RICE UNIVERSITY

Programming Languages for
Reusable Software Components

by
Matthew Flatt

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Matthias Felleisen
Professor of Computer Science

Robert S. Cartwright, Jr.

Professor of Computer Science

Keith D. Cooper

Associate Professor of Computer Science

David M. Lane
Associate Professor of Psychology and
Statistics

Houston, Texas

June, 1999

Programming Languages for
Reusable Software Components

Matthew Flatt

Abstract

Programming languages offer a variety of constructs to support code reuse. For ex-
ample, functional languages provide function constructs for encapsulating expressions
to be used in multiple contexts. Similarly, object-oriented languages provide class (or
class-like) constructs for encapsulating sets of definitions that are easily adapted for
new programs. Despite the variety and abundance of such programming constructs,
however, existing languages are ill-equipped to support component programming with
reusable software components.

Component programming differs from other forms of reuse in its emphasis on
the independent development and deployment of software components. In its ideal
form, component programming means building programs from off-the-shelf compo-
nents that are supplied by a software-components industry. This model suggests a
strict separation between the producer and consumer of a component. The separa-
tion, in turn, implies separate compilation for components, allowing a producer to
test and distribute compiled components rather than proprietary source code. Since
the consumer cannot modify a compiled software component, each component must
be defined and compiled in a way that gives the consumer flexibility in linking com-
ponents together.

This dissertation shows how a language for component programming can support
both separate compilation and flexible linking. To that end, it expounds the principle

of external connections:

A language should separate component definitions from component

connections.

Neither conventional module constructs nor conventional object-oriented constructs

follow the principle of external connections, which explains why neither provides an

effective language for component programming. We describe new language constructs
for modules and classes—called units and mixins, respectively—that enable compo-
nent programming in each domain.

The unit and mixin constructs modeled in this dissertation are based on con-
structs that we implemented for the MzScheme programming language, a dialect
of the dynamically-typed language Scheme. To demonstrate that units and mixins
work equally well for statically-typed languages, such as ML or Java, we provide
typed models of the constructs as well as untyped models, and we formally prove the

soundness of the typed models.

Acknowledgements

And you may ask yourself: Well, how did I get here?
—Talking Heads, “Once in a Lifetime”

I started life with wonderful parents who encouraged my academic and intellectual
pursuits. I finished this dissertation with an exceptional advisor and many colleagues
who enabled and encouraged my research.

Matthias Felleisen, my advisor, shaped this dissertation by recognizing the po-
tential in small bits of ideas. He taught me how to bring those bits together, and
how to fill in the gaps to form a coherent story. In doing so, Matthias also shaped
me, bringing together small bits of talent, then filling in the gaps to form a coherent
researcher and teacher.

Corky Cartwright, my co-advisor, provided an inexhaustible fountain of knowledge
and insightful criticism as my research developed. His approval of this work in its final
form gives me more confidence in the results than one hundred program committees.

Keith Cooper supported me at every stage in my graduate career, from writing
recommendation letters for me as first-year student to serving on my dissertation
committee. He also taught me that not all well-known problems were solved in
1980—mnot even the ones that seem easy, such as register allocation or programming
languages for software components.

Shriram Krishnamurthi, Robby Findler, and Cormac Flanagan defined the coop-
erative, give-and-take environment from which this dissertation emerged. Together,
we formulated and refined the notions of components, units, and mixins, and the sig-
nificance of this dissertation depends crucially on the larger context defined by their
work.

Paul Graunke, John Clements, Paul Steckler, and Ian Barland provided invaluable
feedback and support as part of the Programming Languages Team. Many other peo-
ple provided helpful comments and criticisms along the way, especially Kent Dybvig,
Dan Friedman, Bob Harper, Peter Lee, Didier Rémy, Scott Smith, Michael Sperber,
and the anonymous reviewers for POPL’98, PLDI'98, and ICFP’98. T owe a further

debt to the users of DrScheme, MzScheme, and MrEd for testing the implementation
of many ideas.

This work was made possible by the generous support of Rice University, the Na-
tional Science Foundation (with research grants and a graduate fellowship), the Texas

Advanced Technology Program, and a Lodieska Stockbridge Vaughan Fellowship.

Dedication

for Wenyuan

Contents

Abstract

Acknowledgments

Reusable Software Components

1.1 Reuse without Source Code

1.2 Language Support for Reuse oL
1.21 Modules oo
1.22 Classes o oo e

1.3 Dissertation Overview

The Extensibility Problem

2.1 Extensible Programming with Classes
2.1.1 Shape Datatypeo
2.1.2 Variant Extension 000
2.1.3 Operation Extension

2.2 Better Reuse through Units and Mixins
2.2.1 Unitizing the Basic Shapes
2.2.2 Linking the Shape and Client Units
2.2.3 Invoking Unit Programs
2.2.4 New Units for a New Variant
2.2.5 New Units and Mixins for a New Operation
2.2.6 Units and Mixins at Work

2.3 Summary ... e

Units

3.1 Existing Module Languages and Units

3.2 Programming with Units o o
3.2.1 Defining Units. o

i

-1 O W W N =

oo

11
12
13
15
16
17
19
21
21
23
25

3.2.2 Linking Units o 30

3.2.3 Programs that Link and Invoke Other Programs 33
3.2.4 Dynamic Linking oo oo 35
3.3 Possible Extensions to Units 0oL 36
3.4 Problems with Units 38
3.5 The Structure and Interpretation of Units 42
3.5.1 Dynamically Typed Units 45
3.5.2 Units with Constructed Types 51
3.5.3 Units with Type Dependencies and Equations 61
3.6 Related Worko 64
3.7 Summary ... 65
Mixins 67
4.1 A Model of Classes 68
4.1.1 CLASSICJAVA Programs 69
4.1.2 CrassicJAVA Type Elaboration 73
4.1.3 CrASSICJAVA Evaluation o000 73
4.1.4 CLASSICJAVA Soundness 75
4.1.5 Related Work on Classes 79
4.2 From Classes to Mixins: An Example 79
4.3 Mixins for Javao Lo 82
4.3.1 MIXEDJAVA Programs 84
4.3.2 MIXEDJAVA Type Elaboration 87
4.3.3 MIXEDJAVA Evaluation 87
4.3.4 MIXEDJAVA Soundness 92
4.3.5 Implementation Considerations 94
4.3.6 Related Work on Mixins 95
4.4 Summaryo e e e 96
Experience with Units and Mixins 97
5.1 Units with Signatures in MzScheme 97
5.2 Mixins in MzSchemeo oo 98

5.3 Units and Mixins in DrScheme 99

6 Related Work on Software Components

7 Limitations and Future Work

7.1 Combining Typed Units and Mixins
7.2 Units and Mixins for Other Languages

A MzScheme Class and Interface Syntax
Al Classes o o o 0 e e
A2 Interfaces
A.3 Derived Classes

UNIT. Proofs

B.1 Proof of Subject Reduction
B.2 Proof of Progress
B.3 Supporting Lemmata

CrassicJava Proofs

C.1 Proof of Subject Reduction
C.2 Proof of Progress
C.3 Supporting Lemmata

D MixXEpJava Proofs
D.1 Proof of Subject Reduction
D.2 Proof of Progress
D.3 Supporting Lemmata 0oL

Bibliography

102

105
105
105

107
107
108
109

111
111
118
122

127
127
129
130

133
133
136
138

141

Chapter 1

Reusable Software Components

To implement a reusable program component, a programmer must:

o define a component that is large enough to make its reuse worthwhile, but small

enough to be widely applicable;

o design the component to export abstractions rather than implementation de-
tails, so that the component can be replaced by an improved version with a

different implementation; and

e anticipate likely extensions to the component’s functionality, parameterizing the

component’s behavior accordingly.

Programming language constructs can help programmers design reusable software
components by making the natural expression of program parts conducive to reuse.
Examples of helpful language constructs include higher-order functions, programmer-
defined data types, and classes. Nevertheless, existing languages fail to support reuse
in many ways. For example, existing module languages help a programmer to de-
compose a program into reusable pieces, but they typically force unnecessary context
dependencies on the module that limit its reuse. Similarly, class-based object-oriented
languages encourage the reuse of class definitions through extension, but they do not
permit the reuse of a class extension in disjoint parts of a class hierarchy.

To explain why current languages fail, we must first define reuse more precisely.
Section 1.1 explains that reuse for this dissertation means black-box reuse. Section
1.2 describes our thesis—a prescription for language designers who wish to support
black-box reuse—and two novel language constructs that illustrate the thesis. Section

1.3 provides an overview of the rest of the dissertation.

1.1 Reuse without Source Code

At the 1968 NATO conference, Mcllroy [59] described component reuse in its ideal
form, a world where programmers construct software using off-the-shelf components
that are supplied by a software-components industry. This off-the-shelf approach
should also work within a development team, where each part of the team supplies
components to other parts of the team. Indeed, this approach can even help an indi-
vidual programmer to break up a large program into manageable pieces for separate
development.

Component-based reuse depends crucially on separately-compiled components. In
the case of a software-components industry, separate compilation permits a vendor
to distribute components without exposing proprietary source code. In the case of
a single team or single programmer, separate compilation allows type-checking and
testing for individual components, and it allows a rapid modify-and-test cycle for the
entire program.

A software component that is distributed in compiled form cannot be modified
by a client (i.e., the component’s user). This restriction ensures that a vendor can
create new versions of a component to replace the original one, either to improve the
component or to correct a problem, without forcing clients to change their code. The
separation also ensures that individual components can be tested independently via
stubs and drivers that verify the component’s interface. Finally, because compilation
applies only for components with a well-defined meaning, separate compilation en-
forces a semantic modularity for components; a programmer can therefore combine
components by reasoning about their meanings rather than their implementations.

Since this dissertation concerns only those forms of reuse that conform to the
model of a software-components industry, we define reuse to mean black-box reuse:
reuse of a component without inspecting or modifying its source code. Black-box
reuse requires programming language support. For example, while C++ templates
allow programmers to recycle fragments of program syntax, they cannot implement
components because templates cannot be compiled separately. In contrast, closed
functor modules in ML! can be compiled separately, so functors can implement com-

ponents.

!Throughout this dissertation, we use “ML” as an abbreviation for “SML or CAML”.

Separate compilation sometimes implies a loss of performance as compared to
whole-program compilation, because it enforces abstraction boundaries and defeats
optimization techniques such as inlining. In our view, however, the lack of reusable
software components is a far more critical problem than a lack of high-performance
software. We therefore investigate language constructs to maximize reuse, and we
consider performance as a secondary (though important) constraint on the design

space.

1.2 Language Support for Reuse

Separate compilation is a key prerequisite for constructing reusable software compo-
nents, but component construction is only half of the story. Equally important to
reuse is a language’s facility for connecting components to form a complete program.

This dissertation explores the principle of external connections:

A language should separate component definitions from component

connections.

The dissertation demonstrates the application of this principle to two important areas:
modules and classes. In the case of modules, the components are modules and the
connections link modules. For classes, the components are class extensions and the
connections derive concrete classes.

Figure 1.1 illustrates the difference between a language with external connections
and a language where definitions and connections are specified together. The left-
hand figure shows a component R that is defined separately from its connections;
hence, a programmer can use R with either A or B. In contrast, the right-hand
figure shows a component R whose definition explicitly connects it to the component
A; in this case, using R with B requires modifying R’s definition. In the following
subsections, we argue that most existing module and object constructs correspond to
the right-hand figure. This dissertation describes alternatives that correspond to the
left-hand figure.

1.2.1 Modules

Many languages (e.g., Ada 95 [38], Modula-3 [32], Haskell [37], and Java [31]) provide

modules via packages. A package system delineates the boundaries of each mod-

Language with external connections Language w/o external connections
Component definitions: Component definitions:
R A B Ret>A4 A B
Explcitly connect R to A: R is hard-wired to A:
R lo—e| A Re o A
Explicitly connect R to B: Modify R to work with B:
Re+1A4A = | R e+—1>B
R op— B
R’ is hard-wired to B:
R'et—e| B

Figure 1.1 : Programming with and without external connections

ule and permits the separate compilation of packages. Package linking, however, is
determined by import specifications within each package definition. Thus, packages
correspond to the right-hand side of Figure 1.1; to use a package in different contexts
with different import sources, a programmer must modify the package definition.
For example, the definition of a dictionary package in Java might include the

following:
import com.supersoft.splaytree.*;

This import specification hard-wires dictionary to the splay tree implementation
from SuperSoft. A programmer using dictionary might want instead to use a com-
patible splay tree implementation from UltraSoft. Even if SuperSoft and UltraSoft
export the same classes and methods for splay trees, the programmer must modify
the definition of dictionary to use UltraSoft’s implementation, replacing supersoft

with ultrasoft.

A Java programmer might hack around the problem by defining a class loader
to remap com.supersoft.splaytree to com.ultrasoft.splaytree. This name-
remapping strategy, however, fails to scale to the general case. Suppose that the
programmer wants to use both dictionary and thesaurus—which also imports
com.supersoft.splaytree—and the programmer wants to preserve the SuperSoft
import for thesaurus while switching dictionary’s import to UltraSoft. Because a
class loader cannot map a single package path to multiple packages, the programmer
is forced to modify either dictionary or thesaurus.

The underlying problem is that a package declares both the shape and source of its
imports. The shape part of the declaration specifies that the imports include certain
classes and methods; shape information is necessary for separate compilation. The
source part of the declaration specifies that the com.supersoft.splaytree package
provides those classes. Thus, the failure of dictionary and thesaurus is a failure
to obey the principle of external connections, which indicates that the source of a
module’s imports should be specified external to the module. If the source of a
package’s imports were specified external to its definition, then a programmer could
use dictionary and thesaurus in the same program, specifying different sources for
each packages imports without modifying either package.

MI.’s module system follows the principle of external connections. An ML functor
abstracts over a collection of definitions in the same way that a procedure abstracts
over an expression. A functor imports other modules as formal arguments, describing
the shape of each import using a signature. The signature does not specify the source
of the imports; a given program may contain several modules that all implement the
same interface. Instead, the programmer explicitly links the functor to the source of
its imports via a functor application.

Unfortunately, although MIL’s module system satisfies the principle of external
connections, its mechanism for connecting functors is overly restrictive. Functors
cannot define mutually-recursive procedures, since functor application can combine
only a single functor with other unparameterized modules. In addition, functor appli-
cation conflates linking with instantiation, which prohibits a mixture of hierarchical
linking and multiple instantiation.

This dissertation presents a new language of modules, called units. Units combine
the benefits of external linking specifications, graph-based linking to support mutual

recursion across modules, and hierarchical linking separated from instantiation.

1.2.2 Classes

Object-oriented programming languages offer classes, inheritance, and overriding to
parameterize over program pieces for reuse. Using class extension (inheritance) and
overriding, a programmer derives a new class to reuse an old one, specifying for the
derived class only the elements that change from the base class. For example, given
a Java Frame class that implements windows in a word-processing application, a pro-
grammer can derive SearchFrame to implement windows that allow searching within
the document, or MultiFrame to implement windows for editing multiple documents

at once:

Frame

SearchFrame MultiFrame

In this example, the class extensions SearchFrame and MultiFrame are hard-
wired to the superclass Frame. Consider implementing SearchMultiFrame, which
supports both searching and multiple files in the window. The programmer cannot
combine SearchFrame and MultiFrame to implement SearchMultiFrame. Instead,
the extension that implements the difference between SearchFrame and Frame must

be duplicated and modified to derive SearchMultiFrame from MultiFrame:

Frame

SearchFrame MultiFrame

-» SearchMultiFrame

In short, while class-based programming supports the reuse of classes, it fails to
support the reuse of class extensions.

Multiple inheritance gives the programmer a way to rearrange some hard-wired
links in a class derivation. For example, if SearchFrame and MultiFrame were imple-
mented as C++ classes, the programmer could combine them using multiple inher-
itance, effectively implementing the dotted line in the preceding figure with a single
declaration. Multiple inheritance, however, does not follow the principle of external
connections; it merely provides a restricted set of operations for rearranging hard-

wired links. In practice, programmers find these link-rearranging operations difficult

to understand. For example, if SearchMultiFrame inherits from both SearchFrame
and MultiFrame, does an instance of SearchMultiFrame contain two instances of
Frame, or just one??

A language that supports mixins follows the principle of external connections.
A mixin is a pure class extension; it specifies the shape of its superclass (i.e., the
fields and methods that are expected from the superclass), but it does not indicate a
specific source for the superclass. The programmer specifies separately the connection
between a mixin and the superclass it extends, perhaps applying a single mixin to
multiple superclasses. This dissertation presents a detailed model of mixins, and it
demonstrates how to integrate mixins with a conventional object-oriented language,

such as Java.

1.3 Dissertation Overview

Chapter 2 introduces units and mixins by showing how they help solve a particu-
lar component-programming problem. Chapter 3 presents units in depth, providing
untyped and typed models of units, with a proof of soundness for the typed model.
Chapter 4 presents mixins in depth, providing models of classes and mixins for a
Java-like language, with a proof of soundness for each model. Chapter 5 relates our
experience using units and mixins to implement a large system. Chapter 6 provides
an overview of related work on reuse. Chapter 7 discusses the limitations of this work

and future directions.

?In C++, the answer depends on whether SearchFrame and MultiFrame are declared as “virtual”

subclasses of Frame.

Chapter 2

The Extensibility Problem

Most programs evolve over time. A typical program develops around a core compo-
nent that implements the program’s essential functionality. While the programmer
occasionally extends the core component to support a new feature in some part of
the program, other parts of the program remain unchanged. Thus, different parts of
a program may evolve at different rates, particularly if the parts are implemented by
different people or by different groups. Support for such evolution is a key challenge
for component programming.

In this chapter, we introduce units and mixins by illustrating how they address
a particular instance of evolution that we call the extensibility problem [13, 68, T1].

The following table summarizes the problem:

original variants extension

O O ~r

original { draw !— ar_av_v(_D_ B _dlja;J(_d)_! draw(~)

operations

0
=
[a]
[
B
=
0
=
[a]
[
B
=
—
0O ~—
~—
0
=
[a]
[
B
=
—
~—
0
=
[a]
[
B
=
B
~—

extension{ rotate|rotate

~~

0) rotate(()) rotate(~)

The portion of the table contained in the dotted box represents a core program
component that provides several operations (draw and shrink) on a collection of
data (squares and circles). A programmer may wish to use such a component in

three different contexts:

1. The programmer may wish to include the component as is.

2. The programmer may wish to extend the datatype with a variant (repositioned
shapes, represented as ~») and adapt the collection of operations accordingly.

The table illustrates this case as a new column to the right of the dotted box.

3. The programmer may wish to add a new operation (rotate), shown in the table

as a new row below the dotted box.

To avoid duplicate maintenance, or because the component is acquired in object
form, the components of such a program must be organized so that programmers can

add both new forms of data and new operations without modifying or recompiling

e the original program component, or

e its existing clients.

Such a program organization dramatically increases the potential for software reuse
and the seamless integration of proprietary modules.

Neither standard functional nor object-oriented strategies offer a satisfactory way
to implement the component and its clients. In a functional language, the variants
can be implemented as a programmer-defined type, with the operations as functions
on the type. Using this approach, the set of operations is easily extended, but adding
a new variant requires modifying the functions. In an object-oriented language, the
variants can be implemented as a collection of classes, with each operation as a
method that is common to all classes. Using this approach, the datatype is easily
extended with a new variant, but adding a new operation is typically implemented
by modifying the classes.

The existing literature provides three solutions to the problem. Kiihne’s [49] so-
lution, which relies on generic procedures with double-dispatching, can interfere with
the hierarchical structure of the program. Palsberg and Jay’s [65] solution is based
on reflection operators and incurs a substantial run-time penalty. Krishnamurthi,
Felleisen, and Friedman [21, 48] propose an efficient solution that works with stan-
dard class mechanisms, but it requires the implementation (and maintenance) of a
complex programming protocol. All of these solutions are partial because they do not
address the reuse of clients. In contrast, the combination of units and mixins solves
the problem simply and elegantly, and it addresses the reuse of both the original

component and its clients.

2.1 Extensible Programming with Classes
Figure 2.1 outlines our solution to the extensibility problem:

e Diagram (a) represents the original component. The rhombus stands for the
datatype, and the rectangles denote the datatype’s variants. The oval is a client

of the datatype component.

10

e Diagram (b) shows the datatype extended with a new variant. The extension
is contained in the right inner dashed box. The solid box on the left represents
the unmodified datatype code from (a). The original client is also preserved,

and a new client of the datatype exploits the variant extension.

e Diagram (c) shows extension in the other direction: adding a new operation to
the datatype. As before, the extension is implemented by the inner dashed box
while the solid box represents the unmodified existing implementation from (b).
The new squares in the extension represent the implementation of the operation
for each variant. The existing clients have not been modified, but they are now

linked to the extended variants.

R S KT AT o -
L L O
I
i Client)| (Client) ECClienD% (Clien‘D

(a) Original Datatype (b) New Variant (c) New Operation

Figure 2.1 : Extensible programming on datatypes

The remainder of this section develops a concrete example, an evolving shape pro-
gram [21, 48]. Since Figure 2.1 can be approximated using conventional classes,
we first use only language features available in a typical object-oriented language.
(Classes are not enough, however; Section 2.2 introduces units and mixins to complete

the solution.

11

(define Shape (interface () draw))

(define Rectangle
(class™ object% (Shape) (width height)
(public
[draw (lambda (window z y) ...)])))

(define Circle
(class™ object% (Shape) (radius)
(public
[draw (lambda (window z y) ...))]))

(define Translated
(class* object% (Shape) (shape Ay Ay)
(public
[draw (lambda (window z y)
(send shape draw

window (+ & Az) (+ y Ay)))]))

Figure 2.2 : Shape classes

Throughout this chapter, we use the syntax for classes, units, and mixins of the
MzScheme programming language [26], which is an extension of Scheme [11]. Where
necessary, we explain the syntax of these forms, but we assume a passing familiarity

with Scheme’s syntax and with common object-oriented constructs.

2.1.1 Shape Datatype

Initially, our shape datatype consists of three variants and one operation: rectangles,
circles, and translated shapes for drawing. The rectangle and circle variants contain
numbers that describe the dimensions of the shape. The translated variant consists of
two numbers, A, and A, and another shape. For all variants, the drawing operation
consumes a destination window and two numbers describing a position to draw the
shape.

The shape datatype is defined by the Shape interface and implemented by three
classes: Rectangle, Circle and Translated. FEach subclass declares a draw method,
which is required to implement the Shape interface. Figure 2.2 shows the interface
and class definitions using MzScheme’s class system. (MzScheme’s class system is

similar to Java’s; see Appendix A for details.)

12

(define display-shape
(lambda (shape)
(if (not (is-a? shape Shape))
(error “expected a Shape")
(let ([window ...1])
(send shape draw window 0 0)))))

(display-shape (make-object Translated
(make-object Rectangle 50 100)
30 30))

Figure 2.3 : Two shape clients

(define Union
(class® object% (Shape) (left right)
(public
[draw (lambda (window z y)
(send left draw window z y)
(send right draw window z y))])))

(display-shape
(make-object Union
(make-object Rectangle 10 30)
(make-object Translated

(make-object Circle 20) 30 30)))

Figure 2.4 : Variant extension and a new client

Figure 2.3 contains two client expressions for the shape datatype. The first one
defines display-shape, a function that consumes a shape and draws it in a new window.
The second expression creates a shape and displays it. As the shape datatype is

extended, we consider how these clients are affected.

2.1.2 Variant Extension

To create more interesting configurations of shapes, we extend the shape datatype
with a new variant representing the union of two shapes. Following the strategy
suggested in Figure 2.1 (b), we define a new Union class derived from Shape. Figure 2.4

defines the Union class, and shows an expression that uses the new class.

13

The simplicity of the variant extension reflects the natural expressiveness of object-
oriented programming. The object-oriented approach also lets us add this variant

without modifying the original code or the existing clients in Figure 2.3.

2.1.3 Operation Extension

Shapes look better when they are drawn centered in their windows. We can support
centered shapes by adding the operation bounding-box, which computes the smallest
rectangle enclosing a shape.

We add an operation to our shape datatype by defining four new classes, each de-
rived from the variants of Shape in Section 2.1.2. Figure 2.5 defines the extended
classes—BB-Circle, BB-Rectangle, BB-Translated, and BB-Union—that provide the
bounding-box method. The figure also defines the BB-Shape interface, which de-
scribes the extended shape type for the bounding box classes, just as Shape described
the type for the original shape classes.

The new display-shape client, shown in Figure 2.5, uses bounding box information
to center its shape in a window. Unfortunately, to use the existing clients, we must
modify each to create instances of the new bounding box classes instead of the original
shape classes, even if the client does not use bounding box information directly. The
standard object-oriented architecture thus does not satisfy our original goal; it does
not support operation extensions to the shape datatype without modifying existing
clients.

Since object-oriented programming constructs do not address this problem di-
rectly, we might resort to a programming protocol or pattern. In this case, the
Abstract Factory pattern [29] and a mutable reference solves the problem. The Ab-
stract Factory pattern relies on one object, called the factory, to create instances of
the shape classes. The factory supplies one creation method for each variant of the
shape, and clients create shapes by calling these methods instead of using make-object
directly. To change the classes that are instantiated by clients, it is only necessary to
change the factory, which is stored in the mutable reference. A revised client, using
the Abstract Factory, is shown in Figure 2.6.

Although the Abstract Factory pattern solves the problem, the programmer is

forced to maintain this pattern manually. The pattern actually implements a simple

14

(define BB-Shape (interface (Shape) bounding-bor))

(define BB-Rectangle
(class™ Rectangle (BB-Shape) (width height)
(public
[bounding-box
(lambda () (make-object BB 0 0 width height))])
(sequence (super-init width height))))

(define BB-Circle
(class® Circle (BB-Shape) (radius)
(public
[bounding-box
(lambda () (make-object BB (- radius) (- radius) radius radius))])

(sequence (super-init 1))))

(define BB-Translated
(class* Translated (BB-Shape) (shape A, A,)
(public
[bounding-boxr (lambda () ...)])
(sequence (super-init shape Ay Ay))))

(define BB-Union
(class® Union (BB-Shape) (left right)
(public
[bounding-boxr (lambda () ...)])
(sequence (super-init left right))))

(define BB
(class™ object% () (left top right bottom)

)

(define display-shape
(lambda (shape)
(if (not (is-a? shape BB-Shape))
(error “"expected a BB-Shape")
(let* ([bb (send shape bounding-bor)]

[window ..] [z ..] [y ..])
(send shape draw window z y)))))

Figure 2.5 : Operation extension

15

(define Factory
(class* object% () ()
(public
[make-circle (lambda (r) (make-object Circle 7))]

)

(define factory (make-object Factory))

(define BB-Factory
(class® Factory () ()
(override

[make-circle (lambda (r) (make-object BB-Circle 1))]
)

(set! factory (make-object BB-Factory))
(display-shape (send factory make-union
(send factory make-rectangle 10 30)
(send factory make-translated

(send factory make-circle 20) 30 30)))

Figure 2.6 : Revised clients using Abstract Factory

dynamic linker, where the set! expression installs the link.! This technique success-
fully separates the definition of shapes and clients so that a specific shape imple-
mentation can be selected at a later time, rather than hard-wiring a reference to a
particular implementation into the client. However, using a construct like set! for
linking obscures this intent both to other programmers and to the compiler. A more

robust solution is to improve the module language.

2.2 Better Reuse through Units and Mixins

In the previous section, we developed the Shape datatype and its collection of oper-
ations, and we showed how object-oriented programming supports new variants and
operations in separately developed extensions. In this section, we make the separate
development explicit using units, defining the basic definitions, the extensions, and the

clients all in separate units. MzScheme supports separate compilation for units, and

IFactory Method is a related pattern where an extra operation in the datatype is used to create
instances instead of a separate factory object. Factory Method applies to an interesting special
case: the datatype client and the datatype implementation are the same, thus making the datatype

implementation extensible.

16

(define BASIC-SHAPES
(unit (import)
(export Shape Rectangle Circle Translated)
(define Shape (interface ...)) ; see Figure 2.2
(define Rectangle (class* object% (Shape) ...))
(define Circle (class* object% (Shape) ...))
(define Translated (class* object% (Shape) ...))))

Figure 2.7 : Creating Units

provides a flexible language for linking them. Indeed, the linking implemented with
an Abstract Factory in the previous section can be more naturally defined through
unit linking. Finally, we show how MzScheme’s class-unit combination supports mix-
ins, which provides new opportunities for reuse that are not available in conventional

object-oriented languages.

2.2.1 Unitizing the Basic Shapes

Figure 2.7 shows the basic shape classes encapsulated in a BASIC-SHAPES unit. This
unit imports nothing and exports all of the basic shape classes. The body of the unit
contains the class definitions exactly as they appear in Figure 2.2.

In general, the shape of a unit expression is

(unit (import variable - --)
(export variable - --)
unit-body-expr ---)

(where centered ellipses indicate repeated syntactic patterns). The unit-body-exprs
have the same form as top-level Scheme expressions, allowing a mixture of expressions
and definitions, but define within a unit expression creates a unit-local variable
instead of a top-level variable. The unit’s imported variables are bound within the
unit-body-exprs. Fach exported variable must be defined by some wunit-body-expr.
Unexported variables that are defined in the unit-body-exprs are private to the unit.
Figure 2.8 defines two client units of BASIC-SHAPES: GUI and PICTURE. The
GUT unit provides the function display-shape (the same as in Figure 2.3). Since it
only depends on the functionality in the Shape type, not the specific variants, it
only imports Shape. The PICTURE unit imports all of the shape variants—so it can

17

(define Gur
(unit (import Shape)
(export display-shape)
(define display-shape ...))) ; see Figure 2.3

(define PICTURE
(unit (import Rectangle Circle Translated display-shape)
(export)
(display-shape (make-object ...)))) ; see Figure 2.3

Figure 2.8 : Unitized shape clients

construct instances—as well as the display-shape function, and it exports nothing.
When PICTURE is invoked as part of a program, it constructs a shape and displays
it.

A unit is an unevaluated bundle of code, much like an object file created by
compiling a traditional language. At the point where BASic-SHAPES, GUI, and
PICTURE are defined as units, no shape classes have been defined, no instances have
been created, and no drawing window has been opened. Each unit encapsulates its
definitions and expressions without evaluating them until the unit is invoked, just like
a procedure encapsulates expressions until it is applied. However, none of the units
in Figures 2.7 and 2.8 can be invoked directly because each unit requires imports.

The units must first be linked together to form a program.

