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Abstract

Exact and Inexact Newton Linesearch Interior—Point
Algorithms for Nonlinear Programming Problems

by

Miguel Argdez Ramos

In the first part of this research we consider a linesearch globalization of the local primal-
dual interior-point Newton’s method for nonlinear programming recently introduced by El-
Bakry, Tapia, Tsuchiya, and Zhang. Our linesearch uses a new merit function that is a
generalization of the standard augmented Lagrangian function and a new notion of cen-
trality. We establish a global convergence theory and present rather promising numerical
experimentation.

In the second part, we consider an inexact Newton’s method implementation of the line-
search globalization algorithm given in the first part. This inexact method is designed to
solve large scale nonlinear programming problems. The iterative solution technique uses an
orthogonal projection-Krylov subspace scheme to solve the highly indefinite and nonsymmet-
ric linear systems associated with nonlinear programming. Our iterative projection method
maintains linearized feasibility with respect to both the equality constraints and complemen-
tarity condition. This guarantees that in each iteration the linear solver generates a descent
direction, so that the iterative solver is not required to find a Newton step but rather cheaply
provides a way to march toward an optimal solution of the problem. This makes the use of
a preconditioner inconsequential except near the solution of the problem, where the Newton

step is effective. Moreover, we limit the problem to finding a good preconditioner only for
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the Hessian of the Lagrangian function associated with the nonlinear programming problem

plus a positive diagonal matrix. We report numerical experimentation for several large scale

problems to illustrate the viability of the method.
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Chapter 1

Introduction

1.1 Historical background

The recent computational success of primal-dual interior-point methods for linear program-
ming (for example Lustig, Marsten, and Shanno [31]) has motivated considerable research
activity in the generally more difficult area of nonlinear programming. [t is natural that this
extension activity initially focused on quadratic programming and convex programming. Our
concern here is the area of nonconvex programming, and in particular globally convergent
formulations. Some papers in these areas include El-Bakry, Tapia, Tsuchiya, and Zhang
(12], McCormick (18], Lasdon, Yu, and Plummer [29], Monteiro, Pang, and Wang [37], Nash
and Sofer [38], Wright [30], Yamashita [53], R.H. Byrd, J.C. Gilbert, and J. Nocedal [6] and
Forsgren and Gill [534]. We also acknowledge the conference presentation, Gay, Overton, and
Wright [24].

The current work was influenced significantly by El-Bakry et al [12]. These authors
extended the interior-point formulation from linear programming to general nonlinear pro-
gramming, and then validated this extension by establishing local and Q-quadratic conver-
gence for the local form of their Newton primal-dual interior-point method under no more
assumptions than the standard Newton's method assumptions. In addition they considered a
linesearch globalization strategy for their local algorithm that uses the ly-norm of the residual
function of the KKT conditions as merit function. While this choice for the merit function
has obvious advantages, it also has obvious disadvantages. Hence, the primary objective of
the present work is to construct a merit function which compares favorably with the choice
of the l,-norm of the KKT residual. We believe that we have succeeded, and in Chapter 7

offer numerical experimentation to reinforce this view.
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The choice of merit function described in the current work was influenced by the merit
function suggested by Anstreicher and Vial [1] for their convex programming application.
Our philosophy of globalization was influenced by the approach taken by Gonzalez-Lima,
Tapia, and Potra [27] in their application of designing an interior-point algorithm that would
effectively calculate the analytic center of the solution set in linear programming. An elabora-
tion of this philosophical point will help significantly in both motivating and understanding
the inner-loop component of our global algorithm described in Chapter 5. The following
comments are related closely to the material and interpretation contained in Sections 2 and
3 of El-Bakry et al [12]. For the sake of illustration it suffices to restrict our discussion to
linear programming; however we do feel that these comments are particularly appropriate
for nonconvex programming.

It is well-known that the logarithmic barrier function formulation promotes excellent
global behavior at the expense of (theoretically) badly conditioned subproblems locally.
Moreover, it is not difficult to see that the first-order condition for the logarithmic bar-
rier function subproblem and the perturbed KKT conditions for the nonlinear program are
equivalent. However, Proposition 2.3 of El-Bakry et al [12] demonstrates that the Newton
iterates obtained from the equivalent subproblem (perturbed KKT conditions and the first-
order conditions for the logarithmic barrier function subproblem) never coincide. This is
indeed surprising since many authors tacitly assumed that they were the same. It follows
that if we continue taking Newton steps (with an effective globalization strategy) on the per-
turbed KKT conditions with fixed perturbation parameter we will arrive at the solution of
the logarithmic barrier subproblem. The critical issue here is that we will have obtained this
solution via not necessarily badly conditioned linear systems (Newton defining relations).
Hence we have a way of implementing the logarithmic barrier function method and circum-
venting the inherent bad conditioning. Far from the solution of the nonlinear program one
may need to solve the logarithmic barrier function more accurately than would be needed

near the solution. This can be accomplished by taking a variable number of Newton iterations



on the perturbed KKT conditions with the perturbation parameter held fixed. Moreover, a
linesearch globalization strategy may also be added to the Newton iteration procedure that
attempts to solve the perturbed KKT conditions with fixed perturbation parameter. This
philosophical approach is what was proposed in Gonzalez-Lima, Tapia, and Potra [27] in an
effort to effectively calculate the analytic center of the solution set. Moreover, it is exactly
this philosophy that we carry over into our global algorithm described in Chapter 5. A line-
search strategy with our merit function is used to reach an approximate solution of a new
notion of centrality that is introduced in Chapter 4. We call this procedure the inner loop,
and it can be viewed as an effective way of approximating the solution of the logarithmic
barrier function subproblem. We point out that the El-Bakry et al [12] globalization strategy
did not provide for the feature of performing an appropriate number of Newton iterates with
the perturbation (barrier) parameter held fixed.

In the second part of this dissertation we are concerned with an inexact Newton's method
for solving large scale nonlinear programming problems. A Newton's method applied to the
nonlinear programming problem using the interior point approach leads to a nonsymmetric

and highly indefinite linear system that must be solved for the current Newton step, l.e.,

A B -1\/[ Az by
BT 0 o0 Ay | =1 5 |, (1.1)
Z 0 X Az bs

where A € R™" is a symmetric matrix not necessarily positive definite; B € R™™™ is a
full rank rectangular matrix; and Z, X € R™*" are positive diagonal matrices. The second
and third equation are the linear equality constraint and linear complementarity condition.
respectively. They will play an important role of the second part of this dissertation.

The use of primal-dual interior point methods for constrained minimization is relatively
new (see [12], [24], [54], [6]). Recently, interest in large-scale applications of interior-point
methodology motivated the idea of performing inexact Newton steps, in view of the expense

of using direct solution techniques. However, mainly due to the fact that the linear operators



are highly indefinite the construction of a robust iterative method for the repeated solution
of such systems has presented a major challenge. Efforts in this direction are still sparse in
the literature and a variety of alternatives have been examined in the area of inexact Newton
solution of linear programming problems (see (23], [48],52]), as well as of nonlinear problems
(see [34], [6], [24]). All things considered, at this point there are no conclusive results on how
to define robust inexact Newton schemes for general optimization problems and the field still
offers plenty of learning opportunities.

In the arena of the solution of large-scale systems of nonlinear equations, the Newton
theory has been extended in order to allow the inexact solution of the Newton linear system
[38]. Most of these advances have relied on the use of Krylov subspace methods [45], [44]. Of
particular interest for the optimizer is the formulation of robust iterative solution techniques

for saddle-point problems, i.e., linear systems of the form

A BY\fu) (7 (12)

BT 0 p g

[nterior-point method formulations can be cast in the form (1.2) by explicit elimination
of the linear complementarity condition in (1.1). Consequently. design of robust inexact
algorithms for (1.1) can rely on results from the formulation of saddle-point iterative solvers
[20]. Other approaches have attempted to solve (1.1) by a preconditioned conjugate resid-
ual method. The obvious trouble here is that finding efficient or even mildly acceptable
preconditioners for the entire matrix may prove to be a futile effort.

Turning our attention to the saddle-point problem (1.2), the two major approaches to its
solution are the iterative solution of the entire system and the direct, or iterative, solution
of the resulting decoupled or reduced components of the system. The latter may mitigate
the high computational cost associated with the former. However, effective preconditioners
for system (1.2) are hard to obtain and in some cases the resulting lack of robustness can

lead to procedures as expensive as the reduced approaches.



One reduced-system approach leads to the solution of the Schur complement, S of (1.2),
ie.,, $ = —BTA-'B. Clearly, this approach is convenient if A can be easily inverted or
good approximations to its inverse can be computed. In most cases this is not possible and
sometimes in order to overcome this drawback, nested or inner-outer iterations have to be
employed to generate fair approximations of the Schur complement. The inexactness induced
by the inner iterations spoils the symmetry and positive definiteness present in the exact
Schur complement, hence an outer procedure has to be replaced by general nonsymmetric
solvers which potentially increase the computational cost.

Other optimization linear solvers of the reduction type are those restricting the search

direction in (1.2) to the null space of BT, denoted by N(BT). Most versions rely on finding
a null space basis matrix for BT. Other methods (this idea constitutes the core of the second
part of this work) are based on the restriction of 4 to N (B7) as defined by an orthogonal
projector P = I — BB* onto NV (B7) with Bt = (BTB)"'BT if B is of full rank.
In this second part, we adopt and analize the orthogonal projection method proposed by
Bramley [5] to solve problems of the form (1.2). We conclude that the orthogonal projection
method exploited in an intelligent way offers the best compromise between effectiveness and
robustness. We assert that this method removes the major difficulties introduced by the
linear complementarity condition in the system (1.1).

One fundamental purpose of this second part is to combine the linear iterative solver
obtained from the orthogonal projection method for (1.1) with the global nonlinear opti-
mization algorithm presented in the first part in an efficient manner. Specifically, we prove
that each iteration of the projection method applied to the linear system (1.1) produces a
descent direction for our generalized augmented Lagrangian merit function introduced in the
first part. Therefore, the linear iterative solver is not used as a way to find a Newton step,
but rather as a direct tool to march toward the optimal solution of the problem. This makes
the use of a preconditioner inconsequential except near the solution, where the Newton's

method is very effective. Moreover, we limit the problem to finding a good preconditioner



only for the upper block which, upon removing the complementarity condition, is given by
the Hessian of the Lagrangian function associated with the nonlinear programming problem

plus a positive diagonal matrix.

1.2 Outline

This work is organized into two parts. The first part starts with Chapter 2 where we define
the nonlinear program in a particular form and state its first-order necessary conditions. In
Chapter 3, we present our generalized augmented Lagrangian function and establish several
important properties that this function posseses. Next, in Chapter 4, we demonstrate that
the Newton direction under consideration is a descent direction for our generalized augmented
Lagrangian function, provided the penalty constant is chosen sufficiently large. The global
algorithm is described in Chapter 5 and global convergence theory is established in Chapter
6. Preliminary numerical experimentation is the subject of Chapter 7.

