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Abstract

The primary technique for determining the three-dimensional structure of a protein
molecule is X-ray crystallography, from which the molecular replacement (MR) problem
often arises as a critical step. The MR problem is a global optimization problem to
locate an optimal position of a model protein, whose structure is similar to the unknown
protein structure that is to be determined, so that at this position the model protein will
produce calculated intensities closest to those observed from an X-ray crystallography
experiment. Improving the applicability and robustness of MR methods is an important
research topic because commonly used traditional MR methods, though often successful,
have their limitations in solving difficult problems.

We introduce a new global optimization strategy that combines a coarse-grid search,
using a surrogate function, with extensive multi-start local optimization. A new MR
code, called SOMoRe, based on this strategy is developed and tested on four realistic
problems, including two difficult problems that traditional MR codes failed to solve
directly. SOMoRe was able to solve each test problem without any complication, and
SOMoRe solved a MR problem using a less complete model than the models required
by three other programs. These results indicate that the new method is promising and
should enhance the applicability and robustness of the MR methodology.

Key Words. Molecular replacement problem, X-ray crystallography, global optimiza-
tion, surrogate function, global search, multi-start local optimization.

1 Introduction

Knowledge of protein structures is critically useful for scientific understanding of a wide
range of biological and medical processes at the molecular level, for example, for under-
standing the molecular basis of diseases and for designing pharmaceutical drugs.
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X-ray crystallography has been, and still is, the primary technique for determining the
detailed three-dimensional structure of a protein molecule. A difficult global optimization
problem, called the phase problem, arises in X-ray crystallography. A major step towards
attacking the phase problem is to solve the molecular replacement (MR) problem, which
is also a global optimization problem but has a much smaller dimension than the phase
problem.

In essence, the MR problem is a data-fitting problem in which one rotates and translates
a so-called model protein to find an optimal position that will generate calculated intensities
closest to those observed from an X-ray crystallography experiment performed on a target
protein — one whose structure is to be determined. The model protein has a known
structure that is more or less similar to that of the target protein. The observed intensities
are experimentally measured when X-rays are scattered by the crystallized target protein.
The calculated intensities are computed from the atomic coordinates of the model protein
with varying rotation and translation.

Once the MR problem is solved, then a preliminary electron density map (i.e., an image)
of the crystallized target protein can be generated, leading to a set of approximate atomic
coordinates of the target protein suitable for further refinement and full elucidation of the
target protein structure.

As more and more structures are deposited into the database of solved structures, it will
be more likely that a model protein will be available for a given target protein. Hence, the
use of MR methods is expected to continue to increase. However, research is still needed to
improve MR methods because, although successful in solving many problems, traditional
MR methods are known to have difficulty solving certain classes of MR problems, including
those for which an accurate model protein is not available, and those involving a protein
crystal that has a high degree of symmetry.

In this paper, we construct and validate a new global optimization method for solving
MR problems, particularly those that are difficult for the traditional methods to solve. In
Section 2, we introduce the background on X-ray crystallography and the MR problem. In
Section 3, we review the current approaches for solving the MR, problem. We then introduce
the global optimization method in Section 4 and describe the current implementation of
our new method in Section 5. Results from the method are given in Section 6.

2 X-ray Crystallography and Molecular Replacement

Before MR can take place, the X-ray crystallography experiment must be performed, and a
model protein that is structurally similar to the crystallized target protein must be found.
In this section, we discuss the basics of X-ray crystallography, including the protein crystal,
the observed and calculated intensities, the phase problem, and the molecular replacement
problem.

2.1 What is X-ray crystallography?

In general, X-ray diffraction techniques provide the only way to directly produce the image
of molecular structures with high enough resolution to distinguish atoms. To produce an
image of an object, electro-magnetic radiation, such as visible light, must be scattered by



the object and recombined by a lens, as for example by a microscope lens or the lens of our
eyes. However, in order to produce a detailed image, the radiation must have a wavelength
equal to or smaller than the size of the object. Visible light cannot be used to produce
the image of atoms because its wavelength is too long. Electron beams found in electron
microscopes are generally too damaging to the fragile proteins to produce atomic images.
X-rays have short enough wavelengths to detect the atomic arrangement of a protein in a
crystalline state and their damage can be controlled.