2.2.2 Linking the Shape and Client Units

Units are linked together with the compound-unit form. Figure 2.9 shows how to
link the units of the previous sub-section into a complete program: BASIC-PROGRAM.
The PICTURE unit’s imports are not a priori associated with the classes in BASIC-
SHAPES. This association is established only by the compound-unit expression,
and it is established only in the context of BASIC-PROGRAM. The PICTURE unit can
be reused with different Shape classes in other compound units.

The compound-unit form links several units, called constituent units, into one
new compound unit. The linking process matches imported variables in each con-
stituent unit with either variables exported by other constituents, or variables im-

ported into the compound unit. The compound unit can then re-export some of

18

(define Bas1Cc-PROGRAM
(compound-unit
(import)
(link [S (Basic-SHAPES)]
[G (Gur (S Shape))]
[P (PIcTURE (S Rectangle) (S Circle) (S Translated) (G display-shape))])
(export)))

(invoke-unit BAsIc-PROGRAM)

Figure 2.9 : Linking basic shape program

the variables exported by the constituents. Thus, BASIC-PROGRAM is a unit with
imports and exports, just like BASIC-SHAPES or GUI, and no evaluation of the unit
bodies has occurred. Unlike the GUT unit, BASIC-PROGRAM is a complete program,
since it has no imports.

Each compound-unit expression

(compound-unit (import variable - --)
(link [tag: (expry linkspecy ---)]

[tag, (expr, linkspec, ---)])
(export (tag variable) ---))

has three parts:

e The import clause lists variables that are imported into the compound unit.

These imported variables can be linked to the constituent unit’s imports.

e The link clause specifies the graph of connections among the constituent units.
Each constituent unit is specified via an expr and identified with a unique tag.
Following the expr, a link specification linkspec is provided for each of the

constituent’s imports. Each link specification has one of two forms:
— A linkspec of the form variable links the constituent’s import to an import
of the compound unit.

— A linkspec of the form (tag variable) links the constituent’s import to

variable as exported by the tag constituent.

19

e The export clause re-exports variables from the compound unit that are ex-
ported from the constituents. The tag indicates the constituent and variable is

the variable exported by the constituent.

To evaluate a compound-unit expression, the exprs in the link clause are eval-
uated to determine the compound unit’s constituents. For each constituent, the
number of variables it imports must match the number of linkspecs provided; other-
wise, an exception is raised. Each linkspec is matched to an imported variable in the

2 Fach constituent must also export the variables that

constituent unit by position.
are referenced by link and export clauses using the constituent’s tag.

Once a compound unit’s constituents are linked, the compound unit is indistin-
guishable from an atomic unit. Conceptually, linking creates a new unit by merging
the internal definitions and expressions from all the constituent units. During this
merge, variables are renamed as necessary to implement linking between constituents
and to avoid name collisions between unrelated variables. The merged unit-body-
exprs are ordered to match the order of the constituents in the compound-unit’s

link clause.?

2.2.3 Invoking Unit Programs

The BASIC-PROGRAM unit from Figure 2.9 is a complete program, analogous to
a conventional application, but the program still has not been executed. In most
languages with module systems, a complete program is executed through commands
outside the language. In MzScheme, a program unit is executed directly with the

invoke-unit form:
(invoke-unit expr)

The value of expr must be a unit. Invocation evaluates the unit’s definitions and
expressions, and the result of the last expression in the unit is the result of the

invoke-unit expression. Hence, to run BASIC-PROGRAM, we would evaluate

2In MzScheme’s extended unit language with signatures, linking matches variables by name
rather than by position; see Section 5.1 for details. When the number of imports is small, linking
by position is simpler because it avoids complex machinery for renaming variables.

3The implementation of linking is equivalent to this reduction, but far more efficient. In particu-
lar, it is not necessary to extract expressions from the constituent units, which would break separate

compilation.

20

define UNION-SHAPE
(
(unit (import Shape)
(export Union)

(define Union (class® object% (Shape) ...)))) ; see Figure 2.4

(define Basic+UNION-SHAPES
(compound-unit
(import)
(link [S (Basic-SHAPES)]
[US (UNION-SHAPE (S Shape))])
(export (S Shape)
(S Rectangle)
(S Circle)
(S Translated)
(US Union))))

Figure 2.10 : Variant extension in a unit

(define UNION-PICTURE
(unit (import Rectangle Circle Translated Union
display-shape)
(export)
(display-shape (make-object ...)))) ; see Figure 2.4

(define UNION-PROGRAM
(compound-unit
(import)
(link [S (Basic+UNION-SHAPES)]
[G (Gur (S Shape))]
[P (PICTURE (S Rectangle) (S Circle) (S Translated) (G display-shape))]
[UP (UNION-PICTURE (S Rectangle)
(S Circle)
(S Translated)
(S Union)
(G display-shape))])
(export)))

(invoke-unit UNION-PROGRAM)

Figure 2.11 : New client and the extended program

(invoke-unit BASIC-PROGRAM)

21

2.2.4 New Units for a New Variant

To extend Shape with a Union variant, we define the extension in its own unit, UNTON-
SHAPE, as shown in Figure 2.10. The Shape class is imported into UNION-SHAPE,
and the new Union class is exported. In terms of Figure 2.1 (b), UNION-SHAPE
corresponds to the smaller dashed box, drawn around the new variant class. The
solid box is the original unmodified BASIC-SHAPES unit, and the outer dashed box
in Figure 2.1 (b) is BASIC4UNION-SHAPES, a compound unit linking UNION-SHAPE
together with BASIC-SHAPES.

Since the BASIC+UNION-SHAPES unit exports the variants from both BASic-
SHAPES and UNION-SHAPE, it can serve as a replacement for the original BASIC-
SHAPES unit, yet it also provides additional functionality for new clients. The UNION-
PROGRAM unit in Figure 2.11 demonstrates both of these uses. In this new program,
the GUI and PICTURE clients are reused intact from the original program, but they
are now linked to BASIC+UNION-SHAPES instead of BASIC-SHAPES. An additional
client unit, UNION-PICTURE, takes advantage of the shape extension to draw a su-

perimposed rectangle and circle picture.

2.2.5 New Units and Mixins for a New Operation

To extend Shape with a bounding-box operation, we define the BB-SHAPES unit in
Figure 2.12. This unit corresponds to the smaller dashed box in Figure 2.1 (c).

The BB-SHAPES unit is the first example to rely on mixins. The BB-Rectangle
class is derived from an imported Rectangle class, which is not determined until the
unit is linked—long after the unit is compiled. Thus, BB-Rectangle defines a class
extension that is parameterized over its superclass.

The BASIC4+UNION+4BB-SHAPES unit links the BASIC4UNION-SHAPES unit
from the previous section with the new bounding-box unit, then exports the bounding-
box classes. As the bounding-box classes are exported, they are renamed to match

4 4.e., BB-Rectangle is renamed to Rectangle, and so on. This

the original class names,
renaming does not affect the linking within BASIC+UNION4+BB-SHAPES; it only

affects the way that BASIC+UNION4+BB-SHAPES is linked with other units.

4The simplified description of compound-unit in Section 2.2.2 did not cover the syntax for

renaming exports. For a complete description of compound-unit, see the MzScheme manual [26].

22

(define BB-SHAPES

(unit (import Shape Rectangle Circle Translated Union)

(export BB-Shape BB-Rectangle BB-Circle

BB-Translated BB-Union BB)

define BB-Shape (interface (Shape) ...)) ; see Figure 2.5
define BB-Rectangle (class™® Rectangle . ..))
define BB-Circle (class* Circle ...))
define BB-Translated (class®* Translated ...))
define BB-Union (class®* Union ...))
define BB ...)))

o — — — —.

(define Basic+UNION+BB-SHAPES
(compound-unit
(import)
(link [S (Basic+UNION-SHAPES)]
[BS (BB-SHAPES (S Shape)
(S Rectangle)
(S Circle)
(S Translated)
(S Union))])
(export (S Shape)
(BS BB-Shape) (BS BB)
; rename BS’s BB-Rectangle to Rectangle, etc.:
(BS (BB-Rectangle Rectangle))
(BS (BB-Circle Circle))
(BS (BB-Translated Translated))
(BS (BB-Union Union)))))

Figure 2.12 : Operation extension in a unit

As before, the BAsic+UNION+BB-SHAPES unit serves as a replacement for ei-
ther BASIC-SHAPES or BASIC+UNION-SHAPES, and also provides new functionality
for new clients. One new client is BB-GUIT (see Figure 2.13), which provides a display-
shape that exploits bounding box information to center a shape in a window.

At this point in the class-based derivation of Section 2.1, we resorted to the Ab-
stract Factory pattern to make the old clients reusable. With units, an Abstract
Factory is unnecessary, because units already let us vary the connection between the
shape-creating clients and the shape classes. The BB-GUI unit replaces GUI, but we
can reuse PICTURE and UNION-PICTURE without modifying them. Putting every-
thing together produces the new program BB-PROGRAM, shown at the bottom of
Figure 2.13.

23

(define BB-Gurl
(unit (import BB-Shape BB)
(export display-shape)
(define display-shape
(lambda (shape)
(if (not (is-a? shape BB-Shape))

=)
(define BB-PROGRAM
(compound-unit
(import)
(link [S (Basic+UNION+BB-SHAPES)]
G (BB-Gu1 (S BB-Shape) (S BB))]

[B
[P (PIcTURE (S Rectangle) (S Circle) (S Translated) (BG display-shape))]
[UP (UNION-PICTURE (S Rectangle)

; see Figure 2.5

(S Circle)

(S Translated)

(S Union)

(BG display-shape))])
(export)))

(invoke-unit BB-PROGRAM)

Figure 2.13 : Program with the operation extension

2.2.6 Units and Mixins at Work

The shape example demonstrates the expressiveness of units and mixins. Units, by
separating the definition and linking of modules, support the reuse of PICTURE and
UNION-PICTURE as the shape representation evolves. Mixins, by abstracting a class
expression over an imported class, enable the encapsulation of each extension in its
own unit. The combination of units and mixins thus enables a direct translation of
the ideal program structure from Figure 2.1 into a working program.

We have achieved the complete reuse of existing code at every stage in the ex-
tension of Shape, but even more reuse is possible. The code in Figure 2.14 illus-
trates how units and mixins combine to allow the use of one extension multiple
times. The COLOR-SHAPE unit imports a Shape class and extends it to handle
colors. With this single unit containing a single mixin, we can extend all four of
the shape variants: Rectangle, Circle, Translated, and Union. The compound unit

Basic+UNION+BB+CoOLOR-SHAPES in Figure 2.14 uses the COLOR-SHAPE unit

24

(define COLOR-SHAPE
(unit (import Shape)
(export C-Shape)
(define C-Shape
(class™ Shape () args
(rename
[super-draw draw))
(public
[color “black’]
[change-color
(lambda (c¢) (set! color c))])
(override
[draw
(lambda (window z y)
(send window set-color color)
(super-draw window = y))])
(sequence

(apply super-init args))))))

(define Bastc+UNTON+BB-+COLOR-SHAPES
(compound-unit
(import)
(link [S (BASIC+UN10N+BB—SHAPES)]
R (CoLOR-SHAPE (S Rectangle))]
C (Cor.oR-SHAPE (S Circle))]
T (CoLOR-SHAPE (S Translated))]
U (CoLOR-SHAPE (S Union))])
(export (S Shape)
(S BB-Shape)
(
(
(
(
(

S BB)
CR (C-Shape Rectangle))
CC (C-Shape Circle))

CT (C-Shape Translated))
CU (C-Shape Union)))))

Figure 2.14 : Reusing a class extension

four times to obtain the set of color shape classes.

The code in Figure 2.14 uses a few features that are not described in this chapter:
the rename and override clauses in a class® expression, and the use of args to stand
for multiple arguments, passed on to super-init with apply. These details are covered
in the MzScheme reference manual [26]. Independent of such details, the example

shows how units and mixins open new avenues for reuse on a large scale.

25

2.3 Summary

We presented the extensibility problem because it highlights many of the advantages
of units and mixins. In existing programming languages, the problem can be solved
using conventional module and class systems and the Abstract Factory pattern, but
the pattern is cumbersome and difficult to maintain. A straightforward datatype
implementation using units and mixins is more immediately extensible. This implicit
bias towards reuse and extension is the essential benefit of units and mixins.

The following chapters explore units and mixins in more detail. In particular, we
show how the constructs can be integrated into a statically-typed language, such as

ML or Java, while preserving type soundness.

26

Chapter 3

Units

Our solution to the extensibility problem demonstrates how component program-
ming at the module level requires separate compilation for modules and an expressive
linking language. Separate compilation allows programmers to develop and deploy
software components independently. An expressive linking language gives program-
mers precise control over the assembly of components into a whole program.

In general terms, units support the following properties to enable the component-

building side of component programming:

e Encapsulation: A unit encapsulates a program part, clearly delineating the

interface between the unit and all other parts of the program.

e Separate compilation: A unit’s interface provides enough information for

the separate compilation of the unit.
To support the linking process, the unit language provides the following mechanisms:

e Individual reuse and replacement: Individual units are reusable and re-
placeable. This implies that the connections between units are specified outside
the units themselves rather than hard-wired within each unit. In addition, the
language supports multiple instances of a unit in different contexts within a

program.

e Hierarchical structuring: The unit language allows units to be linked to-
gether to create a single, larger unit, possibly hiding selected details of the

component units in the process.

e Dynamic linking: Units support dynamic linking, connecting new and exe-

cuting code through a well-defined and localized interface.

This chapter presents untyped and typed models of units that are suitable for Scheme-
like and ML-like languages. For these core languages, scaling essential core features

to the module level implies two final properties:

27

o Types: If the core programming language supports static type definitions,

units import and export types as well as values.

e Mutual dependencies: In whatever manner the core language supports
mutually recursive definitions (usually procedure and type definitions), the unit

language allows definitions with mutual references across module boundaries.

In addition to the mechanisms for defining and linking modules, a practical im-
plementation of modules must provide constructs for naming modules (to coordinate
module definitions and uses) and for abstracting over linking specifications. The flex-
ibility of the module system depends on the expressiveness of this module-level lan-
guage. In our model, we integrate units as first-class values within the core language,
so that a programmer writes program-linking programs within the core language. The
only primitive operations on units are linking and invocation, which preserves sepa-
rate compilation for individual units, but programmers can exploit the full flexibility
of the core language to apply these operations.

Section 3.1 explains how our unit model relates to existing module languages. Sec-
tion 3.2 provides an overview of programming with typed units. Section 3.3 briefly
considers extensions to the typed unit model. Section 3.4 discusses pragmatic prob-
lems in building programs with units. Section 3.5 defines the precise syntax, type

checking, and semantics of units.

3.1 Existing Module Languages and Units

The unit model synthesizes ideas from three popular existing module systems: .o
files, packages, and ML, modules. The first represents the traditional view of modules
as compilation units. The second extends this view by moving the module language
into the programming language. The last gives programmers greater control over how
modules are combined into a program.

Traditional languages, such as C, rely on the filesystem for the language of mod-
ules. Programs (makefiles) manipulate .o files to select the modules that are linked
into a program, and module files are partially linked to create new .o or library files.
Modern linking systems, such as ELF [77], support dynamic linking, but even the
most advanced linking systems rely on a global namespace of function names and
module (i.e., file) names. As a result, modules can be linked and invoked only once

in a program.

28

Many modern languages—such as Ada 95 [38], Modula-2 [84], Modula-3 [32],
Haskell [37], and Java [31]-—provide packages. A package system delineates the
boundaries of each module and forces the specification of static dependencies be-
tween modules. Since module linking and invocation are clearly separated, packages
allow mutually recursive function and type definitions across package boundaries.

The main weakness of a package system is its reliance on a global namespace
of packages with hardwired connections among packages. Package systems do not
permit the reuse of a single package for multiple invocations in a program or the
external selection of connections between packages.! Packages cannot be merged into
a new package that hides parts of the constituent packages. In addition, among the
languages with packages, only Java provides a mechanism for dynamic linking. This
mechanism is expressed indirectly via the language of class loaders, and is not fully
general due to the constraints of a global package namespace.?

ML’s functor system [56, 62] is the most notable example of a language that lets
a programmer describe abstractions over modules and gives a programmer direct
control over assembling modules. In contrast to a package, an ML structure module
is not a fragment of unevaluated code. Instead, a structure is a record with fields
containing the module’s exported values and types. A module with dependencies is
defined as a functor, a first-order function that consumes a structure and produces
a new structure. Functors separate the specification of module dependencies from
module linking. Unfortunately, linking by functor application prevents the definition
of mutually recursive types or procedures across module boundaries. In addition, ML

provides no mechanism for dynamic linking.

3.2 Programming with Units

Like a package in Java or Modula-3, a program unit is an unevaluated fragment of
code, but there is no global namespace of units. Instead, like an ML functor, a unit
describes its import requirements without specifying a particular unit that supplies

those imports. The actual linking of the unit is specified externally at a later stage.

'Ada and Modula-3’s generics permit such uses, but do not support separate compilation.
2Java’s class system can also be viewed as a kind of module system or as a complement to the
package system. Classes suffer the same drawbacks as packages: links, such as a superclass name,

are hard-wired to a specific class [28].

29

Unlike in ML, unit linking is specified for groups of units with a graph of connections,
which allows mutual recursion across unit boundaries. Furthermore, the result of
linking a collection of units is a new (compound) unit that is available for further
linking.

This section illustrates the basic design elements of our unit language using an
informal, semi-graphical programming language.®> The examples assume a core lan-
guage with lexical blocks and a sub-language of types. The syntax used for the core

language mimics that of ML.

Database
info::Q2 error:str—void }imports
typedb = - --
fun new():db = ---
fun insert(d:db, key:str, viinfo) = - - definitions
fun delete(d:db, key:str) = --- and expressions

strTable := makeStringHashTable()

db::Q new:voild—db insert:dbxstrxinfo—void
delete:dbxstr—void } exports

Figure 3.1 : An atomic database unit

3.2.1 Defining Units

Figure 3.1 defines a unit called Database. In the graphical notation, a unit is drawn

as a box with three sections:

e The top section lists the unit’s imported types and values. The Database unit
imports the type info (of kind* Q) for data stored in the database, and the

function error (of type str—void) for error-handling.

3The graphical language is currently being implemented for the DrScheme [23] programming
environment. Programmers will define modules and linking by actually drawing boxes and arrows.
4A kind is a type for a type. Most langnages have only one kind, Q, and do not ask programmers
to specify the kind of a type. Some languages (such as ML, Haskell, and Miranda) also provide type

constructors or functions on types, which have the kind Q*—Q.

30

e The middle section contains the unit’s definitions and an initialization expres-
sion. The latter performs start-up actions for the unit at run time. The
Database unit defines the type db and the functions new, insert, and delete
(plus some other definitions that are not shown). Database entries are keyed

by strings, so Database initializes a hash table for strings with the expression

strTable := makeStringHash Table().

e The bottom section enumerates the unit’s exported types and values. The

Database unit exports the type db and the functions new, insert, and delete.

In a statically-typed language, all imported and exported variables have a type,
and all imported and exported types have a kind.* Imported and defined types can be
used in the type expressions for imported and exported values. All exported variables
must be defined within the unit, and the type expression for an exported value must
use only imported and exported types. In Database, both the imported type info and
the exported type db appear in the type expression for insert: dbxstrxinfo—void.

A unit is specifically not a record of values. It encapsulates unevaluated code,
much like the .o file created by compiling a C+4 module. Before a unit’s definitions
and initialization expression can be evaluated, it must first be linked with other units

to resolve all of its imports.

3.2.2 Linking Units

In the graphical notation, a programmer links units together by drawing arrows to
connect the exports of one box with the imports of another. Linking units together
creates a compound unit, as illustrated in Figure 3.2 with the PhoneBook unit. This
unit links Database with Numberinfo, a unit that implements the info type for phone
numbers.

Figure 3.2 also shows how to link units in stages. The error function is not defined
by either Database or Numberinfo, so PhoneBook imports error and passes the im-
ported value on to Database. At the same time, PhoneBook hides the delete function,
but re-exports all of the other values and types from Database and Numberinfo.

A complete program is a unit without imports. Figure 3.3 defines a complete

interactive phone book program, IPB (Interactive Phone Book), which links Phone-

31

PhoneBook

error:str—void
NumberInfo T

type info = ... ¢
fun numinfo(n:int)iinfo = - .-

info::Q numlInfo:int—info
Database-..
' info::Q) error:str—void

db::Q ﬂé__w:void—ﬁb insert:dbxstr xinfo—void
4 4 deletef-glbx?str—moid

di)::Q new oid—db 2 siert:db><str><info—>void
info::Q2 numlinfo:int—info

Figure 3.2 : Linking units to form a compound unit

IPB

PhoneBook

error:str—void-,

L]
1

db::Q new:void—db insert:des’&:rxinfo—WOid
A } info::Q numlIAfozint—info

| deQ insértsdbx strxinfo—void
Main info::Q) numlinfo:int—info

db::Q new:void—db openBook:db%.{)ool fun openBook(pb:db) = - - -

openBook(new()) fun‘error(sistr) = - -

0penBook.;__db—>boo| error:str—void
LY

7y

Figure 3.3 : Linking units to define a complete program

32

Bad
PhoneBook
typedb = - --
db::Q
OtherDatabase — Gui e
db::Q
typedb = ---| (fun openBook(pb:db) = ---
db::Q2 openBook:db—bool
4 *

db::Q new:void—db 0penBook:db—>booD Mismatch

openBook(new())

Figure 3.4 : Tllegal linking due to a type mismatch

Book with a graphical interface implementation Gui. The Main® unit contains an
initialization expression that creates a database and an associated graphical user in-
terface.

A program unit is analogous to an executable file; invoking the unit evaluates
the definitions in all of the program’s units and then executes their initialization
expressions. Thus, invoking [PB executes Main’s initialization expression, which
creates a new phone book database and opens a phone book window. The variables
exported by a program are ignored. Instead, the result of invoking a program is
the value of its last initialization expression—a bool value in IPB (assuming Main’s
expression is evaluated last).b

A compound unit’s links must satisfy the type requirements of the constituent

5The name Main is not special.
50ur informal graphical notation does not specify the order of units in a compound unit, but the

textual notation in Section 3.5 covers this aspect of the language.

33

units. For example, in IPB (see Figure 3.3), Main imports the type db from Phone-
Book unit and also the function openBook:db—bool from Gui. The two occurrences of
db must refer to the same type. A type checker can verify this constraint by proving
that the two occurrences have the same source in the link graph, which is the db
exported by PhoneBook. In contrast, Figure 3.4 defines a “program” Bad in which
Main receives inconsistent imports. Specifically, db and openBook:db—bool refer to
types named db that originate from different units. The type checker correctly rejects
Bad due to this mismatch.

Linking can connect units in a mutually recursive manner, as illustrated in IPB
(see Figure 3.3); links flow both from PhoneBook to Gui and from Guito PhoneBook.
Thus, the insert function in PhoneBook may call error in Gui, which might in turn

call PhoneBook’s insert again to handle the error.

3.2.3 Programs that Link and Invoke Other Programs

The IPB program relies on a fixed set of constituent units, including a specific unit
Gui to implement the graphical interface. In general, there may be multiple GUIs that
work with the phone book, e.g., separate GUIs for novice and advanced users. Every
GUT unit will have the same set of imports and exports, so the linking information
required to produce the complete interactive phone book is independent of the specific
GUT unit. In short, a programmer should abstract over IPB with respect to its GUI
unit.

If the core evaluation language integrates the form for linking units, then a pro-
grammer can achieve the abstraction of IPB with a core function. Figure 3.5 defines
MakelPB, a function that accepts a GUI unit and returns an interactive phone book
unit. The programmer draws a dashed box for aGui and MakelPB to indicate that the
actual GUI and interactive phone book units are not yet determined. The program-
mer can then apply MakelPB to different GUI implementations to produce different
interactive phone book programs.

The type associated with MakelPB’s argument is a unit type, a signature, that
contains all of the information needed to verify its linkage in MakelPB. In the graph-
ical notation, a signature corresponds to a box with imports, exports, and an initial-
ization expression type, but no definitions or expressions. The signature for aGui is

defined by its dotted box, with :void indicating the type of the initialization expres-

fun MakeIPB(aGui) =

Main_ v db::Q insert:dbxstrxinfo—void -
ces info::Q2 numlInfo:int—info

foeeee e i :Void

Figure 3.5 : Abstracting over constituent units

Starter

fun MakelPB(aGui) =1 |

val FxpertGui = [db::Q insert:dbxstrxinfo—void
info::Q2 numlInfo:int—info

-+ -:void

openBook:db—bool

val NoviceGui = - - -
invoke MakeIPB(if expertMode() ErpertGui else NoviceGui)

Figure 3.6 : Linking and invoking other programs

35

sion. Using only this signature, the type system can completely verify the linking in
MakelPB and determine the signature of the resulting compound unit.

Figure 3.6 shows MakelPB as part of a larger program, Starter, that selects a GUI
unit and links together a complete interactive phone book program. Once MakelPB
returns a program unit, Starter launches the constructed program with the special

invoke form, which takes a program unit and executes it.

3.2.4 Dynamic Linking

The invoke form also works on units that are not complete programs. In that case,
the unit’s imports must be explicitly satisfied by types and values from the invoking
program. This generalized form of invocation implements dynamic linking. For
example, the phone book program can exploit dynamic linking to support third-party
“plug-in” extensions that load phone numbers from a foreign source. A third-party
implements each loader extension as a unit that is dynamically retrieved from an
archive and then linked with the phone book program.” With such plug-ins, the user
of the phone book can install loader extensions at run-time via interactive dialogues.

Figure 3.7 defines a Gui unit that supports loader extensions. The function
addLoader consumes a loader extension as a unit and dynamically links it into the
program using invoke. The extension unit imports types and functions that enable
it to modify the phone book database. These imports are satisfied in the invoke
expression with types and variables that were originally imported into Gui, plus the
error function defined within Gui. The result of invoking the extension unit is the
value of the unit’s initialization expression, which is required (via signatures) to be a
function of type dbxfile—void. This function is then installed into the GUI’s table of

loader functions.

"The core language must provide a syntactic form that retrieves a unit value from an archive, such
as the Internet, and checks that the unit satisfies a particular signature. This type-checking must be
performed in the correct context to ensure that dynamic linking is type-safe. Java’s dynamic class
loading is broken because it checks types in a type environment that may differ from the environment

where the class is used [74].

36

Gui

db::Q insert:dbxstrxinfo—void info::Q2 numlInfo:int—info

N 1]

fun error(s:stry.= - .- g
fun ret&\sterLoader(format sti; loader: db><f||e—>v0|d)

fun addLoader(format:str, al Lotder)
aL

::0) msert db><str><“rnf\o—>v0|d
|nfo Q num[nfo int—info error:str—void:)

:db xfile—void

registerLoader(format, 1nv0ke

openBook:db—bool error:str—void

Figure 3.7 : Dynamic linking with invoke

3.3 Possible Extensions to Units

Experience with other modules systems, particularly those of ML, suggests further
extensions to UNIT,, such as facilities for exposing the implementation of a type, or

hiding the type (or parts of the type) of a value:

e Exposing type information: The ML module system allows signatures that
reveal some information about an exported type [33, 53]. The partially exposed
types (or translucent types) are used for propagating type dependencies in a
way that allows type sharing, but they are also useful for assigning a name to
a complex type that is exposed to clients. For example, consider the case of an
Environment unit that exports values of type env while revealing to clients that

env is a procedure type.

As shown in Figure 3.8, the translucent type env in this case may be viewed as a
type abbreviation that is preserved within the signature. The unit Environment
does not export the type env. Instead, the unit and its signature are extended
with an extra section that defines the abbreviation env. The resulting unit and
signature are equivalent to the unit and signature that expands env in all type

expressions.

FEnvironment

fun extend envn v = ---

exrtend: envx namex value—env

i exposed

env = name—value abbreviations

~ Fnvironment
~

fun extend envnov = ---

extend: (name—value) x namex value— (name— value)

Figure 3.8 : Exposing information for a type

RecEnv

FEnvironment

fun extend envnov = ---

extend:(name— value) x namex value— (name— value)

Letrecé

extend:(name—value) X namex value— (name—value)

fun recFrtend env ns vs = - - -

rec Extend: (nare—value) x namesx values— (name—svalue)
*

Y
ex\tend envX nameX value—env
recFrtend: envx namesx values—env

env = name—value

ertend:envx namex value—env

LrecExtend: envX namesX values— env,

! |
| |
| en::$) |
| |
| |

Figure 3.9 : Hiding type information for an exported value

38

e Hiding type information: Large projects often have multiple levels of clients.
Some of the clients are more trusted than others and are thus privy to more
information about the implementation of certain abstractions. To support this
situation, UNIT, could provide mechanisms for hiding a value’s type information

from untrusted clients after linking with trusted clients.

Consider the example in Figure 3.9. The Fnvironment unit is linked with the
Letrec unit, allowing the latter to exploit the implementation of environments
as procedures. In contrast, other clients should not be allowed to exploit the
implementation of environments. Hence, the type of environments should be
opaque outside the compound unit RecFEnv, which combines Fnvironment and

Letrec.

As shown in Figure 3.9, information about ReckEnv's exports can be restricted
via explicit signatures and an extended subtype relation. The extended relation
allows a subtype signature to contain an extra exported type variable (e.g.,
env) in place of an abbreviation in the supertype signature. As a result, the

information formerly exposed by the abbreviation becomes a hidden, opaque

type.

3.4 Problems with Units

Language designers have often noted the tension between modules as constructs for
separate compilation and modules as constructs for program organization. Compila-
tion guarantees tend to limit abstractions for organizing a program, whereas powerful
module abstractions tend to defeat separate compilation. By requiring modules to
serve as components, we place strong demands on both the compilation and abstrac-
tion properties of our module language.

Units achieve this combination at the expense of programming convenience for
small programs or widely-used library components. For programs with a flat module
hierarchy (i.e., all modules are linked at once), programming with units resembles
programming in a package language. Unfortunately, in addition to defining each
individual module, the unit programmer must also define a final compound unit that
explicitly links the modules together. This linking step is implicit and automatic in
package languages.

For programs with a strict, tree-shaped linking hierarchy, programming with units

39

resembles programming with closed ML functors. Programmers, however, find this
mode of programming cumbersome in practice, and ML programmers tend instead to
write library components as package-like structures, relying on a compilation man-
ager [53] to automate a functor-closing transformation on such libraries. MzScheme

does not currently provide such a facility.

Parser

lex : str — sym parse : sym — expr

Figure 3.10 : The diamond import problem

For programs with more complex linking structures, programming with units dif-
fers from programming with either packages or functors. To illustrate the differences,
consider the classic “diamond import” problem, as shown in Figure 3.10. A Symbol
module exports the type sym to Lexer and Parser modules, which each supply a func-
tion to the Reader module. The Lexer and Parser modules use the type sym directly,
but the Reader module uses sym only indirectly by composing the functions lex and
parse.

