
Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Symbol timing synchronization for OFDM-based WLAN systems
Gadhiok, Manik
ProQuest Dissertations and Theses; 2008; ProQuest Dissertations & Theses (PQDT)
pg. n/a

RICE UNIVERSITY 

Symbol Timing Synchronization for OFDM-based 
WLAN Systems 

by 

Manik Gadhiok 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Master of Science 

ApPROVED, THESIS COMMITTEE: 

avallaro, Chair 
Professor of Electrical and Computer 
Engineering 

Behnaam Aazhang 
J.S. Abercrombie Professor, 
Chair of Electrical and 

Kartik Mo anr 
Assistant P essor of Electrical and 
Computer Engineering 

Houston, Texas 

July, 2007 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

UMI Number: 1455238 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 1455238 

Copyright 2008 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, MI 48106-1346 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ABSTRACT 

Symbol Timing Synchronization for OFDM-based WLAN Systems 

by 

Manik Gadhiok 

In this work, we address the problem of symbol timing synchronization for Or­

thogonal Frequency Division Multiplexing (OFDM) WLAN systems. OFDM systems 

are known to be sensitive to synchronization errors and improving the accuracy of 

timing offset estimation can help improve the overall system performance. 

We propose a method that reduces computational complexity while achieving 

performance comparable to the autocorrelation method commonly employed at the 

wireless receiver. The proposed method is based on the average magnitude differ­

ence function (AMDF). We present performance results for the proposed method for 

AWG Nand Raleigh-fading channels in the context of IEEE 802.11 a short preamble se­

quence. We also propose a preamble sequence based on Golomb sequence, a sequence 

with low auto-correlation properties, and compare its timing estimation performance 

with that of the IEEE 802.11a short-sequence. Simulation results show significant 

performance improvements for AWGN as well as Raleigh-fading channels. 

We also present an experimental Field-Programmable Gate Array (FPGA) im­

plementation of the symbol timing estimation block using a Intermediate-frequency 

based hardware transceiver and LabVIEW using fixed-point arithmetic. 
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Chapter 1 

Introd uction 

This work addresses symbol timing synchronization for OFDM Wireless Local Area 

Networks (WLANs). We present a low-complexity method for estimating the timing 

offset that has performance comparable with the traditional auto-correlation based 

methods. Also, a preamble sequence based on Golomb sequence is proposed that 

exhibits low auto-correlation properties and results in better estimation performance 

at the receiver. Finally, a Field Programmable Gate Array (FPGA) based hardware 

prototype for this task is presented. 

Orthogonal Frequency Division Multiplexing (OFDM) systems have gained pop­

ularity over the last few years for broadband wireless communication. Wireless Local 

Area Networks (WLAN) such as IEEE 802.11a [2] and HiperLanA [3] [4] have been 

designed and deployed successfully, along with some more recent standards such as 

IEEE 802.11n, IEEE 802.16 etc. for WLAN and Wireless Metropolitan Area Net­

works (WMAN) systems. By employing OFDM, these wireless communication sys­

tems strive to achieve good spectral efficiency, high data-rates, robust communication, 

and relatively lower computational complexity. 

With the communication and signal processing algorithms research working to 

establish wireless communication links that can support data rates closer to the chan­

nel capacity, more signal processing capabilities are required at the wireless receiver. 

From a hardware designer's standpoint, architecture design and system prototyping 

are a key to support these algorithm advances, while meeting the size, battery life 
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and real-time budgets. 

Orthogonal Frequency Division Multiplexing has proved to be an enabling technol­

ogy for high data rate wireless communication networks [5]. Wireless LAN standards 

such as IEEE 802. lla/g/n as well as broadband wireless access systems such as IEEE 

802.16 use OFDM modulation. Because of the bursty nature of data transmission and 

fast acquisition times needed, preamble-based methods are used to acquire symbol 

timing and carrier frequency synchronization. The sensitivity of OFDM receiver per­

formance to symbol timing estimation and carrier frequency offset (CFO) estimation 

errors is well known [6] [7]. 

1.1 Thesis Contributions 

The main contributions of this work are as follows. We address symbol timing syn­

chronization issues for OFDM Wireless Local Area Networks (WLAN). We present 

a method for preamble-based symbol timing synchronization that exhibits lower­

complexity and performs comparable to existing methods. Further, we present sim­

ulation results showing that a performance improvement can be achieved in WLAN 

systems by replacing the short symbols with low-autocorrelation sequences, for ex­

ample, Golomb sequence. An FPGA-based hardware implementation of the symbol 

timing synchronization block is done using an intermediate frequency (IF) transceiver 

built around Xilinx Virtex-II Pro FPGA and LabVIEW software. 

1.2 Thesis Organization 

The thesis is organized as follows. The OFDM communication system being con­

sidered and overview of symbol timing estimation are described in Chapter 2. In 

Chapter 3, we present the proposed timing synchronization method along with simu-
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lation results and complexity analysis. We also present an application of a sequence 

known to have good periodic correlation properties (Golomb sequence) to the prob­

lem of symbol timing estimation in the context of WLAN systems. The performance 

benefits of this preamble are discussed. In Chapter 4, we introduce the NI-5640R 

FPGA-based system hardware and the LabVIEW design environment. In Chapter 5, 

we present a hardware implementation of the symbol timing synchronization block. 

Finally, we end with conclusions and future work in Chapter 6. 
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Chapter 2 

Symbol Timing Synchronization in OFDM 
Systems 

4 

In this chapter, we provide details of the wireless system considered in this work. We 

begin with the fundamentals of Orthogonal Frequency-Division Multiplexing (OFDM) 

technique in the context of Wireless Local Area Networks (WLAN) systems. Next, 

we consider the timing synchronization problem and the general receiver architecture 

for synchronization. Finally, we put the timing synchronization in context with an 

example of the training sequence and metric used for achieving coarse symbol timing 

estimation in an IEEE 802.11a receiver. 

2.1 Overview of OFDM WLAN Systems 

Wireless communication is increasingly becoming an integral part of our lives. By 

allowing for communication without wires, a wireless system may require lesser in-

frastructure, allow faster deployment, support more dynamic network usage, and 

roaming. Some of these wireless systems might be ad-hoc in nature, such as net-

works set-up to aid emergency workers; others might be more or less fixed with some 

roaming or mobility among users. Mobile phones allow users to communicate while 

moving at highway speeds and are supported by fixed infrastructure. High-definition 

digital TV viewers may receive signals from the satellite where the receiver position 

is assumed fixed relative to the satellite. 

For a successful wireless communication system, the system design depends on 
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the nature of the communication system and usage. The signal processing algorithms 

and hardware necessary for a broadcast digital TV network, such as DVB-T, may 

be quite different from that necessary for an ethernet-based wireless LAN system. 

While a wireless receiver in a broadcast network may rightly assume that data is 

being transmitted continously, a WLAN receiver should deal with the bursty or onloff 

nature of the data transmission. 

For our work, we focus on wireless LANs. Wireless local area networks (WLANs), 

generally have fixed base-stations and allows users to connect to the internet using 

standard protocols, such as IEEE 802.11a. WLAN users generally don't require sup­

port for high mobility and can be assumed to be more or less stationary. Orthogonal 

frequency division multiplexing is one of the modulation schemes used for WLAN 

communication systems. 

Wireless broadband networks, wireless personal area networks, and wireless local 

area networks are among the many applications where OFDM has been deployed 

or proposed as a standard. These include IEEE 802.16 Wireless metropolitan area 

networks (IEEE 802.16 WMAN) , IEEE 802.11a/n, WiMAX and IEEE 802.15 WPAN. 

2.1.1 Orthogonal Frequency Division Multiplexing (OFDM) 

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme where 

the broadband wireless channel is subdivided into multiple parallel lower-data rate 

channels. The OFDM transmitter modulates information separately on each sub­

channel by considering the signal bandwidth as comprised of multiple parallel chan­

nels. The sub-channels, also known as sub-carriers, are equally spaced, the sub-carrier 

spacing being an important parameter. Employing orthogonal sub-carriers allows an 

OFDM system to pack sub-carriers close to each other without causing any degra-
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dation in performance. This increases the spectral efficiency, although the receiver 

performance is affected if the orthogonality between sub-carriers is not maintained 

due to effects of the wireless channel [6]. Figure 2.1 illustrates the concept of OFDM 

with 7 orthogonal sub-carriers. The dotted lines represent the center frequency for 

each of the sub-carriers. These are the ideal sample points; as shown in Figure 2.1, the 

contribution of all the other sub-carriers at these points is zero. If due to synchroniza-

tion errors, the signal was sampled at some offset from these center frequencies, there 

would be a loss of orthogonality among the sub-carriers and consequent degradation 

in performance [6] [8]. 

