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Abstract

Geometric Nonlinear Filtering Theory with Application to the
Maneuvering Aircraft Tracking Problem

by
Robert H. Bishop

A geometric nonlinear filter (GNF) is designed for
application to the problem of tracking a maneuvering aircraft.
The aircraft tracking problem is a state estimation problem
and a state prediction problem. A nonlinear aircraft maneuver
model is proposed for use in the state estimation as well as
the state prediction. This nonlinear model is based on the
so-called coordinated turn and describes planar trajectories.

The GNF design approach involves state transformations
with output injection to transform the nonlinear system model
to a linear form, known as the observer canonical form. For
many nonlinear systems, such as the proposed aircraft maneuver
model, this 1linearizing transformation does not scxist.
Therefore, for the maneuvering aircraft model, a transformation
to an approximate observer canonical form is given.

Utilizing a Lyapunov stability approach, sufficient con-
ditions for stability of the GNF estimation error are derived.

No such conditions exist for the extended Kulman filter (EKF).



The GNF was found to be stable in cases where the EKF was not
stable. The tracking performance of the GNF compares favorably
with the EKF for various levels of measurement noise. However,
the GNF offers a substantial savings in computational time
making it more attractive than the EKF for use in a fire control

computer.
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Chapter 1

Introduction

This thesis deals with the problem of tracking a maneuvering
aircraft. The approach presented here differs significantly
from previous work in the following two areas,

(i) the aircraft maneuver model, and
(ii) the filter design method.

The aircraft maneuver model, which is described in detail
in Chapter 2, is derived by assuming that the aircraft is
executing a coordinated turn. This maneuver model is nonlinear
and the three spatial directions are coupled. 1In previous
work, evasive maneuvers were viewed as a response to a random
noise. The resulting maneuver models were linear and the three
spatial directions were uncoupled. The filter designs asso-
ciated with these linear models generally consisted of three
separate filters, one for each spatial direction. The
individual filters are usually Kalman filters. The develop-
mental history of the aircraft maneuver models and their
associated filters is presented in more detail in the discussion
that follows.

The filter design presented here is geometric and is based
on the so-called Lie algebraic methods. The basic idea is *to
transform the nonlinear maneaver model to a linear form through

the use of nonlinear state transformations so that the well



2

developed linear filtering theory can be utilized. This filter
design technique results in what will be referred to here as
a geometric nonlinear filter (GNF). 1In this thesis the GNF
will be compared to the extended Kalman filter (EKF). Comparison
of any nonlinear filter results with the EKF is inevitable
since the EKF has been used with great success in practical
nonlinear filter design for the last twenty years and filter
designers usually look first to the EKF for a solution to their
nonlinear problem.

The EKF has the advantages that it has stood the test of
time and it works. 1Its disadvantages are that there is no
stability theory associated with it and that it requires an
on-line solution of a matrix Riccati equation, which is com-
putationally slow.

The underlying problem which motivates the problem of
tracking a maneuvering aircraft is that of anti-aircraft gun
fire control. The primary functions of the fire control
computer are to compute an accurate target state vector,
maintain target tracking by aligning the radar boresight, and
estimate target position at projectile arrival time in order
to compute gun pointing angles. Of interest here are the first
two functions, namely, state estimation and short-interval
prediction. The purpose of the short-interval prediction is
to keep the radar boresight moving in the right direction to

insure that tracking is maintained.
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Much effort has been spent over the years developing
algorithms for tracking maneuvering aircraft. This effort has
been summarized in the survey paper by Chang and Tabaczynski
[4]. The historical development of the maneuver models, taken
from Moose [24] et al., is shown in Figure 1.1.

The perturbations can be modelled as zero mean, white
Gaussian disturbances (see Figure 1.1a). In this case, the
aircraft acceleration is modelled by

a(t)=w(t), (1.1)
where w(t) is a white driving function. The strength of the
noise corresponds roughly to the maneuver magnitude. The
filter performance for nonmaneuvering trajectories is severely
degraded.

The perturbations can also be modelled as a correlated
random process (see Figure 1.1b). This was first proposed by
Singer [29], wkerein the aircraft acceleration a(t) is modelled
by

a(t)=-aa(t)+w(t), (1.2)
where a is the reciprocal of the acceleration time constant.

Berg [1] added a term to this acceleration model which he
called an adaptive estimate of the mean target jerk. Berg'’s

model has the form

a(t)=-aa(t)+w(t)+a’, (1.3)
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where a’ is the mean target jerk. The basic assumption leading
to this additional term is that the maneuver is modelled as
a coordinated turn. In a ccordinated turn,
(a) the change in the sum of the acrodynamic and propulsive
accelerations acting on the aircraft is constant;
(b) the aircraft body rate along the roll axis is zero;
(c) the angles of attack and sideslip are zero.

Berg [1] makes the additional assumption that a® is constant

and updated only at discrete times based on the state estimates

at that time.

Target
Dynamics

(b ) \ ~ Torget

KJ\/ \ Dynamics |
) mmm

Dynamics

Target

(d) 7y -

Figure 1.1. The Historical Development of Maneuver Mcdels

The maneuvering target can also be modelled as a random

process whose mean value switches randomly from among a finite
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set of predefined values (see Figure 1.1c). An adaptive filter,
Gue to Moose [23] and Gholson and Moose [9], can then be
utilized.

Finally, Moose et al. [24] combined the maneuver models
in Figures 1.1b and 1l.1c to obtain the model illustrated in
Figure 1.1d and developed an adaptive filter.

The common dencminator in each cf the maneuver models just
described is that the resulting maneuver model is linear.
Also, the acceleration models in the three spatial directions
are uncoupled. The aircraft acceleration a(t), hence the state
noise, are in inertial coordinates. This is awkward since the
state noise is more naturally described in the aircraft body
coordinates. Based on one of the above maneuver models, the
resulting tracking algorithm generally consists of three
independent filters, one for each spatial direction. As
previocusly remarked, it is common to use a Kalman filter, one
for each direction, although other types of filters including
constant gains filters (such as the Wiener filter) have been
used. Thorp [32] introduced the idea of switching between two
Kalman filters in response to a detected maneuver. Other
common filter algorithms include the a-pB and the o- B-vy filters.
These filters generally have little capability to track severely
maneuvering targets and are used in concert with a maneuver
detection scheme (see e.g. Williams and Friedland [36]).

Different variations of the above models include switching
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between several filters in response to maneuvers of varying
strengths. A comparison of these various filters can be found
in Singer and Behnke [30].

The approach taken here is to model the aircraft maneuver
as a coordinated turn. These assumptions lead to a set of
nonlinear differential equations describing the maneuver. The
use of these equations to track the aircraft trajectory was
suggested by Contraves [5] as a more sophisticated alternative
to linear models just described. The resulting filter is
nonlinear and the three spatial disturbances are highly coupled.
Perturbations to this maneuver model are modelled in the
aircraft body frame as correlated random noise.

The coordinated turn model is also utilized for the
short-term prediction. Since the coordinated turn model
describes planar <*rajectorics, the number of first-order
differential equations that must be integrated is reduced from
nine to four, thus reducing the computational burden.

Central to the GNF approach is the transformation of the
nonlinear system to a linear form, known as the observer
canonical form, through the use of a nonlinear state (possibly
including the output) transformation and output feedback. The
filter design is simplified in the observer canonical form
coordinates since the wealth of linear theory is then available.

This approach has recently attracted much attention (Bestle
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and Zeitz (2], Frezza et al. [7], Krener [16], Krener and
Isidori [17], Krener and Respondek [19], Phelps and Krener
[27], and Walcott et al. [34]).

Bestle and Zeitz [2] show how a GNF design can be accom-
plished using the partial derivatives of the transformation
to observer canonical form without actually computing the
transformation. These derivatives, which are crucial in this
method, can be computed in a straight-forward manner. Bestle
and Zeitz [2] assume that a ‘Eransformation to observer canonical
form with output injection exists, and then based on a classical
local linearization of the estimation error equation, they
show how, using the partial derivatives, a nonlinear gain
vector which insures asymptotic stability of the estimation
error can be obtained. State and measurement noise and output
coordinate changes are not considered.

Krener [16] developed the asymptotic GNF technique. This
technique accounts for state and measurement noise and results
in a solution very similar in nature to the Kalman filter,
i.e. the optimal gains are computed off-line. Krener [16]
introduces the modified observer canonical form. Although it
is desirable to have a system in observer canonical form, this
is not always possible. The modified observer canonical form
allows the injection term to include states that are not
measured directly but that can estimated quickly and accurately.
It applies when the state and measurement noises are small and

when the state vector can be divided into fast and slow states.
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The fast/slow terminology is derived from the respective time
constants of the dynamics of the estimation errors. With this
new canonical form, the GNF approach can then be applied to
a larger family of nonlinear systems.

Frezza et al. [7] applied the asymptotic GNF technique to
a one-dimensional tracking problem with success. The tracking
performance compared favorably to the EKF but at a substantial
savings in computational time.

The question of the existence of transformations to observer
canonical form has been addressed by Krener and Isidori [17]
and Krener and Respondek [19]. Krener and Isidori [17] con-
sidered only the scalar output case, no inputs, and no output
coordinate changes. Krener and Respondek [19] considered the
multi-output case with inputs and allowed for output coordinate
changes as well as state coordinate changes. As previously
remarked, not all nonlinear systems can be transformed into
observer canonical form. Determining the existence of such
transformations generally involves transforming the given
nonlinear system to yet another canonical form, the so-called
observable canonical form. This canonical form is not of
direct use in constructing estimators. However, as shown in
Krener and Respondek [19], it is very useful in determining
the existence of transformations to observer canonical form.
Using the observable canonical form, Phelps and Krener [27)]
give necessary conditions for the existence of transformations

and algorithms to compute the transformation to observer form
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without the usual Lie bracket calculations. The algorithms
were implemented in Macsyma (a symbolic manipulation software
package) .

The coordinated turn model (on which the GNF design proposed
in this thesis is based) cannot be transformed into observer
canonical form. It is possible to transform the model into
an approximate observer canonical form, thus making the GNF
approach applicable to the aircraft tracking problem.

A GNF and an EKF are designed and evaluated in this thesis.
Sufficient conditions for stability of the GNF are given. No
such stability conditions exist for the EKF. It will be shown
that the GNF is stable for a much wider range of initial
conditions than the EKF. Also, the GNF requires less compu-
tational time, yet tracks at least as well as the EKF. This
performance evaluation is done utilizing both simulated
aircraft trajectories as well as "real-world" trajectories.

This thesis is organized as follows: Chapter 2 presents
the darivation of the aircraft maneuver model. Chapter 3
describes the GNF design procedure. Chapter 4 describes the
transformation of the aircraft maneuver model to approximate
observer canonical form. The GNF design for the aircraft
tracking problem is in Chapter 5. The deterministic and
stochastic stability analyses of the GNF is presented in Chapter
6. Chapter 7 presents the EKF which will be used for comparison
purposes. The results and conclusions are presented in Chapters

8 and 9, respectively.
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Chapter 2

The Aircraft Maneuver Model

2.1 Introduction

The motion of a rigid aircraft travelling through the
atmosphere is described by a set of nonlinear, coupled dif-
ferential equations. These equations can be written in the
form

X =f(x)+u,
y=h(x)+u,.

The (nonlinear) system dynamics are given by f(x) and the
(nonlinear) measurements are given by h(x). The term u, is
the uncertainty in the system dynamics and is referred to as
the state uncertainty. The term u, is the measurement
uncertainty. The purpose of this chapter is to derive a
maneuvering aircraft model which describes the aircraft tra-
jectories more accurately than the current state of the art
maneuver models described in the introduction.

A general mathematical model of the aircraft maneuver
consists of both dynamic and kinematic equations (see Etkin
[(6]), where the forces and torques acting on the aircraft are
complex functions of the aircraft shape and its motion. The
aerodynamic forces and torques are known only approximately.
In addition, the pilot can alter the forces and torques acting

on the aircraft. To reduce the complexity of the problem,
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appropriate assumptions are made resulting in a simpler and
yet realistic description of the aircraft motion. In the case
of aircraft targets, it is the resulting aircraft motion in
the atmosphere that should be modelled. The response of the
aircraft to pilot and environmental inputs is not modelled
(Singer and Behnke [30]).

An aircraft has many different operational modes: take-off
and landings, steady-flight, turns, and evasive maneuvers, to
name but a few. Since simplifying assumptions do not generally
apply for all the different operational modes, it is necessary
to restrict attention to one mode at a time. Of interest here
are evasive maneuvers.

The purpose of this section is to present the aircraft
maneuver model used in this thesis. The assumptions which
lead to the maneuver model are consistent with the coordinated
turn of a fixed-wing aircraft. The coordinated turn assumptions
lead to a set of nonlinear, coupled differential equations
which describe the aircraft trajectory. The derivation of the
maneuver model is presented in Section 2.2. The trajectories
described by the model have interesting geometric properties,
as discussed in Sections 2.3 and 2.4. The model uncertainties
are discussed in Section 2.5. The definition of the state
vector is presented in Section 2.6 and the question of
observability is discussed in Section 2.7. A description of

all pertinent reference frames is given in Appendix A.



12

2.2 The Coordinated Turn
The aircraft maneuver is modelled here as a coordinated
turn. The assumptions leading to a coordinated turn maneuver
are
(1) the change in the aerodynamic lift and thrust-drag
accelerations (with respect to the body reference
frame) is zero;
(2) the aircraft body rate about the roll axis is zero;
(3) ef=ey (see Appendix a).
The coordinated turn assumptions reduce the problem of modelling
the aircraft motion to a kinematics problem. There is no need
to model the pilot response and also no need to try to estimate
the aircraft angular attitude.
Letting a equal the sum of the aerodynamic and propulsive
accelerations acting on the aircraft, by assumption (1)
a,=0. (2.1)
It is assumed that the aerodynamic accelerations include only
lift along e3 and drag along e? . Aerodynamic accelerations

along e3 are assumed to be zero. Assumption (2) implies that
¢=w®-e}=0, (2.2)
and assumption (3) implies that the angles of attack and of
sideslip are zero (see Figure A3, Appendix A).
The aircraft angular velocity vector, w® is computed by
utilizing Poisson’s formulas (Miele [22]) :

él=wbxe?, i=1,2,3.
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Forming the cross-product e?xé? and using the identity
ViX(VaXV3)=(V,; - V3)V,o=(V,°V,) Vv,
the formula for w?® is,
w’=(w?-el)eP+ePxe?, i=1,2,3. (2.3)
B& assumption (2), (2.3) reduces to

w’=efxé} (2.4)

for the specific case where i=1. Using assumption (3) it
follows that

e =rg/|ig]. (2.5)
(2.5) is differentiated with respect to time, and together

with e}-é}=C (Miele [22]), it follows that

Fo  (Feof
ér;ﬁ’_f_(:)fr (2.6)

[fel \[fel®
Substituting equations (2.5) and (2.6) into equation (2.4)

yields

2.7)

With respect to the inertial reference frame the accelerations

acting on the aircraft are given by
fg=ag+g; (2.8)
where g; is the constant gravity acceleration in the inertial

reference frame. With respect to the body reference frame

(2.8) becomes

Les(Fe—ge)=Lgag=as. (2.9)
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Differentiating (2.9), using the fact that
LesLpeve=-wiXve Vv,

using assumption (1) and (2.7) yields the kinematic equaticn

of motion

w _TeXFe_

rﬁwxm—g:)- {2.10a)
A condition on the aircraft trajectory is that the velocity,
|tel , mﬁst always be different from zero.

