
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol timing synchronization for OFDM-based WLAN systems
Gadhiok, Manik
ProQuest Dissertations and Theses; 2008; ProQuest Dissertations & Theses (PQDT)
pg. n/a

RICE UNIVERSITY

Symbol Timing Synchronization for OFDM-based
WLAN Systems

by

Manik Gadhiok

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Science

ApPROVED, THESIS COMMITTEE:

avallaro, Chair
Professor of Electrical and Computer
Engineering

Behnaam Aazhang
J.S. Abercrombie Professor,
Chair of Electrical and

Kartik Mo anr
Assistant P essor of Electrical and
Computer Engineering

Houston, Texas

July, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1455238

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1455238

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Symbol Timing Synchronization for OFDM-based WLAN Systems

by

Manik Gadhiok

In this work, we address the problem of symbol timing synchronization for Or­

thogonal Frequency Division Multiplexing (OFDM) WLAN systems. OFDM systems

are known to be sensitive to synchronization errors and improving the accuracy of

timing offset estimation can help improve the overall system performance.

We propose a method that reduces computational complexity while achieving

performance comparable to the autocorrelation method commonly employed at the

wireless receiver. The proposed method is based on the average magnitude differ­

ence function (AMDF). We present performance results for the proposed method for

AWG Nand Raleigh-fading channels in the context of IEEE 802.11 a short preamble se­

quence. We also propose a preamble sequence based on Golomb sequence, a sequence

with low auto-correlation properties, and compare its timing estimation performance

with that of the IEEE 802.11a short-sequence. Simulation results show significant

performance improvements for AWGN as well as Raleigh-fading channels.

We also present an experimental Field-Programmable Gate Array (FPGA) im­

plementation of the symbol timing estimation block using a Intermediate-frequency

based hardware transceiver and LabVIEW using fixed-point arithmetic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to take this opportunity to thank all the people at Rice University who

have been instrumental in my graduate school learning. I would to thank my advisor,

Dr. Joseph R. Cavallaro, for his support and interest in this work. I am grateful

for his suggestions and guidance throughout the course of this project. This thesis

would not have been possible without his support. I extend my appreciation to the

committee members, Dr. Behnaam Aazhang and Dr. Kartik Mohanram for their

suggestions and help. The folks at National Instruments have provided the funding,

hardware platform and software for this project and I would also like to thank them.

Also, thanks to Alexandre DeBaynst, who got me started on this problem and helped

in the earlier stages of this project.

I would like to express my thanks to all my friends and colleagues in ECE depart­

ment for making my graduate studies at Rice University, a wonderful and memorable

experience. Finally, the biggest thanks and credit goes to my family who have been

instrumental in shaping my life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract 11

Acknowledgments III

List of Illustrations vi

List of Tables ix

1 Introduction 1

1.1 Thesis Contributions 2

1.2 Thesis Organization . 2

2 Symbol Timing Synchronization in OFDM Systems 4

2.1 Overview of OFDM WLAN Systems 4

2.1.1 Orthogonal Frequency Division Multiplexing (OFDM) 5

2.1.2 OFDM for Wireless LANs .

2.1.3 Wireless System Parameters

2.2 System Model

2.3 Symbol Timing Synchronization

3 Symbol Timing Estimation: Algorithm design and per-

formance analysis

3.1 Related Work ...

3.2 Proposed symbol timing estimation method

3.2.1

3.2.2

Complexity Analysis

Simulation Results

3.3 Preamble sequence

7

8

8

10

17

18

19

21

23

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 Golomb Sequence . .

3.3.2 Performance Results

3.4 Conclusions

4 System Hardware and Design Environment

4.1 NI-5640R IF Transceiver Module

4.1.1 Hardware Components ..

4.1.2 ADC, DAC, and Host Interface

4.2 Lab VIEW Programming Environment

4.2.1 LabVIEW Host .

4.2.2 Lab VIEW FPGA

4.2.3 NI-5640R Driver Software

v

28

33

35

38

39

40

42

44

45

46

46

5 FPG A Implementation of Symbol Timing Estimation 48

5.1 Fixed-Point Wordlength Analysis 48

5.2 System Partitioning. 49

5.3 Host VI and Analog Interface 51

5.4 FPGA System Implementation 55

5.5 Synthesis Results 61

6 Conclusions and Future Work 64

Bibliography 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Illustrations

2.1 Illustration of orthogonal sub-carriers in OFDM signal 6

2.2 Block diagram of OFDM transmitter 10

2.3 Block diagram of OFDM receiver 10

2.4 Receiver signal processing 11

2.5 IEEE 802.11a OFDM frame 12

2.6 Received signal generated based on short symbol repetition . 14

2.7 Normalized autocorrelation metric with timing offset of 30 samples 15

3.1 Average magnitude difference function with a timing offset of 30

samples 20

3.2 Normalized correlation metric with a timing offset of 30 samples 21

3.3 Probablity of correct estimation: Comparison for AMDF and

modified average magnitude difference function (without square-root

operation) . 25

3.4 Probablity of correct estimation: Comparison between AMDF and

Schmidl-Cox algorithm with different window size for computing

signal energy

3.5 Mean estimation error estimation: Comparison between AMDF and

26

Schmidl-Cox with different window size for computing signal energy 27

3.6 Probability of correct detection: Comparison between

Autocorrelation and AMDF methods 28

3.7 MSE comparison between Autocorrelation and AMDF methods 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

3.8 Sample autocorrelation function of IEEE 802.11a STS (left) and

Golomb sequence based training signal (right) 30

3.9 Frequency-domain sample autocorrelation function of IEEE 802.11a

STS (left) and Golomb sequence based training signal (right) . . 31

3.10 Time-domain representation of IEEE 802.11a STS and Golomb

sequence based training signal 32

3.11 Frequency-domain representation of IEEE 802.11a STS and Golomb

sequence based training signal

3.12 Probability of correct detection for AWGN channel

3.13 Estimator MSE for AWGN channel

3.14 Probability of correct detection for multi-path channel

3.15 Probability of correct detection for multi-path channel: performance

33

34

35

36

gains for higher SNRs. .. 37

4.1 Block diagram of NI-5640R (adapted from [1]) . 41

4.2 NI-5640R configuring clocks (adapted from [1]) . 43

4.3 NI-5640R configuration loop 46

5.1 Verification of fixed point results 50

5.2 Lab VIEW system overview. 51

5.3 LabVIEW FPGA DAC loop 53

5.4 ADC loop 54

5.5 FPGA block diagram layout 55

5.6 Storing incoming data samples . 56

5.7 LabVIEW FPGA symbol timing implementation. 57

5.8 Initial norm computation. 58

5.9 Updating the norm 58

5.10 Initial correlation computation. 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 Correlation metric update ..

5.12 Estimation and DMA transfer

5.13 Timing offset estimation ...

5.14 Front panel view of FPGA VI

Vlll

59

60

60

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tables

2.1 OFDM system parameters .. 9

3.1 Complexity analysis. .. 23

5.1 FPGA synthesis results. .. 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

Chapter 1

Introd uction

This work addresses symbol timing synchronization for OFDM Wireless Local Area

Networks (WLANs). We present a low-complexity method for estimating the timing

offset that has performance comparable with the traditional auto-correlation based

methods. Also, a preamble sequence based on Golomb sequence is proposed that

exhibits low auto-correlation properties and results in better estimation performance

at the receiver. Finally, a Field Programmable Gate Array (FPGA) based hardware

prototype for this task is presented.

Orthogonal Frequency Division Multiplexing (OFDM) systems have gained pop­

ularity over the last few years for broadband wireless communication. Wireless Local

Area Networks (WLAN) such as IEEE 802.11a [2] and HiperLanA [3] [4] have been

designed and deployed successfully, along with some more recent standards such as

IEEE 802.11n, IEEE 802.16 etc. for WLAN and Wireless Metropolitan Area Net­

works (WMAN) systems. By employing OFDM, these wireless communication sys­

tems strive to achieve good spectral efficiency, high data-rates, robust communication,

and relatively lower computational complexity.

With the communication and signal processing algorithms research working to

establish wireless communication links that can support data rates closer to the chan­

nel capacity, more signal processing capabilities are required at the wireless receiver.

From a hardware designer's standpoint, architecture design and system prototyping

are a key to support these algorithm advances, while meeting the size, battery life

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

and real-time budgets.

Orthogonal Frequency Division Multiplexing has proved to be an enabling technol­

ogy for high data rate wireless communication networks [5]. Wireless LAN standards

such as IEEE 802. lla/g/n as well as broadband wireless access systems such as IEEE

802.16 use OFDM modulation. Because of the bursty nature of data transmission and

fast acquisition times needed, preamble-based methods are used to acquire symbol

timing and carrier frequency synchronization. The sensitivity of OFDM receiver per­

formance to symbol timing estimation and carrier frequency offset (CFO) estimation

errors is well known [6] [7].

1.1 Thesis Contributions

The main contributions of this work are as follows. We address symbol timing syn­

chronization issues for OFDM Wireless Local Area Networks (WLAN). We present

a method for preamble-based symbol timing synchronization that exhibits lower­

complexity and performs comparable to existing methods. Further, we present sim­

ulation results showing that a performance improvement can be achieved in WLAN

systems by replacing the short symbols with low-autocorrelation sequences, for ex­

ample, Golomb sequence. An FPGA-based hardware implementation of the symbol

timing synchronization block is done using an intermediate frequency (IF) transceiver

built around Xilinx Virtex-II Pro FPGA and LabVIEW software.

1.2 Thesis Organization

The thesis is organized as follows. The OFDM communication system being con­

sidered and overview of symbol timing estimation are described in Chapter 2. In

Chapter 3, we present the proposed timing synchronization method along with simu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

lation results and complexity analysis. We also present an application of a sequence

known to have good periodic correlation properties (Golomb sequence) to the prob­

lem of symbol timing estimation in the context of WLAN systems. The performance

benefits of this preamble are discussed. In Chapter 4, we introduce the NI-5640R

FPGA-based system hardware and the LabVIEW design environment. In Chapter 5,

we present a hardware implementation of the symbol timing synchronization block.

Finally, we end with conclusions and future work in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Symbol Timing Synchronization in OFDM
Systems

4

In this chapter, we provide details of the wireless system considered in this work. We

begin with the fundamentals of Orthogonal Frequency-Division Multiplexing (OFDM)

technique in the context of Wireless Local Area Networks (WLAN) systems. Next,

we consider the timing synchronization problem and the general receiver architecture

for synchronization. Finally, we put the timing synchronization in context with an

example of the training sequence and metric used for achieving coarse symbol timing

estimation in an IEEE 802.11a receiver.

