarly, fX→Y will increase accordingly as the

influence of X on Y at frequency ω increases.

The transformations performed on the spectral MVAR model were necessary in

deriving the spectral causality measures because the original transfer function, H ,

cannot not be decoupled into components attributable to intrinsic and causal power.

The new transformations, H and H̃, however, contain clean terms that are easily

separable into the desired quantities. Finally, a connection between the time and
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frequency causal measures is given via the following set of equations:

FY→X =
1

2π

∫ π

−π

fY→X(ω)dω FX→Y =
1

2π

∫ π

−π

fX→Y (ω)dω. (2.17)

Causal influences in both time and frequency can now be solved for, given data

generated by a 2-dimensional model, and they can be verified and related through

Equation (2.17). These subjects will be further explored in numerical examples in

the following section, which illustrate the concepts in a more concrete manner before

proceeding to the ECoG data.

2.4 Direct Causal Influences in the Frequency Domain

Granger causality can be used to measure causal influence in the spectral domain

between pairs of channels. Although multi-dimension systems (such as those used in

this thesis) can be reduced to a number of bivariate systems, the method selected for

this research does not perform such a reduction. Thus the data from every electrode is

accounted for when determining direct causal influences in the frequency domain. The

function used to achieve this analysis is called the short-time direct directed transfer

function (SdDTF), and it is a combination of the transfer and partial coherence

functions. The transfer function was introduced in the previous section, where it

was mentioned that the function measures directed influences but fails to distinguish

between direct and indirect causality transference in the spectral domain.

In the case of measuring direct connections, partial coherence is a useful tool. Par-

tial coherence discounts intermediate information transfer, attaining nonzero values
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when the influence between channels at a particular frequency is direct. Hence, the

(i, k)th entry of partial coherence is nonzero when channels i and k share a direct link,

neglecting the influence from every other channel present in the model (Crone et al.

[10]). The definition of partial coherence follows from the Spectral Matrix of series

X, SXX (Equation (2.12)). C is defined as S−1
XX :

C(ω) ≡ S−1
XX(ω) = Â∗(ω)Σ−1Â(ω).

Then the (i, j)th entry of the partial coherence function, χ, at frequency ω is given

by:

χij(ω) =
Cij(ω)√

Cii(ω)Cjj(ω)
, (2.18)

where the subscripted ij notation is introduced, which indicates the (i, j)th entry of

the pertinent matrix (Crone et al., [10]).

Both the transfer function and partial coherence are combined into the SdDTF,

which provides a meaningful method of analyzing time series data models in the

frequency domain. It is defined by Crone et al. as the normalized product of the

transfer function with partial coherence so that the (i, j)th entry of SdDTF, ζ , at

frequency ω is given by:

ζij(ω) =
|Hij(ω)||χij(ω)|√∑

θ

∑
mn |Hmn(θ)|2|χmn(θ)|2

, (2.19)

where
∑

θ is the summation over all analyzed frequencies, and
∑

mn is the summation

over all combinations of unique pairs of channels. A nonzero (i, j)th entry of ζ at

frequency ω indicates a direct causal flow from channel j to channel i at frequency
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ω, thus the function conceptually combines the notions of the transfer function and

partial coherence (Crone et al., [10]).

One remaining issue to address is the method of analyzing the SdDTF results.

Typically, grids of time-frequency plots (time along x-axis and frequency along the

y-axis) are generated to illustrate the causal flow between channels, with the plot

located at the (i, j)th position of the grid (row i, column j) indicating the flow of

the modeled data from channel i to the modeled data from channel j. Drawing

meaningful conclusions from grids of the dimensions contained in Table 2.1 of time-

frequency plots would be cumbersome, as the data sets are so rich due to the large

number of electrodes used per patient. Therefore, this thesis characterizes each time-

frequency plot by the maximum SdDTF value obtained across the entire time and

frequency domains.

Once the grids of SdDTF maximum plots were constructed, connectivity between

anatomical locations was further examined by generating graphs whose nodes rep-

resent anatomical locations and edge widths represent the maximum SdDTF values

across time and frequency (graphs were plotted with Matlab’s Bioinformatics Tool-

box). The causal influences occurring in high gamma frequencies were thus trans-

formed into graphical representations, providing a novel method of visualizing the

mechanisms underlying speech production during Wordstem.