A Java sketch of the program appears in Figure 3.11. The Lexer and Parser
packages both import the Symbol packages, and the Reader package imports Lexer
and Parser. Packages support diamond import transparently through hard-wired
module connections and a global namespace of types; the Reader package need not
refer to the Symbol package at all.

An SML sketch of the program appears in Figure 3.12. The first four blocks of
code in the figure define the four modules as functors. The last block in the figure
links the modules together, first instantiating the Symbol functor, then linking each of
Lezer and Parserto the Symbolinstance, and finally linking Reader to the Lexer and

Parser instances. The application of the Reader functor succeeds only because both

40

package Symbol;
class Symbol - --

package Lezer; package Parser,
import Symbol.Symbol, import Symbol.Symbol;
class Lexer { class Parser {
Symbol lex(String s) { -+ } Expr parse(Symbol s) { --- }
} }

package Reader;
import Lezer.Lexer;
import Parser.Parser;
class Reader {
Expr read(String s) {
return Parser.parse(Lexer.lex(s));
}

Figure 3.11 : Diamond import with Java packages

Lezer and Parser explicitly reveal that sym originates from their SYMBOL argument;
a first-order flow analysis proves that the Lexer and Parser functors are applied to
the same Symbol instance. In general, diamond import with functors requires some
work from the programmer, but the work is relatively localized due to the first-order
nature of structures.

A unit sketch of the program appears in Figure 3.13, using a textual syntax defined
in the next section.® The first four blocks of code define the modules as units, and the
last block links them together. Unlike packages, the linking specification is explicit
and separate from the unit definitions. Unlike functors, all of the modules are linked
together at once. Figure 3.14 shows the same program in our graphical notation.

The staged linking used in the functor-based program does not work with units.
Figure 3.15 illustrates how separately linking Lexer with Symboland Parser with Sym-
bol causes a linking failure for Reader; Reader cannot import lex and parse because

there is no single source for the type sym.

8Although we have not yet defined a textual syntax for units, we use it to show a more direct

comparison of units to packages and functors.

41

signature SYMBOL
= sig type sym end

functor Symbol() > SYMBOL
= struct type sym = .-

end

signature LEXFER = sig
type sym
val lex :
end

str — sym

functor Lezer(structure S : SYMBOL)

= struct
type sym = S.sym
fun lex(s : str) = ---
end

> LEXFER where type sym = S.sym

signature PARSER = sig
type sym
val parse
end

:sym — expr

functor Parser(structure S : SYMBOL)
> PARSER where type sym = S.sym
= struct
type sym = S.sym
fun parse(s : sym) = ---
end

= struct
fun read(s
end

functor Reader(structure I : LEXER
structure P : PARSER
where type sym = L.sym)

: str) = P.parse(L.lex(s))

structure S = Sym()

structure . = Lezer(structure S = 5)
structure P = Parser(structure S = 9)

structure R = Reader(structure L =171

structure P = P)

Figure 3.12 : Diamond import with SML functors

In general, a program’s graph of unit instances can be partitioned into compound
units, but these partitions must not overlap. Thus, unit linking tends to force library

dependencies to the top of the linking hierarchy, which increases both the size of the

top-level linking expression and the size of import interfaces for intermediate com-

pound units. For component-based programming, propagating library dependencies

to the top is beneficial; the programmer linking the final program gains the freedom to

42

val Symbol = unit import
export sym::(2

> void
val Lerer = unit import sym::Q val Parser = unit import sym::{}
export ler : str — sym export parse : sym — expr
> void > void
fun lex(s : str) : sym = --- fun parse(s : sym) : expr = - --

val Reader = unit import sym::Q
lex : str = sym
parse : sym — expr
export read : str — expr
> void
fun read(s : str) : expr = parse(lex(s))

val LinkedReader = compound import
export read : str — expr
link Symbol with
provides sym::Q}
Lexer with sym::Q)
provides lex : str — sym
Parser with sym::Q
provides parse : sym — expr
Reader with sym::Q
lex : str — sym
parse : sym — expr
provides read : str — expr

Figure 3.13 : Diamond import in the textual unit language

select the library units. But for general-purpose programming, pushing dependencies

to the top is often inconvenient and clumsy.

3.5 The Structure and Interpretation of Units

In this section, we develop a semantic and type-theoretic account of the unit language
design in three stages. We start in Section 3.5.1 with units as an extension of a

dynamically typed language (like Scheme) to introduce the basic syntax and semantics

Symbol
type sym =
sy‘m::Q
Lexer e T
sym::Q sym::Q)
fun lex(s : str) : sym = fun parse(s: sym) : expr =
lex = str — sym parse : sym — expr
“Reader
lex : str — sym sym:Q pafse : sym — expr
fun read(s : str) : expr = parse(lex(s))
Figure 3.14 : Diamond import with units
LexSym ParseSym
Symbol Symbol
type sym = type sym =
sy‘m::Q sym::)
t f
Lezer L Parser &
sym:£) symz:Q)
fun lex(s : str) ."'s_ym = fun par__s'é:(s :sym) : expr = -
lqz :str — sym __p"'az“se 1 sym — expr
Ix & str — sym sym sym })d'i“se 1 sym — expr
?
4
Reader o
lex : str = sym sym::) parse : sym — expr
fun read(s : str) : expr = parse(lex(s))
Figure 3.15 : Incorrect structure for diamond import with units

43

44

of units. In Section 3.5.2, we enrich this language with definitions for constructed
types (like classes in Java or datatypes in ML). Finally, in Section 3.5.3 we consider
arbitrary type definitions (like type equations in ML).

The rigorous description of the unit language, including its type structures and
semantics, relies on well-known type checking and rewriting techniques for Scheme and
ML [22, 34, 85]. In the rewriting model of evaluation, the set of program expressions
is partitioned into a set of values and a set of non-values. Evaluation is the process
of rewriting a non-value expression within a program to an equivalent expression,
repeating this process until the whole program is rewritten to a value. An atomic unit
expression—represented in the graphical language by a box containing text code—is
a value, whereas a compound unit expression—a box containing linked boxes—is not

a value. Thus, a compound unit expression must be re-written to obtain a value.

PhoneBook
error:str—void

NumberInfo T

type info = PhoneBook
fun num[nfo(ﬁ_:int):info = error:str—void
info::Q numlnfozint—info type info = .-
i type db = - -
Databuse LY fun numlInfo(n:int):info = - -
- info::Q error:str—void 7 |fun new():db = - --
typedb = -- -
fun hew():db = ... strTable := makeStringHashTable()
: db::Q2 new:void—db
strilable := makeStringHashTable() info::Q2 numlInfo:int—info
. db::Q new:void—db

¥

\ di)::Q ngi’?v:void—>db
info::Q2 numlinfo:int—info

Figure 3.16 : Graphical reduction rule for a compound unit

A compound unit expression with known constituents can be re-written to an

equivalent unit expression by merging the text of its constituent units, as demon-

45

v = unit-expr|c|fmnz = e
e = compound-expr | invoke-expr | letrec-expr | e ;e | x| ee| v
unil-expr = unit import variable-mapping*

export variable-mapping™*
definitions e

compound-exzpr = compound import y*
export y*
link e link and e link
invoke-expr = invoke e with value-invoke-link*

letrec-expr letrec definitions in e

definitions = wvalue-defn*
value-defn = wvalz = v
link = with y* provides y*
variable-mapping = y= 1z
value-invoke-link = y=-¢e
r = variable
y = linking variable
¢ = primitive constant

Figure 3.17 : Syntax for UNITy (dynamically typed)

strated in Figure 3.16. Invocation for a unit is similar: an invoke expression is
rewritten by extracting the invoked unit’s definitions and initialization expression,
and then replacing references to imported variables with values. Otherwise, the stan-

dard rules for functions, assignments, and exceptions apply.

3.5.1 Dynamically Typed Units

Figure 3.17 defines the syntax of UNITy, an extension of a dynamically typed core
language. The core language provides several standard forms: a procedure form, an
application form, an expression sequence form (“;”) and a letrec form for lexical
blocks containing mutually recursive definitions. UNIT4 extends this core language

with three unit-specific forms:
e a unit form for creating units,

¢ a compound form for linking units, and

46
e an invoke form for invoking units.

The unit Form

The unit form consists of a set of import and export declarations followed by internal

definitions and an initialization expression:

unit import y;, = z; --- export y. = z. - --
val x = v
e

The imported variables y; have internal names x;, which are bound in the definition
and initialization expressions. The internal names x. of the exported variables must
be defined within the unit. The scope of each imported and defined variable includes
all of the definition expressions v in the unit, as well as the initialization expression
e. The internal names x; and z. are subject to a-renaming, but the external names
y; and y. are not.

In each definition val @ = v, the right-hand side must be a value (a constant,
function, or unit). This restriction simplifies the presentation of the formal semantics,
since the definitions are in a mutually-recursive scope. The restriction can be lifted for
an implementation, as in MzScheme, where accessing an undefined variable returns a
default value or signals a run-time error.

A unit expression is a first-class value, just like a number or an object in Java.
The language provides only two operations on units: linking and invoking. No oper-
ation can “look inside” a unit value to extract any information about its definitions
or initialization expression. In particular, since a unit does not contain values, only
unevaluated definition and expressions, there is no “dot notation” for externally ac-
cessing values from a unit (as for packages in Java) and there are no “instantiated

units” (approximating ML structures) that contain the values of unit expressions.

The compound Form

The compound form links two constituent units together into a new unit:

compound import y; --- export y, - --
link e; with y,, --- provides y,; ---
and e; with y,, - - provides y,; ---

47

Two subexpressions, e; and e, determine the constituent units. The with y,, ---
clause following each expression lists the variables that the corresponding unit is
expected to import. Similarly, the provides y, - - - clause lists the variables that the
corresponding unit is expected to export.

The compound form links variables by name. Thus, the set of variables w,,
linked into the first unit must be a subset of y; Uy,. Similarly, y,2 must be a subset
of y; Uy,1. Finally, the set variables y. exported by the compound unit must be a
subset of y,1 U yp2.

A compound unit expression is not an immediate value, but it evaluates to
a unit value that is indistinguishable from a unit created with unit. This unit’s
initialization expression is the sequence of the first constituent unit’s initialization
expression followed by the the second constituent unit’s.

We restrict compound so that it links only two units at a time to simplify our
presentation. The linking construct implemented for MzScheme is less restrictive than
UNIT4’s. In MzScheme, the compound form links any number of units together at
once (a simple generalization of UNITy’s two-unit form), and links imports and exports
via source and destination name pairs, rather than requiring the same name at both

ends of a linkage.

The invoke Form

The invoke form evaluates its first subexpression to a unit and invokes it:
invoke e with y; < ¢; ---

If the unit requires any imported values, they must be provided through y; « e,
declarations, which associate values ¢; with names y; for the unit’s imports. An

invoke expression evaluates to the invoked unit’s initialization expression.

UNIT4 Context-sensitive Checking

The rules in Figure 3.18 specify the context-sensitive properties that were informally
described in the previous section. The checks ensure that a variable is not unbound
or multiply defined, imported, or exported, that all exported variables are defined,

and that the link clause of a compound expression is locally consistent.

48

The notation Z denotes either a set or a sequence of variables z, depending on the context. The
notation val z = e denotes a set or sequence of forms val z = e where each z is taken from the
sequence T with a corresponding e from the sequence €.

funt: — 070 g Lher Theo
Tke 'tz if € dom(T") Tz =e TFeieo
T distinct T, ZF7 T,Tkey
seq’: ke The letrect: : ' '
T'kep;es T'+letrec val » = v in ¢
T;, T distinct g, Yy, distinct T C T
it 0,7, 77 kv D,%, 27 b ey
. _ JE —
invoke" : gdistinct I'Feu T'he I' - unit import 3, = #,; export j, = z.

d . . —a .

I' +invoke e, with 7+ ¢ val z = v in e,

Y5 Yp1s Ypo distinct
Yol © YU¥ps Vw2 S UV Ye © Up1Ulpo
I+ €1 I+ €9

I' F compound import y; export 7.

compound'd_:

link e; with 7, provides g,

and ez with y,,5 provides ¥y,

Figure 3.18 : Checking the form of UNITy expressions

UNITy Evaluation

Figure 3.19 contains the reduction rules for UNIT4, which generalize the graphical
example in Figure 3.16. The rules extend those for Scheme [22] and resemble equations
in the higher-order module calculus of Harper, Mitchell, and Moggi [34]. The appy’,
seqy’, and letrecy” rules are standard.

The invoke;” rule specifies that an invoke expression reduces to a letrec expres-
sion containing the invoked unit’s definitions and initialization expression. In this
letrec expression, imported variables are replaced by values. The set of variables
supplied by invoke’s with clause must cover the set of the imports required by the
unit.

The compound]” rule defines how a compound expression combines two units:

their definitions are merged and their initialization expressions are sequenced. The

49

= [l|Ee|vE|FE;e

| invoke F ...

| invoke v with ... y + E ...

| compound...link F ... and ¢
| compound...linkv...and E

Ele] — El€'] ife — ¢

(fnz=e v — [v/z]e

letrec” :
letrecval r = vin e, — [letrec val z = v in v/z]e,

invoke;” :

invoke (unit import y;, = z; export y, =z — [vw/zw](letrec val z = v in ey)

val z = v in €p)
with ¥, + vu

ify, =2, Cy, = zuw

compound*:
compound import J; export g

link (unit import y;; = z;1 export y,; = .1

val 1 = vq in ep)
with 7,7

provides y,;

and (unit import y,; = 7,5 export Y, = T2

val zo = vy In ep)
with 7,5
provides 7,

if 77, 75, z; distinct,

—

unit import y;, = z;
export y, = z¢
val 21 = vy
val zo = vy

m €py ; €p2

Yl =Tl S =Ti UV = Tp2y Yoo = 3u2 CY = iUV = Tpls Yo = Te S Uy = Tp1l U g = p2,

Yi1 = i1 C Y1 = Tl Yp1 = Tpl CYei =%ets, Yz =22 C Yo = Zw2, and Yp2 = Tp2 C Yz =Te2

Figure 3.19 : Reducing UNITy expressions

side condition requires that the constituent units provide at least the expected ex-

ports (according to the provides clauses) and need no more than the expected im-

ports (according to the with clauses). The side condition also ensures that bindings

introduced by definitions in the two units are a-renamed to avoid collisions and to

make the internal-external variable mappings match.

50

unit import even
export odd
val odd = fn 0 = false
| n = even (n-1)
odd 13

—
fn (evencell, oddeell) =
(oddcell := (fn 0 = false

| n = (levencell) (n-1));
fn () = (loddcell) 13)

Figure 3.20 : An example of UNIT4 compilation

UNITy Implementation

In MzScheme’s implementation of UNITy, units are compiled by elaborating them
into functions. The unit’s imported and exported variables are implemented as first-
class reference cells that are externally created and passed to the function when the
unit is invoked. The function is responsible for filling the export cells with exported
values and for remembering the import cells for accessing imports later. The return
value of the function is a closure that evaluates the unit’s initialization expression.
Figure 3.20 illustrates this transformation for an atomic unit.

Each compound unit is also compiled to a function. The function encapsulates a
list of constituent units and a closure that propagates import and export cells to the
constituent units, creating new cells to implement variables in the constituents that
are hidden by the compound unit.

The transformed units have the same code-sharing properties as traditional shared
libraries. The definition and initialization expressions of a unit are compiled in the
body of the function produced by its transformation, and this one function is used
for all instances of the unit. Thus, there exists a single copy of the definition and

initialization code regardless of how many times the unit is linked or invoked.?

90ur native code compiler for MzScheme effectively transforms a unit expression to a shared

51

3.5.2 Units with Constructed Types

Figure 3.21 extends the language in Figure 3.17 for a statically typed language with
programmer-defined constructed types, like ML datatypes. In the new language,
UNIT,, the imports and exports of a unit expression include type variables as well
as value variables. All type variables have a kind!® and all value variables have a
type. the type of the unit’s initialization expression is also declared, following the
> in the unit’s header. The compound and invoke forms extend to imported and
exported types as well, where each type has an internal name to be used in the type
expressions for imported and exported values. The new as form permits explicit type
generalization, casting an expression’s type to a supertype.

The definition section of a unit or letrec expression contains both type and
value definitions. Type definitions are similar to M. datatype definitions, but for
simplicity, every type defined in UNIT. has exactly two variants. Type definitions
have the form type t = zq,2q 71 | ZTeryZar v © 2y Instances of the first variant are
constructed with the xq function, which takes a value of type 7 and constructs a
value of type t. They are deconstructed with xq. Instances of the second variant are
constructed with z. given a value of type 7. and deconstructed with z4,. Applying a
deconstructor to the wrong variant signals an MIL-style run-time error. To distinguish
variants, the ¢ function returns true for an instance of the first variant and false for
an instance of the second. The 7 and 7, type expressions can refer to ¢ or other type
variables to form recursive or mutually recursive type definitions.

The type of a unit expression is a signature of the form sig imports exports > 7,
where imports specifies the kinds and types of a unit’s imports, exports describes the
kinds and types of its exports, and 7 is the type of the unit’s initialization expression.
In a sig form, as in a unit form, type expressions for variables in imports or exports
can use imported and exported types declared within the signature. Type declarations
in the signature consist of external-internal name pairs, where the internal name is

used in type expressions within the signature and is subject to a-renaming. For

library that is managed by the operating system.
10 Although the only kind in this langnage is Q, we declare kinds explicitly in anticipation of future

work that handles type constructors.

52

e
unit-expr

compound-expr

invoke-expr
definitions
datatype-defn
value-defn

link

value-var-decl
type-mapping
variable-mapping
type-invoke-link
value-invoke-link

T, O
signature

...|easT
unit import type-mapping* variable-mapping™*
export type-mapping* variable-mapping*
> T
definitions e
compound import type-mapping* value-var-decl*
export type-mapping® value-var-decl™
> T
link e link and e link
invoke e with type-invoke-link™ value-invoke-link*
datatype-defn* value-defn™*
typet =z 7|z T o
valz: 7=
with type-mapping* value-var-decl*
provides type-mapping* value-var-decl*

y:T
s=1:uK
y=2x:T
S=T kK
y—=e:T

t|s| Tprim | T — T | signature

sig import type-mapping™ value-var-decl*
export type-mapping* value-var-decl*
> T

type variable
type linking variable
type kind

Figure 3.21 : Syntax for UNIT, (constructed types)

example,

is equivalent to

sig import s=t::Q) y:t
export
> 1

sig import s=t"::Q y:t’
export
>t

33

because t is a-renamed to t’. In contrast, the signature

sig import s'=t::0 y:t
export
> 1

differs from the previous signature, because the external type name s is not subject

to a-renaming.

UniT. Type Checking

For economy, we introduce the following unusual abbreviation, which summarizes the

content of a signature via the indices on names:

sigli, e, b] = sig import s; = ;516 Y7,
export s, =l k. YT,

> Ty

Signatures have a subtype relation to allow the use of specialized units in place of
more general units. As defined in Figure 3.22, a specific signature 74 is a subtype of

a more general signature 7, (75 < 7) if there exists an a-renaming for each signature
such that:

1. the type of the initialization expression in 75 is a subtype of the one in 74;

2. 7 has fewer imports and more exports than 7;

3. for each imported variable in 7, its type in 7 is a subtype of its type in 7; and
4. for each exported variable in 74, its type in 7, is a subtype of its type in 7.

The typing rules for UNIT. are shown in Figures 3.23 and 3.24. These rules are
typed extensions of the rules from Section 3.5.1. The special judgement F applies
when subsumption is allowed on an expression’s type. Subsumption is used carefully
to ensure the existence of an algorithm for type checking. For example, subsumption is
not allowed for the body of a function expression because the body’s type determines
the type of the function.

The sigt typing rule checks the well-formedness of a signature. Fach of the type

expressions in a signature must be well-formed in an environment containing the

Yy, :m1 € yi71, Jyg:72 € YgiTo st 72 < T

y1:71 C yyi7o

Tpl < Te2 81 = ti1iRq1 C 82 =tttk Se2 = lenithen C 801 = fenitken
Yi1:Ti1 E YioiTi2 Ye2:Te2 E Ye1:Tel
sig[it,el,b1] < sig[i2, e2, b2]

T1<71] ThH< T2

3

! !
7'1—>7'2§7'1—>7'2 lke:

Figure 3.22 : Subtyping and subsumption in UNIT, signatures

F'Fr::Q THET 2 Q
CETprim 1 Q Tkt T() Fkr—=7 2 Q

(tiute)Nndom(T) =0
' =T, %k, tetike FTV(Tp)Nte =10
MEr,iwy Dbhreke TEry 0 Q
I Fsigli, e, b] == Q

sigh:

I'kc: TypeOf(c) 'tz : ()

Fekr 2 Q Tieirpbe: 72 ke :71 =97 Thkey:m

funf: app! :
'tfnaoiry =>e: 71 = 72 I'kepex: 7o
. . . 'ke:t
seqt: Thei:7i Thes:m generalize!; : et
T'kFepjen: 7o I'Feast :t
£, Tol, Tdly Ters Tars 71, T distinet £ 1 dom(T) = 0
M=tz T'F7r2Q DVE772Q TVET:Q
T =T, 77, q:T) — L, xqiit = 7|, TeriTr — &, 2gpit — Ty, 12t — bool
MMev:7 TVhep:7p FTV(rp)ni=10
letrect :
I' Fletrec type t = zo,zq| 7| | Tery@ar Tr © Tt
val z:7 = v
in €p

Ty

Figure 3.23 : Type checking for UNIT. (Part I)

Hb)

3,ydistinct T'kF& K
Ihe: [0/i]7 TF ey : sigl,e,b]
sigli, e, b] < sig import s = {::x yiT export § o 7

invoke : —
¢ I' - invoke e, with s = ti:k « o yiT & € : [o/t]Tp

1y 6, T0, Toly Tdls Tery Tars 71, T distinet 57,32, 77, ¥, distinet (£,Uf) N dom(T) = @

tetthe C £::Q2 TeiTe C TiTUz i1 = tUzgit — T\UzertTr — tUz g it — T Uzt — bool
I Fsigli, e, b] = Q IV =T,% 1k, t2:Q M Q DVeEFaQ TVEFQ
T =T, 27, 20T, 27| — £, 2q1t — T|, TeriTr — £, Tgrit — Ty, 212t — bool

Mev:7 TMhey:m FTV(rp)ni=10

s
unit; :
¢ I' F unit import s; = t;::K; y; = T;:7; eXport sc = teitke Y, = TeiTe > Tp
type t = zq, 24 7| | Ter,gr Tr 0 Ty
val z:7 = v in e
: sig[i, e, b]
573 51 52 Uiy Yp1s Ypz distinet
Swl = twitthwl C & = £/ Uspy = fpoithpa Yp1iTwl T YT WY Tp2
Sw2 = twaithwa C & = £;1RUspt = fp1ithpl YpoiTw2 T YTy Tl
se = tetthe C sp1 = tp12tAp1Usps = fpoiihps YoiTe T Yp1 T p1lUYp2 T p2
T'Fep:siglil,ef,bi] T ke sigli2,e2,b2]
I Fsiglw!,pl,b1] : @ T Fsiglw2,p2,b] = Q
sig[i1,el,b1] < siglwi,pl,b1] sig[i2, e2,b2] < siglw2, p2, b]
T Fsigli,e,b] 2 Q@ FTV (1) N (5p17USp2) =0
compound'c_:

I' F compound import s; = ¢;::k; y;i7; exXport sc = teiike Yoi7e > Th
link e with s, = ty1hw1 Yyt 7wl Provides sy = fpiikp1 Yp1 TTpl
and eg With sy2 = tw2thw2 YpoiTwz Provides spo = fpoiikp Yp2 1T p2
: sig[i, e, b]

Figure 3.24 : Type checking for UNIT. (Part IT)

signature’s imported and exported type variables (the internal names), and the type
expression for the initialization expression must not refer to any of the exported type
variables (because exports are ignored when invoking a unit).

The fun®, appl, and seq” rules are standard. The generalize! rule states that an
expression’s type can be generalized when the expression’s actual type is a subtype
of the target type (so the actual type subsumes the target type).

The letrect rule checks the local value definitions and body expression for a letrec
expression in the context of local type definitions. The result type of the body ex-

pression must not depend on any locally-defined types (permitting local type names

56

v= .. |injl{¢) | injr{¢) | projl{¢) | projr(¢) | test(t) | injl{t)v | injr(t)v E=...|East

context’: 7. E[e] — T’ E[e] 7T -e—T". ¢

variantZ”: T-Ele] = 7T-variant error if 7 - e —s 7 - variant error

projl*: T projl{)(injl{t)v) — T.» projl-fail = T projl(¢)(injr(¢)v) — T variant error

projrs”: T projr(t)(injr(t)v) — T.» projr-failZ: 7 projr(¢)(injl{t)v) —— T variant error

testl7?: T test(t)(injl{t)v) — T-true testr: T-test(t)(injr(t)v) — T-false

app.”: seq”: generalize” :
T-fnzir=>e)v — T-[v/z]e T-vie — T-e T-vast — T-w

letrec” :

T-letrec val z:7 = v in e, —+ 7T-[letrec val z:7 = v in v/z]ey

letrec-types_” :
T-letrec type t = zq,xq 7| | Tery@ar e 0 w1 — Tt = (71, 7¢)]- S(letrec val z:7 = v in e)

val z:7 = v
in €y
if fndom(7) =10
where S = [I1(2) /21, injr (£)/er proil (1) a1, projr(£) var, test(£) /]

Figure 3.25 : Reduction rules for UNIT. (Part I)

to escape the letrec expression), which means that the set of free type variables in
the expression’s type must not intersect with the set of locally-defined type variables.

The invoke” rule checks invoke expressions, first ensuring that the with clause
is well-formed. The first expression in an invoke form must have a signature type
whose imports match the with clause. The exports in the signature are ignored. The
type of the complete invoke expression is the initialization expression’s type in the
unit’s signature.

The unit’ rule determines the signature of a unit expression. The first two lines of
antecedents contain simple context-sensitive syntax checks as in UNITq4. In the third
line, all of the type expressions in the unit are checked in an environment that is
extended with the unit’s imported and defined types. Once the type expressions are
validated, the environment is extended again, this time with the types for imported
and defined variables. Finally, the last line of antecedents verifies the types of all
definition expressions and the initialization expression. Subsumption is allowed for

all expressions in the unit, since every expression is explicitly typed. Similar to the

invoke" :
T-invoke (unit import s; = t;i:k; Y; = 7,75
export sc = teilthe Y, = TeiTe
> Ty

type t = &o,24 71 | Tery@dr Tr © Ty

val z:7 = v in e)

with sy = twitkw & 0w YpiTw & Vuw

— Tlow/tw,vw/zw](letrec type t = v zq) 71 | Tery@dr Tr © Tt

val z:7 = v in e} as 73)

ifs;, =4 Csw =twandy;, =2, C Y, = 2w

compound”:
T-compound import s; = ¢;::k; Y;57; eXport sc = teitke YoiTe > Th
link (unit import s;1 = &;1::1641 Yy = T41:741

export s.1 = te1ithel Yo = TeliTel

> Ty

type t1 = zq1,@d11 T | Torl,@dr1 Trl © T
val z1:71 = vy

in ebl)

with Sw1 = twl"ﬁwl ywl:Twl

provides sp1 = lp1iikp1 Yp1:Tpl

and (unit import s;2 = ¢;2:1K42 Y3 = Ti2:742

export se0 = 1e2i1e2 Yoo = Te2:Ted

D Tpo

type t2 = z2,&di2 Ti2 | Zor2,@dr2 Tr2 © Tr2
val zo:70 = vo

in €b2)

with Sw2 = two

w2 Y2 i T w2

provides spy = Lpoiikp Yp2 T p2

—— T-unit import s; = t;iik; Y; = B74

export se = teitke Yo = TeiTe

> Ty

type 1 = ¢a1,%di1 Ti1 | Terl»8drl Tr1 © Tr
type ta = ap,%di2 Ti2 | Ter2,Bdr2 Tr2 © T12

val z1:71 = vy

val zo:79 = vy
m €py 5 €p2

swlztwlgsi:tiusgﬁzt;ﬁy 5w2:tw2§5i:tiusp1:tply Se:tegsplztplusp2:tp27
yw1=fw1§yi=finp2=fp27 yw2:xw2gyi:l’iui‘/p1:l’plv Z/e:fegypl:fplprz:fpm

si1 = ti1 C sw1 = tw1, Sp1 = lp1 C se1 = ter, si2 = ti2 C sw2 = tw2, sp2 = tpo C se2 = te2,

Yi1 = Za1 g Y1l = Twl, ypl = Tp1 g Ye1 = Tel, Yio = T42 g Yo = Tw?2, and yp? = Tp2 g Yo = e

Figure 3.26 : Reduction rules for UNIT.(Part IT)

38

[t — (ri,)] = [injl{E)ery — tinje(t):re — &, projl{t)st — 7, projr(t):t — T, test(t):t — bool]

Figure 3.27 : Converting a type store to an environment

body of a letrec expression, the initialization expression within a unit must have a
type that does not depend on any internal or exported types.

The compound!. rule verifies the linking in a compound expression and determines
its signature. The first four lines of antecedents are simple context-sensitive syntax
checks. The fifth line obtains signatures from the constituent unit expressions. Each
of these signatures must approximate a signature derived from the with and provides
clauses in the corresponding linking line, as specified in the sixth and seventh lines of
antecedents. Finally, the signature of the compound unit is defined by the import

and export clauses and the declared type of the initialization expression.

UNIT. Evaluation

A reduction semantics for UNIT. must account for the local type definitions intro-
duced by a unit or letrec expression. The rules in Figures 3.25 and 3.26 model
such types through a type store T, where each reduction maps a store-expression

pair 7 - e to a new store-expression pair T’ - €.

A type store T maps each type
t € dom(7) to type expressions 7 and 7, for the type’s “left” and “right” variants,
respectively. Intermediate expressions in a reduction include pseudo-variables, such
as injl(t), which correspond to constructors and selectors for the type ¢. Type check-
ing treats pseudo-variables as type variables that are bound in the environment |7,
which is the unloading of the type store T to a type environment (see Figure 3.27).

The letrec-types_” rule reduces a letrec expression containing type definitions to
a letrec expression containing only value definitions. This reduction extends the
type store with the defined types and replaces x¢ with injl(¢), etc., within the letrec
expression. The other reduction rules for UNIT, closely resemble the rules for UNITq in

Figure 3.19. Whereas the side conditions for invokey” and compoundj” in the untyped

semantics enforce safety, the side conditions for invokeZ” and compoundZ” in the typed

59
semantics serve merely to require an appropriate a-renaming of the units.