The second part of this work is presented in Chapter 8 through Chapter 10. In Chapter 8,
we focus our attention on the technical details supporting the orthogonal projection method.
We stress the advantages of this orthogonal projection method and its relation with other
methods. Chapter 9, is devoted to describing the algorithm and possible strategies for
preconditioning the resulting projected linear system. In Chapter 10, we present numerical
experiments that test the inexact global minimization method that we have introduced in

the previous two sections. Concluding remarks are made in Chapter 11.

1.3 Notation

As is standard in the study of interior-point methods, given a vector z = (z,,...,1,)T we
write £ > 0 to mean z; > 0 for all 7, X to denote the diagonal matrix, diag(x), and e to
denote the vector whose components are all equal to one. We may also write 7! to denote

the vector whose i-th component is £7!. Observe that we can also write z=! = X~!e.
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Chapter 2

Formulation of the problem

2.1 Statement of the problem and first order KKT conditions

We study the general nonlinear program in the form

minimize f(r)

subject to h(z) =0 (2.1)
>0,
where h(z) = (hi(z),....hn(z))T and f,h; : R* - R, i = l....m (n > m) are twice

continuously differentiable functions.

The Lagrangian function associated with problem (2.1) is
C(r.y.z) = f(z)+ h(r)Ty — 2Tz (2.2)

where y € R™ and = > 0 € R" are Lagrange multipliers associated with the equality and
inequality constraints, respectively.

The Karush-Kuhn-Tucker (KKT) conditions for this problem are

Vf(x)+ Vh{z)y -z
F(r.y,2) = h(z) =0, (z.z)>0 (2.3)
XZe

where X' = diag(z), Z = diag(z) and € = (1,...,1)T € IR". For a feasible point r of problem
(2.1), we let B(r) = {j : r; = 0}. Clearly B(z) is the set of indices of active or binding
inequality constraints. The set of gradients of active constraints is the set {e; e R":j e

B(z)}.



2.2 Standard assumptions

In the study of Newton’s method, the standard assumptions for problem (2.1) are :

A2.1: (Existence) There exists * a solution to problem (2.1).

A2.2: (Smoothness) The Hessian operators V2f, V2h;, i = 1,....m are Lipschitz continu-

ous in a neighborhood of z*.

A2.3: (Regularity) The set {Vh(z%),...,Vhn,(z")} U {ej : j € B(z")} is linearly indepen-

dent.

A2.4: (Second-order sufficiency) For all n # 0 satisfying Vhi(z")Tnp =0, i =1,....m ;

eJTr] =0,y € B(z") we have

nTV2e(z7,y", =" > 0.
A2.5: (Strict complementarity) For all J, i+ >0.

The following interesting relationship between conditions A2.4-42.5 and the invertibility of

the Jacobian matrix can be found in Section 4 of El-Bakry et al [12].

Proposition 2.2.1 Let conditions A2.1 and A2.2 hold. Then the following

statements are equivalent:
1. Conditions A2.3-A2.5 also hold.

2. The Jacobian matrix F'(z*, y=, ") is nonsingular.

Proof. See El-Bakry et al [12].
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2.3 Perturbed KKT conditions

We now motivate the perturbed KKT conditions. The complementarity conditions for prob-
lem (2.1) are

XZe=0.

The linearized form of complementarity has a serious flaw. In a Newton's method for-

mulation we will deal with the linearized complementary equation
ZAr + XAz = —~XZe. (2.4)

Now, if a component r; = 0 and its corresponding Lagrange multiplier z; # 0, then from
(2.4)
A.’L‘j = 0.

Therefore the subsequent iterate is
(z;)+ =zj+adz; =0 for any a € R.

This means, if a component r; becomes zero, with its corresponding Lagrange multiplier
zj # 0, then this component will remain zero in all future iterations. The analogous situation
is true for the = variable. So, Newton's method forces iterates to stick to the boundary of
the feasible region once they approach that boundary. Such an undesirable attribute clearly
precludes the global convergence of the algorithm. This difficulty is overcome by perturbing

the complementarity condition to obtain
XZe=pe, p>0.
Under the same situation studied above, we can prove
Az; #0.

Hence this modification tends to keep the iterates away from the boundaries.
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Therefore, the perturbed KKT conditions are
Vf(z)+ Vh(z)y - =
Fuz,y,z)= h(z) =0, p>0 (2.
XZe — pe

o
[(S1)
~

(r,z) >0

where X = diag(z), Z = diag(z) and e = (1,...,1)T € R™

We will prove in the next section that the perturbed KKT conditions besides keeping
the iterates away from the boundaries also promote the global convergence of the Newton
interior-point method with no necessarily badly conditioned systems of equations. Therefore,

we will base our global convergence technique on the perturbed KKT conditions.

2.4 Interpretation of the perturbed KKT conditions

As we have said in the introduction, it is well known that the logarithmic barrier function
problem promotes excellent global behavior at the expense of badly conditioned subproblems
locally. Our intention here is to demonstrate that the perturbed KKT conditions with a fxed
perturbation parameter is a way to implement the logarithmic barrier function problem that
circumvents the inherent bad conditioning.

Towards this end, we begin by considering the logarithmic barrier function problem

associated with problem (2.1)
minimize f(r)—p Y log(z;), z; >0 (2.6)
J=1

subject to h(z) =10

An important property of the logarithmic barrier function is the following.
If z, > 0is a solution of (2.6) for > 0 and if x is regarded as a continuous parameter, then
z, defines a smooth trajectory converging to a solution of problem (2.1), z*, as u — 0. The

points {z,} are said to lie on the barrier trajectory. For proofs and additional details, see



Fiacco and McCormick [18].

The KKT conditions for (2.6) are

—
o
-1

-

Vf(z) + Vh(z)y - #x“)
h(z)

z>0.

Fu(z,y) = (

It is well known that Hessian matrices of the logarithmic barrier function become increas-
ingly ill-conditioned at points on the barrier trajectory as the solution of problem (2.6) 1s
approached. Also, the barrier Hessian is ill-conditioned in an entire region near the solution.

See, Wright [23]. One way of overcoming this flaw is by introducing the auxiliary variables
z:=pX""e

and then expressing these nonlinear defining relations in the form
XZe = pe.

Substituting the latter transformations of variables into the KKT conditions (2.7), we arrive
at the perturbed KKT conditions (2.5) for the NLP problem (2.1). This is formalized in the

next proposition.

Proposition 2.4.1 The KKT conditions for the logarithmic barrier function
problem (2.6) given by (2.7). and the perturbed KKT conditions for problem
(2.1) given by (2.5) are equivalent in the sense that they have the same solutions,

-

i.e. , Fu(r,y) =0if and only if F,(z,y,pur') = 0.

The perturbed KKT conditions (2.5) do not lead to inherent ill-conditioning. The in-
troduction of the auxiliary variables (Lagrange multipliers associated with the inequality
constraints) has been used to remove the ill-conditioning from the KKT condition (2.7) for
the logarithmic barrier problem. Therefore, it is important to realize that if we take an

appropriate number of Newton iterations (with an effective globalization strategy ) on the
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perturbed KKT conditions with a fixed perturbation parameter, we will get a solution of the
logarithmic barrier function problem by solving systems of equations that are not necessarily
badly conditioned. The price that one has to pay is that instead of solving a system of n+m
equations now one has to solve a system of 2n + m equations.
Before we finish this discussion it is important to point out the following two facts:
First of all, the perturbed KKT conditions (2.5) for NLP problem (2.1) or any permutation
of these equations, are not the KKT conditions for the logarithmic barrier function problem
(2.6) or any other unconstrained or equality constrained optimization problem.
Second, the Newton step obtained from the nonlinear system Fu(z,y) = 0 given by (2.7)
never coincides with the Newton step obtained from the nonlinear system Fulr,y,z) =0
given by (2.3).
An excellent study of the last two facts is presented in Section 2 of El-Bakry et al [12].
Therefore one of the objectives of this dissertation is to present a strategy of globalization
that takes advantages of the perturbed KKT conditions and retains the fast local rate of
convergence that El-Bakry et al [12] established using this perturbed KKT conditions as a
central framework.
As in any globalization technique the merit function plays a fundamental role. in the
next chapter we will present a generalized augmented Lagrangian function associated with
the general NLP problems (2.1). This function will be used as a merit function in our

globalization framework.



14

Chapter 3

A new merit function for the general NLP

3.1 A generalized augmented Lagrangian function

One of the objectives of this research is to construct an appropriate merit function that
couples the objective function with the constraints in such a way that progress in the merit
function effectively means progress in solving problem (2.1). Our strategy is to modify
the augmented Lagrangian function associated with the equality constrained optimization
problem by adding to its penalty term the potential reduction function utilized in some linear
prograrﬁming applications. This modification leads to a new augmented Lagrangian function
that retains stationarity of r at any point v, = (z.y;.5;) that satisfies the perturbed
KKT conditions (2.5), and adds positive curvature to convert r;, from a stationary point to
a minimizer.

In line with the objective stated above, we present the following generalized augmented

Lagrangian function.

Definition 3.1.1 For any g > 0, we define our generalized augmented Lagrangian

function by

M, R™™ 4 R
My(z.y.z1p)=C(2,y,2) + p®,(r. ) (3.1)
where £ (r,y, =) is the Lagrangian function associated with problem (2.1), i.e..
C(z,y,3) = f(z) + h(x)Ty ~ 275,

p is a nonnegative scalar called the penalty parameter, and ®,(z, z) is the penalty

term

5

1 n
bu(z,2) = 5 h(z)Th(z) + 2Tz = u 3" In(z:z:). (3.2)
= i=1



By the way as we have formulated the problem the primary variables r , = are positive

and therefore the function M, is well defined.

3.2 Global properties

Now, we are in a position to prove that our generalized augmented Lagrangian function for
problem (2.1) possesses the same properties at a solution of the perturbed KKT conditions
(2.5) as does the augmented Lagrangian function for an equality constrained problem at a

solution.

Theorem 3.2.1 Consider u > 0. If ve=(r}, y;, =;) satisfies the perturbed KK T

conditions (2.5), then z7, is a stationary point of My(x,y;, 25 p) for any p > 0.