Figure 2.1 : Illustration of orthogonal sub-carriers in OFDM signal 

OFDM communication systems are inherently more robust to impulse-noise and 

narrow-band interference. Also, by appending a cyclic prefix in the time-domain 

signal representation, the system is able to mitigate inter-symbol interference and 

improve sensitivity against multi path fading. 
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From an architecture standpoint, an OFDM receiver is more amenable for hard-

ware implementation. As communication systems push for higher data-rates using 

techniques such as ffiulti-antenna systems [9], the signal processing required at the 

receiver becomes increasingly complex. The robustness of OFDM systems to channel 

distortion results in reducing the complexity of channel equalization needed at the 

receiver [10] [9]. Also, because OFDM uses Fourier transform, an efficient implemen-

tation using the Fast Fourier transform (FFT) algorithm is feasible [9]. 

The added flexibility in OFDM, whereby a sub-set of the sub-carriers can be 

turned off, is noteworthy. This facilitates having a common wireless system that can 

work across multiple geographies having different frequency licensing restrictions. 

The multi-band OFDM initiative can turn-off spectrum for taking advantage of this 

feature, as well as for protecting certain critical frequency bands [11]. Additionally, 

there has been a lot of interest recently in the area of cognitive radios and dynamic 

spectrum sharing. The flexibility of the OFDM system makes it a strong candidate 

for these systems [12]. 

2.1.2 OFDM for Wireless LANs 

We consider a packet-based OFDM transmission system. The nth sample of the mth 

OFDM symbol can be represented as the inverse Discrete Fourier Transform (IDFT) 

of the complex data vector dm,o .. dm,N-l 

N-l 
xm(n) = L dm,kexp(j2IIkn/N) (2.1) 

k=O 

where 0 ~ n ~ N -1. Here N represents the number of sub-carriers or equivalently the 

length of the DFT. A cyclic prefix of length Ng is added to give the mth transmitted 

OFDM symbol Xm = [Xm,N-Ng , ••• , Xm,N-l, xm,o" Xm,N-l] . A preamble sequence is 
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inserted at the beginning of each frame of data before transmission. The transmitted 

signal passes through the quasi-static wireless multi path-channel, assumed constant 

over one OFDM symbol, and additive white Gaussian noise (AWGN) is added. In 

the absence of any synchronization errors, the receiver can perform a DFT in order 

to recover the original data vector. In practice, the DFT and IDFT operations are 

implemented using the Fast Fourier Transform (FFT) algorithm. 

Because of the bursty nature of data transmission and fast acquisition times 

needed, preamble-based methods are used to acquire symbol timing and carrier fre­

quency synchronization. The sensitivity of OFDM receiver performance to symbol 

timing estimation and carrier frequency offset (CFO) estimation errors is well known. 

2.1.3 Wireless System Parameters 

The IEEE standard body has proposed many standards based on OFDM that are used 

for WLAN and wireless metropolitan area networks (WMAN). These include IEEE 

802.11a/g/n and IEEE 802.16 We have chosen the IEEE 802.11a system, though the 

recent IEEE 802.11n standard also has similar system parameters All of these packet­

based OFDM communication systems require a preamble-sequence to be prefixed to 

the transmitted signal to facilitate fast signal acquistion and recovery of received 

signal. The system parameters are shown in Table 2.1. 

2.2 System Model 

Here we describe the wireless communication system under consideration. Figure 2.2 

shows the block diagram of the transmitter. The data or information bits are mapped 

using conventional modulation such as Quadrature Phase Shift Keying (QPSK), 

Quadrature Amplitude Modulation (QAM). These symbols are then modulated using 
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Table 2.1 : OFDM system parameters 

II Parameter Name I Parameter Value I 

OFDM Symbol Duration 3.2 microseconds 

Guard Interval 0.8 microseconds 

FFT Size 64 

Number of data sub-carriers 52 

Sub-carrier spacing 312.5 kHz 

Sampling Rate l/T 

Modulation Scheme QPSK 

the Inverse fourier transform (IFFT) operation. The IFFT is a block operation and 

modulates N parallel data streams, where N is the size of the transform. A guard in-

terval is appended to the transform output to form a complete OFDM symbol. Next, 

the frame is generated by appending a preamble sequence to one or more OFDM data 

symbols. The preamble sequence helps the receiver in packet detection, synchroniza-

tion and channel estimation tasks. We discuss the preamble sequence structure and 

its use at the receiver in Chapter 3. Finally, the baseband signal undergoes over­

sampling, pulse-shaping, and digit al-to-analog conversion (D / A) and transmission 

occurs. 

At the receiver, the received signal first undergoes analog-to-digital conversion 

(A/D) and downsampling. There is typically an automatic gain control (AGC) loop 

that helps with setting the signal amplitude. Figure 2.3 shows the receiver block 

diagram. 
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OFDM Transmitter 

Figure 2.2 : Block diagram of OFDM transmitter 

OFDM ReceiVer 

Figure 2.3 : Block diagram of OFDM receiver 

2.3 Symbol Timing Synchronization 

The performance of a wireless receiver is measured by its ability to successfully recover 

or decipher transmitted information. In the context of wireless communications, the 

baseband signal processing algorithms generally assume perfect synchronization. In 

practical systems, however, synchronization at the receiver is a critical aspect that 

impacts the performance of the entire system. In fact, synchronization is one of the 

main challenges in OFDM systems. Before actual processing and decoding of the 

received data can occur, synchronization needs to be achieved. The receiver signal 

processing blocks downstream depend on this and consequently are susceptible to 

errors in synchronization. 
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For packet-based burst-mode communication systems (for example WLAN), the 

receiver has to first detect the presence of a packet and determine the beginning 

of the data. For an OFDM system, the receiver signal processing algorithms are 

implemented in the frequency-domain. Therefore, estimating the beginning of the 

data or equivalently the start of the FFT window has a direct impact on the receiver 

performance. This task is called symbol timing synchronization. OFDM systems are 

also sensitive to frequency offsets - generally caused due to carrier frequency mismatch 

or doppler spread. By utilizing the structure in the transmitted signal, most OFDM 

receiver architectures apply coordinate rotation digital computer (CORDIC) to the 

results of symbol timing synchronization to estimate this frequency offset. 

Figure 2.4 shows the functions performed by a typical OFDM WLAN receiver. 

Once the received signal has undergone analog-to-digital conversion and downcon-

version, the baseband IQ (in-phase and quadrature-phase) samples are available for 

processing. The first task is to detect the presence of a packet and estimate the start 

of the Fast Fourier transform (FFT) window. 

,------------------------------, 
I , .. " .• " ... . RxSignal J 

Rx 

L"""·'·"" 
I Processing I 
I 1 
I I 
I I 
I I 
I I 
I ~ml 
I Processing, 

\ -----------------------------_/ 

Figure 2.4 : Receiver signal processing 

For bursty packet-based communication systems, preamble-based methods are 
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used for achieving timing and frequency synchronization. In contrast to the blind 

or non-data aided methods, the preamble-based synchronization gives accurate and 

reliable estimates much faster and within the first one or two received symbols. Fig­

ure 2.5 shows the structure of the OFDM frame for the IEEE 802.11a standard. At 

the beginning of a new transmission, the transmitter sends a known training sequence 

(preamble) followed by the data bits. The receiver uses knowledge of this preamble 

sequence for synchronization. The receiver employs the short training sequence to 

achieve packet detection, automatic gain control (AGC), symbol timing synchroniza­

tion and frequency offset estimation. The long sequence is then used to further refine 

the timing and frequency estimates as well as for estimating the wireless channel. 

OFDM Frame 

Long Symbols Payload 

Time 

Figure 2.5 : IEEE 802.11a OFDM frame 

Relating back to Figure 2.4, the coarse symbol estimation block uses correlation­

based methods (typically autocorrelation) to detect where the packet begins and 

dictates the samples to which the Fast Fourier transform is applied. Based on the 

output of the coarse symbol estimation, a CORDIC block can then be used to find 

the coarse frequency offset in the received signal. Typically, the coarse estimation 

block is expected to find the start of the FFT window within a certain range and the 

fine estimation blocks then strive to improve this estimate further. 