2.1 Overview of OFDM WLAN Systems

Wireless communication is increasingly becoming an integral part of our lives. By

allowing for communication without wires, a wireless system may require lesser in-

frastructure, allow faster deployment, support more dynamic network usage, and

roaming. Some of these wireless systems might be ad-hoc in nature, such as net-

works set-up to aid emergency workers; others might be more or less fixed with some

roaming or mobility among users. Mobile phones allow users to communicate while

moving at highway speeds and are supported by fixed infrastructure. High-definition

digital TV viewers may receive signals from the satellite where the receiver position

is assumed fixed relative to the satellite.

For a successful wireless communication system, the system design depends on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

the nature of the communication system and usage. The signal processing algorithms

and hardware necessary for a broadcast digital TV network, such as DVB-T, may

be quite different from that necessary for an ethernet-based wireless LAN system.

While a wireless receiver in a broadcast network may rightly assume that data is

being transmitted continously, a WLAN receiver should deal with the bursty or onloff

nature of the data transmission.

For our work, we focus on wireless LANs. Wireless local area networks (WLANs),

generally have fixed base-stations and allows users to connect to the internet using

standard protocols, such as IEEE 802.11a. WLAN users generally don't require sup­

port for high mobility and can be assumed to be more or less stationary. Orthogonal

frequency division multiplexing is one of the modulation schemes used for WLAN

communication systems.

Wireless broadband networks, wireless personal area networks, and wireless local

area networks are among the many applications where OFDM has been deployed

or proposed as a standard. These include IEEE 802.16 Wireless metropolitan area

networks (IEEE 802.16 WMAN) , IEEE 802.11a/n, WiMAX and IEEE 802.15 WPAN.

2.1.1 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme where

the broadband wireless channel is subdivided into multiple parallel lower-data rate

channels. The OFDM transmitter modulates information separately on each sub­

channel by considering the signal bandwidth as comprised of multiple parallel chan­

nels. The sub-channels, also known as sub-carriers, are equally spaced, the sub-carrier

spacing being an important parameter. Employing orthogonal sub-carriers allows an

OFDM system to pack sub-carriers close to each other without causing any degra-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

dation in performance. This increases the spectral efficiency, although the receiver

performance is affected if the orthogonality between sub-carriers is not maintained

due to effects of the wireless channel [6]. Figure 2.1 illustrates the concept of OFDM

with 7 orthogonal sub-carriers. The dotted lines represent the center frequency for

each of the sub-carriers. These are the ideal sample points; as shown in Figure 2.1, the

contribution of all the other sub-carriers at these points is zero. If due to synchroniza-

tion errors, the signal was sampled at some offset from these center frequencies, there

would be a loss of orthogonality among the sub-carriers and consequent degradation

in performance [6] [8].

Figure 2.1 : Illustration of orthogonal sub-carriers in OFDM signal

OFDM communication systems are inherently more robust to impulse-noise and

narrow-band interference. Also, by appending a cyclic prefix in the time-domain

signal representation, the system is able to mitigate inter-symbol interference and

improve sensitivity against multi path fading.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

From an architecture standpoint, an OFDM receiver is more amenable for hard-

ware implementation. As communication systems push for higher data-rates using

techniques such as ffiulti-antenna systems [9], the signal processing required at the

receiver becomes increasingly complex. The robustness of OFDM systems to channel

distortion results in reducing the complexity of channel equalization needed at the

receiver [10] [9]. Also, because OFDM uses Fourier transform, an efficient implemen-

tation using the Fast Fourier transform (FFT) algorithm is feasible [9].

The added flexibility in OFDM, whereby a sub-set of the sub-carriers can be

turned off, is noteworthy. This facilitates having a common wireless system that can

work across multiple geographies having different frequency licensing restrictions.

The multi-band OFDM initiative can turn-off spectrum for taking advantage of this

feature, as well as for protecting certain critical frequency bands [11]. Additionally,

there has been a lot of interest recently in the area of cognitive radios and dynamic

spectrum sharing. The flexibility of the OFDM system makes it a strong candidate

for these systems [12].

2.1.2 OFDM for Wireless LANs

We consider a packet-based OFDM transmission system. The nth sample of the mth

OFDM symbol can be represented as the inverse Discrete Fourier Transform (IDFT)

of the complex data vector dm,o .. dm,N-l

N-l
xm(n) = L dm,kexp(j2IIkn/N) (2.1)

k=O

where 0 ~ n ~ N -1. Here N represents the number of sub-carriers or equivalently the

length of the DFT. A cyclic prefix of length Ng is added to give the mth transmitted

OFDM symbol Xm = [Xm,N-Ng , ••• , Xm,N-l, xm,o" Xm,N-l] . A preamble sequence is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

inserted at the beginning of each frame of data before transmission. The transmitted

signal passes through the quasi-static wireless multi path-channel, assumed constant

over one OFDM symbol, and additive white Gaussian noise (AWGN) is added. In

the absence of any synchronization errors, the receiver can perform a DFT in order

to recover the original data vector. In practice, the DFT and IDFT operations are

implemented using the Fast Fourier Transform (FFT) algorithm.

Because of the bursty nature of data transmission and fast acquisition times

needed, preamble-based methods are used to acquire symbol timing and carrier fre­

quency synchronization. The sensitivity of OFDM receiver performance to symbol

timing estimation and carrier frequency offset (CFO) estimation errors is well known.

2.1.3 Wireless System Parameters

The IEEE standard body has proposed many standards based on OFDM that are used

for WLAN and wireless metropolitan area networks (WMAN). These include IEEE

802.11a/g/n and IEEE 802.16 We have chosen the IEEE 802.11a system, though the

recent IEEE 802.11n standard also has similar system parameters All of these packet­

based OFDM communication systems require a preamble-sequence to be prefixed to

the transmitted signal to facilitate fast signal acquistion and recovery of received

signal. The system parameters are shown in Table 2.1.

2.2 System Model

Here we describe the wireless communication system under consideration. Figure 2.2

shows the block diagram of the transmitter. The data or information bits are mapped

using conventional modulation such as Quadrature Phase Shift Keying (QPSK),

Quadrature Amplitude Modulation (QAM). These symbols are then modulated using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Table 2.1 : OFDM system parameters

II Parameter Name I Parameter Value I

OFDM Symbol Duration 3.2 microseconds

Guard Interval 0.8 microseconds

FFT Size 64

Number of data sub-carriers 52

Sub-carrier spacing 312.5 kHz

Sampling Rate l/T

Modulation Scheme QPSK

the Inverse fourier transform (IFFT) operation. The IFFT is a block operation and

modulates N parallel data streams, where N is the size of the transform. A guard in-

terval is appended to the transform output to form a complete OFDM symbol. Next,

the frame is generated by appending a preamble sequence to one or more OFDM data

symbols. The preamble sequence helps the receiver in packet detection, synchroniza-

tion and channel estimation tasks. We discuss the preamble sequence structure and

its use at the receiver in Chapter 3. Finally, the baseband signal undergoes over­

sampling, pulse-shaping, and digit al-to-analog conversion (D / A) and transmission

occurs.

At the receiver, the received signal first undergoes analog-to-digital conversion

(A/D) and downsampling. There is typically an automatic gain control (AGC) loop

that helps with setting the signal amplitude. Figure 2.3 shows the receiver block

diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

OFDM Transmitter

Figure 2.2 : Block diagram of OFDM transmitter

OFDM ReceiVer

Figure 2.3 : Block diagram of OFDM receiver

2.3 Symbol Timing Synchronization

The performance of a wireless receiver is measured by its ability to successfully recover

or decipher transmitted information. In the context of wireless communications, the

baseband signal processing algorithms generally assume perfect synchronization. In

practical systems, however, synchronization at the receiver is a critical aspect that

impacts the performance of the entire system. In fact, synchronization is one of the

main challenges in OFDM systems. Before actual processing and decoding of the

received data can occur, synchronization needs to be achieved. The receiver signal

processing blocks downstream depend on this and consequently are susceptible to

errors in synchronization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

For packet-based burst-mode communication systems (for example WLAN), the

receiver has to first detect the presence of a packet and determine the beginning

of the data. For an OFDM system, the receiver signal processing algorithms are

implemented in the frequency-domain. Therefore, estimating the beginning of the

data or equivalently the start of the FFT window has a direct impact on the receiver

performance. This task is called symbol timing synchronization. OFDM systems are

also sensitive to frequency offsets - generally caused due to carrier frequency mismatch

or doppler spread. By utilizing the structure in the transmitted signal, most OFDM

receiver architectures apply coordinate rotation digital computer (CORDIC) to the

results of symbol timing synchronization to estimate this frequency offset.

Figure 2.4 shows the functions performed by a typical OFDM WLAN receiver.

Once the received signal has undergone analog-to-digital conversion and downcon-

version, the baseband IQ (in-phase and quadrature-phase) samples are available for

processing. The first task is to detect the presence of a packet and estimate the start

of the Fast Fourier transform (FFT) window.

,------------------------------,
I , .. " .• " RxSignal J

Rx

L"""·'·""
I Processing I
I 1
I I
I I
I I
I I
I ~ml
I Processing,

\ -----------------------------_/

Figure 2.4 : Receiver signal processing

For bursty packet-based communication systems, preamble-based methods are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

used for achieving timing and frequency synchronization. In contrast to the blind

or non-data aided methods, the preamble-based synchronization gives accurate and

reliable estimates much faster and within the first one or two received symbols. Fig­

ure 2.5 shows the structure of the OFDM frame for the IEEE 802.11a standard. At

the beginning of a new transmission, the transmitter sends a known training sequence

(preamble) followed by the data bits. The receiver uses knowledge of this preamble

sequence for synchronization. The receiver employs the short training sequence to

achieve packet detection, automatic gain control (AGC), symbol timing synchroniza­

tion and frequency offset estimation. The long sequence is then used to further refine

the timing and frequency estimates as well as for estimating the wireless channel.