Numerical examples were implemented to illustrate the concepts of causality, from

Granger to the SdDTF. The first example is a bivariate model replicated from section
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17.5 of Ding et al. [6]. For both simulations, the time series data were generated for

500 time points for 50 trials. The 2 node model was generated from equations:

X(t) = 0.9X(t− 1)− 0.5X(t− 2) + ε(t)

Y (t) = 0.8Y (t− 1)− 0.5Y (t− 2) + 0.16X(t− 1)− 0.2X(t− 2) + η(t),

where ε(t) and η(t) are random Gaussian, zero mean error terms with variances σ2
1 = 1

and σ2
2 = 0.7, respectively, and covariance 0.4. These values yield a covariance matrix

of:

Σ =




1 0.4

0.4 0.7


 .

Using the AIC model order given by the cca_find_model_order_mtrial function

of the GCCA toolbox, the MVAR models were solved for using the armorf function

of the same toolbox for dimension 1 (treating each series separately, as in Equations

(2.5) and (2.6)) and dimension 2 (as in Equation (2.7)). For the 2-dimensional system,

the correct model order of the time series equations is 2, which both the AIC and

BIC correctly solved for via Equations (2.3) and (2.4), as shown in Figure 2.4 .

First, the causal influences were calculated according to Equations (2.9) and

(2.10), and upon one simulation of 50 trials, these values were:

FX→Y = 0.0506 FY→X = 1.3960× 10−4

These value indicate that upon increasing the dimension of the system, the error from

the 1-dimensional MVAR model for Y decreased with the addition of series X to the
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Figure 2.4 : AIC and BIC values for the 2 node model.

model, hence X has a causal influence on Y. Alternatively, incorporating data from

Y into the MVAR model for X had little impact on decreasing the error, indicating

that Y has less of a causal influence on X. These results are in line with time series

equations used to generate the data.

Causality in the frequency domain was then calculated via Equations (2.16) and

(2.14) for ω ∈ [0, π], from which Figure 2.5 was created. The plot of fX→Y in Figure

2.5 indicates greater influence from Node X to Node Y, whereas the values fX→Y

show quite the opposite effect of Node Y on Node X, again in agreement with the

time series equations used to generate this model.

The magnitudes of transfer function values were calculated for the 2 node example

using Equation (2.11), and the results are shown in Figure 2.6. The x-axis is labeled in

time, which refers to the period covered in the calculation. In this model, the transfer
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Figure 2.5 : Causal influence in the frequency domain for 2 node model calculated

from Equations (2.14) and (2.16). These plots align with the dependencies in the

time series equations used to generate the model.

function does not vary with time; however, the function values can vary with longer

time domains, so the time axis remains in keeping with convention. Letting Chan-

nel 1 refer to Node X and Channel 2 refer to Node Y, the nonzero transfer function

values in plot |H21| confirm the transference from Node X to Node Y at the frequen-

cies indicated in Figure 2.5, whereas the |H12| illustrates how little “information” is

transferred to Node Y to Node X over the entire spectral domain.

The simplicity of the 2 node example fails to illustrate the concepts of trans-

fer function discussed previously, so a 3 node example, which includes intermediate
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Figure 2.6 : Transfer function values for 2 node model calculated from Equation

(2.11). The time axis refers to the total range covered in the calculation; for this case,

the transfer function is uniform across time and varies with frequency. In accord with

the time series equations, the nonzero transfer function values in the |H21| block of

this figure indicate signal transference from Node X to Node Y, whereas the values

much less in magnitude in the |H12| block verify the lack of signal transference from

Node Y to Node X.

transference, is now introduced. The time series equations for this example are:

X(t) = 0.9X(t− 1)− 0.5X(t− 1) + ε(t)

Y (t) = 0.3Y (t− 1)− 0.4Y (t− 2) + 0.7X(t− 1)− 0.8X(t− 2) + η(t)
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Z(t) = 0.8Y (t− 1) + 0.5Z(t− 2) + γ(t),

where the covariance matrix is:

Σ =




1 0 0

0 0.5 0

0 0 0.6



.

This example does not include any cross-covariance terms, and ε(t), η(t), and γ(t)

are random Gaussian terms with zero means and variances provided in the diagonal

entries of Σ. Beginning with the transfer function for the 3 node model, Figure

2.7 illustrates the nonzero values in the |H31| block, indicating transference from

Channel 1 (Node X in the time series equations) to Channel 3 (Node Z). However, as

depicted in the schematic of Figure 2.3 (which reflects the time dependencies of this

example), Channel 1 is not directly transmitting data to Channel 3. If the interests

are in capturing direct connectivity, partial coherence values need to be considered in

addition to the transfer function values, as is the case with the SdDTF.