In many practical implementations, the sequence of events can be described as 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

13 

follows. First, a packet detector will detect the presence of a packet. One way to do 

this is to use the received signal strength. Then, the coarse symbol timing estimation 

performs auto correlations to find the beginning of a short symbol. Once the corre-

lation result crosses a specified threshold, the corresponding sample index is given 

as the coarse timing estimate. The coarse estimate for the frequency offset in the 

received signal is then computed and the frequency correction is applied to the in-

coming signal. At the same time, the fine timing estimation computation is triggered. 

Generally, this also involves sliding window autocorrelation over the received signal, 

this time for searching for the location (sample index) for the long symbols. This fine 

symbol timing estimate is then used in conjunction with the CORDIC block to refine 

the frequency offset estimate. Finally, after applying the frequency offset correction, 

the Fast-Fourier Transform (FFT) operation is performed and channel estimation and 

other signal processing can be done. 

We now take a closer look at the autocorrelation metric used for coarse symbol 

timing synchronization. The estimation involves computing a sliding window auto-

correlation over the received signal. Mathematically, the normalized autocorrelation 

function, M(d), is written as [13J: 

(2.2) 

where 

L-1 

P(d) = L r*(d + m)r(d + m + L) (2.3) 
m=O 

and 
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L-1 

R(d) = L Ir(d+m+L)12 (2.4) 
m=O 

In the equations above, r( n) are the received signal samples, and R( d) is the energy 

of the received signal currently being used as input to the correlation block. Also, 

L denotes the length of the sequence: L = 16 for the short sequences. Figure 2.6 

shows the short symbol repetition under zero-noise conditions. Here, the length-16 

short sequence is repeated 10 times, the sequence beginning at index=31 and ending 

at index=190. In order to illustrate the shape of the metric function, a timing offset 

of 30 samples is introduced and data packets are appendend at the end of the short 

symbol repetition. 

Received Signal: Short symbol repetition followed by data packets 
0.35,----,--...,---,----,----,--,----,--...,---, 

0.3 

0.25 

100 200 300 400 500 600 700 800 900 

Figure 2.6 : Received signal generated based on short symbol repetition 

The metric M(d) for this signal is shown in Figure 2.7. The metric reaches its 

maximum value of 1 at index=31, and then stays at this value until index=159. At 
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Normalized autocorrelation metric: Timing offset = 30 
1.2 r------,---.-------,--.--------r--.-------,-------., 

0.6 

o 100 200 300 400 500 600 700 800 

Figure 2.7 : Normalized autocorrelation metric with timing offset of 30 samples 

these index values, the signals in the two different correlation windows (equation 

3.4) match exactly. Beyond this index, the match starts decreasing and consequently 

the correlation decreases until it becomes very small. Therefore, many practical 

systems give the first crossing-point when the signal is greater than a set threshold 

as the symbol timing estimate. The plateau-like shape of the metric adds robustness 

to channel effects such as multi-path. However, it also results in a high estimator 

variance. The estimator variance can be reduced by modifying the training sequence 

or metric definition such that there are clear peaks at the beginning of the training 

symbols. In [14] [15] for example, the authors propose a modified-preamble sequence 

to reduce the estimator variance. We consider these modifications in more detail in 

Chapter 3. 

We will now proceed to address the problem of preamble-based symbol timing 
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estimation in more detail. While our focus is on coarse estimation using the short 

sequence, the similarity between the coarse and fine estimation algorithms implies 

that the approach may be applicable for fine-estimation as well. A performance 

improvement gained by improving the coarse symbol timing estimation enables better 

overall system performance. The frequency offset estimation, for instance, relies on 

the timing estimate for its accuracy and therefore will directly benefit from improved 

symbol timing estimates. 
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Chapter 3 

Symbol Timing Estimation: Algorithm design and 
performance analysis 

In this chapter, we focus on the symbol timing synchronization algorithms in more 

detail. The goal of symbol timing synchronization is to find the beginning of the 

Fast Fourier Transform (FFT) window for wireless OFDM receivers. For OFDM 

systems, signal processing such as channel estimation, decoding and other tasks are 

typically done in the frequency domain, i.e. post-FFT. Therefore, the FFT results 

and consequently the samples chosen for the FFT input affect the performance of 

the signal processing algorithms. Generally, these algorithms are designed and evalu-

ated assuming perfect synchronization at the wireless receiver. In practical systems, 

though, achieving timing and frequency synchronization at the wireless receiver is a 

challenging problem [6] [8] [10]. 

We propose a preamble-based low-complexity timing synchronization algorithm 

and present performance results in the context of coarse symbol timing synchroniza-

tion. We also present an application of a well-known sequence to symbol timing 

synchronization. The simulation results show that the new sequence can result in a 

significant performance improvement over the IEEE 802.11a short symbol, especially 

for multi-path channels. 
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3.1 Related Work 

In recent years, the problem of symbol timing synchronization for OFDM systems has 

received a lot of attention. Among the mallY approaches taken to solve this problem, 

the preamble-based timing synchronization methods are most applicable to burst­

mode communication systems such as WLANs, primarily due to the long acquisition 

time needed by other non preamble-aided methods in generating an accurate estimate. 

A timing estimation method proposed by Schmidl and Cox [13] estimates symbol 

timing offset using received signal correlation based on the preamble signal. Minn, 

Bhargava et. al. [14] and Park et.al. [15] have proposed modified preamble schemes 

that try to reduce the variance of this estimator. The majority of the methods 

proposed in the literature are based on autocorrelation of the received signal, in­

cluding [16] [7] [13]. The correlation is computed either to detect the cyclic prefix, 

or the periodicity of the preamble sequence. By exploiting the apriori knowledge 

of the preamble sequence, the methods try to maximize the similarity between two 

sliding windows [13] [14] [15]. In [17], the authors present a different approach for 

cyclic-prefix based timing estimation where they minimize the anti-correlation or dis­

similarity between the sliding windows. Also known as average magnitude difference 

function (AMDF), this method has been studied for pitch detection of voice signals 

[18] [19]. However, cyclic-prefix based timing estimation methods require averaging 

over multiple OFDM symbols in order to generate an accurate estimate. In contrast, 

preamble-based estimation does not require averaging over multiple OFDM symbols, 

and consequently meet the stringent acquisition time requirements for burst-mode 

wireless OFDM transmission systems. 

There has been other work in the literature that try to improve the accuracy of 

symbol timing estimates. However, due to the increased computation complexity of 
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these methods, for example, [20] [21], they may not have been pursued for hardware 

implementation. In the context of IEEE 802.11a systems, methods that use cross-

correlation over the lung preamble sequence in conjuction with autocorrelation over 

the short symbols have also been proposed. However, in addition to the increased 

computational complexity, the longer latency of these methods is a drawback. To the 

best of our knowledge, the Schmidl-Cox metric for symbol timing synchronization 

[13] (with slight variations in the way normalization is done or maximum is chosen) 

is the most widely used method in hardware today. 

We propose a simple method that lowers the computational complexity while 

striving to maintain similar performance. Indeed, performance results show that 

the performance matches that of the modified Schmidl-Cox method [14] for AWGN 

channels. For a review of the results presented in this chapter, we refer the reader to 

[22]. 

3.2 Proposed symbol timing estimation method 

In contrast to the autocorrelation-based method presented in Chapter 2, we consider 

a new metric for preamble-based synchronization. Given a received signal, r(d), the 

receiver detects the repetition pattern by computing the following metric: 

L-1 

M(d) = L Ir(d+m) -r(d+m+L)1 (3.1) 
m=O 

This has been referred to as the average magnitude difference function [17]. The 

motivation for this metric can be understood as follows. M(d) is a measure of the 

difference between the received signal in the two windows. In a perfect/noiseless 

scenario, the above metric will be zero when the received signal samples in the two 

windows match up exactly. This is the case when the received signal is comprised of 
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a repeated pattern with periodicity L. On the other hand, when the received signal 

is comprised of any other component, the difference will be non-zero and will indicate 

the level of disagreement. Just as autocorrelation is a measure of similarity between 

two signal windows, the metric above, average magnitude difference function is a 

measure of dissimilarity. 

Figure 3.1 shows the shape for the metric for the received signal shown earlier in 

Figure 2.6. For comparison, the normalized correlation metric for the same signal is 

shown in Figure 3.2. 

Average mean difference function: Timing offset = 30 
3.5,------,---,--...... --...------,--..,-----,----, 

3 11 

2.5 ~. 