In this thesis the radar measurement set is taken to be
the aircraft inertial position vector r; in Cartesian coor-
dinates (Figure Al, Appendix A). This leads to a linear
measurement model. It is also common to have as a measurement
set the spherical coordinates of range, elevation and azimuth
angles which leads to a nonlinear measurement model. For the
particular application studied here, the radar measurements
that were available for the actual aircraft trajectories in
the data base (Appendix F) are in inertial Cartesian coordi-
nates. Therefore, for the measurement set used here, the
(noise-free) measurement equation is

Y =Tg. (2.10b)
2.3 Geometric Interpretation

An aircraft trajectory through the atmosphere can be viewed
as an arbitrary speed space curve. The aircraft velocity is
assumed to be nonzero, hence the curve r is regular. See

O’Neill [26] for more details on space curves.
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THEOREM 2.1

Let r be a regular curve in R®. Then

ef=i/]r],

eb=(Fxi)/|Fxrl,

ei=e}xef,

x=|exF|/l#]®,and

T=(Fxi)-F/]FxF|>.
The scalar x is the curvature and the scalar t is the torsion.
If x=0the curve is a straight line; if t=0 the curve is planar.
e! is the unit tangent vector field, ef is the binormal vector
field and e; is the principal normal vector field. (ef, ef,ef)
is the Frenet frame field on r , (see Figure 2.1). The Frenet
frame field will be referred to here as the Frenet reference
frame.

Computing the torsion, t , using (2.10) and the formula in
Theorem 2.1 yields
t=0.

Thus, the coordinated turn maneuver model describes planar
trajectories in a maneuver plane (see Figure 2.1). The cur-
vature, on the other hand, is in general not zero. This points
out a major difference between the coordinated turn maneuver
model proposed here and the previous maneuver models described
in Chapter 1. Those maneuver models are characterized by

having zero torsion and zero curvature (i.e. straight line

paths).



16

The maneuver reference frame can be taken to be the Frenet

reference frame at t, .

Therefore, from Theorem 2.1,

the

transformation matrix from the maneuver reference frame to the

inertial

e

drag+thrust

velocity normat to
plane aircraft path r(t)
F B eF
€€ 2

8

&

normal to

maneuver plane

Figure 2.1. The Maneuver Plane Geometry

reference frame is the constant matrix

L _(f EXF fx(fxf))\
MOATED Exe]l [ex(Exi)l /..,

(2.11)

The transformation from the mancuver reference frame to the

Frenet reference frame is

cos®@ O -sinb
Lew= 0 1 0
sin®@ O cos®

(2.12)
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6 is the angle of the velocity vector measured from e} (see

Figure 2.1). By choosing the maneuver reference frame to be
the Frenet reference frame at t,, it follows that 6 is zero
at t=t,. From Theorem 2.1, it follows that the transformation
from the Frenet reference frame to the inertial reference frame

is

r FXFr  FX(FXr) )

I¥] 2.1
l&] lexel |ex(Fxi)] (2.13)

Lge=Lgy L;ru = (

The transformation matrix from the body reference frame to the

inertial reference frame is

LEB

P (F-ge)XP  EX((F-ge)XP) ) (2.14)

AT [G-goxt] [ix((F-gaxD)]
and the transformation from the body reference frama to the
Frenet reference frame is

1 0 0
Leg=[ O cos¢ -sind |. (2.15)
0 sin¢ cosé

(2.15) follows from (2.13) and (2.14). ¢ is the aircraft roll
angle (measured between e and ef) and is assumed to be a
constant in the coordinated turn model.
2.4 Maneuver Plane Equations

Consider the situation in the maneuver plane as shown in
Figure 2.1. r, and v, denotes the position and velocity,
respeccively, of the center of mass (CM). The velocity of the

aircraft in the maneuver plane is
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cosO O sinf|/v

Vop=Fg= 0 1 0 o1, (2.16)
-sin® O cosH (0]

where v=|f,|. Taking the derivative of (2.16) yvields the

aircraft acceleration

cos6 O sin®l/ v
fn=| 0 1 o0 o |, (2.17)
-sin® O cos® |\ -v6
and taking the derivative of (2.17) yields the aircraft jerk,
cos@ O sin® v-vé?
Ty= 0 1 0 0 . (2.18)
-sin® O cos® [\ -2vO-vd

Using (2.16), (2.17) and (2.7) the angular acceleration w is

0
w=| 6| (2.19)
0

Omx
gm=LMEgE= gmy
dmz

Let

be the constant gravity acceleration. Substituting (2.17),

(2.18) and (2.19) into (2.10a) yields
V =-8(gn.sin0+g,,cos0), and (2.20a)
v8+v=-0(g,,cos8-g,,sind). (2.20b)
Integrating equation (2.20) yields
V=-g,,5in6+g,,cos6+c,,and (2.21a)

vO=-g,,cos0-g,,sinb+c,. (2.21b)
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The constant ¢, is the sum of the thrust and drag accelerations

and as a consequence of the coordinated turn assumptions it
is constant. The constant c, is the lift acceleration times

the cosine of the roll angle and is also constant. Hence it

follcws that

¢,=0,and (2.22a)

€,=0. (2.22b)
The aircraft trajectory in the maneuver plane is described by
(2.16), (2.21) and (2.22). Once a state estimate (i.e. position,
velocity and acceleration) is available, the four equations
(2.16) and (2.21) can be used to predict the state forward.
Thus, the number of first-order differential equations needed
for the prediction is reduced from nine to four. This prediction
scheme was used successfully by Berg [1].
2.5 Model Uncertainties

The coordinated turn maneuver model was developed on the
assumptions that the time-variation of the roll angle is zero
and that the time-variation of the aerodynamic and propulsive
accelerations is zero. The state uncertainties in the model
follow directly from these assumptions.

The uncertainty in the time-variation of the aerodynamic
and propulsive accelerations is naturally modelled in the
aircraft body reference frame (under the assumption that the
coordinated turn maneuver model assumption (3) is valid, i.e.

ef=ey). From (2.1)



ag=0.
The uncertainty in the aerodynamic and thrust accelerations
is modelled by assuming that the time-variation in a, is random.
Thus, the uncertainty is modelled by

dp=u, (2.23)
where u, is a random process. In practice, it has been found

that (2.23) is a good model for filter design purposes, even
though the time-variation may actually be deterministic in

nature (Gelb [8]). u, has the form

where u,, is the uncertainty in the thrust-drag direction and

u,3 is the uncertainty in the 1lift direction. With the
uncertainty in the body reference frame given by u, , it is
given in the inertial reference frame by Lgu, .
The uncertainty in the time-variation of the roll angle
is modelled similarly. From (2.2)
b=0.
The roll rate uncertainty is modelled by assuming that the

time-variation in ¢ is random,

¢=u,, (2.24)
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where u, is a random process. It follows from (2.3) that the

random component of the angular velocity vector w® is u,e?.
The uncertainty with respect to the inertial reference frame

due to the roll rate uncertainty is
u,=ﬁ,e?X(f-gE)=—E.Ie?x(f—gz)leg.
Define
u,=-u,|(F-gg)xe?].
Notice that u, is just a random process scaled by the magnitude

of the aerodynamic accelerations. Thus, u, will be modelled
as a random process where strength (characterized by the
covariance matrix) has been adjusted to account for the maximum
expected acceleration magnitudes. Although this is a (con-
servative) approximation, it will have a negligible effect on
the final results after the "filter tuning” is complete. So,
the roll rate uncertainty can be written as

0
u,=Lg| u, | (2.25)
0

Therefore, the total uncertainty (with respect to the inertial

reference frame) is given by

u,,
Legug=Leg| u, |. (2.26)
ua:i

The aircraft maneuver model, including the uncertainties, is

Xr

r

-

F=——X(F-gg)*Lyu,. (2.27a)

NI
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The measurement uncertainties, u, , add directly to the
measurements yielding
Y=Tg+U,. (2.27b)
Up to this point, the uncertainty u; has been described
only as a randocm process. It can be modelled as a white
gaussian stochastic process or as a gauss-markov stochastic
process, for example. Descriptions of other possible models
can be found in any standard text on stochastic processes,
such as Jazwinski [12] and Maybeck [21]. The model chosen
here is the first-order gauss-markov stochastic process. The
process is modelled by the first-order linear matrix differ-
ential equation
Ug==-A Ug+wg,
where

-a, 0 0
A,=| 0 -a, O
0 0 -q

The a,’s are the reciprocals of the markov process time-constants

and wy is a white gaussian stochastic process with

2a,06? 0 0
E(we(t)wg(t))=| O 2a,65 0 |[6(t-1),
0 0 2a,0?

where
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E(u,,(Du,,(v))=0i6(t~1),
E(u,(t)u,(t))=036(t- 1),
E(u(tug(T))=038(t-1).

The measurement uncertainties, u,(t) , are modelled as white

gaussian stochastic processes with
E(u,(tug(T))=0216(t-1).

2.6 The Maneuver Model

The objective is to write the aircraft maneuver model

(2.27) in the form

x=f(x)+u, (2.28a)
y=h(x)+u,.

To accomplish this, first define the state vector x as

X4-3=T;,

X4i-2 =T,

Xa4i-) =T,

X4 = Ug; fori=1,2,3.
Notice that the number of states is twelve. This is an increase
of three over the number of states needed to represent the
maneuver model (2.27a) when the state noise is modelled as a
white gaussian stochastic process. This procedure of state
vector augmentation results from modelling the uncertainty as
a first-order markov proccess. Higher order markov process
models will increase the number of states even further.

With the above definition of the state vector it follows

that the nonlinear dynamics are
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X2
X3
i+l X+l pXg+ 115X,
—a, Xy
Xe
X7
fo+ly X+ 1Xe+ 155X,
TQxXg
X10

X1
fatlaXe+13Xg+ 13X,

—a3X;

where the l,s are the (i,j)th elements of L;; and the functions

f; are given by

f, \ (xsxlo'xzxn)(xn'g)'(xzx7_x3x5)x7
f, =A— (X2X7=X3X)X3—(XeX =X, X,6)(X;,—g) |,
fs l (XX 1= X7X10)X7 = (X3X 0= XX ;)X

where
Al=xZ+xZ+x2,.

The (linear) measurements are

X,

h(x)=| xs

Xo

The state and measurement noise covariance matrices are
E[u,(t)u,(t)]=% 8(t-71)

and

Efu, (t)u] (t))=0216(t- 1),

where ¥=(Z,,,%,,,%5) is a block diagonal matrix with
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2 0 O 0

0 62 0 0
;= 2

0 0 ¢ 0

0 0 0 2a,0?

0,05, and ¢? are nominally zero but can be used as "tuning"

parameters to alter the filter performance. The initial
conditions x(0) are modelled as normally distributed random
variabies with
E[(x(0)~X(0))(x(0)~X(0))"]=P,(0)
where x(0)=E[x(0)] . If u,=0 and u,=0 for all t, then the
system is autonomous, and
% =f(x) (2.28b)
y =h(x).
2.7 Observability
At this point, it is necessary to check the observability
of the aircraft maneuver model. If it is not observable, it
will not be possible to observe all the states using the
aircraft position as the measurements. Observability of
nonlinear systems can be determined using the
DEFINITION (Krener and Respondek [19] : The system
x = f(x)
y =h(x)
is observable at x, if there exists a neighborhood, U , of x,

and p-tuple of integers (1,,1,,...,1;) such that
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L ©; ]
where

[ LY (dh))]
L¢ (dh))

| L7 (dh,)
is nonsingular at each xeU and

L+1,%..+1,=n.

The definition of the Lie derivative utilized in the above
definition can be found in Appendix B. The integers (1,,l,,...,1,)
are called the observability indices at x,. Several other
definitions of observability have appeared in the literature
(see e.g. Hermann and Krener [10] and Kou, et al. [15]).
Computing the determinant of the observability matrix
associated with the aircraft maneuver model yields

detO=1.
Hence, the aircraft maneuver model is observable for any X, .

The observability indices are 1,=4,1,=4,1;=4 .
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Chapter 3

Geometric Nonlinear Filter (GNF) Design

Suppose that the nonlinear system (2.28a) is given.
Concidered in this thesis are nonlinear filters of the form
(Kou et al. [14] and Thau [31)])

%= f(X)+ K (X)(y - h(x)) 3.1)
associated with the nonlinear system (2.28a).

The objective of the filter is to provide good estimates
of the state of the system at the current time. This objective
is met if K'(%X) is properly computed. Of utmost importance is
the stability of the estimation error. In other words, the
estimated state approaches the actual state as time increases.
Once stability is established, other issues such as tracking
performance (i.e. time convergence, error bounds, etc.) can
be addressed.

One possible solution to the nonlinear estimation problem
is provided by the extended Kalman filter (EKF). 1In the EKF,
K*(%) depends on the on-line solution of a state-dependent
matrix Riccati equation of dimension equal to the number of
states. The EKF does not guarantee stability and, in general,
is not optimal. However, the design process is straight-forward
and similar to the widely used Kalman filter design (which is

valid in the linear case). The filter gain computations are
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highly algorithmic, lending themselves to computer implemen-
tation, although if the number of states is large the compu-
tational burden (i.e. CPU time) is very high.

In the GNF design proposed here, K°(x) is computed to
guarantee stability of the estimation error. As in the EKF,
the GNF g2ins are state-dependent, although the state dependency
manifests itself through algebraic manipulations, such as
additions, multiplications, etc., rather than through the
on-line integration of a state dependent matrix differential
equation. The GNF design lends itself to computer implemen-
tation and the computational burden is very low relative to
the EKF.

The GNF design process is comprised of the following four
steps.

STEP 1: The first step in the GNF design process is to try to
find a (bijective C°) transformation T:R"-R" which transforms

the state x to z :

x=T(z) (3.2)
in such a way that the systen

X =f(x)

y =h(x)
is transformed into observer canonical form

z2=Az+b(Cz)

y=Cz.
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The main characteristics of the observer canonical form are
that the output is linear in the state and that the (nonlinear)
output injection term depends only on states that are measured.
The advantage of this form over the original rnonlinear form
is that the process of computing the filter gains to insure
stability of the estimation error is simplified. When a
transformation to observer canonical form exists, a general
theory exists for designing a stable filter. This theory is
presented in Appendix B.

It appears that the family of nonlinear systems which can
be brought to observer canonical form through use of a nonlinear
transformation with output injection is not large. This fact
is discussed in more detail in Chapter 4. The aircraft maneuver
model presented in Chapter 2 cannot be transformed to observer
canonical form. It can, however, be transformed to an
approximate observer canonical form as shown in the next
chapter.

When the transformation that takes (2.28b) to approximate
observer canonical form is applied to the actual system model
(2.28a), the state noise is also transformed. The transformed

state noise is given by

_(aT !
u. oz u,.

Since u, is modelled as a white gaussian process, then in

general, u, is not a white gaussian process. However, the

transformation proposed here (and presented in the next chapter)
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has the property that the transformed state noise remains a
white gaussian stochastic process. Similar problems arise with
the measurement noise when output transformations zre con-
sidared.

When considering transformations of the stochastic model,
all differentials and integrals are defined in the sense of
Stratonavich (see Jazwinski [121, for example).

Imbedded in the state transformztion (3.2) is a (possible)
transformation of the output. 1In general, nonlinear trans-
formations of the output present difficulties in the estimation
of the states of a system in the presence of measurement noise
modelled as a white gaussian stochastic process. This is
because the output transformation transforms the measurement
noise as well as the output, and usually, a white gaussian
stochastic process in not transformed to a white gaussian
stochastic process. For the aircraft maneuver model, the
outputs (radar measurements of the aircraft position in the
inertial reference frame} will be transformed by a linear
transformation represented by an orthogonal matrix. The
orthogonal matrix coupled with the fact that the variance of
the measurement noise is equal in all three inertial directions
results in transforming the white gaussian stochastic process
measurement noise model to a white gaussian stochastic process.

This is described in detail the next chapter.
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Consider a transformation, T, of the form (3.2) such that
(2.28b) is transformed to approximate observer canonical
coordinates. Utilizing (3.2) the filter equation (3.1) is
transformed into

2=A2+b(2)+J(2) 'K (2)L ' (y-C2),

where

4 z=2

is the Jacobian of the transformation and L is the linear
transformation of the output described in the previous para-
graph. Since the measured variables are also state variables,
the linear output transformation is imbedded in T. This is
because the measured state variables are related to the
transformed measured state variables through L , and hence it
follows that the partial derivative of the measured state
variables with respect to the transformed state variables is
just L . Therefore, the elements of the matrix L are also
elements of the matrix J(z) .