UNIT. Soundness

For a program of type 7, the evaluation rules for UNIT. produce either a value that
has a subtype of 7 or variant error; an evaluation can never get stuck. This property

can be formulated as a type soundness theorem.
Theorem 3.5.1 (Soundness) If [] F e : 7, then either:
1. e (e diverges);
2. []- e —=* T - variant error; or
3. []-e —* T v, |T|Fov:7, and 7y < 7.

Proof. TLemma 3.5.3 (Progress) shows that a non-value expression reduces either
to variant error or to another expression. Thus, a reduction for e either never ends,
ends in variant error, or ends with a value. In the value case, Lemma 3.5.2 (Subject
Reduction) establishes that each step in the evaluation of e preserves the type of e.
Induction on the number of reductions in []- e ——=* T - v therefore proves the

theorem. O

Lemma 3.5.2 (Subject Reduction) If T-e —— T'- € and |T| b e: 1, then
T F e :7hand 7y < 7.

Proof. The proof is by induction on the structure of e. The lemma holds for the
base case, ¢ = v, since there is no ¢’ such that 7- e —— T’ €. See Appendix B.1
for the complete proof. O

Lemma 3.5.3 (Progress) If |T| F e: 7o, then cither:
1. ¢ = v for some v;
2. T - e —— T - variant error; or
3. T e — T € for some T’ and €.

Proof. The proof is by induction on the structure of e. The lemma holds for the
base case where e is a value. We consider all other expression forms and show that a

reduction step exists. See Appendix B.2 for the complete proof. O

60

Polymorphism with A: val apply =
A Q) =
fnf:(a—=a) = mz:a= (f2))

apply[bool] not true

Polymorphism with unit: val apply =
unit import «::Q
export
b (v — a) > a—a
fnf:(a—=a) = mz:a= (f2))

(invoke apply with a::Q « bool) not true

Figure 3.28 : Polymorphism with A versus unit

UNIT. and Polymorphism

Although our UNIT. model does not support polymorphic functions directly, units
can encode polymorphic functions in a straightforward way. Figure 3.28 shows how
unit with invoke supports polymorphic functions in the same manner as A with type
application.

Our UNIT. model also omits polymorphic type constructors, and they are not
expressible using other constructs. We anticipate no problems in extending UNIT,
to handle type constructors. Glew and Morrisett [30] describe the extension of a

closely-related module language with type constructors.

UNIT, Implementation

Closed units in UNIT, can be compiled separately in the same way as closed func-
tors in ML. When compiling a unit, imported types are obviously not yet determined
and thus have unknown representations. Hence, expressions involving imported types
must be compiled like polymorphic functions in ML [52, 81], as suggested by the en-
coding of polymorphic functions in Section 3.28. Otherwise, the restrictions implied

by a unit’s interface allow inter-procedural optimizations within the unit (such as

61

definitions = type-defn* datatype-defn* value-defn*
type-defn = typet ik =0
signature = sig import type-mapping* value-var-decl*

export type-mapping® value-var-decl™
depends dependency*
dependency = s~ s

Figure 3.29 : Syntax for UNIT, (type equations)

inlining, specialization, and dead-code elimination). Furthermore, since a compound
unit is equivalent to a simple unit that merges its constituent units, intra-unit opti-
mization techniques naturally extend to inter-unit optimizations when a compound

expression has known constituent units.

3.5.3 Units with Type Dependencies and Equations

UNIT. supports a core language where each type is associated with a distinct and
independent constructor, but this view of types is too strict for many languages. For
example, in Java, the constructor that instantiates a class depends on the constructor
for the superclass. Other languages, such as ML, support type equations that intro-
duce new types without explicit constructors; a type equation of the form type ¢ =
7 defines the type variable ¢ as an abbreviation for the type expression .

Naively mixing units with type dependencies and equations leads to problems.
Since two units can contain mutually recursive definitions, linking units with type
dependencies may result in cyclic definitions, which core languages like ML, and Java
do not support. To prevent these cycles, signatures must include information about
dependencies between imported and exported types. The dependency information
can be used to verify that cyclic definitions are not created in linking expressions.

UNIT, extends UNIT. with type dependencies and equations. Figure 3.29 defines
syntax extensions for UNIT,, including a new signature form that contains a depends
clause. The dependency declaration t. ~» ¢; means that an exported type t. depends
on an imported type ;. When two units are linked with a compound expression,

tracing the set of dependencies can ensure that linking does not create a cyclic type

62

7ol < Tez 81 = tiriikgn C 80 = itk Se2 = lenitken C 801 = fenitken

tde1 ~ i1t C tdex ~ tain
Yi1:7i1 C YiaiTi2 Yer'Te2 & Ye1iTel
siglit el , dil,det,bl] < sig[i2, e2, di2, de2, b2]

Figure 3.30 : Subtyping in UNIT, signatures

definition. Also, the signature for a compound expression propagates dependency

information for types imported into and exported from the compound unit.

UniT, Type Checking
The following abbreviation expresses a UNIT, signature:

sigli, e, di, de, b] =sig import s; = {;::x; Y17,
export s. =l k. Y. 1T,
depends 5;. ~ sy

> Ty

The subtyping rule in Figure 3.30 accounts for the new dependency declarations.
Specifically, a signature is more specific than another if it declares more dependencies.

The type checking rules for UNIT, are defined in Figure 3.32. To calculate type
dependencies, the type checking rules employ the “depends on” relation, xp. It
associates a type expression with each of the type variables it references from the set

of type equations D:

rop tiff t € FTV(7)
or (At'=7")eDst. t' € FTV(r) and 7" xp t)

FTV(r) denotes the set of type variables in 7 that are not bound by the import
or export clause of a sig type. Type abbreviations are eliminated from a type or
expression with the | @ |p operator, as sketched in Figure 3.31. The subscript is

omitted from | e |p when D is apparent from context.

63

t if 7=t and t¢D
|71 p if 7=t and (t=17') €D
I p =" p if r=r/—=1"
I7lp = - - .
sig import s; = ti::6; y;:|7i|pr export se = teiike yoi|Telpr if T=sigli, e, di, de, b]
depends 5. ~ 547 where D' = {(t=7)|(t=7) €D
> 75l and t ¢ t;Ut.}
z if e=z
unit import s; = &k y; = @;:|7i| o if e=unit import s; = t;:x; Y; = z,:7;
export se = teiltke Y, = l’e:|Te|D/ export s = telthe Y, = TeiTe
> |75l p YT
|e|D = type taiika = |7'a|D/ type tgyithg = Ta
type t = z¢,vq |T||D’ | TeryTdr |7—I’|DI O Ty type t = zq,2q4 7 | Terydr Tr © Tt
. lz:r=vine
val z:|7|p, = |v|ps in |ep|ps va b
where D' = {{t = 7)|(t = 7)€ D
and t ¢ t;Ut Ut Uf}

Figure 3.31 : Expanding a set of type abbreviations in a type or expression

UNIT. Evaluation

Given a type equation of the form type ¢ = 7, the variable ¢ can be replaced every-
where with 7 once the complete program is known. Since the type system disallows
cyclic type definitions, this expansion of types as abbreviations is guaranteed to termi-
nate. Meanwhile, until the complete program is known, type equations are preserved
as necessary. In the rewriting semantics for units, type equations are preserved by
linking, and then expanded away by invocation. This semantics formalizes the in-
tuition that type equations constrain how programs are linked, but they have no
run-time effect when programs are executed.

The reduction rules for UNIT, are nearly the same as the rules for UNIT. (see
Figures 3.25 and 3.26). As in UNIT,, UNIT.’s invoke and compound reductions
propagate type definitions as well as val definitions. In addition, the compound
reduction propagates type abbreviations, but the invoke reduction immediately ex-
pands all type abbreviations in the invoked unit. A soundness proof for UNIT, would
also follow closely the proof for UNIT., based on a new lemma that validates the op

replacements.

64

330 C8c 547 C3 T/ =Ttk tettre FTV(rp)Nitc =0
VEryirg Dhrebe VETp i Q
T & sigli, e, di, de,b] :: Q

sigh

tivtay by Ty Tely Tdls Tery Tar, T, T distinet 57,52, 37, ¥, distinet (£,Uf,Uf) Ndom(T) = @

Tetihe C tatihqUtnQ) Teite C 07Ut — tUZg it — T\USeriTr — EUngrit — 7rUzyit — bool
D= {(ta=7a) Tacxpth=7hokp tqfor (ta=74),{(th =7L)ED
tge ~ ta; = {ta~>t; | {ta =7Ta) € D and t; €t; and t, € t. and 74 xp t;}
T Fsigli,e, di,de,b] = @ T/ =T,%uk,t2Q T, =T"Tatka TLFTa i Ka
Ve« T'HF=Q T/EHFQ
T =T gzl wilr], weiz [= [E], waiz[t] = 7], wertlre] = |, 7arilt] = |7, w22]E] — bool
Mo |7 T"Fley| : 7s

ik
unit, :
€ I' Funit import s; = t;::k; y; = T;:7; eXport se = leiike Y, = TeiTe b Tp
type tatthka = Ta
type t = zq, 24 7| | Ter,gr Tr 0 Ty
val z:7 = v in e
: sigli, e, di, de,]
57, 51 592, Ui Ut Upg distinet
Sw1 = twitthwl C 8 = &R Uspy = tpotihips Y Twl C YiiTiUYpo T2
Sw2 = twaithw2 C 8 = £0iRUspl = fp1iihipl Yo iTw2 C YiiTiUYp tTpl
se = tetthe C 8p1 = tp12iRp1Uspy = tpoiikpy YeiTe T Yp1 T pl UYpoiTp2
T'Feq :siglif,el,dit,del,b1] T Fes : sig[i2,e2,di2, de2,b2]
T bsiglwi,pt,dil,del,b1] == @ T Fsiglw2,p2,di2,de2,b] = Q
siglif,el, dit,del ,b1] < siglwi,pl,dil,del bl] sig[i2,e2,di2, de2,b2] < siglw2,p2,di2, de2,b]
I Fsigli,e, di,de,b] :: @ (8451, Sde1) N {5de2, saiz) = 0
Bde ~ 8ai = {8~ 5i | 8 €3 and se € 3¢ and se ~> 5 € 541 ~ 52i1USdes ~* Sdi2 f
compound? :

I' F compound import s; = ¢;::k; Y;i7; eXPOort sc = teitke YoiTe > Tp
link ey with s.1 = tw1ihw1 Tp17wi Provides sy = i1tk Yp1 TTpl

and ey with sy2 = tw2iihw2 YpopiTwe Provides syo = fpotthp Yp2 TTp2
: sigli, e, di, de, b]

Figure 3.32 : Type checking for UNIT,

3.6 Related Work

As already mentioned in Section 3.1, our unit model incorporates ideas from distinct
language communities, particularly those using packages and ML-style modules. The
Scheme and ML, communities have produced a large body of work exploring variations
on the standard module system, especially variations for higher-order modules [6, 15,
33,39, 50, 53, 54, 57, 82]. Duggan and Sourelis [18] have investigated “mixin modules”

for specifying recursive and extensible definitions across modules; their approach is

65

different from ours in its emphasis on extensible datatypes.

Crary, Harper, and Puri [14] model an extension of ML functors that allows mu-
tually recursive procedure and type definitions across functor boundaries. Their work
is based on the module calculus of Harper, Mitchell, and Moggi [34]. The calculus
distinguishes core and module-level constructs, but also permits higher-order mod-
ules, such as functors that consume and produce other functors. Crary et al. thus
provide a rigorous theoretical foundation for a form of “recursive modules,” but con-
siderable work remains to determine whether these modules have the properties that
are necessary to implement software components.

Glew and Morrisett [30] describe their implementation of MTAL, a linking lan-
guage for a typed assembly language. MTAL closely resembles a first-order version
of UNIT., where modules are implicitly linked by matching names in a global names-
pace (like conventional .o linking). The typing issues in MTAL and UNIT, are nearly
identical, though somewhat simpler to express in MTAL’s first-order environment.

The Mesa [63] programming language provides a module system that resembles
units for a Pascal-like core language. Mesa’s module system includes notions equiv-
alent to signatures, units, and compound units in a linking language that is distinct
from the core language. Cardelli [10] anticipated the unit language’s emphasis on
module linking as well as module definition. Our unit model is more concrete than
his proposal and addresses many of his suggestions for future work. Kelsey’s pro-
posed module system for Scheme [42] captures most of the organizational properties

of units, but does not address static typing or dynamic linking.

3.7 Summary

Program units deliver both the traditional benefits of modules for separate com-
pilation and the more recent advances of higher-order modules and programmer-
controlled linking. Our unit model also addresses the often overlooked—but increas-
ingly important—problem of dynamic linking.

Future work must focus on making units syntactically practical for typed lan-
guages. Our text-based model is far too verbose, and we do not address the design of
a linking language. Instead, we provide a simple construct for linking units and rely
on integration with the core language to build up linking expressions. This integration

simplifies our presentation, and we believe it is an essential feature of units. Never-

66

theless, future research should explore more carefully the implications of integrating

the core and module languages.

67

Chapter 4

Mixins

Class systems provide a simple and flexible mechanism for managing collections of
highly parameterized program pieces. Using inheritance and overriding, a program-
mer derives a new class by specifying only the elements that change in the derived
class. Nevertheless, a pure class-based approach suffers from a lack of abstrac-
tions that specify uniform extensions and modifications of classes. For example,
the construction of a programming environment may require many kinds of text ed-
itor frames, including frames that can contain multiple text buffers and frames that
support searching. In Java, for example, we cannot implement all combinations of
multiple-buffer and searchable frames using derived classes. If we choose to define a
class for all multiple-buffer frames, there can be no class that includes only searchable
frames. Hence, we must repeat the code that connects a frame to the search engine in
at least two branches of the class hierarchy: once for single-buffer searchable frames
and again for multiple-buffer searchable frames. If we could instead specify a mapping
from editor frame classes to searchable editor frame classes, then the code connecting
a frame to the search engine could be abstracted and maintained separately.

Some class-based object-oriented programming languages provide multiple inheri-
tance, which permits a programmer to create a class by extending more than one class
at once. A programmer who also follows a particular protocol for such extensions can
mimic the use of class-to-class functions. Common Lisp programmers refer to this
protocol as mixin programming [43, 45], because it roughly corresponds to mixing in
additional ingredients during class creation. Unfortunately, multiple inheritance and
its cousins are semantically complex and difficult to understand for programmers.
As a result, implementing a mixin protocol with multiple inheritance is error-prone

and typically avoided.

!'Dan Friedman determined in an informal poll in 1996 that almost nobody who teaches C++

teaches multiple inheritance [pers. com.].

68

In this chapter, we present a typed model of “class functors” for Java [31] that
permits the direct expression of a mixin protocol to construct a single-inheritance
class hierarchy. We refer to the functors as mixins due to their similarity to Common
Lisp’s multiple inheritance mechanism and Bracha’s class operators [8]. Our proposal
is superior in that it isolates the useful aspects of multiple inheritance yet retains the
simple, intuitive nature of class-oriented programming. In Section 4.1, we develop a
calculus of Java classes to serve as a foundation for the calculus of mixins. In Sec-
tion 4.2, we motivate mixins as an extension of classes using a small but illuminating

example, and Section 4.3 extends the type-theoretic model of Java to mixins.

4.1 A Model of Classes

CLASSICJAVA is a small but essential subset of sequential Java. To model its type
structure and semantics, we use well-known type elaboration and rewriting techniques
for Scheme and ML [22, 35, 85]. Figures 4.1 and 4.2 illustrate the essence of our
strategy. Type elaboration verifies that a program defines a static tree of classes and
a directed acyclic graph (DAG) of interfaces. A type is simply a node in the combined
graph. Each type is annotated with its collection of fields and methods, including
those inherited from its ancestors.

Evaluation is modeled as a reduction on expression-store pairs in the context of a
static type graph. Figure 4.2 demonstrates reduction using a pictorial representation
of the store as a graph of objects. Each object in the store is a tagged record of
field values, where the tag indicates the class of the object and its field values are
references to other objects. A single reduction step may extend the store with a new
object, or it may modify a field for an existing object in the store. Dynamic method
dispatch is accomplished by matching the class tag of an object in the store with
a node in the static class tree; a simple relation on this tree selects an appropriate
method for the dispatch.

The class model relies on as few implementation details as possible. For example,
the model defines a mathematical relation, rather than a selection algorithm, to
associate fields with classes for the purpose of type-checking and evaluation. Similarly,
the reduction semantics only assumes that an expression can be partitioned into a
proper redex and an (evaluation) context; it does not provide a partitioning algorithm.

The model can easily be refined to expose more implementation details [20, 35].

69

. i i
interface Place' ... Place' | |Barrier
interface Barrier' ... —
interface Door' _ ~ Object
extends Place', Barrier' ... Door' —
class Door® extends Object e / \/* I
implements Door' { = - Door*
Interfaces
s FEnter
Room® Enter(Person® p) { ... } s

PN
LockedDoor¢ ShortDoor¢

class LockedDoor® extends Door® ...
class ShortDoor¢ extends Door¢ ...

Classes

Figure 4.1 : A program determines a static directed acyclic graph of types

player:

door:

l_ | room: LockedDoor®
- L—]

, door.Enter(player))

player:

door:

¥ | room: LockedDoor®
- L—

s room)

Figure 4.2 : Given a type graph, reductions map a store-expression pair to a new pair

4.1.1 CrassicJava Programs

The syntax for CLASSICJAVA is shown in Figure 4.3. A program P is a sequence of
class and interface definitions followed by an expression. Each class definition con-
sists of a sequence of field declarations and a sequence of method declarations, while
an interface consists of methods only. A method body in a class can be abstract,
indicating that the method must be overridden in a subclass before the class is in-
stantiated. A method body in an interface must be abstract. As in Java, classes

are instantiated with the new operator, but there are no class constructors in CLAS-

70

P = defn* e
defn = class ¢ extends ¢ implements * { field* meth* }
| interface i extends * { meth* }
field = t fd
meth = ¢ md (arg®) { body }
arg = 1 var
body = e | abstract
e = new c|var|null | e:c . fd]|e:c.fd=¢
| eemd (e*) | super_= this : ¢ .md (e*)
| view t e | let var = ein e
var = a variable name or this
¢ = a class name or Object
i = interface name or Empty
fd = afield name
md = a method name
t = cli

Figure 4.3 : CLASSICJAVA syntax; underlined phrases are inserted by elaboration

SICJAVA; instance variables are always initialized to null. Finally, the view and let
forms represent Java’s casting expressions and local variable bindings, respectively.

The evaluation rules for CLASSICJAVA are defined in terms of individual expres-
sions, but certain rules require information about the context of the expression in
the original program. For example, the evaluation rule for a field use depends on the
syntactic type of the object position, which is determined by the expression’s type
environment in the original program. To remove such context dependencies before
evaluation, the type-checker annotates field uses and super invocations with extra
source-context information (see the underlined parts of the syntax).

A valid CLASSICJAVA program satisfies a number of simple predicates and rela-
tions; these are described in Figures 4.4 and 4.5. For example, the CLASSESONCE(P)
predicate states that each class name is defined at most once in the program P.
The relation <% associates each class name in P to the class it extends, and the
(overloaded) €% relations capture the field and method declarations of P.

The syntax-summarizing relations induce a second set of relations and predicates
that summarize the class structure of a program. The first of these is the subclass
relation <%, which is a partial order if the CompPLETECLASSES(P) predicate holds and

the WELLFoUNDEDCLAsSES(P) predicate holds. In this case, the classes declared in

71

The sets of names for variables, classes, interfaces, fields, and methods are assumed to be mutually
distinct. The meta-variable T is used for method signatures (¢... — t), V for variable lists (var...),
and I" for environments mapping variables to types. Ellipses on the baseline (...) indicate a repeated
pattern or continued sequence, while centered ellipses (- --) indicate arbitrary missing program text
(not spanning a class or interface definition).

CLASSESONCE(P) Each class name is declared only once
class ¢ ---class ¢/ -+ isin P = ¢ # ¢’
FIELDONCEPERCLASS(P) Field names in each class declaration are unique

class -.- { ... fd.--fd' ... }isin P = fd # fd’
METHODONCEPERCLASS(P) Method names in each class declaration are unique
class - { -+ md () { -} omd (o) {-} Visin P = md# md'

INTERFACESONCE(P) Each interface name is declared only once
interface i - -- interface ;' -+ isin P = i # ¢/
INTERFACESABSTRACT(P) Method declarations in an interface are abstract
interface --- { --- md (---) {e} -~} isin P = e is abstract
METHODARGSDISTINCT(P) Fach method argment name is unique
md (t1 vary ... tn varp) { --+ }isin P = wary, ... vary, and this are distinct
<P Class is declared as an immediate subclass
¢ <% ¢ & class cextends ¢’ ---{---} isin P
€p Field is declared in a class
(c.fd,t) € c < classc---{---tfd---}isin P
€p Method is declared in class

(md, (t1...tn —> 1), (var1 ... varn), €) €P ¢
& classc - { .- t md (41 vary ... ty vary) {e} --- }isin P

<ip Interface is declared as an immediate subinterface
i <'p i/ & interface i extends --- ¢’ --- { ...} isin P
€p Method is declared in an interface

(md, (t1...tn —> t), (vary ... vary), €) €p i
& interface i -+ { -+ t md (¢ vary ... tn vary) {e} --- } isin P

<P Class declares implementation of an interface
c 4P i< class ¢ --- implements ---7---{ ...} isin P
<% Class is a subclass
<% = the transitive, reflexive closure of <%
COMPLETECLASSES(P) Classes that are extended are defined

rng(<%) C dom(<%)U{Object}
WELLFOUNDEDCLASSES(P) Class hierarchy is an order
<% is antisymmetric

CLASSMETHODSOK(P) Method overriding preserves the type
((md, T, V, €) €p cand {(md, T', V', 'y €p ¢’) = (T =T or c £% ¢’)
€ Field is contained in a class

(c".fd, t) €P ¢

& (. fd, t) € ¢’ and ¢/ = min{c” | ¢ <% ¢ and 3’ s.t. (".fd, t') €p "'}
€p Method is contained in a class
(md, T, V, €) €p ¢
& ((md, T,V,e) € ¢’ and ¢/ = min{c"” | ¢ <% ¢ and 3/, V' s.t. (md, T, V', ¢') €p ¢''})

Figure 4.4 : Predicates and relations in the model of CrAssicJAvVA (Part T)

72

<ip Interface is a subinterface
<'p = the transitive, reflexive closure of <'p
COMPLETEINTERFACES(P) Extended/implemented interfaces are defined

mg(<ip) Urng(<F) C dom(<l)U{Empty)
WELLFOUNDEDINTERFACES(P) Interface hierarchy is an order)
<'p is antisymmetric

<P Class implements an interface
cKLpie A sk, ¢ <p ¢’ and i’ <5 iand ¢/ «Pp i’
INTERFACEMETHODSOK(P) Interface inheritance or redeclaration of methods is consistent

(md, T, V, abstract) €p i and (md, T', V', abstract) €}p i’
= (T =T or ¥i"(i" £l iori"” L1 i"))

€lp Method is contained in an interface
(md, T, V, abstract) €p i & i’ s.t. i < i’ and (md, T, V, abstract) €p i’
CLASSESIMPLEMENTALL(P) Classes supply methods to implement interfaces
c Xp 1 = (Vmd, T,V (md, T, V, abstract) €p i = Je, V' s.t. (md, T, V', e) €% ¢)
NOABSTRACTMETHODS(P, C) Class has no abstract methods (can be instantiated)
(md, T, V, e) €p ¢ = e # abstract
<p Type is a subtype
<p=<puUhugy
€Ep Field or method is in a type

€p = € UED

Figure 4.5 : Predicates and relations in the model of Cr.assicJava (Part IT)

P form a tree that has Object at its root.

If the program describes a tree of classes, we can “decorate” each class in the tree
with the collection of fields and methods that it accumulates from local declarations
and inheritance. The source declaration of any field or method in a class can be com-
puted by finding the minimum (i.e., farthest from the root) superclass that declares
the field or method. This algorithm is described precisely by the €% relations. The
€% relation retains information about the source class of each field, but it does not
retain the source class for a method. This reflects the property of Java classes that
fields cannot be overridden (so instances of a subclass always contain the field), while
methods can be overridden (and may become inaccessible).

Interfaces have a similar set of relations. The superinterface declaration relation
<k induces a subinterface relation <. Unlike classes, a single interface can have
multiple proper superinterfaces, so the subinterface order forms a DAG instead of
a tree. The set methods of an interface, as described by €b, is the union of the
interface’s declared methods and the methods of its superinterfaces.

Finally, classes and interfaces are related by implements declarations, as cap-

tured in the <<% relation. This relation is a set of edges joining the class tree and

73

the interface graph, completing the subtype picture of a program. A type in the full
graph is a subtype of all of its ancestors.

4.1.2 CrassicJava Type Elaboration

The type elaboration rules for CLASSICJAVA are defined by the following judgements:

bp P= Pt P elaborates to P’ with type ¢
P by defn = defn’ defn elaborates to defn’
Pt meth = meth’ meth in t elaborates to meth’

PTllree=¢€:t e elaborates to ¢ with type ¢ in T
PThse= €t e has type t using subsumption in T’
PFit t exists

The type elaboration rules translate expressions that access a field or call a super
method into annotated expressions (see the underlined parts of Figure 4.3). For
field uses, the annotated expression contains the compile-time type of the instance
expression, which determines the class containing the declaration of the accessed field.
For super method invocations, the annotated expression contains the compile-time
type of this, which determines the class that contains the declaration of the method
to be invoked.

The complete typing rules are shown in Figures 4.6 and 4.7. A program is well-
typed if its class definitions and final expression are well-typed. A definition, in turn,
is well-typed when its field and method declarations use legal types and the method
body expressions are well-typed. Finally, expressions are typed and elaborated in the
context of an environment that binds free variables to types. For example, the get®
and set® rules for fields first determine the type of the instance expression, and then
calculate a class-tagged field name using €p; this yields both the type of the field
and the class for the installed annotation. In the set® rule, the right-hand side of the
assignment must match the type of the field, but this match may exploit subsumption
to coerce the type of the value to a supertype. The other expression typing rules are

similarly intuitive.

4.1.3 CLrassicJava Evaluation

The operational semantics for CLASSICJAVA is defined as a contextual rewriting sys-

tem on pairs of expressions and stores. A store § is a mapping from objects to

74

Crassesonce(P) InteRFACESONCE (P) MEeTHODONCEPERCLASS(P) FIELDONCEPERCLASS(P)
COMPLETECLASSES(P) WELLFOUNDEDCLASSES(P) COMPLETEINTERFACES(P) WELLFOUNDEDINTERFACES(P)
INTERFACEMETHODSOK (P) INTERFACESABSTRACT(P) METHODARGSDISTINCT(P) CLASSESIMPLEMENTALL(P)

Pty defn; = defng for j € [1,n] Plllee= et where P = defny ... defnn e

(o}
Fp defny ... defnn e = defn| ... defn) €' : ¢ [proge]

Fa Pty tj for each j € [1,n] P, c bm methy = meth) for each k € [1,p]

Plryclass c---{ t1 fdi ... tn fdn =class c---{t fdi ... tn fdn
methy ... methy } methy ... methy, }

[defn€]

P,i b meth; = meth; for each j € [1,p] [defn]
em

P 4 interface ¢ --- { methy ... methy, } = interface i --- { meth; ... methy }

Fm Pyt Pty tj for j € [1,n]

P,[this : to, vary : t1, ... vary : tn]Fs e = € @ ¢

th
Pito bm t md (t1 vary ... tn varn) { e } = t md (¢ vary ... tp vary) { & } [meth]

'_
€ P ¢ c NoAsstractMerHoDs(P, c)

var € dom(T")
[new€]

[var]
PT'Fenew c = new c: ¢ P,T te var = var : ['(var)

Pyt [l PTltee= € :t'{cfdt)ept
Pl Fenull = null - 000 Pl Fecfd= ¢ :c fd:t

[gete]

PTtree=e :t! (cfdtyept! PTlsiey=>e),:t
PTllreefd=c, => e :c.fd=¢):t

[set€]

Figure 4.6 : Context-sensitive checks and type rules for CrLAssIcJAVA (Part 1)

class-tagged field records. A field record F is a mapping from elaborated field names
to values. The evaluation rules are a straightforward modification of those for imper-
ative Scheme [22].

The complete evaluation rules are in Figure 4.8. For example, the call rule invokes
a method by rewriting the method call expression to the body of the invoked method,
syntactically replacing argument variables in this expression with the supplied argu-
ment values. The dynamic aspect of method calls is implemented by selecting the
method based on the run-time type of the object (in the store). In contrast, the
super reduction performs super method selection using the class annotation that is

statically determined by the type-checker.

75

PTtee= €t/ (md (t1...tn — 1), (vary ... vary), ep) €p t’
P,T'bs e; = e; : t; for j € [1,n]

PTteemd (e ... en) = e'.md(e'l eyt

[call®]

P,Tte this = this: ¢/ ¢/ <% ¢ (md, (t1...tn —> t), (vary ... vary), &) €p ¢

PTtkse; = ¢ i t;forj€[l,n] ep, # abstract
J - super®]
P,T te super.md(e; ... en) = super_= this : ¢ .md(e] ... e): ¢
PThkse=>¢:t Pyt
_s = [wcast€] t [abs]
Pl beview te= ¢ : ¢t P, T’ o abstract = abstract : ¢

PTlreee:t't<ptorte dom(<ip) ort' € dom(<ip)

P, e view t e = view t e/ : ¢

[ncast®]

PTleey=¢€ 1 P,T[var: t1]Fe ep = €} : ¢

let
P,T belet var = ey in ey = let var = e} in €, : ¢ [let]

Fs, bt

PThree= et v <pt feube] t € dom(<%) U dom(<p)U{Object, Empty}
su

PTlbtse=e:t Pyt

[type]

Figure 4.7 : Context-sensitive checks and type rules for Cr.assicJava (Part IT)

4.1.4 CrassicJAava Soundness

For a program of type ¢, the evaluation rules for CL.LASSICJAVA produce either a value
that has a subtype of ¢, or one of two errors. Put differently, an evaluation cannot go
wrong, which our model model means getting stuck. This property can be formulated

as a type soundness theorem.

Theorem 4.1.1 (Type Soundness) If -, P = P’ :t and
P'" = defny ... defn, e, then either

o P+ (e, 0) —* (object, S) and S(object) = (t', F) and t' <p t; or
o P'F (e 0) =* (null, S); or

o P'+ (e,) —* (error: bad cast, S); or

o P'+ (e,) —* (error: dereferenced null, S).

