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Abstract

We consider the problem of dynamic reorganization of a linear list, where requests
for the elements are generated randomly with fixed, unknown probabilities. The ob-
jective is to obtain the smallest expected cost per access. It has been shown, that when
no a-priori information is given on the reference probabilities, the Counter Scheme
(CS) provides an optimal reorganization rule, which applies to all possible distribu-
tions. In this paper we show that for a list of n elements, arbitrary probabilities and
any α 0 1 , the cost under CS approaches the minimal expected cost up to a ratio
of 1 α inO n lgn α2 reorganization steps.

1 Introduction

The list update problem was introduced by McCabe [7]: A fixed set of items is maintained
as (an unsorted) linear list or as a serial file. Each request for an item requires a sequential
search. The cost of accessing an item is determined by the length of this search. The list
may be rearranged during a sequence of requests, so as to achieve a lower average access
cost in subsequent requests.
Assuming that each element may be accessed at any time with fixed probability, our goal is
to arrange the elements ‘correctly,’ i.e. in decreasing order of their access probabilities.

A comprehensive survey of many permutation rules suggested for the list management
and their probabilistic analyses appears in [2]. In this paper we focus on theCounter Scheme
(CS), under which the list items are kept in decreasing order by their reference counts, that
are updated after every access to the list, i.e., the counters are used as estimates for the
unknown access probabilities.
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In [5] it was shown that under the above conditions, the CS produces the least expected
cost of access at any time. Thus, the CS is optimal among all reorganization rules that use
no a-priori knowledge on the access probabilities. Compared with the optimal static order,
the CS was shown in [4] to approach it within a factor of 1 α, for any α 0, in a number
of reorganization steps that is in O n2 , where n is the number of records in the list.

In the present work we improve this bound and show, that, in fact, the expected access
cost under the CS achieves a ratio of 1 α to the minimum within O n lgn reorganization
steps. This agrees with numerical studies, shown in part in [4].

2 Preliminaries and Notation

We consider is a linear list of n records, L R1 Rn . Each record Ri is uniquely
identified by a key Ki 1 i n. Requests for records are drawn from a multinomial dis-
tribution specified by the reference probability vector (rpv): p̄ p1 pn . Thus, Ri
may be requested at each access with probability pi. This is known as the independent
reference model (irm) [4, 8]. We assume w.l.o.g. a renumbering of the records, such that
p1 pn.

Each reference requires a sequential search of the list. We define C, the cost of a single
access, as the number of key-comparisons made till the specified record is reached. Under
the irm, with a fixed rpv, the average access cost to the list is minimized when the records
are in the optimal static order: Ri precedes Rj whenever pi p j . Getting there requires a
complete knowledge of the rpv, or at least of the relative magnitude of the access probabil-
ities. This knowledge is assumed unavailable.

The initial arrangement of L is assumed to be randomly selected (with equal probability)
out of all its possible permutations. As the list is referenced, it is constantly reorganized,
with the aim of approaching the optimal ordering as the reference sequence grows longer.

In this work we derive results for the CS. Our performance measure is the expected
access cost after the mth reference, m 0, denoted byCm CS p̄ .

Let σm denote the order of the list elements after themth reference: σm i is the position
of Ri in the list. Let ProbCS σm j σm i be the probability that R j precedes Ri after the
mth reference, when the list is reorganized by the CS. Thenwe can write the expected access
cost under the CS after the mth reference as

Cm CS p̄ C OPT p̄ ∑
1 i j n

pi p j ProbCS σm j σm i (1)

where
C OPT p̄

n

∑
i 1
ipi 1 ∑

1 i j n
p j (2)
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is the expected access cost under the optimal static arrangement of the list. All the index
pairs i j appear exactly once in this summation.

By the strong Law of Large Numbers [6], for any pi p j ,

lim
m ∞

ProbCS σm j σm i 0

Hence
lim
m ∞

Cm CS p̄ C OPT p̄

What the LLN does not provide is an estimate of the rate of convergence ofCm CS p̄ to its
limit. We would like to compute m, the number of references (= reorganization steps, in the
CS scheme) so thatCm CS p̄ is close enough toC OPT p̄ , for any p̄.

The following lemma formalizes the notion of a stopping point for the reorganization
process under the CS.