The magnitudes of partial coherence values were calculated using Equation (2.18)

for both the 2 and 3 node examples, where nonzero values indicate direct connections.

In the 2 node case shown in Figure 2.8, both nodes share a link, which is reflected in

the nonzero function values in both |χ12| and |χ21| plots (note that partial coherence

is symmetric).

The partial coherence plots for the 3 node example are shown in Figure 2.9, which

further illustrates the concept of intermediate vs. direct connectivity. The values of
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Figure 2.7 : Transfer function values for 3 node model calculated from Equation

(2.11). In this example, the function is constant across time, varying only across

frequency. In accord with the time series equations, the nonzero transfer function

values in the |H21| and |H32| plots indicate the appropriate signal transfers from

Channel 1 to Channel 2 and Channel 2 to Channel 3, respectively. However, the

nonzero values of plot |H31| plot show that the transfer function does not distinguish

the indirect connection from Channel 1 to Channel 3.

the |χ31| and |χ13| plots signify that Channels 1 and 3 are not directly linked to each

other, which is the case for this example.

Finally, the transfer function and partial coherence were combined into the SdDTF

calculations, in which Equation (2.19) was used to calculate direct signal transference
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Figure 2.8 : Partial coherence for 2 node model calculated from Equation (2.18).

As with the transfer function, partial coherence only varies with frequency for this

example, where the time axis refers to the total range covered in the calculation. The

nonzero function values in both plots indicate the direct connectivity of Channels 1

and 2, which is indeed the case.

across the entire frequency domain. The SdDTF values for the 2 node model in the

ζ21 block of Figure 2.10 are in accord with the both the numerical model and the

frequency values which correspond to the increasing fX→Y values in Figure 2.5.

The SdDTF values for the 3 node model are shown in Figure 2.11, which are line

with Node X transmitting information to Node Y, which, in turn, transmits infor-

mation to Node Z. The SdDTF is a means of “summarizing” and thus capturing the
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Figure 2.9 : Partial coherence for 3 node model calculated from Equation (2.18). In

agreement with the time series equations, the function values in the 13 and 31 blocks

indicate that these channels are not directly connected, whereas the values in blocks

23, 32, 12, and 21 signify that Channels 1 and 2 are connected, as well as Channels

2 and 3.

causal dynamics of the system, including direct connectivity and directed information

transmission across the frequency domain desired for analysis.

As previously mentioned, the SdDTF results are typically displayed in grids of

time-frequency plots (such as in Figures 2.10 and 2.11) which illustrate the direct in-

fluences present between the channels. As these were 2- and 3-dimensional systems,

any variability is easily distinguished; however, as the number of channels (corre-
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Figure 2.10 : SdDTF for 2 node model calculated from Equation (2.19). Again, the

time axis refers to the total range covered in the calculation, where, for this case, the

SdDTF is uniform across time and varies with frequency. The SdDTF results indicate

direct transference from Node X to Node Y, as noted in the ζ21 plot, as well as a lack

of direct signal transference in the opposite direction, as seen in the ζ12 plot.

sponding to the dimension of the system) increases, the finer details of each plot

of the grid may be lost. In order to simplify the analysis of the ECoG data, each

block of SdDTF values of the grid was defined by the maximum value attained. For

instance, by defining each plot in Figure 2.10 by its maximum ζ value, Figure 2.12

was created (this resulting function is denoted ζ). Simplifying the data across the

frequency domain (and the time domain, if applicable) in this manner allows for the
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Figure 2.11 : SdDTF for 3 node model calculated from Equation (2.19). Again, the

time axis refers to the total range covered in the calculation, where, for this case, the

SdDTF is uniform across time and varies with frequency. The SdDTF results indicate

direct transference from Node X to Node Y and from Node Y to Node Z, as noted in

the ζ21 and ζ32 plots.

compression of complex data sets, such as the higher dimensional ECoG time series

data recordings. Additionally, by compressing this data, further graphical analysis

can be performed in which the nodes of the graph represent anatomical locations of

the original channels that generated the time series data and the edge widths are

proportional to the ζ values.