2 \ V ~ 

15 \ I 

0.5 I I 
, 1 

o l... .. __ J 
o 100 200 300 400 500 600 700 800 

Figure 3.1 : Average magnitude difference function with a timing offset of 30 samples 

We also note that the use of the difference structure in equation 3.1 is not restricted 

to autocorrelation. For example, schemes that use cross-correlation methods could 

also benefit from the lower complexity of this computation. 

We introduce a variation of the above metric as follows: 
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Normalized autocorrelation metric: Timing offset = 30 
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Figure 3.2 : Normalized correlation metric with a timing offset of 30 samples 

L-1 

M(d) = L Ir(d+m) -r(d+m+L)1 2 (3.2) 
m=O 

This eliminates the square root operation and is motivated by simpler hardware 

implementation. We will evaluate the effect of this on the performance of the symbol 

timing synchronization method. 

3.2.1 Complexity Analysis 

The main advantage of this method is its significantly reduced computational com-

plexity. We consider again the normalized autocorrelation metric defined by Schmidl­

Cox [13]; the metric that most implementations of timing synchronization blocks are 

based on [6] [8] [23]: 
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(3.3) 

where 

L-1 

P(d) = L r*(d + m)r(d + m + L) (3.4) 
m=O 

and 

L-1 

R(d) = L Ir(d+m+L)12 (3.5) 
m=O 

It has been shown that the performance of this method can be improved tremen-

dously by replacing R(d) above with R2(d) given by [14]: 

2L-1 

R2(d) = L Ir(d +mW (3.6) 
m=O 

We then define the new metric as: 

(3.7) 

For reference, we also look at the autocorrelation metric with no normalization, 

I.e. 

(3.8) 

To summarize, the difference between the three metrics is simply that M1 uses 

L samples, M2 uses 2*L samples, and M3 uses zero samples to compute the signal 

energy during the normalization step. Note that they all still need 2*L samples for 

computing P( d), the autocorrelation function. 

Table 3.1 shows the computational complexity for the three different metrics. 
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The method proposed in [13] is shown in the top row of Table 3.1. Many imple­

mentations, for example [24], use the method shown in the second row (M2). Our 

simulation results confirm findings of [14] that the performance is much better when 

using the second metric M 2 • From Table 3.1, we note that the AMDF method has 

much lower computational complexity than M 2 . We will see later that the perfor­

mance of the AMDF method is similar to that of the modified Schmidl-Cox method 

proposed in [14]. 

With many future generation wireless systems leaning towards more advanced 

signal processing and error-correction methods such as LDPC [25] [26] [27], the limi­

tations posed by the size constraints of the hardware become increasingly evident[28]. 

When using FPGA platforms for prototyping a complete system, the constraints can 

be the size of the FPGA and the number of multipliers as well. An advantage of 

AMDF is the significant reduction in the number of mulitplies required. 

3.2.2 Simulation Results 

In this section, we present a performance analysis for the proposed method. All 

simulations were done in MATLAB with parameters similar to IEEE 802.11a. The 

Table 3.1 : Complexity analysis 

Method Samples Needed Real Additions Real Multiplications 

Schmidl-Cox (Ml) 2*L 4*L 6*(L-1) 

M2 2*L 6*L 8*L 

M3 2*L 4*L 4*L 

AMDF 2*L 4*L 2*L 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

24 

parameters of the data packets, such as modulation scheme chosen (for eg: BPSK, 

QPSK, 4-QAM), number of pilot tones, etc. does not impact the preamble-based 

timing estimation block because it operates on the preamble signal. However, we 

note that some of these parameters, for example modulation scheme, can affect the 

frequency estimation and correction blocks (errors caused by a given offset) as these 

affect the frequency-domain signal decoding. 

It is a well-known fact that the channel profile has a direct impact on the perfor­

mance of the receiver. The symbol timing synchronization scheme needs to be robust 

to channel effects and provide the best performance for that channel environment. A 

multipath channel presents a greater challenge in detecting the correct timing point. 

Degradation in performance may be expected due to inter-symbol interference (lSI). 

Figure 3.3 compares the performance of AMDF with the modified AMDF method 

(Equation 3.2) in terms of the probability that the symbol timing estimate matches 

the actual offset exactly, under AWGN channel conditions. The key difference is 

the elimination of the square-root operation for the second method. The results 

are averaged over 500 Monte-Carlo simulations. The performance of both schemes 

is almost identical. From here on, we use AMDF to refer to the modified AMDF 

equation 3.2. Another thing to note in Figure 3.3 is that the performance is very 

poor for SNR 0-8dB or so and then improves steadily as we might expect. 

Figure 3.4 compares the four metrics M I , M2 , M3 and AMDF in terms of their 

probability of correct detection under AWGN channels. This is the likelihood that 

the timing estimate matches the correct timing offset exactly. ACFN16 (MI) and 

ACFN32 (M2 ) represent that 16 and 32 samples respectively have been used for 

computing signal energy. We observe that M2 and AMDF perform comparably, while 

the performance of MI and M3 is much worse. As we saw in Table 3.1, M3 requires 
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Figure 3.3 : Probablity of correct estimation: Comparison for AMDF and modified 
average magnitude difference function (without square-root operation) 

much less computations as compared to M 2 . 

The mean estimation error for the same simulation is shown in Figure 3.5. Again, 

we can confirm that the performance of M2 and AMDF is superior to the other 

methods. 

We now proceed to evaluate the performance of AMDF relative to M 3 . Recall, 

M3 is based on the method proposed by [13]. From here on, we use the term aut 0 cor-

relation metric to refer. Figure 3.6 shows the probability of correct detection under 

AWGN channel conditions. 

The corresponding MSE is shown in Figure 3.7. Again, we observe the perfor-

mance of AMDF matches that of the M2 closely. 
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Figure 3.4 : Probablity of correct estimation: Comparison between AMDF and 
Schmidl-Cox algorithm with different window size for computing signal energy 

3.3 Preamble sequence 

Burst-mode OFDM systems utilize the preamble signal to achieve rapid signal ac-

quisition. This is also known as the training signal. The structure of the preamble 

chosen is a key design aspect of the wireless communication system. The perfor-

mance results discussed so far assume the short training symbols of IEEE 802.11a. 

In this section, we introduce a preamble sequence that maintains the same energy as 

the IEEE 802.11a short training symbol but results in much better performance for 

multi-path channels. 

The acquisition time needs to be short for WLAN systems. The receiver, when 

listening on a packet, needs to detect the presence of the packet and start processing 

it within a short amount of time. This time is dictated by the medium-access-control 

(MAC) protocol, which might require the receiver to acknowledge reception within 
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Figure 3.5 : Mean estimation error estimation: Comparison between AMDF and 
Schmidl-Cox with different window size for computing signal energy 

a window of time to avoid retransmission. This time will also be dependent on the 

complexity of the rest of the receiver signal processing. 

The acquisition time has to be kept in mind when designing the symbol timing 

synchronization architecture. For systems like IEEE 802.11a, there is a repetition of 

the short symbol to generate the complete preamble. At the receiver, there is a trade-

off between the acquisition time and the accuracy of timing estimation. Specifically, a 

larger correlation window will translate into a better estimate at the cost of increased 

time required for estimation. 

For hardware implementation, the number and latency of operations that need to 

be performed have a tremendous impact on the system. In addition to the number 

of gates and power consumption, the number and latency of operations affects the 

acquisition time and the ability of the receiver to successfully detect a packet. 
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Figure 3.6 : Probability of correct detection: Comparison between Autocorrelation 
and AMDF methods 

A receiver architecture based on computations over the received signal has the 

advantage that the number of operations required can be reduced by re-using results 

from previous computation. However, a cross-correlation based scheme, where the 

received signal is correlated (or subtracted, in the case of AMDF) with a template 

sequence does not leave room for any reuse of previous results. 

3.3.1 Golomb Sequence 

We now consider a sequence with low periodic autocorrelation generated using the 

following equations [29]. Let L denote the length of the sequence and define 

a = exp( 27riL) (3.9) 
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Figure 3.7 : MSE comparison between Autocorrelation and AMDF methods 

Then, the Golomb sequence consists of (ak)t=l complex numbers that are chosen 

using the following equation: 

(3.10) 

This sequence is known as Golomb sequence. This is a polyphase sequence ex-

hibiting a constant envelope in the time-domain. We have chosen the length to be 16 

samples, the same as the short training sequence length [2]. 

Figure 3.8 shows the sample autocorrelation of the IEEE 802.11a short training 

symbol (STS) and length-16 Golomb sequence for different lags. 