OFDM Frame

Long Symbols Payload

Time

Figure 2.5 : IEEE 802.11a OFDM frame

Relating back to Figure 2.4, the coarse symbol estimation block uses correlation­

based methods (typically autocorrelation) to detect where the packet begins and

dictates the samples to which the Fast Fourier transform is applied. Based on the

output of the coarse symbol estimation, a CORDIC block can then be used to find

the coarse frequency offset in the received signal. Typically, the coarse estimation

block is expected to find the start of the FFT window within a certain range and the

fine estimation blocks then strive to improve this estimate further.

In many practical implementations, the sequence of events can be described as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

follows. First, a packet detector will detect the presence of a packet. One way to do

this is to use the received signal strength. Then, the coarse symbol timing estimation

performs auto correlations to find the beginning of a short symbol. Once the corre-

lation result crosses a specified threshold, the corresponding sample index is given

as the coarse timing estimate. The coarse estimate for the frequency offset in the

received signal is then computed and the frequency correction is applied to the in-

coming signal. At the same time, the fine timing estimation computation is triggered.

Generally, this also involves sliding window autocorrelation over the received signal,

this time for searching for the location (sample index) for the long symbols. This fine

symbol timing estimate is then used in conjunction with the CORDIC block to refine

the frequency offset estimate. Finally, after applying the frequency offset correction,

the Fast-Fourier Transform (FFT) operation is performed and channel estimation and

other signal processing can be done.

We now take a closer look at the autocorrelation metric used for coarse symbol

timing synchronization. The estimation involves computing a sliding window auto-

correlation over the received signal. Mathematically, the normalized autocorrelation

function, M(d), is written as [13J:

(2.2)

where

L-1

P(d) = L r*(d + m)r(d + m + L) (2.3)
m=O

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

L-1

R(d) = L Ir(d+m+L)12 (2.4)
m=O

In the equations above, r(n) are the received signal samples, and R(d) is the energy

of the received signal currently being used as input to the correlation block. Also,

L denotes the length of the sequence: L = 16 for the short sequences. Figure 2.6

shows the short symbol repetition under zero-noise conditions. Here, the length-16

short sequence is repeated 10 times, the sequence beginning at index=31 and ending

at index=190. In order to illustrate the shape of the metric function, a timing offset

of 30 samples is introduced and data packets are appendend at the end of the short

symbol repetition.

Received Signal: Short symbol repetition followed by data packets
0.35,----,--...,---,----,----,--,----,--...,---,

0.3

0.25

100 200 300 400 500 600 700 800 900

Figure 2.6 : Received signal generated based on short symbol repetition

The metric M(d) for this signal is shown in Figure 2.7. The metric reaches its

maximum value of 1 at index=31, and then stays at this value until index=159. At

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Normalized autocorrelation metric: Timing offset = 30
1.2 r------,---.-------,--.--------r--.-------,-------.,

0.6

o 100 200 300 400 500 600 700 800

Figure 2.7 : Normalized autocorrelation metric with timing offset of 30 samples

these index values, the signals in the two different correlation windows (equation

3.4) match exactly. Beyond this index, the match starts decreasing and consequently

the correlation decreases until it becomes very small. Therefore, many practical

systems give the first crossing-point when the signal is greater than a set threshold

as the symbol timing estimate. The plateau-like shape of the metric adds robustness

to channel effects such as multi-path. However, it also results in a high estimator

variance. The estimator variance can be reduced by modifying the training sequence

or metric definition such that there are clear peaks at the beginning of the training

symbols. In [14] [15] for example, the authors propose a modified-preamble sequence

to reduce the estimator variance. We consider these modifications in more detail in

Chapter 3.

We will now proceed to address the problem of preamble-based symbol timing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

estimation in more detail. While our focus is on coarse estimation using the short

sequence, the similarity between the coarse and fine estimation algorithms implies

that the approach may be applicable for fine-estimation as well. A performance

improvement gained by improving the coarse symbol timing estimation enables better

overall system performance. The frequency offset estimation, for instance, relies on

the timing estimate for its accuracy and therefore will directly benefit from improved

symbol timing estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Chapter 3

Symbol Timing Estimation: Algorithm design and
performance analysis

In this chapter, we focus on the symbol timing synchronization algorithms in more

detail. The goal of symbol timing synchronization is to find the beginning of the

Fast Fourier Transform (FFT) window for wireless OFDM receivers. For OFDM

systems, signal processing such as channel estimation, decoding and other tasks are

typically done in the frequency domain, i.e. post-FFT. Therefore, the FFT results

and consequently the samples chosen for the FFT input affect the performance of

the signal processing algorithms. Generally, these algorithms are designed and evalu-

ated assuming perfect synchronization at the wireless receiver. In practical systems,

though, achieving timing and frequency synchronization at the wireless receiver is a

challenging problem [6] [8] [10].

We propose a preamble-based low-complexity timing synchronization algorithm

and present performance results in the context of coarse symbol timing synchroniza-

tion. We also present an application of a well-known sequence to symbol timing

synchronization. The simulation results show that the new sequence can result in a

significant performance improvement over the IEEE 802.11a short symbol, especially

for multi-path channels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

3.1 Related Work

In recent years, the problem of symbol timing synchronization for OFDM systems has

received a lot of attention. Among the mallY approaches taken to solve this problem,

the preamble-based timing synchronization methods are most applicable to burst­

mode communication systems such as WLANs, primarily due to the long acquisition

time needed by other non preamble-aided methods in generating an accurate estimate.

A timing estimation method proposed by Schmidl and Cox [13] estimates symbol

timing offset using received signal correlation based on the preamble signal. Minn,

Bhargava et. al. [14] and Park et.al. [15] have proposed modified preamble schemes

that try to reduce the variance of this estimator. The majority of the methods

proposed in the literature are based on autocorrelation of the received signal, in­

cluding [16] [7] [13]. The correlation is computed either to detect the cyclic prefix,

or the periodicity of the preamble sequence. By exploiting the apriori knowledge

of the preamble sequence, the methods try to maximize the similarity between two

sliding windows [13] [14] [15]. In [17], the authors present a different approach for

cyclic-prefix based timing estimation where they minimize the anti-correlation or dis­

similarity between the sliding windows. Also known as average magnitude difference

function (AMDF), this method has been studied for pitch detection of voice signals

[18] [19]. However, cyclic-prefix based timing estimation methods require averaging

over multiple OFDM symbols in order to generate an accurate estimate. In contrast,

preamble-based estimation does not require averaging over multiple OFDM symbols,

and consequently meet the stringent acquisition time requirements for burst-mode

wireless OFDM transmission systems.

There has been other work in the literature that try to improve the accuracy of

symbol timing estimates. However, due to the increased computation complexity of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

these methods, for example, [20] [21], they may not have been pursued for hardware

implementation. In the context of IEEE 802.11a systems, methods that use cross-

correlation over the lung preamble sequence in conjuction with autocorrelation over

the short symbols have also been proposed. However, in addition to the increased

computational complexity, the longer latency of these methods is a drawback. To the

best of our knowledge, the Schmidl-Cox metric for symbol timing synchronization

[13] (with slight variations in the way normalization is done or maximum is chosen)

is the most widely used method in hardware today.

We propose a simple method that lowers the computational complexity while

striving to maintain similar performance. Indeed, performance results show that

the performance matches that of the modified Schmidl-Cox method [14] for AWGN

channels. For a review of the results presented in this chapter, we refer the reader to

[22].

3.2 Proposed symbol timing estimation method

In contrast to the autocorrelation-based method presented in Chapter 2, we consider

a new metric for preamble-based synchronization. Given a received signal, r(d), the

receiver detects the repetition pattern by computing the following metric:

L-1

M(d) = L Ir(d+m) -r(d+m+L)1 (3.1)
m=O

This has been referred to as the average magnitude difference function [17]. The

motivation for this metric can be understood as follows. M(d) is a measure of the

difference between the received signal in the two windows. In a perfect/noiseless

scenario, the above metric will be zero when the received signal samples in the two

windows match up exactly. This is the case when the received signal is comprised of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

a repeated pattern with periodicity L. On the other hand, when the received signal

is comprised of any other component, the difference will be non-zero and will indicate

the level of disagreement. Just as autocorrelation is a measure of similarity between

two signal windows, the metric above, average magnitude difference function is a

measure of dissimilarity.

Figure 3.1 shows the shape for the metric for the received signal shown earlier in

Figure 2.6. For comparison, the normalized correlation metric for the same signal is

shown in Figure 3.2.

Average mean difference function: Timing offset = 30
3.5,------,---,--...... --...------,--..,-----,----,

3 11

2.5 ~.

2 \ V ~

15 \ I

0.5 I I
, 1

o l... .. __ J
o 100 200 300 400 500 600 700 800

Figure 3.1 : Average magnitude difference function with a timing offset of 30 samples

We also note that the use of the difference structure in equation 3.1 is not restricted

to autocorrelation. For example, schemes that use cross-correlation methods could

also benefit from the lower complexity of this computation.

We introduce a variation of the above metric as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Normalized autocorrelation metric: Timing offset = 30
1.2.------,.----,----.------,--,...-----,--.-----,

o:n
i

0.6

o 100 200 300 400 500 600 700 800

Figure 3.2 : Normalized correlation metric with a timing offset of 30 samples

L-1

M(d) = L Ir(d+m) -r(d+m+L)1 2 (3.2)
m=O

This eliminates the square root operation and is motivated by simpler hardware

implementation. We will evaluate the effect of this on the performance of the symbol

timing synchronization method.

3.2.1 Complexity Analysis

The main advantage of this method is its significantly reduced computational com-

plexity. We consider again the normalized autocorrelation metric defined by Schmidl­

Cox [13]; the metric that most implementations of timing synchronization blocks are

based on [6] [8] [23]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

(3.3)

where

L-1

P(d) = L r*(d + m)r(d + m + L) (3.4)
m=O

and

L-1

R(d) = L Ir(d+m+L)12 (3.5)
m=O

It has been shown that the performance of this method can be improved tremen-

dously by replacing R(d) above with R2(d) given by [14]:

2L-1

R2(d) = L Ir(d +mW (3.6)
m=O

We then define the new metric as:

(3.7)

For reference, we also look at the autocorrelation metric with no normalization,

I.e.

(3.8)

To summarize, the difference between the three metrics is simply that M1 uses

L samples, M2 uses 2*L samples, and M3 uses zero samples to compute the signal

energy during the normalization step. Note that they all still need 2*L samples for

computing P(d), the autocorrelation function.