By treating the matrix of maximum SdDTF values as an adjacency matrix, the

D 
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Figure 2.12 : Each block in this figure was obtained by taking the maximum SdDTF

value in the corresponding block of Figure 2.10 (the resulting function is denoted

ζ). This characterization compresses the data across the frequency domain, and had

the data varied across time, this calculation would have compressed along the time

domain as well. This “reduction of information” allows one to view the entire system

in a simplified way, an important factor given the complexity of the ECoG data sets

for each subject.

graph in Figure 2.13 was constructed, where the edge widths are proportional to the

values used to generate Figure 2.12. These examples, albeit trivial, illustrate the rea-

soning behind the methodology executed in this research. They bridge the connection

from causal influence in time (Equations (2.9) and (2.10)), to causal influence in the

spectral domain (Equations (2.14) and (2.16)), to a measure of direct causal influ-
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ence in the frequency domain (Equation (2.19)), and finally to a graphical model that

summarizes direct causal influence across all time and frequencies. The figures gen-

erated serve as testaments to the human ECoG data analysis. If the time series data

were generated by human ECoG recordings during a language task, the nodes of the

graph contained in Figure 2.13 would indicate that the anatomical region underneath

Channel 1 were having a insignificant causal influence on the region underneath the

Channel 2. Such results would be indicative of the relevance of specific brain regions

to the process of word production, which is the heart of language research.

1

2

Figure 2.13 : This graph was generated by treating the ζ values used to create Figure

2.12 as an adjacency matrix. The edge widths are proportional to the ζ values,

indicating the influence that Node X has on Node Y versus the lack of influence that

Node Y has on Node X in the frequency domain.

Having established the methods to be implemented, the next steps are executing

D 
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them and analyzing the results; however, one final issue must be addressed prior to

implementation. Equations (2.11), (2.18), and (2.19) rely upon the MVAR model

of the time series data, which was developed based on initial assumptions. If the

time series data do not meet these assumptions, the results lose meaning and validity.

Preprocessing, discussed in the following section, is a means of achieving these initial

assumptions and is therefore a crucial stage of implementation.

2.5 Processing the ECoG Data Prior to Analysis

The very foundation of SdDTF relies on the initial assumptions that the data has

zero mean and is autocorrelation ergodic. Figure 2.2 at the beginning of Chapter 2

illustrates the lack of stationarity across trial averages in the empirical data. Thus,

preprocessing is an essential stage of analysis, i.e., changes must be made to the data

to ensure that it meets the initial assumptions, which are necessary when solving each

MVAR model.

Two methods of preprocessing were followed for this research. Method 1 follows

Ding et al.’s 2000 paper and consisted of applying the following steps to the data

from each channel:

1. Preprocessing Method 1

(a) Linearly detrend each trial

(b) On every trial, subtract the temporal mean and divide by the temporal

standard deviation
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(c) At every time point, subtract the trial mean and divide by the trial stan-

dard deviation

(d) Cover each trial with short, highly overlapping windows

The final step is applied to remove the “deeper source of nonstationarity” present

in the “correlation structure in the data” (Ding et al., [5]). Upon “windowing” the

data, MVAR models were then solved for on each short epoch, a technique referred to

as Adaptive Multivariate Autoregressive (AMVAR) modeling. Hence, the resulting

“AMVAR procedure yields finely resolved dynamical information about the cortical

processes related to cognitive state” (Ding et al., [5]). Mullen points out the impor-

tance of performing step 1(b) prior to step 1(c) when implementing AMVAR over

short time windows to ensure that “all variables will have equal weight (variance)

across the trial” [14].

Preprocessing Method 2 applied the windowing step earlier in the analysis, fol-

lowing a suggestion made by Seth, and consisted of following the steps below for the

data from each channel [19]:

1. Preprocessing Method 2

(a) Linearly detrend each trial

(b) At every time point, subtract the trial mean and divide by the trial stan-

dard deviation

(c) Cover each trial with short, highly overlapping windows
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(d) Across every window, subtract the temporal mean and divide by the tem-

poral standard deviation

Crone et al. perform Method 2 with the exception of linearly detrending each trial,

but Ding et al. recommend both steps 1(a) and 1(b) (equivalently, 2(a) and 2(d))

to ensure that the resulting “data from each channel and each trial were given equal

weight in model estimation” (Crone et al, [10], [11]; Ding et al., [5]). However, Ding

et al. warn against the removal of temporal mean and division by temporal standard

deviation over too short of a duration of time, as the temporal mean will be more

variable and subtracting it will incorrectly alter the analysis in the frequency domain.

The example used to support this claim was 10 points in duration; elsewhere, “short”

is not explicitly defined (Ding et al. [5]). It was because of this suggestion that

Preprocessing Method 1 was implemented.

