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1 BACKGROUND OF THE INVENTION 

1.1 Field of the Invention 
The present invention relates generally to methods and 

apparatus for signal reconstruction and more specifically to 
methods and apparatus for recovering sparse signals from 
finite-range, quantized compressive sensing measurements. 

1.2 Brief Description of the Related Art 
Analog-to-digital converters (ADCs) are an essential com­

ponent in digital sensing and cormnunications systems. They 
interface the analog physical world, where many signals 
originate, with the digital world, where they can be efficiently 
analyzed and processed. As digital processors have become 
smaller and more powerful, their increased capabilities have 
inspired applications that require the sampling of ever-higher 
bandwidth signals. This demand has placed a growing burden 
on ADCs. As ADC sampling rates push higher, they move 
toward a physical barrier, beyond which their design becomes 
increasingly difficult and costly. R. Walden, "Analog-to-digi­
tal converter survey and analysis," IEEE J. Selected Areas in 
Comm., vol. 17, no. 4, pp. 539-550, 1999. 

Fortunately, recent theoretical developments in the area of 
compressive sensing (CS) have the potential to significantly 
extend the capabilities of current ADCs to keep pace with 
demand. D. Donoho, "Compressed sensing," IEEE Trans. 
Inform. Theory, vol. 6,no. 4, pp.1289-1306, 2006, E. Candes, 
"Compressive sampling," in Proc. Int. Congress Math., 
Madrid, Spain, August 2006. CS provides a framework for 
sampling signals at a rate proportional to their information 
content rather than their bandwidth, as in Sham10n-Nyquist 
systems. In CS, the information content of a signal is quanti­
fied as the nnmber of nonzero coefficients in a known trans­
form basis over a fixed time interval M. Vetterli, P. Marzil­
iano, and T. Blu, "Sampling signals with finite rate of 
innovation," IEEE Trans. Signal Processing, vol. 50, no. 6, 
pp. 1417-1428,2002. Signals that have few nonzero coeffi­
cients are called sparse signals. More generally, signals with 
coefficient magnitudes that decay rapidly are called com­
pressible, because they can be well-approximated by sparse 
signals. By exploiting sparse and compressible signal mod-

2 
els, CS provides a methodology for simultaneously acquiring 
and compressing signals. This leads to lower sampling rates 
and thus simplifies hardware designs. The CS measurements 
can be used to reconstruct the signal or can be directly pro­
cessed to extract other kinds of information. 

The CS framework employs non-adaptive, linear measure­
ment systems and non-linear reconstruction algorithms. In 
most cases, CS systems exploit a degree of randomness in 
order to provide theoretical guarantees on the performance of 

10 the system. Such systems exhibit additional desirable prop­
erties beyond lower sampling rates. In particular, the mea­
surements are democratic, meaning that each measurement 
contributes an equal amount of information to the com­
pressed representation. This is in contrast to both conven-

15 tiona! sampling systems and conventional compression algo­
rithms, where the removal of some samples or bits can lead to 
high distortion, while the removal of others will have negli­
gible effect. 

Several CS-inspired hardware architectures for acquiring 
20 signals, images, and videos have been proposed, analyzed, 

and in some cases implemented. J. Laska, S. Kirolos, M. 
Duarte, T. Ragheb, R. Baraniuk, andY. Massoud, "Theory 
and implementation of an analog-to-information converter 
using random demodulation," in Proc. IEEE Int. Symp. Cir-

25 cuits and Systems (ISCAS), New Orleans, La., May 2007, J. 
Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, 
"Beyond Nyquist: Efficient sampling of sparse, bandlimited 
signals," IEEE Trans. Inform. Theory, 2009, J. Romberg, 
"Compressive sensing by random convolution," SIAM J. 

30 Imaging Sciences, 2009, J. Tropp, M. Wakin, M. Duarte, D. 
Baron, and R. Baraniuk, "Random filters for compressive 
sampling and reconstruction," in Proc. IEEE Int. Conf. 
Acoustics, Speech, and Signal Processing (ICASSP), Tou­
louse, France, May 2006, M. Duarte, M. Davenport, D. 

35 Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single­
pixel imaging via compressive sampling," IEEE Signal Pro­
cessing Mag., vol. 25, no. 2, pp. 83-91, 2008, R. Robucci, L. 
Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, "Com­
pressive sensing on a CMOS separable transform image sen-

40 sor," in Proc. IEEE Int. Conf Acoustics, Speech, and Signal 
Processing (ICASSP), Las Vegas, Nev., April 2008, R. Mar­
cia, Z. Harmany, and R. Willett, "Compressive coded aperture 
imaging," inProc. SPIE Symp. Elec. Imaging: Comput. Imag­
ing, San Jose, Calif., January 2009, Y. Eldar and M. Mishali, 

45 "Robust recovery of signals from a structured union of sub­
spaces," IEEE Trans. Inform. Theory, 2009, M. Mishali, Y. 
Eldar, and J. Tropp, "Efficient sampling of sparse wide band 
analog signals," in Proc. Cony. IEEE in Israel (IEEE!), Eilat, 
Israel, December 2008, M. Mishali and Y. Eldar, "From 

50 theory to practice: Sub-Nyquist sampling of sparse wide band 
analog signals," Preprint, 2009, Y. Eldar and M. Mishali, 
"Robust recovery of signals from a structured union of sub­
spaces," IEEE Trans. Inform. Theory, 2009. The common 
element in each of these acquisition systems is that the mea-

55 surements are ultimately quantized, i.e., mapped from real­
values to a set of countable values, before they are stored or 
transmitted. The present invention focuses on this quantiza­
tion step. 

While the effect of quantization on the CS framework has 
60 been previously explored L. Jacques, D. Hmond, and M. 

Fadili, "Dequantizing compressed sensing: When oversam­
pling and non-gaussian contraints combine," Preprint, 2009, 
W. Dai, H. Pham, and 0. Milenkovic, "Distortion-rate func­
tions for quantized compressive sensing," Preprint, 2009, A. 

65 Zymnis, S. Boyd, and E. Candes, "Compressed sensing with 
quantized measurements," Preprint, 2009, J. Sun and V. 
Goyal, "Quantization for compressed sensing reconstruc-



US 8,456,345 B2 
3 4 

mates to sufficient quality. Examples of such discretizations 
and their implementation in the context of compressive sens­
ing can be found in J. Tropp, J. Laska, M. Duarte, J. Romberg, 
and R. Baraniuk, "Beyond Nyquist: Efficient sampling of 
sparse, bandlimited signals," IEEE Trans. Inform. Theory, 
2009, J. Romberg, "Compressive sensing by random convo­
lution," SIAM J. Imaging Sciences, 2009, J. Tropp, M. Wakin, 
M. Duarte, D. Baron, and R. Baraniuk, "Random filters for 
compressive sampling and reconstruction," in Pro c. IEEE Int. 

tion," inProc. Sampling Theory and Applications (SampTA), 
Marseille, France, May 2009, prior work has ignored satura­
tion. Saturation occurs when measurement values exceed the 
saturation level, i.e., the dynamic range of a quantizer. These 
measurements take on the value of the saturation level. All 
practical quantizers have a finite dynamic range for one of two 
reasons, or both: (i) physical limitations allow only a finite 
range of voltages to be accurately converted to bits and, (ii) 
only a finite number of bits are available to represent each 
value. Quantization with saturation is commonly referred to 
as finite-range quantization. 

The challenge in dealing with the errors imposed by finite­
range quantization is that, in the absence of an a priori upper 
bound on the measurements, saturation errors are potentially 
unbounded. Most CS recovery algorithms only provide guar­
antees for noise that is either bounded or bounded with high 
probability (for example, Gaussian noise). E. Candes and T. 
Tao, "The Dantzig selector: Statistical estimation when p is 
much larger than n," Annals of Statistics, vol. 35, no. 6, pp. 
2313-2351, 2007. The only exceptions are R. Carrillo, K. 
Barner, and T. Aysal, "Robust sampling and reconstruction 
methods for compressed sensing," in Proc. IEEE Int. Conf 
Acoustics, Speech, and Signal Processing (ICASSP), Taipei, 
Taiwan, April2009, J. Laska, M. Davenport, and R. Baraniuk, 
"Exact signal recovery from corrupted measurements 
through the pursuit of justice," in Proc. Asilomar Conf on 
Signals Systems and Computers, Asilomar, Calif., November 
2009, which consider sparse or impulsive noise models, and 

10 Conf Acoustics, Speech, and Signal Processing (ICASSP), 
Toulouse, France, May 2006, M. Duarte, M. Davenport, D. 
Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single­
pixel imaging via compressive sampling," IEEE Signal Pro­
cessing Mag., vol. 25, no. 2, pp. 83-91, 2008, R. Robucci, L. 