Table 3.1 shows the computational complexity for the three different metrics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

The method proposed in [13] is shown in the top row of Table 3.1. Many imple­

mentations, for example [24], use the method shown in the second row (M2). Our

simulation results confirm findings of [14] that the performance is much better when

using the second metric M 2 • From Table 3.1, we note that the AMDF method has

much lower computational complexity than M 2 . We will see later that the perfor­

mance of the AMDF method is similar to that of the modified Schmidl-Cox method

proposed in [14].

With many future generation wireless systems leaning towards more advanced

signal processing and error-correction methods such as LDPC [25] [26] [27], the limi­

tations posed by the size constraints of the hardware become increasingly evident[28].

When using FPGA platforms for prototyping a complete system, the constraints can

be the size of the FPGA and the number of multipliers as well. An advantage of

AMDF is the significant reduction in the number of mulitplies required.

3.2.2 Simulation Results

In this section, we present a performance analysis for the proposed method. All

simulations were done in MATLAB with parameters similar to IEEE 802.11a. The

Table 3.1 : Complexity analysis

Method Samples Needed Real Additions Real Multiplications

Schmidl-Cox (Ml) 2*L 4*L 6*(L-1)

M2 2*L 6*L 8*L

M3 2*L 4*L 4*L

AMDF 2*L 4*L 2*L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

parameters of the data packets, such as modulation scheme chosen (for eg: BPSK,

QPSK, 4-QAM), number of pilot tones, etc. does not impact the preamble-based

timing estimation block because it operates on the preamble signal. However, we

note that some of these parameters, for example modulation scheme, can affect the

frequency estimation and correction blocks (errors caused by a given offset) as these

affect the frequency-domain signal decoding.

It is a well-known fact that the channel profile has a direct impact on the perfor­

mance of the receiver. The symbol timing synchronization scheme needs to be robust

to channel effects and provide the best performance for that channel environment. A

multipath channel presents a greater challenge in detecting the correct timing point.

Degradation in performance may be expected due to inter-symbol interference (lSI).

Figure 3.3 compares the performance of AMDF with the modified AMDF method

(Equation 3.2) in terms of the probability that the symbol timing estimate matches

the actual offset exactly, under AWGN channel conditions. The key difference is

the elimination of the square-root operation for the second method. The results

are averaged over 500 Monte-Carlo simulations. The performance of both schemes

is almost identical. From here on, we use AMDF to refer to the modified AMDF

equation 3.2. Another thing to note in Figure 3.3 is that the performance is very

poor for SNR 0-8dB or so and then improves steadily as we might expect.

Figure 3.4 compares the four metrics M I , M2 , M3 and AMDF in terms of their

probability of correct detection under AWGN channels. This is the likelihood that

the timing estimate matches the correct timing offset exactly. ACFN16 (MI) and

ACFN32 (M2) represent that 16 and 32 samples respectively have been used for

computing signal energy. We observe that M2 and AMDF perform comparably, while

the performance of MI and M3 is much worse. As we saw in Table 3.1, M3 requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probability of correct detection

0.9

.;""

10 15

····0···· 802.11 a STS AMDF
.". . 802.11 a STS AMDF II

20

25

25

Figure 3.3 : Probablity of correct estimation: Comparison for AMDF and modified
average magnitude difference function (without square-root operation)

much less computations as compared to M 2 .

The mean estimation error for the same simulation is shown in Figure 3.5. Again,

we can confirm that the performance of M2 and AMDF is superior to the other

methods.

We now proceed to evaluate the performance of AMDF relative to M 3 . Recall,

M3 is based on the method proposed by [13]. From here on, we use the term aut 0 cor-

relation metric to refer. Figure 3.6 shows the probability of correct detection under

AWGN channel conditions.

The corresponding MSE is shown in Figure 3.7. Again, we observe the perfor-

mance of AMDF matches that of the M2 closely.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Probability of correct detection

""Ii'""
"'~"-<"~''--<"-""-"'--fT------'-- ,

'4-"-"'-"4-' ..______-h--'-"~
"~,, , ~----

,/ ~

/ --ACF
·····-(.······ACFN16

///
ACFN32

~AMDF

II
/

I
/

/
/

!

12 14 16 18 20 22 24

Figure 3.4 : Probablity of correct estimation: Comparison between AMDF and
Schmidl-Cox algorithm with different window size for computing signal energy

3.3 Preamble sequence

Burst-mode OFDM systems utilize the preamble signal to achieve rapid signal ac-

quisition. This is also known as the training signal. The structure of the preamble

chosen is a key design aspect of the wireless communication system. The perfor-

mance results discussed so far assume the short training symbols of IEEE 802.11a.

In this section, we introduce a preamble sequence that maintains the same energy as

the IEEE 802.11a short training symbol but results in much better performance for

multi-path channels.

The acquisition time needs to be short for WLAN systems. The receiver, when

listening on a packet, needs to detect the presence of the packet and start processing

it within a short amount of time. This time is dictated by the medium-access-control

(MAC) protocol, which might require the receiver to acknowledge reception within

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mean Error of estimates
70~--~-----.----~----.---~~==~====~

--ACF

40

20

10

................ ACFN16
ACFN32

- - -AMDF

27

Figure 3.5 : Mean estimation error estimation: Comparison between AMDF and
Schmidl-Cox with different window size for computing signal energy

a window of time to avoid retransmission. This time will also be dependent on the

complexity of the rest of the receiver signal processing.

The acquisition time has to be kept in mind when designing the symbol timing

synchronization architecture. For systems like IEEE 802.11a, there is a repetition of

the short symbol to generate the complete preamble. At the receiver, there is a trade-

off between the acquisition time and the accuracy of timing estimation. Specifically, a

larger correlation window will translate into a better estimate at the cost of increased

time required for estimation.

For hardware implementation, the number and latency of operations that need to

be performed have a tremendous impact on the system. In addition to the number

of gates and power consumption, the number and latency of operations affects the

acquisition time and the ability of the receiver to successfully detect a packet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.98

0.96

c
,g 0.94

* "C 0.92

Pr (Timing estimate = true value)

__ ~';-' ~~"W

. ../-~-----_/-r-j-~~,----, ------\

..
.. Y I--B-Autocorrelation
// AMDF / ..

i
8 0.9

/'
I

'0 /.
~ 0.88
:c >if'
21 I e 0.86 .'

IL 0.84 1

o~t
0.8 '---_--' __ --'-__ --1... __ -'--__ -'-__ --'--_---'

10 12 14 16 18 20 22 24
SNR (dB)

28

Figure 3.6 : Probability of correct detection: Comparison between Autocorrelation
and AMDF methods

A receiver architecture based on computations over the received signal has the

advantage that the number of operations required can be reduced by re-using results

from previous computation. However, a cross-correlation based scheme, where the

received signal is correlated (or subtracted, in the case of AMDF) with a template

sequence does not leave room for any reuse of previous results.

3.3.1 Golomb Sequence

We now consider a sequence with low periodic autocorrelation generated using the

following equations [29]. Let L denote the length of the sequence and define

a = exp(27riL) (3.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MSE Comparison
1~r------'-------'-------'------.-------'-~====r=====~ I ~ ~~g~orrelation I

SNR (dB)

29

Figure 3.7 : MSE comparison between Autocorrelation and AMDF methods

Then, the Golomb sequence consists of (ak)t=l complex numbers that are chosen

using the following equation:

(3.10)

This sequence is known as Golomb sequence. This is a polyphase sequence ex-

hibiting a constant envelope in the time-domain. We have chosen the length to be 16

samples, the same as the short training sequence length [2].

Figure 3.8 shows the sample autocorrelation of the IEEE 802.11a short training

symbol (STS) and length-16 Golomb sequence for different lags.

For the ideal sequence, the sample autocorrelation should be unity for a lag of zero,

and zero for all other lags. We note that the mean value of the sample autocorrelation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

... ,

·0.5 a

I

Sarnple AutQcorrei"atfon Functi.Ott (ACF)

t~ Shim: :?e~wenqe

i

;. .r t r
! 1

i
1 • .~ 4

«

5. 10

30

I ~ Gelomb sequence" I

0.5

* r 0
J ! .1. i 1 1 1

15
5 .0.
U 10 15 5.

Figure 3.8 : Sample autocorrelation function oflEEE 802.11a STS (left) and Golomb
sequence based training signal (right)

function for all non-zeros lags is much smaller for the Golomb sequence as compared

with the IEEE 802.11a STS. A commonly used metric for comparing auto-correlation

properties of sequences is the inverse of the sum of sidelobe energy, mathematically

denoted as:

£-1

X = 1/ L ACF(m) (3.11)
lag=O

Here ACF represents the sample autocorrelation function. A larger value of X

is desirable because it denotes a small mean-value for the sample autocorrelation

function at non-zero lags. The value of X for IEEE 802.11a STS and Golomb sequence

is 0.7457 and 1.1840 respectively. Hence, Golomb sequence does indeed exhibit better

autocorrelation properties and it may be expected to be more robust to noise relative

to the short training sequence. For completeness, Figure 3.9 shows the frequency-

domain sample autocorrelation function.

In this case for the value of the metric X, the STS and Golomb sequence is 0.7801

and 1.5300 respectively. Again, Golomb sequence exhibits better autocorrelation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sampte Autocorrelation Func..1km (ACF)

" ~ 0.5••..•.••..•...•..•..•.•..••••.•..••••••••••••• __ .•••..••..•..•...••..••..••..••..•..•..•.•..•..•••..••• ..
~

i r 1.
~ O~~~~,-,-~~~~~-L~~~~

-O.5L......----­
a

5

-------'-._----------- ---------------------
10 '15

31

Sample Autocorrelation Function {ACF)

....... "* Golomb Sequence (frequency-domain)]

-o"sL------'-------:'------"
I} 5 10 15

Lag

Figure 3.9 : Frequency-domain sample autocorrelation function oflEEE 802.11a STS
(left) and Golomb sequence based training signal (right)

properties in terms of the above metric. We note that since the timing synchronization

typically operates before the frequency offset estimation, it is highly unlikely that the

correlation will be done in the frequency-domain (if we take an FFT before correcting

for the timing offset, the resulting data will suffer from leI due to loss of orthogonality

of sub-carriers).

We now study the performance of the two sequences under various channel en-

vironments. For fair comparison, we have normalized the energy of the Golomb

sequence to be the same as the short training sequence.

Figure 3.10 shows the time-domain domain representation of the two training

signals. Observe that the short preamble based on Golomb sequence has a constant

amplitude, thus alleviating the problem of high peak-to-average power ratio.