Following the preprocessing of the ECoG data, the functions presented in Chap-

ter 2 were solved for to determine key regions in the process of speech production.

Additional details concerning implementation are the topic of the following section.

2.6 Practical Application of Theory to ECoG Data

Following data processing and exportation into Matlab, selection of the final sets of

electrodes and trials, and identification of the epoch of time for analysis, the time

series data were preprocessed following the two methods covered in Section 2.4. Both

preprocessing approaches implement windowing and thus require knowledge of win-
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dow length. Ding et al. combine prior knowledge and experimental results with plots

of cross correlations at several window lengths to select the duration that captures

variability while still allowing the data to be treated as locally stationary [5]. Crone

et al. used a window length of 360 ms (120 samples) with a 15 ms (5 sample) shift in

their 2008 and 2011 ECoG papers, and they use the following “rule of thumb” when

selecting the window length:

K(p+ 1)

Nsnt

< 0.1 (2.20)

where K is the number of channels, p is the model order, Ns is the window length,

and nt is the number of trials [10]. Mullen also recommends adhering to the above

criteria when selecting the window length [14].

Equation (2.20) relies upon the window length and the model order, whereas

the model order cannot be determined without the window length (note the circular

logic). The window length used in this research incorporated Equation (2.20) with

the frequencies that the length would allow for analysis, as high gamma frequencies

were of ultimate interest for this study. In the end, both preprocessing methods were

implemented with window lengths of 300ms and a 15ms shift. In the end, each

trial was subdivided into overlapping time windows such that the first point of each

window was shifted forward 15ms until the entire epoch was covered. The values

for both preprocessing methods for Equation (2.20) are displayed in Table 2.2, which

shows that with this window length, the data from each patient adhered the “rule

of thumb.” Table 2.2 subdivides the parameter values according to AIC and BIC
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columns because, as will be described shortly, the MVAR models were solved for

using model orders given by both criteria.

Preprocessing Method 1 Preprocessing Method 2

Patient ID AIC BIC AIC BIC

ta355 0.06147 0.02332 0.06417 0.02332

ta356 0.05624 0.01875 0.06218 0.02343

ta401 0.06569 0.02628 0.07795 0.02628

ta408 0.06271 0.01943 0.05052 0.01736

ta439 0.05124 0.02050 0.05227 0.02050

ta442 0.04925 0.02716 0.05657 0.02716

ta451 0.05183 0.01876 0.05644 0.01923

Table 2.2 : K(p+1)
Nsnt

values for 300ms window length

The AMVAR models were then solved for over a range of orders within each

window in order to determine the AIC and BIC values. The window shift was adjusted

to save computation time when calculating the model orders on each window across

the entire time domain. For AIC, the shift was increased to 50ms, and for BIC the

shift was increased 100ms (note that even with these increases, these computations

took several days to complete). Then, the next integer greater than the average of the

criteria (or the ceiling of the average) over all windows was used as the global model
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order for all windows. This process was repeated for all patients, and the results are

presented in the Table 2.3 below. The AMVAR models were recalculated for the final

Preprocessing Method 1 Preprocessing Method 2

Patient ID AIC BIC AIC BIC

ta355 10 3 10 3

ta356 11 3 13 4

ta401 9 3 11 3

ta408 16 4 12 2

ta439 9 3 10 3

ta442 7 3 8 3

ta451 11 3 12 4

Table 2.3 : AIC and BIC values calculated from Equations (2.3) and (2.4) for all

patients used in this study. The values were found on a range of orders across windows

that covered the entire trial, and the next integer larger than the average over all

windows was calculated to determine the values of this table, which were ultimately

used as the global model order for each window upon implementation.

implementation on each window using the model orders in Table 2.3. The technique

of using the same model order for each window is in line with Crone et al. and Ding

et al.’s works ([10], [11], and [5]). It was from these orders that the values in Equation
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(2.20) were calculated.

Upon determining the model orders, Equation (2.2) was solved in each window.

When I initially solved Equation (2.2) for the coefficient matrices, I used the following

formula combined with definition (1.4) to construct each R̃XX(·) (the tilde notation

signifies empirical data):

R̃XX(n) =
1

N − n

N−n∑

t=1

X̃(t)X̃∗(t+ n) (2.21)

where N is the total number of time points per window, and each R̃XX(·) is averaged

over trials (found in Table 2.1) (Crone et al., [10] and [11], Ding et al., [6] and [5]).