The main lemma in support of this theorem states that each step taken in the eval-

uation preserves the type correctness of the expression-store pair (relative to the

76

E = [l|Eic.fd|E:c fd=¢e|v:c.fd=E
e = .. | object | Emd(e...)|vmd(v...Ee...)
v = object | null | super=w:c.md(v...Ee..))
| view tE |let var = E in e

P+ (E[new c], 8) — (E[object], S[object—(c, F)]) [new]
where object ¢ dom(S8) and F = {c'.fd—null | ¢ <% ¢’ and 3t s.t. (c'.fd, t) €p '}

P (E[object: ¢’ .fd], §) = (E[v],) [get]
where S(object) = (¢, F) and F(c'.fd) = v

P+ (E[object_: ¢ .fd = 4], 8) — (E[4], S[objectr{c, Flc'.fd—u]}]) [set]
where S(object) = (c, F)

P+ (E[object.md(v1, ... vn)], S) — (E[e[object/this, vi/vari, ... vn/vary]], S) [call]
where S(object) = (¢, F) and {md, (t1...tn —> t), (var ... varp), €) €p ¢

P + (E[super = object : ¢’ .md(v1, ... vn)], S) [super]

— (E[e[object/this, vy [vari, ... vn/vary]], S)
where (md, (t1...tn —> 1), (var1 ... vary), €) €p ¢’

P + (E[view t’ object], 8) — (E[object], S) [cast]
where S(object) = (¢, F) and ¢ <p t'

P+ (E[let var = vin €], 8) — (E[e[v/var]], S) [let]

P + (E[view t’ object], S) — (error: bad cast, S) [zcast]

where S(object) = (¢, F) and ¢ £p t'

P + (E[view t’ null], §) < (error: bad cast, S) [ncast]
P+ (E[null: c .fd], §) — (error: dereferenced null, S) [nget]
P+ (E[null: c .fd = o], §) — (error: dereferenced null, S) [nset]
P+ (E[null.md(v1, ... vn)], &) < (error: dereferenced null, S) [neall]

Figure 4.8 : Operational semantics for CLASSICJAVA

program) [85]. Specifically, for a configuration on the left-hand side of an evaluation
step, there exists a type environment that establishes the expression’s type as some

t. This environment must be consistent with the store.

Definition 4.1.2 (Environment-Store Consistency)

PTH S

& (S(object) = (¢, F)
¥y =T"(object) = ¢
Yo and dom(F) = {er.fd | (e1.fd,c2) €% ¢}
Ya: and rng(F) C dom(S) U {null}
DI and (F(er.fd) = object’ and (¢1.fd,c3) €% ¢)

= ((S(object’) = (¢, F) = ¢ <p)

PO and object € dom(T') = object € dom(S)?

Yg: and dom(S) C dom(T')

77

Since the rewriting rules reduce annotated terms, we derive new type judgements K
and k¢ that relate annotated terms to show that reductions preserve type correctness.
Each of the new rules performs the same checks as the rule it is derived from without
removing or adding annotation. Thus, k5 is derived from k, and so forth.

The judgement on view expressions is altered slightly; we retain the view opera-
tion in all cases, and we collapse the [wcast®] and [ncast€] relations to a new [cast€]

relation that permits any casting operation:

PIkKe:t
Pl R viewte:t

[cast€]

The new [cast€] relation lets us prove that every intermediate expresion in a reduction
is well-typed, whereas [wcast®] and [ncast®] more closely approximate Java, which
rejects certain expressions because they would certainly produce error: bad cast. For
example, assuming that LockedDoor® and ShortDoor® extend Door® separately, a legal

source program
let 2 = o.GetDoor() in (view LockedDoor® z)

might reduce to

view LockedDoor® shortDoorObject

where shortDoorObject is an instance of ShortDoor¢. Unlike the [wecast®] and [ncast®]
rules in k, the [cast®] rule in k; assigns a type to the reduced expression.

The k relation also generalizes the [super®] judgement to allow an arbitrary ex-
pression within a super expression’s annotation (in place of this). The generalized
judgement permits replacement and substitution lemmas that treat super annota-
tions in the same manner as other expression. Nevertheless, at each reduction step,
every super expression’s annotation contains either this or an object. This fact is
crucial to proving the soundness of CLASSICJAVA, so we formalize it as a SUPEROK

predicate.

’In X5, it would be wrong to write dom(I') C dom(S8) because I' may contain bindings for lexical

variables.

78

Definition 4.1.3 (Well-Formed Super Calls)

SUPEROK(€¢) < For all super = e : ¢ .md(er, ... €,) in e,

either eg = this or eg = object for some object.

Although F types more expressions than k., we are only concerned with source
expressions typed by k. The following lemma establishes that the new typing judge-

ments conserve the result of the original typing judgements.

Lemma 4.1.4 (Conserve) If -, P = P’ : ¢ and P' = defny ... defn, ¢, then P’
et

Proof. The claim follows from a copy-and-patch argument. O

Lemma 4.1.5 (Subject Reduction) IfPI'kk e: ¢, P,I' i, S, SUPEROK(e), and
Pt (e,S) — (¢,8"), then ¢ is an error configuration or there exists a I such that

1. PT' K € : ¢,
2. PI"k S, and

3. SUPEROK(¢€).

Proof. The proof examines reduction steps. For each case, if execution has not
halted with an error configuration, we construct the new environment I and show
that the two consequents of the theorem are satisfied relative to the new expression,
store, and environment. See Appendix C.1 for the complete proof, which is due to

Shriram Krishnamurthi. O

Lemma 4.1.6 (Progress) IfPI'kk e: ¢, P,I' 5, S, and SUPEROK(e), then either
e is a value or there exvists an (¢ ,8') such that P+ (e,S) — (¢,5").

Proof. The proof is by analysis of the possible cases for the current redex in e
(in the case that e is not a value). See Appendix C.2 for the complete proof. O

By combining the Subject Reduction and Progress lemmas, we can prove that
every non-value CLASSICJAVA program reduces while preserving its type, thus estab-
lishing the soundness of CLASSICJAVA.

79

4.1.5 Related Work on Classes

Our model for class-based object-oriented languages is similar to two recently pub-
lished semantics for Java [16, 78], but entirely motivated by prior work on Scheme and
ML models [22, 35, 85]. The approach is fundamentally different from most of the pre-
vious work on the semantics of objects. Much of that work has focused on interpreting
object systems and the underlying mechanisms via record extensions of lambda cal-
culi [19, 41, 66, 58, 67] or as “native” object calculi (with a record flavor) [1, 2, 3].
In our semantics, types are simply the names of entities declared in the program; the
collection of types forms a DAG, which is specified by the programmer. The collection
of types is static during evaluation® and is only used for field and method lookups and
casts. The evaluation rules describe how to transform statements, formed over the
given type context, into plain values. The rules work on plain program text such that
each intermediate stage of the evaluation is a complete program. In short, the model
is as simple and intuitive as that of first-order functional programming enriched with

a language for expressing hierarchical relationships among data types.

4.2 From Classes to Mixins: An Example

Implementing a maze adventure game [29, page 81] illustrates the need for adding
mixins to a class-based language. A player in the adventure game wanders through
rooms and doors in a virtual world. All locations in the virtual world share some
common behavior, but also differ in a wide variety of properties that make the game
interesting. For example, there are many kinds of doors, including locked doors,
magic doors, doors of varying heights, and doors that combine several varieties into
one. The natural class-based approach for implementing different kinds of doors is to
implement each variation with a new subclass of a basic door class, Door®. The left side
of Figure 4.9 shows the Java definition for two simple Door® subclasses, LockedDoor®
and ShortDoor®. An instance of LockedDoor requires a key to open the door, while an
instance of ShortDoor¢ requires the player to duck before walking through the door.
A subclassing approach to the implementation of doors seems natural at first,

because the programmer declares only what is different in a particular door variation

3Dynamic class loading could be expressed in this framework as an addition to the static context.

Nevertheless, the context remains the same for most of the evaluation.

80

as compared to some other door variation. Unfortunately, since the superclass of each
variation is fixed, door variations cannot be composed into more complex, and thus
more interesting, variations. For example, the LockedDoor® and ShortDoor® classes
cannot be combined to create a new LockedShortDoor€ class for doors that are both
locked and short.

interface Door' {
boolean canOpen(Person® p);
boolean canPass(Person® p);
}
class LockedDoor® extends Door® { mixin Locked™ extends Door' {
boolean canOpen(Person® p) { boolean canOpen(Person® p) {
if ('p.hasltem(theKey)) { if ('p.hasltem(theKey)) {
System.out.printIn(“You don’t have the Key"); System.out.printIn(“You don’t have the Key");
return false; return false;
¥ }
System.out.printIn(“Using key..."); System.out.printIn(“Using key...");
return super.canOpen(p); return super.canOpen(p);
} }
) .
class ShortDoor® extends Door® { mixin Short™ extends Door' {
boolean canPass(Person® p) { boolean canPass(Person® p) {
if (p.height() > 1) { if (p.height() > 1) {
System.out.printIn(“You are too tall”); System.out.println(“You are too tall");
return false; return false;
} ¥
System.out.printIn(“Ducking into door...”); System.out.printIn(“Ducking into door...”);
return super.canPass(p); return super.canPass(p);
} }
}
class LockedDoor® = Locked™(Door®);
class ShortDoor¢ = Short™(Door¢);
/* Cannot merge for LockedShortDoor® */ class LockedShortDoor® = Locked™ (Short™(Door®));

Figure 4.9 : Some class definitions and their translation to composable mixins

A mixin approach solves this problem. Using mixins, the programmer declares
how a particular door variation differs from an arbitrary door variation. This creates
a function from door classes to door classes, using an interface as the input type. Each
basic door variation is defined as a separate mixin. These mixins are then functionally
composed to create many different kinds of doors.

A programmer implements mixins in exactly the same way as a derived class,
except that the programmer cannot rely on the implementation of the mixin’s su-
perclass, only on its interface. We consider this an advantage of mixins because it
enforces the maxim “program to an interface, not an implementation” [29, page 11].

The right side of Figure 4.9 shows how to define mixins for locked and short doors.

81

interface Secure! extends Door' {
Object neededltem();
}
mixin Secure™ extends Door' implements Secure' {
Object neededltem() { return null; }
boolean canOpen(Person® p) {
Object item = neededltem();
if ('p.hasltem(item)) {
System.out.printIn(“You don’t have the " + item);
return false;
}
System.out.printin(“Using " + dtem + “...");
return super.canOpen(p);
}
}

mixin NeedsKey™ extends Secure' {
Object neededltem() {
return theKey;
}

}

mixin NeedsSpell™ extends Securel {
Object neededltem() {
return theSpellBook;
}

}

mixin Locked™ = NeedsKey™ compose Secure™;

mixin Magic™ = NeedsSpell™ compose Secure™;

mixin LockedMagic™ = Locked™ compose Magic™;

mixin LockedMagicDoor™ = LockedMagic™ compose Door™;
class LockedDoor® = Locked™(Door®); ...

Figure 4.10 : Composing mixins for localized parameterization

The mixin Locked™ is nearly identical to the original LockedDoor® class definition,
except that the superclass is specified via the interface Door'. The new LockedDoor®
and ShortDoor® classes are created by applying Locked™ and Short™ to the class Door®,
respectively. Similarly, applying Locked™ to ShortDoor¢ yields a class for locked, short
doors.

Consider another door variation: MagicDoor®, which is similar to LockedDoor®
except that the player needs a book of spells instead of a key. We can extract the
common parts of the implementation of MagicDoor® and LockedDoor® into a new
mixin, Secure™. Then, key- or book-specific information is composed with Secure™
to produce Locked™ and Magic™, as shown in Figure 4.10. Each of the new mixins
extends Door' since the right hand mixin in the composition, Secure™, extends Door'.

The Locked™ and Magic™ mixins can also be composed to form LockedMagic™.

82

This mixin has the expected behavior: to open an instance of LockedMagic™, the
player must have both the key and the book of spells. This combinational effect
is achieved by a chain of super.canOpen() calls that use distinct, non-interfering
versions of neededltem. The neededltem declarations of Locked™ and Magic™ do
not interfere with each other because the interface extended by Locked™ is Door',
which does not contain neededltem. In contrast, Door' does contain canOpen, so the

canOpen method in Locked™ overrides and chains to the canOpen in Magic™.

4.3 Mixins for Java

MIXEDJAVA is an extension of CLASSICJAVA with mixins. In CLASSICJAVA, a class
is assembled as a chain of class expressions. Specifically, the content of a class is
defined by its immediate field and method declarations and by the declarations of
its superclasses, up to Object.* In MIXEDJAVA, a “class” is assembled by compos-
ing a chain of mixins. The content of the class is defined by the field and method
declarations in the entire chain.

MIXEDJAVA provides two kinds of mixins:

e An atomic mixin declaration is similar to a class declaration. An atomic mixin
declares a set of fields and methods that are extensions to some inherited set
of fields and methods. In contrast to a class, an atomic mixin specifies its
inheritance with an inheritance interface, not a static connection to an existing
class. By abuse of terminology, we say that a mixin extends its inheritance

interface.

A mixin’s inheritance interface determines how method declarations within the
mixin are combined with inherited methods. If a mixin declares a method =z
that is not contained in its inheritance interface, then that declaration never

overrides another z.

An atomic mixin implements one or more interfaces as specified in the mixin’s

definition. In addition, a mixin always implements its inheritance interface.

4“We use boldfaced class to refer to the content of a single class expression, as opposed to an

actual class.

83

e A composite mixin does not declare any new fields or methods. Instead, it
composes two existing mixins to create a new mixin. The new composite mixin
has all of the fields and methods of its two constituent mixins. Method dec-
larations in the left-hand mixin override declarations in the right-hand mixin
according to the left-hand mixin’s inheritance interface. Composition is allowed
only when the right-hand mixin implements the left-hand mixin’s inheritance

interface.

A composite mixin extends the inheritance interface of its right-hand con-
stituent, and it implements all of the interfaces that are implemented by its
constituents. Composite mixins can be composed with other mixins, producing
arbitrarily long chains of atomic mixin compositions.®

Figure 4.11 illustrates how the mixin LockedMagicDoor™ from the previous sec-
tion corresponds to a chain of atomic mixins. The arrows connecting the tops of the
boxes represent mixin compositions; in each composition, the inheritance interface
for the left-hand side is noted above the arrow. The other arrows show how method
declarations in each mixin override declarations in other mixins according to the com-
position interfaces. For example, there is no arrow from the first Secure™’s neededltem
to Magic™’s method because neededltem is not included in the Door' interface. The
canOpen method is in both Door' and Secure', so arrows connect all declarations of
canOpen.

Mixins completely subsume the role of classes. A mixin can be instantiated with
new when the mixin does not inherit any services. In MIXEDJAVA, this is indicated
by declaring that the mixin extends the special interface Empty. Consequently, we
omit classes from our model of mixins, even though a realistic language would include
both mixins and classes.

The following subsections present a precise description of MIXEDJAVA. Sec-
tion 4.3.1 describes the syntax and type structure of MIXEDJAVA programs, followed
by the type elaboration rules in Section 4.3.2. Section 4.3.3 explains the operational

>QOur composition operator is associative semantically, but not type-theoretically. The type
system could be strengthened to make composition associative—giving MIXEDJAVA a categorical
flavor—by letting each mixin declare a set of interfaces for inheritance, rather than a single inter-
face. Each required interface must then either be satisfied or propagated by a composition. We have

not encountered a practical use for the extended type system.

84

i i i i

NeedsKey™ Secure Secure™ Door NeedsSpell™ Secure Secure™ Door Door™
neededltem neededltem neededltem neededltem canPass

canOpen canOpen canOpen
L] L]
| Locked™ Magic™ |
| LockedMagic™ |

LockedMagicDoor™

Figure 4.11 : LockedMagicDoor™ mixin corresponds to a sequence of atomic mixins

semantics of MIXEDJAVA, which is significantly different from that of CLASSICJAVA.
Section 4.3.4 presents a type soundness theorem, Section 4.3.5 briefly considers im-

plementation issues, and Section 4.3.6 discusses related work.

4.3.1 MIXEDJAVA Programs

Figure 4.12 contains the syntax for MIXEDJAVA; the missing productions are inherited
from the grammar of CrLASSICJAVA in Figure 4.3. The primary change to the syntax
is the replacement of class declarations with mixin declarations. Another change
concerns the annotations added by type elaboration. First, view expressions are
annotated with the syntactic type of the object expression. Second, a type is no
longer included in the super annotation or the field use annotations. In addition, type

elaboration inserts extra view expressions into a program to implement subsumption.

defn = mixin m extends i implements i* { field* meth* }

| mixin m = m compose m
| interface i extends * { meth* }

e = new m | var| null | efd| efd=c¢e
| eemd (€*) | super = this .md (e*)
| view tas t e | let var = ein e

m = mixin name

t = ml|i

Figure 4.12 : Syntax extensions for MIXEDJAVA

The predicates and relations in Figures 4.13 and 4.14 (along with the interface-
specific parts of Figures 4.4 and 4.5) summarize the syntactic content of a MIXEDJAVA

85

MIXINSONCE(P) Each mixin name is declared only once
mixin m --- mixin m’ ---isin P = m # m’
FIELDONCEPERMIXIN(P) Field names in each mixin declaration are unique

mixin -+ { --- fd .- fd' .- }isin P = fd # fd’
METHODONCEPERMIXIN(P) Method names in each mixin declaration are unique
mixin <+ { -omd (o) { -} ooomd () {} e Visin P = md # md’

NOABSTRACTMIXINS(P) Methods in a mixin are not abstract
mixin --- {---md (---){e}---}isin P = e # abstract
<'B Mixin declares an inheritance interface
m <P { < mixin m extends ¢ --- { --- }isin P
«'B Mixin declares implementation of an interface
m «'P { < mixin m --- implements --- ¢ .- { .-+ }isin P
e=P eoce Mixin is declared as a composition
m =P m' o m" & mixin m = m’ compose m' is in P
[y Method is declared in a mixin
(md, (t1...tn —> t), (var) ... varp), e) €B m
& mixin m -+ { -+~ t md (¢ vary ...ty varp) { e} - }isin P
€P Field is declared in a mixin

(m.fd,t) EBm e mixinm .- {---¢tfd---}isin P

<'B Mixin is a submixin
m<Bm' & m=mor(@m"’,m"” st. m=P m” om” and (m"” <B m’' or m"" <P m’))
<8 Mixin is viewable as a mixin
mdB m’ & m=m'or (Am”,m" st. m =P m” om’ and (m” <P m’ xor m""" <B m')
and (m” 4B m' xor m"" 4B m’))
COMPLETEMIXINS(P) Mixins that are composed are defined
rng(=B) C {mo m’ | mym’ € dom(<B) Udom(=B)}
WELLFOUNDEDMIXINS(P) Mixin hierarchy is an order
<'B is antisymmetric
COMPLETEINTERFACES(P) Extended/implemented interfaces are defined
rng(</p) Urng(<B) Urng(<«B) C dom(<s)U{Empty}
<% Mixin extends an interface
m B is m<Bior (IAm';m"” st. m =P m’ o m” and m"” B i)
LB Mixin implements an interface
m P i Im' st. m <P m'and i’ <p iand (m’ <B i or m’ KB ')
<«"B Mixin is viewable as an interface

m <P ie (I st ! <biand (m <P i’ or m B ")
or (Am/,m"” st. m =P m’ o m"” and (m’' KB ¢ xor m" KB 1)
and (m’ <'B i xor m” B i)
MIXINCOMPOSITIONSOK(P) Mixins are composed safely
m=pm' om” = 3i st. m' {Piandm” P

MIXINMETHODSOK(P) Method definitions match inheritance interface
((md, T,V, e) € mand (md, T', V', abstract) €p i) = (T =T’ or m 4} i)
€B Field is contained and visible in a mixin

(m’.fd, t) €B m & m P m’
and {{(m'.fd, t)} = {(m'.fd, t) | m <B m' and (m'.fd, t) € m'}
[Method is potentially visible in a mixin (used for €B)
(md, T) €p m & (IV,e st. (md, T,V, ¢) €B m) _
or (35,V s.it. m <B iand (md, T, V, abstract) €p i)
or (Im/,m"” st. m =B m' o m”
and ((md, T) € m' or (md, T) € m"))
ep Method is visible in a mixin
(md, T) €B m & (md, T) €B m and ((F7 sb. m <P)
or (Am’',m"” i s.b6. m =B m’ o m” and m' 4P ¢
and ({md, T') €% m' = (md, T') €p m’)
and ((md, T") €3 m" = (md, T") €p m"
and (({md, T') €B m’ and (md, T") €B m")

= (AV s.t. (md, T, V, abstract) €'p 7))))

Figure 4.13 : Predicates and relations in the model of MIXEDJAVA (Part 1)

86

MIXINSIMPLEMENTALL(P) Mixins supply methods to implement interfaces
m LB i = (Ymd, T (md, T, V, abstract) €b 4
= (Fe st. (md, T,V,e) EBm
or 3¢ st (m <P
and (md, T, V, abstract) €lp i')))

€l Method with type in an interface
(md, T) €p 1 & 3V s.t. (md, T, V, abstract) €p i

<r Type is a subtype <p=<BUHULD
dp Type is viewable as another type dp = 4B uU<hb U P
Ep Field or method is in a type Ep=€puUceh
i and @Q Chain constructors

:: adds an element to the beginning of a chain; @ appends two chains
—p Mixin corresponds to a chain of atomic mixins

m —p M

& (3 sit. m <B iand M = [m])
or (Am/,m", M',M" st. m =B m’' o m” and m’ —p M’
and m” —p M" and M = M'@M”)

<M Chains have an inverted subsequence order
M <M M & IM" st. M = M"aM’
o/e>e/e Mixin view operation selects a new chain

M/moe M [m' & (m =m’ and M = M')
or (Am”,m" st. m =P m"” om'
and ((m” <B m’ and M/m" > M'/m')
or (m"” <B m' and IM;, M, s.t. m"” —p M; and M = M;QM,
and M, /m" v M'/m"))

oy Interface view operation selects a new chain
M/te M'/i & M’ = min{m:M" | m «B iand M <M m:M"}
00 x 00 Method in a chain is the same as in another chain

m:Momd o« M.md & m:M = M’ or (34, T,V,M" st. m <B iand (md, T) €p i
and M /i > M" /i and M".md < M’.md)
och ein o Method selects a view within a chain and subchain
(md, T, V, e, m:M[m) €5 M, in M,
& (md, T, V,e) € m
and ma::My = min{mg:My | MvSMmE::Mm and (md, T) €B my}
and My = max{M’ | my:Mymd o< M'.md}
and m:M = min{m:M | M,<Mm::M
and m::M.md o< Mpmd
and 3V’ e sit. (md, T, V', 'Y €P m}

Figure 4.14 : Predicates and relations in the model of MIXEDJAVA (Part 1)

program. A well-formed program induces a subtype relation <B on its mixins such
that a composite mixin is a subtype of each of its constituent mixins.

Since each composite mixin has two supertypes, the type graph for mixinsis a DAG,
rather than a tree as for classes. This DAG would result in ambiguities if subsumption
were based on subtypes. For example, LockedMagic™ is a subtype of Secure™, but it
contains two copies of Secure™ (see Figure 4.11). Hence, interpreting an instance of

LockedMagic™ as an instance of Secure™ is ambiguous. More concretely, the fragment

87

LockedMagicDoor™ door = new LockedMagicDoor™;

(view Secure™ door).neededltem();

is ill-formed because LockedMagic™ is not uniquely viewable as Secure™. To eliminate
such ambiguities, we introduce the “viewable as” relation <p, which is a restriction
on the subtype relation. Subsumption is thus based on <p rather than <p. The
relations €B, which collect the fields and methods contained in each mixin, similarly

eliminate ambiguities.

4.3.2 MiXEDJAvA Type Elaboration

Despite the replacement of the subtype relation with the “viewable as” relation,
CLASSICJAVA’s type elaboration strategy applies equally well for typing MIXEDJAVA.
The typing rules in Figure 4.15 are combined with the defn', meth, let, var, null,
and abs rules from Figures 4.6 and 4.7.

Three of the new rules deserve special attention. First, the super™ rule allows
a super call only when the method is declared in the current mixin’s inheritance
interface, where the current mixin is determined by looking at the type of this.
Second, the weast™ rule strips out the view part of the expression and delegates all
work to the subsumption rules. Third, the sub™ rule for subsumption inserts a view

operator to make subsumption coercions explicit.

4.3.3 MixeEpJava Evaluation

The operational semantics for MIXEDJAVA differs substantially from that of CLASSIC-
JAVA. The rewriting semantics of the latter relies on the uniqueness of each method
name in the chain of classes associated with an object. This uniqueness is not guar-
anteed for chains of mixins. Specifically, a composition m; compose my contains two
methods named z if both m; and ms declare z and m;’s inheritance interface does
not contain x. Both x methods are accessible in an instance of the composite mixin
since the object can be viewed specifically as an instance of either my or ms.

One strategy to avoid the duplication of x is to rename it in my and m,. At best,
this is a global transformation on the program, since x is visible to the entire program
as a public method. At worst, renaming triggers an exponential explosion in the size

of the program, which occurs when m; and m, are actually the same mixin m. Since

88

MixmsOnce(P) MernopOncePErRMixiv(P) InTerracesOnce(P) CompreTeMixms(P
WELLFOUNDEDMIXINS(P) COMPLETEINTERFACES(P) WELLFOUNDEDINTERFACES(P
MixiFELDSOK (P) MixmMeTHODSOK (P) INTERFACEMETHODSOK (P
INTERFACESABSTRACT(P) NoABSTRACTMIXINs(P) METHODARGSDISTINCT(P
MixmsivpLementALL(P) P by defn; = defng forj€l,n] P[]ltee= ¢ :
where P = defny ... defny e

Fp defny ... defnn e = defn'l ... defnl, € it

)
)
)
)
t

[prog™]

Fa P by tj for each j € [1,n] P,m bm methy = meth] for each k € [1,p]

Pty mixin m --- { t; fdi ... tn fdn = mixin m - { &y fdi ... tn fdn
methy ... methy } methy ... methy, }

[defn™]

Fe Prom

m <5 Empty Pllree= e :m (m'.fd, t) €Ep m
[new™]
PTUleefd= e.fd:t

[get™]
P, e new m = new m: m

PTtree=e:m (m'fdt)épm PTlse, =€t
PTlleefd=e, = e.fd=¢€) : 1

[set™]

PTllree= et (md, (t1...tn —> t)) €p t/
PTks ey = e; : t; for j € [1,n]

Pl teemd (e ... en) = e'.md(e'l ceen) it

n

[call™]

P, T ke this = this: m m B i (md, (t1...tn —> t)) €Ep 1
PTbse; = e; : ¢y for j € [1,n]

[super™]
n

P,T te super.md(e; ... en) = super_= this .md(e] ... e,) : ¢

Plhie= e 1t [] PTllree= et ' €pt
wcas
Pl beviewte= ¢ :t Pl e view t e = view t' as t ¢/ : ¢

[ncast™]

'_
: PTlee= ¢t t' <pt

Plhse= viewt' aste : ¢t

[sub™]

Fe ¢ € dom(<B) U dom(=B) U dom(<p)U{Empty}

Pret

[type™]

Figure 4.15 : Context-sensitive checks and type elaboration rules for MIXEDJAVA

the mixin m represents a type, renaming z in each use of m splits it into two different
types, which requires type-splitting at every expression in the program involving m.

Our MIXEDJAVA semantics handles the duplication of method names with run-
time context information: the current view of an object.® During evaluation, each

reference to an object is bundled with its view of the object, so that values are of

6A view is analogous to a “subobject” in languages with multiple inheritance, but without the

complexity of shared superclasses [73].

89

the form (object||view). A reference’s view can be changed by subsumption, method
calls, or explicit casts.

Each view is represented as a chain of mixins. The chain is always a sub-chain of
the object’s full chain of mixins, i.e., the chain of mixins for the object’s instantiation
type. For example, when an instance of LockedMagicDoor™ is used as a Magic™

instance, the object’s view corresponds to the boxed part of the following chain:

[NeedsKey™ Secure™ | NeedsSpell™ Securem‘ Door™]

The full chain corresponds to LockedMagicDoor™ and the boxed part corresponds to
Magic™. The view designates a specific point in the full mixin chain for selecting
methods during dynamic dispatch. With the above view, a search for the neededltem
method of the object begins in the NeedsSpell™ element of the chain.

Our notation for views exploits the fact that an object in MIXEDJAVA encodes
its full chain of mixins (in the same way that an object in CLASSICJAVA encodes its
class). Thus, the part of the chain before the box is not needed to describe the view:

[‘ NeedsSpell™ Secure™ ‘ Door™|

Furthermore, since the view is always at the start of the remaining chain, we can
replace the box with the name of the type it represents, which provides a purely

textual notation for views:”

[NeedsSpell™ Secure™ Door™]|/Magic™.

The view-based dispatching algorithm, described by the €8 relation, proceeds in
two phases. The first phase of a search for method x locates the base declaration of
x, which is the unique non-overriding declaration of = that is visible in the current
view. This declaration is found by traversing the view from left to right, using the
inheritance interface at each step as a guide for the next step (via the o« and v
relations). When the search reaches a mixin whose inheritance interface does not
include z, the base declaration of x has been found. But the base declaration is
not the destination of the dispatch; the destination is determined by the second

phase, which locates an overriding declaration of x that is contained in the object’s

"We could also use numeric position pairs to denote sub-chains, but the tail /type encoding works

better for defining the operational semantics and soundness of MIXEDJAVA.

90

instantiated mixin. Among the declarations that override the base declaration, the
leftmost declaration is selected as the destination, following customary overriding
conventions. The location of the overriding declaration determines both the method
definition that is invoked and the view of the object within the destination method
body (i.e., the view for this).

The dispatching algorithm explains how Secure™’s canOpen method calls the ap-
propriate neededltem method in an instance of LockedMagicDoor™, sometimes dis-
patching to the method in NeedsKey™ and sometimes to the one in NeedsSpell™. The

following example illustrates the essence of dispatching from Secure™’s canOpen:

Object canOpen(Secure™ o) { ... o.neededltem() ... }

let door = new LockedMagicDoor™
in canOpen(view Secure™ view Locked™ door) ...
canOpen(view Secure™ view Magic™ door)

The new LockedMagicDoor™ expression produces dooras an (object||view) pair, where

object is a new object in the store and view is (recall Figure 4.11)
[NeedsKey™ Secure™ NeedsSpell™ Secure™ Door™]/LockedMagicDoor™.

The view expressions shift the view part of door. Thus, for the first call to canOpen,

o is replaced by a reference with the view
[Secure™ NeedsSpell™ Secure™ Door™]/Secure™.