Proof The gradient of M, with respect to the variable r at (z,y5,2;) is

Ve (z,y,,25:p) = (Vf(z) + Vh(z) Yo — =) + p[Vh(z)h(z) + = —px”l].
Evaluating the previous equation at I}, we have
VoM, (vip) =0

for any p. O

») satisfies the perturbed

Theorem 3.2.2 Consider p > 0. If vy = (x5, 95,2
KKT conditions (2.5), then there exists p > 0 such that for p > j the Hessian of

M, with respect to z is positive definite at v, =(z,y5.2;). ie,
T ) -
' ViM,(viip)y >0

for any nonzero n € R™.
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Proof The Hessian of M, with respect to z evaluated at vy is

VM, (v p) = VEE(v]) + p[Vh(z;)VA(z})T + u(X])™?]
Now we can choose a 5 > 0 such that Vi@(z;,y;,z;) + pZ;(X})™! is positive definite.
Therefore, for all p > 5 we have VZM,(v; p) is positive definite in R™. O
The last two statements clearly lead us to the following corollary.

Corollary 3.2.1 Consider any i > 0. If v, = (z},,¥;, z;) satisfies the perturbed

KKT conditions (2.5), then there exists a 5 > 0 such that
z, =argmin M,(z,y,,z;;p)

for all p > 5.

3.3 An analogy

The purpose of this section is to present an analogy that exists between the augmented
Lagrangian function defined for equality constrained optimization problems and the gen-
eralized augmented Lagrangian function, that we have presented in Definition 3.1.1, for
logarithmic barrier function problems.

First, we establish the result for equality constrained optirnization problems.

The equality constrained optimization problem is

minimize f(r)

subject to h(z) =0

where h(z) = (hi(z),... . hm(z))T and f,h;: R" - R,i=1,...m (n 2 m).

The Lagrangian function associated with problem (3.3) is

€(z,y,z) = f(z) + h(z)Ty (3.4)



where y € R™ is the Lagrange multiplier associated with the equality constraints.
The first-order necessary conditions for problem (3.3) are
Vf(z)+ Vh(z)y
F(z.y) = :
h(z)
The augmented Lagrangian function associated with problem (3.3) is

L(z,y; p) = l(z,y) + ph(z)Th(z),

where [(z,y) is the Lagrangian function defined by (3.4), and p is a penalty parameter that
is greater than or equal to zero (p > 0).

This augmented Lagrangian function was suggested by Hestenes (1969) and has been
used in different contexts for solving equality constrained problem (3.3). For example, the
augmented Lagrangian function has been used as a merit function to globalize Newton’s
method for solving problem (3.3). See Alem [13].

The augmented Lagrangian function has the following fundamental property.

If z* is a solution of problem (3.3) with y~ its associated multiplier, then
L(z,y™p) = f(z) + h(z)Ty" + ph(z)Th(zx)

has a local minimum at z* for p sufficiently large.

That is, there exists a p > 0 such that
" = argmin L(z,y; p),

for any p > 5.
Now, we show that our generalized augmented Lagrangian function has a local minimun in
a solution of the logarithmic barrier function problem for a penalty parameter sufficiently
large.

Let z be a solution of the logarithmic barrier function problem (2.6), then there exists

a Lagrange multiplier y; associated with the equality constraints such that (z3.y;) satisfies
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the KKT conditions Fu(z,y) = 0 associated with (2.6). By Proposition 2.4.2 there exists
a = such that (z,y5,z}) is a solution of the perturbed KKT conditions F,(z,y,2) =0
associated with NLP problem (2.1). Now, from Corollary 3.2.1 the generalized augmented
Lagrangian function

‘I‘Iu(‘rey*:; P) = 1(1\!!;» ‘:;) + PQ,‘(J«', :;)

has a local minimum for z > 0 at r,, for p suficiently large.
Therefore, if 2 is a solution of the logarithmic barrier function problem, then there exists
a p > 0 such that

T, = argmin A[,,(x,y;,;z(.r;)'l;p)

for any p > p. where y, is the Lagrange multiplier associated with the equality constraints.
In this way. we have established the analogy.
Therefore, from Proposition 2.4.1 and the latter result. the perturbed KKT conditions to-
gether with our generalized augmented Lagrangian function can be used to build an effectjve
globalization strategy with does not require solution of badly conditioned systems of equa-
tions.

[n this research, our generalized augmented Lagrangian function plays an important role

in the globalized algorithm that we will propose in Chapter 5.
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Chapter 4

The Newton direction as a descent direction

4.1 Fundamental definitions

In this section, we present the fundamental notions of interior and central points. In addition,
we consider the primary variables associated with problem (2.1) and describe the manner in

which we deal with these variables.

Definition 4.1.1 A point (z,y, z) is said to be an interior-point for problem

(2.1) if (z,z) > 0.

Definition 4.1.2 An interior-point (z,y, =) is said to be a quasi-central point

for problem (2.1) for a given x4 > 0 if
h(z) =0 and (XZ)e = pe. (4.1)

The quasi-central path associated with problem (2.1) is defined as the collection

of quasi-central points (4.1) and is parameterized by 78

This notion will play an important role in the design of our global algorithm.

We find it convenient to denote the triple (z, y, z) by v and (Ar,Ay,Az) by Av. Recently
Martinez, Parada, and Tapia [32] quite effectively demonstrated that in interior-point ap-
plications the variables (z, =) play a primary role and the variable y plays a secondary role.
Observe that y does not enter into any of the constraints and at a solution (z5,y5,2;) one
can readily obtain y; from z, and z;. This philosophical point of view is in strong align-
ment with the globalization strategy we are about to describe. We will treat the variable y
essentially as a parameter, i.e., we will not differentiate our merit function with respect to y

and we will exclude y from our descent considerations. This latter consideration will employ
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only the variables z and z. Hence we have a need to denote the (z, z) variables differently

from the triple v = (z,y, z). The notion 4 = (z, ) accomplishes this objective.

Definition 4.1.3 For a given g > 0, the interior-point Newton step at the
interior-point v = (r,y,z) is Av = (Ar, Ay, Az) obtained as the solution of the
linear system

F'(v)Av = —F,(v). (4.2)

It is not difficult to see that (4.2) has the structure

Vi(v) Vh(z) =1\ /Az V. l(z,y,z2) 0
Vh(z)T 0 0 Ay | = - h(z) +p|0 (4.3)
Z 0 X Az XZe e

where X'=diag(z), Z=diag(z) and z,z >0 € R* and x > 0.

Definition 4.1.4 Fora given g > 0, the interior-point Newton stepat 0 = (z.z)

is A0 = (Az, Az) where Ar and Az were obtained from (4.3).

To guarantee that the subsequent point v, = v + av is an interior-point, we choose a
steplength a € (0, 1] such that
U+ ado > 0. (4.4)

A standard way to find o that satisfies this inequality is to let
a=mn(l,T4) (4.5)

where

-1 -1
5 = mi 1.6
o= mn (min(X'le,—l)’ min(Z“/_\:k,—l)) (+6)

for some 7 € (0, 1).



4.2 The Newton step as a descent direction

The results in this section concern descent in the Newton direction for the penalty term and
the generalized augmented Lagrangian function defined in (3.1) and (3.2).

We will use the following proposition in the proof of Theorem 6.3.1.

Proposition 4.2.1 For px > 0, the penalty term ®,(z.z) is bounded below by
nu(l — In(p)) in the class of all interior points. Moreover, it will be positive for

0 < i < é ( where é is the Euler constant).

Proof The proof follows directly from the observation that for p > 0 the function g(w) =

w — pln(w) has w = p as its global minimizer. O

Theorem 4.2.1 Consider p > 0. Let v = (z,y,z) be an interior-point. Then

the Newton step Av at & = (z, z) is a descent direction for the penalty term o,

Le.,
Vvel(#)As <0,

if and only if v is not a quasi~central point.

Proof The components of the gradient of ®, with respect to z and = are

V:®,(?) = Vh(z)h(z) + z — pz?

k)

and
V:9,(¢) =z —pz"'.

The directional derivative of ®,(%) in the direction A% is

Vo, (5)TAD = V.0,(5)T Az + V.0,(5)TA-.
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If we set w = (X'Z)!/2e, using the equality constraint and the complementary equation

that comes from (4.3) we obtain
VO,(5)T A% = ~(Jlh(z)|[* + o — pw™!|?) < 0. (4.7)

The latter equation establishes the theorem. O

Theorem 4.2.2 Consider 4 > 0. Let v = (z,y,) be an interior-point. If v
is not a quasi-central point, then there exists a real number p such that for any
p > j the Newton step Ad at & = (z,z) is a descent direction for our generalized

augmented Lagrangian function M, in the sense that
VoM (2,y,2;p)TAz + V.M, (z,y, 2; p)TAz < 0.
Proof We have
VM (v:ip)TAz + VAL (v p)TAz = V 0(0)T Az + Vl(0) Az 4+ pV,(5)TAG.  (4.8)

From the previous theorem we know that V& +(2)TAD < 0. Hence our value for pis

R V)T AD
= —-————. 1.9
a

4.3 Sufficient decrease

In the statement of our algorithm we will find it convenient to consider the following trans-

formation. If the penalty parameter p is written as
p=p+c (4.10)

then p > 4 is equivalent to stating that ¢ > 0.

Also observe, if we substitute (4.10) into (4.8), then we obtain

VM, (v; p) Az + V.M, (v; p)TAz = ¢V, (3)T A, (4.11)
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Now, assume {M,(? + aAv;y,p)la > 0} is bounded below and as M, is a continuously
differentiable function on IR®*® | then it is known from Dennis-Schnabel [9] that for any
fraction 3 € (0,1), there exists an & > 0 that satisfies the following average rate of decrease

( sufficient decrease condition)
Mz + Az, y,z 4+ adz;p) < My(z.y,25p) + ca B3V, (5)TAb. (4.12)

Now we are ready to formulate a global primal-dual interior-point Newton algorithm
using our generalized augmented Lagrangian function as a merit function in the linesearch

framework.



Chapter 5

Global linesearch interior—point algorithm

5.1 Description of the algorithm

Analogous to the well-known and highly useful situation in linear programming, we can
define the central path associated with problem (2.1) as the collection of solutions of the
perturbed KKT conditions (2.5) parameterized by p. By the implicit function theorem
we can guaranteed that such a path exists locally (i.e. for 0 < p < it for some i) in a
neighborhood of a solution v = (z*,¥",z7) of (2.1) which satisfies the standard Newton's
method theory assumptions A2.1-A2.5 listed in Chapter 2. Related to the central path
notion, we introduced a new notion of centrality called the quasi-central path given by
Definition (4.1.2). It is worth mentioning that the quasi-central path is really a surface and
as before under the latter assumptions, we can guarantee that this surface exists close to the
solution of the problem. The use of the quasi-central path as opposed to the central path
gives us a definite advantage. Specifically, far from the solution it may be the case that the
central path point corresponding to a parameter i does not exist. When we consider the
quasi-central path we have relaxed the requirements, i.e.. we do not require V_./ = 0. and
consequently the chance that a point on the quasi-central path corresponding to this g exists

are dramatically improved. Indeed, observe that a point r is on the quasi-central path, i.e..
(z,2) € S" ={(z,2) e R™: h(z) =0, X Ze = pe.z > 0}

if and only if z is strictly feasible, Le.,

zéSz{xelf{":h(r)=0,z>0}.
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This notion plays a fundamental role in the formulation of our global algorithm. Now, we
follow the lead given by Gonzalez-Lima, Tapia, and Potra [27] in their linear programming
application. We are looking for a notion of an effective neighborhood of our quasi-central
path corresponding to u. Toward this end we offer the following notion of closeness to a

point on the quasi-central path.