However, using X-rays complicates the imaging process because they cannot be refocused
to produce an image. Only the amplitudes of the scattered X-rays can be measured. The
phases of the diffracted X-rays cannot be measured because of physical limits. Because
an X-ray lens does not exist, the X-rays are mathematically “refocused”, using a Fourier
transform. However, first, good estimates for the unmeasurable phases must be found. With
these estimates, the diffracted waves can be approximated, and then a Fourier transform can
mathematically “refocus” the approximate waves and produce an image of the crystallized
protein.

In short, X-ray crystallography comprises two main components: (i) an X-ray diffraction
experiment performed on a protein crystal to measure the intensities of diffracted X-rays;
and (ii) a mathematical and computational process to obtain sufficiently accurate phases.
For more information on X-ray crystallography, we refer interested readers to [11, 14].

2.2 The crystal

The very first step in X-ray crystallography is to grow a crystal of the target protein whose
structure is to be determined (which can be a difficult process by itself). The protein crystal
is a three-dimensional periodic arrangement of proteins in a certain solvent. A crystal can
be specified by a wunit cell, an imaginary parallelepiped that contains the basic repeating
unit of the crystal. Figure 1 is a schematic of the imaginary parallelepipeds or unit cells
that are stacked three-dimensionally in the crystal. The unit cells are defined by a set of
basis vectors, a,b,c € R?, that also define the parallelepipeds and a lattice known as the
real lattice. The lengths of the basis vectors are typically measured in Angstroms (A) where
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Figure 1: A schematic of a protein crystal with four unit cells delineated.

In X-ray crystallography, a convenient coordinate system is the so-called fractional co-
ordinate system that is defined relative to the basis vectors a, b and ¢. The fractional



coordinates x = (z,y, z)” correspond to the point v = (u,v,w)’ = za + yb + zc in Carte-
sian coordinates. Let A = [a b ¢] € R**3 be the transformation matrix from the fractional
coordinate system to the Cartesian one, then v = Ax and x = A~ !v. One possible choice

for A is

a bcosy ccos 8
A= 0 bsiny c¢(cosa—cosfcosy)/siny |, (1)
0 0 csin g3

where a, b, and ¢ are the lengths of the unit cell basis vectors a, b, and ¢, respectively, and
«, B, and v are the angles between b and c, a and ¢, and a and b, respectively.

An important concept in crystallography is crystallographic symmetry. Often multiple
copies of the molecule occur in the unit cell, related to each other through a set of so-
called symmetry relationships. Such a group of identical molecules are said to belong to a
space group. In a given space group, if the coordinates of one molecule are known, then the
coordinates of the rest can be calculated through the symmetry operators of the given space
group. For example, if a rotation of each molecule in the unit cell by 60 degrees about an
axis superimposes a copy of the molecule onto another, then a six-fold rotational symmetry
exists. The multiple copies of symmetry-related molecules are called symmetry mates.

Crystallographic symmetry is mathematically defined by symmetry operators, which
are linear operators that are represented by pairs of matrices and vectors for rotations and
translations, respectively. If S, € R3*3 and 54 € R3 define the gth symmetry operator
and x € R? are the fractional coordinates of one of the protein’s atoms, then the fractional
coordinates of the same atom in the gth symmetry related protein are x’ = Syx + s,.

A portion of the unit cell that contains the largest number of molecules, unrelated by
symmetry, is called the asymmetric unit; see Figure 1 for an illustration. An asymmetric
unit usually contains only one protein, occasionally two but rarely three or more.

2.3 The experiment, observed and calculated intensities

Observed intensities are measured from an X-ray crystallography experiment. After growing
a protein crystal, the crystal is rotated in an X-ray beam, and a detector measures the X-
ray diffraction pattern of the crystal that is commonly referred to as a set of observed
intensities. Because the crystal is periodic, there are directions in which the scattered X-
rays constructively interact so that the summation of the scattered X-rays produces a total
wave with a significant amplitude that can be measured as an intensity.