Lemma 1: [4] The cost functionCm CS p̄ is monotone decreasing in m for all m 1.

Hence, given some α 0, once we find a number of steps, m , such that

Cm CS p̄ 1 α C OPT p̄ (3)

then for all m m , alsoCm CS p̄ 1 α C OPT p̄ .

The following lemma gives the desired stopping point when the access distribution is
assumed known (at least up to the mapping of probabilities to the keys). In the next section
we use this result to derive a distribution free bound on the stopping point. The lemma is
based on the bound shown in [1]:

ProbCS σm j σm i 1 pi p j 2 m

Lemma 2: [1] For a given rpv p̄ and any 0 α 1, the cost under CS achieves a ratio of
1 α toC OPT p̄ within m steps, where

m min
m 1

m ∑
1 i j n

pi p j 1 pi p j 2 m α 1 ∑
1 i j n

p j (4)

3 A Stopping Point for the CS

The following lemma is the crux of the present result:
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Lemma 3: For 0 α 1 and rpv p̄, such that C OPT p̄ 1 1 nr, Cm CS p̄ ap-
proaches the optimal cost to within a factor 1 α following O α 2n lgn reorganization
steps.

Note: The value r is a parameter of the proof, as we see below. While such an r exists for
any reference distribution, it is noteworthy that for most p̄ the optimal cost is substantially
larger than 2.
Proof: The conditionC OPT p̄ 1 1 nr implies the inequality

∑
1 i j n

p j n r (5)

Define the set of ordered pairs

S i j 1 i j n pi p j αp j (6)

By equation (4) it suffices to find the minimal m 1, such that1

∑
1 i j n

pi p j 1 pi p j 2 m α 1 ∑
i j S

p j ∑
i j S

p j (7)

Instead, we proceed to find the value of m 1 satisfying

∑
1 i j n

pi p j 1 pi p j 2 m α 1 ∑
i j S

p j max ∑
i j S

p j n r (8)

and then convert it to our needs. From relation (5) it follows, that whether ∑ i j S p j n r

or the reverse holds, it is true that

1 ∑
i j S

p j max ∑
i j S

p j n r 1 ∑
i j S

p j 2 ∑
i j S

p j

1 2 ∑
1 i j n

p j

Hence, once we have found an m that satisfies relation (8), that m also satisfies

∑
1 i j n

pi p j 1 pi p j 2 m α 1 2 ∑
1 i j n

p j

and a-fortiori it satisfies

Cm CS p̄ C OPT p̄ 1 2α (9)
1We use dots under indices that take part in the summation, when it may not be obvious.



Shachnai, Hofri: Improved Bounds for the Counter Scheme 5

To obtain m from relation (8) we use the definition (6), dropping on both sides the contri-
butions of pairs not in S (which satisfy the inequality for any m 0) – and also an extra α
on the right-hand side, and are left with the requirement on m:

∑
i j S

pi p j 1 pi p j 2 m αmax ∑
i j S

p j n r (10)

Since max ∑ i j S p j n r is at least n r, we tighten the requirement on m by using from
now on the relation

∑
i j S

pi p j 1 pi p j 2 m αn r (11)

The following notation is useful:
V ∑

i j S
pi (12)

N S and A ∑
i j S

pi p j (13)

We note that
∑
i j S

p j V A (14)

Claim 1: For any i j S

pi p j 2 1
2

1 1 α
pi p j (15)

Proof: Let pi q2p j. For i j S, definition (6) requires that q2 1 α. Compute

pi p j 2

pi p j
pi p j 2 pip j

pi p j
1

2
q 1

which yields inequality (15).

Let d 1 2
1 1 α

. Using relation (15), the left-hand side of relation (11) is bounded
by∑ i j S pi p j 1 d pi p j m. We simplify the task of finding an upper bound form,

by “maximizing” this last expression. Specifically, whileA ∑ i j S pi p j , we consider
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all sets ai j 0 such that ∑ i j S ai j A, and look for one that with any given m 1,
maximizes the function

∑
i j S

ai j 1 dai j m

The maximum is obtained when ai j A
N for all i j S. Thus, it is sufficient to find the

minimal m satisfying

∑
i j S

A
N

1
dA
N

m
αn r (16)

Getting rid of the sum, it remains to resolve the minimal m such that

1
dA
N

m α
nrA

(17)

We can write now an expression for m , but we need first to relate the values of A and N to
the problem parameters, n and α.