For the ideal sequence, the sample autocorrelation should be unity for a lag of zero, 

and zero for all other lags. We note that the mean value of the sample autocorrelation 
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Figure 3.8 : Sample autocorrelation function oflEEE 802.11a STS (left) and Golomb 
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function for all non-zeros lags is much smaller for the Golomb sequence as compared 

with the IEEE 802.11a STS. A commonly used metric for comparing auto-correlation 

properties of sequences is the inverse of the sum of sidelobe energy, mathematically 

denoted as: 

£-1 

X = 1/ L ACF(m) (3.11) 
lag=O 

Here ACF represents the sample autocorrelation function. A larger value of X 

is desirable because it denotes a small mean-value for the sample autocorrelation 

function at non-zero lags. The value of X for IEEE 802.11a STS and Golomb sequence 

is 0.7457 and 1.1840 respectively. Hence, Golomb sequence does indeed exhibit better 

autocorrelation properties and it may be expected to be more robust to noise relative 

to the short training sequence. For completeness, Figure 3.9 shows the frequency-

domain sample autocorrelation function. 

In this case for the value of the metric X, the STS and Golomb sequence is 0.7801 

and 1.5300 respectively. Again, Golomb sequence exhibits better autocorrelation 
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Figure 3.9 : Frequency-domain sample autocorrelation function oflEEE 802.11a STS 
(left) and Golomb sequence based training signal (right) 

properties in terms of the above metric. We note that since the timing synchronization 

typically operates before the frequency offset estimation, it is highly unlikely that the 

correlation will be done in the frequency-domain (if we take an FFT before correcting 

for the timing offset, the resulting data will suffer from leI due to loss of orthogonality 

of sub-carriers). 

We now study the performance of the two sequences under various channel en-

vironments. For fair comparison, we have normalized the energy of the Golomb 

sequence to be the same as the short training sequence. 

Figure 3.10 shows the time-domain domain representation of the two training 

signals. Observe that the short preamble based on Golomb sequence has a constant 

amplitude, thus alleviating the problem of high peak-to-average power ratio. 

Figure 3.11 shows the frequency-domain representation ofthe two training signals. 

Observe that with the exception of three frequency indices - 29, 33, 37 - in Golomb 

sequence, the frequency indices where the IEEE 802.11a short training signal (STS) 

and the Golomb sequence are zero match. Thus, both signals have the same guard 
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Figure 3.10 : Time-domain representation of IEEE 802.11a STS and Golomb sequence 
based training signal 

bands at either end of the frequency spectrum. 

We believe that a further exploration of preamble-design space is very desirable, 

especially when multiple-antenna systems come. This is similar to the exploration and 

design done in [30], where the authors devise an optimization criteria and method for 

designing a preamble sequence taking into account factors such as AGC, guard sub-

carriers, multi-path propagation for OFDM-based power line communication systems. 

In our work, we show the performance benefits of using a new length-16 sequence 

that has the same energy as the short training sequence and shares many of its 

characteristics. At the same time, the new preamble signal (in baseband) has a peak 

to average power ratio of unity. 
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Figure 3.11 : Frequency-domain representation of IEEE 802.11a STS and Golomb 
sequence based training signal 

3.3.2 Performance Results 

Here, we show present simulation results comparing the performance of symbol timing 

synchronization using short training sequence and Golomb sequence. The results are 

based on Monte-Carlo simulations with various channel environments. 

Figure 3.12 shows the probability of correct detection for the AWGN channel. 

We see that the Golomb sequence based training signal performs better than the 

802.11a short training signal with the gap being more prominent for lower SNRs. 

The corresponding MSE of the timing estimator is shown Figure 3.13. 

Finally, we consider the performance of symbol timing estimator under multi-path 

channel. The multipath channel model used is based on IEEE 802.11n and represents 

a typical residential environment (LOS conditions) with a rms delay spread of 15ns 

and a 10dB Ricean K-factor at the first delay. The probability of correct detection 

for multi-path channel is shown in Figure 3.14. Observe the general degradation 

in performance compared to AWGN. At the same time, the benefits of the better 
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correlation properties of Golomb sequence are more visible. The preamble based on 

Golomb sequence gives significantly better performance than the short sequence. 

We show the same figure with a closer focus on higher SNRs in Figure 3.15. 

The probability of correct detection (estimated value = correct value) starts near 

0.6 rather than near O.S as in the case of AWGN channels. Also, the trend from 

lower SNR to higher SNR is similar for each metric, but the gap between Golomb 

sequence based training signal and S02.11a STS is very significant even at high SNRs. 

Finally, we note that the AMDF method performance follows the general trend of the 

higher-complexity autocorrelation method. 
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3.4 Conclusions 
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We have proposed a preamble-based low-complexity timing synchronization algo-

rithm whose performance matches closely the widely-used autocorrelation-based met-

ric based on [13J. We also present an application of a well-known sequence to symbol 

timing synchronization. The simulation results show that the new sequence, used to 

build the short training symbol, can result in a significant performance improvement 

over the IEEE 802.11a short symbol, especially for multi-path channels. 
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Figure 3.15 : Probability of correct detection for multi-path channel: performance 
gains for higher SNRs 
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Chapter 4 

System Hardware and Design Environment 

In this chapter we discuss the NI-5640R FPGA-based system hardware and the Na­

tional Instruments Lab VIEW design environment that was used to prototype the 

symbol timing synchronization block in hardware. 

Wireless system designers use hardware prototyping extensively to achieve a suc­

cessful system design. Using reconfigurable devices such as Field Programmable Gate 

arrays (FPGAs), wireless communications blocks are implemented in hardware and 

connected to an analog interface to provide a complete working prototype. The pro­

totype helps understand the hardware trade-offs involved and exhibits the feasibility 

of a hardware implementation and the correctness of the communication block. The 

NI-5640R hardware and Lab VIEW software allow us to achieve this purpose. An un­

derstanding of this hardware and associated software will assist the reader in following 

the details of the hardware implementation described in the next chapter. 

The NI-5640R hardware platform used in this project provides computational re­

sources, supporting components and the ability to inteface with analog intermediate­

frequency(IF) signals. The Lab VIEW software together with other modules allows 

us to target the hardware. 
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4.1 NI-5640R IF Transceiver Module 

The NI-5640R hardware is a PCI card from National Instruments Inc. that plugs into 

the PC and provides connectors for interfacing with analog signals. Briefly, the card 

has a Xilinx Virtex-II Pro FPGA, ADCs, DACs, voltage-controlled crystal oscillator, 

and a time base (clock configuration chip). The board takes power from the PCI 

bus and has voltage regulators to provide power to the FPGA and other on-board 

components. The documentation provided by the manufacturer can be referred to 

for more details. 

For our project, we were interested in a hardware architecture built around a 

field programmable gate array (FPGA). Field programmable gate arrays are now 

being widely used for rapid prototyping as well as for implementation of parallel 

systems. The FPGA is an inherently parallel computation engine that is designed 

as an array of logic blocks, along with memory blocks as well as interconnects for 

moving data. The FPGA package can provide sufficient Input/Output pins to allow 

rapid moving of data between the computation blocks inside the FPGA and the rest 

of the system. This parallelism in computation and I/O resources are similar to the 

parallelism available in an application specific integrated circuit (ASIC). However, 

the programmable nature of the FPGA allows systems to be designed and tested 

at a much lower cost, by avoiding costs associated with fabrication and testing of 

silicon. Also, the platform architecture and the hardware/software design tools make 

it possible to test different algorithms without making hardware connectivity changes 

or other modifications in the overall system. 

For prototyping real-world wireless communication systems successfully, the abil­

ity to get real-world signals into the system is an important consideration. The 

analog interface with the integrated analog-to-digital converters (ADC), and digital-
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to-analog (DAC) converters in the NI-5640R card provide this capability. Wireless 

communication systems, available commercially, generally operate in the radio fre­

quency (RF) range. The signal processing algorithms are implemented in baseband, 

meaning raw data samples without the presence of any carrier signal. The data gener­

ated for transmission must be modulated onto a RF carrier signal before transmission 

can occur. The NI-5640R card has digital up conversion and digital downconversion 

capabilities to achieve modulation and demodulation with an intermediate frequency 

(IF) range carrier signal. The IF range is not suitable for direct transmission; an 

intermediate frequency (IF) to radio frequency (RF) up conversion must be done by 

external hardware before transmission. As mentioned previously, RF signal output 

is what a typical commercially available communication system employs for trans­

mission. However, for prototyping purposes, an IF transceiver can be sufficient for 

studying the implementation in a practical environment. 