I proceeded to solve for the coefficients matrices “directly,” that is, I used Equation

(2.21) to build the Yule-Walker Equations given in Equation (2.2) and subsequently

solved for the unknown convolution coefficient matrices. To compute the SdDTF, Σ

must be found, and I used the representation derived next.

Beginning with Equation (2.1):

ε(t) = X(t) +

p∑

j=1

A(j)X(t− j).

With A(0) = Id(n), the n× n identity matrix, the summation index starts at 0:

ε(t) =

p∑

j=0

A(j)X(t− j).

Right multiply by ε∗(t), take expectations, and distribute E[·]:

E [ε(t)ε∗(t)] =

p∑

j=0

A(j)E [X(t− j)ε∗(t)] ,
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but E[X(t− j)ε∗(t)] = 0 for j > 0, which leaves:

E [ε(t)ε∗(t)] = A(0)E [X(t)ε∗(t)] .

As A(0) = Id(n) and using the definition for ε∗(t), the equation becomes:

E [ε(t)ε∗(t)] = E

[
X(t)

(
p∑

k=0

A(k)X(t− k)

)
∗
]
;

apply transposition, move the summation outside E[·], and distribute E[·] to obtain:

E [ε(t)ε∗(t)] =

p∑

k=0

E [X(t)X∗(t− k)]A∗(k).

Use Definition (1.4):

E [ε(t)ε∗(t)] =

p∑

k=0

RXX(−k)A∗(k).

The combined results yield:

Σ = E [ε(t)ε∗(t)] =

p∑

k=0

RXX(−k)A∗(k).

Using “modified” symmetry of the time-lag dependent correlation matrices from equa-

tion (1.4) and symmetry of the covariance matrix Σ, take the transpose of both sides

of the equation to obtain an explicit formula for Σ (note covariance matrices are

equivalent to correlation matrices due to zero mean):

Σ =

p∑

k=0

A(k)RXX(k). (2.22)

After using Equation (2.22) to solve for Σ in each window, I began calculating the

SdDTF values for synthetically-generated data (specifically the 2 node example). The
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implementation seemed to be successful, as the correct model orders were solved for

from the simulated. Additionally, SdDTF results similar to those in Figure 2.10 were

generated. However, this method failed when applied to ECoG data, as was evident

in covariance matrices Σ with negative determinants, indicating that the covariances

matrices became non- positive definite.

It was because of this setback that the armorf.m function in the Matlab GCCA

Toolbox was substituted to construct both the coefficient matrices and Σ. This func-

tion implements Morf’s method to determine these variables (Seth, [19]). Once this

function was used to calculate the model orders and MVAR models on each window,

the analysis continued by extending the computations into the frequency domain.

For discrete time points defined as tk = kh, where h = dt = 1ms, k = 0, . . . , N −

1 and tN−1 = 300ms (equivalently the final point of each window), the discrete

frequency step was calculated via (section 7.4, [4]):

dω =
1

Nh
,

from which the discrete frequency samples were calculated:

ωk = kdω, k = 0, . . . , N − 1.

The domain was restricted to 60−150Hz to encompass mid to high gamma frequencies

without exceeding the Nyquist frequency on each 300 ms window. Combining this

discretization with the coefficient matrices and Σ, the transfer function H , partial

coherence χ, and the SdDTF values ζ , were solved for using Equations (2.11), (2.18),

--
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and (2.19). Hence, the SdDTF values were calculated every 15ms across each 300ms

window over the 60− 150Hz frequency range. Thus the implemented procedure was:

1. Define 300 ms window

2. Calculate MVAR on window

3. Calculate SdDTF on window

4. Shift window forward 15 ms

5. If reached the end of entire trial, exit; else return to step 1

From these SdDTF values, the ζ values were calculated, from which graphical

models were generated. All of the results will be discussed in the next section, where

further motivation for using ζ is presented in the context of the ECoG data and

comparisons to results of speech models are made.
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Chapter 3

Results

3.1 Causal Influence Results from ECoG Data

Using the techniques presented in Chapter 2, the time series data recorded from

intracranial electrodes during the Wordstem language task was exported into Matlab,

preprocessed, and analyzed. In line with other ECoG studies, the goal of this research

was to determine causal influences occurring between brain regions in high gamma

frequencies during speech production. The Wordstem task is unique in that subjects

are neither repeating words nor responding to picture stimuli. This task required

subjects to generate complete words from incomplete word fragments, introducing

an element not present in other ECoG studies researched (Crone et al. [10], [11];

Edwards et al. [7]).