Define the time-varying, nonlinear gain
K(2):=J(2) 'K (2)L", (3.3)
and the approximate observer canonical form estimation error
e,:=z2-2z. (3.4)
Then the estimation error (3.4) is described by the differential
equation

é.=(A-K(2)C)e,+b(2)-b(z)+K(2)u,-u,. (3.5)
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Linearizing b(z) about the estimated trajectory z using a Taylor

series expansion yields

b(z)=b(z)-B(2)e,-b(z,2), (3.6)
where
3b
B(z)= E

z-2
Substituting (3.6) into (3.5) yields

éz=A'(2)e,+5(z,2)+K(i)u,,,—u,, (3.7)
where

A'(2)=A-K(2)C+B(2).
The goal of the GNF design is to compute K(z) such that the
estimation error described by (3 .7) is stable. The computation
of a transformation to approximate observer canonical form for
the aircraft maneuver model is the topic of Chapter 4. The
estimation error equation (3.7) is studied in detail in Chapters
5 and 6.
8TEP 2: The second step is to compute K(2) such that the desired
eigenvalues of A'(2) are achieved for all t2t,. It will be
shown that it is possible, under certain conditions, to compute
K(z) such that
A'(2)=Q'(2)(A-K,C)Q(2),

where K, is specified to achieve the desired eigenvalues.

Clearly A°(2) and A-K,C have the same eigenvalues. The con-
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struction of such K(z) is presented in Chapter 5. It is a
characteristic of time-varying systems that asymptotic
stability of the equilibrium point 0 of
é.=A(2)e,
is not insured by the fact that all the eigenvalues of A'(2)

have negative real parts. Therefore the time variation of
A’(2) must be accounted for in the stability analysis. This
is discussed in detail in Chapter 6.
8TEP 3: This step involves the stability analysis. The gain
K(z) must be chosen so that the estimation error approaches
zero asymptotically when the nonlinear term b(z,2) is accounted
for. The sufficient conditions to guarantee asymptotic sta-
bility in the presence of nonzero b(z,z) are obtained through
the application of Lyapunov’s indirect method. The effect of
the random disturbances u, and u, on the asymptotic stability
must be quantified. This is accomplished using the stochastic
Lyapunov function approach. The stability analysis is presented
in Chapter 6.
S8TEP 4: The final step in the design process is to compute
K*(2) via

K*(2)=J(2)¥{2)L.
Stability of e. implies stability of e, . To see this consider

the following theorem taken from Munkres [25],
THEOREM 3.1
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The function T:R"-R" is continuous if and only if for every

convergent sequence z,-z in R®" , the sequence T(z,) converges

to T(z) .
TeC” is a continuous function. So,
20z = T(2)2T(z) 2 X-x
since %=T(2) and x=T(z). -

These four design steps are discussed in detail in the following

chapters.
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Chapter 4

Approximate Observer Canonical Form

4.1 Introduction
The first step in the GNF design process is to find a

(bijective C° ) transformation T:R®"-R" which transforms the
state x to z:

x=T(z)
in such a way that the system

x = f(x)

y=h(x)
is transformed into observer canonical form

Z2=Az+b(Cz)
y=Cz.

The main characteristics of the observer canonical form are
that the measurements are linear in the state and that the
(nonlinear) output injection term depends only on states that
are measured. In this case, the partial derivative matrix,
or Jacobian, of the transformation can be expressed in terms
of a single vector which is obtained directly from the
observability matrix (see Appendix B). This result is due to
Bestle and Zeitz [2]. Integrating the Jacobian matrix yields,
in principle, the desired transformation T. The existence of
solutions has been studied by Krener and Isidori [17], Krener

and Respondek [19], and Hunt, et al. [11]. It appears that
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the family of nonlinear systems which can be brought to observer
canonical form through use of a nonlinear transfcrmation with
output injection is not large.

To enlarge the family of nonlinear systems to which this
geometric method might be applied when a transformation as
described above does not exist, two other canonical forms
have been introduced: the modified observer canonical and the
approximate observer canonical forms. Both canonical forms
are given by

z=Az+b(2) (4.2)
y=Cz.

In this case the (nonlinear) output injection term b(z) can
be a function of states that cannot be measured. Since any
nonlinear system of the form (4.1) can be transformed to the
form (4.2), there is no advantage of the modified or approximate
observer canonical f£cra over the original nonlinear form unless
b(z)has certain properties. In the modified observer canonical
form (Krener [16] and Frezza, et al. [7]) the output injection
term is a function ¢ states that are not measured but can be
estimated quickly and accurately. For example, if the measured
states are position and the output injection term contains
states which are the time-derivative of the position (i.e. the
velocity), then the transformation is useful. This was dem-
onstrated in the one-dimensional tracking problem as reported
in Bishop and Antoulas [3] and Frezza, et al. [7]. In the

one-dimensional tracking problem, the states are position,
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velocity and ballistic coefficient. The output injection term
is a function of velocity which is the time~derivative of the
position measurement. If the output injection term was a
function of the kallistic coefficient (which is not a time-
derivative of the measured position), then the tracking results
would not be good, hence the transformation is not useful.
In the approximate observer canonical form (Krener, et al.
[18]), the output injection term contains states that deviate
only slightly from nominal values. This form is useful when
considering the problem of high-order approximations of non-
linear systems.

The aircraft maneuver model, presented in Chapter 2, cannot
be transformed to observer canonical form. However, it can
be transformed to approximate observer canonical form in which
b(z) is approximately zero for small turn rates.

The nonlinear transformations to modified and approximate
observer canonical form are usually not unique. Recall that
when a transformation to cobserver canonical form exists, it
can be obtained, in principle, by integrating a Jacobian matrix
which is itself a function of one vector obtained from the
observability matrix. This is a straight forward calculation
of the transformation. However, when a transformation to
observer canonical form does not exist, the transformation to
modified or approximate canonical form must be obtained by
other methods. These methods dep.nd on the given problem and

no general theory is available. Krener et al. [18] have
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reported results, applicable to the problem of high order
approximations of nonlinear systems, which lead to a straight
forward calculation of the transformation to approximate
canonical form for certain nonlinear systems. Regardless of
hiow the transformation is obtained, for the estimation problem
the ultimate test of the chosen transformation is the tracking
performance and stability characteristics.

As previously mentioned, the maneuvering aircraft model
cannot be brought to observer canonical form. This follows
directly from the fact the nonlinear system does not satisfy
the necessary conditions for transformation of observer
canonical form as stated in Theorem 4 (page 203) of Krener and
Respondek [19]. More specifically, the mixed partial conditions
of Remark 4.2 (page 204) are not satisfied. Therefore, the
GNF design presented in this thesis will rely on a transformation
to approximate observer canonical form. The particular
transformation, T, used in the sequel is presented in the next
section.

4.2 Transformation

For the aircraft maneuver model (2,28a), the transformation
to approximate observer canonical form is not unique. The
transformation, T, proposed here is based on the fact that the
maneuver model describes planar trajectories. The nonlinear
output injection term, b(z), (described in detail later in this
section) which results from the application of T is a function

of the angle 6. Recall that 6 is the angle in the maneuver
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plane of the aircraft velocity vector and the maneuver plane
reference frame (see Figure 2.1, Chapter 2). One important
characteristic of b(z) is that when 6=0, b(z)=0 and (4.2) is
exactly linear and in observer canonical form. For small turn
rates, 6~0, it follows that b(z)~0 and (4.2) is approximately
in observer canonical form, hence the label approximate observer
canonical form.

The nonlinear transformation which transforms the aircraft
maneuver model to approximate observer canonical form is

x=T(z) (4.3)

where

X4i-3=1N;,Z; +(N;,€08¢+ n;38ind)zs+(~n;,sind + n3cosé)z,

X4i-2=N;1Z+(N;5,€050+N;38ind)z,+(-n;,Ssind + n;3c08¢)z,

N;1Z,+N;3(2,0C0S + Z4Sin¢d)
X1 = Z3-g9,)+

\/Z§+ (Z\0c0s0 +Z¢sind)?

(nissin¢22- n“Sin ¢(Z|°COS¢+Z6Sin¢)

JzZ+(Z10c086 +Z4sin$)?

+ nizcos¢)(z7— gz)-

(niacosv&zz- Nn;;cos$(z,;0c05¢ +2z,siné)

\/zg* (z10c080+2Z¢sind)?

+ niZSin¢)(2n -ds)

X4 =2Zg

where i=1,2,3 and ¢ is the aircraft roll angle (assumed constant

in the maneuver mcdel) and the constant terms n;’s are the

(i,j)th elements of L;, .

Remarks 1) The transformation (4.3) is a diffeomorphism.
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2) The requirement that the aircraft velocity be

non-zero implies that yz2+(z,0cos¢+zesing)? is non-
zero.
3) Ixi=lz] .
||
The transformation (4.3) takes the aircraft maneuver model
to approximate observer canonical form
z=Az+b(2) (4.4)
y=Cz
where A and C are block diagonal matrices A = diag (A, Az,

A33) and C = diag (C“, sz, 033) with

- O O

and C;=[1 O O O] for i=1,2,3.

© O OO0
O OO~
© O~ O

-a.

The non-zero elements of the output injection term are
bz(2)=(z3-9,)(cos0-1)-((z,-g,)sind+(z,,~g;)cosd)sinb,
be(z)=(z3-g,)sin¢sin®+((z,-g,)sin¢+(z,, —g;)cosd)sind(cosd-1),
b,o(z)=(z5-g,)cos¢sin®+((z, - G,)sind+(z,, - g;)cosd)cosd(cosb-1),

where

Z . —(2Z10Cc080+24sind)
cosO= sinf =

\/224-(2 : 2’ 2 : 2’
3 10COSP+ Z4sind) Z3+(Z10C0S0+Z5Sind)

and
g,=N39J, g>=(Nngco8¢+ns;sing)g,and g;=(njzcos¢-n,,sing)g.

It is easy to see from b(z) that when 6=0, b(z)=0 .
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An important characteristic of the transformation (4.3)

is with regard to the state uncertainties described in Section

2.5. As discussed in Section 4.2, state transformations

transform the state noise and output transformations transform

the measurement noise. The effect of the transformation (4.3)
on the uncertainties is now considered.

Consider the measurement uncertainty first. The state

va-iables (z1,24,27) and (x,,x4,%x7;) are related through the

constant, orthogonal matrix

iy, Ny N3y
L=| n,,cos¢+n,3sind n,,cosd+n,,sind N;,co8¢+nysind
N,3C08¢~N,Sin$¢ n,3co8d-n,,sing nycosd-n,,sing

The covariance of the measurement noise u, (as defined in
Section 4.2) is
E(u,(t)ui(t))6(t-T)=0216(t-T).

After applying the transformation, the covariance of the

measurement noise is
E[(Lug(t))(Lu,(t)) 1=E[Lu,(t)u(T)LT].
Since the matrix L is constant and non-random, it follows that
E[Lu,(t)un,(T)LT]=L[o,I]LT8(t-T)=0_I6(t-T). (4.5)
Remarks 1) In generai, even though orthogonal matrix L is
constant, if it depends on stochastic variables then
(4.5) is an approximation. It is however an

approximation commonly used in tracking problems

(in practice).
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2) The GNF filter presented in the sequel does not
require any explicit transformation of the mea-
surements to the maneuver plane, as the state
estimation is carried out in the original inertial
reference frame. This is just a step implicit in
the design of the gain K.

m

This demonstrates the fact that in the special case of a

diagonal noise covariance matrix with equal values on *the

diagonal, transforming the output using a constant, orthogonal

matrix does not affect the covariance matrix. Thus, the cutput

transformation proposed here transforms the white, gaussian

stochastic process to a white, gaussian stochastic process
with equal covariance matrices.

The transformation (4.3) also transforms the state noise

u, in a desirable fashion. The transformed state noise is

given by

EY
u,= E u,.

Using (2.28) and (4.3), it follows that
u,=u,.
Therefore, in approximate observer canonical form, the aircraft
maneuver model is
z=Az+b(z)+u, (4.6)

y=Cz+u,

where A.b(z),andC are defined in (4.4), and



Efu,(t)ul(t)]=0216(t-T),and

E[u,(t)u;(v)]=E[ug(t)ug(tI]=2I8(t-1),

where I is defined in (2.28a).

43



44

Chapter 5

GNF Gain Calculation

5.1 Introduction

In this section, a method for arbitrarily placing the poles
of A'(2) in (3.7) is presented. This is of interest because
in the deterministic case (i.e. u,(t)=u,(t)=0) and when the
higher-order terms in the Taylor series expansion of the
estimation error equation are neglected (i.e. b(z,2)=0), the
error equation (3.7) reduces to

é,=A"(2)e,. (5.1)

In practice, the system disturbances and the higher-order terms
cannot be neglected. However, the gain matrix derived by first
considering (5.1) serves as the starting point. The effect
of non-zero system disturbances and the higher-order terms in
the Taylor series expansion on stability can then be inves-
tigated. This is the subject of the next chapter.

In this chapter, it will be shown that if a full rank
condition of a certain observability like matrix is satisfied,

the gain K(2z) can be computed so that

A'(2)=A-K(2)C+B(2)=Q ' (2)(A-K,C)Q(2).

Therefore, the eigenvalues of A"(2) are equal to the eigenvalues

of A-K,C . The matrix K, is specified apriori so that A-K,C

is stable, implying that A°(2) is stable. Since A°(2) is a
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time-varying matrix, stability is not insured by the fact that
all the eigenvalues of A"(2) have negative real parts. To
insure asymptotic stability, an additional condition for the
time-varying system (5.1) is that

dA™(2)

su
' T

t2tgy

d
(@ DA-K Q)| =

= sup
t2t,

is sufficiently small (see Vidyasagar [33]). Thus (5.1) must
be a slowly varying system. Clearly, this puts conditions on
1Q(2)]. If the time variation of Q(2) corresponding to the given
nonlinear transformation is not sufficiently small, then
asymptotic stability cannot be guaranteed, hence the trans-
formation will not be useful. The definition of "sufficiently
small" is given in the next chapter where the impact of this
characteristic of time-varying systems on the stability of the
estimation error is analyzed.

A diagram of the proposed GNF gain calculation is shown
in Figure 5.1. The input is the pre-~omputed nominal gain K,
and the state estimate 2 . The output is K° . Figure 5.1
illustrates the fact that the computation of K° depends on the
state-dependent matrices 6(2), Q.(2), B,(2), R(z), J(2) and L .
The matrices J(2) and L were defined in the previous chapter.
Recall that once J(zZ) is computed, L follows directly without
further computations. The remaining matrices will be defined

subsequently. Figure 5.1 also illustrates the fact that the
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computation of 6(2), Q.(2), R(z), B,(2), and J(2) is independent
of each other and can be calculated simultaneously. Also, the
computation of 5”(2)Q;%2) and R(2)+K, can be accomplished
simultaneously. Thus, if parallel computational facilities

are available, the calculation of K(z) can be performed more

efficiently.
K,
Rz
5 TR
Q' (2)
2(t) Qu(z) ¢ (2IK, +R2)
B2 D
Kz) *
1) J@K) -
L(z)

Figure 5.1. GNF Gain Calculation
Notice that the on-line gains K(2) vary as a function of
the estimated state 2 so that the eigenvalues of A'(2) remain
stable, and in fact, the eigenvalues can be made constant if

K, is constant. The key to this approach is that while the

GNF gains are adaptive (i.e. they are a function of the estimated
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state) like the EKF gains, they are computed without requiring
the on-line integration of a matrix Riccati equation. The
result is a substantial savings in computational (CPU) time
for the GNF over the EKF. It will be shown in subsequent
chapters that in addition to being faster computationally, the
tracking performance and stability characteristics of the GNF
are superior to the EKF.

5.2 Designing the Gain in the Scalar Output Case

The scalar output case is presented first for simplicity.
The extension to the multi-output case is straight-forward.
The multi-output version of all the formulas presented in this
section are presented in Section 5.4 for the case where the
number of states is twelve, the number of outputs is three,
and the observability indices are I,=1,=1,=4. This particular
multi-output case is important in the maneuvering aircraft
tracking problem.

As previously remarked, the construction of the stabilizing
gain K(2z) depends on the matrices 5(2), Q.(2), R(z), B;(2), J(2)
and L . Before stating the main theorem of this chapter, these
matrices will be defined ( J(z) and L were defined in the

previous chapter). The matrix B,(2) is defined as
B,(2):=B(2)C".
Then, associated with B,(2)
is

B*(2):=B(2)-B,(2)C=B(2)(I-C"C).