For our wireless system, we interface with IF signals. Since there isn't an IF-to­

RF solution available for the NI-5640R card, over-the-air operation is not feasible. 

Therefore, we use a loop back cable connecting the analog input and output of the 

NI-5640R card. The implementation details are discussed in Chapter 5. 

4.1.1 Hardware Components 

Figure 4.1 shows the block diagram of the NI-5640R FPGA based IF transceiver. The 

Xilinx Virtex-II Pro FPGA is the main computing engine. The interface for analog 

I/O is provided by four SMA (SubMiniature version A) connectors. The analog­

to-digital conversion (ADC) and digital downconversion (DDC) are done using the 

AD6654 integrated ADC/DDC receiver chip. Following this process, the analog IF 

input will be available to the FPGA user as baseband I/Q samples. The digital up-
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conversion (DUC) and digital-to-analog conversion (DAC) are done with the AD9857 

chip. There are two ADC/DDC chips (AD6654) and DDC/DAC chips (AD9857) 

respectively thereby providing the ability for two parallel input and output channels. 

Both the ADC and DAC devices provide an interface with 16-bit precision. While 

the ADC provides the I and Q data streams in parallel, the DAC interleaves the I 

and Q input data streams. From an operational standpoint, the DAC clock frequency 

should be twice as fast as the ADC clock frequency to meet the achieve data-rate. 

There are low-pass filters on-board the NI-5640R for the analog data-streams. 

XilinxVirtex-1l Pro FPGA 
(XC2VP30) 

PCI Bus 

Low-pass Filter 

Figure 4.1 : Block diagram of NI-5640R (adapted from [1]) 

Output 

Analog Output 
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4.1.2 ADC, DAC, and Host Interface 

The ADC operation is described below. The incoming IF signal, after digitization, 

undergoes downconversion which perforrr13 frequency translation, band-selective fil­

tering, and sample rate conversion. The signal which is centered around carrier 

frequency (Fc) is brought down to baseband. For our system, we are interested in a 

signal bandwidth of 20MHz. Therefore a sampling rate higher than 20MHz is desir­

able to allow for decimation filter transition band effects. The DDC decimation filter 

co-efficients should be chosen to avoid aliasing effects and to provide proper scaling 

to avoid numerical overflows. The sampling frequency (Fs) should be chosen such 

that there is no signal content at DC, Fs/2 and multiples of this frequency. We select 

a sampling frequency of lOOMSamples/sec. 

Also, the frequency-range supported by the ADC is from 250kHz to 80MHz. The 

lower frequency limit is due to AC-coupling, while the higher limit is where the 

transition region of the onboard analog low-pass filter begins. 

The DAC takes in interleaved I and Q data and performs sample-rate conversion, 

interpolation, and analog conversion. It provides a 16-bit interface at the input. Based 

on the desired IQ rate, the interpolation factor is calculated and the conversion from 

baseband to IF occurs. 

NI-5640R connects'to the Host computer using the PCI bus. There is a PCI-bridge 

chip (NI-STC2) that provides capabilities for direct-memory access (DMA) transfers 

between the program running on the Host machine and the FPGA target. Presently, 

NI-5640R driver software supports DMA only from the Host to the FPGA, but not 

in the reverse direction. The 32-bit PCI bus can provide a maximum theoretical 

bandwidth of approximately 127 MBytes/sec. Considering complex baseband samples 

with 16-bit representation for I and Q data, this limits the maximum theoretical 
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sample rate to approximately 31.75 MSamples/sec. 

Figure 4.2 shows the configuration steps for the ADC, DAC clocks as well as the 

clocks available to the FPGA. We use the on-board 200MHz voltage controlled crystal 

oscillator (VCXO) for generating the various clocks. The configuration clock is used 

for all communication between the HOST and FPGA done by LabVIEW, such as 

front-panel connectors, read/write operations and DMA transfers. 

fl",r.,;"oor;" C/X/($ 

S-mple CIQcl\$ 
1(', e:L"),, 

-----~-----.---.----- .. -- .. -------.,-------.-- •. -- .. -- .. _--------, 
FPG ... 

Figure 4.2 : NI-5640R configuring clocks (adapted from [1]) 

The reference clocks, interpolation/decimation rates and clock dividers need to 

be set in order to configure the IQ sample rate. The reference clock frequency is 

set using the graphical user-interface provided by the LabVIEW project. The clock 

dividers, and interpolation/decimation rates are configured by the user with the help 

of HOST VIs. The details are discussed in section 4.2 

We use the onboard 200MHz free-running Voltage-controlled crystal oscillator 

(VCXO) as the primary clock source from which other clocks are derived. While the 
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NI-5640R hardware provides the ability to use an external clock signal as a reference 

clock source, we do not use this feature for our application. This can be helpful if the 

system is extended to use multiple FPGA boards. 

4.2 Lab VIEW Programming Environment 

LabVIEW is a graphical programming environment. The program is represented 

using a block diagram based approach. The program, known as a Virtual Instrument 

(or VI), is translated into code appropriate for the target platform. A program in 

Lab VIEW is called a Virtual Instrument (VI). 

We use LabVIEW 8.0 software and FPGA module to implement the symbol tim­

ing synchronization algorithm on the FPGA target. The configuration of the other 

hardware resources on the NI-5640R card are done using the NI-5640R driver soft­

ware. The prototyping environment provided by Lab VIEW allows us to integrate 

code running on the HOST computer with the FPGA code and thereby enabling 

hardware co-simulation. 

The code is managed using a LabVIEW project. The LabVIEW code (or VIs) 

are segregated according to the target. In our project, we have a HOST VI running 

on the HOST target, and an FPGA VI with supporting sub-VIs that run on the 

NI-5640R FPGA target. The details of these are discussed below. Also included in 

the project, is the system clock information. Our system implementation includes an 

ADC clock, DAC clock, RTSI clock, and a configuration clock. The clock frequency 

for these are configured using the Project interface. 
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4.2.1 LabVIEW Host 

Lab VIEW software, originally targeted for measurement and automation has grown 

in support and user-base to include simulation of signal processing, math, as well as 

digital communication systems. The Lab VIEW Host VIs have access to toolkits that 

have pre-designed blocks for implementing the functionality for many common blocks 

used in these areas. This is good from a stand-point of supporting future extensions 

to the system in simulation. 

The Lab VIEW Host VI runs on the PC and the user interacts and controls the 

program execution using this VI. The front-panel shows the controls that can be used 

to configure the code on the fly and indicators that depict the results and debugging 

information. The VI includes a reference to the FPGA VI that needs to be donwloaded 

onto the FPGA target and executed. 

This VI contains some configuration code for the NI-5640R hardware and therefore 

is necessary in order for the hardware to function properly. The FPGA VI cannot 

be run interactively, rather, the Host VI should open a reference to it. The Lab­

VIEW HOST VI configures the hardware resources on the NI-5640R card based on 

user input. This includes the analog-to-digital converters (ADC), digital-to-analog 

converters (DAC) , and their respective IQ clock rates (sampling rates). The HOST 

VI does this by writing the user parameters to hardware registers via the interface 

provided by the NI-5640R driver software. 

A key element of the HOST VI is the state-machine for transferring data back­

and-forth between the HOST and the FPGA. We discuss the details in Section 5.2. 
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4.2.2 LabVIEW FPGA 

The FPGA VI contains all the user code that will run on the FPGA as well as code 

for acquiring and sending data using the analog interface. For the NI-5640R target, 

the FPGA VI cannot be run in interactive mode, i.e. cannot be run stand-alone 

without the HOST VI. The driver software and configuration VIs that are used on 

the HOST target for configuring the various hardware parameters such clock dividers, 

interpolation/decimation rates, ADC and DAC profiles, call on FPGA code for these 

tasks. The details of our FPGA implementation are discussed in Section 5.2. 

4.2.3 NI-5640R Driver Software 

[mN······ 

Config Loop COUfl\er !t:tijil- ..... 
r-----~~-----------mgl~ui:~-----4~~----------------------~ 

Figure 4.3 : NI-5640R configuration loop 

Figure 4.3 shows the configuration code provided by National Instruments with 

the NI-5640R card. The figure shows a single-cycle timed loop (SCTL) that runs every 

clock tick of the configuration clock. For the NI-5640R hardware, the configuration 

clock runs at a fixed frequency of 20MHz. The DAC and ADC have many configurable 
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parameters that are set using registers on the respective device. When the user makes 

changes in the hardware system the HOST code relies on this loop to implement 

them. For example, if the user changes the DAC carrier frequency, the changes are 

propagated from the HOST VI to the actual hardware registers on the DAC via the 

configuration loop. 
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In this chapter, we present the hardware implementation of the symbol timing syn-

chronization block on the NI-5640R transceiver built around the Xilinx Virtex-II Pro 

FPGA chip. 