In this view, the base declaration of neededltem is in the leftmost Secure™ since
neededltem is not in the interface extended by Secure™. The overriding declaration
is in NeedsKey™, which appears to the left of Secure™ in the instantiated chain and
extends an interface that contains neededltem.

In contrast, the second call to canOpen receives a reference with the view
[Secure™ Door™]/Secure™.

In this view, the base definition of neededltem is in the rightmost Secure™ of the full
chain, and it is overridden in NeedsSpell™. Neither the definition of neededltem in
NeedsKey™ nor the one in the leftmost occurrence of Secure™ is a candidate relative

to the given view, because Secure™ extends an interface that hides neededltem.

91

MIXEDJAVA not only differs from CLASSICJAVA with respect to method dispatch-
ing, but also in its treatment of super. In MIXEDJAVA, super dispatches are dy-
namic, since the “supermixin” for a super expression is not statically known. The
super dispatch for mixins is implemented like regular dispatches with the € rela-
tion, but using a tail of the current view in place of both the instantiation and view
chains; this ensures that a method is selected from the leftmost mixin that follows
the current view.

Figure 4.16 contains the complete operational semantics for MIXEDJAVA as a
rewriting system on expression-store pairs, similar to the class semantics described in
Section 4.1.3. In the MIXEDJAVA semantics, an object in the store is tagged with a

mixin instead of a class, and the values are null and (object||view) pairs.

E = []|Efd|Efd=¢c|vfd=E
e = ...| {object||M/t) | Emd(e...)|vmd(v...Ee...)
v = {(object||M/t) | null | super =wv.md(v...Ee..))
| view_tas tE |let var=Ein e
P + (E[new m], S) [new]
— (E[{object||M /m)}], S[objectrs{m, [M;.fdi—snull, ... My.fdy—null])])

where object ¢ dom(S) and m —p M
{My.fdy, ... Myp.fdn} = {m's=M"fd | M <M m/'::M’
and 3¢ s.t. (m'.fd, t) €8 m'}

P+ (E[{object||M /m).fd], S) — (E[], §) [get]
where S(object) = (m, F) and (m’.fd, t) €p m and M /m > M'/m’ and F(M'.fd) = v

P+ (E[{object||M [m).fd = v], S) — (E[4], S[objectr{m, F[M'.fd—v]}]) [set]
where S(object) = (m, F) and {(m'.fd, t) €p m and M /m v M'/m’

P (E[{object||M [t).md(v1, ... vn)], S) [eall]

— (E[e[(object||m':M’[/m’) [this, vy [vary, ... vp/vary]], S)
where S(object) = (m, F) and m —p M,
and (md, T, (vary ... varp), e, m'=:M’[/m'} €B M in M,
P + (E[super = (object||m=:M/m) .md(vi, ... vn)], S) [super]
— (E[e[{object||m’::M’'/m') [this, vi [vari, ... vy [/vary]], S)
where m <P i and M /i > M" /i
and (md, T, (vary ... varn), e, m'=M’'/m’) €B M" in M"

P + (E[view_t’ as t (object||M [¢')], 8) — (E[(object||M’/t}], S) [view]
where t/ <p t and M /t' v M’ [t

P + (E[view_t’ as t {(object||M /t')], 8) — (E[{object||M" [t)], S) [cast]
where ¢/ Ap t and S(object) = (m, F) and m dp tand m —p M’ and M'/m > M" /¢

P+ (E[let var = vin €], 8) — (E[e[v/var]], S) [let]

P+ (E[view_t’ as t (object||M /t')], §) — (error: bad cast, S) [zcast]

where ¢/ Ap t and S(object) = (m, F) and m HAp ¢

P + (E[view_t’ as t null], §) < (error: bad cast, S) [ncast]
P + (E[null.fd], 8) — (error: dereferenced null, S) [nget]
P + (E[null.fd = o], §) — (error: dereferenced null, S) [nset]
P+ (E[null.md(v1, ... vn)], &) < (error: dereferenced null, S) [neall]

Figure 4.16 : Operational semantics for MIXED.JAVA

92

4.3.4 MIXEDJAVA Soundness

The type soundness theorem for MIXEDJAVA is mutatis mutandis the same as the

soundness theorem for CLASSICJAVA as described in Section 4.1.4.

Theorem 4.3.1 (Type Soundness for MIXEDJAVA) If F, P = P’ : 1 and

P'" = defny ... defn, e, then either
o P+ (e 0) —* ((object||M/t), S) and S(object) = (t', F) and t' <p t; or
o P'F (e 0) =* (null, S); or

o P'+ (e,) —* (error: bad cast, S); or

P'F (e, B) —* (error: dereferenced null, S).

The proof of soundness for MIXEDJAVA is analogous to the proof for CrAssiC-

JAVA, but we must update the type of the environment and the environment-store

consistency relation () to reflect the differences between Cr.assicJava and MIXED-

JAVA. In MIXEDJAVA, the environment [' maps object-view pairs to the type part of
the view, i.e., I'({object||M/t)) = t. The updated consistency relation is defined as

follows:

Definition 4.3.2 (Environment-Store Consistency for MIXED.JAVA)

21.'

22.'

23.'
24.'

25.'

PTFE S
& (S(object) = (m,F)
= (I'((object||M /t)) =t
= (WEFM/t) and t =t and m <p 1))
and dom(F) = {m'=M".fd | |m| <M m':=:M" and
Jt st (m'.fdt)y € m'}
and {object | (object||) € rng(F)} C dom(S) U {null}
and (F(m'=:M'.fd) = (object'||M" /") and (m'.fd,t) €p m')
= (' =1t))
and (object||__) € dom(I') = object € dom(S)
and object € dom(S) = (object||__) € dom(T)

93

This definition of F, relies on the WF predicate on views, which is true of well-
formed views. A well-formed view combines 1) a chain that is a tail of some mixin’s
chain, and 2) a type, either a mixin whose chain is a prefix of the view’s chain or an
interface implemented by the first mixin in the view’s chain. Formally, WF' is defined

as follows:
Definition 4.3.3 (Well-Formed View)

WF(M/t) & 3 m,,M, st. m, —sp M, and M, <M M
and (3 M'M" st. M =M @M" andt —p M’)
or (Im,M" st. M =m:M and m <p t))

The lemmata for proving MIXEDJAVA soundness are mostly the same as for CL.AS-
SICJAVA, based on a revised typing relation k. The annotations in MIXEDJAVA pro-
grams eliminate implicit subsumption by inserting explicit view expressions, so the
ks relation for proving MIXEDJAVA soundness is the same as k. The k¢ relation is like

k., except for the handling of view expressions:

PIkKe:t

PI'K viewt' aste:t

[cast™]

Also, as in CLASSICJAVA, we define a SUPEROK predicate for validating the shape
of super calls:

Definition 4.3.4 (Well-Formed Super Calls)

SUPEROK(¢) & For all super = eq .md(er, ... €,) in e,
either ey = this

or eg = (object||m::M /m) for some object, m, and M.

Lemma 4.3.5 (Conserve for MIXEDJAVA) If F, P = P’ :t and P' = defny ...
defn,, e, then P')k ¢ : t.

Proof. The claim follows from a copy-and-patch argument. O

94

Lemma 4.3.6 (Subject Reduction for MIXEDJAVA) If PT K e: ¢, P,I' 5 S,
SUPEROK(¢), and (e,S) — (¢,8'), then € is an error configuration or there exists T
such that

1. PI"R € : ¢,
2. PI"H &', and
3. SUPEROK(¢€).

Proof. The proof examines reduction steps. For each case, if execution has not
halted with an answer or in an error configuration, we construct the new environment
['" and show that the two consequents of the theorem are satisfied relative to the new

expression, store, and environment. See Appendix D.1 for the complete proof. O

Lemma 4.3.7 (Progress for MIXEDJAVA) If PT K e : t, PT K S, and
SUPEROK(€), then either e is a value or there exists an (€', S') such that (e,S) —
(¢,5").

Proof. The proof is by analysis of the possible cases for the current redex in e
(in the case that e is not a value). See Appendix D.2 for the complete proof. O

By combining the Subject Reduction and Progress lemmas, we can prove that
every non-value MIXEDJAVA program reduces while preserving its type, thus estab-
lishing the soundness of MIXEDJAVA.

4.3.5 Implementation Considerations

The MIXEDJAVA semantics is formulated at a high level, leaving open the question
of how to implement mixins efficiently. Common techniques for implementing classes
can be applied to mixins, but two properties of mixins require new implementation
strategies. First, each object reference must carry a view of the object. This can
be implemented using double-wide references, one half for the object pointer and the
other half for the current view. Second, method invocation depends on the current
view as well as the instantiation mixin of an object, as reflected in the € relation.
Although this relation depends on two inputs, it nevertheless determines a static, per-
mixin method table that is analogous to the virtual method tables typically generated

for classes.

95

The overall cost of using mixins instead of classes is equivalent to the cost of using
interface-typed references instead of class-typed references. The justification for this
cost is that mixins are used to implement parts of a program that cannot be easily
expressed using classes. In a language that provides both classes and mixins, portions

of the program that do not use mixins do not incur any extra overhead.

4.3.6 Related Work on Mixins

Mixins first appeared as a CLOS programming pattern [43, 45]. Unfortunately, the
original linearization algorithm for CLOS’s multiple inheritance breaks the encap-
sulation of class definitions [17], which makes it difficult to use CLOS for proper
mixin programming. The CommonObjects [76] dialect of CLOS supports multiple
inheritance without breaking encapsulation, but the language does not provide simple
composition operators for mixins.

Bracha has investigated the use of “mixin modules” as a general language for
expressing inheritance and overriding in objects [7, 8, 9]. His system is based on
earlier work by Cook [12], and its underlying semantics was more recently refor-
mulated in categorical terms by Ancona and Zucca [5]. Bracha’s system gives the
programmer a mechanism for defining modules (classes, in our sense) as a collection
of attributes (methods). Modules can be combined into new modules through various
merging operators. Roughly speaking, these operators provide an assembly language
for expressing class-to-class functions and, as such, permit programmers to construct
mixins. The language, however, forces the programmer to resolve attribute name
conflicts manually and to specify attribute overriding explicitly at a mixin merge site.
As a result, the programmer is faced with the same problem as in Common Lisp, i.e.,
the low-level management of details. In contrast, our system provides a language to
specify both the content of a mixin and its interaction with other mixins for mixin
compositions. The latter gives each mixin an explicit role in the construction of pro-
grams so that only sensible mixin compositions are allowed. Tt distinguishes method
overriding from accidental name collisions and thus permits the system to resolve
name collisions automatically in a natural manner.

Agesen et al. [4] suggest that a Java variant with type parameterization can sup-
port mixins. Their approach does indeed provide a form of separately-compiled mix-

ins, but the resulting mixins are less powerful than MIXEDJAVA. They do not resolve

96

name collisions, but instead signal a compile-time error for any name collision intro-

duced by a mixin application.

4.4 Summary

We have presented a language of mixins that relies on the same programming intuition
as single inheritance classes. Indeed, a mixin declaration in our language hardly differs
from a class declaration since, from the programmer’s local perspective, there is little
difference between knowing the properties of a superclass as described by an interface
and knowing the exact implementation of a superclass. From the programmer’s global
perspective, however, mixins free each collection of field and method extensions from
the tyranny of a single superclass, enabling new abstractions and increasing the re-use
potential of code.

Using mixins is inherently more expensive than using classes, but the additional
cost is justified, reasonable, and offset by gains in code re-use. Future work on mixins
must focus on exploring compilation strategies that lower the cost of mixins, and on

studying how designers can exploit mixins to construct better design patterns.

97

Chapter 5

Experience with Units and Mixins

Most of our practical experience with units and mixins derives from implementing
the DrScheme programming environment [23] using MzScheme. DrScheme provides
students and programmers with a user-friendly environment for developing Scheme
programs. Units define a mechanism for dividing DrScheme’s implementation into
components that are implemented by different members of the development team.
Mixins simplify the implementation of DrScheme’s graphical user interface by encap-
sulating behavioral extensions to graphical objects.

MzScheme’s core unit and class constructs are described in Chapter 2. Section 5.1
of this chapter describes MzScheme’s system for named import and export signa-
tures, which makes units practical for large programs like DrScheme. Section 5.2
discusses MzScheme-style mixins, which approximate MIXEDJAVA mixins through
classes as first-class values. Section 5.3 describes specific uses of units and mixins

within DrScheme’s implementation.

5.1 Units with Signatures in MzScheme

The MzScheme unit forms described in Chapter 2 provide no support for managing
groups of exported variables, which makes those forms impractical for implementing
realistic components. For example, a typical component in DrScheme exports ten to
twenty variables; repeatedly listing all of the exports of a unit—at its definition, at
every import site, and at every linking site—is too unwieldy.

To support practical programming with units, MzScheme provides the following

additional constructs:

e a define-signature form for defining a signature, which is a named collection

of variables,

e a unit/sig form for defining a unit with exports and imports that match spec-

ified signatures, and

98

e a compound-unit/sig form for linking together units with signature informa-

tion.

MzScheme implements these forms by elaborating them to the basic unit forms. For
example
define-signature INFO (make-info info-num))
define-signature FRROR (signal-error))
define-signature DB (new insert delete))
define db (unit/sig DB

(import INFO ERROR)

(define new ---)

P Ny

elaborates to

(define db (make-signed-unit
(unit
(import make-info info-num error)
(export insert delete)
(define new ---)
"((make-info info-num) (signal-error))

"(new insert delete)))

The make-signed-unit primitive creates a record that encapsulates a unit along with
signature information for its imports and exports. The compound-unit/sig form

uses the signature information in a signed unit to validate linking.

5.2 Mixins in MzScheme

MzScheme provides mixins via first-class classes and a class form that may appear in
any expression position. Thus, a class expression within a lambda or unit expression
is effectively a mixin if its superclass is determined by the argument of a procedure or

an imported variable of a unit. For example, the following expression defines a mixin

99

that extends any class by adding set-name and get-name methods:

(define name-mizin
(lambda (superclass)
(class superclass args
(private [name “no name”])
(public
[set-name (lambda (n) (set! name n))]

[get-name (lambda () name)))
(sequence (apply super-init args)))))

MzScheme’s approach to mixins differs slightly from MIXEDJAVA:

e Unlike a mixin declaration in MIXEDJAVA, the formal argument superclass in
the above expression has no associated interface. In MIXEDJAVA, the presence
or absence of a method name in the formal argument’s interface determines
whether a method declared in the mixin is a new method or an overriding
method. In MzScheme, the public and override clause keywords make this

distinction.

o MIXEDJAVA permits mixins that extend a class with a new method having
the same name as an existing method, because compile-time types and run-
time views can disambiguate method calls as necessary. In contrast, MzScheme
signals an error if a mixin declares a public instance variable that already exists

in the superclass.

The second difference represents a significant compromise in our implementation of
mixins. Nevertheless, the weaker form of mixins provided by MzScheme has proven

powerful as a tool for implementing DrScheme.

5.3 Units and Mixins in DrScheme

The unit structure of DrScheme (version 53) is shown in Figure 5.1. Each empty
box in the figure corresponds to a unit/sig instance, and each box-containing box
corresponds to a compound-unit/sig instance. One box represents the graphical
toolbox component, another implements the debugger component, etc. Each member

of the DrScheme development team is responsible for a certain set of components.

100

]] =]] =]
]] =]] =]
O ol|ooa
m] m] m] =] ooag
ooag
O o o oooo o o o
[E | 0 oOoog ooooo
OO 0O O0Oooo o o ooooo
0O 0D oo O oogoo pDoooo
0 OO0(g|lo O 0 0OOoog 00g
o g Doooo|([ooooo|([coooo
O DoOO0o0O||[ooooo||[oooon
‘:' [] o Y | o e
ooog ooog oog

Figure 5.1 : Unit structure of DrScheme version 53

The compound unit of the form

stands out in Figure 5.1, because it is instantiated four times. It represents a syntax-
handling component, which DrScheme instantiates four times to implement four dif-
ferent programming languages (used for students at four different levels).

Figure 5.2 shows DrScheme’s unit structure with linking lines. Each line repre-
sents an imported or exported signature. With all lines drawn at once, the linking
specification is overwhelmingly complex. As illustrated in Figure 5.3, however, the
linking specification at a particular point in the linking hierarchy is far easier to
understand.

DrScheme relies on dynamically-linked units to support “third-party” extensions
to the environment. For example, installing the optional MrSpidey [25] static debug-
ger extends DrScheme’s interface with an Analyze button. When the user clicks this
button, DrScheme dynamically loads the MrSpidey implementation and links it into
the running environment.

The implementation of DrScheme’s graphical interface uses mixins extensively
to encapsulate small behavioral extensions of graphical objects. For example, a
search-frame mixin extends any editor frame with an interactive search control, and
a scheme-text mixin adds parenthesis-highlighting to any text-editing buffer. By
using mixins instead of classes, a DrScheme programmer can mix-and-match GUI

extensions when defining graphical objects.

101

I 0 TS A
i - NN ZT i
— =] SR
=
[m]

Figure 5.2 : Unit structure of DrScheme with linking

Figure 5.3 : Local unit structure in DrScheme

102

Chapter 6

Related Work on Software Components

Mecllroy [59] first crystallized the idea of software components produced by a software-
components industry. More recently, Weide et al. [83] and Szyperski [79, 80] substan-
tiate the need to base reusable components on compiled code rather than source
code. Szyperski [79] further points out that reuse of compiled components requires a
“late linking mechanism” for connecting them, which is the thesis that we refine and
explore in this dissertation.

Much of the existing literature on reuse fails to distinguish between the reuse
of source code and the reuse of semantic abstractions that can be separately com-
piled. The distinction is crucial to our view of components, and Krishnamurthi and
Felleisen [47] provide a foundation for formalizing the distinction. Some research in
software engineering recognizes the distinction, but nevertheless relies on source-code
reuse, due to a lack of language support; see, for example, Hollingsworth’s disserta-
tion [36], which relies on uncompilable generics in Ada for implementing components.

Programming-languages research on reuse concentrates mostly on modules or
object-oriented programming. We review work concerning modules in Section 3.6
and object-oriented programming in Sections 4.1.5 and 4.3.6. Much of the research
bringing together modules and classes focuses on unifying the constructs within a
single model. Lee and Friedman [50, 51] investigate languages that work directly
on variables and bindings, which provides a theoretical foundation for implementing
both modules and classes. Similarly, Jagannathan [39] and Miller and Rozas [61]
propose first-class environments as a common mechanism. Bracha [7] explores mixins
for both modular and object-oriented programming; Ancona and Zucca [5] provide a
categorical treatment of this view. Our work is complementary to all of the above
work, because we concentrate on the principles behind designing constructs for use
by programmers, rather than the method used to implement those constructs.

Other research on programming language support for reuse includes the following:

o Design patterns [29] provide programmers with implementation techniques for

103

creating specific kinds of reusable components within existing programming
languages. Patterns help an individual programmer to design a components,
and they can help other programmers understand the resulting code. Since the
patterns are not part of the language, however, each programmer is responsible
for maintaining or understanding a particular coding discipline. Krishnamurthi

et al. [46] explore technology for migrating patterns to language constructs.

e Smaragdakis and Batory [75] investigate the implementation of mixin layers for
applying a family of cooperating mixins en masse to a family of classes. Mixin
layers scale the mixin approach for components to larger systems. Smaragdakis
and Batory rely on C++ templates to implement both mixins and mixin layers,
but units provide a better framework for implementing mixins layers, because

they support separate compilation and more flexible linking mechanisms.

e Mezini and Lieberherr’s adaptive plug-and-play components [60] provide a more
general alternative to mixin layers. Mezini and Lieberherr’s language for com-
ponents separates the specification of class connections from the definitions of
the classes (or class extensions), which permits abstraction with respect to the
structural details of the classes. Their language thus follows the principle of

external connections.

o Kiczales’s Aspect-Oriented programming [44] addresses the implementation of
“cross-cutting functionality” that is not easily or efficiently expressed within a
single module. An aspect represents a particular cross-cutting feature. Fach
aspect is combined with other aspects and a core program to implement a
complete program. Aspect combination depends an aspect weaver, which op-
erates on the source code of aspects. Since aspect weaving operates on source
code, which can interfere with protection and interface control between mod-
ules, more work is necessary to determine how aspect-oriented programming

integrates with component-based development.

In present software practice, COM [72], CORBA [64], and JavaBeans [40] define
the standards for component programming. These standards, however, merely define
low-level wiring conventions. They do not provide a language for specifying how

components are linked together, and they do not support verification that components

104

are linked properly before executing the program. Our model of units as components

addresses both of these problems.

105

Chapter 7

Limitations and Future Work

7.1 Combining Typed Units and Mixins

We defined typed models for both units and mixins, but only separately, whereas the
example in Section 2 relies on both constructs in a single language. We anticipated a
typed version of the example by including is-a? safety tests in the examples, and by
showing how the Shape and BB-Shape interfaces are linked to clients to enable those
tests. Nevertheless, certain challenges remain for bringing mixins and units together
in a typed model. For mixins, the type rules in Chapter 4 assume a complete program
and a single namespace for mixin names. For units, the typed language in Chapter 3
does not express the kind of type relationships necessary for importing and exporting
interface types (e.g., importing types A and B where A must be a subtype of B).
Others have explored a similar combination of classes and modules in a typed
setting. The module systems in Objective Caml [55, 69] and OML [70] support
externally specified connections, and since a class can be defined within a module,
these languages also provide a simplistic form of mixins. These modules and mixins
do not allow the operation extension demonstrated in Section 2.2 because an imported
class must match the expected type exactly—no extra methods are allowed. In our
example, PICTURE is initially linked to the Rectangle class and later linked to BB-
Rectangle; since the latter has more methods, neither Objective Caml nor OML would

allow PICTURE to be reused in this way.

7.2 Units and Mixins for Other Languages

Since MzScheme is a dynamically typed language, we have no experience using or
implementing typed versions of units or mixins. Glew and Morrisett [30] report on
a typed language that resembles units in the way that it type-checks modules and
linking, but the linking language relies on a flat namespace, and it implicitly links

import to exports by matching names (similar to the linking of .o files).

106

As explained in Section 3.4, our current unit language trades programming conve-
nience for reuse power. While this trade-off makes sense for a large application such
as DrScheme, we need a more convenient language for expressing small programs,
without losing the upgrade path that transforms small programs into reusable com-
ponents. Such a language might take the form of a first-order language for defining
and linking modules that elaborates to the more general unit language.

Finally, since COM, CORBA, and JavaBeans define components in pratice, future
work must explore how to define a unit language as an extension of these industry

standards.

107

Appendix A

MzScheme Class and Interface Syntax

A.1 Classes

The shape of a MzScheme class declaration is:!

(class™ superclass-expr (interface-expr ---) (init-variable - --)

instance-variable-clause ---)

The expression superclass-expr determines the superclass for the new class, and the
interface-exprs specify the interfaces implemented by the class. The init-variables
receive instance-specific initialization values when the class is instantiated (like the
arguments supplied with new in Java). Finally, the instance-variable-clauses define
the instance variables of the class, plus expressions to be evaluated for each instance.
For example, a public clause declares public instance variables and methods, and a
private clause declares private instance variables and methods.

Consider the definition

(define Rectangle
(class* object% (Shape) (width height)
(public
[draw (lambda (window z y) ---)])))

It introduces the base class Rectangle, which is derived from the built-in primitive
class object%. The (Shape) specification indicates that the class implements the
Shape interface, and the (width height) part indicates that two initialization arguments
are consumed for initializing an instance. There is one instance-variable-clause that
defines a public method: draw.

MzScheme’s object system does not distinguish between instance variables and

methods. Instead, procedure-valued instance variables act like methods. The draw

1Centered ellipses indicate repeated patterns.

108

declaration in Rectangle defines an instance variable, and (lambda (window = y) .. .)
is its initial value expression, evaluated once per instance. When draw is called as the
method of some object, draw may refer to the object via this. In most object-oriented
languages, this is passed in as an implicit argument to a method; in MzScheme, this
is part of the environment for evaluating initialization expression, so each “method”
in an object is a closure containing the correct value of this.?

An instance of Rectangle is created using the make-object primitive. Along with the
class to instantiate, make-object takes any initialization arguments that are expected
for the class. In the case of Rectangle, two initialization arguments specify the size of

the shape:
(define rect (make-object Rectangle 50 100))

The value of an instance variable is extracted from an object using ivar. The following
expression calls the draw “method” of rect by extracting the value of draw and

applying it as a procedure:
((ivar rect draw) window 0 0)

Since method calls of this form are common, MzScheme provides a send macro.

The following send expression is equivalent to the above ivar expression:

(send rect draw window 0 0)

A.2 Interfaces

An interface is declared in MzScheme using the interface form:

(interface (superinterface-expr ---)

variable ---)

2MzScheme’s approach to methods avoids duplicating the functionality of procedures with meth-
ods. This orthogonal design, however, incurs a substantial cost in practice because each object record
must provide a slot for every method in the class, and a closure is created for each method per ob-
ject. Adding true methods to the object system, like methods in most object-oriented languages,
would improve the run-time performance of the object system and would not affect the essence of

our presentation.

109

The superinterface-exprs specify all of the superinterfaces for the new interface, and
the variables are the instance variables required by the interface (in addition to vari-

ables declared by the superinterfaces). For example, the definition
(define Shape (interface () draw))

creates an interface named Shape with one variable: draw. FEvery class that imple-

ments Shape must declare a draw instance variable. The definition
(define BB-Shape (interface (Shape) bounding-boz))

creates an interface named BB-Shape with two variables: draw and bounding-box.
Since Shape is the superinterface of BB-Shape, every class that implements BB-Shape
also implements Shape.

A class implements an interface only when it specifically declares the implemen-

3

tation by “name” (as in Java).” Thus, the Rectangle class in the previous section

implements only the Shape interface.

A.3 Derived Classes

The definition

(define BB-Rectangle
(class® Rectangle (BB-Shape) (width height)
(public [bounding-box ---])
(sequence (super-init width height))))

derives a BB-Rectangle class that implements BB-Shape. The draw method, required
to implement BB-Shape, is inherited from Rectangle.

The BB-Rectangle class declares the new bounding-boxr method. It also includes a
sequence clause that calls super-init. A sequence clause specifies expressions to be
evaluated for a newly-created instance of the class. The sequence clause is commonly
used to call the special super-init procedure, which initializes the part of the instance
defined by the superclass (like calling super in a Java constructor); a derived class
must call super-init exactly once for every instance. In the case of BB-Rectangle,

calling super-init performs Rectangle’s initialization for the instance. BB-Rectangle

3Gince interfaces are first-class values in MzScheme, classes implement interfaces by value.

110

consumes two arguments and supplies them to super-init, because the Rectangle class

consumes two initialization arguments.

111

Appendix B

UNIT. Proofs

B.1 Proof of Subject Reduction

Lemma 3.5.2 (Subject Reduction) If T-e —— T'- € and |T| b e: 1, then
T F e :7hand 7y < 7.

Proof. The proof is by induction on the structure of e. The lemma holds for the

base case, ¢ = v, since there is no ¢’ such that 7-¢e¢ —— 7' €.

Case ¢ = e ; es.

By seqt, |[T| F e : 7 for some 7 and |T| b €3 : 79. There are two subcases:

Case ¢ = v ; es.

Byseq’, ¢ = eyand T’ = T. Since e’ = ey, |T'| F € : 7.

Case ¢ = ¢ ; ey whereT - e — T'-€,s0¢e = €] ; e.
By induction, |T'| F €} : 7/ for some 7/. By Lemma B.3.7 (Store Growth)
and Lemma B.3.4 (Environment Extension), |7’| F ey : 9. Therefore, by

seq” again, |[T'| F € : 7.

Case ¢ = ¢, as T.
By generalizet, 7 = 75 and |T| F ey : 7/ for some 7, < 79. There are two
y ¢ 0 0 X
subcases:
Case ¢ — vasr.

By generalizel’, ¢ = vand 7' = T. Thus, |T'| F € : 7).

Case ¢ = e¢jas 7 where T - ¢y — T'-¢€|,s0¢ = €| asrT.
By induction, |T’| & €} : 7/ for some 7' < 7). By the transitivity of <,

7" < 15 (where 7y = 7). Therefore, by generalize! again, [T'| F €' : 7.

112

Case ¢ = ¢ e3.
By appE, ITI|F er:7 — 19and [T| F ey : 7 for some 7 where 7, < 7.

There are two possibilities for e;:

Case ¢; = v;.

We must consider the two cases for ey:

Case ¢e¢; = v,.

We must consider the possible shapes for v;. By Lemma B.3.8 (Value

Types), v1 can be a primitive operation or a procedure:

Case vy = projl(t) where 7(t) = (n,7),s07 = tand 7, = 7.
Since vy’s type is a subtype of ¢, it must be exactly ¢. According
to Lemma B.3.8 (Value Types), a value of type ¢ has one of the
following shapes:

Case v, = injl{t)vy where |[T| F v3: 7jand 77 < .
By projl?, 7' = T and ¢ = w3, 50 [T'| F € : 7.

Case vy = injr(t)vs.
By projl-failZ*, 7 - e —— T - variant error; there is no €’ such
that T-e — T'- €.

Case vy = projr(t) where T(t) = (n,7),so7 = tand 79 = 7.
Analogous to previous case.

Case vy = test(t) where T(t) = (n,7),s07 = tand 79 = bool.
Since vy’s type is a subtype of ¢, it must be exactly . A value of
type t has one of the following shapes:

Case vy = injl{t)vs where [T| b vs: 7.

By test-true”, 7' = 7T and ¢ = true, which has type bool.
Case vy = injr(t)vs where |T| F vs : 7.

By test-false.”, 7/ = 7T and ¢’ = true, which has type bool.

Case vy = fnxz:7 = ¢o where |T|[z:7] F e : .

By app.’, 7' = T and € = [vz/x]es. By Lemma B.3.3 (Substi-

tution), |T| F [v2/x]eq : 7y where 75 < 7.

Case T ey — T'-eyand ¢ = vy €.

113

By induction, |T’| F €, : 75 where 7, < 75. By Lemma B.3.7 (Store
Growth) and Lemma B.3.4 (Environment Extension), |7'| F vy : 7 —
To. Since 75 < 7, 74 < T by the transitivity of <. Thus, by app",
T F € : .
Case 7 e — T'-ejand ¢ = €] es.

By induction, |T’| & €] : 7{ where 7{ < 7 — 75. By Lemma B.3.7 (Store

Growth) and Lemma B.3.4 (Environment Extension), |[T’| F ez : 7. Since

7/ is a subtype of 7 — 79, 7/ must be a function type 7' — 7/ where

7 < 7'and 7 < 7. By . < 7 and the transitivity of <, m» < 7.
Thus, by app®, |T'| F ¢ : 7 (where 75 < 7).