Claim 2: For any n 2 and A N as defined in (13), A N α n 1 α .

Proof: Let
Nk i j S : j k and Vk ∑

i k S
pi

That is, for 2 k n, Nk is the size of the subset of ordered pairs in S, in which the smaller
probability is pk. Clearly

N
n

∑
k 1

Nk and V
n

∑
k 1

Vk

In addition, for any i j S, the condition pi p j αp j leads to

pi p j αpi 1 α (18)

Hence,

A
N

n

∑
k 1

∑
i k S

pi pk

n

∑
k 1

Nk
min
1 k n

∑
i k S

piα 1 α

Nk
α

1 α
min
1 k n

Vk
Nk

The order p1 pn implies that if i k S, then for all 1 i i also i k S.
Therefore

Vk
Nk

p1 pNk
Nk
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i.e., the ratio Vk Nk is the average of the Nk largest probabilities. This value is at least 1 n.

The last relation we need:

Claim 3: For any n and p̄, A n.

Proof: Clearly A ∑ i j S pi p j A ∑1 i j n pi p j ∑n
i 1 n 2i 1 pi

which is at most n 1.
Let s α

1 α . Using (17) and the above claims we can bound m by solving the inequality

1
s d
n

m α
nr 1 (19)

and m n
sd ln

nr 1

α provides the desired result, with sd 1 1 2 1 α 1 α .

Referring back to equation (9), we need to replace α by α 2. Setting

m
n r 1 2 α 4 α 2 4 2α

α2
ln
2n
α

(20)

produces the statement of the lemma.

Comment: The role of the parameter r above deserves a discussion. In one sense, it is a mere
technical device: for any value ofC OPT p̄ there is an r such thatC OPT p̄ 1 n r,
and the above proof holds. In fact, for any rpv likely to arise in practice, r 0 satisfies the
condition. However, it is easy to manufacture a sequence of rpvs such thatC OPT p̄ gets
arbitrarily close to 1, and “requires” larger and larger values of r. The simplest example
is p2 1 p1 n r, and all other p j 0 (to avoid trivialities with records that are never
requested, we may assume these pj are all equal to n 2r). This sequence suggests that our
bound is not really “distribution-free” as we would like it to be. The only cases where this
occurs concern such skewed distributions that the entire issue of reorganizing the list to
improve its access time is nearly meaningless. Hence, while this is a real feature of the
reorganization problem, it appears to have no practical significance.

Based on the last lemma and comment, we can state

Theorem 1: For any 0 α 1 and rpv p̄,Cm CS p̄ approaches the optimal cost to within
a factor 1 α followingfinite, precomputable number of reorganization steps,m α p̄ . m
is proportional to n lgn, to α 2, and for vectors p̄ that are nearly concentrated in a single
record, also to log C OPT p̄ 1 1 logn.
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4 Concluding Remarks

The theorem above resolves a discrepancy that was evident in [4], between the bounds
we could prove and the numerical evidence. In fact, experiments for the Zipf function
and geometric distributions showed that the required number of references to organize the
list followed the n logn pattern. Our satisfaction at resolving the issue is marred by the
surprising fact that there appears to be no truly universal, distribution-free bound. Note that
the example provided in the comment above, of the rpvs withC OPT p̄ that approach 1,
indicate that the issue is not with our proof method, but that the difficulty is inherent in the
reorganization process under the counter scheme (or any other method that only moves a
record once it is referenced; when p2 n r, the record R2 is only requested once in every
nr accesses, on the average!).

On the other hand, the difficulty arises in pathological cases only, and for all practical
purposes the expression we proposed for m exhibits the behavior of the needed number of
references to achieve the desired goal. We use the term ‘behavior’ rather than ‘value.’ We
may expect that the given m much exceeds the bound required for all but isolated types
of distributions. In [4] we argue whyCm CS p̄ usually converges quite promptly to values
close toC OPT p̄ , and give some numerical examples.

By way of apologizing for our notation we should mention that although we use the
Big-O notation borrowed from asymptotics, the linear list scheme is only meaningful for
short to moderate lists.
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