Definition 5.1.1 We define a (u,7)-neighborhood of a point on the quasi-

central path corresponding to u by

Nu(m)={v=(z,9,2) € R™*™": £50,2>0,[h(z)]* + [lw - pw™ |2 < vu }
(5.1)
where (1,7) > 0 and w = (X Z)'%e. We call the parameter yu the radius of the

neighborhood.

In this work, the previous definition gives us an effective measure of how close an interior-
point is from satisfying the perturbed KKT conditions for a corresponding u > 0.

It is of value to observe that a point on the central path for a corresponding p is also on
the quasi-central path for the corresponding y; but the converse is not true. Moreover, both
are contained in a (¢, v)-neighborhood for (z,v) > 0. Hence the (u, v)-neighborhood notion
is fairly generous and hopefully will not be excessively restrictive.

The basic idea of our global algorithm is to apply a linesearch Newton's method to the per-
turbed KKT conditions (2.5) for fixed y until we arrive to a specified (1. v)-neighborhood.
This part of the algorithm is called the inner loop. Then we decrease i, specify a new
(1, 7)-neighborhood and repeat the linesearch Newton’s method. Clearly, if our (g,7)-
neighborhood are excessively restrictive the algorithm will be quite costly. If the neigh-
borhoods are excessively large, then global convergence can be threatened as mentioned in
Section 2.3. We expect our algorithm to mimic the logarithmic barrier function method far
from the solution and the El-Bakry et al [12] quadratically convergent Newton interior-point

method near the solution.



5.2 Update of the penalty parameter

Before we propose a global algorithm, we begin by explaining how we will update the penalty
parameter p associated with the generalized augmented Lagrangian function in order to force
a descent direction.

For a corresponding 1 > 0, we update the current penalty parameter p by a nondecreasing
update p,.

Remember that from (4.10) the penalty parameter p is given by a value g, where p is
given by (4.9), plus a positive value ¢ > 0. For our purpose, ¢ will always be greater than or
equal to a predetermined positive value é and is not varied during the entire minimization
process.

In line with this objective, we update the penalty parameter in the following manner.
Given ¢ > 0, and p the current penalty parameter, then the update is

pr+¢ ilpr+¢e>p

P+ = (5.
p+ + ¢ otherwise,

ot
o
~—

where c = p—j,.and ¢ > é.
This expression is the formula we use to update the penalty parameter p in the global

linesearch interior-point algorithm that we will present in the next section.
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5.3 Linesearch interior-point Newton algorithm

We propose the following global primal-dual interior-point Newton algorithm with a back-

tracking linesearch algorithm for the nonlinear optimization problem (2.1).

Algorithm 5.3.1 (Linesearch interior-point algorithm)

Step 0. Consider an initial interior-point v, = (Zo: Yo, 20) (i-e. (£,,2,) > 0).
Choose 3.p,v,0 € (0,1), and é > 0.
Step 1. For k=0,1,2.....until convergence do

1.1 Choose u; > 0.

Step 2. Repeat (INNER LOOP)
2.1 Solve the linear system ,
F (ve)Avg = = F,, (vi).
2.2 (Maintain z and = positive). Choose 7, € (0, 1) and calculate &
according to (4.6). Let 6 = min(1, r6).
2.3 (Force a descent direction). Calculate ¢, and pr by (3.2) to ensure a
Newton descent direction for A,.
2.4 (Armijo’s condition ( sufficient decrease)). Find a; = p'or where t is

the smallest positive integer such that oy satisfies

My (T + 0k AT, Yoy 2+ @Az pi) < My, (vrs pr) + ke 3VE,, (74)T Ay
(5.3)
2.5 Set vy = (T4 + ar ATk, Yk + @AY, 2k + A zi).
Step 3. ( Proximity to the quasi-central path )

3.1 If v & NV, (7) (see (5.1))
go to step 2

3.2 Else
gotostep 1 (END OF INNER LOOP)
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Remark 5.3.1 According to the material described in Equations 4.9-4.11, we
know that our choice of p; promotes descent in M,, in the variables r and :.

Moreover, Equation 4.12 explains the use of V®,, in (5.3).

5.4 Updating the perturbation parameter

If an iterate, v = (z,y, =), satisfies the (g, y)-neighborhood condition, but does not satisfy
the stopping criteria for the inner loop (see (5.1)), then the perturbation parameter x is
updated by

et = 0 ()P + lwx — pewi)1?) (54)

where o < 77! and the new inner loop iteration is begun. In (5.4) wy = (X Zi)/?e.

Proposition 5.4.1 The sequence {u;} is convergent.

Proof By the way p; is defined, the sequence {u} is monotonically decreasing and

bounded below, therefore {u:} converges. O



Chapter 6

Global convergence theory

In this chapter, we present a global convergence theory for our linesearch interior-point
Newton algorithm. In the first section, we give assumptions under which Algorithm 5.3.1 is
well defined, then we present two global convergence theorems. The first theorem implies
that any limit point of the sequence generated by the inner loop is on the quasi-central
path, and the second theorem proves that if the sequence generated by Algorithm 3.3.1 is
convergent, then it converges to a KKT point of Problem (2.1).

6.1 Well-definedness of Algorithm 5.3.1

In this section we give conditions that guarantee that Algorithm 5.3.1 is well defined start-
ing with an arbitrary interior point vo. Towards this end we will need the following two

conditions.
A6.1: The set {Vhy(z),...,Vhn(z)} is linearly independent for positive z.
A6.2: For any interior-point (r,y, =),
2T (V2 (z,y,2)+ X" 1Z)p >0
for all n # 0 satisfying Vh; (z)Tp = 0, i=1,...,m.

Lemma6.1.1 Consider ¢ > 0. Under Assumptions A.6.1 and A.6.2 the matrix

F,: (z,y,z) is nonsingular for any interior-point (r,y, z).

Proof. The matrix F;(.r,y, z) can be written

, ) A B
F, (r,y,z)=
g C D
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where

Vi (z,y,z) Vh(z) -1

A= , B= , C=(Z0),and D = X.
Vh(z)T 0 0
Since (z,y,z) is an interior-point, the diagonal matrix D is nonsingular. Therefore the
matrix F;(x,y,:) is nonsingular if A" = A — BD~'C is a nonsingular matrix (see [16]). In
our particular case A" is given by
Vi (z,y,2)+ X"1Z Vh(z)
Vh(z)T 0/’

K=

From Assumptions A6.1 and A6.2, in a rather standard manner, it is possible to show

that K is a nonsingular matrix. ©

6.2 Global convergence theory
In order to state our global convergence theory, we start by proving that for a z > 0 (fixed)

any limit point of the sequence generated by the subproblem inner loop is a quasi-central

point.

Theorem 6.2.1 (Subproblem inner loop). Consider y > 0 (fixed). Let v} =
(z}.y5.=;) be a limit point of the sequence {vk = (T Yk, 2x)} generated by the

inner loop of Algorithm 5.3.1, with the stopping criterion deactivated. Assume

=) is on the

that F' is continuous at v, and F'(v}) is nonsigular, then (z5.y5,z

quasi-central path. i.e.,

and

Proof.  Since v} is a limit point of {v;}, there exists a convergent subsequence {v, k €
K’} such that v, — v}, k € K. We first prove three important properties related to this

subsequence.
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First, we prove that v} is an interior-point. Since the penalty term ®,(¢.) is bounded
below, by Proposition 4.2.1., and the fact that the Newton step A is a descent direction
for this quantity, then for 3= € (0, 1) there exist a step length a; € (0, i), where & is given

by (4.5), such that
D, (0k + @ ATk) < Bu(k) + B @ VP, (5:)T Ay
This assures that the sequence {®,(dx + @arddi); k € K’} is monotone decreasing, therefore
D, (0x + arA%) < O for k € K,

where @9 is the penalty term evaluated at the initial point. From the last inequality and by
the way ®, is defined, we have that all products (z;}x (2j) k. k € K are bounded away from
zero. As {¥4, k € N} is bounded because the sequence {vk} is convergent, we conclude that

any individual components (z;) s and (z;) are bounded away from zero; implying that
Ty =z, >0 and x— 2, >0, ke R.

Second, the sequence of search directions { vy, k € K’} is bounded. We conclude this
because £ = {vy, v;.k € K} is a compact set and F, . (F,)7! are continuous functions on
E.

Third, {és,k € A’} is bounded away from zero. If it is not true, then without loss of

generality we can say that for at least one j,

o (x5)k .
lim ——— =0, k€ K.
k=00 [Az;li

Since the components (r;); are bounded away from zero, we must have that [Arj|x goes to
infinity, but this contradicts the fact that {Av, k € K} is bounded.

Now, we are ready to begin the proof of the theorem.

Let {pr = pr +cx; e >0,k € K} be the sequence of penalty parameters associated with

{0k, k € K'}. Two possibilities can occur with this sequence.
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First, the sequence {4y, ¥ € K’} can be unbounded. Then from Equation (4.9) and the fact

that V¢ (vr)TAdy is bounded we have
]v«p,,(ﬁk)TWkl —0, k€ K.
Therefore, Equation (4.7) directly implies that
;}LTO h(ry)=0, ke K

and

Lllor«?o Xz =pe, k€eR.
Our second possibility is that, the sequence {4,k € A’} is bounded above. Let p~ =
sup{pr,k € K'}. Since {fx;k € K} is bounded, then for every ¢ > 0 there exists a k, € K’
such that g < px,+cand p* < pp,+cfor k >k, k € K. We can assume that pi, = jy, +cx,.
and by (5.2), it follows that p, = py, for k > k,, k € k. Now, we can define the merit function

as

M0k pr,) = €(0k) + pro Pu(tn), b 2 ko k€K

Since M,(0x; y, pr,) is a continuously differentiable function on R*", bounded below, and we

are considering an iterative scheme
Uker1 = Op + a3 A0 > 0

where VAL, (8 pr, )T Adk < 0, g € (0, Gy satisfies the sufficient decrease condition given by
Substep 2.4 of the Algorithm 5.3.1 with &, bounded away from zero, then on the sequence
{0k, k > ko, k € K} we have, see [39],

VAL (D; pr, )T Aty
| Al

Since {A9} is bounded and by (4.11), we obtain

VM (k3 pr,) T Ak = VD, (3x) T Ad — 0
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where ¢, = pr, — pr > Pr, —p~ >0, k> k,, k € K. Since ¢, becomes a constant greater

than zero for k£ > &y, we have
VO, (0r)TAdy =0, k> k,, ke K.
Again, Equation (4.7) directly implies that
/}i.r?o h(rk) =0, ke K

and

lim Xy 2 = pe, k€ K.
k—oo

o
The next theorem states that, if the sequence generated by Algorithm 5.3.1 is convergent,

then it converges to a KKT point of problem (2.1).