Case e = letrec type ¢ = zq, a7 | Tery Tar v © Ty .
valz, : 7 = v
in €p
The letrect rule ensures that £ N dom(7) = (. By letrec-types”, 7' =
Tt (n,7)] and ¢ = S(letrec val z, : 7 = v in ¢;) where S is a replace-

ment on Ty, Tdi, Ters Tdr, and Ty.

Let T' = |T|. Asin letrect, let I" = T[t::Q] and let T be the extension of "
with types for Zg, -+ 7. Since I' F e : 79, by letrect we have I Ko : 7 and
'+ ey 7.

Since S replaces only variables, S(I'"") F S(v) : 7 and S(I"”) F S(ep) : 7o.
Furthermore, S(I') = |T7|:

e The difference between 7' and T is f, which means that |77| extends |T|
with type bindings ¢:Q and injl{t) : 7 — ¢, -+ test(t) : ¢ — bool.

e By construction, I' adds ¢::Q and @ : 7y — ¢, -+ 2y : 1t — bool to I
e S replaces the variables z, ---, @ with the variables injl(t), --- test(t).
By using the I'" = |T’| equivalence and combining judgements with letrec!,
we obtain |T’| F S(letrecval z, : 7 = vin) : 0. Thus, [T'| F € : 7.
Case e = letrecval z, : 7 = v in €.
By letrec.’, 7' = T and ¢ = [letrecval x, : 7 = v in v/z,]e;. The deriva-

tion for |T| F letrec val z, : 7 = v in ¢, : 75 proves in intermediate steps

114

that |T|[#,77] kv : 7. Then, using letrect, we can synthesize the judgement

|7| Kletrec val z, : 7 = v in v : 7. Thus, according to Lemma B.3.3 (Sub-

stitution), |T'| F €' : 75 where 75 < .

Case e = invoke ¢, with s = ::Q) « ocy7T + €.
The interesting case is where ¢, = v, and €/ = v, so we consider that case
first.

By invokel, |T| F e, : 7, |[T| F & : 7, and 7, is a signature such that 7, <

sig import s = t::Q) y:7 export } > 7, where [o/t]T, = 7.
Since v,’s type is the signature 7,, by Lemma B.3.8 (Value Types) v, must be

a unit of the form

unit import s; = ;:Q 7 = ;777
export s. = t.:Q yo = w72

> Ty

type ty = xd, Tda T | Tery Tde T © Ty
val z, : 7, = v,

e

where s, =1, C s=t vy, =2; C y=a, 7 < 7 for each y;, and the type

assigned to e, within the unit is 7{ where 7/ < 7.

By invoke, 7 - e + T - [0/t,v/z]e; where

e, = letrectypety = zq, Tai 711 | Tery Tar Tr © Ty
valz, : 7, = v,
In e, as 7.

The expression ¢; can be typed in an environment |7 |[¢;:Q), 7;:7;] because v,
types in |T|. To verify this, we check each antecedent in the letrec” rule applied
to e; with |T|[t::Q, z;i7] and show that it corresponds to an antecedent in the

unit" rule applied to v, with |T]| (which is already proved, by assumption):

e Distinct variable names, and not in dom(T"): The unit” antecedents include

all of the names in the |etrec£ antecedents.

e 7, 7, and 7, validations: The unitE definition of I adds both ¢; and #; to
', while the letrect definition of I adds only 7;. But the letrect rule is
applied with | T|[t;:Q, 7;77;] instead of | T, so the final I in letrec” and unit®

have the same type variable bindings. The extra value variable bindings

115

[7;775) in 7 for letrect cannot affect the validation of type expressions by

Lemma B.3.4 (Environment Extension).

e 7, typings: As above, I' in both unit. and letrec! contain the same bind-
ings, because letrec” is applied with |T|[¢;:Q, z;:75]. Thus, the antecedents
in unitt imply the ones in letrec!.

e ¢, as 7, typing: In unit?, T” F ¢, : 7 for some 7{ where 7{ < 7. Since I'”
is the same in unit. and letrect, I + ¢, as 7, : 7, in letrect.

o FTV(m) Nty = () check: The FTV(m) N #; = O check in unitt implies
the equivalent check in letrec’.

Thus, |T|[t:Q, 777 b e @ 7. By Lemma B.3.5 (Stable Typing), we have
[o/t](|T|[ziw]) F [o/tder : [o/tim. Then, using Lemma B.3.3 (Substitu-
tion), [o/L](|T|) & [o/ti,v/xile; : [o/t:]my, which is equivalent to the judgement
[o/t](|T]) F € : 7, where) = [o/t]m. Since unit] ensures #; N dom(|T]) = 0,
| T|F € 7.

Finally, since 7y = [T/t]rb = 1, T e — T'-€eforT" = T and

|T'| & € : 7 where 7§ < 7.

To complete the invoke case for e, we must consider all possibilities for e,:

Case ¢, = v.

We must consider the three cases for each e;:

Case ¢; is a value for each 1.

Covered above.

Case T - ¢; — T'- €l for the first e; that is not a v.
By induction, |T'| F e : 7/ where 7/ < 7. Substituting €} for ¢; in e
produces ¢’. Using Lemma B.3.1 (Replacement), Lemma B.3.7 (Store
Growth), and Lemma B.3.4 (Environment Extension), |T'| F ¢ : 7}

and 7§ < 7.

Case T - e, — T'- €, where.

By induction, |T'| + € : 7/ where 7/

< 7,. Substituting €, for e, in
e produces €¢'. Using Lemma B.3.1 (Replacement), Lemma B.3.7 (Store
Growth), and Lemma B.3.4 (Environment Extension), |T’| F € : 7§ and

To S T0-

116

Case e = compound
import s; = ;20 gy
export s, = (.0 yooro
> Ty
link e; with s,,; = 19 g Tor
provides s,; = ,1:Q yrTT
and e, with s, = 1,,9::Q Yoz Tug
provides s, = 1,210 Y2773
The interesting case is where ¢; = vy and e; = v, and compound_” applies,
so we consider that case first.

'_
c

By compound, v; has a signature type, so by Lemma B.3.8 (Value Types) it

must be a unit of the form

unit import s;; = ;10 yg =70
export s.; = (.12 yag =TT

> Ty

type ls1 = Zai, Tdn T |=’1?cr1, Tdr1 Tr1 © Tt
val z,1 1 To1 = vyt

€p1

and vy is similarly a unit. The definitions and initialization expressions of vy

and vy are merged to form a new unit, vs, of the form

unit import s; = {;:Q0 yy =777
export s, = t.:Q o =77

> Ty

type ty = xd, Tda T | Tery Tde T © Ty
val z, : 7, = v,

e

We show that the new unit has the signature type 7o by inspecting the type
proofs for vy, vy and e, matching antecedents in those proofs to the needed

antecedents for va. Let I' = |T| = |T'].

e Distinct variable names: The antecedents in the proofs for v; and vy com-
bined with the distinctness requirement for applying compund?” imply the

distinctness requirement for vs.

e Exports are a subset of definitions: The exports of v3 are the same as the
exports in the compound expression e. The proof for e requires that the
exports are a subset of the exports from vy and vy, and the proofs for v,

and vy require that a definition is provided for each export. Since all of

117

the definitions from vy and vy are in vs, every exported variable for vs is
defined in vs. Furthermore, the subtyping requirements in compound! (for
propagating exports) and unit? (for exports) ensure that the declaration
type for each exported value is a subtype of the export type, using the
transitivity of <.

Signature type is valid: The signature for vs is the same as the signature

of e, so the signature is valid by assumption.

Type expressions 7j, --- are valid: The 7j, --- expressions in vz are the
combined type expressions 7y, - -+ and 73, ---. For vy, the type expressions
7y, -+ are validated in an environment I} = T[t;1::Q,14::Q]. For va,

the same type expressions must be validated in the environment I =
D[t tg1::0, 142::Q). But I includes all of the type bindings of '}, since
t;1 must be a subset of #; U #4,] by compound_”. Although I may contain

additional type variables, they cannot affect the validation of 7y, --- by
Lemma B.3.4 (Environment Extension). By a similar argument, the type

expressions 7y, - -+ can be validated in vs.

Expression types, I'Y kv, : 7,: The v, expressions in v3 are the combined
expressions v,; and v,3. The argument for typing v, in v3 is similar to the
argument above for validating the type expressions, but the environment
[is not merely a superset of I'{ or I'). T” contains at least as many
variable bindings as I'], but for each variable in I'}, its type binding in
[is a subtype of the one in T'{. The subtyping is possible according
to the compound! rule, which allows a subtype relationship between the
types 7;1 expected by vy and the types 7.3 provided by v, (or the types 7;
imported by €). As a result, by Lemma B.3.2 (Environment Replacement),
if I = oy 7!, for vy, I = Ty 7/ in w3 where 7/ < 7/,. This subtyping
relationship is sufficient for validating vz, which requires the subsumption

relation IV Ko, : 7.

Initialization expression type, I' K e, : 7: By compound?”, e, = e ; €po.
The type of e, is thus the type of ey, in the environment I'’. By the same
argument as for the v, expressions, if ey has type 7, in '}, it has some
type 7f in I such that 7/ < 7/,. By assumption, 7/, < 75, and by

compoundt 1y < 7,50 7 < 7 by transitivity.

118

e FTV(m) N t; = 0 check: By compound!, 7, must be well-formed in
I' extended with ¢;, so FTV(7m) C (dom(I') U). Type-checking for
v1 and vy ensures that (f41 U f45) N dom(7) = @, and compound’

applies only when (f4 U #42) N ¢ = (. Sincety = {51 U {42, we have
FTV(n) 0 15 = 0.

Thus, all of the antecedents hold; v3 must have the signature 7y because it has

the same imports, exports, and declared initialization type as e.

To complete the compound case for e, we must consider the remaining possi-

bilities for eq:

Case ¢; = v;.
Case ¢e¢; = v,.
Covered above.

Case T - ey — T'- €.
By induction, [T'| F €} : 75 where 7, < 75. Substituting €/, for e5 in e
produces ¢’. Using Lemma B.3.1 (Replacement), Lemma B.3.7 (Store
Growth), and Lemma B.3.4 (Environment Extension), |T'| F ¢ : 7§
and 7 < 7.

Case T e — T'- €.

By induction, |T’| F ¢} : 7{ where 7/ < 7. Substituting e} for e; in

e produces €¢’. Using Lemma B.3.1 (Replacement), Lemma B.3.7 (Store

Growth), and Lemma B.3.4 (Environment Extension), |T’| F €' : 7} and

To S T0- a

B.2 Proof of Progress

Lemma 3.5.3 (Progress) If |T| F e: o, then either:
1. ¢ = v for some v;
2. T - e —— T - variant error; or

3. T e — T € for some T’ and €.

119

Proof. The proof is by induction on the structure of e. The lemma holds for the
base case where e is a value. We consider all other expression forms and show that a

reduction step exists.

Case ¢ = e ; es.

By induction, there are three possibilities for e;:

Case e; = v for some v.

By seq’, 7' = T and ¢/ = ey.

Case T - ¢ — 7T - variant error.

By variant”, a variant error replaces the entire context of the erroneous

subexpression. Thus, 7 - ¢ — 7T - variant error.

Case T e — T €.

! !,
e = e ; e

Case ¢ = ¢, as T.

By induction, there are three possibilities for e;:

Case e; = v for some v.
By generalize”, 7' = T and ¢/ = e;.
Case T - ¢ — 7T - variant error.

By variant’, 7 - ¢ —— 7T - variant error.

Case T e — T €.

¢ = ¢ asT.

Case ¢ = ¢ e3.
By appt, ITI|F er:7 — 19and [T| F ey : 7 for some 7 where 7, < 7.

By induction, there are three possibilities for e;:

Case ¢; = v;.

We must consider the three cases for ej:

120

Case ¢e¢; = v,.
The shape analysis proceeds as for Lemma 3.5.2 (Subject Reduction).
For certain cases, such as vy = projl(mo,7) and vy = injr(7o, 74)vs,
T - e = T - variant error, and for other cases, 7 - ¢ = T'- ¢ for

some T’ and €.

Case T - e — 7T - variant error.
By variant”, 7 - ¢ — 7T - variant error.

Case T ey — T'- él.

e = vy €.

Case T - ¢ — 7T - variant error.

By variant’, 7 - ¢ —— 7T - variant error.

Case T e — T €.

!/

e = € es.
Case e = letrec typet = xq, Tq 71 | Tery Tar v © T -
valz, : 7 = v,
in €p
By letrect, ¥ N dom(|7|) = . Since dom(|T]) and dom(7) contain the
same types, { N dom(7) = . Thus, letrec-types.” applies, and T - ¢
T'- S(letrecval z, : 7 = v, in ¢).
Case e = letrecval z, : 7 = v, In e.
By letrec?, T - e — T - [letrecval o, : 7 = v, in v,/z,]ep.
Case e = invoke ¢, with s:0 = o 77 = €.
If e, = v, and & = v, then the invoke” rule defines €¢’: by invokeE, v, has

a signature type, so by Lemma B.3.8 (Value Types) v, must be a unit of the

form

unit import s; = ;:Q y; = x;7;
export s. = t.:Q yo = w72

> Ty
type ty = xd, Tda T | Tery Tde T O Ty
val z, : 7, = v,

€p

121

where s;, =¢;, C s=1t andy; C y. We can choose 7 so that y;, =7, C y=7.

Thus, invoke_” defines 7’ and ¢’ when ¢, = v, and & = v;.

To complete the invoke case for e, we must consider all possibilities for e,:

Case ¢, = v.

We must consider the three cases for each e;:

Case ¢; = v for each e;.

Covered above.

Case T - ¢; — 7T - variant error for the first e; that is not a v.
By variant”, 7 - ¢ — 7T - variant error.

Case T e — T'- €.

Substituting €. for e; in e produces an ¢’ such that T - e — T’ €.

Case T - e, — 7T - variant error.
By variant”, 7 - ¢ —— T - variant error.
Case T'- e, —> T'- € and |T'| F €, : 7/ where 7/ < 7,.

Substituting €/, for e, in e produces an ¢’ such that 7-e — T'- €.

Case e = compound

import s; = {;:Q0 y; =777
export s, = t.:Q ygo =772
> Ty
link e; with £,1::Q T, 707
provides #,,::Q) T,7,r
and e, with 7,25 Tua 703
provides #,,::Q) T,377,3
If e, = vy and ey = vy, then the compound”” rule applies: by compound.
and Lemma B.3.8 (Value Types), v; and vy must be units with import and ex-
port specifications that match the compound expression’s with and provides

clauses. We can a-rename v; and vy to avoid name clashes as required for

compound_”. Thus, compound_” defines 7" and ¢ when ¢; = vy and e; = v,.

To complete the compound case for e, we must consider all possibilities for e;:

Case ¢; = v;.

122

Case ¢e¢; = v,.

Covered above.

Case T - e — 7T - variant error.
By variant*, 7 - ¢ —— 7T - variant error.

Case T ey — T'-éyand |T'| F € : 75 where 75 < 7.

Substituting €, for e; in e produces an €’ such that T,e — T’ €.

Case T - ¢ — 7T - variant error.
By variant?, 7 - ¢ —— T - variant error.
Case T e —> T'- ey and |[T'| F €] : 7{ where 7/ < 7.

Substituting €/ for e; in e produces an €’ such that 7-e — 7'-¢. O

B.3 Supporting Lemmata

Lemma B.3.1 (Replacement) If ' - Cle]: 7 using " = e: ., and if I F €' : 7!
where 71 < 7., then I' b Cle/] : 7" and 7" < 7.

Proof. The proof is by induction on the size of the context C'. We partition '
into C1[Cy], where Cy is a context of depth one. Since I' = Cle] : 7, I' = C1[Csle]] = 7,
and therefore I = Cyle] : 79 for some I and 79. We consider the possible shapes
of Cy to show that T + Csle] @ 75 where 7] < 79, which implies the lemma by

induction.

Case (y; = fnz:m = [].

By lambdal, 7, = 7 — 7. and 7, = 7 — 7/. By the definition of < on

function types, 75 < .

Case (3 = [] es.
By appt, I F ey : mpand 7. = 75 — 715 where , < 75 Similarly,
! = 71 — 7} for some 75/ and 7{. By assumption, 7! < 7,807 < 7. The

transitivity of < means that 7, < 74/ so [F Cyles] : 74 by appt. Furthermore,

: / /
since 7, < T, Ty < To.

Case (3 = ey [].

123

The appt rule explicitly allows subsumption for the operand expression, so the

type of Cyle] and Cyfe] is the same in I'. In other words, 75 = 7.

Case (; = []as .

The generalize” rule explicitly allows subsumption the expression, so 7, = 7.
Case (3 = []; es.
The type of Cs[e] is determined only by es, which is the same in Cy[e] and Cye’].
Thus, 7§ = 0.
Case (3 = ¢1;]].
The type of Cyeg] is the type of eg, so 7o = 7. and 75 = 7.. By assumption,

/ /
7. < T, 80T < To.

Case (; = letrec...valz,:7, = []...in ¢.
The letrect rule explicitly allows subsumption for val expressions, so 7 = 7.
Case (3 = letrec ... in [].

The type of Cyeo] is the type of eg, so 75 < 7o (analogous to the sequence
case).

Case (; = invoke []

By invoke!, 7. must be a signature containing an initialization expression type

7. Since 77 < 7., 7. must also be a signature with fewer (or the same) imports
and an initialization expression type 7{ where 7/ < 7,. By invoke!, 7o = [o/t],

and 7§ = [o/t]7;, and by Lemma B.3.6 (Type Substitution), 7j < 7.
Case (', = invoke ¢, ... y:7; « [] ...

The invokel rule explicitly allows subsumption for imported expressions, so

T = To.
Case unit ... valz, : 7, = [] ... &.
The unitt rule explicitly allows subsumption for val expressions, so 7, = 0.

Case unit ... [].

124

By unitt, 75 is a signature type containing an initialization expression type 7..
Similarly, 7§ is a signature type with the same imports and exports, but the
initialization expression type 7.. Since 7/ < 7., 75 < 79 by < for signatures.
Case compound ... link [] ... and e,
The compound’. rule effectively allows subsumption for the first unit expression
in compound, so 7} = 7.
Case compound ... link ¢; ... and []
Same as he previous case. 0O

Lemma B.3.2 (Environment Replacement) If T'[z:7] F ¢ : 7 and 7' < 7,

then Tzl F e: 7l and 7} < 7.

Proof. Instead of replacing 7 by 7" in ['[Z:7], we could extend the environment

with bindings for fresh variables x,:7/, then replace ¥ with #,. By Lemma B.3.1

(Replacement), I'[z:7, x,:7'] F [2,/x]e : 75 where 75 < 75. Because no z is free in

7_/
[vn/2]e, Tx,:r'] B [vn/x]e @ 7). We can then rename T, to T everywhere to obtain

[a:r] Fe:7y. O
Lemma B.3.3 (Substitution) If T'[zi7] F e : 7 and T F vt where 7' < 7,
then T+ [v/x]e : 7, where 7, < .

Proof. For the one-variable case ¥ = {x}, apply Lemma B.3.1 (Replace-
ment) and induction on number of replacements of = in e. In applying Lemma B.3.1
(Replacement), we rely on Lemma B.3.4 (Environment Extension) and the implicit
renaming of lexical variables by substitution, since each occurrence of = appears in
a potentially extended environment I”. Having proved the lemma for one variable,
apply induction on the number of variables in T to prove the lemma for an arbitrary

X. a

Lemma B.3.4 (Environment Extension) IfI' F e: 7, ' b o = Q, and (I U
7) N dom(T) = O, then T[t:=Q, 777 F e : 70 and T[t2Q, 777 F o 2 Q.

Proof. Although some type rules depend on dom(I'), the expression being typed
may always be lexically renamed to avoid any conflicts with 7 or T without affecting

the type of the expression:

125

e letrect: Types tb defined within the letrec expression may be renamed without

affecting the type, because letrec” requires FTV () N tb = 0.

e unit": Almost like letrec”

r, except that renaming an import variable #; also im-

plies a renaming in the unit’s signature sigli, e, b]. However, the renaming
is lexical within sig[i, e, b], making the renamed signature equivalent to the

original one. O

Lemma B.3.5 (Stable Typing) If T[tzQ] F e: 7, S = [o/t], and T + & :: Q,
then S(I') + S(e) : S(7o).

Proof. In the proof tree showing I' F e : 75, we can replace each t with its
o. Each proof tree’s leaf of the form I" F ¢ :: Q is replaced with I F &, which
is provable by assumption (I may have more type bindings than I'; but the extra
bindings cannot affect the validation of o by Lemma B.3.4 (Environment Extension)).
Type equivalence judgements in the proof tree are clearly unaffected by the substitu-
tion, and Lemma B.3.6 (Type Substitution) shows that subtyping relations are also
preserved by the substitution. Thus, the new proof tree must be a valid proof of

S(T) = S(e): S(m). O

Lemma B.3.6 (Type Substitution) If 7 < 7" and S = [o/t], then S(7) <
S(r').

Proof. No typing or subtyping rule allows any comparison between disjoint type
variables, and a type variable is known only to be equivalent to itself. Thus, in the
proof tree showing 7 < 7/, replacing each ¢ with its o produces a valid proof of

S(t) < S(7), relying only on the equivalence of each o to itself. O

Lemma B.3.7 (Store Growth) If T -¢ +—— T'- ¢, then ¥Vt € dom(T),
T'(t) = T(t) and [T'|(t) = [TI(t).

Proof. The letrec-types.” reduction extends the type store, and no reduction
contracts the store, so each reduction step must preserve or extend the type store.
The environment [T includes type and variable bindings for each type in T, so

extending the type store also extends the corresponding environment. 0O

Lemma B.3.8 (Value Types) For all T and v,

126

1. If T'F vt then v is either injl(t)v’" or injr(t)v’ for some v'.

2.If T'Fwv:r — 7/, then v is either fn a:7 = ¢ for some e or injl(t), injr(t),
projl{t), projr(t), or test(t) for some t.

3. If T'F v:7 and 7 is a signature, then v is a unit expression.

Proof. The claim follows from inspecting the possible shapes of values and

matching each shape to the applicable type rules. O

127

Appendix C

CrAassicJAava Proofs

C.1 Proof of Subject Reduction

The subject reduction proof is due to Shriram Krishnamurthi.

Lemma 4.1.5 (Subject Reduction) IfPI'kk e: ¢, P,I' i, S, SUPEROK(e), and
Pt (e,S) — (¢,8"), then ¢ is an error configuration or there exists a I such that

1. PT' K € : ¢,
2. PI"H &', and
3. SUPEROK(¢€).

Proof. The proof examines reduction steps. For each case, if execution has not
halted with an error configuration, we construct the new environment I and show
that the two consequents of the theorem are satisfied relative to the new expression,

store, and environment.
Case [new]. Set IV =T [object : ¢].

1. We have P.I' ; E[new ¢] : t. From [new], object ¢ dom(S). Then, by Xs,
object ¢ dom(I'). Thus P.I" K, E[new ¢] : ¢t by Lemma C.3.1. Since P.I”
k. new ¢: cand P,I" k object : ¢, Lemma C.3.2 implies P.I" i E[object]
:_t. _ _

2. Let S’(object) = (¢, F). object is the only new element in dom(S’) and
dom(T™).
Y1t T(object) = e.
Yot dom(F) is correct by construction.
Y3t rng(F) = {null}.
Y4t Since rng(F) = {null}, this property is unaffected.

128

Y5 and Yg: The only change to I" and S is object.

3. Since E[object] contains the same super expressions as E[new ¢], and no
instance of this or object is replaced in the new expression, SUPEROK(¢')

holds.
Case [get].

1. Let t' be such that P,I' i object : ¢’ .fd : t'. If v is null, it can be typed as
t',so P.I" kx E[v] : ¢t by Lemma C.3.2. If v is not null, then by ¥4, S(v)
= (",) where ¢’ <p t'. By Lemma C.3.4, P,I" |5 E[v] : t.

2. § and I' are unchanged.

3. SUPEROK(¢') holds because no super expression is changed.
Case [set].

1. The proof is by a straightforward extension of the proof for [get].

2. The only change to the store is a field update; thus only ¥3 and ¥, are

affected. Let v be the assigned value, and assume that v is not null.

Y3t Since v is typable, it must be in dom(T"). By s, it is therefore in
dom(S).

Y4t The typing of the assignment expression demands that the type of v
can be treated as the type of the field fd by subsumption. Combining
this with ¥; indicates that the type tag of v will preserve ¥,.

3. SUPEROK(¢') holds because no super expression is changed.
Case [call].

L. From P.I' i object.md(vy, ... v,): t we know P.I' kg object : t', P.I' k5 v;
: t; for ¢ in [1,n], and (md, (t1... t, = 1), (vary, ...,vary), e,) €% t'. The
type-checking of P proves that P,y b ¢t md (4 vary, ... t, var,) {e,},
which implies that P [this : t,, vary : &, ... var, : t,] K e, : t where
to is the defining class of md. Further, we know that ¢’ <p #, from €%
for methods and CLASSMETHODSOK(P). Thus, Lemma C.3.3 shows that
P.I' i ey [object /this, v Jvar, ... v,/var,] : t.

129

2. § and I' are unchanged.

3. The reduction may introduce new super expressions into the complete
expression, but each new super must originate directly from P, which
contains super expressions with this annotations only. The [object /this]
part of the substitution may replace this in a super annotation with

object, but no other part of the substitution can affect super annotations.

Thus, SUPEROK(¢') holds.

Case [super]. The proof is essentially the same as the proof for [call].

Case [cast].
1. By assumption, S(object) = (¢,) where ¢ <p t. Since ¢ <p t, P,I' k5 object
: 1.
2. § and I' are unchanged.

3. SUPEROK(¢') holds because no super expression is changed.

Case [let].

. P,I' K let var = v in e: ¢t implies P,I' iy v : ¢’ for some type ¢’ and P,T
[var : | K e: t. By Lemma C.3.3, P,I" i e [v/var] : t.

2. § and I' are unchanged.

3. SUPEROK(¢') holds because no super expression is changed.

Case [zcast], [ncast], [nget], [nset], and [ncall]. € is an error configuration. O

C.2 Proof of Progress

Lemma 4.1.6 (Progress) IfPI'kk e: ¢, P,I' 5, S, and SUPEROK(e), then either
e is a value or there exvists an (¢ ,8') such that P+ (e,S) — (¢,5").

Proof. The proof is by analysis of the possible cases for the current redex in e

(in the case that e is not a value).

Case new c. The [new] reduction rules constructs the appropriate ¢ and S'.

130

Case v_: c .fd. If v is null, then the [nget] reduction rule applies. Otherwise, v =
object, and we show that [get] applies.
Type-checking combined with X5 implies S(object) = (¢,F) for some ¢ and F.
Type-checking also implies that (¢.fd,t) €p ¢ for some ¢ by [get]. By the
definition of €p (€% in this case), we have ¢ <p . Finally, by ¥,, ¢.fd €
dom(F).

Case v_: c .fd = v'. Similar to v_: _c .fd, either [nset] or [set] applies.

Case v.md(vy, ... v,). If vis null, then the [neall] reduction rule applies. Otherwise,
v = object, and [call] applies: type-checking combined with X5 implies S(object)
= (¢,F) for some ¢ and F, and type-checking also implies (md, T,V e,,) €% c.

Case super =uv: c (v, ... v,). By SUPEROK(¢), v must be of the form object.
Type-checking ensures (md, T,V e,,) €% c.

Case view t v. If v is null, then [ncast] applies. Otherwise, v = object, and by s,
S(object) = (¢, F) for some ¢ and F. Either [cast] or [zcast] applies, depending

on whether ¢ <p ¢.

Case let var = v € e. The [let] reduction always applies, constructing an ¢ and &’

(=S8). O

C.3 Supporting Lemmata

The supporting lemmata are due to Shriram Krishnamurthi.

Lemma C.3.1 (Free) If PT K e: t and a ¢ dom(T'), then P.T' [a: t'| ik e: t.

Proof. The claim follows by reasoning about the shape of the derivation. O

Lemma C.3.2 (Replacement) [fP,I' L E[e]: ¢, P,I' k e: t/, P,' 5 € : ', then
PTI K E[¢]: t.

Proof. The proof is a replacement argument in the derivation tree. 0O

Lemma C.3.3 (Substitution) If P,I" [var, : &, ... var, : t,| & e: t and {var,
. vary} N dom(I") =0 and P,I' k5 v = t; fori € [1,n], then P,I' i e [vy /vary, ...
v, /var,] : t.

131

Proof. Let o denote the substitution [v;/vary, ... wv,/var,], let v denote the
type environment [vary : ty, ... var, : t,], and let ¢ = o(e). The proof proceeds by
induction on the structure of the derivation showing that P,I'y kit e: {. We perform

a case analysis on the last step in the derivation.

Case ¢ = new c. Since ¢ = new ¢ and its type does not depend on I', then P,I' k5

e e

Case ¢ = var. If var ¢ dom(o), then ¢ = var and ['(var) = ¢, so PI' k ¢ : L.
Otherwise, var = var; for some ¢ € [1,n], and ¢ = o(var;) = v;. By assumption,

PIKuv:t,so PTRK¢é€:t.
Case ¢ = null. By [null], any type is derivable for null.

Case ¢ = ¢;: c.fd. By [get], P,I'y & e : ¢/ and (c.fd,t) €p t’ from some t'. By
induction, P,I' kz o(ey) : t" where " is a sub-type of ¢'. Since €p for fields is
closed over subtypes on the right-hand side, (e.fd,t) €p t"”. Thus, by [get] on
¢ =o(er):c.fd, PT kK ¢: L

Case ¢ = ¢1: ¢ .fd = e;. This case is similar to the previous case, relying on sub-

sumption for the right-hand side of an assignment as allowed by [set€].

Case ¢ = view t ¢. By [cast®], P.I'y i ¢ : ¢’ for some t'. By induction, P,I' K

o(er) : t'. Since ¢ = o(view ¢ e) = view ¢ o(e), [cast] gives P, I' i ¢ : t.