15 Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, "Com­
pressive sensing on a CMOS separable transform image sen­
sor," in Proc. IEEE Int. Conf Acoustics, Speech, and Signal 
Processing (ICASSP), Las Vegas, Nev., April 2008, R. Mar­
cia, Z. Harmany, and R. Willett, "Compressive coded aperture 

20 imaging," inProc. SPIE Symp. Elec. Imaging: Comput. Imag­
ing, San Jose, Calif., January 2009, Y. Eldar and M. Mishali, 
"Robust recovery of signals from a structured union of sub­
spaces," IEEE Trans. Inform. Theory, 2009, M. Mishali, Y. 
Eldar, and J. Tropp, "Efficient sampling of sparse wide band 

25 analog signals," in Proc. Cony. IEEE in Israel (IEEE!), Eilat, 
Israel, December 2008, M. Mishali and Y. Eldar, "From 
theory to practice: Sub-Nyquist sampling of sparse wide band 
analog signals," Preprint, 2009, Y. Eldar and M. Mishali, 
"Robust recovery of signals from a structured union of sub-Z. Harmany, R. Marcia, andR. Willett, "Sparse poisson inten­

sity reconstruction algorithms," in Proc. IEEE Work. Stat. 
Signal Processing (SSP), Cardiff, Wales, August 2009, I. Rish 
and G. Grabarnik, "Sparse signal recovery with exponential­
family noise," in Proc. Allerton Conf Comm., Control, and 
Comput., Monticello, Ill., September 2009, which consider 
unbounded noise from the exponential family of distribu­
tions. None of the methods in R. Carrillo, K. Barner, and T. 
Aysal, "Robust sampling and reconstruction methods for 
compressed sensing," in Proc. IEEE Int. Conf Acoustics, 
Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 
April 2009, J. Laska, M. Davenport, and R. Baraniuk, "Exact 
signal recovery from corrupted measurements through the 
pursuit of justice," in Proc. Asilomar Conf on Signals Sys­
tems and Computers, Asilomar, Calif., November 2009, Z. 
Harmany, R. Marcia, and R. Willett, "Sparse poisson inten­
sity reconstruction algorithms," in Proc. IEEE Work. Stat. 45 

Signal Processing (SSP), Cardiff, Wales, August 2009, I. Rish 
and G. Grabarnik, "Sparse signal recovery with exponential­
family noise," in Proc. Allerton Conf Comm., Control, and 
Comput., Monticello, Ill., September 2009 can be used to 
handle unbounded quantization errors due to saturation. 

30 spaces," IEEE Trans. Inform. Theory, 2009. Aspects of such 
systems in are briefly discussed below in Sec. 1.2.4. 

35 

40 

G 
B 
L\. 
L\.12 
unbounded 

TABLE 1 

Quantization parameters. 

saturation level 
number of bits 
bin widtb 
maximwn error per (quantized) measurement 
maximwn error per (saturated) measurement 

Instead the present invention focuses on the second aspect 
of digitization, namely quantization. Quantization results in 
an irreversible loss of information unless the measurement 
amplitudes belong to the discrete set defined by the quantizer. 
A central ADC system design goal is to minimize the distor­
tion due to quantization. 

1.2.2 Scalar Quantization 
Scalar quantization is the process of converting the con-

1.2.1 Analog-to-Digital Conversion 
50 tinuous value of an individual measurement to one of several 

discrete values through a non-invertible function R(•). Prac­
tical quantizers introduce two kinds of distortion: bounded 
quantization error and unbounded saturation error. 

ADC consists of two discretization steps: sampling, which 
converts a continuous-time signal to a discrete-time set of 
measurements, followed by quantization, which converts the 
continuous value of each measurement to a discrete one cho- 55 

sen from a pre-determined, finite set. Both steps are necessary 
to represent an analog signal in the discrete digital world. 

In this application, the focus is on uniform quantizers with 
quantization interval ll.. Thus, the quantized values become 
'lk=q,+kll., fork Ez, and every measurement g is quantized 
to the nearest quantization level R(g)=argminqklg-'lk=ll./2+ 
kll., the midpoint of each quantization interval. This mini­
mizes the expected quantization distortion and implies that 

60 the quantization error per measurement, I g-R( q) I, is bounded 
by ll./2. FIG. lA depicts the mapping performed by a midrise 

The discretization step can be lossless or lossy. For 
example, classical results due to Shannon and Nyquist dem­
onstrate that the sampling step induces no loss of information, 
provided that the signal is bandlimited and a sufficient num­
ber of measurements (or samples) are obtained. Similarly, 
sensing of images assumes that the image is sufficiently 
smooth such that the integration oflight in each pixel of the 
sensor is sufficient for a good quality representation of the 65 

image. The present description assumes the existence of a 
discretization that exactly represents the signal, or approxi-

quantizer. 
In practice, quantizers have a finite dynamic range, dictated 

by hardware constraints such as the voltage limits of the 
devices and the finite number of bits per measurement of the 
quantized representation. Thus, a finite-range quantizer rep­
resents a symmetric range of values lgi<G, where G>O is 
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known as the saturation level G. Gray and G. Zeoli, "Quan­
tization and saturation noise due to analog-to-digital conver­
sion," IEEE Trans. Aerospace and Elec. Systems, vol. 7, no. 1, 
pp. 222-223, 1971. Values ofg between -G and G will not 
saturate, thus, the quantization interval is defined by these 
parameters as ll.-2-B+lG. Without loss of generality we 
assume a midrise B-bit quantizer, i.e., the quantization levels 
are 'lk=ll./2-kll., where k=-2B-l, ... 2B- 1-l. Any measure­
ment with magnitude greater than G saturates the quantizer, 
i.e., it quantizes to the quantization level G-ll./2, implying an 10 

unbounded error. FIG. lB depicts the mapping performed by 
a finite range midrise quantizer with saturation level G and 
Table 1 summarizes the parameters defined with respect to 

6 
from noisy measurements. In particular, for bounded errors of 
the form llelb<E, the convex program 

x = argminllxll1 s.t. ll<l>x- Yll 2 s E (3) 

can recover a sparse or compressible signal x. The following 
theorem, a slight modification of Theorem 1.2 from E. Can­
des, "The restricted isometry property and its implications for 
compressed sensing," Comptes rendus de l 'Academie des 
Sciences, 8erie I, vol. 346, no. 9-10, pp. 589-592, 2008, 
makes this precise by bounding the recovery error ofx with 

quantization. 
1.2.3 Compressive Sensing (CS) 
In the CS framework, one acquires a signal x E JR N via the 

linear measurements 

15 
respect to the measurement noise norm, denoted by E, and 
with respect the best approximation of x by its largest K 
terms, denoted using xK. 

y-<l>x+e, (1) 20 

where <I> is an MxN measurement matrix modeling the sam­
pling system, y E JR M is the vector of samples acquired, and 
e is an Mx1 vector that represents measurement errors. Ifx is 
K -sparse when represented in the sparsity basis W, i.e., x=Wa 

25 
with llallo:=lsupp(a)I~K, then one can acquire just M=O(K 
log(N/K)) measurements and still recover the signal x. E. 
Candes, "Compressive sampling," in Proc. Int. Congress 
Math., Madrid, Spain, August 2006, D. Donoho, "Com­
pressed sensing," IEEE Trans. Inform. Theory, vol. 6, no. 4, 30 
pp. 1289-1306, 2006. A similar guarantee can be obtained for 
approximately sparse, or compressible, signals. Observe that 
if K is small, then the number of measurements required can 
be significantly smaller than the Shannon-Nyquist rate. 

In E. Candes and T. Tao, "Decoding by linear program- 35 
ming," IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4203-
4215, 2005, Candes and Tao introduced the restricted isom­
etry property (RIP) of a matrix <I> and established its 
important role in CS. From E. Candes and T. Tao, "Decoding 
by linear programming," IEEE Trans. Inform. Theory, val. 51, 40 
no. 12, pp. 4203-4215, 2005, we have the definition, 

Definition 1 

A matrix <I> satisfies the RIP of order K with constant ll E 45 
(0, 1) if 

(1-I>JIIxlb 2 :"'II<Pxlb 2 :"' (1 +I>JIIxlb 2 

holds for all x such that llxllo~K. 

(2) 

Theorem 1. 
Suppose that <I>W satisfies the RIP of order 2K with 

ll<Y2-1. Given measurements ofthe form y=<I>Wx+e, where 
llelb~E, then the solution to (3) obeys 

where 

4(1 + 6) 
Co= , 

1-({2 +1)6 

1+({2 -1)6 
c1 = . 