48

Utilizing the above definition of B*(2), the matrix ©(2) is
defined as

C
C(A+B’(2))

0(2):= ) (5.2a).

[C(A+B (2)""
The main assumption used in the sequel is
rank ©(2)=n, Vt2t,. (5.2b)
Since, by assumption, rank6(2)=n,vt2t, , there exist real-
valued functions a;(2) such that
C(A+B'(2))"=2,(2)C+a,(2)[C(A+B"(2))]+" " (S.3)
+3,.,(2)[C(A+B"(2)"'].
Note that since B'(2(t)) has zeroes in the first column it

follows that a,(2(t))=0 . The matrices Q,(2) and R(z), which are

a function of the functions a;(2), are defined as

1 0 0 0 0
-a,.,(2) 1 0 0 0
1 ma,(@) -3, () 1 0 0
QEET L @ e -G8
. . . 1 0
L —a,(2) —a,(2) —ag(2) ... -a,,(2) 1]
“and
a,-1(2)
R(2): = ' ) (5.5)
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Using the above definitions, the main theorem is stated
as
Theorem 5.1 (Scalar Output): Suppose that the desired char-
acteristic polynomial of A'(2) is
n-1_ _n

pdes=pn+pn-15+“’+pls +s.

Associated with the desired characteristic polynomial, define

the vector

Pn
Define
K(2):=B,(2)+Q ' (2)[K, +R(2)]
where
Q(2)=Q.(2)8(2),
then it follows that
A'(2)=A-K(2)C+B(2)=Q '(2)(A-K,C)Q(2)
and its characteristic polynomial is p,,., .
proof: See Appendix C.
Remark: The existence of Q7'(2) is guaranteed by the assumption

that rank©(z)=n,Vvt2t,.

The following example, taken from Bishop and Antoulas [3],

illustrates the above result.
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Example This example is a simplified version of the one-
dimensional tracking problem (see Figure 5.2) presented in
Gelb [8]. The nonlinear system model is

X=X,

where x,,x, are the position and velocity, respectively, of
the falling body and x; is the inverse of the ballistic
coefficient scaled by the average atmospheric density. Uti-
lizing the transformation

Z,=X,

S {C)
X2

Z2
z3=-X3(0)x;
the nonlinear system model is transformed to the modified
observer canonical form
Zz=Az+b(z)
y=Cz
where the non-zero element of b(z) is

b,(z) = —(2z,+23(0)/2,),

and

1
j|, C=(1 0 O0) , and B(2)=

>
il
| ]

o OO
o O -~
o —- O



Drag

™~ Falling Body

22 = Velocity

Measurement

Radar

—

Figure 5.2. The One-Dimensional Tracking Problem

The matrix B,(2) is zero and the matrix 6(2) is

1 0 0
23(0)
0(2)= 23
2200
0 o z(2 )
R 23

To insure that the rank©(2)=n, it is required that 2,#0,vt>t,.
Now,

C(A+B'(2))°=0.
This implies that a,(2)=a,(2)=0. Thus,

Q(2)=6(2),and

R(2)=0.

Suppose that the desired characteristic polynomial is
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Paes=Ps+PrS+p,s+s’.
With

P
K|= p2 )
P3

it follows that the gain matrix is

P
z3 "
K(2)=Q '(2)K,=| 23(0) *
2
Zzy 0
HOM
it can be checked that
2%(0)
s+ - 0
pl 23
2%
det(sI- A+K(2)C-B(2))=det| ——p, s -1 |=p 4>
23(0>
23
- 0 s
23(0)"°
as desired. ||

5.3 Special Cases of Theorem 5.1

In the previous section, the output injection term is, in
general, a function of all the states. For the case when the
output injection term is a function (linear or nonlinear) of
only the measurement, the calculation of K(z) reduces to a
simple formula. The linear case is presented first since it
is probably familiar to most readers. The nonlinear case

follows. This case is a subset of the general case presented
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in the previous section. It is also the case that is most
often considered in the literature (see Bestle and Zeitz [2],
for example).

Linear Case : Suppose that the output injection term is a

linear function of the measurement (but not of any other

states). Then

b,
.,_©¢bz _
B(z)= oz |, C
b,
where the b;’s are constants and
C=(1 0 ... 0).

Clearly, B(z) is a constant matrix. Thus,

é¢,=(A-KCQC)e,

where
b, 1 0 0 O 0
b, 0 1 0 O 0]
A= . . .
b,, 0 0 ... 0 - 1
b, 0 0O O .. O O]

Since (A,C) is observable, it follows that the eigenvalues of
A-KC can be arbitrarily placed, as desired. In this case, K
is a constant matrix.

Nonlinear Case : Suppose that the output injection term
is a nonlinear function of the measurement (but not of any

other states). Then
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B, (2,)
.._ 9b(z) )
B(z)= ——= = C
(2) 5z |, .
B.i1(2,)
where
C=(1 O 0)
Thus,
é.=(A(2)-K(2)C)e,
where
[ B,,(z,) 1 0 O O .. 07
B,(2,) 01 0 O .. O
A= : '
B,.,,(2,) O 0 .. O 1
| B,(2,) 0 0 O 0 0|
Define
p,+B,(2))
p.+B,(2,)
K(2)= : , (5.5)
pn+Bn(21)

where p, are the coefficients of the desired characteristic

polynomial defined in Theorem 5.1. Then the characteristic
polynomial of A-~K(2)C is p,. . Thus, the eigenvalues can be
arbitrarily placed.

This has been proposed in the literature as a good filter
design technique (see Bestle and Zeitz [2], for example). Of

course, this special case relies on the fact that the output
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injection term is a function of the measured state only, state
and measurement noise are not considered, and the higher-order
terms of the Taylor series expansion of the estimation error
equation are neglected. This technique has been generalized
in this thesis to include the case when the output injection
term contains states that are not measured. Also, the effects
of non-zero system disturbances and the higher-order terms on
the estimation error are considered.

5.4 Designing the Gain in the Multi-Output Cass

In this section, the specific multi-output situation that
is considered has twelve states, three outputs, and the
observability indices arel,=1,=1,=4. This case is of importance
to the maneuvering aircraft tracking problem and will illustrate
the extension of Theorem 5.1 (single output) to the multi-output
case. The extension to other multi-output situations follows
the same patterns established in this section.

In the multi-output case the matrices A and C are in
block Brunovsky form, which means A = diag (A, Az, As) and
C = diag (C,,, C,, Cj;) are block diagonal matrices where

0

A=

0
(l)' C;=[1 0 0 0]
0

o OO
O O —
o O~ 0O

The only two matrices out of the group 6(2), Q.(2), R(2),

B,(2), and J(z) that must be changed for the multi-output case
are Q.(2) and R(z). These changes are a direct result of the

fact that the multi-output version of (5.3) is
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C(A+B"(2)) =[a,,(2)]IC(A+B"(2))] + [2:x(2)I[C(A+B*(2))*] +
[as;(2)I[C(A +B"(2))°],
where [a;;,(2)] are 3 x 3 matrices, instead of scalars. Since,

by assumption, the rank §(t)=11=12.Vt2t°, the matrices [ax(2)]

exist. The multi-output version of Q.(2) is

Qun(2) Qui2(2) Qu15(2)

Q.(2): =] Q,2(2) Q.22(2) Q.23(2) |,
QlSl(z) Q.32(2) Qa:!:’(z)
where
1 0 0 0
R -a 3 1 0 4]
Qaii(z)_ -a iz -a . l 0 ’
T&ii Tay,; —ayz 1
and
0 0 0] 0]
- T8 jia 0 Y Y . .
Q.i(2)= ~a,, -ag 0 0 for i # j.
T8 T8 —ay O
The multi-output version of R(2) is
R1(2)
R(2):=] R, (2) |,
R3; (2)
where
T8 3 T@g3 —ag,
R, (2)= T@ 2 T8, ~ag,
“aq T8y —ag
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With the above definitions, the multi-output (3 outputs, 12
states, observability indices 1,=1,=1;=4) version of Theorem
5.1 is
Theorem 5.2 (Multi-Output): Suppose that the desired char-
acteristic polynomial of A°(2) is

Paes™ | | S**P0iS + P yip 52+ P4-1iS*P4; for i=1,2,3.
Associated with the desired characteristic polynomial, define
the block diagonal matrix K, = diag (K, ,K,,Ks) with

[94i-3.i
P 4i-2,i

Kyi=j

\pﬁ-l.i
P 4ii

K(2)=B,(2)+Q'(2)[K,+R(2)]

If

where
Q(2)=Q.(2)8(2),
then it follows that the characteristic polynomial of A'(2) is
Pes -« Also,
A (2)=A- K(2)C+B(2)=Q '(2)(A -K,C)Q(2).

Proof: Direct extension of the scalar case (See Appendix C).
5.5 The GNF Gain

The.aircraft manéuver model in approximate observer
canonical coordinates is given in (4.6). The matrices A =
diag (A, , Az, Ay) and C = diag (C,, , Cz, , Cs3) are block

diagonal matrices with
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(elelNelNe)
O O O~

and
c,=[1 O 0 O0].
These are not quite in Brunovsky canonical form because of the
presence of the «;’s. This presents no difficulty as will be
shown subsequently.
The nonlinear output injection term b(z) is a function of
the states z,,z;,24,2;,2,, and z,,. Hence B(z) has the form

B,(2) B,,(2) B,3(2)
B(2)= le(z) B.,(2) 823(2) ,
B; (2) B;(2) B;(2)

where
0 0] 0] 0
0 B4'-2 4j-2 B4i-2 4j-1 0
B.(z)= i-2.4) 4 )
i1(2) 0 0 o o
0 0 o 0

Note that since B(2) has zeroes in the first, fifth and ninth
columns, it follows that B*(z)=B(2), hence B,(2)=0. The non-zero
elements of B(Z) can be explicitly computed and are given in

Appendix D.

The matrix ©(2) has the form

0,,(2) 8,,(2) 6,,(2)
0(2)=]6,(2) 6,,(2) ©,(2) |,
0.,(2) ©,,(2) ©6,(2)

where
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1 0 (0] 0
- 0 1 (0] 0
©:(2)= Y 6«-1.«-2 6«-1.4“ o |
0 ©44i2 O4iai-1 O4iai
and
0 0 0 0
_ 0 0 0 0
(3} = — = for i#j.
©:(2) 0 O4.14i-2 O4i-1.4i1 0 or 17
0 O44-2 Ousir Ouis

The non-zero elements of &(2) are given in Appendix D. It
follows that

det6(2)=1

rank ©(2)=12,Vt2t,.
Since the rank condition is satisfied, there exists matrices
[a;ix(2)] such that
C(A+B'(2))* =[a1x(2)][C(A+B'(2))] + [ay(2)I[C{A+B"(2))°] +
[a5x(2)][C(A +B"(2))°].
The non-zero elements of the matrices [a;;x(2)] can be computed
explicitly and are given in Appendix D.
For the aircraft tracking problem, the A matrix is not in

Brunovsky canonical form because of the presence of the non-zero
a’s. Theorem 5.1 utilized the special Brunovsky canonical
form in the proof. However, the theorem is valid for any A

as long as the rank condition



rank 6(2)=rank

is satisfied when A contains non-zero a’s.

are accounted for in

Proposition 5.1:

Cc

C(A+B'(2))

| c(A+B (2" ]

rank 6(2)=n
is satisfied. Define
1 0 O 0
[aix(2)]=[ax(2)]| —a&s 1 O |+| g
0 a? 1 0

and define the elements of the block matrix Q.(2) as

1

. —a 3
ahi z)= =
Q.i(2) T
-ay;
and
0 0
- —a 3 Y
aij z)= = =
Q (2) ji2 T4 i3
-3, -4

jil ji2

and the elements of the block matrix R(z) as

Rij(2)=

Then, if

0
1

=8d s
— a2

o OO

an

i3

0
0

1

—a 3

o O OO

0
0
0
1

for

’

i

60

The non-zero «,

Assume that the rank condition

#

jy
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K(2)=B,(2)+Q '(2)[K,+R(2)]
where
Q(2)=Q.(2)8(2),
then it follows that the characteristic polynomial of A'(2) is
Paes « Also,
A'(2)=A-K(2)C+B(2)=Q '(2)(A-K,C)Q(2).

proof: Direct extension of the scalar case (See Appendix D).

The implementation of the gain calculation in Proposition
5.1 in the actual filter computer program will not include any
matrix inverses. These inverses can be computed symbolically

(via a symbolic manipulation program such as Mathematica or

Macsyma) beforehand.
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Chapter 6
Sufficient sStability Conditions

6.1 Introduction
A procedure for computing the filter gains such that A°(2)
is stable was presented in the previous chapter. 1In this
chapter it will be shown that these stabilizing gains provide
a basis for constructing a stable filter, i.e. the solution
to the error equation
é,=A’(2)e,+b(z,2)+K(2)u,-u,, (6.1)
is asymptotically stable in the deterministic case (i.e u,=0
and u.=0) and the moments (i.e. E[ele,]) are bounded in the
stechastic case. .
The stability analysis will include a definition of the
domain of attraction for the aircraft tracking problem. If
the initial estimation error is within this domain then (de-
terministic) stability of the estimation error is insured.
Because of the stochastic nature of the problem it turns out
that the estimation error will not go to zero but will instead
oscillate in a random manner about zero. It will, however,

N

oscillate in a bounded region which will be defined.
In the sequel, the norm of the vector veR" is defined to

be

Ivi=yvTv



63

and the norm of the matr_x MeR"* is defined to be

where o¢,,, is the largest eigenvalue value of M'™™ and the

largest singular value of M . ¢,, denotes the minimum eigenvalue
value of M™M.

The deterministic stability analysis is presented first,
followed by the stochastic stability analysis.
6.2 Deterministic Stability

In the deterministic case (i.eu,=0and u,=0) the estimation
error is given by

é,=A"(2)e,+b(z,2), (6.2)
where
AT(2)=A-K(2)C+B(2)=Q '(2)(A-K,)Q(2)

is a stable matrix. Conditions for stability of the estimation
error (6.2) are given in
Theorem 6.1 (Deterministic Stability)

Suppose (6.2) is given. Assume that
Ib(z.2)I<p(edle.] vi2t,, (6.3)
and define
() e2):=]Q2)l
(i)  q(2):=]Q(2)!

(ifi) Ag(2):=0,,(Q)

(iv)  Q'(2):=Q7(2)Q(2)-Q7(2)P,Q(2)-Q"(2)P,Q(2)
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(v)  Ag(2):= minimum eigenvalue of Q’(2)

where P, is the symmetric, positive definite solution to the
matrix Lyapunov equation

{(A-K,C)"P,+P,(A-K,C)=-I.
Then the estimation error is asymptotically stable if

Ao(2)>2q(2)|Polie(2)+a(2)B(e,)] , or (6.42)
A (2)>2B(e,)[Pola®(2). (6.4b)

Remarks (1) Since Q(z) is nonsingular A,(z)>0. Ao(2) is the
smallest singular value of Q(z).
(2) Condition (6.4b) is a tighter bound than (6.4a).