5.1 Fixed-Point Wordlength Analysis 

While designing hardware for wireless communication systems, there are area, power, 

and performance budgets that need to be met. This is especially true for portable 

consumer devices such as laptops where the size and battery life are important con-

siderations. Supporting floating-point operations in hardware requires a lot more 

area and power relative to fixed-point operations. Consequently, there is a need to 

translate the wireless algorithms from using floating-point numbers to numbers using 

fixed-point representation. In fixed-point representation, the decimal place in the bit-

representation of the numbers is known at every stage of the computation, thus saving 

resources required for decoding and shifting numbers when dealing with floating-point 

representation. During the conversion from floating-point to fixed-point, the goal is 

to minimize the hardware resources and power needed while striving to maintain the 

desired level of performance. 

LabVIEW FPGA can represent numbers in fixed-width precision. Unlike Applica­

tion specific integrated circuits (ASICs) where the wordlength can be made arbitrary, 
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the wordlength for LabVIEW FPGA target needs to be chosen as either 8,16, or 32 

bits. The precision required varies based on the application, but for many systems 

that need high-precision, 24-bits typically seems to be a good trade-off point between 

performance and hardware resources. For our Lab VIEW FPGA implementation, we 

use 16-bit precision to represent the fixed-point numbers. We found that 8-bits are 

not sufficient to cover the required range of values, while 32-bits leaves a lot of the 

precision unused resulting in a lot of unnecessary hardware overhead. Also, as dis­

cussed in Chapter 4, the interface to the AID and D I A in the NI-5640R transceiver 

provides 16-bit precision, thus making 16-bit wordlength a suitable choice. 

As we've seen, the primary motivation for converting from floating-point to fixed­

point operations is the significantly higher hardware cost associated with floating­

point arithmetic. The trade-off is that the fixed-point operations typically allow for 

a smaller dynamic range, therefore introducing performance loss. 

Figure 5.1 shows the results of the timing metric computation, comparing the 

fixed-point and floating-point implementations. In this particular case, we compare 

the results from correlation metric computation performed in MATLAB floating­

point arithmetic with the same metric computed in fixed-point Lab VIEW code. The 

simulations are for additive white gaussion noise (AWGN) channel using the short 

sequence repetition and normalization correlation computation [13]. 

5.2 System Partitioning 

In this section, we give a system-level description of our transceiver. As discussed 

in Chapter 2, the source generates information bits which are mapped to symbols 

belonging to the QPSK constellation. This QPSK data is then modulated using the 

Inverse Fourier Transform (IFFT) operation. Next, the cyclic-prefix is appended to 
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Figure 5.1 : Verification of fixed point results 
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blocks of IFFT output to form the corresponding OFDM symbols to generate the 

data frame. Finally, the preamble sequence is appended at the beginning to form the 

OFDM transmitted frame. In our implementation, the generation of transmitted data 

and the wireless channel effects are applied in simulation. The received data is then 

read into the LabVIEW HOST VI from a file. The HOST performs I/Q interleaving 

to match the data format expected by the DAC interface and sends the data to the 

FPGA for transmission. These samples are then transmitted via the DAC and using 

a loopback cable fed back into the ADC for acquisition. In a real wireless transceiver 

system, instead of the loopback cable, there will be a suitable upconverter and RF 

antenna at the transmit side followed by an RF antenna and suitable downconverter 

at the receiver side. In the absence of these components though, the loop back cable 

provides a suitable alternative to help understand the effects of the analog interface. 
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The system-level view just described above is depicted in Figure 5.2. 

As an aside, we note that the symbol timing algorithm operates on the preamble 

sequence and therefore isn't directly affected by the constellation selected for the 

data. However, the BER degradation caused due to a fixed symbol timing error can 

be expected to be greater for higher-order constellations. 

LaOVIEW 
HOST 

symbol Timing 
Synchronization 

5. Symbol Timing Estimate 
(to LabVIEW HOST) 

Figure 5.2 : LabVIEW system overview 

5.3 Host VI and Analog Interface 

The LabVIEW HOST VI serves as a medium to target the FPGA VI. As discussed 

previously, the HOST VI downloads the appropriate bit file to the FPGA and controls 

the code running on the FPGA. Post-configuration, we load the transmitted data into 

the HOST VI and send it to the FPGA for transmission. In our implementation, the 

FPGA VI loops over this data set for transmission of data until the user loads a new 

data set via the HOST VI. The HOST VI also enables the user to control values for 
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parameters (eg: threshold) and observe the results from the timing metric computa­

tion. The HOST /FPGA interface is supported by the PCI bus and Direct Memory 

Access (DMA) mechanisms. For our implementation, we did not have DMA support 

for data transfers from the HOST to the FPGA. Hence, a state machine is used to 

achieve this. The controls and indicators provided on the FPGA VI (and hence ac­

cessible to the HOST VI) can be written to or read from using the configuration clock 

running at 20MHz. In our implementation, we tried to minimize the number of ar­

rays that are used and especially arrays that have a front-panel control or indicator as 

these take significant FPGA resources. Finally, the DMA transfer speeds are dictated 

by the PCI bus in the existing hardware. Therefore, even if DMA transfers from the 

HOST to FPGA were available, bi-directional data transfers at 20MSamples/sec are 

not feasible. For our application, the data movement is primarily from the FPGA to 

the HOST VI - i.e. the results of the metric computation being transferred from the 

FPGA. 

Figure 5.3 shows the FPGA code for transmission of data via the DAC. This loop 

also provides the state-machine for transferring the initial data set from the HOST to 

the FPGA VI. Over the course of this project, we designed various methods for the 

Host to FPGA communication. Presently, the NI-5640R hardware and software does 

not have support for interrupt service requests (IRQs) or direct memory access (DMA) 

transfers. After iterating through many versions of the state machine for transferring 

data from the HOST to the FPGA, we settled on this one that is provided by NI due 

to limitations we encountered with the data structures supported for a single-cycled 

timed loop and for crossing clock boundaries. Although the structure shown in Figure 

5.3 is not very intuitive, it provides the desirable results. 

Here, the loop shown is a single-cycled timed loop. Every clock tick of the DAC IQ 
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""host", Defa-.At ..... 
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Figure 5.3 : Lab VIEW FPGA DAC loop 

Clock, a sample is received by the DAC and transmitted when the TxEnable signal 

is asserted (=logic 1 value). The HOST VI code interleaves the I and Q samples and 

these are stored in the 'Samples for AO' FIFO buffer in the FPGA VI. Once all the 

baseband I/Q samples have been sent, the HOST asserts the 'Start Output' signal 

and the DAC operation is triggered. Following this, the DAC loops over the samples 

in the FIFO buffer and transmits them unless there is an interruption and a new 

sample set provided by the HOST VI. The arrow symbols on either end of the loop 

symbolize one shift-register. The shift-register is initialized to a boolean value of false 

outside the loop. Inside the timed loop the 'Write IQ sample' variable is wired to the 

input of the shift register. The shift-register output together with the current value 

of 'Write IQ sample' detect a rising edge on this signal. 

The data acquisition via the ADC is shown in Figure 5.4. The single-cycle timed 

loop operates every clock cycle of the ADC IQ Clock. The 16-bit IQ samples are 

stored in a FIFO buffer for later processing. The 'Start Output' signal ensures valid 

samples will be stored. The ADC loop is simpler than the DAC loop which has the 
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additional functionality of transferring data from the Host to the FPGA. This loop 

is part of the acquisition code provided with the NI-5640R driver. 

OJ 

Figure 5.4 : ADC loop 

As discussed in Chapter 4, the NI-4640R hardware is capable of providing mul­

tiple clock rates for the different on-board components. Further, the programmable 

interpolation and decimation filters result in the sampling rate being controllable by 

the user. We set the AID and DI A sample rates to 25MSamples/sec in order to sup­

port the 20M Hz bandwidth requirement for typical OFDM WLAN systems (IEEE 

802.11a). In the case of the AID and DIA, this signifies the sample rate required 

after data has been downconverted (AID) and the rate at which baseband data can 

be supplied (D I A), respectively. Because there are sample rate conversions occuring 

within the AID and D I A chips, the actual clock rate at which the AID and D I A run 

is much higher. The AID and D I A are clocked at lOOMHz and 200MHz respectively. 