1-({2 +1)6 

While convex optimization techniques like equation (3) are 
a powerful method for CS signal recovery, there also exist a 
variety of alternative algorithms that are commonly used in 
practice and for which performance guarantees comparable 
to that ofTheorem 1 can be established. In particular, iterative 
algorithms such as CoSaMP and iterative hard thresholding 
(IHT) are known to satisfY similar guarantees under slightly 
stronger assumptions on the RIP constants. Furthermore, 
alternative recovery strategies based on (3) have been ana­
lyzed in E. Candes and T. Tao, "The Dantzig selector: Statis­
tical estimation when p is much larger than n," Annals of 
Statistics, vol. 35, no. 6, pp. 2313-2351, 2007, P. Wojtaszc­
zyk, "Stability and instance optimality for Gaussian measure-
ments in compressed sensing," Found. Comput. Math., 2009. 
These methods replace the constraint in (3) with an alterna­
tive constraint that is motivated by the assumption that the 

In words, <I> acts as an approximate isometry on the set of 
vectors that are K -sparse in the basis W. An important result is 
that for any unitary matrix W, if we draw a random matrix <I> 
whose entries <Pi/ are independent realizations from a sub­
Gaussian distribution, then <I>W will satisfY the RIP of order K 
with high probability provided that M=O(K log(N K)) R. 
Baraniuk, M. Davenport, R. DeVore, and M. Wakin, "A 
simple proof of the restricted isometry property for random 
matrices," Canst. Approx., vol. 28, no. 3, pp. 253-263, 2008. 

50 measurement noise is Gaussian in the case of E. Candes and 
T. Tao, "The Dantzig selector: Statistical estimation when pis 
much larger than n," Annals of Statistics, vol. 35, no. 6, pp. 
2313-2351, 2007 and that is agnostic to the value ofE in P. 
Wojtaszczyk, "Stability and instance optimality for Gaussian 

55 measurements in compressed sensing," Found. Comput. 
Math., 2009. 

1.2.4 CS in Practice 
Several hardware architectures have been proposed and 

implemented that allow CS to be used in practical settings In this example, without loss of generality, we fix W=I, the 
identity matrix, implying that x=a. 60 with analog signals. See, for example U.S. Pat. No. 7,271, 

747. Other examples include the random demodulator, ran­
dom filtering, and random convolution for signals J. Tropp, J. 
Laska, M. Duarte, J. Romberg, and R. Baraniuk, "Beyond 

The RIP is a necessary condition if we wish to be able to 
recover all sparse signals x from the measurements y. Spe­
cifically, ifllxllo=K, then <I> must satisfY the lower bound of the 
RIP of order 2K with ll<1 in order to ensure that any algorithm 
can recover x from the measurements y. Furthermore, the RIP 65 
also suffices to ensure that a variety of practical algorithms 
can successfully recover any sparse or compressible signal 

Nyquist: Efficient sampling of sparse, bandlimited signals," 
IEEE Trans. Inform. Theory, 2009, J. Romberg, "Compres­
sive sensing by random convolution," SIAM J. Imaging Sci-
ences, 2009, J. Tropp, M. Wakin, M. Duarte, D. Baron, andR. 
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Baraniuk, "Random filters for compressive sampling and 
reconstruction," in Proc. IEEE Int. Conf Acoustics, Speech, 
and Signal Processing (ICASSP), Toulouse, France, May 
2006, as well as the modulated wide band converter for multi­
band signals M. Mishali, Y. Eldar, and J. Tropp, "Efficient 
sampling of sparse wideband analog signals," in Proc. Cony. 
IEEE in Israel (IEEE!), Eilat, Israel, December 2008, M. 
Mishali andY. Eldar, "From theory to practice: Sub-Nyquist 
sampling of sparse wide band analog signals," Preprint, 2009, 
and several compressive imaging architectures M. Duarte, M. 10 

Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. 
Baraniuk, "Single-pixel imaging via compressive sampling," 
IEEE Signal Processing Mag., vol. 25, no. 2, pp. 83-91,2008, 
R. Robucci, L. Chiu, J. Gray, J. Romberg, P. Hasler, and D. 
Anderson, "Compressive sensing on a CMOS separable 15 

transform image sensor," in Proc. IEEE Int. Conf Acoustics, 
Speech, and Signal Processing (ICASSP), Las Vegas, Nev., 
April 2008, R. Marcia, Z. Harmany, and R. Willett, "Com­
pressive coded aperture imaging," in Proc. SPIE Symp. Elec. 
Imaging: Comput. Imaging, San Jose, Calif., January 2009. 20 

The random demodulator is an example of such a System. 
J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, 
"Beyond Nyquist: Efficient sampling of sparse, bandlimited 
signals," IEEE Trans. Inform. Theory, 2009. FIG. 2 depicts 
the block diagram of the random demodulator. The four key 25 

components are a pseudo-random ±1 "chipping sequence" 
Pc(t) operating at the Nyquist rate or higher, a low pass filter, 
often represented by an ideal integrator with reset, a low-rate 
ADC, and a quantizer. An input analog signal x(t) is modu­
lated by the chipping sequence and integrated. The output of 30 

the integrator is sampled, and the integrator is reset after each 
sample. The output measurements from the ADC are then 
quantized. 

Systems such as these represent a linear operator mapping 
the analog input signal to a discrete output vector, followed by 35 

a quantizer. It is possible, but beyond the scope of this descrip­
tion, to relate this operator to a discrete measurement matrix 
<I> which maps, for example, the Nyquist-rate samples of the 
input signal to the discrete output vector. J. Tropp, J. Laska, 
M. Duarte, J. Romberg, and R. Baraniuk, "Beyond Nyquist: 40 

Efficient sampling of sparse, bandlimited signals," IEEE 
Trans. Inform. Theory, 2009, M. Mishali andY. Eldar, "From 
theory to practice: Sub-Nyquist sampling of sparse wide band 
analog signals," Preprint, 2009, J. Treichler, M. Davenport, 
and R. Baraniuk, "Application of compressive sensing to the 45 

design of wideband signal acquisition receivers," in U.S./ 
Australia Joint Work. Defense Apps. of Signal Processing 
(DASP), Lihue, Hi., September 2009. 

8 
and still maintain a sufficient amount of information about the 
signal to enable recovery. A simple analysis of the two recon­
struction approaches above and yields concrete bounds on 
how many measurements are sufficient to ensure that the 
methods are robust to the saturation of some specified number 
of measurements. 

When characterizing these methods, in order to maximize 
the acquisition SNR, the optimal strategy is to allow the 
quantizer to saturate at some nonzero rate. This is due to the 
inverse relationship between quantization error and satura­
tion rate: as the saturation rate increases, the distortion of 
remaining measurements decreases. Experimental results 
show that on average, the optimal SNR is achieved at nonzero 
saturation rates. This demonstrates that just as CS challenges 
the conventional wisdom of how to sample a signal, it also 
challenges the conventional wisdom of avoiding saturation 
events. 

A standard CS recovery approach like equation (3) 
assumes that the measurement error is bounded. However, 
when quantizing the measurements y, the error on saturated 
measurements is unbounded. Thus, conventional wisdom 
would suggest that the measurements should first be scaled 
down appropriately so that none saturate. 

This approach has two main drawbacks. First, rescaling the 
measurements reduces the saturation rate at the cost of 
increasing the quantization error on each measurement that 
does not saturate. Saturation events may be quite rare, but the 
additional quantization error will affect every measurement 
and induce a higher reconstruction error than if the signal had 
not been scaled and no saturation occurred. Second, in prac­
tice, saturation events may be impossible to avoid completely. 

However, unlike conventional sampling systems that 
employ linear interpolation-basedreconstruction, where each 
sample contains information for only a localized portion of 
the signal, CS measurements contain information for a larger 
portion of the signal. This creates a need for non -linear recon­
struction algorithms but gives rise to some practical benefits 
such as robustness to the loss of a small number of measure-
ments. 

In this application, two approaches are disclosed for han-
dling saturated measurements in CS systems: saturation 
rejection: simply discard saturated measurements and then 
perform signal recovery on those that remain; constrained 
optimization: incorporate saturated measurements in the 
recovery algorithm by enforcing consistency on the saturated 
measurements. In order for the saturation rejection approach 
to work we must be able to recover the signal using only the 

2 SUMMARY OF THE INVENTION 

Preferred embodiments of the present invention offer two 
new approaches for mitigating unbounded quantization 
errors caused by saturation in CS systems. The first approach 
simply discards saturated measurements and performs signal 
reconstruction without them. The second approach is based 
on a new CS recovery algorithm that treats saturated mea­
surements differently from unsaturated ones. This is achieved 
by employing a magnitude constraint on the indices of the 
saturated measurements while maintaining the conventional 
regularization constraint on the indices of the other measure­
ments. Both approaches are analyzed and it is shown that both 
can recover sparse and compressible signals with guarantees 
similar to those for standard CS recovery algorithms. 