Theorem 6.2.2 If the sequence {v; = (ks Yx, 2k)} generated by Algorithm
5.3.1 converges to v = (z7,y~, ") and the standard assumptions A2.1-A2.5 hold

at r*, then r~ is a KKT point of problem (2.1).
Proof. Any interior-point generated by Algorithm 5.3.1 is of the form
U = (.l’k + ap Azk,yk + oy Ayk, I+ ap A:k).

It is not difficult to see that the assumptions of this theorem imply the assumptions of the
previous theorem. Hence the step length oy is bounded away from zero. Therefore, we
conclude that the sequence {Ave = (Azg, Ay, Azi)} converges to zero.

Now, the subsequence
Ui = (Thj + Ak AThjyYrj + oy Ayij, zkj + arg Azij)

such that vg; € .V, () with px — 0 converges to the same point v* = (z*,y",z"), and in

addition the subsequence {Avk, = (Azij, Ay, Azij)} converges to zero.



From the first equation of system (4.3) we have
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VI(zr;) + Vh(zi)(ye; + Ayaj) — (215 + Aziy) = =V20(ve;) Ay,

Taking the limit as & — oo, and recalling that {V2{(vi)} is bounded, we conclude that

V(™) + Vh(z™)y"— =" = 0.

(6.1)

Now, since vy; = (Tkjs Yrj» 2kj) € Mu(7), then its associated Ukj = (Zrj,=k;) satisfies the

inequality

A(ze)I? + llwe; — pewe |2 < s

Again, taking the limit as £ — oo, we obtain

h(z™) =0,

X"Z"e=0,
and

(z7,z") >0

From (6.1)- (6.4), F(z,y,z) =0 and (z,z) > 0 are satisfied by v~

v™ is a KKT point of problem (2.1). ©

(6.4)

(z=.y",z"). Therefore.



Chapter 7

Numerical results. Part I

7.1 Implementation of the algorithm
The numerical experiments were done on a SPARC station 3 running the SunOS Operating-

System Release 4.1 with 64 Megabytes of memory. The programs were written in MATLAB
version 4.2a. In the implementation of Algorithm 5.3.1 the parameters are chosen as
follows. The initial perturbation parameter g, is 10-2zT=,. In Substep 1.1, we define i by
(5.5), with o = 1072, In Substep 2.2, we choose the parameter 7; (percentage of movement
to the boundary) as

7 = max (.8,1 — 100 = z¥ z;).

In Substep 2.3, the critical value for ¢ in order to obtain a descent direction for the generalized
augmented Lagrangian function is 2. Moreover. in Substep 2.4 we choose 3 = 10~* and set
the backtracking factor p = 0.5. In Substep 3.1, we take v = .8. We used a finite difference

approximation to the Hessian of the Lagrangian function.

7.2 Numerical results
Our computations are directed at two main objectives. The first is to evaluate our gener-

alized augmented Lagrangian function, M,,, as a new merit function. The second objective
is to compare the behavior of our merit function using our notion of centrality, which we
will refer to as M, — CP, with the strategy of using the {, norm of the residual function as
a merit function with the perturbation parameter x changed at each iteration. This latter
strategy was used by El-Bakry et al [12] and will be referred as (o — NCP. Here CP denotes
central point and NCP denotes no central point and signifies whether we use an inner loop
or not.

The numerical experiments were performed on the Hock and Schittkowski set of test

problems [15], and the Schittkowski test problems [47]. For all the problems, we used the
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standard starting points listed in [15] and [47]. The results of our numerical experiments
are summarized in Tables 1-3. In each table, the first column gives the problem number as
given in [15] and [47]. The second, third, and fourth columns give the dimension (number of
variables, not including slack variables), the number of equality constraints and the number
of inequality constraints, respectively. The fifth column gives the number of Newton iter-
ations reported by El-Bakry et al [12], and the sixth column gives the number of Newton
iterations obtained by replacing the €, norm of the residual merit function with our general-
ized augmented Lagrangian merit function and following the strategy of El-Bakry et al [12]
otherwise. We denote this strategy by M, — NCP. The last column reports the number of
Newton iterations taken by using the strategy of M, — CP, described in Algorithm 5.3.1.
In all cases, Newton iterations means the number of times that each algorithm solves the
linear system associated with the problem until it obtains a point that satisfies the following

stopping criterion
£ (vi) |2
L+ [loell2

We summarize the results obtained in the next three tables in the following way.

< €ezit = 10-8~

L. For the tested problems there is no doubt that our merit function M, gives good
performance. In particular, our strategy \/,-CP has an outstanding advantage when
compared with ¢,-NCP. The 71 problems tested, without including problem 13, re-
ported that the {,-NCP strategy required a total of 964 Newton iterations while our
approach :M,-CP required only a total of 770 iterations.

2. In problem 13, where strict complementarity does not hold at the solution, the approach
¢2-NCP reported slow convergence ( after 100 iterations the norm of the residual was
3.21 107?). Yamashita (53], states that his algorithm takes 197 iterations to solve this
problem in the sense that he obtains a good approximation to the solutions of the
primal variables, but the norm of the Karush-Kuhn-Tucker conditions is not small.

Using our merit function M, with the NCP and the CP strategies, we obtain the
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solution of the problem. Moreover, with A,-CP strategy we obtain convergence in

only 26 iterations.

7.3 Table notation

The abbreviations used in Tables 1-3 are collected in this section. The first three columns
contain information about the problems:

n Number of variables

m Number of equality constraints

P Number of inequality constraints

The second set of three columns denotes the number of Newton iterations taken by the fol-
lowing algorithms:

{(,-NCP Algorithm using the ¢, norm of the residual function as a merit function without
our centrality strategy. This is the algorithm presented by El-Bakry et al [12].

M,-NCP Algorithm using the generalized augmented Lagrangian function as a merit func-
tion with the strategy given by El-Bakry et al [12].

AM,-CP Algorithm using the generalized augmented Lagrangian merit function with the

quasi-central path as a notion of centrality condition.



Numerical Results

Problem | n |m | p | (,-NCP | AM,-NCP M,-CP
1 2|01 70 33 23
2 2101 9 6 7
3 2({011 6 7 2
4 2(0]2 6 8 3
3 2104 7 11 6

10 2101 10 10 9
11 21011 9 15 7
12 21011 10 11 9
13* 210 (3] >100 76 26
14 2111 7 5 5
15 210 (3 15 23 8
16 21015 19 25 17
17 2({01|5 34 32 14
18 21016 18 27 35
19 2/016 15 24 8
20 21015 13 38 14
21 21015 13 14 10
22 21012 T 4 3
23 21019 21 >100 20
24 21015 8 15 10
25 3{0]|6 9 17 8
26 31110 26 28 8

33



Numerical Results (cont.)

Problem |n|m | p | £,-NCP | M,-NCP | M .-CP
29 3101 13 11 8
30 3{0|7 13 12 10
31 3(0|7 9 18 6
32 31114 15 19 15
33 3106 10 20 7
34 31018 9 17 8
35 3101 4 7 12 9
36 3107 9 14 6
37 3108 8 14 6
38 4]0 8 11 16 11
41 4111 8 12 16 15
43 4103 12 12 10
44 41010 9 17 6
45 5 10 9 17 11
53 513110 6 12 7
53 66| 8 62 28 4
60 3|16 9 11 9
62 3116 9 14 14
63 3 3 8 10 13
64 30 4 24 24 17
65 3107 20 22 1
66 31018 10 21 7
71 41119 18 16 18
72 410 (10 12 39 12
73 41116 17 17 17
75 413110 16 22 11
76 410 7 8 12 7

39



Numerical Results (cont.)

Problem |n | m | p | -NCP | A{,-NCP | M .-CP
80 53 |10 6 8 13
81 911313 13 11 13
83 5({0 |16 23 25 16
84 5[0 |16 17 33 22
86 5(0 15 18 16 14
93 6|08 10 22 8
100 710 ] 4 10 17 8
104 810 |22 12 16 10

226 210 | 4 7 12 8
227 2/0 | 2 7 8 5
231 2102 37 16 21
233 2011 6 16 8
250 3108 8 14 6
251 310 |7 9 14 5
262 1117 8 12 16
263 1122 19 15 16
325 211 |2 7 9 8
339 3]0 4 8 12 21
340 310 |2 8 5 4
341 31014 9 1 5
342 3{0 4 14 235 12
353 4116 10 16 17
354 4/01|5 11 10 6

40
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Chapter 8

An orthogonal projection method

The main purpose of the second part of this dissertation is to extend Algorithm 5.3.1 so
that it can handle large scale problems which arise often in applications. The Jacobian
of the KKT conditions for real problems is in general a large, sparse and nonsymmetric
matrix. Therefore, considering a direct method for solving the linear system of equations
(4.3) is an expensive computational choice. We prefer instead to use an iterative method
to solve the linear system of equations. We do this by considering the Krylov subspace
methods as inexact solvers. This chapter discusses two techniques for solving the linear
system (1.2), that are especially useful for large scale problems. The objective is to reduce
the problem to a problem in a space of smaller dimension where the solutions are obtainable
in 2 more convenient way. We briefly introduce the projected Hessian method and discuss
its advantages and drawbacks. Also we discuss the orthogonal projection method. whose
idea constitutes the core of this second part of this thesis. We denote the nullspace of BT

by .\'(BT) and the nullspace of B by .\V(B).

8.1 Reducing a linear system of equations
One technique used for solving the linear system (1.2) consists of reducing it to
ZTAZw =27f, (8.1)

where Z € R™(™™ ™) is a matrix whose columns form a basis for the nullspace of BT, \'(BT).
There are two traditional numerical approaches for forming the operator Z in (8.1). In the

first approach one performs a QR factorization of B, say

Ry
B=QR=[Qle](0)
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where Q; consists of the first m columns of Q, Q; is an orthonormal basis matrix for N(BT) e
R™"™=™) "and R, € R™™ is an upper triangular matrix. This suggests choosing Z = Q.
It is important to note that in this case the matrix Z could be dense even though the matrix
B is sparse, and therefore the required storage can be prohibitive. This is certainly an
inconvenient feature even for moderate scale problems.