The observed intensities occur at points in a three-dimensional lattice known as the
reciprocal lattice because the molecules are arranged with respect to a real space crystal-
lographic lattice. The reciprocal lattice is specified by a set basis vectors: a*, b* and c*.
In general, the coordinates of a lattice point in reciprocal space is given by Bh, where
B = [a* b* ¢*], and h = (h,k,]) € Z3 are the indices that serve as a label for this lat-
tice point. The intensity “observed” at reciprocal lattice point h is denoted as I7. The
relationship between A and B, namely between the two sets of basis vectors for the real
and the reciprocal spaces, is B = A~ (see [14], for example). Figure 2 is a precession
photograph of some observed intensities from an X-ray experiment that occur on one layer
of the reciprocal lattice.



Figure 2: A precession photograph of some intensities from an X-ray experiment. The
intensities are the dark spots.

We denote the calculated intensity at reciprocal lattice point h as Iy, which is the
magnitude squared of the so-called structure factor Fy, at lattice point h. That is, If = |Fy|?.
The structure factor is a complex number defined by the formula

G N
Fy = ZZ fi(h) exp 2mih - (Syx; 4 s¢)], (2)

g=1j=1

where ¢ is the imaginary unit, G is the number of symmetry mates in the unit cell, (S, s )
represents the gth symmetry operator of the crystal, N is the number of atoms in the
protein, f;(h) is the so-called scattering factor of atom j at lattice point h, x; is the
fractional coordinate vector of the jth atom, and “” denotes the inner product in R3. In
fact, the structure factor is nothing but a Fourier coefficient of the electron density function
of the protein that is specified by the set of fractional coordinates {xj}é-v:l. In an ideal
situation free of modeling and experimental errors, Iy would be equal to I} at all reciprocal
lattice points given the correct set of coordinates.

2.4 The phase problem and warm start

As mentioned earlier, determining the phases of the scattered X-rays (i.e., solving the phase
problem) allows the protein’s image to be computed mathematically. Since only observed
intensities can be measured, the best one can hope for (in a mathematical sense) is to find
a set of atomic coordinates for the target protein from which the calculated intensities best
match those observed. Moreover, if a set of globally optimal atomic coordinates produce
the correct or nearly correct intensities, it is reasonable to expect that they also produce
correct or nearly correct phases.

From a mathematical perspective, the phase problem is a global optimization problem
in which the variables are the atomic coordinates of the target protein. Normally, a protein
contains around a thousand or more atoms. As a result, the phase problem normally has



around 3,000 or more variables. Moreover, objective functions that measure the discrepancy
between the calculated and observed intensities are invariably nonlinear, non-convex, and
highly oscillatory. Solving such a global optimization problem by today’s technology is
extremely difficult, if not impossible, without some additional information.

One common form of additional information is a good starting point, or warm start, that
is sufficiently close to a global optimum. With such a warm start, the chances of solving the
phase problem can be dramatically increased. Does such a warm start exist? Fortunately,
in many cases, if not most, the answer is “yes”. The answer lies in the Protein Data Bank,
or PDB [28], in which around 18,000 protein structures have been deposited as of May of
2002, thanks to decades of research in this field.

Since a protein often has some structural similarity to related proteins, for a given target
protein it is more likely than not that the structure of a related protein, a model protein,
has already been resolved. One way of attacking the phase problem is to approximate
the unmeasurable phases of the target protein by phases calculated from a model protein.
Then, the experimentally observed intensities and the phases computed from the model
can be used to compute a first approximation to the image (or more precisely, the electron
density) of the crystallized target protein. However, the model must have nearly the same
orientation and position as the crystallized target protein in order for the model’s phases
to be sufficiently accurate to produce a useful approximate electron density.

In the molecular replacement (MR) approach, such a model protein is rotated and
translated, as a rigid body, to map it onto the target protein. The quality of the mapping
can be judged by the agreement between the calculated intensities from the model protein
(for a given rotation and translation) and the observed intensities produced by the target
protein in the X-ray experiment. Obviously, the success of the MR approach depends on the
degree of similarity between the model and the target protein. The greater the similarity
between the two, the better the chance that the MR approach will succeed.