50 measurements that are retained, or equivalently, using only 
the rows of <I> that are retained. An analysis of the properties 
of this matrix will be essential to understanding the perfor­
mance of this approach Similarly, it unclear when the com­
bination of the retained measurements plus the additional 

These methods exploit the democratic nature of CS mea­
surements. Because each measurement contributes equally to 
the compressed representation, one can remove some of them 

55 information provided by the saturation constraints is suffi­
cient to recover the signal. A main result of this description, 
that we prove below, is that there exists a class of matrices <I> 
such that an arbitrary subset of their rows will indeed satisfY 
the RIP, in which case existing results can provide perfor-

60 mance guarantees for both of these approaches. 
In another preferred embodiment, the present invention is a 

method for recovering a signal comprising the steps of mea­
suring a signal to produce a plurality of compressive sensing 
measurements, identifYing saturated measurements in the 

65 plurality of compressive sensing measurements and recon­
structing the signal from the plurality of compressive sensing 
measurements, wherein the recovered signal is constrained 
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such that magnitudes of values corresponding to the identified 
saturated measurements are greater than a predetermined 
value. 

In a preferred embodiment, the present invention is a 
method for recovering a signal comprising the steps of mea­
suring a signal to produce a plurality of compressive sensing 
measurements, discarding saturated measurements from the 
plurality of compressive sensing measurements and recon­
structing the signal from remaining measurements from the 
plurality of compressive sensing measurements. In another 10 

preferred embodiment, the present invention is a method for 
recovering a signal comprising the steps of measuring a signal 

10 
FIG. 4 is a comparison of reconstruction approaches using 

CVX forK -sparse signals with N= 1024, K =20, and B=4. The 
solid line depicts reconstruction SNR for the conventional 
approach. The dotted line depicts reconstruction SNR for the 
consistent approach of a preferred embodiment of the present 
invention. The dashed line depicts reconstruction SNR for the 
rejection approach of another preferred embodiment of the 
present invention. SNR curves are measured on the left 
y-axis. The dashed-circled line, measured on the right y-axis, 
represents the average saturation rate. Each plot represents a 
different measurement regime: FIG. 4A low MIN =21 16, FIG. 
4B medium M/N=6/16, and FIG. 4C high M/N=15/16. 

FIGS. SA-C are comparisons of reconstruction approaches 
using CVX for weak lP compressible signals with N=1024, 
M/N=6/16, and B=4. The solid line depicts reconstruction 
SNR for the conventional approach in accordance with a 
preferred embodiment of the present invention. The dotted 
line depicts reconstruction SNR for the consistent approach 
in accordance with another preferred embodiment of the 

to produce a plurality of compressive sensing measurements, 
identifying saturated measurements in the plurality of com-

15 
pressive sensing measurements and reconstructing the signal 
from the plurality of compressive sensing measurements, 
wherein the recovered signal is constrained such that magni­
tudes of values corresponding to the identified saturated mea­
surements are greater than a predetermined value. 20 present invention. The dashed line depicts reconstruction 

SNR for the rejection approach. SNR curves are measured on 
the lefty-axis. The dashed-circled line, measured on the right 
y-axis, represents the average saturation rate. Each plot rep-

In yet another preferred embodiment, the present invention 
is a method for acquiring signals. The method comprises the 
steps of amplifYing a signal, measuring the amplified signal to 
produce a plurality of compressive sensing measurements 
some of which are saturated, determining or identifying the 25 

saturated measurements in the plurality of compressive sens­
ing measurements, and reconstructing the signal by sepa­
rately treating the saturated and unsaturated measurements. 
The amplifying step may intentionally introduce saturation at 
the measuring step and may be controlled through an auto- 30 

matic gain control system. The reconstruction step may com­
prise the steps of discarding the saturated measurements and 
using only the unsaturated measurements in a reconstruction 
algorithm. In still another embodiment, the reconstruction 
step may comprise incorporating the saturated measurements 35 

as a constraint in the reconstruction algorithm. 
Still other aspects, features, and advantages of the present 

invention are readily apparent from the following detailed 
description, simply by illustrating a preferable embodiments 
and implementations. The present invention is also capable of 40 

other and different embodiments and its several details can be 
modified in various obvious respects, all without departing 
from the spirit and scope of the present invention. Accord­
ingly, the drawings and descriptions are to be regarded as 
illustrative in nature, and not as restrictive. Additional objects 45 

and advantages of the invention will be set forth in part in the 
description which follows and in part will be obvious from the 
description, or may be learned by practice of the invention. 

resents different rate of decay for the coefficients: FIG. SA 
fast decay p=0.4, FIG. SB medium decay p=O.S, and FIG. SC 
slow decay p= 1. 

FIGS. 6A-B show the SNR performance using 
SC-CoSaMP for N = 1024, K =20, and B=4. FIG. 6A shows the 
best-achieved average SNR vs. MIN. FIG. 6B shows the 
maximum saturation rate such that average SNR performance 
is as good or better than the best average performance of the 
conventional approach. For best-case saturation-level param­
eters, the rejection and constraint approaches of the preferred 
embodiments of the present invention can achieve SNRs 
exceeding the conventional SNR performance by 20 dB. The 
best performance between the rejection and consistent 
approaches of the present invention is similar, differing only 
by 3 dB, but the range of saturation rates for which they 
achieve high performance is much larger for the consistent 
approach. Thus, the consistent approach is more robust to 
saturation. 

4 DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Before describing preferred embodiments of the present 
invention for handling saturated measurements in greater 
detail, some notation is established that will prove useful for 
the remainder of the description. Let r c { 1, 2, ... , M}. By 

3 BRIEF DESCRIPTION OF THE DRAWINGS 

For a more complete understanding of the present inven­
tion and the advantages thereof, reference is now made to the 
following description and the accompanying drawings, in 
which: 

50 <I>r we mean the lrl xM matrix obtained by selecting the rows 
of <I> indexed by r. Alternatively, if A c { 1, 2, ... , N}, then 
we use <I> A to indicate the MxiAI matrix obtained by selecting 
the columns of <I> indexed by A. 

FIGS. lA and lB are drawings of a scalar quantization 
function. FIG. lA shows a midrise scalar quantizer. FIG. lB 
shows a finite-range midrise scalar quantizer with saturation 
level G. 

55 

4.1 Recovery Via Saturation Rejection 
One way to handle saturated measurements is to simply 

discard them. See J. Laska, P. Boufounos, and R. Baraniuk, 
"Finite-range scalar quantization for compressive sensing," 
in Proc. Sampling Theory and Applications (SampTA), 
Marseille, France, May 2009. A preferred embodiment of the 

FIG. 2 is a drawing of a random demodulator compressive 60 

ADC. 
present invention using saturation rejection is described with 
reference to FIG. 3A. An analog signal 310 is input to or 

FIG. 3A is a flow chart illustrating a method for acquiring 
signals in accordance with a preferred embodiment of the 
present invention. 

FIG. 3B is a flow chart illustrating a second method for 
acquiring signals in accordance with a preferred embodiment 
of the present invention. 

received by a compressive analog-to digital converter (ADC) 
320. The signal is quantized at quantizer 330 with a saturation 
level G that is greater than zero. The saturated measurements 

65 are identified and discarded 340. The signal is then recon­
structed or estimated 3SO, for example, by software running 
on a processor, as follows by using only the non-saturated 
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measurements. Denote the vector of the measurements that 
did not saturate as y with length M. The matrix <i> is created by 
selecting the rows of <I> that correspond to the elements of y. 
Then, as an example, using (3) for reconstruction yields the 
program: 

x = argminllxiii s.t. ll<l>x- .YII, s E. (4) 

There are several advantages to this approach. Any fast or 
specialized recovery algorithm can be employed without 
modification. In addition, the speed of most algorithms will 
be increased since fewer measurements are used. 

The saturation rejection approach can also be applied in 
conjunction with processing and inference techniques such as 
the smashed filter M. Davenport, M. Duarte, M. Wakin, J. 
Laska, D. Takhar, K. Kelly, and R. Baraniuk, "The smashed 
filter for compressive classification and target recognition," in 
Proc. SPIE Elec. Imaging: Comput. Imaging, San Jose, 
Calif., January 2007 for detection, which utilizes the inner 

products ( <I>u, <I>v) between the measurement of vectors u, v. 