In other words, (6.4b) implies (6.4a). [

The proof of Theorem 6.1 is based on the Lyapunov stability
theorem:

THEOREM 6.2 (Kalman and Bertram [13])

For an autonomous system. asymptotic stability is assured
by the existence of a scalar function V(e,) with continuous
first partial derivatives with respect to e, , such that V(0)=0
and

(i) V(e,)>0 Ve,#0;

(ii) V(e,)<O Ve,#0; and

(iii) V(e,)»« with|e,|-> .

proof: see Kalman and Bertram [13].
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The Lyapunov approach consists primarily of defining a
function which satisfies the conditions in Theorem 6.2. This
function is called a Lyapunov function and its existence implies
stability. There is no theory which provides a general method
for computing a Lyapunov function for any given nonlinear
system. Therefore, the procedure that is usually followed is
to first cbtain a candidate function V(e.) by whatever method
best suits the given problem. It must then be verified that
V(e.) satisfies the conditions stated in Theorem 6.2. If this
is the case, then the candidate function is in fact a (de-
terministic) Lyapunov function and the estimation error is
asymptotically stable. For the aircraft tracking problem, the

Lyapunov function used in the proof of Theorem 6.1 is
V(e,)=e.P(2)e,, (6.5)
where P(2) (defined subsequently in Lemma 6.1) is a real,
symmetric positive definite matrix.
One further result needed in the proof of Theorem 6.1 is
Lemma 6.1: There exists a pair (P(2),Q(2)) such that
AT(DP(2)+P(2)A"(2)=-0(2) Vi2t, (6.6)

where P(z) and Q(z) are symmetric and positive definite.

proof: Recall that
A'(2)=/‘\-K(Z)C*‘B(Z)=Q"(2)(/\-K.C)Q(f!) (6.7)
where the eigenvalues of the matrix A-K,C have all negative

real parts. It is well known that the matrix Lyapunov equation
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(A-K,C)'P,+P,(A-K,C)=-1 (6.8)
has a unique symmetric and positive definite solution P,. Define
P(2):=Q7(2)P,Q(2) and §(2):=Q"(2)Q(2).
Note that Q(2) is symmetric and positive definite since Q7'(t)
exists. Pre- and post- multiplying (6.8) by Q7(2) and Q(2),
respectively, using the above definitions of P(z) and Q(z) and
(6.7), (6.6) follows.
||
proof of Theorem 6.1: Using the Lyapunov function in (6.5),
it follows that V(0)=0 and that V(e,) has continuous first
partial derivatives with respect to e, . Also, V(e,)>OVe,%0
and V(e.)- > with |e,]»= . Thus, conditions (i) and (iii) of
Theorem 6.2 are satisfied.

To check condition (ii) of Theorem 6.2, first take the

time-derivative of V(e,) yielding
V(e:)=e;[A(2)P(2)+P(2)A"(2)]e,+elP(2)e,+ 2B (2, 2)P(2)e, .
Using (6.6) from Lemma 6.1, it follows that
V(e,)=-e;Qze,+e]P(2)e,+2b"(z,2)P(2)e,. (6.9)
Taking the time derivative of P(2) (defined in Lemma 6.1) yields
P(2)=Q7(2)P,Q(2)+Q7(2)P,Q(2),
hence
IP(2)I $2e(2)q(2)|Po], (6.10)
and

IP(2)] £q%(2)|P,]. (6.11)
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Substituting (6.3), (6.10) and (6.11) into (6.9) yields
V(e,) S[-Ao(2)+2q(2)|Pol(e(2)+ a(2)B(e. ] e.]*.
Therefore,
Ao(2)>2q(2)[Pojle(2)+q(2)B(e,)] = V(e,)<0,e,#0,V t2t,.

To prove (6.4b), rewrite (6.9) as
V(e,)=-¢e;[Q7(2)Q(2)-QT(2)P,Q(2)- Q" (2)P,Q(2)]e.+2b,(z,2)P(2)e,.
Using definitions (ii), (iv), (6.3) and (6.11), it follows

that
V(e ) S[~Ag(2)+2B(e)Pol q2(2) le|?.
Therefore,

KQ.(2)>2B(e,)q2(2)|P°|=)V(ez)<0.ez¢0 Vt2t,. m

Satisfying either stability condition above implies that
condition (ii) of Theorem 6.2 is met, and consequently

asymptotic stability is guaranteed.
Remarks (1) The effect of the time variation of A®(2) on the

stability appears directly in the stability con-
dition (6.4a) via e€(z). Recall that e(Zz) measures
the time rate of change of Q(z). For the aircraft
tracking problem, the effect of €(2)on the stability
is negligible (i.e. the planar maneuver coordinated
turn model is slowly time varying). 1In the 1lit-

erature (see Vidyasagar [33], for example), the
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time-varying effects do not explicitly appear in
the stability conditions. The stability conditions
generally take the form of (6.4b).

(2) The effect of the term b(z,2) on the stability
appears directly via B(e,) .

(3) If e(2)=0and B(e;)=0, then the stability conditions
reduce to A .(2)=Ay(2)>0 which is equivalent to
requiring that Q7'(z) exist, which is always the
case by design.

(4) If, for some fixed |P,|, condition (6.4) is satisfied
for all e, then the estimation error is globally
asymptotically stable. If condition (6.4) is
satisfied for |e,|<b6 , for some 6 , then & defines
the domain of attraction within which stability is
guaranteed. It 1is desirable, in addition to

stability, to guarantee that
‘KQ-(2)+2q2(i)|Po|B(e)< -5"

Specifying non-zero §° affects the domain of

attraction by reducing the size. In the stochastic
stability analysis (section 6.4) a non-zero value
of 8" is assumed. The domain of attraction can be
enlarged by decreasing |P,|. This is accomplished
by selecting K, properly (i.e. redefining the

desired characteristic polynomial). Recall that
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P, is related to K, through the matrix Lyapunov
equation (6.8). Of course, in all cases A-K,C
must be stable. .
6.3 Deterministic stability Computations
It was assumed (in Theorem 6.1) that the bound on the
nonlinear term b(z,2) has the form
IB(z,2)l <B(e,)]e.].
In fact, for the aircraft tracking problem, B(e,) can be bounded
by
Ble.)<co(2)]e,|
where c,(2) is a bounded scalar and |e,| is the magnitude of the

velocity and acceleration estimation errors.

So, the bound on b(z,2) can also be written as

lim M—é 0.
lez]~0 lezl

This is the form of the bound on the nonlinear terms sometimes
found in stability proofs ( see Vidyasagar [33], page 188 for
example).

The scalar c¢o(2) is calculated by taking successive

higher-order partial derivatives of b and computing the norm.
For the particular b(z,2) in the aircraft tracking problem, the
higher order derivatives are divided by successively higher

powers of V( i.e. v%,¥v%..), where v is the estimated magnitude

of the aircraft velocity. For the velocities of interest the
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series converges rapidly. When the ratio of the magnitude of
the aerodynamic acceleration, i + ©o the magnitude of the

aircraft velocity, v, is small then
B(e )sl(1+§)|€|
z {, {’ Z
where |e.| is the magnitude of the velocity and acceleration

estimation error. A reasonable upper bound on 4/v <0.2 . These
values will be used in Chapter 8 to compute an explicit formula
for the domain of attraction ( i.e. the stability region).

6.4 S8tochastic sStability
In the stochastic case, the estimation error equation is
é,=A’(2)e,+b(z,2)+K(2)u, -u,.
This can be written in the form
é,=A"(2)e,+b(z,2)+6(2)u, (6.12)
where

G(2):=[K(2) -I]

()

is a white gaussian noise process of zero mean and covariance

and

ECu(t)u™(t))=Ubd(t-1)= (68' g)b(t—‘c).

Remark The sample paths of the stochastic process, e, , may

not be defined for all time. In other words, there

is a nonzero probability that e, may escape to infinity
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at some finite time. An assumption, used in the
sequel, is that e, does not have a finite escape time
(with probability one) to infinity. ||
Let V(e,) be a Lyapunov function. Then V(e,) satisfies the

stochastic differential equation

. . avV(e,)
V(e,)=AV(e,)+ ——*C(2)u (6.13)
where
T 2
AV(e,)- av(ff”{“;?*’] (A'<2)e,+s(z.z)ﬁ%tr{G(:)UG*&)%}

and tr designates trace. AV(e,) is known as the differential

generator of the process and is interpreted as the average
time rate of change of V(e,). AV(e,) is the stochastic analog
of the deterministic derivative. Note that the Ité differential
rule has been used in calculating (6.13). The stability results
of Kushner [20], on which the stochastic stability results in
this section are based, utilize the Ité calculus.

As in the deterministic case, the stochastic stability
analysis is performed utilizing the Lyapunov function approach.
In fact, the (deterministic) Lyapunov function (6.5) is used
to compute stochastic stability. The stochastic stability
theorenm is
THEOREM 6.3 (Stochastic Stability)

Suppose (6.12) is given. Assume that the deterministic

part of (6.12), namely

é,=A’(2)e,+b(z,2)
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is asymptotically stable. 1In other words, the (determinis-

tic) stability condition of Theorem 6.1

Ao(2)-2q(2)|Pol[e(2)+ q(2)B(e,)]1>56",6">0
is satisfied (see also Remark 4, page 68) inside the domain
of attraction. Also, assume that there exist c<« such that

%tr[(K(i)KT(i:)om +Z)P(2)]<c?, vitt,.

Let the Lyapunov function (same as (6.5)) be
V(e,)=elP(2)e,.
Then
AV(e,)<-k(e,)+c?,
where
k(e,):=8"]e,|?

is strictly positive.

proof: Computing AV(e,) yields
AV(e,)=e;P(2)e,-e]Q(2)e,+2e]P(2)b(z,2)+ %tr[(K(i)KT(i)Gm +3)P(2)]

where use is made of the fact that
A'T(2)P(2)+P(2)A"(2)=-Q(2)
and the fact that
G(2)UGT(2)=K(2)K"(2)0,,+5.
Assuming that the deterministic stability condition is

satisfied, it follows that
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AV(e,)<$-6"e,|?+c2.
-
Remark Generally, whene, is large (but still within the dcmain
of attraction), AV(e,) is negative hence, Ve,;)
decreases on the average along the trajectories of
the process. When e, is small, AV(e,) is positive,
hence AV(e,) increases on the average. Near t, , when
the estimation error, e, , is usually large, AV(e,) is
decreasing on the average, as desired. Unlike the
deterministic case, the estimation error does not
continue to converge to zero because once e, is small
enough that k(e,)<c?, then V(e,) begins increasing on
the average. Therefore, the estimation error
oscillates in a random fashion. m
This is made more precise in the following theorem.
Theorem 6.4

Suppose the nonnegative scalar function V(e,), satisfying

V(0)=0, and V(e,)>Owhene,#0, is continuous and has continuous
first and second order partial derivatives with respect to e,.
Also, suppose that V(e,) is bounded for finite e, , and that e,
does not have a finite escape time (with probability one) to
infinity. Let

AV(e,)<-k(e,)+c?,

where k(e,)20 and O<c<« . Then,
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t
E.[k(e,(T))]dT
lim 2 [ ZelkCe-ConldT
t-~-‘to c

proof: see Kushner [20] (page 50)
Using the result of Theorem 6.3, it follows from Theorem

6.4 that

2
E(eIez)Sg—, asto o, (6.14)

Therefore the bounds on E(e]e,) can be computed explicity using

the formula in Theorem 6.4. The constant c in (6.14) goes to
zero as the state and measurement noise goes to zero, and gets
correspondingly larger as the noise gets larger. This says
that for noiseless systems the estimation error goes to zero
while for increasingly noisy systems the estimation error
oscillates in a random fashion in an increasingly larger region
about zero. It will be shown in Chapter 8 that for the aircraft
tracking problem (6.14) provides an accurate bound on the
magnitude of the estimation errors. This fact is verified by
many simulations.
Remark It can be seen from (6.14) that as the system tends
toward instability (i.e. 5"~ 0) the bound on E(ele,) gets
very large. The bound (6.14) is valid only when the

error is within the domain of attraction. ||
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Chapter 7

The Extended Kalman Filter

7.1 Introduction

The EKF design used for compariscn with the GNF is presented
here. The derivation of the EKF equations is not given but
can be found in many standard references, including Jazwinski
[12}, Maybeck [21], and Gelb [8]. The EKF is applicable to

nonlinear systems of the form

X =f(x)+u, (7.1)

y=h(x)+u,
where f(x) is a nonlinear function of the state and u, and u,
are zero mean white gaussian noise processes of covariance I

and o;l, respectively. Thne form of the filter is equivalent

to the GNF form given in (3.1), namely,
% =f(x)+K"(y -h(%)). (7.2)
The gain K® is computed via
K'=P(X)H"(X)R™' , and (7.3)
where
P(X)=F(X)P(X)+P(X)F"(X)+Q-P(X)H(X)R'H(X)P(%X), and

_of(x)

F(x) v and
. oh(x
H(x)= a(x )
xX=R
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P(x) is the estimation error covariance matrix where the
estimation error is defined as
e:=X-x.

The differential equation for P(x) given in (7.3), is only an
approximate expression for propagating the true error
covariance matrix. The fundamental step in the derivation of
the EKF is a standard Taylor series linearization of f(x) about
the current estimate x . All but the first term of the series
are dropped, 1leading to the approximate error covariance
propagation equation. Since the matrix P(x) is only an
approximation to the true covariance matrix, actual filter
performance must be verified by monte carlo simulation. There
is no guarantee that the actual estimate obtained using (7.2)
and (7.3) will be close to the truly optimal estimate (Gelb
[8]). There is, in fact, no guarantee that the filter estimate
even converges to the true state. This also must be verified

by monte carlo simulation.
An important characteristic of the EKF is that the gain K°

requires an on-line computation of a state-dependent matrix
Riccati equation. This follows since P(%x)depends on X through

the terms F(%x) and H(x) , and X is not known apriori.
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7.2 Aircraft Maneuver Model EKF
The aircraft maneuver model is given in (2.28a). The first
step in designing the EKF is to compute the state-dependent

matrices F(x) and H(x) . The matrix F(kX) , defined above, has

the form
F., F,2 Fi3
F(x)= FZJ Fzz an
Fs. Fsz Fas
where
0 1 (0] 0
F 0 0 1 0 d
L= s an
i O Fuira-z Foorai-i F sicra
0 0 0 -a;
0 0 0 0
F = (0] 0 0 0
& 0 FdPlAkZ F4hlArl F 4i-1.4f
(0] 0 0 0

The terms needed to calculate F; are given in Appendix E. The

matrix H(x) is given by

H(x)=

o O -

0
0
0

© O O
© OO
o~ O
o O O
o O O
© O O
— O O
o O O
O OO
o O O

H(x) is not state-dependent since the measurements are linear
combinations of the states.

The values chosen for simulation purposes (see results in
Chapter 8) are a;=5.0 and 0, =1.0. The initial error covariance

matrix is P(0) = diag (P,,(0),P,,(0),P1;(0)) where
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10.0 , oo 0.0 ) 0.0

P.(0)= 0.0 , 100.0 , 0.0 ) 0.0

" o0 , 0.0 , 1000.0 , 0.0
0.0 , 6o , 0.0 , 1000.0

The state noise covariance matrix is £ = diag (Z,,,2,,,%,;) where

00 , 00 , 00 , 0.0
5 - 00 , 00 , 00 , 0.0
it 00 , 00, 00 , 0.0

60 , 00 , 00 , 10.0

When the EKF is used to track the actual aircraft trajectories

in the next chapter, the initial state estimate is obtained

by using the first three measurements in the formulas
X4i-3(0)=y,(t2)

Vi(te)—4yi(t,)+3yi(t2)

X 4i-2(0) =

2AT
. Yi(te) -2y, (t))+ vi(t2)
% 4i-1(0) = —— AT; 2
X4(0)=0

where AT=t,-t,=t,-t;, . y(t,),y(tz),y(t;) are the first, second
and third radar measurements. This is the same procedure used
for initializing the GNF state estimates when tracking the
actual trajectories. For the cases when the simulated aircraft

trajectories are used, these formulas are not used for either

the EKF or GNF.
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Chapter 8

Aircraft Tracking Results

8.1 Introduction

The GNF design proposed in the previous chapters is tested
here. The tests are based on two types of measurement data.
The first type of measurement data is generated by simulation
of the aircraft maneuver model (2.28). A more detailed analysis
of the filter is possible since all parameters of the problem
(i.e. initial state errors, state and measurement noise values)
can be controlled. The second type of measurement data is
actual aircraft maneuver data (see Appendix F) provided by
Contraves [35]. Using actual radar measurements, the tracking
performance of the GNF in a real-world environment can be
verified.

A comparison of the GNF and the EKF is also presented. A
detailed analysis, based on simulated aircraft trajectories,
compares the stability characteristics of both filters as well
as the behavior of both filters in the presence of nominal and
near-nominal measurement noise. It will be shown that in some
situations the GNF is stable and provides good tracking per-
formance when, in the same situations, the EKF is unstable

(i.e. cannot provide any tracking). Both filters work well
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in the presence of nominal and near-nominal measurement noise
with the GNF performance always at least as good as the EKF
performance.

Using the radar measurements associated with the actual
aircraft trajectories, the tracking performance of the GNF and
the EKF is compared. It will be shown that the performance
for limited number of available trajectories (i.e. 26) is
nearly identical.