Figure 3.11 shows the frequency-domain representation ofthe two training signals.

Observe that with the exception of three frequency indices - 29, 33, 37 - in Golomb

sequence, the frequency indices where the IEEE 802.11a short training signal (STS)

and the Golomb sequence are zero match. Thus, both signals have the same guard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time-domain representation of 802.11a STS
0.16

1-abs value 1
0.14

0.12
!!l
~

0.1

0.08

0.06
0 10 20 30 40 50 60 70

Sample Index

Time-domain representation of Golomb sequence
0.1125r-----"T---,----,--------,----r---;:r======il

I-absvaluel
0.1125

0.1125

!!l
'iii 0.1125
>

0.1125

0.1125

0.1125
0
'-----:'::-10-----='20:-------,3:':-0------:':40,---------=5"'-0 ----:'-60------'70

Sample Index

32

Figure 3.10 : Time-domain representation of IEEE 802.11a STS and Golomb sequence
based training signal

bands at either end of the frequency spectrum.

We believe that a further exploration of preamble-design space is very desirable,

especially when multiple-antenna systems come. This is similar to the exploration and

design done in [30], where the authors devise an optimization criteria and method for

designing a preamble sequence taking into account factors such as AGC, guard sub-

carriers, multi-path propagation for OFDM-based power line communication systems.

In our work, we show the performance benefits of using a new length-16 sequence

that has the same energy as the short training sequence and shares many of its

characteristics. At the same time, the new preamble signal (in baseband) has a peak

to average power ratio of unity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency-domaln representation 01 802.11 a STS
2.5 ,----,---~--.--------,-----.-____;:===::::;l

-absvalue

2 I! ~ I, II ! ! I~ ! ! II .. .
~ 1.5 .il 1\ jl)1 1\ .\ " 1\ .\ I· !l .\
~ 1 n 1\ ·1 II 1\ 1\ 1\ Ii 1\ 1\ i\ 1\

0.5

o o

2.5

2

~ 1.5
0;
> 1

0.5

o o

II Ii 1\ J \ Ii 1\ I \ I \ I \ I \ I i 1\
.LJ.JjLLLJ. ... ull .. ~ _ .. Ll u .. LLJJ.. .. u ... Ll..

10 20 30 40 50 60 70
Frequency Index

Frequency-domain representation 01 Golomb sequence repetition

I: 1\ ! .\ 1\ Ii '. 1\ 1\ . I. Ii 1\ i' I·
II i \ 1\ I I 1\ II
!\ iii \ I I 1\ ! \

10 20

~ ~. /:
1\ I 1\ 1\ I 1\
I, !\ ·1 1\ Ii I'
Ii I \ I \ I \ 1\ i \
I \ i \ i \ II I \ i \

30 40
Frequency Index

50

~ I ·· .. ·absvaluel

' i
II Ii
I I II A

I \ j \ 1\
60 70

33

Figure 3.11 : Frequency-domain representation of IEEE 802.11a STS and Golomb
sequence based training signal

3.3.2 Performance Results

Here, we show present simulation results comparing the performance of symbol timing

synchronization using short training sequence and Golomb sequence. The results are

based on Monte-Carlo simulations with various channel environments.

Figure 3.12 shows the probability of correct detection for the AWGN channel.

We see that the Golomb sequence based training signal performs better than the

802.11a short training signal with the gap being more prominent for lower SNRs.

The corresponding MSE of the timing estimator is shown Figure 3.13.

Finally, we consider the performance of symbol timing estimator under multi-path

channel. The multipath channel model used is based on IEEE 802.11n and represents

a typical residential environment (LOS conditions) with a rms delay spread of 15ns

and a 10dB Ricean K-factor at the first delay. The probability of correct detection

for multi-path channel is shown in Figure 3.14. Observe the general degradation

in performance compared to AWGN. At the same time, the benefits of the better

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0,98

0,96

~ 0.94
Q)
::l
(ij

~ 0.92
::l

t!=
£ 0,9
0;
E
'iii 0.88
b!:!
l£ 0,86

0,84

Probability of correct detection (AWGN Channel)

-~~:~::~=~
r"'///' 802.11 a STS(AMDF)

/ ./ --_ .. (> Golomb(ACF)

/
/~./ - + - Golomb(AMDF)

// .. /

.4/" . .
fV .

f /~
/

;/
0.8

1
':-0 -------'12----1-'-4----1-'--6-----"18L-----L20----2--'--2-----'24

SNR (dB)

Figure 3.12 : Probability of correct detection for AWGN channel

34

correlation properties of Golomb sequence are more visible. The preamble based on

Golomb sequence gives significantly better performance than the short sequence.

We show the same figure with a closer focus on higher SNRs in Figure 3.15.

The probability of correct detection (estimated value = correct value) starts near

0.6 rather than near O.S as in the case of AWGN channels. Also, the trend from

lower SNR to higher SNR is similar for each metric, but the gap between Golomb

sequence based training signal and S02.11a STS is very significant even at high SNRs.

Finally, we note that the AMDF method performance follows the general trend of the

higher-complexity autocorrelation method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w
CIJ
::2:

Mean Squared Error of estimates (AWGN Channel)
1if ~-----,------,-------,------,--~===c======~====~

--li<-- 802.11 a STS,ACF
- e - Golomb, ACF

802.11 a STS, AMDF
. -+- . Golomb, AMDF

10~L-----~------~-------L-------L ______ ~ ______ ~ ____ ~
10 12 14 16 18 20 22 24

SNR (dB)

Figure 3.13 : Estimator MSE for AWGN channel

3.4 Conclusions

35

We have proposed a preamble-based low-complexity timing synchronization algo-

rithm whose performance matches closely the widely-used autocorrelation-based met-

ric based on [13J. We also present an application of a well-known sequence to symbol

timing synchronization. The simulation results show that the new sequence, used to

build the short training symbol, can result in a significant performance improvement

over the IEEE 802.11a short symbol, especially for multi-path channels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probability of Correct Detection (Multi-path Channel)
0.9.---------,----------,----------,----------.---------,

0.8

0.7

~ 0.6

~
Q)

2 0.5
~

* E 0.4

;TI
;t 0.3

0.2

0.1

o 5 10 15 20 25
SNR (dB)

Figure 3.14 : Probability of correct detection for multi-path channel

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probability 01 Correct Detection (Multi-path Channel)
0.9~------'----r-------'----'--------'----'-------'----=l

:: .<;~::=:::=:~~:~::-=~:===~~~>I
_ 0.6 .,...~~~. ". ···802.11aSTS(AMDF)

!g -4)- Golomb(ACF)
~ - + - Golomb(AMDF)

r·5

I 0.4
UJ

f
0.3

0.2

0.1

10 12 14 16 18
SNR (dB)

20 22 24

37

Figure 3.15 : Probability of correct detection for multi-path channel: performance
gains for higher SNRs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Chapter 4

System Hardware and Design Environment

In this chapter we discuss the NI-5640R FPGA-based system hardware and the Na­

tional Instruments Lab VIEW design environment that was used to prototype the

symbol timing synchronization block in hardware.

Wireless system designers use hardware prototyping extensively to achieve a suc­

cessful system design. Using reconfigurable devices such as Field Programmable Gate

arrays (FPGAs), wireless communications blocks are implemented in hardware and

connected to an analog interface to provide a complete working prototype. The pro­

totype helps understand the hardware trade-offs involved and exhibits the feasibility

of a hardware implementation and the correctness of the communication block. The

NI-5640R hardware and Lab VIEW software allow us to achieve this purpose. An un­

derstanding of this hardware and associated software will assist the reader in following

the details of the hardware implementation described in the next chapter.

The NI-5640R hardware platform used in this project provides computational re­

sources, supporting components and the ability to inteface with analog intermediate­

frequency(IF) signals. The Lab VIEW software together with other modules allows

us to target the hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

4.1 NI-5640R IF Transceiver Module

The NI-5640R hardware is a PCI card from National Instruments Inc. that plugs into

the PC and provides connectors for interfacing with analog signals. Briefly, the card

has a Xilinx Virtex-II Pro FPGA, ADCs, DACs, voltage-controlled crystal oscillator,

and a time base (clock configuration chip). The board takes power from the PCI

bus and has voltage regulators to provide power to the FPGA and other on-board

components. The documentation provided by the manufacturer can be referred to

for more details.

For our project, we were interested in a hardware architecture built around a

field programmable gate array (FPGA). Field programmable gate arrays are now

being widely used for rapid prototyping as well as for implementation of parallel

systems. The FPGA is an inherently parallel computation engine that is designed

as an array of logic blocks, along with memory blocks as well as interconnects for

moving data. The FPGA package can provide sufficient Input/Output pins to allow

rapid moving of data between the computation blocks inside the FPGA and the rest

of the system. This parallelism in computation and I/O resources are similar to the

parallelism available in an application specific integrated circuit (ASIC). However,

the programmable nature of the FPGA allows systems to be designed and tested

at a much lower cost, by avoiding costs associated with fabrication and testing of

silicon. Also, the platform architecture and the hardware/software design tools make

it possible to test different algorithms without making hardware connectivity changes

or other modifications in the overall system.

For prototyping real-world wireless communication systems successfully, the abil­

ity to get real-world signals into the system is an important consideration. The

analog interface with the integrated analog-to-digital converters (ADC), and digital-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

to-analog (DAC) converters in the NI-5640R card provide this capability. Wireless

communication systems, available commercially, generally operate in the radio fre­

quency (RF) range. The signal processing algorithms are implemented in baseband,

meaning raw data samples without the presence of any carrier signal. The data gener­

ated for transmission must be modulated onto a RF carrier signal before transmission

can occur. The NI-5640R card has digital up conversion and digital downconversion

capabilities to achieve modulation and demodulation with an intermediate frequency

(IF) range carrier signal. The IF range is not suitable for direct transmission; an

intermediate frequency (IF) to radio frequency (RF) up conversion must be done by

external hardware before transmission. As mentioned previously, RF signal output

is what a typical commercially available communication system employs for trans­

mission. However, for prototyping purposes, an IF transceiver can be sufficient for

studying the implementation in a practical environment.

For our wireless system, we interface with IF signals. Since there isn't an IF-to­

RF solution available for the NI-5640R card, over-the-air operation is not feasible.

Therefore, we use a loop back cable connecting the analog input and output of the

NI-5640R card. The implementation details are discussed in Chapter 5.