Such techniques depend on ( <I>u, <I>v) being close to ( u, v) . 

12 
measurements that do not saturate have bounded 12 error, and 
the measurements that do saturate are consistent with the 
saturation constraint. Alternative regularization terms that 
impose the consistency requirement on the unsaturated quan­
tized measurements can be used on y, such as those proposed 
in L. Jacques, D. Hammond, and M. Fadili, "Dequantizing 
compressed sensing: When oversampling and non-gaussian 
contraints combine," Preprint, 2009, W. Dai, H. Pham, andO. 
Milenkovic, "Distortion-rate functions for quantized com-

10 pressive sensing," Preprint, 2009, or alternative techniques 
for the unsaturated quantized measurements can be used such 
as those proposed in A. Zynmis, S Boyd, and E. Candes, 
"Compressed sensing with quantized measurements," Pre-

15 print, 2009. In some hardware systems, the measurements 
that are acquired following a saturation event can have higher 
distortion than the other unsaturated measurements. This is a 
physical effect of some quantizers and may happen when the 
sample rate is high. In this case, an additionall2 constraint, 

20 ll<i>*x-y*lb<E1 , can be applied where* denotes the indices of 
the measurements immediately following a saturation event 
and where E 1>E. The measurements y* can be determined 
via measured properties of the physical system. 

Saturation can induce unbounded errors in ( <I>u, <I>v) , making 25 

it arbitrarily far away from ( u, v) . Thus, by discarding satu­
rated measurements, the error between these inner products is 
bounded. 1: 

Algorithm 1 SC-CoSaMP greedy algorithm 

Input: y, <1>, and K 
Initialize: X[O] -<-- 0, n -<-- 0 

while not converged do 
4.2 Recovery Via Convex Optimization with Consistency 

Constraints 
Clearly saturation rejection discards potentially useful 

information. Thus, in a second embodiment of the present 
invention, saturated measurements are included but are 
treated differently from the others by enforcing consistency. 
Consistency means that we constrain the recovered signal x 
so that the magnitudes of the values of <I>x corresponding to 
the saturated measurements are greater than G. 

A second preferred embodiment of the present invention 
using saturation consistency is described with reference to 
FIG. 3B. An analog signal 312 is input to or received by a 
compressive analog-to digital converter (ADC) 322. The sig­
nal is quantized at quantizer 332 with a saturation level G that 
is greater than zero. The saturated measurements are identi­
fied 342 for incorporation into the reconstruction algorithm. 
The signal is then reconstructed or estimated 352, for 
example, by software running on a processor, as follows. 

Specifically, lets+ and s- correspond be the sets of indices 

2: 
30 3: 

4: 

5: 

35 

6: 

7: 

40 
8: 

9: 

Compute proxy: 

p ~ q,r (y- <i>x[nl) +'F (G · 1 -.Px[nJ). 
Update coefficient support: 
Q-<-- union of 

• support oflargest 2K coefficients from p 

• support ofx[nJ 

Estimate new coefficient values: 

x[n+ll ~ argminx IIY- <i>Qxlb 2 + IICG · 1 - 4> gxJ.Ib 2 

Prune: 

X[n+l]'-<- keep largest K coefficients ofX[n+l] 

n -<-n+ 1 

end while 

4.3 Recovery Via Greedy Algorithms with Consistency 
45 Constraints 

Greedy algorithms can also be modified to include a satu-

of the positive saturated measurements, and negative satu­
rated measurements, respectively. We define the matrix .f, as 

50 

ration constraint. One example of a greedy algorithm that is 
typically used for sparse recovery is CoSaMP D. Needell and 
J. Tropp, "CoSaMP: Iterative signal recovery from incom­
plete and inaccurate samples," Appl. Comput. Harmon. Anal., 

(5) 

We obtain an estimate x via the program, 

vol. 26, no. 3, pp. 301-321, 2009. In this subsection, we 
introduce Saturation Consistent CoSaMP (SC-CoSaMP), a 
modified version ofCoSaMP that performs consistent recon-

55 struction with saturated measurements. 

CoSaMP estimates the signal ic by finding a coefficient 

x = argminllxiii s.t. ll<l>x- .YII, < E (6a) 60 

support set Q and estimating the signal coefficients over that 
support. The support is found in part by first computing a 
vector p=<I>r(y-<I>x), that allows us to infer large signal coef­
ficients, and hence is called the proxy vector D. Needell and 

and 

<t>x<: G·l, 
(6b) 

where 1 denotes an (M -M)x 1 vector of ones. In words, we are 
looking for the x with the minimum 11 norm such that the 

J. Tropp, "CoSaMP: Iterative signal recovery from incom­
plete and inaccurate samples," Appl. Comput. Harmon. Anal., 
vol. 26, no. 3, pp. 301-321, 2009, and second, by choosing the 

65 support of the largest 2K elements of p. These 2K support 
locations are merged with the support corresponding to the 
largest K coefficients ofx to produce Q. Given Q, CoSaMP 
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estimates the signal coefficients by solving the least squares 
problem: 

x = rnfnll<l> nx- Yll~- (7) 5 

These steps are done successively until the algorithm con­
verges. 

14 

(10) 

Two steps of CoSaMP are modified to produce 
SC-CoSaMP; the proxy step and the coefficient estimate step. 
When computing the proxy vector, SC-CoSaMP enforces 
consistency from the contribution of the saturated measure­
ments. When estimating the coefficients, a constraint on the 
saturated measurements is added to (7). 

This can be achieved via gradient descent or other optimiza­
tion techniques. By employing a one-sided quadratic we 
ensure a soft application of the constraint and ensure the 
program is feasible even in the presence of noise P. Bou­
founos and R. Baraniuk, "1-bit compressive sensing," in 

10 
Proc. Conf Inform. Science and Systems (CISS), Princeton, 
N.J., March 2008. 

15 

In step 7, we keep the largest K coefficients of the signal 
estimate. The algorithm repeats until a convergence condition 
is met. 

As demonstrated, SC-CoSaMP is different from CoSaMP 
in steps 4 and 6. In practice, we have found that applying step 
4 ofSC-CoSaMP to compute p provides a significant increase 
in performance over the equivalent step in CoSaMP, while 
applying step 6 for coefficient estimation provides only a 

The steps of SC-CoSaMP are displayed in Algorithm 1. In 
steps 1 and 2, the algorithm initializes by choosing an esti­
mate x[0 l-O, anN-dimensional vector of zeros, where the 
superscript [ •] denotes iteration. To recover K coefficients, the 
algorithm loops until a condition in step 3 is met. For each 
iteration n, the algorithm proceeds as follows: 

20 marginal performance increase. 

The proxy vector is computed in step 4. This is accom­
plished by computing the sum of two proxy vectors; a proxy 
from y and a proxy that uses the supports of the saturated 
measurements. To compute the proxx_ from y, the same com- 25 
putation as in CoSaMP is repeated, <I>r(y-<I>x[nl), where the 
superscript T denotes the matrix transpose. To compute the 
proxy from the support of the measurements that saturated, 
the saturation residual is introduced, denoted as G·1-<i> x[nJ. 
This vector measures how close the elements of .p x are to G. 30 
In consistent reconstruction, the magnitude of the elements of 
.p x should be greater than or equal to G, however, once these 
are greater than G, the magnitude given by the saturation 
residual cannot be effectively interpreted. 

Thus, consistency is achieved by applying a function that 35 
selects the positive elements of the saturation residual, 

(8) 

5 PROOF OF VALIDITY 

5.1 Proof that Random Measurements are Democratic 
In this section we develop a strong notion of democratic 

measurements and we demonstrate that the random measure­
ment schemes typically advocated in CS are democratic, i.e., 
that each measurement contributes a similar amount of infor­
mation about the signal x to the compressed representation y. 
Our definition significantly strengthens the informal (and 
weak) notion of democracy in the existing literature. 

The fact that random measurements are democratic seems 
intuitive; when using random measurements, each measure­
ment is a randomly weighted sum of a large fraction (or all) of 
the coefficients of x, and since the weights are chosen inde­
pendently at random, no preference is given to any particular 
set of coefficients. More concretely, suppose that the mea-
surements y 1 , y 2 , ... , y M are independent and identically 
distributed (i.i.d.) according to some distribution fy, as is the 
case for the <I> considered in this paper. Now suppose that we 

{ 
0, y; < 0 

(y;)+ = y;, y; <: 0, 

where the function is applied element-wise when operating 
on a vector. 