It should be mentioned that the linear amino acid sequence of the target protein is known
a priori for a MR problem. Given this sequence, one can search the PDB for a protein that
has a similar amino acid sequence. Similarity of the two sequences indicates that the two
may have evolved from the same genetic ancestor and are likely to be structurally similar.
For more information on this topic, see [8].

2.5 The MR Problem

The MR problem is a global optimization problem in which an objective function measures
disagreement between the observed and calculated intensities. The MR problem is a 6n-
dimensional (6nD) problem, where n is the number of molecules in the the asymmetric
unit of the crystal, as introduced in Section 2.2. The dimension in 6n because six variables
are required to position each of the n molecules in the asymmetric unit: three rotation
variables and three translation variables. However, MR problems are typically either 6D or
12D because n is usually equal to one or two.
The 6D MR problem can be written as

(éf}:i)relLf(I”,IC (0,1)), (3)

where L C R? x R? is the search region, 1°, I¢ € R™ are vectors of observed and calculated



intensities, © is a vector of three angles that specify a rotation matrix that rotates the model
protein, t is a translation vector applied to the model protein, and f(-,-) is a function that
measures the disagreement between the observed and calculated intensities. The calculated
intensities are functions of the rotated and translated coordinates of the model protein, thus
functions of (0, t), as indicated.

3 Current Approaches

Currently, there are basically two types of approaches for solving the MR problem: (i)
traditional approaches, which separately optimize the rotational and translational degrees
of freedom of the model protein, and (ii) higher-dimensional approaches, either 6D or 6nD,
which simultaneously optimize the rotation and translation of one or n copies of the model
protein in an asymmetric unit.

3.1 Traditional Approach

In 1962, Rossman and Blow [31] proposed that the MR problem be solved by two separate
searches: first a search to identify optimal rotations of the model, and then a search to
identify optimal translations of the oriented model. At that time, 6D searches were be-
yond the reach of available computing capabilities. Since then, traditional MR codes have
determined many molecular structures, but the method does have some drawbacks.

The optimization formulation of the traditional approach is to sequentially solve two
unconstrained 3D optimization problems, which can be formalized as follows. (For more
details, see [11, 31], for example.) First, try to find several approximate solutions, 0;, to
the following problem

: o (&
min R(I°,I°(6,0)), (4)
where the translation variable t is fixed at the origin, which is placed at the model protein’s
center of mass. Then, for each fixed ©;, solve

min T'(1°,1°(0;, t)). (5)
teR?
In the above problems, R and T" are objective functions that measure disagreement between
I° and I¢ and are commonly referred to as rotation and translation functions, respectively.
We emphasize that in the rotation search only one copy of the model protein can be used
to compute calculated intensities.

There are two main drawbacks of traditional approaches. First, for more difficult MR
problems (such as those with high degrees of symmetry), the lowest valued local minima of
traditional rotation functions often do not come close to the optimal rotation component
of a MR solution [22, 23, 35]. If a nearly optimal rotation is not found, then a nearly opti-
mal translation cannot be found, and the traditional method will fail. Second, traditional
methods typically require good model proteins whose structural similarities with the target
proteins must be relatively high. If such high-quality model proteins are not available, then
traditional methods become less reliable; for example, see [1, 3].



3.2 Higher-dimensional Approaches

With today’s computing capacities, more accurate formulations of the MR problem can be
used. To avoid the drawbacks associated with separately optimizing the rotation and trans-
lation of the model, 6D MR methods have been designed to simultaneously optimize the two
sets of MR variables. Recently, parallelized 6D grid searches [33] have been proposed that
rely on massive computing power; and both 6D and 6nD stochastic optimization approaches
[6, 23, 15] have been proposed, based on genetic or simulated annealing algorithms.

In contrast to traditional methods, 6D methods simulate scattering from all the sym-
metry mates of the model protein in the unit cell. This is possible because the translation
variables allow the symmetry mates to be positioned relative to each other. As such, the
calculated intensities of a 6D method can better match the observed intensities at a solution
to the MR problem. Evaluating a 6D objective function is more expensive than evaluating
traditional rotation and translation functions; however, the theoretically sound approach of
optimizing a 6D function should lead to a more reliable and robust solution process.