4.1.1 Hardware Components

Figure 4.1 shows the block diagram of the NI-5640R FPGA based IF transceiver. The

Xilinx Virtex-II Pro FPGA is the main computing engine. The interface for analog

I/O is provided by four SMA (SubMiniature version A) connectors. The analog­

to-digital conversion (ADC) and digital downconversion (DDC) are done using the

AD6654 integrated ADC/DDC receiver chip. Following this process, the analog IF

input will be available to the FPGA user as baseband I/Q samples. The digital up-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

conversion (DUC) and digital-to-analog conversion (DAC) are done with the AD9857

chip. There are two ADC/DDC chips (AD6654) and DDC/DAC chips (AD9857)

respectively thereby providing the ability for two parallel input and output channels.

Both the ADC and DAC devices provide an interface with 16-bit precision. While

the ADC provides the I and Q data streams in parallel, the DAC interleaves the I

and Q input data streams. From an operational standpoint, the DAC clock frequency

should be twice as fast as the ADC clock frequency to meet the achieve data-rate.

There are low-pass filters on-board the NI-5640R for the analog data-streams.

XilinxVirtex-1l Pro FPGA
(XC2VP30)

PCI Bus

Low-pass Filter

Figure 4.1 : Block diagram of NI-5640R (adapted from [1])

Output

Analog Output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

4.1.2 ADC, DAC, and Host Interface

The ADC operation is described below. The incoming IF signal, after digitization,

undergoes downconversion which perforrr13 frequency translation, band-selective fil­

tering, and sample rate conversion. The signal which is centered around carrier

frequency (Fc) is brought down to baseband. For our system, we are interested in a

signal bandwidth of 20MHz. Therefore a sampling rate higher than 20MHz is desir­

able to allow for decimation filter transition band effects. The DDC decimation filter

co-efficients should be chosen to avoid aliasing effects and to provide proper scaling

to avoid numerical overflows. The sampling frequency (Fs) should be chosen such

that there is no signal content at DC, Fs/2 and multiples of this frequency. We select

a sampling frequency of lOOMSamples/sec.

Also, the frequency-range supported by the ADC is from 250kHz to 80MHz. The

lower frequency limit is due to AC-coupling, while the higher limit is where the

transition region of the onboard analog low-pass filter begins.

The DAC takes in interleaved I and Q data and performs sample-rate conversion,

interpolation, and analog conversion. It provides a 16-bit interface at the input. Based

on the desired IQ rate, the interpolation factor is calculated and the conversion from

baseband to IF occurs.

NI-5640R connects'to the Host computer using the PCI bus. There is a PCI-bridge

chip (NI-STC2) that provides capabilities for direct-memory access (DMA) transfers

between the program running on the Host machine and the FPGA target. Presently,

NI-5640R driver software supports DMA only from the Host to the FPGA, but not

in the reverse direction. The 32-bit PCI bus can provide a maximum theoretical

bandwidth of approximately 127 MBytes/sec. Considering complex baseband samples

with 16-bit representation for I and Q data, this limits the maximum theoretical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

sample rate to approximately 31.75 MSamples/sec.

Figure 4.2 shows the configuration steps for the ADC, DAC clocks as well as the

clocks available to the FPGA. We use the on-board 200MHz voltage controlled crystal

oscillator (VCXO) for generating the various clocks. The configuration clock is used

for all communication between the HOST and FPGA done by LabVIEW, such as

front-panel connectors, read/write operations and DMA transfers.

fl",r.,;"oor;" C/X/($

S-mple CIQcl\$
1(', e:L"),,

-----~-----.---.----- .. -- .. -------.,-------.-- •. -- .. -- .. _--------,
FPG ...

Figure 4.2 : NI-5640R configuring clocks (adapted from [1])

The reference clocks, interpolation/decimation rates and clock dividers need to

be set in order to configure the IQ sample rate. The reference clock frequency is

set using the graphical user-interface provided by the LabVIEW project. The clock

dividers, and interpolation/decimation rates are configured by the user with the help

of HOST VIs. The details are discussed in section 4.2

We use the onboard 200MHz free-running Voltage-controlled crystal oscillator

(VCXO) as the primary clock source from which other clocks are derived. While the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

NI-5640R hardware provides the ability to use an external clock signal as a reference

clock source, we do not use this feature for our application. This can be helpful if the

system is extended to use multiple FPGA boards.

4.2 Lab VIEW Programming Environment

LabVIEW is a graphical programming environment. The program is represented

using a block diagram based approach. The program, known as a Virtual Instrument

(or VI), is translated into code appropriate for the target platform. A program in

Lab VIEW is called a Virtual Instrument (VI).

We use LabVIEW 8.0 software and FPGA module to implement the symbol tim­

ing synchronization algorithm on the FPGA target. The configuration of the other

hardware resources on the NI-5640R card are done using the NI-5640R driver soft­

ware. The prototyping environment provided by Lab VIEW allows us to integrate

code running on the HOST computer with the FPGA code and thereby enabling

hardware co-simulation.

The code is managed using a LabVIEW project. The LabVIEW code (or VIs)

are segregated according to the target. In our project, we have a HOST VI running

on the HOST target, and an FPGA VI with supporting sub-VIs that run on the

NI-5640R FPGA target. The details of these are discussed below. Also included in

the project, is the system clock information. Our system implementation includes an

ADC clock, DAC clock, RTSI clock, and a configuration clock. The clock frequency

for these are configured using the Project interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

4.2.1 LabVIEW Host

Lab VIEW software, originally targeted for measurement and automation has grown

in support and user-base to include simulation of signal processing, math, as well as

digital communication systems. The Lab VIEW Host VIs have access to toolkits that

have pre-designed blocks for implementing the functionality for many common blocks

used in these areas. This is good from a stand-point of supporting future extensions

to the system in simulation.

The Lab VIEW Host VI runs on the PC and the user interacts and controls the

program execution using this VI. The front-panel shows the controls that can be used

to configure the code on the fly and indicators that depict the results and debugging

information. The VI includes a reference to the FPGA VI that needs to be donwloaded

onto the FPGA target and executed.

This VI contains some configuration code for the NI-5640R hardware and therefore

is necessary in order for the hardware to function properly. The FPGA VI cannot

be run interactively, rather, the Host VI should open a reference to it. The Lab­

VIEW HOST VI configures the hardware resources on the NI-5640R card based on

user input. This includes the analog-to-digital converters (ADC), digital-to-analog

converters (DAC) , and their respective IQ clock rates (sampling rates). The HOST

VI does this by writing the user parameters to hardware registers via the interface

provided by the NI-5640R driver software.

A key element of the HOST VI is the state-machine for transferring data back­

and-forth between the HOST and the FPGA. We discuss the details in Section 5.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

4.2.2 LabVIEW FPGA

The FPGA VI contains all the user code that will run on the FPGA as well as code

for acquiring and sending data using the analog interface. For the NI-5640R target,

the FPGA VI cannot be run in interactive mode, i.e. cannot be run stand-alone

without the HOST VI. The driver software and configuration VIs that are used on

the HOST target for configuring the various hardware parameters such clock dividers,

interpolation/decimation rates, ADC and DAC profiles, call on FPGA code for these

tasks. The details of our FPGA implementation are discussed in Section 5.2.

4.2.3 NI-5640R Driver Software

[mN······

Config Loop COUfl\er !t:tijil-
r-----~~-----------mgl~ui:~-----4~~----------------------~

Figure 4.3 : NI-5640R configuration loop

Figure 4.3 shows the configuration code provided by National Instruments with

the NI-5640R card. The figure shows a single-cycle timed loop (SCTL) that runs every

clock tick of the configuration clock. For the NI-5640R hardware, the configuration

clock runs at a fixed frequency of 20MHz. The DAC and ADC have many configurable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

parameters that are set using registers on the respective device. When the user makes

changes in the hardware system the HOST code relies on this loop to implement

them. For example, if the user changes the DAC carrier frequency, the changes are

propagated from the HOST VI to the actual hardware registers on the DAC via the

configuration loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

FPGA Implementation of Symbol Timing
Estimation

48

In this chapter, we present the hardware implementation of the symbol timing syn-

chronization block on the NI-5640R transceiver built around the Xilinx Virtex-II Pro

FPGA chip.

5.1 Fixed-Point Wordlength Analysis

While designing hardware for wireless communication systems, there are area, power,

and performance budgets that need to be met. This is especially true for portable

consumer devices such as laptops where the size and battery life are important con-

siderations. Supporting floating-point operations in hardware requires a lot more

area and power relative to fixed-point operations. Consequently, there is a need to

translate the wireless algorithms from using floating-point numbers to numbers using

fixed-point representation. In fixed-point representation, the decimal place in the bit-

representation of the numbers is known at every stage of the computation, thus saving

resources required for decoding and shifting numbers when dealing with floating-point

representation. During the conversion from floating-point to fixed-point, the goal is

to minimize the hardware resources and power needed while striving to maintain the

desired level of performance.

LabVIEW FPGA can represent numbers in fixed-width precision. Unlike Applica­

tion specific integrated circuits (ASICs) where the wordlength can be made arbitrary,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

the wordlength for LabVIEW FPGA target needs to be chosen as either 8,16, or 32

bits. The precision required varies based on the application, but for many systems

that need high-precision, 24-bits typically seems to be a good trade-off point between

performance and hardware resources. For our Lab VIEW FPGA implementation, we

use 16-bit precision to represent the fixed-point numbers. We found that 8-bits are

not sufficient to cover the required range of values, while 32-bits leaves a lot of the

precision unused resulting in a lot of unnecessary hardware overhead. Also, as dis­

cussed in Chapter 4, the interface to the AID and D I A in the NI-5640R transceiver

provides 16-bit precision, thus making 16-bit wordlength a suitable choice.

As we've seen, the primary motivation for converting from floating-point to fixed­

point operations is the significantly higher hardware cost associated with floating­

point arithmetic. The trade-off is that the fixed-point operations typically allow for

a smaller dynamic range, therefore introducing performance loss.

Figure 5.1 shows the results of the timing metric computation, comparing the

fixed-point and floating-point implementations. In this particular case, we compare

the results from correlation metric computation performed in MATLAB floating­

point arithmetic with the same metric computed in fixed-point Lab VIEW code. The

simulations are for additive white gaussion noise (AWGN) channel using the short

sequence repetition and normalization correlation computation [13].