Analyzing ECoG data sets is a complicated endeavor, regardless of the task dur-

ing which the recordings are taken. This research began by following the path set

by Crone et al. by calculating the SdDTF values over highly overlapping windows

(300ms long windows with a 15ms shift) that spanned the pre-stimulus to post-

articulation epoch over all trials for each patient. After channels with epileptiform

activity and/or 60Hz noise were excluded, the data from the remaining electrodes
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was used to solve for the AMVAR model in each window. Mullen recommends using

as many channels as possible, as opposed to including data from a subset of elec-

trodes [14]. Choosing to include all channels introduced challenges that prompted

simplifications in the analysis.

The first simplification made was due to the number of electrodes, which corre-

sponds to the dimension of the AMVAR models in the overlapping windows (see Table

2.1). Because of the large number of electrodes implanted per patient relative to other

ECoG studies, the time-frequency graphs (such as the one in Figure 2.10 for the 2

node model) were not created. Rather, the maximum SdDTF matrices were solved

for directly (recall Figure 2.12), thus compressing time and frequency domains. As

the SdDTF values were originally restricted to 60− 150Hz, these results still pertain

to the high gamma frequency range.

The second simplification in the analysis was made after the plots of the SdDTF

maximum matrices (denoted ζ) were generated for each patient. Recall that each

pixel in these images represents the maximum SdDTF value attained across time and

frequency between a pair of electrodes. Figure 3.1 illustrates one such matrix (recall

Figure 2.12 from the 2 node model presented in Section 2.4).

Following the same procedures outlined in the examples in Section 2.4, the ma-

trices of SdDTF maximum values were treated as adjacency matrices so that the

nodes and edges of the resulting graphs displayed directionality and (proportional)

magnitude of direct, directed causal influences. Most entries of these matrices are

-
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Figure 3.1 : 72×72 matrix of SdDTF maximum values where each pixel represents the

maximum SdDTF value reached across time and frequency between two electrodes.

nonzero, so thresholds were introduced to include only entries greater than a certain

magnitude. When ζ values exceeding a subjective threshold of 0.03 were retained

from the matrix shown in Figure 3.1, the graph in Figure 3.2 was created (using

Matlab’s Bioinformatics Toolbox).

This graph (and any others similarly generated) would need to be decoded for

every patient to gain intuition about its meaning. The colors of each node represent

anatomical regions, and the numbers represent electrode numbers assigned after im-

plantation. Electrodes were not implanted in the exact same anatomical locations for

each patient, so the numberings are patient-specific. This inconsistency in the labels

posed a challenge in drawing cross-patient comparisons and global conclusions, given
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that so many electrodes were implanted in all seven patients.
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Figure 3.2 : Graph generated after retaining values above a threshold of 0.03 from the

adjacency matrix in Figure 3.1 . The colors of each node indicate anatomical regions.

The number labels of each node correspond to post-surgical labeling conventions and

are patient-specific.

When the ECoG data is exported into Matlab, an identifier is assigned to each

electrode that classifies its implantation site based on broader, pre-defined anatomical

regions common to most human brains (and all patients used in this study). Rather

than analyzing the results based on electrode locations, the activity from each of these
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wider regions was accumulated from all patients and averaged.

Finally, only a subset of regions in the left hemisphere was used for the graphi-

cal illustrations (although data from all electrodes was used when constructing the

AMVAR models). The regions used for the graphs (and the cumulative number of

electrodes that contributed ECoG data per area) are shown in Figure 3.3, where each

color indicates a different region.

Pars Triangularis - 29

Orbitofrontal - 94

Pars Orbitalis - 4

Pars Opercularis - 29

Middle Frontal
Gyrus - 70

Superior Frontal
Gyrus - 19 Precentral Gyrus - 44

Postcentral Gyrus - 31
Supramarginal Gyrus - 14

Angular Gyrus - 2

Middle Temporal Gyrus - 50

Inferior Temporal Gyrus - 23

Superior Temporal Gyrus - 47

Occipital Gyri - 8

Figure 3.3 : The anatomical locations in the left hemisphere of the brain selected for

the SdDTF causal influence analysis. Included are the summed electrode counts from

all patients.