40 select M<M of they, at random (or according to some proce­
dure that is independent ofy). Then we are left with a length­
M measurement vector y such that each y,-f y· Stated another 
way, if we set D=M-M, then there is no difference between 

By combining the proxies from y and the saturated mea- 45 
surement supports, the proxy vector of step 4 is 

collecting M measurements and collecting M measurements 
and deleting D of them, provided that this deletion is done 
independently of the actual values ofy. 

p=<f>T(Y-<f>x[n])+<i> T(G·1-<i> x[n]).. (9) 

In this arrangement, the elements of .p x that are below G will 
contribute new information to p, however, elements that are 
greater than G will be set to zero, and therefore do not con­
tribute additional information to p. We note that a similar 
computation can be made in the IHT algorithm T. Blumensath 
and M. Davies, "Iterative hard thresholding for compressive 
sensing," Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 
265-274, 2009. 

In step 5, the new coefficient support Q is found by taking 
the union of the support of the largest 2K coefficients of p and 
the support ofx[nJ. This results in a support set Q with at most 
3K elements. This step ensures that if coefficients were incor­
rectly chosen in a previous iteration, they can be replaced. 

In step 6 new coefficient values are estimated by finding the 

However, following this line of reasoning will ultimately 
lead to a rather weak definition of democracy. To see this, 
consider the case where the measurements are deleted by an 

50 adversary. Since by adaptively deleting the entries of y one 
can change the distribution of y, the adversary can delete the 
D largest elements of y, thereby skewing the distribution of y. 
In many cases, especially if the same matrix <I> will be used 
repeatedly with different measurements being deleted each 

55 time, it would be far better to know that any M measurements 
will be sufficient to robustly reconstruct the signal. 

This is a significantly stronger requirement. Our aim is to 
formalize this property using the RIP, and then to demonstrate 
that random matrix constructions most commonly used in CS 

60 do indeed satisfy this property. Thus, we begin with the for­
mal definition of democracy. 

x that minimizes II<I>Qx-yll/. Thus in CoSaMP, new coeffi­
cient values are estimated via <I>Q y, where \ denotes the 
Moore-Penrose pseudo-inverse, i.e., <I>Q 1=(<I>Qr<I>Qr 1<I>Q r. 65 
We reformulate this step to include the saturation constraint. 
Specifically, step 6 of SC-CoSaMP finds the solution to 

Definition 2 

Let <I> be and MxN matrix, and let M~M be given. We say 
that <I> is (M, K, a)-democratic iffor all r such that r~M: the 
matrix <I>r satisfies the RIP of order K with constant o. 
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Towards this end, we let r c { 1, 2, ... , M} be an arbitrary 
subset ofrows such that lri=M. Define A={1, 2, ... , M}\r 
and note that IAI=D. Additionally, let 

(12) 

If <I> is (M, 2K, a)-democratic, then both approaches 
described in Section ?? will recover sparse and compressible 
signals. In particular, the democracy property implies that any 
MxN submatrix of <I> has RIP, and in particular that <i> satisfies 
the RIP. Thus, if o<Y2-1, it immediately follows from Thea- 5 

rem 1 that the rejection approach ( 4) yields a recovered signal 
that satisfies (1) whenever the number of unsaturated mea­
surements exceeds M. Furthermore, under the same condi-

be the orthogonal projector onto R (AA), i.e., the range, or 
tions, we also have that (6) yields a recovered signal (1). This 

10 column space, of AA. Furthermore, we define 
can be seen by observing that the proof of Theorem 1 in E. 
Candes, "The restricted isometry property and its implica-
tions for compressed sensing," Comptes rendus de 
l'Academie des Sciences, Serie I, vol. 346, no. 9-10, pp. 
589-592, 2008 essentially depends on only three facts: (i) that 

15 
the original signal x is in the feasible set, so that we can 
conclude (ii) that llxll 1 ~llxllu and finally (iii) that II<I>x­
<I>xlb~E, where <I> can be any matrix that satisfies the RIP of 
order 2K with constant o<Y2-1. Since <I> is democratic we 
have that (iii) holds for <i> regardless of whether we incorpo- 20 

rate the additional constraints. Since the original signal x will 
remain feasible in (6), (i) and (ii) will also hold. 

(13) 

as the orthogonal projector onto the orthogonal complement 
of R (AA). In words, this projector nulls the columns of A 
corresponding to the index set A. Now, note that A c {1, 
2, ... , M}, soAA=IA. Thus, 

where we use I(A) to denote the MxM matrix with all zeros 
except for ones on the diagonal entries corresponding to the 
columns indexed by A. (We distinguish the MxM matrix I(A) Note that the two approaches will not necessarily produce 

the same solution. This is because the solution from the rejec­
tion approach may not lie in the feasible set of solutions of the 
consistent approach (6). However, the reverse is true. The 
solution to the consistent approach does lie in the feasible set 

25 from the MxD matrix I11.-in the former case we replace 
columns not indexed by A with zero colunms, while in the 
latter we remove these colunms to form a smaller matrix.) 
Similarly, we have 

of solutions to the rejection approach. While we do not pro­
vide a detailed analysis that compares the performance of 30 
these two approaches, we expect that the consistent approach 
will outperform the rejection approach since it incorporates 
additional information about the signal. We provide experi­
mental confirmation of this in Section 6. 

P A j_=l-P A =I(r). 

Thus, we observe that the matrix pA_l_ A=I(r)A is simply the 
matrix A with zeros replacing all entries on any row i such that 
i $. r, i.e., (P A _j_ Al =Ar and (P A _j_ A)A=O. Furthermore, Theo­
rem 2 from M. Davenport, P. Boufounos, and R. Baraniuk, 

We now demonstrate that certain randomly generated 
matrices are democratic. While the theorem actually holds 
(with different constants) for the more general class of sub­
Gaussian matrices, for simplicity we restrict our attention to 
Gaussian matrices. 

35 
"Compressive domain interference cancellation," in Struc­
ture et parcimonie pour la representation adaptative de sig­
naux (SPARS), Saint-Malo, France, April2009 states that for 
A satisfYing the RIP of order K+D with constant o, we have 
that 

40 
Theorem 2. 

(1- -0-)llull~ s IIF;;Aull~ s (1 + 6JIIull~. 1-6 
(14) 

Let <I> by an MxN matrix with elements <I> if drawn accord­
ing to N (0, 1/M) and let M~M, K <M, and o E (0, 1) be 
given. Define D=M-M. If 

(
N+M) M = C1 (K +D)1og --, 
K+D 

(11) 

45 holds for all u E lR: N+M such that llullo=K+D-IAI=K and 
supp(u) n A=O. Equivalently, lettingAc={1, 2, ... , N+M}\A, 
this result states that (I(r)A)A" satisfies the RIP of order K 
with constant o/(1-o). To complete the proof, we note that if 
(I(r)A)A" satisfies the RIP of order K with constant o/(1-o), 

then with probability exceeding 1-3e-c,M we have that <I> is 
(M, K, o/(1-o))-democratic, where C1 is arbitrary and C2 -(o/ 
8)2 -log( 42e/o)/C1 . 

Proof. 

50 then we trivially have that I(r)<I> also has the RIP of order at 
least K with constant o/(1-o), since I(r)<I> is just a submatrix 
of (I(r)A)A"· Note that this trivially implies that the RIP of 
I(r)<I> holds for lrl ~M. Since III(r)<I>xlb=II<I>r xlb, this estab­
lishes the theorem. 

55 
Our proof consists of two main steps. We begin by defining 

the Mx(N + M) matrix A =[I <I>] formed by appending <I> to the 
MxM identity matrix. Theorem 1 from J. Laska, M. Daven­
port, and R. Baraniuk, "Exact signal recovery from corrupted 
measurements through the pursuit of justice," in Proc. Asilo- 60 

mar Conf on Signals Systems and Computers, Asilomar, 
Calif., November 2009 demonstrates that under the assump­
tions in the theorem statement, with probability exceeding 
1-3e-c,M wehavethatA satisfies the RIP of order K+D with 
constant o. The second step is to use this fact to show that all 65 

possible MxN submatrices of <I> satisfy the RIP of order K 
with constant o/(1-o). 

5.2 Robustness and Stability 
Observe that we require roughly O(D log(N)) additional 

measurements to ensure that <I> is (M, K, a)-democratic com­
pared to the number of measurements required to simply 
ensure that <I> satisfies the RIP of order K. This seems intui-
tive; if we wish to be robust to the loss of any D measurements 
while retaining the RIP of order K, then we should expect to 
take at least D additional measurements. This is not unique to 
the CS framework. For instance, by oversampling, i.e., sam­
pling faster than the minimum required Nyquist rate, uniform 
sampling systems can also improve robustness with respect to 
the loss of measurements. Reconstruction can be performed 
in principle on the remaining non-uniform grid, as long as the 
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remaining samples satisfy the Nyquist range on average F. 
Beutler, "Error-free recovery of signals from irregularly 
spaced samples," SIAM Rev., val. 8, pp. 328-335, July 1966. 