5.2 System Partitioning

In this section, we give a system-level description of our transceiver. As discussed

in Chapter 2, the source generates information bits which are mapped to symbols

belonging to the QPSK constellation. This QPSK data is then modulated using the

Inverse Fourier Transform (IFFT) operation. Next, the cyclic-prefix is appended to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plot of normaliz"d correlation metric

1

-= lYlA TLAB floating-pain~
... L"bVIEW flxed-pcint

Figure 5.1 : Verification of fixed point results

50

blocks of IFFT output to form the corresponding OFDM symbols to generate the

data frame. Finally, the preamble sequence is appended at the beginning to form the

OFDM transmitted frame. In our implementation, the generation of transmitted data

and the wireless channel effects are applied in simulation. The received data is then

read into the LabVIEW HOST VI from a file. The HOST performs I/Q interleaving

to match the data format expected by the DAC interface and sends the data to the

FPGA for transmission. These samples are then transmitted via the DAC and using

a loopback cable fed back into the ADC for acquisition. In a real wireless transceiver

system, instead of the loopback cable, there will be a suitable upconverter and RF

antenna at the transmit side followed by an RF antenna and suitable downconverter

at the receiver side. In the absence of these components though, the loop back cable

provides a suitable alternative to help understand the effects of the analog interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

The system-level view just described above is depicted in Figure 5.2.

As an aside, we note that the symbol timing algorithm operates on the preamble

sequence and therefore isn't directly affected by the constellation selected for the

data. However, the BER degradation caused due to a fixed symbol timing error can

be expected to be greater for higher-order constellations.

LaOVIEW
HOST

symbol Timing
Synchronization

5. Symbol Timing Estimate
(to LabVIEW HOST)

Figure 5.2 : LabVIEW system overview

5.3 Host VI and Analog Interface

The LabVIEW HOST VI serves as a medium to target the FPGA VI. As discussed

previously, the HOST VI downloads the appropriate bit file to the FPGA and controls

the code running on the FPGA. Post-configuration, we load the transmitted data into

the HOST VI and send it to the FPGA for transmission. In our implementation, the

FPGA VI loops over this data set for transmission of data until the user loads a new

data set via the HOST VI. The HOST VI also enables the user to control values for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

parameters (eg: threshold) and observe the results from the timing metric computa­

tion. The HOST /FPGA interface is supported by the PCI bus and Direct Memory

Access (DMA) mechanisms. For our implementation, we did not have DMA support

for data transfers from the HOST to the FPGA. Hence, a state machine is used to

achieve this. The controls and indicators provided on the FPGA VI (and hence ac­

cessible to the HOST VI) can be written to or read from using the configuration clock

running at 20MHz. In our implementation, we tried to minimize the number of ar­

rays that are used and especially arrays that have a front-panel control or indicator as

these take significant FPGA resources. Finally, the DMA transfer speeds are dictated

by the PCI bus in the existing hardware. Therefore, even if DMA transfers from the

HOST to FPGA were available, bi-directional data transfers at 20MSamples/sec are

not feasible. For our application, the data movement is primarily from the FPGA to

the HOST VI - i.e. the results of the metric computation being transferred from the

FPGA.

Figure 5.3 shows the FPGA code for transmission of data via the DAC. This loop

also provides the state-machine for transferring the initial data set from the HOST to

the FPGA VI. Over the course of this project, we designed various methods for the

Host to FPGA communication. Presently, the NI-5640R hardware and software does

not have support for interrupt service requests (IRQs) or direct memory access (DMA)

transfers. After iterating through many versions of the state machine for transferring

data from the HOST to the FPGA, we settled on this one that is provided by NI due

to limitations we encountered with the data structures supported for a single-cycled

timed loop and for crossing clock boundaries. Although the structure shown in Figure

5.3 is not very intuitive, it provides the desirable results.

Here, the loop shown is a single-cycled timed loop. Every clock tick of the DAC IQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

""host", Defa-.At

m

Figure 5.3 : Lab VIEW FPGA DAC loop

Clock, a sample is received by the DAC and transmitted when the TxEnable signal

is asserted (=logic 1 value). The HOST VI code interleaves the I and Q samples and

these are stored in the 'Samples for AO' FIFO buffer in the FPGA VI. Once all the

baseband I/Q samples have been sent, the HOST asserts the 'Start Output' signal

and the DAC operation is triggered. Following this, the DAC loops over the samples

in the FIFO buffer and transmits them unless there is an interruption and a new

sample set provided by the HOST VI. The arrow symbols on either end of the loop

symbolize one shift-register. The shift-register is initialized to a boolean value of false

outside the loop. Inside the timed loop the 'Write IQ sample' variable is wired to the

input of the shift register. The shift-register output together with the current value

of 'Write IQ sample' detect a rising edge on this signal.

The data acquisition via the ADC is shown in Figure 5.4. The single-cycle timed

loop operates every clock cycle of the ADC IQ Clock. The 16-bit IQ samples are

stored in a FIFO buffer for later processing. The 'Start Output' signal ensures valid

samples will be stored. The ADC loop is simpler than the DAC loop which has the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

additional functionality of transferring data from the Host to the FPGA. This loop

is part of the acquisition code provided with the NI-5640R driver.

OJ

Figure 5.4 : ADC loop

As discussed in Chapter 4, the NI-4640R hardware is capable of providing mul­

tiple clock rates for the different on-board components. Further, the programmable

interpolation and decimation filters result in the sampling rate being controllable by

the user. We set the AID and DI A sample rates to 25MSamples/sec in order to sup­

port the 20M Hz bandwidth requirement for typical OFDM WLAN systems (IEEE

802.11a). In the case of the AID and DIA, this signifies the sample rate required

after data has been downconverted (AID) and the rate at which baseband data can

be supplied (D I A), respectively. Because there are sample rate conversions occuring

within the AID and D I A chips, the actual clock rate at which the AID and D I A run

is much higher. The AID and D I A are clocked at lOOMHz and 200MHz respectively.

The reason for the 2x difference is that while the AjD provides IQ data in parallel,

the D I A requires the IQ data to be interleaved. Hence, with this configuration the

rate at which baseband IQ samples are processed is the same for both the devices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

5.4 FPGA System Implementation

In this section, we describe the hardware implementation of the symbol timing es-

timation algorithm. We start with a high-level view of the FPGA VI. Figure 5.5

shows a bird's eye of the block diagram for the top-level FPGA VI. On the left side

is the configuration loop discussed in Chapter 4 and the two loops for acquisition

and transmission of data. Note that the three loops are each running using their

own separate clocks and are not connected (in the sense of wires going in or out) to

any other blocks/loops. FIFO buffers provide the interface for moving data between

the acqusition, transmission loops and the timing estimation. The configuration loop

does not require data transfers; it uses the front-panel controls on the FPGA VI to

configure the appropriate hardware registers.

DAC loop + HosVFPGA
transfers

ADC acquisition loop

Storing acquired samples in
memory; circular addressing

Figure 5.5 : FPGA block diagram layout

The loop on the top-right transfers the acquired samples from the FIFO buffer into

memory. The FIFO buffer (without support for strided access) is not a suitable data

structure for the access pattern required by the symbol timing estimation algorithm.

Additionally, the FIFO is not very well suited as the samples read must be dropped,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

whereas the wireless receiver will require access to the samples for further processing

(performing the FFT operation). Thus, the FIFO buffers are used primarily to acquire

data and transfer it between clock domains - in this case the ADC clock-domain to

the top-level clock. The acquired samples are written to memory and the symbol

timing estimation loop - a while loop that terminates when estimation is complete or

the user stops the program - performs memory read operations to access the acquired

data.

We now look at each of the components described above in a little more detail.

Figure 5.6 shows the code for storing the samples acquired via the analog-to-digital

converter.

"w j)k,,,.,,•...•. ,, ...•

i 1""''''''OfI> ~"",'''' Wwe'te<>d.J.:ifi~

!it!~t-1~~~;:::::=~:::;-_---;:==;;:'=lI::::::::::::\,:=i~;~;; .. I~""'f"''".
i • ..,..,,.,1 i{;:>"'~""~~

rn

Figure 5.6 : Storing incoming data samples

Figure 5.7 shows the while loop for the metric computation and symbol timing

estimation. As with any Lab VIEW block diagram, the data flows from left to right.

On the far left, we have the address lines and some simple address generation logic for

strided-access. This is followed by the memory reads for accessing the data samples

required for the current position of the two sliding windows. In the iterative mode,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

the algorithm needs three samples to be read for every iteration. Next, on the right

side are four sub-VIs for computing the timing estimation metric for the updated

position of the sliding windows.

-1Y~~-----r--~~~~."-______ -~ .. 0fiJ. J---I~ e- I F1!fl-----~--------
I

-:}; .+" ,---~====!~~~; =f1=r=====n=r=====

[~--C~~d~
i _________ b~~_." __

Figure 5.7 : LabVIEW FPGA symbol timing implementation

I
I

We discuss the implementation of Schmidl-Cox method (ACFN16) below. The

AMDF implementation follows the same structure and is very similar to the ACFN16

implementation except that the AMDF-based method does not require the norm

computation and the correlation computation VI is modified to implement Equation

3.2 instead of Equation 2.2. The code architecture, including the A/D, D/A loops,

data storage, and program flow remain the same.

The initial norm computation is shown in Figure 5.8. This stage requires com-

puting the norm for all the samples in the sliding window. Once we switch to the

iterative mode, significantly fewer operations are required for computing the norm

since most of the samples used for the previous norm computation are also present

in the updated sliding window (the position has changed but that doesn't affect the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

norm operation). The code for this is shown in Figure 5.9.

Figure 5.8 : Initial norm computation

iiJ·~, -------- fJJ32J -.----

Figure 5.9 : Updating the norm

Figure 5.10 shows the code for the initial metric computation. Similar to the

norm computation, the correlation computation makes use of the iterative process

after the initial value has been computed. Figure 5.11 shows the code for computing

the sliding-window autocorrelation function over the received samples while reusing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

results from the previous iteration. The main computational block is the complex

multiplier sub-VI.

ij+<.od'''', ce,,"", .. ~JI

9
~

"" ""~

Figure 5.10 : Initial correlation computation

Figure 5.11 Correlation metric update

In Figure 5.12, a snapshot of the estimation block is presented. The autocorre-

lation metric is normalized with the energy of the received signal and the threshold-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

based estimation is applied while also transferring the normalized metric to the HOST

via DMA transfer. Finally, Figure 5.13 shows the code for the threshold-based com-

parison.