Case ¢ = let var = e; in e,. Let oy = 0 and v; = v, and lexically rename var in e
so that var ¢ dom(v;). By [let], P.I'y; k e : #. By induction, P.I' k5 o¢(e;)
: . Let 49 = [var : 4], so that P.T'yiv, bt €2 : t. Since var ¢ dom(yy), we
can reverse the order of the vy and 7, extensions to I', so P,I'yoy ke ep : . By
induction, P,I'ys k5 o1(e) : t. Finally, by [let] on ¢ = o(let var = ¢ in ¢),
PI K €:t

Case ¢ = ¢g.md (€1, ... €,). By [call], PTy kK ¢ : t; for i € [1,n] and P,I'y K
€o : 1o such that (md, (t1... t, = 1), (vary,...,var,), e,) €p . By induction,
PT K o(e) : t; for each ¢, and P,I' i o(eg) : o' where &y’ <p t5. Since €p
must preserve the type of methods over subtypes on the right-hand side (by
CLASSMETHODSOK), (md,(t; ... t, — t),(vary/, ... var,'),e,') €p t'. Thus,
by [call] on ¢ = o(eg.md (e, ... €,)), P,I' k€ : ¢

132

Case ¢ = super_=this: ¢ .md (e, ... ¢,). This case is similar to the previous

case. a

Lemma C.3.4 (Replacement with Subtyping) If P,I' ik E[e] : ¢, PT Kk e: ¢
and PT' K € : t" where t" <p t', then P,I' i E[€] : £.

)

Proof. The proof is by induction on the depth of the evaluation context E. If E is
the empty context [] we are done. Otherwise, partition E[e] = E{[Ez[€]] where E; is
a singular evaluation context, i.e., a context whose depth is one. Consider the shape

of Ez[e], which must be one of:

Case eo_: ¢ .fd. Since c is fixed, @’s type does not matter; the expression’s type is the
type of the field.

Case o_ ¢ .fd = e. Same as the previous case.

Case v_: c .fd = . Since [set] allows subsumption on the right-hand side of the

assignment, the type of the expression is the same replacing e with e or €.

Case e.md(e ...). Since t"" <p t’ and methods in an inheritance chain preserve the

return type, the type of the expression is the same replacing e with e or €.

Case v.md(v ... e e ...). Since [call®] allows subsumption on method arguments,

the type of the expression is the same replacing e with e or ¢'.
Case super =v: c.md (v ... ® ¢...). Same as the previous case.

Case view t o. Sincet is fixed, o’s type does not matter in [cast®] (our less restrictive

typing rule); the expression’s type is t.

Case let var = e in ¢,. By [let] with P.I' ky e: ¢/, P.I'vy K ey : t; for some type
ty where ~; is [var : t']. We must show that P.I'yv, k5 €5 : ; where v, = [var :
"], which follows from Lemma C.3.6. O

Definition C.3.5 ' <p I" if dom(I') = dom(I") and ¥ v € dom(I'), I"(v) <p T'(v).
Lemma C.3.6 I[f PT K e: t andl <p I’, then P,I" 5 e: L.

Proof. The proof is a straightforward adaptation of the proof for Lemma C.3.3.

133

Appendix D

MIXEDJAVA Proofs

D.1 Proof of Subject Reduction

Lemma 4.3.6 (Subject Reduction for MIXEDJAVA) If PT K e: ¢, P,I' 5 S,
SUPEROK(¢), and (e,S) — (¢,8'), then € is an error configuration or there exists I
such that

1.PT"R €:t

2. PI"H &', and

3. SUPEROK(¢€).

Proof. The proof examines reduction steps. For each case, if execution has not
halted with an answer or in an error configuration, we construct the new environment
['" and show that the two consequents of the theorem are satisfied relative to the new

expression, store, and environment.
Case [new]. Set IV =T [(object||M/m) : m].

1. We have P,I' b E[new m] : t. From Y5, object ¢ dom(S) = (object||_)
¢ dom(T'). Thus P,I" iz E[new m] : ¢ by Lemma D.3.1. Since P.I" K
new m : m and P,I" i (object||M /m) : m, Lemma D.3.2 implies P,I" K
E[(object||M /m)] : t.

2. Let S’(object) = (m,F), so object is the only new element in dom(S’) and
(object||M /m) is the only new element in dom(I").

Y1 I"((object|]|M /m)) = m and m <p m. Since m —sp M, WF(M /m).
Yot dom(F) is correct by construction.

Y3t rng(F) = {null}.

Y4t Since rng(F) = {null}, this property is unaffected.

134

Y5 and Yg: The only addition to the domains of " and S is object.

3. Since E[(object||M /m)] contains the same super expressions as E[new

m], and no instance of this or object is replaced in the new expression,

SUPEROK(¢') holds.
Case [get]. Set I" =T

L. If v is null, it can be typed as ¢, so P,I" k; E[v] : ¢ by Lemma D.3.2. If v
is not null; then by ¥4, v = (object||M/t) for some object and M. By ¥,
I'(v) = t, so by Lemma D.3.2, P.I" K E[v] : .

2. § and I' are unchanged.

3. SUPEROK(¢') holds because no super expression is changed.
Case [set]. Set [V =T.

1. The proof is by a straightforward extension of the proof for [get].

2. The only change to the store is a field update; thus only ¥3 and ¥, are

affected. Let v be the assigned value, and assume that v is not null.

Y3t Since v is typable, it must be in dom(I'). By s, its object part is
therefore in dom(S).

Y4t The typing of the assignment expression indicates that the type of v
is t, so v must be of the form (object’||M" /).

3. SUPEROK(¢') holds because no super expression is changed.
Case [call]. Set I =T [(object||m'::M'[m') : m/].

1. We are given (md, (t; ... t, = t),(vary,...,var,), e, m' = M'/m') €% M,
in M,, which implies (md, T,V e,) €P m’' by the definition of €%, where
T=(l... 4 —1t)andV = (var, ... var,).

We are also given P.I' by (object|| M, /t').md(vy, ... v,): t, which implies
(md, T") €p t'. By Lemma D.3.6, T = T. Since the method call type-
checks and 7" =T, P,I' i v; : ¢; for ¢ in [1,n].

Type-checking for the program P ensures that P,m’ b, t md (4 var, ...
t, var,) {en}, and thus P [this : m/, vary : &, ... wvar, @ 4]k e: t.

9

135

Hence, by Lemma D.3.3, P.I" & e, [(object||m'::M'/m’) /this, v /vary, ...

v, [var,] @ t.

2. 8 = S. If IV contained a mapping for (object||m’::M'/m’), it was m’ by
Y1, so IV = I'. Otherwise, (object||m’::M'/m') is new in ", which might
affect ¥y, Y5, and Yg:

Y1 T'((object||m':=M"/m’)) = m’. The €% relation ensures that m <p m/
because M, <M m/::M'. WF(m'::M'/m’) is immediate.

Y5 and Yg: Since I'({object||M,/t")) = t', object € dom(S) by X5 on S
and I'. Thus, adding (object||m’::M’/m’) to I" does not require any

new elements in S’.

3. The reduction may introduce new super expressions into the complete
expression, but each new super expression must originate directly from
P, which contains super expressions with this annotations only. The
[(object||m'::M'/m’) /this] part of the substitution may replace this in
a super annotation with (object||m’::M’/m’), but no other part of the

substitution can affect super annotations. Thus, SUPEROK(¢') holds.
Case [super]. Set I = T [(object||m'::M"/m') : m/].

1. Similar to [call]. The object for dispatching is (object||m::M /m), and we
are given m <% ¢ and (md,T) €p i. (The ¢ in [super™] and the ¢ in
[call] are the same, since a mixin extends only one interface.) To apply
Lemma D.3.6, we need WF(M" /i), where M /i > M"/i. Lemma D.3.4 is
not strong enough to guarantee WE(M" /i), since M /i is not necessarily
well-formed. However, > with an interface always produces a well-formed
view on the right-hand side by construction, so WF(M"' /7). Thus, we can
apply Lemma D.3.6 as for [call].

2. Similar to [call]. If (object||m'::M'/m') is new:
Y1 T'((object||m/=M"/m’)) = m'. If S(object) = (m,,_), m, <p m’ be-
cause Yy on [' ensures that the original view m::M is part of m,, >

selects a sub-view of M as M", and €'} selects m’:: M’ within M"'.

Y5 and Yg: Same as [call].

3. Same as [call].

136
Case [view]. Set I = T'[{object||M’ /1) : t].
1. Since T'((object||M’'/t)) = t, by Lemma D.3.2, P.I" k&, E[(object||M'/t)] :
t.
2. Similar to [call]. If (object||M'/t) & T":

Y1t T'((object||M'/t)) = t. The side condition for [view] requires t' <p
t, which implies ' <p t. ¥; on I' ensures m <p t' when S(object) =
(m,_), so m <p t by transitivity.

Y5 and Yg: Same as [call].

3. SUPEROK(¢') holds because no super expression is changed.
Case [cast]. Set 1" = I'[{object||M" /1) : t].

1. Same as [view].
2. Similar to [call]. If (object||M"/t) is new:
Y1 T'((object||M" /t)) = t. The side condition for [cast] requires m <p
t, which implies m <p .
Y5 and Yg: Same as [call].
3. SUPEROK(¢') holds because no super expression is changed.
Case [let]. P,I' K let var = vin e: ¢ implies P,I' i v : ¢’ for some type ¢’ and P,I
[var : '] K e: t. Set IV =T.
1. By Lemma D.3.3, P,I" iy e [v/var] : L.
2. § and I' are unchanged.

3. SUPEROK(¢') holds because no super expression is changed.

Case [zcast], [ncast], [nget], [nset] and [ncall]. € is an error configuration. O

D.2 Proof of Progress

Lemma 4.3.7 (Progress for MIXEDJAVA) If PT K e : t, PT K S, and
SUPEROK(€), then either e is a value or there exists an (€', S') such that (e,S) —
(¢,5").

137

Proof. The proof is by analysis of the possible cases for the current redex in e

(in the case that e is not a value).

Case new m. The [new] reduction rules constructs the appropriate ¢ and S'.

Case v.fd. If v is null, then the [nget] reduction rule applies. Otherwise, v =
(object||M /1), and we show that [get] applies.

Type-checking combined with Y5 implies S(object) = (m,,F) for some m, and
F. Type-checking also implies that ¢ = m for some mixin m, and (m'.fd,t) €p
m for some m' by [get™]. By the definition of €p (€9 in this case), we have m
<p m/, so there is a unique m’ such that M /m > M'/m/, and M <M M’,

Environment-store consistency implies M, <M M, where m, —p M,. By
transitivity, M, <M M'. Finally, by 3, M'.fd € dom(F).

Case v.fd = v'. Similar to v.fd; either [nset]| or [set] applies.

Case v.md(vy, ... v,). If vis null, then the [neall] reduction rule applies. Otherwise,
v = (object||M /1), and we show that [call] applies.

Type-checking combined with Y5 implies S(object) = (m,,F) for some m, and
F. Define M, as m, —p M,.

By [call™], (md, T') €p t'. The €% relation necessarily selects some m'::M'/m/’

and e:

1. mg::M, exists because WF(M/t') and (md,T) €p t' implies that some

atomic mixin in M contains md.

2. M, exists because o can at least relate m,::M,.md to itself. More specifi-
cally, we know that M, starts with an atomic mixin m; where (md, T,V e)
€D my:

e If there is no i such that m, <% ¢ and (md,T) €p i, then (md, T,V e)
€% m, by the definition of €7.

e Otherwise, there must be some m,:: M, such that M, /i > m,::M, /i, or
else m, would not be a proper mixin composition. Thus, m,::M,.md
o my::M,.md where m,:: M, <M my::M,. This argument on m,:: M,

applies inductively to m,::M,, showing that (md, T,V e) €p my.

138

3. By WF(M/t') and M <M M,, then M, <M M,, so the final phase of the
€% calculation must succeed (although the selected view is not necessarily

My).

Case super =uv (v1, ... v,). By SUPEROK(€), v must be a reference of the form
(object||m::M /m). Thus, we show that the [super] reduction applies.

Since m <7 1, there must be some atomic mixin in M that implements 1,
otherwise the object’s instantiation mixin would not be a proper composition.
Thus, there is some M’ such that M /i > M'/i. Since type-checking ensures that
(md, T) €p 1, we can apply the same reasoning as for the v.md(vy, ... v,) case,

showing that the €% relation necessarily selects some m’::M’/m’ and e.

Case view _t" as t v. If v is null, then [ncast] applies. Otherwise, v = (object||M /t")
for some M, and by Y5 S(object) = (m,,F) for some m, and F.

If ¢ <dp t, then [view]| applies since M'/t clearly exists for M/t > M'/t. Assume
that ¢ Ldp t. If m, dp t', then [zcast] applies. Otherwise, [cast] applies since
m, <p t means that M"/t clearly exists for M'/m > M"/t, where m —sp M.

Case let var = v € e. The [let] reduction always applies, constructing an ¢ and &’

(=S8). O

By combining the Subject Reduction and Progress lemmas, we can prove that
every non-value MIXEDJAVA program reduces while preserving its type, thus estab-
lishing the soundness of MIXEDJAVA.

D.3 Supporting Lemmata

Lemma D.3.1 (Free for MIXEDJAVA) If P.T' K e: t and a ¢ dom(I'), then P,I
[a: V'] kK e:t.

Proof. This follows by reasoning about the shape of the derivation. O

Lemma D.3.2 (Replacement for MIXEDJAVA) If P.T' k E[e] : ¢, PT K e: ¢,
and PT K ¢ : t', then P,I' ki E[€] : t.

Proof. The proof is a replacement argument in the derivation tree. 0O

139

Lemma D.3.3 (Substitution for MIXEDJAVA) If P.T [var @ t, ... var, : t,] &
e: t and {var, ... var,} N dom(I') =0 and P,I' 5 v : &; fori € [1,n], then P,
ke [o fvary, ... v,/ var,] @ t.

Proof. Unlike the Substitution lemma for CLASSICJAVA, the proof of this lemma
follows simply from reasoning about the shape of the derivation, since it makes no
claims about subsumption. The proof uses nested induction over the number of

variables vary, ... wvar, and over the number of replacements for each variable. O

Lemma D.3.4 (e/e > /e Preserves Well-Formedness) If WE(M /t) and M /t
> M'/t', then WE(M' /1').

Proof. There are two cases, depending on whether ¢’ is a mixin or an interface:

Case t and t’ are mixins, m and m’. The proof is by lexicographic induction on the

length of M and size of m (i.e., the number atomic mixins composed to define
m). If M is [m] (the base case), then t' = m, M’ = M, and WF([m']/m’).
Also, if m = m’ and M = M’, then WE(M /m) = WE(M'/m’).

Otherwise, m" = m” o m'”, and there are two sub-cases:
o If m” <M m/ and M/m" v M'/m’, then WF(M'/m') by induction: m/ is
smaller than m, and WEF(M /m'’) since m” is a prefix of m.
o If m"” <M m/ and M,/m" > M'/m’, then WF(M'/m’) by induction: M,
is smaller than M, and WF(M, /m'") because m"’ is a prefix of M,.

Case 1’ is an interface, i. M’ is constructed as m::M"” where m <KB i. Thus,

WF(M'/i) because M’ = m:M"” and m <p . O

Lemma D.3.5 (Consistency of e.e ox e.0) If m:M.md oc m'::M'.md and (md,T)
€p m, then (md,T) €p m'.

Proof. The proof is by induction on the length of M. If M =[], then m' = m
and M’ =[], because > (used in the definition of) cannot select any chain other
than [m)].

Otherwise, m <% i for some i where (md,T) €% i. Since M/i > M"/i and v

preserves well-formedness of views, M" is of the form m/":: M"" for some m" and M""’

140

where m” <T i. By MIXINSIMPLEMENTALL, MIXINMETHODSOK, m" < i, and
(md,T) € i, we have (md,T) €p m”. Finally, m"::M"".md oc m'::M', so (md,T) €p

m' by induction. O

Lemma D.3.6 (Soundness of e €} e in o) [f (md/T,__,__m:=M/m) €% M, in
M,, WE(M, /t,), and (md,T") €p t,, then T =T".

Proof. To get (md,T,__,__m::M/m), the €% relation first finds m,:: M, such that
(md, T"y €p m,. Since WF(M,/t,) and (md,T") €p t,, then T" = T’ by reasoning
about the possible forms of ¢:

Case 1, is an interface 1. Then, WF(M, /t,) implies m,::M, = M, and m, <p t.
Since m, <p t, T" = T' by MIXINMETHODSOK and MIXINSIMPLEMENTALL.

Case 1, is an atomic mixin m’. Then, WF (M, /t,) implies m::M,, = M, and m, =

t,so T" = T" by METHODONCEPERMIXIN.

Case 1, is a composite mixin m/. Then, (md,T") €p t, implies (md,T") €5 m" for
some m’” where m’ <p m'', which means that some candidate for m, exists
within m’. Furthermore, (md,T"") €B m" where m’ <p m’ implies T""" = T"
by the definition of €B (because € eliminates ambiguities), so every candidate
for m, with m’ gives the same type to method md. Since M, starts with the
chain of atomic mixins of m’, then m, must be part of m’. Finally, 7" = T’

because m’' <p my.

Next, €% finds an M, such that my:M.md o« Mpmd. From WF(m,::M,/m,),
(md, T") €p m,, and Lemma D.3.5, the first element of M, must be an atomic mixin
my such that (md,T') €p my. Finally, the € relation selects a m::M such that
(md,T,__,) €p m and m::M.md < My.md. Thus, by Lemma D.3.5 again, (md,T')
€p my. Since my is an atomic mixin, €5 implies €B, so we have both (md,T,__,)
€P my and (md,T",__,__) €P my. By METHODONCEPERMIXIN, those must be the

same method in my, so T'=T'. O

141

Bibliography

Abadi, M. and L. Cardelli. A theory of primitive objects — untyped and first-
order systems. In Hagiya, M. and J. C. Mitchell, editors, Theoretical Aspects

of Computer Software, volume 789 of Lecture Notes in Computer Science, pages

296-320. Springer-Verlag, April 1994.

Abadi, M. and L. Cardelli. A theory of primitive objects: second-order systems.
In Sannella, D., editor, Proc. Furopean Symposium on Programming, volume 788

of Lecture Notes in Computer Science, pages 1-25. Springer-Verlag, 1994.

Abadi, M. and L. Cardelli. An imperative object calculus. In Mosses, P. D.,
M. Nielsen and M. 1. Schwartzbach, editors, Theory and Practice of Software
Development, volume 915 of Lecture Notes in Computer Science, pages 471-485.
Springer-Verlag, May 1995.

Agesen, O., S. Freund and J. C. Mitchell. Adding type parameterization to
Java. In Proc. ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 49-65, October 1997.

Ancona, D. and E. Zucca. An algebraic approach to mixins and modularity. In
Hanus, M. and M. Rodriguez-Artalejo, editors, Proc. Conference on Algebraic
and Logic Programming, volume 1139 of Lecture Notes in Computer Science,

pages 179-193. Springer-Verlag, 1996.

Biswas, 5. K. Higher-order functors with transparent signatures. In Proc. ACM
Symposium on Principles of Programming Languages, pages 154-163, Janurary
1995.

Bracha, G. The Programming Language Jigsaw: Mizins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah, March
1992.

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

142

Bracha, G. and W. Cook. Mixin-based inheritance. In Proc. Joint ACM Conf.
on Object-Oriented Programming, Systems, Languages and Applications and the
Furopean Conference on Object-Oriented Programming, October 1990.

Bracha, G. and G. Lindstrom. Modularity meets inheritance. In Proc. IEKFE
Computer Society International Conference on Computer Languages, pages 282—

290, April 1992.

Cardelli, L.. Program fragments, linking, and modularization. In Proc. ACM
Symposium on Principles of Programming Languages, pages 266277, Janurary
1997.

Clinger, W. and Rees, J. (Eds.). The revised* report on the algorithmic language
Scheme. ACM Lisp Pointers, 4(3), July 1991.

Cook, W. R. A Denotational Semantics of Inheritance. Ph.D. thesis, Department
of Computer Science, Brown University, Providence, RI, May 1989.

Cook, W. R. Object-oriented programming versus abstract data types. In Proec.
ACM International Workshop on Foundations of Object-Oriented Languages,
pages 151-178, June 1990.

Crary, K., R. Harper and S. Puri. What is a recursive module? In Proc. ACM
Conference on Programming Language Design and Implementation, pages 50-63,

May 1999.

Curtis, P. and J. Rauen. A module system for Scheme. In Proc. ACM Conference
on Lisp and Functional Programming, pages 13-28, 1990.

Drossopolou, S. and S. Eisenbach. Java is typesafe — probably. In Proc. Furopean
Conference on Object Oriented Programming, June 1997.

Ducournau, R., M. Habib, M. Huchard and M. L.. Mugnier. Monotonic conflict
resolution mechanisms for inheritance. In Proc. ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 16-24, Oc-
tober 1992.

Duggan, D. and C. Sourelis. Mixin modules. In Proc. ACM International Con-
ference on Functional Programming, pages 262-273, May 1996.

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

143

Eifrig, J., S. Smith, V. Trifonov and A. Zwarico. Application of OOP type
theory: State, decidability, integration. In Proc. ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications, pages 16-30, Oc-
tober 1994.

Felleisen, M. Programming languages and lambda calculi.

Wwww.cs.rice.edu/"matthias/411web/mono.ps.

Felleisen, M. and D. P. Friedman. A Little Java, A Few Patterns. The MIT
Press, 1998.

Felleisen, M. and R. Hieb. The revised report on the syntactic theories of se-
quential control and state. Technical Report 100, Rice University, June 1989.
Theoretical Computer Science, volume 102, 1992, pp. 235-271.

Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen.
DrScheme: A pedagogic programming environment for Scheme. In Proc. In-
ternational Symposium on Programming Languages: Implementations, Logics,

and Programs, pages 369-388, September 1997.

Findler, R. B. and M. Flatt. Modular object-oriented programming with units

and mixins. In Proc. ACM International Conference on Functional Programming,
September 1998.

Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Finding
bugs in the web of program invariants. In Proc. ACM Conference on Program-

ming Language Design and Implementation, pages 23-32, May 1996.

Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice
University, 1997.

Flatt, M. and M. Felleisen. Units: Cool modules for HOT languages. In Proc.
ACM Conference on Programming Language Design and Implementation, pages
236-248, June 1998.

Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In Proc. ACM
Symposium on Principles of Programming Languages, pages 171-183, Janurary

1998.

[29]

[30]

[34]

[35]

[36]

[38]

[39]

[40]

144

Gamma, E., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Flements
of Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

Glew, N. and G. Morrisett. Type-safe linking and modular assembly language.
In Proc. ACM Symposium on Principles of Programming Languages, pages 250—
261, Janurary 1999.

Gosling, J., B. Joy and G. Steele. The Java Language Specification. The Java
Series. Addison-Wesley, Reading, MA, USA, June 1996.

Harbison, S. P. Modula-3. Prentice Hall, 1991.

Harper, R. and M. Lillibridge. A type-theoretic approach to higher-order mod-
ules with sharing. In Proc. ACM Symposium on Principles of Programming
Languages, pages 123137, Janurary 1994.

Harper, R., J. Mitchell and E. Moggi. Higher-order modules and the phase
distinction. In Proc. ACM Symposium on Principles of Programming Languages,
pages 341-354, Janurary 1990.

Harper, R. and C. Stone. A type-theoretic interpretation of Standard MIL. In
Plotkin, G., C. Stirling and M. Tofte, editors, Proof, Language and Interaction:
FEssays in Honour of Robin Milner. MIT Press, 1998.

Hollingsworth, J. Software Component Design-for-Reuse: A Language-
Independent Discipline Applied to Ada. PhD thesis, The Ohio State University,
1992.

Hudak, P. and Wadler, P. (Eds.). Report on the programming language Haskell.
Technical Report YALE/DCS/RR777, Yale University, Department of Computer

Science, August 1991.

International Organization for Standardization. Ada 95 Reference Manual. The

Language. The Standard Libraries, Janurary 1995.

Jagannathan, S. Metalevel building blocks for modular systems. ACM Transac-
tions on Programming Languages and Systems, 16(3):456-492, May 1994.

JavaSoft. JavaBeans, 1.0 edition, October 1996. http://java.sun.com/beans.

[41]

[42]

[45]

[46]

[49]

[50]

[51]

145

Kamin, S. Inheritance in SMALLTALK-80: a denotational definition. In Proc.

ACM Symposium on Principles of Programming Languages, Janurary 1988.

Kelsey, R. A. Fully-parameterized modules or the missing link. Technical Report
97-3, NEC Research Institute, 1997.

Kessler, R. R. LISP, Objects, and Symbolic Programming. Scott, Foresman and
Company, Glenview, 1L, USA, 1988.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier
and J. Trwin. Aspect-oriented programming. In Proc. Furopean Conference
on Object-Oriented Programming, volume 1241 of Lecture Notes in Computer

Science. Springer-Verlag, June 1997.

Koschmann, T. The Common LISP Companion. John Wiley and Sons, New
York, N.Y., 1990.

Krishnamurthi, S., Y.-D. Erlich and M. Felleisen. Expressing structural prop-
erties as language constructs. In Proc. Furopean Symposium on Programming,

1999.

Krishnamurthi, S. and M. Felleisen. Toward a formal theory of extensible soft-

ware. In Proc. ACM Conference on Foundations of Software Engineering, 1998.

Krishnamurthi, S.; M. Felleisen and D. Friedman. Synthesizing object-oriented
and functional design to promote re-use. In Proc. Furopean Conference on

Object-Oriented Programming, 1998.

Kiihne, T. The translator pattern—external functionality with homomorphic

mappings. In Proceedings of TOOLS 23, USA, pages 48—62, July 1997.

Lee, S.-D. and D. P. Friedman. Quasi-static scoping: Sharing variable bind-
ings across multiple lexical scopes. In Proc. ACM Symposium on Principles of

Programming Languages, pages 479-492, Janurary 1993.

Lee, S.-D. and D. P. Friedman. Enriching the lambda calculus with context to-
ward a theory of incremental program construction. In Proc. ACM International

Conference on Functional Programming, pages 239-250, 1996.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

146

Leroy, X. Unboxed objects and polymorphic typing. In Proc. ACM Symposium
on Principles of Programming Languages, pages 177-188, Janurary 1992.

Leroy, X. Manifest types, modules, and separate compilation. In Proc. ACM
Symposium on Principles of Programming Languages, pages 109-122, Janurary

1994.

Leroy, X. Applicative functions and fully transparent higher-order modules. In
Proc. ACM Symposium on Principles of Programming Languages, pages 142-153,
Janurary 1995.

Leroy, X. The Objective Caml system, 1996.
http://pauillac.inria.fr/ocaml/.

MacQueen, D. Modules for Standard ML. In Proc. ACM Conference on Lisp
and Functional Programming, pages 198-207, 1984.

MacQueen, D. B. and M. Tofte. A semantics for higher-order functors. In
Proc. Furopean Symposium on Programming, Lecture Notes in Computer Sci-

ence, pages 409-423. Springer-Verlag, April 1994.

Mason, I. A. and C. L. Talcott. Reasoning about object systems in VTLoE. Inter-
national Journal of Foundations of Computer Science, 6(3):265-298, September
1995.

Mecllroy, M. D. Mass produced software components. In Naur, P. and B. Randell,
editors, Report on a Conference of the NATO Science Committee, pages 138-150,
1968.

Mezini, M. and K. Lieberherr. Adaptive plug-and-play components for evolu-
tionary software development. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 97-116, 1998.

Miller, J. and G. Rozas. Free variables and first-class environments. Lisp and
Symbolic Computation: An International Journal, 3(4):107-141, 1991.

Milner, R., M. Tofte and R. Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Massachusetts and London, England, 1990.

[63]

[64]

[68]

[69]

[70]

[72]

73]

147

Mitchell, J. G., W. Mayberry and R. Sweet. Mesa Language Manual, 1979.

OMG. The Common Object Request Broker: Architecture and Specification, 2.0
edition, July 1995. formal document 97-02-25.

Palsberg, J. and C. B. Jay. The essence of the Visitor pattern. Technical Re-
port 05, University of Technology, Sydney, 1997.

Reddy, U. S. Objects as closures: Abstract semantics of object oriented lan-
guages. In Proc. Conference on Lisp and Functional Programming, pages 289—

297, July 1988.

Rémy, D. Programming objects with MI-ART: An extension to ML, with ab-
stract and record types. In Hagiya, M. and J. C. Mitchell, editors, Theoretical

Aspects of Computer Software, Lecture Notes in Computer Science, pages 321—
346, New York, N.Y., April 1994. Springer-Verlag.

Rémy, D. Introduction aux objets. Unpublished manuscript, lecture notes for

course de magistére, Fcole Normale Supérieure, 1996.

Rémy, D. and J. Vouillon. Objective ML: A simple object-oriented extension
of ML. In Proc. ACM Symposium on Principles of Programming Languages,
pages 40-53, Paris, France, 15-17 Janurary 1997.

Reppy, J. and J. Riecke. Simple objects for Standard ML. In Proc. ACM Con-
ference on Programming Language Design and Implementation, pages 171-180,

1996.

Reynolds, J. C. User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In Schuman, S. A., editor, New Directions
in Algorithmic Languages, pages 157-168. IFIP Working Group 2.1 on Algol,
1975.

Rogerson, D. Inside COM: Microsoft’s Component Object Model. Microsoft
Press, 1997.

Rossie, J. G., D. P. Friedman and M. Wand. Modeling subobject-based inheri-

tance. In Cointe, P., editor, Proc. Kuropean Conference on Object-Oriented Pro-

[76]

[33]

[84]

148

gramming, volume 1098 of Lecture Notes in Computer Science, pages 248-274.
Springer-Verlag, July 1996.

Saraswat, V. Java is not type-safe, August 1997.

www.research.att.com/~vj/bug.html.

Smaragdakis, Y. and D. Batory. Implementing layered designs with mixin layers.
In Proc. Furopean Conference on Object-Oriented Programming, pages 550-570,
1998.

Snyder, A. Inheritance and the development of encapsulated software compo-
nents. In Research Directions in Object-Oriented Programming, pages 165—188.
MIT Press, 1987.

SunSoft. SunOS 5.5 Linker and Libraries Manual, 1996.

Syme, D. Proving Java type soundness. Technical Report 427, University of
Cambridge, July 1997.

Szyperski, C. Independently extensible systems: Software engineering potential

and challenges. In Proc. Australian Computer Science Conference, 1996.
Szyperski, C. Component Software. Addison-Wesley, 1998.

Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper and P. Lee. TIL: A type-
directed optimizing compiler for ML.. In Proc. ACM Conference on Programming
Language Design and Implementation, pages 181-192, 1996.

Tofte, M. Principal signatures for higher-order program modules. In Proc. ACM
Symposium on Principles of Programming Languages, pages 189-199, Janurary
1992.

Weide, B. W., W. F. Ogden and S. H. Zweben. Reusable software components.
In Yovits, M. C., editor, Advances in Computers, volume 33. Academic Press,

1991.

Wirth, N. Programming in Modula-2. Springer-Verlag, 1983.

149

[85] Wright, A. and M. Felleisen. A syntactic approach to type soundness. Technical
Report 160, Rice University, 1991. Information and Computation, volume 115(1),
1994, pp. 38-94.