The second deals with partitioning the matrix BT = [B) B,] where matrix B, € R™™ is
nonsingular, and the null space basis is formed by Z = [—B{'lBg In_m]T. This approach
for calculating Z is more widely used than the QR factorization, but it can fail if B is not
full rank. In contrast with the QR factorization the sparsity of the matrix B can be further
exploited here. However, there exists an extra cost for an appropriate selection of the columns
B, in order to preserve the sparsity of the matrix B. When using the QR factorization the
matrix Z satisfies Z7Z = I, and by Lemma 2 [38] we can conclude that ZTAZ is not more
ill-conditioned than 4. However if the basis matrix Z is obtained by partitioning the matrix
BT, the reduction does not guarantee that ZT AZ is not worse conditioned than the original
Hessian matrix A. see Lemma 10 [38]. More details about this technique can be found in

36].

8.2 The orthogonal projection method

We have discussed the strengths and weaknesses of reducing the linear system 1.2 for medium
to large-scale implementations. Rather than generating a null space basis matrix for BT . the
computation of an orthogonal projector onto .V(BT) is preferable for reasons of efficiency.
This requires using B! (i.e., the Moore-Penrose pseudo-inverse of B) in order to form an

orthogonal projector P onto the nullspace of BT, specifically
P =1 - BB (8.2)

If the matrix B has full rank, then Bt = (BTB)-I BT is its Moore-Penrose pseudo-

inverse. The idea now is to reduce the linear system (1.2) to the following projected system,
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PAPu = Pf. (3.3)
The following theorem describes the orthogonal projection method as a numerical solution
method.

Theorem 8.2.1 Let P be given by (8.2). Then (Pu, p) solves the linear sys-
tem (1.2) with ¢ = 0 if and only if PAPu = Pf and p = Bt(f — APu) + w.
forany we N (B).

Proof Let (Pu,p) be the solution of the linear system (1.2), then
APu+ Bp = f.

Solving the latter equation for p, then the general solution is p = BY(f — APu) + w where
the first term is a particular solution, and the second term w represents the solution of its
associated homogeneous problem, i.e., Bw = 0.

Now we substitute p into the same equation and solve for u. This gives
APu+ B [BY(f — APu) + w| = f.

which can be reduced to

PAPu = PJ.

The proof for the reverse implication is as follows. Let PAPu = Pf

and p= BY(f - 4APu) +w, w € N(B). Substitute p into APu + Bp = f to obtain

APu+ Bp = APu+ B [BY(f ~ APu) + w)
= APu+ BB'f - BBtAPy
= PAPu + BB'f
=Pf+(I-P)f
= f.



Furthermore, BTp = 0 since p is a projection onto N~ (BT). O

This result plays an important role in solving the linear system (4.2) which arises in nonlinear

programming problems, and it will be discussed further in the next chapter.

8.3 Advantages of the projection method

One of the main advantages of approach (8.3) over (8.1) consist of avoiding the explicit
computation of a basis for .V (BT). Therefore, issues such as instability and high cost are
somehow alleviated. Another advantage comes from the minimax characterization of singular
values. The smallest singular values of A and PAP satisfy omin(A) < Tmin( PAP) while the
largest singular values satisfy Omaz(A) 2 Omar(PAP). Therefore, the condition number of

the matrix PAP is no worse than the condition number of the matrix A [5]. Figure 3.1

Spectrum of A Spectrum of YtAY
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Figure 8.1 Spectraof A, YTAY (Z =Y. formed by the QR method), WT AW,
(Z = W, formed by the variable reduction method) and PAP, for a matrix A with
random entries.

illustrates the spectrums of A, both @R and variable reduction methods of ZTAZ, and

PAP for a random saddle-point matrix. Note that although the variable reduction method
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offers the opportunity to exploit matrix sparsity the condition number obtained for Z7 AZ
is much worse. Moreover, the possible number of distinct nonzero eigenvalues of PAP
is at most n — m compared to n for matrix A. This result suggests that the number of
iterations required to solve equation (14) using any Krylov subspace method is not more
than the number required to solve a single system with coefficient matrix A. In practice the
number of iterations required by a Krylov subspace method to solve equation (14) depends
on the distribution of its eigenvalues. Nevertheless, the projection method inherits the same
drawback when B is highly sparse and the computation of the operator P can destroy the
sparsity pattern.

The use of an orthogonal projection method brings to the foreground a subject that is
often overlooked in the literature of preconditioning when solving systems like (1.2): the
rank deficiency of B. This can happen during the process of solving the KKT linear systems.
In order to overcome this problem, a positive constant ¢ is introduced, which controls the
amount of regularization of the system. This lends one to solve the following alternative
problem

A B u f
BT —¢I v g

for ¢ > 0.

A careful selection of this parameter is required to prevent possible ill-conditioning and a
deterioration of the rate of convergence. This adds another parameter to the interior-point
method. So, it is important to notice that the use of a good preconditioner for the alternative
problem has to take into consideration this parameter, introducing further complications for
a good preconditioner. On the other hand, since rank deficiency of the matrix B can be
admitted in the definition of the projector P, a robust singular value decomposition formula
can be employed to carry out the orthogonal projection. Obviously, this introduces an
extra computational cost in the whole procedure, but it does not represent an additional

complication to the functionality of the projection method.
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Chapter 9

An orthogonal projection method for solving NLP
linear systems

In this chapter, we explain how to reduce system (4.3) to a block symmetric system by
a reordering of the unknowns and by a subsequent application of a orthogonal projection
method. Then we apply a Krylov subspace method to solve the reduced block symmetric
system which will allow us to define an iterative procedure to solve the entire system (4.3).
This procedure leads to satisfaction of both linearized equality constraints and linearized
complementarity conditions associated with problem (2.1). We discuss some main proper-
ties and details about this iterative method and its implementation.

Let the matrix A denote the Hessian of the Lagrangian function, the matrix B the gra-
dients of the equality constraints, the vector by the negative gradient with respect to = of
the Lagrangian function, the vector b, the negative equality constraint functions, and finally

the vector b3 the negative perturbed complementarity conditions.

9.1 Reduction of the interior-point linear system

We introduce an application of the projection method for solving the linear system (4.3).
The following theorem formalizes this technique.
Theorem 9.1.1 Let P be given as in (8.2). Then (Ar, Ay, Az) is a solution

of the linear system (4.3) if and only if
Az =X (b3 - ZAx),

Ay = BY(b, — AAz + z)+w, for some we N(B),



and Ar = PAz, + Ar, where Az, is a particular solution of BTAr = b,, and

Az, satisfies
P(A+ X~'Z)PAz = P(b — AAz, + (X716 + ZAz,)).

Proof By a block row and column switch, equation (4.3) can be written as follows,

4 ~I B Az b,
Z X 0 Az | =1 b (9.1)
BT 0 o Ay b2

p = Ay, f=(

so that the linear system can be written

(& 2)C)-(0)

The projection method can be readily applied when the equations corresponding to the
lower matrix blocks are homogeneous. In order to fit this framework. we express u as
u = up + u,, where up € NV (BT) and u, is a particular solution of BTu = ¢g. Upon

substituting into equation (9.2), one obtains

=) ()-(0)

where f = f — Gu,. At this point, the projection Theorem 3.1 can be directly applied

to equation (9.3), whose solution is found by solving
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PGPu, = Pf (9.4)

where w € NV (BT) .
It is straightforward to show that
_ _ P o
Bt=(pt o) andP= , (9.5)
0 I

where the projection operator P is defined by (8.2)

Substitution of P and B! into equation (9.3), vields

P(A+ X7'Z)PAz, = P(b; — AAz, + (X703 + ZAr,)), (9.6)
Az = X7 (b3 — Z(Az, + PAry)) and (9.7)
Ay = B (b — A(Az, + PAzy) + ) +w, we N (B). (9.8)

In order to clarify the notation used in these equations, we mention that the decomposition
of u into a homogeneous and a particular solution, which formally affects both Ar and A=,

leaves Az unchanged because of the special structure of B. g

We remark that the same formulation can be attained by eliminating the complementarity
equation, thus reducing the problem to a 2 x 2 block symmetric system, and then applying

the projection method.

9.2 Additional advantages of the orthogonal projection method

We notice that the computation of Az and Ay, defined by equations (9.7) and (9.8), represent

a small part of the overall computational cost for solving the system (4.3) because X is a
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diagonal matrix and the operator B! has been previously computed to form the projector
P, in contrast to solving the projected system (9.6).

In Chapter 8, we mentioned that the projection method is attractive from the standpoint
of its algebraic properties because the condition number of P(A+ X~'Z)P is not worse than
the condition number of the original matrix A + X-1Z. Besides, we will show latter that
if M is a good preconditioner for the matrix A then PMP is a good preconditioner for the
matrix PAP.

Indeed, several attempts have been made to find good preconditioners for the entire linear
system (4.3) and have resulted in little or no success. When this system is reduced to the
saddle point problem by eliminating the complementarity equation, it has also been difficult
to define good preconditioners for the reduced system since the first block A + X~!'Z will
become ill-conditioned near the solution of the problem. Therefore, the use of the projection
method for solving the linear system (4.3) as described in Theorem 9.1.1 puts us at a great
advantage in terms of robustness.

When the dimension m (number of equality constrains) is small compared with the
dimension n ( number of variables), i.e. for instance m < %n, the projection method is
strongly recommended. Also the method is of value. when m is large and the sparsity of
the matrix B is such that the operator BTB has a high degree of sparsity. When this is
not the case an option that deserves investigation to avoid the high cost associated with the
computation of the projector P. is to establish a heuristic design such that the projector
is fixed for some number of iterations during the minimization process. However. in both
linear and quadratic programming, the projection operator is fixed and therefore need only
be computed once, thus making the projection method very appealing even for large-scale

problems for both of these classes of problems.



9.3 An iterative solution of the projected system

The standard second order sufficiency condition for Problem 2.1, A2.4, states that at the
solution z* : For all 5 # 0 satisfying Vh;(z*)Tn =0,i=1,...,m; e}rr) =0, j € B(z") we
have

nTV2e(z",y", ") > 0.

The set B(z*) consists of the indices of the components of the primal variable that vanish
at the solution, i.e., B(z") = {j : z; = 0}. This set is called the active set of indices. If
the active set is nonempty, one should not expect the Hessian of the Lagrangian function,
VZ2e¢(z™,y, z"), associated to problem (2.1) to be positive definite in A" (BT) at the solution
or, by continuity, in a neighborhood of the solution. Therefore, assuming the Hessian matrix
A is positive definite in .N'(BT) or the matrix (A + X~'Z) is positive definite over the
entire space ( as is assumed in some studies ), compromises the success of general scope
theoretical efforts. We assume that (A4 + X~!Z) is positive semidefinite in .\ (BT). In this
way, we set the stage for the second order sufficiency condition to be more closely met since
the positive diagonal contribution (possibly large) added to the Hessian matrix A assists in
shifting the spectrum of A towards the positive real axis. With this assumption we can apply
the conjugate gradient method to solve the projected system (9.6). From a mathematical
point of view. we can assert that the method converges in at most (n — m) steps because the
projected system has at most (n —m) nonzero eigenvalues. However, in practice, the number
of iterations that the conjugate gradient method requires depends also on the distribution of
the eigenvalues of the projected system. Moreover, if the matrix 4 + X~!Z is not positive
semidefinite on V' (BT), then a more general Krylov subspace method, such as SQMR [20],

or MINRES [4] can be used.
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9.4 Conjugate gradient method for solving the projected system

In this subsection we outline the conjugate gradient algorithm used for solving the projected

linear system

PAPAzy, = Pby,

where 4 = A+ X~!'Z, and §; = b, — AAz, 4+ (X703 + ZAz,).