In all cases, the computational burden (i.e. CPU time) of
the GNF is an order of magnitude less than the EKF. CPU time
is of prime importance when considering implementing a filter
in a commercial fire control computer.

In the sequel, the measure of tracking performance is the
magnitude of the position error predicted one second ahead.
The estimation state errors as well as the modelling inaccu-
racies of the state predictor affect this measure. Therefore,
this measure is related to the hit probabi) ity (i.e. the smaller
the predicted error, the greater the hit probability). The
hit probability is the probability that a missile (fired from
the vicinity of the radar) actually hits the maneuvering
aircraft. Computing the hit probability is beyond the scope
of this thesis. However, to compute a more reaiistic measure
of filter performance, the data from the first five seconds
of each run is not included in the final analysis since there
is no chance of the missile reaching the target in that time,

hence no chance of a hit.
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8.2 Comparison Based on Simulated Aircraft Trajertories

The effects on the tracking performance of the GNF and the
EKF resulting from two sources of errors, namely initial state
errors and measurement noise, are investigated here.

The stability of each filter in the presence of nominal
and off-nominal initial state errors is tested. It will be
shown that there exists cases wherein the GNF is stable and
provides good tracking performance, while the EKF is unstable.

The tracking performance of each filter in the presence
of nominal and near-nominal measurement noise is also tested.
Here it is shown that the GNF performs as least as well as the
EKF in all cases.

The results of this section are based on the nominal
trajectory in Figure 8.1. This trajectory was generated using
the coordinated turn model (2.28) with the initial conditions

r(0)=(-3800.0,-3700.0,1000.0)m
v{0)=(300.0,0.0,0.0)m/sec (8.1)
a(0)=(0.0,19.612,0.0)m/sec?.
There is nothing special about this particular trajectory other
than it is representative of the type of trajectories of
interest and it is similar to previously published trajectories

(see Berg [1], for example).
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Figure 8.1. The Simulated Nominal Trajectory

8.2.1 Stability Analysis
It was shown in Theorem 6.1 that a sufficient condition
for stability of the GNF estimation error is

A (2)-2q(2)|Po|[e(2)+q(2)B(e,)]>6, where520.

The practical implication of this condition is now investigated.
The first step is to choose the gains K, to guarantee stability.
Recall that (see Chapter 4 ) the transformation T given in
(4.3) takes the aircraft maneuver model to approximate observer
canonical form. So, when the aircraft turn rate in the maneuver
plane is zero (i.e. 6=0), b(z)=0 and the transformed system
(4.4) is the linear system

z=Az (8.2)
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where A and C are block diagonal matrices A = diag (A,, A,

Aj3) and C = diag (C,,, C,, Ci) with

- O O

and C;={1 0 O O] for i=1,2,3.

O O OO0
o O O~
o O~ O

-a,
With the linear system (8.2) it is possible to compute the
optimal Kalman gains off-line via
K,=PC'o'
where P is the solution of the matrix Riccati equation
P=ATP+PA+3-0¢.'PCTCP.
The values for input into the above Riccati equation are

@;=5.0, dn=1.0. The initial error covariance matrix is P(0) =

diag (P,,(0),P»,(0),P3(0)) where

100 , 00 , 00 , 0.0
00 , 1000 , 00 , 0.0
Pu(0)= 0.0 , 0.0 , 1000.0 , 0.0
00 , 00 , 00 , 1000.0

The state noise covariance matrix is I = diag (£11,25,,233) Where

00 , 00 , 0.0 , 0.0
s -[00 . 00, 00 . 00
iloo , 0.0 , 0.0 , 0.0

6o , 00 , 0.0 , 10.0

The steady-state solution of the above Riccati equation is

then modified slightly (i.e. tuned) to obtain the block diagonal

matrix K,=diag(K,,,K;,K3;) where
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1.6

1.6
K = 0.5 . (8.3)

0.001

This approach to computing K, leads to GNF gains that are
optimal when the aircraft is on a straight line path. 1In
maneuvering situations these gains provide stability of the
estimation error but are not optimal. They also provide a
good trade-off between the desire to speed up the convergence
of the estimation error by using large gains and the desire
to eliminate the effects of the measurement and state noise
by using small gains.

Another approach to computing the GNF gains is to find K,
such that the matrix Lyapunov equation

(A-K,C)TP°+P°(A—K,C)=-1 (8.4)
is satisfied and |P,] is minimized. Then V(e.;) is maximized,
hence convergence of the estimation error is maximized. This
does not imply that optimal estimates (maximum likelihood or
minimum variance) will be obtained. It does, however, imply
stability. This approach follows that suggested by Pearson
[28].

The gains K, in (8.3) lead to the desired characteristic

polvnomial

P ges = (s*+6.65°+9.65%+8.55+2.5)°
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with multiple zeroes at s = -0.5664 =+ 0.8661i , s = -0.4672 ,
and s = -5.0. By construction (as déscribed in Chapter 5)
the matrix A°(2) will have this same (constant) characteris-
tic polynomial.

Since A and C are biock diagonal matrices it follows that
P, = diag (P,,,P».,P3;) . The solution to the matrix Lyapunov

equation (8.4) corresponding to the above choice of K, in (8.3)

is
+1.265 -0.500 -1.447 -0.259
p - -0.500 +1.447 -0.500 -0.152
°"| -1.447 -0.500 +5.228 +1.015
-0.259 -0.1S2 +1.015 +0.303
where

|Po| =5.9.
|Po] is one of the terms needed in the stability condition.
It was stated in the previous chapter that the term B(e.)
satisfies
B(e.)Sco(2)]e.].

When the ratio of the magnitude of the aerodynamic acceleration,

a4 , to the magnitude of the aircraft velocity, Vv, is small then
Bea<i(1+2)15]
z ‘7 v 2

where |e,| is the magnitude of the velocity and acceleration

estimation error and V is the estimated velocity magnitude.
For the trajectory illustrated in Figure 8.1, a/v=~0.07. When

this ratio is small the value of |e,| is approximately equal
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to the velocity estimation error |e,|] (in other words, the
majority of the velocity plus the acceleration estimation error
is due to the velocity error).

The remaining terms in the stability conditions are related
to the matrix Q(z) . For the Q(z) matrix given in (5.6),
Ao(2)~q(2)=1. This implies that xq:=q?(2)/Ao(2)~1. x4 is the
condition number of Q(z). The fact that ko=~ 1 verifies the fact
that Q(z) is invertible.

Combining the above calculations (specific to this aircraft
tracking problem) it follows that stability is guaranteed when

the initial velocity estimation error satisfies the inequality
\Y .
< —_ -
le.] < S5(1-87). (8.5)

The above inequality defines a domain of attraction which
states that if the initial estimate of the aircraft velocity
and the actual aircraft velocity differ by 1less than
Vv/12.8(for5"=0) then stability of the estimation error" is
guaranteed. (Note: The inequality (8.6) is valid when a/v
is small, €(2) is negligible, and the condition number of Q(2)
satisfies xq4~1).

There are no stability results for the EKF. The stability
of the EKF must be verified by monte carlo analysis (i.e.
simulations).

Consider the nominai trajectory in Figure 8.1. The true
initial conditions are given in (8.1). Suppose the filters

are initialized with
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£(0) = (-4400.0,-3690.0,1030.0)m
¥(0)=(275.0,0.0,-1.0)m/sec (8.6)
4(0)=(0.0,9.806,0.0)m/sec?.

Then the resulting tr._.king is shown in Figure 8.2. It
is obvious that the EKF is unstable, while the GNF is not only
stable, but the tracking performance is good. The GNF is
expected to be stable since the stability condition (6.4a) is

satisfied.

g

700 —

600 —

MAGNITUDE OF PREDICTED POSITION ERROR (M)

¥ 1
20 22

TIME (SEC)

Figure 8.2. A Stress Case Tracking Result
The initial state errors (computed from (8.1) and (8.6))
represent a realistic but stressful situation for both filters.
The main result that this case illustrates is that the GNF
with its explicit stability conditions is stable in a situation

where the EKF is not. Simulation results show that the GNF
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will converge with any realistic initial state error. On the
other hand, other unstable initial conditions for the EKF can
be easily generated.

To investigate the stabiiity characteristics of the filters
initialized with nominal and near-nominal initial state errors,

one-hundred state errors were generated from the covariance

matrix P(0)=diag(P,,;,P,,,P3) , where

10 O 0 0
p - 0 100 0O 0
i 0O 0 1000 O

0 0 ) 1000

This is the same P(0) used in the EKF initialization. The
square root of the ith diagonal element of P(0) , denoted by
o, , represents the so-called 1o value of the initial state
error. Thus, it is expected that the actual initial state
error is less than or equal to ¢, sixty-eight percent of the
time. These lo initial state errors are the nominal initial
state errors. Utilizing these 10 values, one-hundred initial
state errors were generated from which one-hundred trajectories
were generated. Both filters, initialized with the values in
(8.1), tracked these trajectories successfully.

The same procedure was conducted for the near-nominal cases
which are defined to be the 2¢ and 3¢ initial state errors.
It is expected that the actual initial state error is less
than or equal to #2¢; ninety-five percent of the time and less

than or equal to #30¢, ninety-eight percent of the time.
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The results of this part of the study showed that both
filters converged nicely. This shows that when the EKF is
initialized with initial state errors at or near its design
values, it will converge. The GNF will converge in these cases
in addition to most other stress cases that the EKF cannot
handle.

In summary, in the nominal and near-nominal cases, both
filters have good convergence properties. However, there exist
stress cases in which the GNF will converge nicely, while the
EKF is unstable.

8.2.2 Measurement Noise

The effect of state measurement noise on the GNF and the
EKF is investigated here. Since stability is not the issue,
an initial lo state error is selected so that both filters
will converge. As before, the nominal trajectory is shown in
Figure 8.1.

The effects of varying levels of measurement noise on the
tracking performance is invegtigated by considering the
lo,20,and3¢ values of the measurement noise covariance, where
the lo value is 1.0 meter. 1In all the simulation runs, the lo
value or the state noise was used. For each level of measurement
noise, one-hundred runs were made with each run corresponding
to a different trial of the state and measurement noise pro-
cesses. This is accomplished by varying the random number
generator initial seed values. This process was repeated for

the 20 and 30 cases for both the GNF and the EKF.
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Before proceeding to the simulation results, it is useful
to utilize the stochastic stability results of Chapter 6 to
obtain an upper bound on the expected errors. The values of
the state and measurement noise covariances are

0,=1.0, and (8.7)

. _{10.0 i=4,8,12
0 otherwise '

Using the values previously defined for K, and P, it can be

computed that

%tr[(K(i)KT(i)om +3)P(2)]<1.75, Vt2t,.

For the aircraft tracking case under investigation here, it

follows that

E(eIez)ag—.. (8.8)

This bound on E(e]e,) is valid only when the estimation error

is within the domain of attraction.

The average magnitude of the errors for the 100 runs made
at the nominal noise level of 1 meter are shown in Figure 8.3.
It can be seen in Figure 8.3 that this computed upper bound
does in fact bound the errors after about 7.7 seconds. It
should be remembered that (8.8) bounds the error magnitude as
time gets large and does not provide a bound for all time.

The fact that this computed bound is reasonable (i.e. small)
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gives us confidence that (under the stated conditions of the

simulations) the GNF filter will provide good predicted position

estimates.
8
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Figure 8.3. Estimation Errors with Nominai Measurement Noise

As previously stated, the measure of tracking performance
is the predicted position errors one second ahead of current
time. The scalar measure that is used here is the percentage
of time that the prcjected position error was less than five
meters and ten meters. This was calculated and averaged over
the one-hundred runs. A higher percentage implies better
performance (i.e. higher hit probability). The results are
shown in Figure 8.4. They show that both filters perform quite
well and the results are quite similar. The performance
degrades as the noise level increases, as expected. The trends

indicate that the GNF performs as well or better than the EKF
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near the design point (g2 -1,4) Iut tends to drop off faster
than the EKF as the noise increases (¢2=9). So, for very
large measurement noises, the EKF will perform better.

101

cFo—  —— ]

98

S T N Y N VR VU N N R |

m 92
= o
= s
& 89
88 —— % TIME LESS THAN 5 m
0 [— % TIME LESS THAN 10 m
86 -
ss4 GNF @
sa4 EKF B
B3
82 -
81 -
[ . . S
1 4 9
— DESIGN VALUE MEASUREMENT NOISE COVARIANCE

Figure 8.4. Performance in the Presence of Measurement Noise

The conclusion is that the tracking performance of the EKF
and the GNF is similar, yet the GNF takes about ten times less
CPU time. Therefore, the GNF is a better solution to this
nonlinear tracking problem than the EKF from both a stability
point-of-view (see previous section) as well as a CPU per-
formance point-of-view. The GNF takes about ten times more
CPU than a constant gain filter (i.e. no on-line gain
computation) and the EKF takes about one-hundred times more
CPU.

From a tracking performance (i.e. hit probability)
point-of-view, both filters have approximately the same per-

formance for different expected levels of measurement noise.
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8.3 Comparison Based on Actual Aircraft Trajectories

Up to this point, all the analysis was done using simulated
aircraft trajectories. The performance of the two filters in
a "real-world" environment is investigated by processing actual
radar measurement data in both the GNF and the EKF. The
measurement data was provided by Contraves [35, see Appendix
F]. An example of an actual aircraft trajectory is shown in
Figure 8.5. This is Traj A. In each of the trajectories, as
in Traj A, the aircraft is approaching the radar. In general,
the maneuvering is done in the ef-et plane with only small
altitude (e5 direction) changes. The main characteristic of
the trajectories is that they are planar maneuvers separated
by a discrete number of plane changes. These plane changes
are accomplished by a rapid roll maneuver. Traj A contains
four such roll maneuvers, occurring approximately at two,
fifteen, twenty-four and thirty-six seconds. An experienced
pilot will perform the roll maneuver very quickly.

Between the discrete roll maneuvers, the trajectories are
described very accurately by the coordinated turn model, thus
justifying the proposed aircraft maneuver model of Chapter 2.
The rapid roll maneuvers and accompanying plane changes are
not modeled explicitly in the maneuver model. They are treated
as perturbations to the model through the roll rate uncertainty.

This uncertainty is modelled as a markov stochastic process



94

(see Chapter 2) with the associated time constant and variance
chosen to give good tracking performance during and immediately

after the roll maneuver. This

N
©
2
‘é’:
ROLL g
AN

[ A
[ S—
t---.-

S

7]

Figure 8.5. An Example Aircraft Trajectory - Traj A
is part of the so-called "filter-tuning" process. Some "tuning"
was done here for the purposes of comparing the GNF and EKF,
however, a more complete "tuning" is necessary before either
filter can be utilized commercially.

Since actual aircraft trajectories were used for the
comparisons, the true state (i.e position, velocity and
acceleration) are not known. All that is known is the measured
position (which serve as the measurements for the filters) in

the inertial reference frame. Therefore, to compare the two
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filters, the estimated state was used to predict the aircraft
position ahead for 0.96 seconds. The prediction scheme was
identical for both filters and consists of the coordinated
turn maneuver model. The error is then defined to be the
predicted position minus the measured position at that future
time. Since the measurements are noisy, this noise shows up
in the error plots.

The tracking performance for Traj A is shown in Figure
8.6. The first noticeable characteristic is that the GNF and
EKF performance is similar in all three inertial directions.
This also turns out to be the case for the remaining twenty-five
trajectories (see Figure 8.6b-z).

The roll maneuvers show up as increased errors. In Figure
8.6a, it can be seen that the two roll maneuvers result in
increased errors in the ef direction and the remaining two roll
maneuvers result in increased errors in the ef direction.
Between the roll maneuvers the errors are less that fifteen
meters (remember that these are errors predicted ahead 0.96
seconds and that they include measurement noise directly as
well as estimation errors). The errors in the ef direction
are small and uneventful since the aircraft is exhibiting very
little motion in that direction.

To compare the GNF and EKF a performance index, =n , is
defined as the average (over all twenty-six trajectories) of

the predicted position error squared. The results show that
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n(GNF)=376.3
n(EKF)=412.7.
Thus, for thes:2 particular test cases, the GNF performed better.

The performance of both filters would be improvea by
application of a roll maneuver detection scheme. This is not
investigated in this thesis but is a good topic for future
research.