Using these anatomical regions, the maximum SdDTF matrices were solved for

each patient (recall Figure 3.1), accumulated, and then grouped by the regions in

Figure 3.3. Denote this cumulative matrix ζ̂, where entry ζ̂(i, j) reprents the maxi-
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mum SdDTF value from region i to region j summed over all patients. As Figure 3.3

indicates, the electrodes are not evenly distributed in each region, so the entries of ζ̂

were averaged by electrodes. For example, entry ζ̂(i, j) was divided by the Ni +Nj ,

where the data was modeled from a total of Ni electrodes implanted in the region

represented by row i and Nj electrodes implanted in the region represented by column

j. This process was repeated for all combinations of preprocessing methods and AM-

VAR model orders dictated by the AIC or BIC. These electrode-averaged matrices

are given in Figures 3.4, 3.5, 3.6, and 3.7.
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Figure 3.4 : Electrode averaged matrix of regional maximum SdDTF values solved

for from ECoG data preprocessed using Preprocessing Method 1 and AMVAR models

using orders given by the AIC.
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Figure 3.5 : Electrode averaged matrix of regional maximum SdDTF values solved

for from ECoG data preprocessed using Preprocessing Method 2 and AMVAR models

using orders given by the AIC.

In order to enhance the visualizations of the results, the matrices were treated

as adjacency matrices and graphed on a background image of a brain. The nodes

are strategically positioned in the appropriate regions, and the edge widths are pro-

portional to the electrode averaged ζ̂ values. The four graphs generated from the

matrices in Figures 3.4, 3.5, 3.6, and 3.7 are shown in Figures 3.8, 3.9, 3.10, and 3.11,

respectively.

Sites in the temporal and frontal gyri, and the motor cortex are consistently

implicated in modern studies as having significant roles during speech production.
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Figure 3.6 : Electrode averaged matrix of regional maximum SdDTF values solved

for from ECoG data preprocessed using Preprocessing Method 1 and AMVAR models

using orders given by the BIC.

The edges flowing in and out of the superior and middle temporal gyri, the middle

frontal gyrus, the orbitofrontal cortex, and the pre and postcentral gyrus are greater

in thickness than other edges (from Figures 3.8, 3.9, 3.10, and 3.11). Hence, these

results from the analysis introduced in this research do not contradict findings from

ECoG and imaging studies that claim that these same areas are involved in language

production. (Crone et al. [11]; Indefrey and Levelt [8]).

In depth comparisons to results from modern studies are difficult for two reasons.

First, as the method implemented in this study is new, no other results exist for com-
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Figure 3.7 : Electrode averaged matrix of regional maximum SdDTF values solved

for from ECoG data preprocessed using Preprocessing Method 2 and AMVAR models

using orders given by the BIC.

parison. Second, these results describe the maximum SdDTF values reached between

regions over the entire task. Stages of speech production models cannot be extracted

from these results as the method currently stands. In order to draw deeper conclu-

sions about timings and mechanisms involved in speech production that are specific

to the Wordstem task, adjustments will have to be made to the current techniques.

For instance, this method can be applied to shorter time blocks that correspond with

the timings of the Levelt, Roelofs, and Meyer model of speech production so that the

evolution through the duration of the entire task is captured.
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Figure 3.8 : Electrode averaged graph of maximum SdDTF between regions from

ECoG data preprocessed using Preprocessing Method 1 and AMVAR models using

orders given by the AIC.

An additional direction of this research is exploring nonparametric Granger causal-

ity techniques to identify causal influences. Other data measurement modalities, such

as cortico-cortical evoked potentials or fMRI, could be incorporated to these results

to build more accurate models of ECoG measurements. Studying analytic models of

how potentials dissipate in the brain is another route that could be taken with this

research.

This work sought to identify cortical areas causally influencing each other during

a language task. A new method of analyzing ECoG data was introduced that gen-

erates graphical representations of directionality and magnitudes of these influences

occurring between brain regions. This method is important because it aggregates
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Figure 3.9 : Electrode averaged graph of maximum SdDTF between regions from

ECoG data preprocessed using Preprocessing Method 2 and AMVAR models using

orders given by the AIC.

significantly larger sets of ECoG data relative to other modern studies, further val-

idating these results. The graphical representations generated by this research can

help neurosurgeons identify brain regions crucial for language, taking more care to

avoid them, if possible, during medical procedures.
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Figure 3.10 : Electrode averaged graph of maximum SdDTF between regions from

ECoG data preprocessed using Preprocessing Method 1 and AMVAR models using

orders given by the BIC.

Figure 3.11 : Electrode averaged graph of maximum SdDTF between regions region

from ECoG data preprocessed using Preprocessing Method 2 and AMVAR models

using orders given by the BIC.
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