Algorithm 9.4.1 (Conjugate gradient algorithm)

1. Initialize k = 0, given (Az,), initial guess.

(L]

. Compute rq = dy = P(b, — fi(Azh)o).
3. Compute pg = rgro.

4. For k=0,1,2,...,do

(b) ar = .
k
(c) (Arn)e+r = (Azp)i + agdy.
(d) res1 = e — arwy.
(e) P41 = "Z+1"k+1-
(f) If (pr+1 < =, stop)
(8) Figr = 24
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(k) diyr = rigr + Biprdi

The following theorem states several properties ol this algorithm.

Theorem 9.4.1 Let (Azy)o € N(BT). If A is positive definite in
N(BT), and P is given by (8.2). Then



(i) The conjugate gradient algorithm converges to the unique mini-

mum norm solution of PAPAr = Pb,.

(i1) The iterates (A )i, the conjugate directions dy, and the residuals

ri remain in A (BT) for all .

(iii) The matrix-vector product wy = PAPd, (see Step 4(a)) can be

calculated instead by w, = PAd, for all k.

Proof (i) The system is consistent because the left and right side of the pro-
Jected system are preceded by the same projection operator P.

Since A is positive definite on N(BT) then
d¥wy = (Pdi)TA(Pdy) > 0.

Therefore the step length oy given by the conjugate gradient algorithm 4(b) is
always well defined. Hence the convergence follows from the classical work of
Hestenes and Stiefel [17].

(ii) The proof is done by induction. Since (Ary)o, do = P(b; — AP (Ary,)) €
N(BT) and assuming (Azy)x .dy .1 € V(BT), then wy = PAPd, € N(BT),

and

(-Al'h)k-i-l = (A.l‘h)k + apd; € .\’r(BT).
Thel =T — QLW € .\"‘(BT).
dis1 = Teqr + Brpdi € V(BT).

The unique minimum norm solution to PAP = P, is one with Ar; € N(BT).
(iii) Since the conjugate directions dj are in the nullspace of BT, we have Pd, =

di. Therefore the first projection operator, P, in the calculation of wy can be



omitted. i.e.,

W = PAdk

Remark 9.4.1 The latter theorem shows that with a proper ini-

tialization, i.e. (Azy)o € NV(BT)

1.

(S

One projection P per conjugate gradient iteration need be com-

pute in step 4 (a)
Since the iterates (Azy), € V(BT), we have

P(Azs), = (Axp)s. (9.9)
Therefore Equation (9.6) can be replaced by

P(A+X712)(Azn), = P(by — Adz, + (X~'by + ZAz,)).
(9.10)

Also, it is important to comment, that the projector P does not
need to be computed explicitly. Its action on a vector is given

by

o

Pv = (I~ BB"v = (I - B(BTB)~'BT)u.

Therefore by forming the Cholesky decomposition LLT = BT B

one can compute the action of P on a vector v by

(a) v; = BTv,
(b) Solve Ly = v,
(c) Solve LTz =y,

(d) vy = B=z,
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(e) w=v—ry,

where w = Pv . It is important to point out that the Cholesky
decomposition of BTB can be made efficient by a reordering

scheme based on the sparsity pattern of B.

9.5 [Iterative solution of the complete system

Now, our fundamental purpose of this second part is to define an iterative solver
for the linear system (4.3) using an iterative solver for equation (9.6) and to
combine it with our Algorithm 5.3.1 in an efficient manner. Specifically, we will
prove that a single iteration of our solver on the linear system (4.3) produces a
descent direction for the penalty term and it is also a descent direction for our
modified augmented Lagrangian function introduced in Chapter 3. Towards this
objective, we present the following definition
Definition 9.5.1 Our iterative solver (Art, Ayi, Az for the linear

system (4.3) is defined as

Az = X71(bs - ZAry), (9.11)
Aye = Bi(by — Adxi 4 ) + w. w € V(B) (9.12)
Are = (Arp)e + A.l‘p, (9.13)

where (Azy )y is given by conjugate gradient algorithm 9.3.1, and Az,

is a particular solution of BT Az = b,
Now, we present our strongest theoretical result for the second part of this dis-
sertation in the following theorem.

Proposition 9.5.1 Any search direction (Azy, Az;) given by (9.13)

and (9.11) satisfies linearized equality constraints and linearized com-



plementarity condition associated with Problem (2.1), i.e. .
BTAzy = by,

ZAz + XAz = bs.

Proof Substituting equation (9.13) into the second equation of the linear sys-
tem (4.3) we obtain

BT Az, = BT((Azg)i + Az,),
BTAzi = BT(Azy)x + BT Az, .

Since (Azy)r € V(BT) and Az, is a particular solution of the equality constraint
then

BT Az =b,

Now, from equation (9.11), we have

ZAr + XAz = by

Remark 9.5.1

From this proposition. we conclude that the residual error for solv-
ing the linear system (4.3) depends only on the residual error, ry, for
solving the projected system (9.6). Therefore, we define the vector
(7+,0), 0 € R™™, as the residual vector for the original nonsymmet-
ric and indefinite system (4.3). Consequently. if we can control the
tolerance of the projected system (9.6), we can control the tolerance

of the entire system (4.3).

Theorem 9.5.1 Consider 4 > 0. Let v = (z.y,z) be an interior-

point. Then the search direction (Azx, Az;) given by (9.11) and



Proof Theorems 4.2.1, 4.2.2 and previous propositions establish the theorem.

a

(9.13) is a descent direction for the penalty term V&, and it is also
a descent direction for the modified augmented Lagrangian function

M, for sufficiently large p, at v. i.e.,
V.0,.(0)TAz + V.90,(5)TAz <0

and

VM, (z,y,z; p)TAJ: + V. M,(z,y, z; p)TAz <0,

for p sufficiently large.

A couple of observations are in order.

Remark 9.5.2 The latter theorem means that any single iteration
(Azk, Ay, Azi), defined by (9.11), (9.12) and (9.13), is sufficient to
march towards the solution of the problem using the modified aug-
mented Lagrangian function M, as a merit function. Therefore, it
should be made clear that no preconditioner is needed except near
the solution. Numerical experiments show that, for a large fraction
of the total number of nonlinear iterations required for converging
to the solution of the problem, single iterations are enough to ob-
tain a good step. The remaining few iterations will no doubt require
an accurate iterative solution of the projected system (9.6). This is
not seen as a surprise since once the iterates are inside the region of
quadratic convergence of Newton's method the merit function does
not play an important role, and therefore single iterations are not
enough to obtain a good step. It is only at this stage of the proce-

dure that, we will require an accurate iterative quasi-Newton step. It

(W]}
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is also at this stage that preconditioning becomes important. Some

investigation on this issues is given below.

Remark 9.5.3 In the event that A+ X~!Z is not positive semidef-
inite on .V(BT), the last two propositions hold for any other Krylov

subspace method.

9.6 Preconditioning

In order to obtain reasonable convergence rates, preconditioning the projected
system (9.6) is very important for large-scale applications. In the next section, it
will become apparent that full iterations on the projected system are not needed
except near the solution. Nevertheless, for overall algorithmic efficiency, one is
still interested in the fast convergence of the Newton step near the solution gener-
ated by the iterative method. It can be shown that if M is a good preconditioner
for A, then PP is a good preconditioner for PAP. We can characterize the
quality of (PMP)t in terms of how close the preconditioner M is to A. If we
consider the splitting PAP = P(M — V)P = PMP — PN P, then we obtain the
following result.

Theorem 9.6.1 Let |PNP|| |(PAP)!| =4 < L. then

1+V5 0%
X
2 l -+

”(P.—IP)" _ (P.\[P)f" < ||(P,-1.P)f||

(9.14)

L+vs IV fepdpy
> X - .
2 L[Nl cPAP)|

Proof The first inequality can be obtained as a particular case of Theorem
8.24 proved by Lawson and Hanson (30, page 46]. The second inequality follows
trivially from the fact that the orthogonal projector P does not increase the norm

of a matrix, i.e.. ||[PNP|| <||V]. O

(]

0]



Note that
(PAP)' = A"' — AT'B(BTA™'B)'BTA!,

which is exactly the upper left block in the inverse of

A B
BT 0

(9.15)

It is a remarkable result that the pseudo-inverse of the coefficient matrix of the projected
system appears naturally in the computation of the inverse coefficient matrix of the saddle-
point problem. Hence., it is clear now why the projection methods are so well suited for our
application, they support the choice of preconditioners for the projected system based solely
on the properties of the operator A. In Theorem 9.6.1, the Golden Mean %éz 1.618 is
replaced by 1 when the operators involved are nonsingular, as is suggested by Golub and Van
Loan [26, Theorem 2.3.4]. The theorem shows that a reduction in || V|| improves the quality
of the preconditioner for the projected system PAP. This also impliesa quality improvement
of M as a preconditioner for A, and therefore the properties of A by themselves determine

the choice of preconditioners for the projected system.
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Chapter 10

Numerical results. Part II

We consider two types of numerical experiments. The first is designed to test the ideas of
the inexact global minimization that we have introduced in the last two chapters. We show
from the numerical point of view that one iteration on the linear system (4.3) is effective
at each step of the nonlinear minimization process until the iterates enter the region of fast
convergence of Newton’s method. Then it is necessary to switch in order to ask for more
precision of the iterative linear solver for a better performance of our orthogonal projection
method. It is in this step that a good preconditioner is needed. In this context, we present
a comparison of performances of the orthogonal projection method, GMRES acting on the
whole linear system given by equation (1.1) and SQMR acting on a system with coefficient
matrix given by (9.13). Only simple (i.e., block or incomplete Cholesky) preconditioners are

tested and the results are quite illustrative.

10.1 Experiments with the global minimization algorithm

The first model problem is the minimization of a quadratic objective function subject to

linear equality constraints and nonnegativity constraints on the primal variables, i.e.,
min (%xTAr - CTI)
subject to Br — b =0, (10.1)
z >0.
The full rank matrix B and vector b in the equality constraints and the vector ¢ in the
objective function were chosen randomly. The matrix in the quadratic part of the objective

function, A, is also chosen randomly but so it is positive definite in .V(BT). It should

be noted that the Hessian matrix, the matrix of linearized constraints and the orthogonal
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projector P = | — BB are constant in quadratic programming problems. The only blocks

that change throughout the minimization process are those (diagonal) blocks corresponding

to the entries of the primal and dual variable vectors.
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Figure 10.1 Convergence of the quadratic programming problem for exact
Newton. orthogonal projection taking one iteration of CG on projected system
throughout, orthogonal projection with dynamically adjusted linear tolerance and
preconditioned GMRES.