The conclusion drawn from these actual aircraft tracking
results is that the GNF looks promising. A more exhaustive
"tuning" followed by further detailed engineering analysis
(i.e monte carlo analysis) is warranted. The GNF performance
compares favorably with the EKF tracking performance but at
a substantial reduction in CPU time. These facts make the GNF

the more desirable solution.
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Chapter 9

Conclusions

The geometric nonlinear filtering theory has been suc-
cessfully applied to the problem of tracking a maneuvering
aircraft.

The coordinated turn model developed in ChLapter 2 is a
more realistic model for describing the trajectories of a
maneuvering aircraft than the constant velocity models cur-
rently in use. It is a highly coupled, nonlinear model which
describes planar trajectories. The suitability of the
ccordinated turn model for use in a nonlinear filter (GNF
and/or EKF) has been demonstrated.

The coordinated turn model cannot be transformed to observer
canonical form. However, it can be transformed to a (useful)
approximate observer canonical form as shown in Chapter 4,
thus making the geometric nonlinear filtering theory appli-
cable.

A procedure for calculating the GNF gains that insure
stability of the estimation error is given in Chapter 5. The

GNF gain, K(Z), is computed such that
A"(2)=A-K(2)C+B(2)=Q '(2)(A-K,C)Q(2),
where A-K,C is stable. The time-variation of A*(2)is equivalent

to the time-variation of Q(z). This decomposition of A"(2)
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into a stable (and constant) part and a time-varying part leads
to precise conditions for stability of the estimation error.
The sufficient conditions for stability of the GNF is given
in Chapter 6. Utilizing these conditions, an explicit cal-
culation of domain of attraction for the aircraft tracking
problem is given in Chapter 8. The EKF theory has no explicit
conditions for stability.

The GNF gains are state-dependent but do not require the
on-line integration of a Riccati equation as does the EKF.
This translates into a substantial savings in computation time.
The GNF runs about ten times faster than the EKF.

It was shown that the GNF and the EKF are stable for initial
state errors at or near the nominal values. However, the GNF
is shown to be stable for cases which may exist in practice
where the EKF is not. It is difficult to find realistic cases
in which the GNF will not converge. The EKF, on the other
hand, did not converge for many of the cases in which the GNF
converged nicely.

The tracking performance of both filters is comparable at
the 1o level of measurement noise. As expected, the performance
of both filters drops as the noise increases. The GNF per-
formance is better than the EKF performance at the 2¢ level.
The GNF performance drops off faster than the EKF performance

so that at the 3¢ level the EKF performs better.
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The GNF is a practical solution to the problem of tracking
a maneuvering sircraft utilizing a nonlinear filter. It has
been shown to be effective in a "real-world" situation by
successfully tracking the aircraft trajectories provided by
Contraves [35].

Topics for future research include the development of
optimal gains for the GNF and the incorporation of a roll

maneuver detection scheme into the GNF.
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Appendix A

Reference Frames

Inertial Reference Frame

In any dynamics problem there exists an inertial reference
frame in which Newton’s second law, describing the motion of
a particle, is valid. The term inertial refers to the fact
that the frame is fixed or in uniform rectilinear motion with
respect to the distant stars. For aircraft tracking problenms
an earth-fixed frame, denoted by F: , can be used as the
inertial frame even though it is not inertially fixed, under
the assumption that the maximum aircraft velocity is limited.
To see this consider two reference frames, one earth-fixed and
denoted by F: and one earth centered, inertially fixed and
denoted by F, . Let r=ro+s ke the position vector of the
aircraft center of mass (CM). Let the subscripts I, E denote
a vector with respect to F,, Fr and let L;, denote the rotation
matrix transforming an F~vector to an Fy-vector. The velocity
and acceleration of CM with respect to F, are v,=f,=f4,+$, and
a;=fq +$§,, respectively. So, the velocity of CM with respect

to F¢ is

- . 3 E
VesLlyf =voe+$+wiXxS,
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where w® is the angular velocity of F; relative to F, ; thus wt

denotes the earth’s rotation. The term wixs; is the transport

velocity. The acceleration of CM is given by
ag=Lpa;=ac+§ +WiXs;+2wWEX$; + WEX(wEXs,). (A1)
The term a, is the acceleration of the origin of F; ; the term

S¢ represents the acceleration of CM relative to the origin
of Fr ; the term wixs; is the tangential acceleration due to
the rotational acceleration of F; ; the term 2wfxs; is the
Coriolis acceleration and wix(wixs;) is the centripetal
acceleration. The earth’s rotation, w?% consists of the
superposition of the earth’s rotation on its axes, precession
and nutation of its axes, rotation in its orbit about the sun,
etc.. For atmospheric flight all are negligible except possibly
for the rotation of the earth on its axis. However, for the
velocity range corresponding to about Mach < 3 (approximately
800 m/sec depending on altitude) the rotation of the earth and
the curvature of the earth can be neglected (Etkin [6], Chapter
5} . Therefore, the following assumptions are made:

(1) the earth’s rotation is negligible

(i.e. wf=wi=0) ,

(2) the earth’s curvature is negligible , and

(3) the maximum aircraft velocity is 8§00 m/sec.
Assumption (1) is applied to equation (A1) and yields

ag=S5;. (A2)
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In cther words, under assumptiocon (1) the earth-fixed frame

Fg is in fact an inertially fixed frame. Assumption (2), also
known as the flat-earth assumption, is wutilized in the
description of the gravity acceleration acting on the aircraft.
Thus, in the inertial reference frame the earth’s gravity

vector is

de=-g e5, where g=9.805 m/sec . (A3)

Nrust

lift

drag

Figure Al. 1Inertial Reference Frame

A natural location for F; is to affix it to the radar with

the z-axis positive up (see Figure Al).
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Body Reference Frame

The body axes frame, denoted by Fy , has its origin at the

aircraft center of mass (CM) (see Figure A2). Thus e} is along
the aircraft longitudinal axis, positive in the direction of
the velocity vector. The unit vector e5 is in the aircraft
plane of symmetry and positive up, and the unit vector e}
completes the right-handed coordinate system. The angular
velocity of F; relative to F; is w®= (p, q, r). The triple
(ef.e3,el) will denote unit vectors along the body x, y and z

axes, respectively.

€

Figure A2. Body Reference Frame

Wind Reference Frame
The wind axes frame, denoted by F,, , has its origin at the
aircraft center of mass (CM) (see Figure A3). ZLet (e},el,el)

denote unit vectors along the wind x, y and z axes, respectively,

where e} is defined to be along the velocity vector of the
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aircraft relative to the atmosphere. The velocity of the
aircraft center of mass relative to the local atmosphere plays
an important role in atmospheric flight, however, a common
assumption (and one that is made here) is that the atmosphere
is at rest. This assumption implies that the relative velocity
is simply the aircraft velocity and changes in the aerodynamic
accelerations (which are functions of the relative velocity)
are not caused by atmospheric changes. Thus eV is along the
aircraft velocity vector, the unit vector ey is in the aircraft
plane of symmetry and positive up, and the unit vector ey

completes the right-handed coordinate system.

Sideforce

Figure A3. Wind Reference Frame
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Appendix B

Theory of Nonlinear Geometric Estimation

The theory of nonlinear gecmetric estimation depends on
the existence of a transformation of the given nonlinear system
X =f(x)
y=h(x)

to observer canonical form

z=Az+b(Cz)
y=Cz

where A and C are in Brunovsky canonical form. Tie ex:stence
of transformations has been studied by Krener and Isidori [17],
Krener and Respondek [19], and Hunt, et al. {11]. The nonlinear
geoemtric estimator design theory that follows assumes that
a transformation exists. It appears that the family of nonlinear
systems which can linearized through use of a nonlinear
transformation with output injection is not large. The aircraft
maneuver model (2.28) cannot be transformed to observer
canonical form. Therefore, other canonical forms (related to-
the observer canonical form) must be used in the design process.
The GNF design presented in Chapters 4, 5, and 6 for the
aircraft tracking problem is based on an approximate observer

canonical form.
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The design of a stable estimator for the nonlinear system
is simplified by utilizing the observer canonical form. The
design procedure that follows is valid for the scalar output
case (extending readily to the multi-output case) and does not
include output transformations. Krener and Respondek [19]
consider output transformations.

Bl. Lie Algebraic Notation

Consider the vector-valued functions f:R"-R" and g:R"-R"
where f and g are vector fields in C°. A vector field f on R®"
is a function that assigns to each point p of R® a tangent
vector f(p) to R” at p. The Lie bracket of f and g is defined
by

of g

“'9]’=3§9'ax

(B1)

where of/ox and 9g/dx are the Jacobian matrices of f and g,

respectively. The notation for successive Lie brackets is
(ad’f,g)=g
(ad'f,g)=[f,g]

(ad?f,g)=[f,[f.g]] (B2)

(ad*f,g)=[f,(ad*'f,g)].
Consider a C” function h:R"-»R with gradient dh. The Lie
derivative of h with respect to the vector field f is defined
by

L,h:=L,(h):=<dh,f> (B3)
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where <-,-> denotes the standard inner product in R® The

notation for successive Lie derivatives is

L’h=h
Lih=L,h (B4)
Lsh=L,(L¥'h).

The Lie derivative of h with respect to the vector field
[f.g] is
L[,_“h:=<dh.[f.g]>=LgL,h-L,L°h. (BS)
This is the Leibnitz formula. Furthermore, the Lie derivative
of dh with respect to the vector field f is
L,(dh)=dL,h. (B6)
B2. Transformation to Observer Canonical Fornm
Let the nonlinear system
x = f(x) (B7)
y =h(x)
be given. We are looking for a bijective C° transformation
T:R"->R" such that (B7) is transformed into observer canonical
form
z=Az+b(Cz) (B8)
y=Cz
where A and C are in Brunovsky canonical form.
The first step is the computation of the partial derivative
matrix, or Jacobian, of the transformation. Consider the

scalar output case without output transformations. It is
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possible to express the columns of the Jacobian matrix in terms
of a single vector (Bestle and Zeitz [2]). To arrive at this
result the time-derivative of

x =T(z) (B9)

is substituted in (B7) to obtain

2
>'<=f(x)=£(Az+b(Cz)) (B10)
where
oT (T aT)T
az_ aZl v azn .

The partial derivative of (B10) with respect to z, yields

of(x) 9% aT 2
AL Tl o Az+b =2 (Az+b(C2)). Bl
32, " 5p (AZTB(CZ)* T (AZ+b(C2)) (B11)

From the left-hand side of (B1l), using (B9) we obtain

2f(x) _2f(T(z)) _21(x)2T(z)

Bl12
0Zy 9z, X 9z, ( )

Similarly, for the first term on the right-hand side of (B11)

it follows that

-

T aT T

o5 95 oT .
22(Az+b(C2))= —=2I(AZ+b(CZ))= —2f(x). (B13)
o0Zy ox oz X

Using the fact that A and C are matrices of the Brunovsky

canonical form, the second term on the right-hand side of (B11)

is
T o oz 9z,
aza—z:(AZ+b(cz))_ oT (Bl14)
k=2,...,n
0z,

Substituting (B12), (B13), and (B14) into (Bl1l) yields



aa’l‘
dTob(z,) 2f oT _ Ef(x
9z 93z, dx9dz; 9x )
and
aaT
o of oT oz,
T 0T o k=2,...,n.

0Zy.; 0X9dzZ, 29X
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(B1S)

(B16)

Utilizing the Lie notation introduced in Section Bl1, (B15)

can be rewritten as

oTab(z)) [, oT
9z 23z, | ‘a9z,

and (Bl16) as

oT oT
=l f,—, =2,...,0N.
0Zy ., [ azk] k=2 n

Hence, it follows that

oT . f,f[ - adW.aT '
0Z,-, o0z, oz,

oT oT oT oT
= f' = ] ’ = 2 ’ .
0Zy-2 [ aZn-l] [f [f azn]} (ad f aZn)

Therefore,; in general

.3
or =(ad"'f, T) k=2,....n.
azn-k‘l azn

and

Thus, the Jacobian of the transformation is given by

4. 9 d s 2T\
o, ad"'f, T adzf.—T , ad‘f,aT 1 ad®f, T ,
oz 9z, 2z, oz, 2z,

(B17)

(B18)

(B19)

which shows that the Jacobian matrix can be generated using

the single vector 4T/dz,. To obtain a formula for this vector,

the partial derivative of the output, y=h(x) , with respect

to z is computed:



-~
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Y A2 1 o ... 0). (B20)

The last component of (B20) can be written as

oh oT OT _ . o.... 0T
—_— =g ’_>=L h =0.
x99z, dh 9z, r(d )az, ©

(B21)

Using Leibnitz’s formula, the second to last component of (B20)

is

) 2 2 2
oh om =<dh,[_f,—T-|>=<d<dh,f>, T>-<d<dh.—T>,f>
X9z, ., L 2Za ] oz, oz,

T oT
=<d<dh,f>,5—->=IJ(dh) =0. (B22)

z, oz,
Repeated use of Leibnitz’s formula yields:

L7(dh) 0
L;(dh)

CALI I , (B23)
oz,

L; ' (dh) 1
where the matrix

Lf(dh)(x)
Lt (dh)(x)

O(x)=

L3 (an) (o)
is the observability matrix. Thus, 0T/dz, is the last column
of the inverse of the observability matrix. The Jacobian
matrix of the transformation (B19) can now be computed using
(B23). 1Integrating (B19) yields, in principle, the desired

transformation T.
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B3. 8table Estimator Design
Consider the nonlinear estimator (Kou et. al. [14] and
Thau [31])

% =f(%)+ K (%X)(y - h(%X)) (B24)
associated with the nonlinear system (B7). The measurement
is y=x,. The objective is to design the gains, K°(X), so that
the estimation error approaches zero asymptotically. The
method presented here is based on Bestle and Zietz [2]. This
method guarantees asymptotic stability of the estimation error
without regard to state and measurement noises. The interesting
charateristic of the method is that the transformation to
observer canonical form is never actually computed although
its existence is assumed.

Consider the relationship
x=T(2)
which transforms (B24) into

z= Ai+b(c2)+g K'(2)(y-2)).

Define the nonlinear gain

Then with the estimation error defined by
e:=2-2z,
the differential equation describing the estimation error is

é=(A-K(2)C)e+b(C2)-b(Cz). (B25S)
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If the output injection term in (B25) is linearized about
the reconstructed trajectory using a Taylor series expansion,

(B25) can be written as

e=(A-K(2)C +£ Ce +
e=( (2z)C)e 32 e

lzl

Choosing

ob
K(2)=P+E (B26)

and assuming that the output injection term has a ’small’
second derivative leads to the approximate estimation error
equation
eé=(A-pC)e. (B27)
The vector p is composed of the coefficients of the desired
characteristic polynomial. Thus if the desired characteristic
polynomial is

_ 2 n-1 n
Pdesires = Po+*P1S*PaS™ +...+ P, S +s,

pn-l
pn—2

P2
P
Po

The estimator gains, K°(2) , of the estimator (B24) are
. oT ob
K (2)-E(p+a—2—,)' (B28)

Using (B15) and (B19), the gains (B28) are computed:
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aT

6T  of oT o5
+

K' (%)= K"(x)le= (3P ax3z, axf(x)ls’

(B29)

All the terms in the above gains calculation can be computed

without explicit knowledge of the transformation T.
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Appendix C

Proof of Theorem 5.1

Theorem 5.1 (Scalar Output): Suppose that the desired char-
acteristic polynomial of A'(2) is

n-1 n
Paes =PptPpSt+...+p,s +S .

Associated with the desired characteristic polynomial, define

the vector

P
P2
K,=|
R
Define
K(2):=B,(2)+Q '(2)[K,+R(2)] (Ch)
where

Q(2)=Q.(2)8(2),
then it follows that
(A'(2)=A-K(2)C+B(2)=Q '(2)(A-K,C)Q(2))
and its characteristic polynomial is Pges o
proof:

Suppose that the conditions

cQ'(z)=C, and (C2)
Q(2)(A+B'(2))Q7'(2)-R(2)C=A, (C3)
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are true. Substituting (C1) into A°(2)=A-K(2)C+B(2z) and
utilizing the conditions (C2) and (C3) yields

A—K(2)C+B(2)=Q"(2)(A—K,C)Q(2).
It follows that the characteristic polynomial of A-K(t)C+B(2)

is equal to the characteristic polynomial of A-K,C, as desired.
So, all that needs to be shown is that conditions (C2) and
(C3) are true.