18 
2. the rejection approach, discarding saturated measure­

ments before reconstruction with (4); and 
3. the consistent approach, incorporating saturated mea-

surements as a constraint in the program (6). 
In this section we compare these approaches via a suite of 
simulations to demonstrate that, on average, using the satu­
ration constraint outperforms the other approaches for a given 
saturation level G (or equivalently, a given signal gain). Note 
that for a scalar quantizer with a fixed number B of bits per 

However, linear reconstruction in such cases is known to be 
unstable. Furthermore the linear reconstruction kernels are 
difficult to compute. Under certain conditions stable non­
linear reconstruction is possible, although this poses further 
requirements on the subset set of samples that can be lost and 
the computation can be expensive A. Aldroubi and K. Grii­
chenig, "Nonuniform sampling and reconstruction in shift­
invariant spaces," SIAM Rev., val. 43, no. 4, pp. 585-620, 
2001. For example, dropping contiguous groups of measure­
ments can be a challenge for the stability of the reconstruction 
algorithms. Instead, the democratic principle of CS we just 
proved allows dropping of an arbitrary subset D of the mea- 15 

surements without compromising the reconstruction stability, 
independent of the way these measurements are chosen, even 

10 sample, varying the quantizer saturation level G is exactly 
equivalent to varying the signal gain and keeping the satura­
tion level G constant. Our main findings include: 

if chosen adversarially. 
In some applications, this difference may have significant 

impact. For example, in finite dynamic range quantizers, the 20 

measurements saturate when their magnitude exceeds some 
level. Thus, when uniformly sampling with a low saturation 
level, if one sample saturates, then the likelihood that any of 
the neighboring samples will saturate is high, and significant 
oversampling may be required to ensure any benefit. How- 25 

ever, in CS, if many adjacent measurements were to saturate, 
then for only a slight increase in the number of measurements 
we can mitigate this kind of error by simply rejecting the 
saturated measurements; the fact that <I> is democratic ensures 
that this strategy will be effective. 30 

Theorem 2 further guarantees graceful degradation due to 
loss of samples. Specifically, the theorem implies that recon­
struction from any subset of CS measurements is stable to the 
loss of a potentially larger number of measurements than 
anticipated. To see this, suppose that and MxN matrix <I> is 35 

(M-D, K, a)-democratic, but consider the situation where 
D+ D measurements are dropped. It is clear from the proof of 
Theorem 2 that if D<K, then the resulting matrix <I>r will 
satisfY the RIP of order K-D with constant o. Thus, from E. 
Candes, J. Romberg, and T. Tao, "Stable signal recovery from 40 

incomplete and inaccurate measurements," Camm. Pure and 
Appl. Math., vol. 59, no. 8, pp. 1207-1223,2006, if we define 
K=(K-D)/2, then the reconstruction error is then bounded by 

llx-x-11 
11x-xll2 s c, Ji 1

, 

(15) 
45 

In many cases the optimal performance for the consistent 
and rejection approaches is superior to the optimal per­
formance for the conventional approach and occurs 
when the saturation rate is nonzero. 

The difference in optimal performance between the con­
sistent and rejection approaches is small for a given ratio 
of MIN. 

The consistent reconstruction approach is more robust to 
saturation than the rejection approach. Also, for a large 
range of saturation rates, consistent reconstruction out­
performs the conventional approach even if the latter is 
evaluated under optimal conditions. 

We find these behaviors for both sparse and compressible 
signals and for both optimization and greedy recovery algo­
rithms. 

6.1 Experimental Setup 
Signal Model: 
We study the performance of our approaches using two 

signal classes: 
K-sparse: in each trial, K nonzero elements xn are drawn 

from an i.i.d. Gaussian distribution and where the loca­
tions n are randomly chosen; 

weak lP -compressible: in each trial, elements xn are first 
generated according to 

(16) 

for p~ 1 where v m is a ±1 Rademacher random variable. 
The positions n are then permuted randomly. 

Once a signal is drawn, it is normalized to have unit 12 norm. 
Aside from quantization we do not add any additional noise 
sources. 
Measurement Matrix: 

For each trial a measurement matrix is generated using an 
i.i.d. Gaussian distribution with variance 1/M. Our extended 
experimentation, not shown here in the interest of space, 
demonstrates consistent results across a variety of measure­
ment matrix classes including i.i.d. ±1 Rademacher matrices 

where Xg denotes the best K -term approximation of X and c3 50 and other sub-Gaussian matrices, as well as the random 
demodulator and random time-sampling. is an absolute constant depending on <I> that can be bounded 

using the constants derived in Theorem 2. Thus, ifD is small 
then the additional error caused by dropping too many mea­
surements will also be relatively small. To our knowledge, 
there is simply no analog to this kind of graceful degradation 55 

result for uniform sampling with linear reconstruction. When 
the number of dropped samples exceeds D, there is are no 
guarantees as to the accuracy of the reconstruction. 

6 PROOF OF CONCEPT EXPERIMENTS 

In the previous sections, we discussed three approaches for 
recovering sparse signals from finite-range, quantized CS 
measurements; 

1. the conventional approach, scaling the signal so that the 
saturation rate is zero and reconstructing with the pro­
gram (3); 

60 

Reconstruction Metric: 
We report the reconstruction signal-to-noise ratio (SNR) in 

decibels (dB): 

~ ( llxll~ ) SNR = 10log10 --A - 2 , 

llx-xll2 

(17) 

where x denotes the reconstructed signal. 
6.2 Reconstruction SNR: K-Sparse Signals 
We compare the reconstruction performance of the three 

approaches by applying each to the same set of measure-
65 ments. We fix the parameters, N=1024, K=20, and B=4 and 

vary the saturation level parameter Gover the range [0, 0.4]. 
We varied the ratio MIN in the range [1/6,1] but plot results 
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for only the three ratios M/N=2/16, 6/16, and 15/16 that 
exhibit typical behavior for their regime. For each parameter 
combination, we performed 100 trials, and computed the 
average performance. The results were similar for other 
parameters, thus those experiments are not displayed here. 

The experiments were performed as follows. For each trial 
we draw a new sparse signal x and a new matrix <I> according 
to the details in Section 6.1 and compute y=<I>x. We quantize 
the measurements using a quantizer with saturation level G 
and then use them to reconstruct the signal using the three 10 

approaches described above. In each approach, E is chosen to 
be the noise norm induced by quantization, and saturation 
error is included in the conventional case. The reconstructions 
were performed using CVX, a general purpose optimization 

15 
package. 

FIG. 4A, FIG. 4B, and FIG. 4C display the reconstruction 
SNR performance of the three approaches in dB for M/N=2/ 
16, M/N=6/16, M/N=15/16, respectively. The solid line 
depicts the conventional approach, the dashed line depicts the 20 

rejection approach, and the dotted line depicts the consistent 
approach. Each of these lines follow the scale on the left 
y-axis. The dashed-circled line denotes the average saturation 
rate, (M-M)/M, and correspond to the right y-axis. In FIG. 
4A, the three lines meet at G=0.25, as expected, because the 25 

saturation rate is effectively zero at this point. This is the 
operating point for the conventional approach and is the larg-

20 
forp= 1 the highest SNR occurs at a saturation rate of 5%. This 
means that the smaller the p, the more the measurements 
should be allowed to saturate. 

6.4 Robustness to Saturation 
We also compare the optimal performance of the rejection 

and consistent reconstruction approaches. First, we find the 
maximum SNR versus MIN for these approaches and dem­
onstrate that their difference is small. Second, we determine 
the robustness to saturation of each approach. Because these 
experiments require many more trials than in the previous 
experiments, we use SC-CoSaMP from Section 4.3 for the 
consistent approach and CoSaMP for the rejection and con­
ventional approaches. 

We experimentally measure, by tuning G, the best SNR 
achieved on average for the three strategies. The experiment 
is performed as follows. Using the same parameters as in the 
K-sparse experiments, for each value of M and for each 
approach, we search for the saturation level G that yields the 
highest average SNR and report this SNR. This is equivalent 
to finding the maximum point on each of the curves of each 
plot in FIGS. 4A-C but over a larger range ofM. 