Problems of this type put the projection method immediately at an advantage in that
the potentially costly step of computing the projection operator is done only once. However,
the projector does not need to be computed explicitly but can be applied to a vector by
working with the current form of the linearized equality constraints, not only for quadratic
programming but also for general nonlinear programming problems (this was illustrated in
Section 9.2.1).

In the first experiment, the Hessian matrix A is order 50 and the number of equality
constraints is 10. This makes the coefficient matrix of (1.1) order 110. Figure 10.1 shows
the norm of the KKT conditions ( labeled the nonlinear residuals) as a function of the

number of nonlinear steps. Four methods of solving the linear systems are compared in this
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figure: Newton’s method, the projection method taking one iteration per nonlinear step, the
projection method with a dynamically adjusted linear tolerance and preconditioned GMRES
acting on the entire linear system (1.1) with a linear tolerance two orders of magnitude
smaller than that imposed on the KKT conditions (i.e., 10-7). This is an example of modest
size and complexity but the results are enlightening. The exact Newton's method takes 49
iterations to find the optimum. The final value of the perturbation parameter at the solution
is of order 10=%. The curve given by the projection method with full iterations reproduces

the convergence path of the exact Newton’s method. The linear tolerance was set according

(k)11
tol = min (ki—?’ “"l;(o)” ) , (10.2)

where, k£ denotes the nonlinear iteration number and f denotes the objective function. It

to

should be mentioned that the linear tolerance was O(1071), in spite of this the projection
method never exceeded 12 iterations per solve even though no preconditioner was used for
the conjugate gradient method.

It is worth noting that GMRES does not do a good job of approximating the Newton
steps or of finding a descent direction for the merit function M, even though it is using a

tailor-made preconditioner given by

A Ig =1
M=11F 1 0 ;
Z 0 X
where I is such that its columns are the first m canonical vectors e, €cR",i=1,....,m,
Le.,
I
[B = " y
0

where I, is the identity operator of order m. This preconditioner is extremely rich, i.e..

the only differences between the preconditioner and the original coefficient matrix are in the



x 10
2.5 — T T — 3 +
2k E

w 1.5k -
g -
©
I3 1 » E
&
= 0.5r ~ .
=1 e
E n
= ol - o DN N NN W 2o »
2 »
K- »
g1 T ]
a
g
g -1} ~x -
o o]
£ 15t -

-2 A

2 5 A » X 1 'l i L L o,

=7000 o 1000 2000 3000 4000 5000 6000 7000 8000

Real part of full matrix eigenvalues

Figure 10.4 Eigenvalue distribution of coefficient matrix for interior point
method formulation of the constrained quadratic minimization problem after 20
nonlinear iterations.

-13
1 210 . : Y . . v
& 0.8 » .
=2
£ oe
& <
-t
-_é_ 0.4+ » 4
-]
E
3 o2t |
*8 .
8 of x l ]
,E
»
g -0.2} .
a
S -0.a} w .
2
E-os6f .
£
o
L]
E ~o.8} » E
1 . . ; \ . ,
-0.2 [2) 0.2 0.4 0.6 0.8 1 1.2

Real pérl of preconditioned 1ull.matrix eigenvalues

Figure 10.5 Eigenvalue distribution of preconditioned coefficient matrix for
interior point method formulation of the constrained quadratic minimization
problem after 20 nonlinear iterations.

64



65

absence of the exact blocks B and BT and in the (necessary) nonzero block inserted in the
main diagonal. Note the dramatic clustering of the eigenvalues after application of M ™! by
comparison of Figures 10.4 and 10.5. This situation is not realizable in practice, however,
but the rationale for its use here is that one can hope to have a reasonable preconditioner
for the Hessian block (given some problem structure), the remaining diagonal blocks of
the coefficient matrix are easy to handle but formulation of effective preconditioner blocks
corresponding to B and BT may not be so obvious.

In summary, our choice of M gives a best-case scenario in which to illustrate the poor
performance of preconditioned GMRES for these problems.

The remaining curve on this graph corresponds to the projection method taking one
iteration per linear system. For a little over 40 iterations this extremely cheap way of finding
descent directions for the given merit function is also extremely effective in decreasing the
nonlinear residual toward the solution.

To see intuitively what it is going on, we direct the reader's attention to Figure 10.2, where
the values of the merit function, given by Definition 3.1.1, are plotted versus the nonlinear
iteration count for exact Newton and the projection method using full linear iterations or
one iteration throughout. It is apparent that our merit function is no longer decreasing
appreciably inside the region of quadratic convergence of Newton's method. This behavior
separates, at least qualitatively, the region in which the merit function is driving the global
convergence (this requires single iterations of the solver given by Definition 9.4.1 ) from that
in which the merit function is no longer effective where the nonlinear iterates have presumably
fallen into the region of quadratic convergence of Newton’s method. This behavior is in
agreement with the objective of a globalization technique where the merit function together
with a descent direction is proposed to help the minimization process to carry out the steps
inside of the convergence region of Newton's method. When the iterates fall into this region,
it is necessary to make a switch and ask for a better approximation to the Newton step, in

order to retain the faster rate of convergence of Newton’s method.
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Based on this observation, the objective now is to propose a criteria that allows us to
determine in what moment it is necessary to make a switch from a single linear iteration
to full iterations. The control of the behavior of the linear solver at different stages of the

nonlinear minimization process is given by,

1. Pswitch - IVAL-AG]
My

2. IF ( Pswiter > €)

(2) MAX LINEAR ITERATIONS = 1
3. ELSE

(a) LINEAR TOLERANCE AS GIVEN BY (10.2)
4. END.

where € hopefully is given by a safe choice valid for a large range of problems. The choice
of the numerator of the switching parameter P,,:.x is a natural one since it measures the
level the inexact (or exact, for that matter) nonlinear step produces a descent direction for
the merit function M,. This value is further normalized by the currently assumed value of
M. In our experimentation, € = O(10~2) was found to be acceptably safe.

An alternative idea to determine the switching point between single linear iterations and
full iterations is to follow the values of the perturbation parameter p. If the neighborhood
of the quasi-central path is entered repeatedly throughout the minimization process. the
frequent reductions in u can give an indication of how close one is to the region of the
quadratic convergence of Newton's method. However, in many cases the neighborhood of
the quasi-central path is entered only a few times near convergence and this produces too
few instances of p-reduction to make this a reliable scheme.

Finally in Figure 10.3, we show the behavior between Newton’s method and the projec-

tion method taking one iteration per nonlinear step until the iterates fall into the region of
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quadratic convergence; then inside of this region, we dynamically adjusted the linear tol-
erance given by (10.2) in order to obtain a better approximation to the Newton step and
therefore retain a fast rate of convergence. From the numerical results obtained, we conclude
that our method is viable.

In general nonlinear programming problems, the main point of concern of the approach
proposed here is the recomputation of the projection. As was mentioned above, the appli-
cation of the projector P to a vector amounts to computing the Cholesky decomposition of
BT B, which requires O(m?) floating point operations (recall m is the number of equality
constraints). On the other hand, the final termination property of Krylov subspace iterative
methods guarantees that a solution to the projected system can be obtained in O(n -~ m)
floating point operations in exact arithmetic (recall that the projected system has n — m
nonzero eigenvalues). Therefore, at instances of the algorithm when the projected system

must be resolved accurately, as the number of equality constraints, m, grows closer to the
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dimension of the vector of variables r € IR", the cost of applying the projector grows as
m3 and the cost of solving the projected system decreases linearly as m approaches n. This
suggests that one should schedule updates to the projection operator at intervals longer than
after every nonlinear iteration. Since this is a crucial issue in order to promote the proposed
inexact method for application in general nonlinear programming problems, a study of it

and related implementation problems is proposed for future research.
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Chapter 11

Conclusions and future research

11.1 Conclusions

In this dissertation, we have presented a new interior-point Newton algorithm for solving
nonlinear programming problems. The algorithm utilizes the perturbed KKT conditions to
promote global convergence. In order to obtain a good strategy of globalization, we have
presented a generalization of the augmented Lagrangian function to be used as a new merit
function, and considered a relaxation of the notion of the central path to the quasi-central
path.

The algorithm attempts to follow the quasi-central path. For g > 0 (fixed), we solve an
inner-loop subproblem that is equivalent to the logarithmic barrier subproblem. Moreover.
our approach does not deal with ill- conditioned linear system of equations. As a stopping
criterion for our inner-loop subproblem we introduced a notion of proximity to the quasi-
central path. Our new merit function is used to guide inner-loop iterates to a prescribed
neighborhood of the quasi-central path. The penalty parameter associated with our merit

function is updated in a manner that guarentees descent in the Newton direction.

minimal global convergence result. It is now our considered opinion that those features
of the merit function that help promote the demostrated good numerical behaviour of the
method, also contribute significantly to complicating the mathematical analysis of global
convergence. This investigation will be the focus of a future research effort. At the present
we are content with presenting the new algorithm, the impressive numerical experimentation,
and a rather basic global convergence analysis.

For the second part, dealing with large-scale problems, this research is part of an ongoing



10

project that will be continued motivated by promising numerical results. We have considered
an orthogonal projection method to reduce the linear system, of order 2n + m, associated
with nonlinear programming problems to one of order n such that its condition number is
not worse than the initial linear system. We solve the reduced linear system using only
matrix-vector operations. In particular we use the conjugate gradient method, and then we
defined an iterative solver for the entire linear system associated with nonlinear programming
problem. The iterative solver has the property that a single iteration produces a descent
direction with respect to our merit function, producing extremely cheap steps. This makes
the use of preconditioners not needed except inside the region of quadratic convergence
of Newton’s method. We presented numerical experiments that confirm this fact. The
projection method that we have proposed only requires the formulation of a preconditioner
for a block matrix formed by the Hessian of the Lagrangian function plus a positive diagonal
matrix. We report numerical experimentation for several large scale problems to illustrate

the viability of the method that we have proposed.

11.2 Future research

We present the following research issues as future work:

1. Further numerical and theoretical research is needed to establish the role that the
quasi-central path plays for solving nonlinear programming problems.

2. Further study of our generalized augmented Lagrangian function for solving nonlinear
programming problems using different approaches, for example as a merit function in
the trust region framework.

For large-scale general nonlinear programming problems.

3. Establish a design that allows the projector operator P to be fixed for some number

of iterations during the minimization process when the number of constraints is very

large to avoid the high computational cost.
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