The reason for the 2x difference is that while the AjD provides IQ data in parallel, 

the D I A requires the IQ data to be interleaved. Hence, with this configuration the 

rate at which baseband IQ samples are processed is the same for both the devices. 
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5.4 FPGA System Implementation 

In this section, we describe the hardware implementation of the symbol timing es-

timation algorithm. We start with a high-level view of the FPGA VI. Figure 5.5 

shows a bird's eye of the block diagram for the top-level FPGA VI. On the left side 

is the configuration loop discussed in Chapter 4 and the two loops for acquisition 

and transmission of data. Note that the three loops are each running using their 

own separate clocks and are not connected (in the sense of wires going in or out) to 

any other blocks/loops. FIFO buffers provide the interface for moving data between 

the acqusition, transmission loops and the timing estimation. The configuration loop 

does not require data transfers; it uses the front-panel controls on the FPGA VI to 

configure the appropriate hardware registers. 

DAC loop + HosVFPGA 
transfers 

ADC acquisition loop 

Storing acquired samples in 
memory; circular addressing 

Figure 5.5 : FPGA block diagram layout 

The loop on the top-right transfers the acquired samples from the FIFO buffer into 

memory. The FIFO buffer (without support for strided access) is not a suitable data 

structure for the access pattern required by the symbol timing estimation algorithm. 

Additionally, the FIFO is not very well suited as the samples read must be dropped, 
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whereas the wireless receiver will require access to the samples for further processing 

(performing the FFT operation). Thus, the FIFO buffers are used primarily to acquire 

data and transfer it between clock domains - in this case the ADC clock-domain to 

the top-level clock. The acquired samples are written to memory and the symbol 

timing estimation loop - a while loop that terminates when estimation is complete or 

the user stops the program - performs memory read operations to access the acquired 

data. 

We now look at each of the components described above in a little more detail. 

Figure 5.6 shows the code for storing the samples acquired via the analog-to-digital 

converter. 
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Figure 5.6 : Storing incoming data samples 

Figure 5.7 shows the while loop for the metric computation and symbol timing 

estimation. As with any Lab VIEW block diagram, the data flows from left to right. 

On the far left, we have the address lines and some simple address generation logic for 

strided-access. This is followed by the memory reads for accessing the data samples 

required for the current position of the two sliding windows. In the iterative mode, 
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the algorithm needs three samples to be read for every iteration. Next, on the right 

side are four sub-VIs for computing the timing estimation metric for the updated 

position of the sliding windows. 
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Figure 5.7 : LabVIEW FPGA symbol timing implementation 

I 
I 

We discuss the implementation of Schmidl-Cox method (ACFN16) below. The 

AMDF implementation follows the same structure and is very similar to the ACFN16 

implementation except that the AMDF-based method does not require the norm 

computation and the correlation computation VI is modified to implement Equation 

3.2 instead of Equation 2.2. The code architecture, including the A/D, D/A loops, 

data storage, and program flow remain the same. 

The initial norm computation is shown in Figure 5.8. This stage requires com-

puting the norm for all the samples in the sliding window. Once we switch to the 

iterative mode, significantly fewer operations are required for computing the norm 

since most of the samples used for the previous norm computation are also present 

in the updated sliding window (the position has changed but that doesn't affect the 
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norm operation). The code for this is shown in Figure 5.9. 

Figure 5.8 : Initial norm computation 

iiJ·~, -------- fJJ32J ..... -.----

Figure 5.9 : Updating the norm 

Figure 5.10 shows the code for the initial metric computation. Similar to the 

norm computation, the correlation computation makes use of the iterative process 

after the initial value has been computed. Figure 5.11 shows the code for computing 

the sliding-window autocorrelation function over the received samples while reusing 
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results from the previous iteration. The main computational block is the complex 

multiplier sub-VI. 

ij+<.od'''', ce,,"", .. ~JI 
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Figure 5.10 : Initial correlation computation 

Figure 5.11 Correlation metric update 

In Figure 5.12, a snapshot of the estimation block is presented. The autocorre-

lation metric is normalized with the energy of the received signal and the threshold-
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based estimation is applied while also transferring the normalized metric to the HOST 

via DMA transfer. Finally, Figure 5.13 shows the code for the threshold-based com-

parison. 
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Figure 5.12 : Estimation and DMA transfer 
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Figure 5.13 : Timing offset estimation 

The front-panel view of the top-level FPGA VI is shown in Figure 5.14. As 
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discussed earlier, we can see the controls required for HOST /FPGA data transfers, 

indicators for communicating the state of the FIFOs and the FPGA VI, as well as 

parameters controllable from the HOST. 

5.5 Synthesis Results 

Table 5.1 shows the gate counts and resources required for the implementation on 

the Xilinx Virtex-II Pro XCV2P30 targeted using the LabVIEW FPGA module. The 

numbers in parentheses represent percentage. 

Table 5.1 : FPGA synthesis results 

Algorithm Slices Multipliers Clock Freq. 

Schmidl-Cox(ACFN16) 3769 (27) 20 (14) 78.09MHz 

M2 (ACFN32) 3604 (26) 20 (14) 73.93 MHz 

AMDF 3428 (25) 4 (2) 84.66 MHz 

M3 (ACF) 2884 (21) 10 (7) 83.20MHz 

For all the algorithms, our implementation makes use of the redundant information 

from previous iterations thereby reducing the computations needed for each new 

iteration significantly. This comes at the cost of increased control logic which is 

common for all the algorithms. This trade-off means that the impact of modifying the 

core estimation algorithm is reduced considerably as compared to an implementation 

that is not iterative in nature (and hence does not require two different modes of 

operation with unbalanced workloads). 

Comparing AMDF with ACFN16 and ACFN32 (auto-correlation based metric 

with the normalization being done using 16 and 32 samples, respectively), we note that 
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Figure 5.14 : Front panel view of FPGA VI 
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the AMDF-based method gives a factor of 5 reduction in the number of multipliers. 

With the complexity of the wireless receiver ramping up to support higher data­

rates and complex modulation/transmission schemes, we believe that the multipliers 

are central to most receiver signal processing algorithms. This is supported by the 

increasing support for multipliers by key FPGA vendors. In terms of slice utilization, 

we get a slightly lower utilization for the AMDF method compared with ACFN16 

and ACFN32. 

The last scheme, M3 (ACF without any normalization) has a much lower slices 

utilization than the other schemes. It still requires more than twice the number of 

multipliers needed for AMDF-based estimation, though. Furthermore, as discussed 

in Chapter 3, this scheme performs quite poorly compared to AMDF and ACFN32. 

Finally, we observe that AMDF and M3 can be run at a faster clock frequency than 

the other two methods. This result translates directly from their lower computation 

complexity and facilitates supporting higher-data rate systems. 

In conclusion, if we compare the two methods with the best estimation perfor­

mance, we note that the AMDF-based method reduces the resource utilization sig­

nificantly while allowing for a faster clock rate as compared to M2 (ACFN32). 
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Chapter 6 

Conclusions and Future Work 

In this thesis, we have addressed the problem of symbol timing synchronization for 

WLAN OFDM systems. Specifically, a simple preamble-based timing estimation 

method was proposed that exhibits a low computational complexity and results in 

performance comparable to the widely used autocorrelation-based approach. In addi­

tion to the complexity/performance analysis, we have applied the Golomb sequence, a 

sequence with low autocorrelation properties to preamble-based synchronization and 

shown simulation results quantifying the performance improvements over the short 

symbol sequence used in IEEE 802.11a WLAN systems. The preamble can be stored 

as a look-up table in the hardware and therefore does not require any changes in 

existing hardware implementations. An experimental field-programmable gate array 

implementation of timing estimation using the National Instruments NI-5640R hard­

ware and LabVIEW software environment was also presented that utilizes fixed-point 

arithmetic. 

In terms of future work, as pointed out earlier in this thesis, there is some literature 

on preamble-design for OFDM systems based on the optimization of a multi-objective 

function (for example, low PAPR, low autocorrelation, sensitivity to AGe, etc.). This 

thesis leads us towards exploring the design space for a suitable preamble sequence 

as an interesting problem for future work. With OFDM technology being combined 

with adaptive modulation schemes, multi-antenna systems, etc., the preamble design 

can have a major impact on the overall system performance. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

65 

In terms of hardware architecture and implementation, as the NI-5640R tools 

mature further along with increased support on the Lab VIEW FPGA module, the 

hardware implementation can be adapted to utilize these advances and support higher 

data-rates required for future wireless communication systems. 
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