~

. " ." ." ." ."" :". : .' ~ . : .. :: :; :: :: " . . .

Figure 5.12 : Estimation and DMA transfer

tXil~17 2· - ,---l!:!ai; ----- .. 1<

Figure 5.13 : Timing offset estimation

The front-panel view of the top-level FPGA VI is shown in Figure 5.14. As

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

discussed earlier, we can see the controls required for HOST /FPGA data transfers,

indicators for communicating the state of the FIFOs and the FPGA VI, as well as

parameters controllable from the HOST.

5.5 Synthesis Results

Table 5.1 shows the gate counts and resources required for the implementation on

the Xilinx Virtex-II Pro XCV2P30 targeted using the LabVIEW FPGA module. The

numbers in parentheses represent percentage.

Table 5.1 : FPGA synthesis results

Algorithm Slices Multipliers Clock Freq.

Schmidl-Cox(ACFN16) 3769 (27) 20 (14) 78.09MHz

M2 (ACFN32) 3604 (26) 20 (14) 73.93 MHz

AMDF 3428 (25) 4 (2) 84.66 MHz

M3 (ACF) 2884 (21) 10 (7) 83.20MHz

For all the algorithms, our implementation makes use of the redundant information

from previous iterations thereby reducing the computations needed for each new

iteration significantly. This comes at the cost of increased control logic which is

common for all the algorithms. This trade-off means that the impact of modifying the

core estimation algorithm is reduced considerably as compared to an implementation

that is not iterative in nature (and hence does not require two different modes of

operation with unbalanced workloads).

Comparing AMDF with ACFN16 and ACFN32 (auto-correlation based metric

with the normalization being done using 16 and 32 samples, respectively), we note that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Figure 5.14 : Front panel view of FPGA VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

the AMDF-based method gives a factor of 5 reduction in the number of multipliers.

With the complexity of the wireless receiver ramping up to support higher data­

rates and complex modulation/transmission schemes, we believe that the multipliers

are central to most receiver signal processing algorithms. This is supported by the

increasing support for multipliers by key FPGA vendors. In terms of slice utilization,

we get a slightly lower utilization for the AMDF method compared with ACFN16

and ACFN32.

The last scheme, M3 (ACF without any normalization) has a much lower slices

utilization than the other schemes. It still requires more than twice the number of

multipliers needed for AMDF-based estimation, though. Furthermore, as discussed

in Chapter 3, this scheme performs quite poorly compared to AMDF and ACFN32.

Finally, we observe that AMDF and M3 can be run at a faster clock frequency than

the other two methods. This result translates directly from their lower computation

complexity and facilitates supporting higher-data rate systems.

In conclusion, if we compare the two methods with the best estimation perfor­

mance, we note that the AMDF-based method reduces the resource utilization sig­

nificantly while allowing for a faster clock rate as compared to M2 (ACFN32).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Chapter 6

Conclusions and Future Work

In this thesis, we have addressed the problem of symbol timing synchronization for

WLAN OFDM systems. Specifically, a simple preamble-based timing estimation

method was proposed that exhibits a low computational complexity and results in

performance comparable to the widely used autocorrelation-based approach. In addi­

tion to the complexity/performance analysis, we have applied the Golomb sequence, a

sequence with low autocorrelation properties to preamble-based synchronization and

shown simulation results quantifying the performance improvements over the short

symbol sequence used in IEEE 802.11a WLAN systems. The preamble can be stored

as a look-up table in the hardware and therefore does not require any changes in

existing hardware implementations. An experimental field-programmable gate array

implementation of timing estimation using the National Instruments NI-5640R hard­

ware and LabVIEW software environment was also presented that utilizes fixed-point

arithmetic.

In terms of future work, as pointed out earlier in this thesis, there is some literature

on preamble-design for OFDM systems based on the optimization of a multi-objective

function (for example, low PAPR, low autocorrelation, sensitivity to AGe, etc.). This

thesis leads us towards exploring the design space for a suitable preamble sequence

as an interesting problem for future work. With OFDM technology being combined

with adaptive modulation schemes, multi-antenna systems, etc., the preamble design

can have a major impact on the overall system performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

In terms of hardware architecture and implementation, as the NI-5640R tools

mature further along with increased support on the Lab VIEW FPGA module, the

hardware implementation can be adapted to utilize these advances and support higher

data-rates required for future wireless communication systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Bibliography

[1] National Instruments, "NI-5640R Transceiver Help," Date taken: July 15th,

2007.

[2] "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications: High Speed Physical Layer in the 5 GHz Band," 1999.

Piscataway, NJ: IEEE P802.11/D7.0.

[3] "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical

(PHY) layer ETSI, Technical Report: TS 101 475 v1.1.1," ETSI, April 2000.

[4] "HiperLAN/2-The broadband radio transmission technology operating in the

5GHz frequency band," HiperLAN/2 Global Forum, 1999.

[5] Heiskala, J., Terry J., OFDM Wireless LANs: A Theoretical and Practical Guide.

Sams publishing, 2001.

[6] Speth, M., Fechtel, S.A., Fock, G., Meyr, H., "Optimum receiver design for

wireless broad-band systems using OFDM:I," IEEE Transactions on Communi­

cations, vol. 47, pp. 1668-1677, Nov 1999.

[7] Speth, M., Classen, F., Meyr, H., "Frame synchronization of OFDM systems in

frequency selective fading channels," in IEEE Vehicular Technology Conference,

vol. 3, pp. 1807-1811, May 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

[8] Speth, M., Fechtel, S., Fock, G., Meyr, H., "Optimum receiver design for OFDM­

based broadband transmission:I!. A case study," IEEE Transactions on Com­

munications, vel. 49, pp. 571-578, Apr 2001.

[9] Yang, H., "A road to future broadband wireless access: MIMO-OFDM-based air

interface," IEEE Communications Magazine, vol. 43, pp. 53-60, Jan. 2005.

[10] Vaughan-Nichols, S.J., "OFDM: back to the wireless future," Computer, vol. 35,

pp. 19-21, Dec 2002.

[11] Batra, A., Balakrishnan, J., Aiello, G.R, Foerster, J.R, Dabak, A., "Design

of a multiband OFDM system for realistic UWB channel environments," IEEE

Transactions on Microwave Theory and Techniques, vol. 52, no. 9, pp. 2123-2138,

2004.

[12] Cabric, D., Brodersen, RW., "Physical layer design issues unique to cognitive

radio systems," IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications, vol. 2, no. 11-14, pp. 759-763, 2005.

[13] Schmidl, T.M., Cox, D.C., "Robust frequency and timing synchronization for

OFDM," IEEE Transactions on Communications, vol. 45, pp. 1613-1621, Dec

1997.

[14] Minn, H., Zeng, M., Bhargava, V.K., "On timing offset estimation for OFDM

systems," IEEE Communications Letters, vol. 4, pp. 242-244, Jul 2000.

[15] Park, B., Cheon, H., Kang, C., Hong, D., "A novel timing estimation method

for OFDM systems," IEEE Communications Letters, vol. 7, pp. 239- 241, May

2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

[16] Van de Beek, J.J., Sandell, M., Borjesson, P.O., "ML estimation of time and

frequency offset in OFDM systems," IEEE Transactions on Signal Processing,

pp. 1800-1805, July 1997.

[17] Chia-Horng Liu, "On the design of symbol timing recovery for WLAN OFDM

systems," in IEEE International Symposium on Spread Spectrum Techniques and

Applications, pp. 184-188, Aug.-2 Sept. 2004.

[18] Li Hui, Bei-Qian Dai, Lu Wei, "A Pitch Detection Algorithm Based on AMDF

and ACF," in IEEE International Conference on Acoustics, Speech and Signal

Processing, vol. 1, 2006.

[19] Fette, B., Gibson, R, Greenwood, E., "Windowing functions for the average

magnitude difference function pitch extractor," in Acoustics, Speech, and Signal

Processing, IEEE International Conference on, vol. 5, pp. 49- 52, Apr 1980.

[20] A. Fort et al., "A performance and complexity comparison of auto-correlation

and cross-correlation for OFDM burst synchronization," in IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol. 2, p. 341, 2003.

[21] Pacheco, RA., Serinken, N., et. al., "Bayesian Frame Synchronization Using Pe­

riodic Preamble for OFDM-Based WLANs," in IEEE Signal Processing Letters,

pp. 524-527, July 2005.

[22] Gadhiok , M., Cavallaro, J.R, "Preamble-based Symbol Timing Estimation for

Wireless OFDM Systems," in Asilomar Conference on Signals, Systems, and

Computers, Nov. 2007.

[23] Van Zelst, A., Schenk, T.C.W., "Implementation of a MIMO OFDM-based wire-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

less LAN system," Signal Processing, IEEE Transactions on, vol. 52, pp. 483-

494, Feb. 2004.

[24] Lou Feifei, "Channel estimation OFDM," MS Thesis, Rice University, Dec 2005.

[25] Karkooti M., "Semi-Parallel Architectures For Real-time LDPC Coding," MS

Thesis, May 2004.

[26] Karkooti, M., Cavallaro, J.R., "Semi-parallel reconfigurable architectures for

real-time LDPC decoding," in International Conference on Information Tech­

nology: Coding and Computing, Proceedings, vol. 1, pp. 579-585, April 2004.

[27] Yang, S., Karkooti, M., Cavallaro, J.R., "VLSI Decoder Architecture for High

Throughput, Variable Block-size and Multi-rate LDPC Codes," in IEEE Inter­

national Symposium on Circuits and Systems, pp. 2104-2107, May 2007.

[28] Radosavljevic, P., De Baynast, A.,Karkooti, M., Cavallaro, J.R., "Multi-Rate

High-Throughput LDPC Decoder Tradeoff Analysis Between Decoding Through­

put and Area," in IEEE International Symposium on Personal, Indoor and Mo­

bile Radio Communications, pp. 1-5, Sept. 2006.

[29] Zhang N., Golomb S.W., "Polyphase sequence with low autocorrelations," IEEE

Transactions on Information Theory, vol. 39, pp. 1085-1089, May 1993.

[30] Bumiller, Gerd and Lampe, Lutz, "Fast Burst Synchronization for Power Line

Communication Systems," EURASIP Journal on Advances in Signal Processing,

2007. Article ID 12145.