Condition (C2):

Since
i 1 0 o] 0 0]
-an-l(z) 1 0 0 [¢]
—a,.,(2) -2a,.,(2) . 0 0
- - =C
CRED=M 0O k) —a) ol
. - . . o
[ —2,(2) -ay(2)  -ax(2) ... -a,.,(2) 1J
it follows that
[ c ]
C(A+B’(2))
CQ(2)=CB(2)=[1 0 .-+ 0] ‘ =C.
LC(A+B (2)"" ]

Therefore,
CQ(z)=C =3 cQ(z)=cC.
Condition (C3):
Condition (C3) can be rewritten as -
Q(2)(A+B’(2))+R(2)C=AQ(2).

Direct calculation of Q(z)(A+B*(2))+R(2)C yields,
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1 0 0 0 07 [CA+B )] [~a.u(2) 0 .. O
“2u(2) 1 0 0 o| |C(A+B (2)*| | -3.2(2> 0 ... ©
—a,2(2) -a,.,(2) ) 0 . .

-3,.2(2) -a,,(2) . . .

. } . ) o
- - - - -a,(2) 0 .. O

a,(2) a,(2) a3(2) ... -—a,,(2) 1 | ccareray| L o o ol

C(A+B’(2))-a,.,(2)C
~a,.1(2)C(A+B"(2))+C(A+B’(2))°-a,.,(2)C

-a3,(2)C(A+B'(2))-...-a,.,(2)C(A+B(2))" “+C(A+B"(2))" ' -a,(2)C
-a,(2)C(A+B"(2))-...-a,(2)C(A+B (2))" '+C(A+B"(2))"

C(A+B"(2))-3,.,(2)C
~a,.,(2)C(A+B"(2))+C(A+B'(2))*-a,_,(2)C

~a,(2)C(A+B'(2))-...-3,.,(2)C(A+B"(2))" *+C(A+B"(2))" ' -a,(2)C
e 0 -
01 0 0 .. 0 1 0 0 0 oo o |
001 0 o—I ;a2 0 0 .. of | COATEED
. . -a,2(2) -~a,.,(2) 0 0

0 . -2,..(2) -a,,(2) )

1 . . . . 0
600 0 0 0 - - - = .
| a,(2) a,(2) a;3(2) 2,..1(2) 1] |C(A+B'(2))" J

= AQ.(2)8(2)= AQ(2).
m
In the above development, use is made of the fact that since,
by assumption, rank€(2)=n,vVt2t, , there exist real-valued

functions a;(2) such that

1

C(A+B’(2))"=a,(2)[C(A+B'(2))]+2,.,(2)[C(A+B"(2))"'].
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Appendix D

GNF Gain Calculations

The various terms needed to calulate the GNF gains are
presented here. For reference, see Figure 5.1. Define the

functions
a,(z)=23-4,,
ay2(2)=(2,)-g2)sing+(2,, - gs)cosé,
§1(2)=(cos8(2)a,(2)+sinb(2)a,,(2))/v(2),
§2(2) =(sin8(2)a,(2))-cos6(2)a,,(2))/v(2),
§3(2) = (§,(2)cos0(2)+§,(2)sinb(2))/v(2) =a,(2)/v3(2),
£,(2)=(%,(2)sin0(2)-§,(2)cos6(2))/v(2)= ayz(i)/vz(Z),

where

¢ is the estimated aircraft roll angle,
v3(2) =23+ (24sind+2,,(t)cosd)?,
cos0(z)=2,/v(2),and

SinB(2)=—(2,(*)sind+2,,c08$)/v(2).
The nonzero elements of B(Z) are
B, ,(2)=sin0(2)§,(2)
B,.5(2)=cos6(z)-1
B, ¢(2) =cos6(2)sindt,(2)

B, ,(2)=sin¢sin@(2)
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B,,10(2)=c0s8(2)cosdt,(2)
B,.1:1(2) = cossino(2)

Bs.,(2) =sin@(2)sindg, (2)
Bs.3(2)=-sindsin6(2)

B, s(2)=cos8(2)sin?$t,(2)
Bs.7(2)= sin®¢(cosB(2)~1)

B, 10(2) = cos8(2)cosdsindt, (2)
Bs.11(2)=cosdsind(cosO(2)-1)
Bo.2(2)=5sin8(2)cosbt, (2)
Bl0.3(2)=—-cosdsinb(2)
Bo.6(2)=cos8(2)cosdsindg, (2)
Bo.7(2)=cosdsin(cosd(2)-1)
Bio,10(2) = cos8(2)cos?$t,(2)
Bio.11(2)=cos?d(cosO(2)-1).

The nonzero elements of ©(2) are
8,.,(2)=sind(2),(2)
65.3(2)=6,.,(2) = cos6(2)
05.6(2)= 0, 5(2) = cosb(2)sint,(2)
0,,,(2)=-0, 3(2)=-8, (2)=sin6(2)sind
8,.10(%) = c0s0(2)cosdt,(2)

53.ll(i) =0,,12(2)=-6,, 4(2)= ‘512,4(2) =sin@(Z)cosd
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B..2(2) =sin0(2)8,(2)5,(2)
8..6(2) = cosB(2)sin$E,(2)5,(2)
6,.7(2)=sint,(2)
84.10(2) = cosB(2)cos$E,(2)E,(2)
0,.11(2) = cosdE,(2)
8,.,(2) =sinb(2)sind¥, (2)
8,.6(2) = cos8(2)sin?$k,(2)
8,.:(2)=6, 4(2)=1+sin?$(cosO(2)- 1)
8;.10(2) =8, 4(2) = cos8(2)cosdsin b, (2)
07.11(2)= 84 12(2)=8,, ,(2)= 8, 4(2) = cosdsind(cos8(2) - 1)
85..(2) = sinB(2)sindt, (2)%,(2)
85.6(2) = cos0(2)sin?$t, (2)E,(2)
8,.,(2) =sin$%,(2)
©46.10(2) =8, 4(2) = cosB(Z)cosbsindE, (2)E,(2)
04.11(2)=0, ,(2) = cosdsindt, (2)
©,,.2(2) =sinB(2)cosdt, (2)
811.10(2) = cos(2)cos?$, (2)
011.12(2) =8 ;.,,(2) = 1 +cos?$(cosb(2)- 1)
©,2.2(2) = sinB(2)cosdt, (2)8,(2)
812,10(2) = cos8(2)cos?$E, (2),(2)

0,211 (2) = cos?$%,(2).



The terms needed to calculate R(Z) and Q.{2) are
a,12(2) = sin®(2)(-a,cos6(2)§,(2)+sind(2)(acos?p+a,sin?$)§,(2))
a,13(2) =sin8(2)§,(2)-a,cos?6(2) - sin?0(2)(a,cos?d+a,sin?p)
az)2(2)=cosB(2)sind(~a,cos8(2)t,(2)

+sin6(2)(a;cos?d+a,sin?$)E,(2))
a,3(2)=sinB(2)sin$(a,cos0(2)- a cos2H(cosB(2)-1)
- az(cose(Z)-coszé(cose(Z)— 1))+£,(2)cos8(2)sind
a3,2(2) = cosdcosB(2)(a,cos8(2)E,(2)
+sin@(2)(azcos?d+a,sin?$)E,(2))
a3,3(2) =sin08(2)cos$(a,cosd(2) - a,sin?H(cosO(2)-1)
- a,(cos8(2)-sin?$(cosO(2)-1))+£,(2)cosd(2Z)cosd
a,,,(2)= sine(Z)siné(-a,sine(‘z‘)E,(Z)+ (aacoszé(cose(i:)— 1)
+a,(1+sin®$(cos0(2)-1))E,(2))
a,,3(2) =sin6(2)sind(a,cos6(2) - acos?d(cos&{z)-1)
-a,(1+sin®§(cosB(2)-1))+£,(2))
2322(2) = cos6(2)sin®p(-a,sinO(2)E,(2)+ (a,cos2P(cosd(2)-1)
+a,(1+sin?$(cos8(2)- 1)))&,(2))
8,23(2)=-a,sin®0(2)sin?$ - a,cos2psin?(cosO(2) - 1)~ a,(cos6(2)
- cos?$(cos0(2)~1))(1 +sin®p{cos6(2)—1))+&,(2)cosO(2)sin?$
a3,(2) =cos8(2)sindcosd(a,sin8(2)&,(2)+ (a,cos®d(cos6(2)-1)
+a,(1+sin?$(cos8(2)~1)))E,4(2)
2323(2) = cosdsin(-a,sin?6(2) - (cos6(2) - 1)(a,(cos6(2)

-sin?$(cos8(2)- 1))+ a,(1+sin?$(cos8(2) - 1)))+&,(2)cosd(2))

146
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a,3,(2) =sin8(2)cosd(a,sinO(2)E,(2)+ (a,sin?$(cos6(2) - 1)
+a;(1+cos®$(cos8(2(t))-1)))§:(2))
2,33(2)=sinB(2)cosd(a,cos0(2)-a,(1+cos?P(cos(2)-1))

-a,sin?d(cosO(2)-1)+£,(2))
@332(2) =cosB(Z)cossind(a,sinB(2)E,(2)+a,sin?P(cosd(Z)-1)
+ay(1+cos®p(cosb(2)-1)))%,(2))

a,33(2) =sin¢cosd(—a,sin?0(2) - (cos0(2) - 1)(-a,(1 +cos?P(cos6(2)- 1))

+a,(cos0(2)~cos?p(cos6(2) - 1)))+§,(2)cos0(2))

a332(2) = cos?$cos8(2)(a,sinB(2)E,(2)+ (a,sin?d(cosB(2)- 1)

+ag(1+cos?h(cos8(2) - 1))5,5(2))

a333(2)=-a,sin?6(2)cos?$ - a,(cosO(2)-sin2(coso(2)- 1))
(1+cos?p(cos8(2)-1))-a,cos®Psin?P(cos(2)-1)>
+& (2)cesB(2)cos?d
The functions a;x(2) listed above are not as complicated as
they might seem at first glance. There is overlap in the
required calculations between the various functions which can

be utilized in the coding of the GNF filter to expedite the

computations.
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Appendix B

EKF Gain Calculations

The terms needed to compute F(X) are presented here. Let

- - &

1,;(x) be the (i,j)th element of ! dafinad in {(2.14}. Define

A7

]

x2+x2+x% and
AZ=[Xe(X11 =)~ X7X16)1°+[X5X 10~ X2(X11 = @)]*+ [ XX 7~ X3Xe]".
Nine of the nonzero elements of F(x) are given by
Foog(X)=1;(x) ,i=1,2,3 and j=1,2,3. (E1)
The remaining nonzero terms are given by the formula

of, I, . .
F4i_|_,~(x)=§:+k-la—:-x4k,l= 1,2,3 and j=2,3,6,7,10,11. (E2)

The non-zero derivatives 91,,/79x; needed to evaluate (E2) are

given by

als;f:)=AL.(l§l(X)+l§l(X))
ﬂ%{(:ﬁ:ALl(_ln(x)lzl(x))
alslf:):ALl(_l”(x)la,(X))
N;%=AL|(-IHCX)121(X))
al;;f:)=ALl(l”(X)2+lgl(X))



ol X 1 X
31(6 )__,_l(_lm(x)ls,( ))
al 1(X 1 ( (X (x
alx(,o) Al l“ )1:" ))
ol 1(X 1 X X
%—— —l( ]21( )13'( )

== — (15, 00)+14,(x))

3. -
YALIONAY

1
PR A_(llz(x)((xn_g)lzz(x)—xvlsz(x)))

2

1
= A—z("(xn -g)(l _lgz(x))'xvlzz(x)lsz(x))

= A-l—z (x7(1 - l%Z(X))." (xll _g)lsz(x)lzz(x))

= 2 (0O (X olaz ()= X 01 (x0))
2

22(3 ) z(xlo(l-lgzcx)) x6122( )132( ))
al 2 X l - X X

3 (3 )_ 2(._x (1 —lgz(x)) xlolsz( )122( ))
all 1 — -

f(7x) 2((X“ _g)(l IXZ(X)) X3]12(x)132(:<))

alzz(x)=L(l O (%31 5(x)+ (X1, -9 12(X)))
3x7(x) " B 22 3la2 X1 —gX(x

dl32(x)

1
o, = Z;(—)(3(1 - lgz(x))-(x,l _g)laz(x)llz(x))

aly2(x)

o%7 =AL2("xno(1‘lfz(x))‘lelz(x)liiz(x))

alza(x)
BX7

= ALz(lzz(x)(leaz(x)-x.o(x)l1z(x)))
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oi32(x)

1
e A_z(xz(l =12,(%)) * X 101 12(X) ] 32(x))

ol2(x)
X o

1
= A—z(-x7(1 —152(%)) = X3l 12(x)122(X))

dloa(x) 1.

(x3(1 "lgz(x))"' X7lo2(X)112(%))

9X o A,
Alz(x) 1
W=A—2(132(x)(x3122(x)-x71,2(x)))
allz(x)_ 1 2

X, _A—g(xé(l—llZ(X))+x2112(x)122(x))
dlz2(x) 1 2 '

Xy, _A—z(—xz(l'lzz(x))-x6l22(x)l'2(x))
dlsa(x) 1

oX 1, _A_z.(laz(x)(xélxz(x)-x2122(x)))
allg(x)_ 1

ox, |A2(xlo(xn‘9)"’xox7'1|3(x)(ln(x)Az*(x7132(x)‘(xn‘g)lzz(x))Al))
alza(x)_ 1

9X, —AlAz(‘szxf"x:sxo'lzs(x)(lll(X)Az+(x713z(x)—(x“_g)lzzcx))A'))
3'33(")_ 1

20X, AIAZ(_ZXZ(X,,-g)+xgx,o-lag(x)(l,,(x)A2+(x7l;,2(x)-(x“-g)lzz(x))Al))
olis(x) 1 2, 2

X, —A!Az(-(x6+x,o)—l,:,(X)(‘xclsz(x)"'xlolzz(x))Al)
dlaa(x) 1

s —AlAz(xzxé-123(X)(‘x5132(x)+xlolzz(x))An)
al33(")__ 1

9X3 —AxAz (x2X 10 = laa(X) (= X4la2(X) + X 101 2(X))A )
olis(x) 1

9X, _A,Az(x2x7—2x3x6-l,3(x)(lz,(x)Az"'(—x:,l;,z(x)"'(X“'g)llz(x))Al))
alz:s(x)_ 1

X, AlAz(xzxs*xlo(xn‘9)'lzs(x)(lzl(x)Az+('xalaz(x)+(xll-g)llz(x))A‘))
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al;;(x)=ﬁ(-2xe(xn-g)+x7X.o-In(x)(lz,(x)Az+(-x3132(x)+(x,.—g)l,zcx))A,))

6 1582 .

e T R S TCAME SR

a'fx(?x)= Allaz(-(x§+x?o)—lza(x)(leaz(x)—x.ox,zcxm,)

aIgax(:()=AxlAz(xesx,o-133(><)(x2132(><)-xml,z(x))A,)

alal;(xLAlA (x2(X11=9) = 2X3X 0= 113(X) (13, (X) A, + (X3l 20 (X) = X7 1,2(X))A}))
10 182

alaZ;(X):A IA (X6(X11=9) = 2X7X 10~ Loa(X) (I3, (XD A5 + (X531 22(X) = X71,2(X))A,))
1o 182

e e (e X 130000 (1 00 Gl ()~ X112 (X0)A, )

alal;(:)=AllAz(xzxm—l,a(x}(—lezz(x)+xéllz(x))Al)

aI;;(lT)=AllAz(xaxlo_lzs(x)(-lezz(x)“‘Xéllz(x))Al)

al;;(:)=AllA2('(X§+Xi)-lss(X)(-lezz(X)+ Xl 12(X))A )

The above terms are substituted into (E2) and evaluated at the

most current estimate of the state yielding F(x) .
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Appendix F

-

Actual Aircraft Trajectories
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