FIG. 6A depicts the results of this experiment. The solid 
curve denotes the best performance for the conventional 
approach; the dashed curve denotes the performance with 
saturation rejection; and the dotted curve denotes the perfor­
mance with the constraint. For these parameters, in the best 
case, saturation rejection can improve performance by 20 dB, 
and the saturation constraint can improve performance over 
the conventional case by 23 dB. 

There are two important implications from this experi-
ment. First, when the number of measurements exceeds the 
minimum required number of measurements, then intention­
ally saturating measurements can greatly improve perfor­
mance. Second, in terms of the maximum SNR, the consistent 

est SNR value for the solid line. In this case, only the consis­
tent approach obtains SNRs greater than the conventional 
approach. In FIG. 4B, the three linesmeetatG=0.15. Both the 30 

consistent and the rejection approaches achieve their optimal 
performance at around G=0.1, where the saturation rate is 
0.09. In FIG. 4C, the three lines meet at G=0.1 and both the 
consistent and rejection approaches achieve their optimal 
performance at G=0.06. 35 approach performs only marginally better than the rejection 

approach, assuming that the quantizer operates under the 
optimal saturation conditions for each approach. 

The implications of this experiment are threefold: First, the 
saturation constraint offers the best approach for reconstruc­
tion. Second, if the signal is very sparse or there is an excess 
of measurements, then saturated measurements can be 
rejected with negligible loss in performance. Third, if given 40 

control over the parameter G, then the quantizer should be 
tuned to operate with a positive saturation rate. 

6.3 Reconstruction SNR: Compressible Signals 
In addition to sparse signals, we also compare the recon­

struction performance of the three approaches with com- 45 

pressible signals. As in the strictly sparse experiments, we use 
CVX for reconstruction Similar to the sparse reconstruction 
experiments, we choose the parameters, N=1 024, M/N=6/16, 
and B=4 and vary the saturation level parameter G over the 
range [0, 0.4]. The decay parameter pis varied in the range 50 

[0.4, 1], but we will discuss only three decays p=0.4, 0.8, and 
1. Some signals are known to exhibit pin (16) in this range, 
for instance, it has been shown that the wavelet coefficients of 
natural images have decay rates between p=0.3 and p=0.7 R. 
DeVore, B. Jawerth, and B. Lucier, "Image compression 55 

through wavelet transform coding," IEEE Trans. Inform. 
Theory, vol. 38, no. 2, 1992. For each parameter combination, 

In practice it may be difficult to efficiently determine or 
maintain the saturation level that achieves the maximum 
SNR. In those cases, it is beneficial to know the robustness of 
each approach to changes in the saturation rate. Specifically, 
we compare the range of saturation rates for which the two 
approaches outperform the conventional approach when the 
latter is operating under optimal conditions. 

This experiment first determines the maximum SNR 
achieved by the conventional approach (i.e., the solid curve in 
FIG. 6A). Then, for the other approaches, we increase the 
saturation rate by tuning the saturation level. We continue to 
increase the saturation rate until the SNR is lower than the 
best SNR of the conventional approach. 

The results of this experiment are depicted in FIG. 6B. The 
dashed line denotes the range of saturation rates for the rej ec­
tion approach and the dotted line denotes the range of satu­
ration rates for the consistent approach. At best, the rejection 
approach achieves a range of [0, 0.6] while the consistent 
approach achieves a range of[O, 0.9]. Thus, these experiments 
show that the consistent approach is more robust to saturation 
rate. 

The foregoing description of the preferred embodiment of 
we perform 100 trials, and compute the average performance. 
The experiments are performed in the same fashion as with 
the sparse signals. 

For signals with smallerp, fewer coefficients are needed to 
approximate the signals with low error. This also implies that 
fewer measurements are needed for these signals. The plots in 
FIGS. SA-C reflect this intuition. FIG. SA, FIG. SB, and FIG. 

60 the invention has been presented for purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed, and modifications 
and variations are possible in light of the above teachings or 

SC depict the results forp=0.4, p=0.8, and p=1, respectively. 65 

The highest SNR for p=0.4 is achieved at a saturation rate of 
17%, while forp=0.8 the saturation rate canonlybe 13%, and 

may be acquired from practice of the invention. The embodi­
ment was chosen and described in order to explain the prin­
ciples of the invention and its practical application to enable 
one skilled in the art to utilize the invention in various 
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en:b?diments as are suited to the particular use contemplated. 
It 1s mtended that the scope of the invention be defined by the 
claims appended hereto, and their equivalents. The entirety of 
each of the aforementioned documents is incorporated by 
reference herein. 

What is claimed is: 
1. A method for acquiring signals comprising the steps of: 
amplifYing a signal; 
measuring the amplified signal with compressive sensing 

to produce a plurality of compressive sensing measure- 10 

ments, said measurements comprising a plurality of 
saturated measurements and a plurality of unsaturated 
measurements; 

identifYing said plurality of saturated measurements; 
reconstructing said signal by treating said plurality of satu- 15 

rated measurements separately from said plurality of 
unsaturated measurements, wherein said reconstructing 
step comprises the step of: 

incorporating said plurality of saturated measurements as a 
reconstruction constraint in a reconstruction algorithm. 20 

2. A method for acquiring signals comprising the steps of: 
amplifYing a signal; 
measuring the amplified signal with compressive sensing 

to produce a plurality of compressive sensing measure­
ments, said measurements comprising a plurality of 25 

saturated measurements and a plurality of unsaturated 
measurements; 

identifYing said plurality of saturated measurements; 
reconstructing said signal by treating said plurality of satu­

rated measurements separately from said plurality of 30 

unsaturated measurements 

22 
5. A method for acquiring signals according to claim 4 

wherein said amplifYing step is controlled by an automati~ 
gain control system. 

6. A method for recovering a signal comprising the steps of: 
measuring a signal to produce a plurality of compressive 

sensing measurements, wherein said plurality of com­
pressive sensing measurements comprises saturated 
measurements and unsaturated measurements· 

discarding said saturated measurements from said plurality 
of compressive sensing measurements; and 

reconstructing said signal from remaining measurements 
from said plurality of compressive sensing measure­
ments; 

wherein said amplifYing step comprises amplifYing said 
signal a sufficient amount to ensure that said measuring 
step will produce a plurality of saturated measurements. 

7. A method for recovering a signal according to claim 6, 
further comprising the step of amplifying said signal prior to 
said measuring step. 

8. A method for recovering a signal comprising the steps of: 
measuring a signal to produce a plurality of compressive 

sensing measurements, wherein said plurality of com­
pressive sensing measurements comprises saturated 
measurements and unsaturated measurements· 

identifYing saturated measurements in said pl~ality of 
compressive sensing measurements; and 

reconstructing said signal from both said saturated mea-
surements and said unsaturated measurements wherein 
said recovered signal is constrained such th~t magni­
tudes of values corresponding to said identified satu­
rated measurements are greater than a predetermined 
value. wherein said reconstructing comprises the steps of: 

discarding said plurality of saturated measurements and 
using only said plurality of unsaturated measurements in 
a reconstruction algorithm. 

9. A method for recovering a signal according to claim 8, 
further comprising the step of amplifying said signal prior to 

35 said measuring step to introduce substantial saturation error. 

3. A method for acquiring signals according to claim 1, 
wherein said reconstruction algorithm comprises a greedy 
algorithm. 

4. A method for acquiring signals comprising the steps of: 
amplifYing a signal; 
measuring the amplified signal with compressive sensing 

to produce a plurality of compressive sensing measure­
ments, said measurements comprising a plurality of 
saturated measurements and a plurality of unsaturated 
measurements; 

identifYing said plurality of saturated measurements; 
reconstructing said signal by treating said plurality of satu­
rated measurements separately from said plurality of unsat­
urated measurements; 

wherein said amplifYing step comprises the step of ampli­
fYing said signal a preselected amount to intentionally 
produce a plurality of saturated measurements at mea­
suring step. 

10. A method for recovering a signal according to claim 8, 
wherein said amplifying step comprises amplifYing said sig­
nal a sufficient amount to ensure that said measuring step will 
produce a plurality of saturated measurements. 

40 11. A method for acquiring signals according to claim 8 
wherein said reconstruction algorithm comprises a greed; 
algorithm. 

12. A method for acquiring signals according to claim 2, 
wherein said amplifYing step comprises the step of amplifY-

45 ing said signal a preselected amount to intentionally produce 
a plurality of saturated measurements at measuring step. 

13. A method for acquiring signals according to claim 12, 
wherein said amplifYing step is controlled by an automatic 
gain control system. 

so 14. A method for acquiring signals according to claim 4 
wherein said reconstruction algorithm comprises a greed; 
algorithm. 

* * * * * 