4 A New Global Optimization Strategy

As mentioned, MR objective functions are generally highly oscillatory and have a huge
number of local minima. To obtain a global minimum, a brute-force, 6D fine-grid search
is exceedingly time-consuming and requires massive computing power. On the other hand,
the performance of stochastic optimization methods, though satisfactory on some problems,
are generally unpredictable. Therefore, it is highly desirable and useful to construct a 6D
MR method that is relatively fast, affordable, reliable, and deterministic.

In a deterministic procedure for global optimization of a highly oscillatory function, it
is perhaps inevitable that a global search scheme must be used to gain information about
the function’s global landscape. Since a 6D fine-grid search is out of question because of its
prohibitively high cost, we will consider a coarse-grid search based on a so-called surrogate
function that is closely related to the “true” objective function but much smoother. In
order for this approach to be successful, a surrogate function must capture the global
behavior of the true objection function while not suffering from the curse of too many local
minima. In the context of the MR problem, a natural surrogate function is one defined by
a set of low-frequency intensities. Therefore, before we define the surrogate function and
our algorithm, we introduce the notion of resolution and frequency of the observed and
calculated intensities.

4.1 Resolutions and data sets

The resolution of an intensity Iy, is defined as 1/d*(h), where d*(h) is the quantity
d*(h) = || Bh|], (6)

where || - || is the Euclidean norm, and B = A= = [a* b* ¢*] as defined in Section 2.3. A
resolution range is specified by a pair of low-resolution and high-resolution cut-off values
that define a region in the reciprocal space between an inner sphere and an outer sphere.



In practice, a given objective function is always correlated to a set of intensities occurring
at reciprocal lattice points within a given resolution range; namely, it is evaluated only using
intensities, observed and calculated, within that range. As a result, the sets of observed and
calculated intensities used to evaluate an objective function can be defined as {I :h € Z}
and {I{ : h € T} for

1
d*(h)

where Rpign, Riow € R are the high-resolution and low-resolution cut-offs in A, respectively.
For example, in traditional methods, Ry, is normally set to 4A and Ry, to 15 A.

= {h: Rhigh < < Rlow } C ZB,

4.2 Spatial frequency of intensities

The observed and calculated intensities can be characterized in terms of spatial frequency.
For example, if an intensity occurs at a reciprocal lattice point close to the origin, then it
is a low-frequency intensity; otherwise, it is a higher frequency intensity. The frequency of
an intensity can be seen by expressing |F},| as the sum of cosine and sine functions.

Recall that the definition of the structure factor occurring at h is given by (2). The frac-
tional coordinates, x;, of the model protein result from applying rotations and translations
to the model protein as a rigid body; thus

x; = (A 1Q(0)A) %, + t, (7)

where X; is the initial, fractional coordinate vector of the jth atom in the model protein,
t € R3 is a translation in fractional coordinates, 2(©) is the rotation matrix in Cartesian
system corresponding to the angles of ©, and A € R**3 is the transformation matrix from
fractional coordinates to the Cartesian ones. The transformations between orthogonal and
fractional coordinates (A and A~!) are necessary in order to correctly apply rigid-body

rotations.
It follows from (2) and (7) that

FE(O,t) ZZf] exp[2mih- (S, (ATIQ(O)A%; +t) + s54)]. (8)
g=1j=1
Let F{(O,t) = Bn(0©,t) + iCn (0O, t). Then by definition
Iﬁ(@,t) = |F12(®7t)|2 = th(eat) + Ch?(eat)a
where
ZZ fj(h) cos 27 wp®],  Ch( ZZ fj(h) sin[27 wp¥],
g=1j=1 g=1j=1

and .
wn =h - (S, (ATIQO)AR; +t) + 5.).



The definition of the “angle” wy% indicates that the frequency of It is dictated by h. The
farther h is from the origin (hence the larger the integer components of h), the higher the
frequency of the cosine and sine functions; that is, the higher the “frequency” of the intensity
Ii. This frequency is observed when the model’s coordinates are rotated and translated
by Q(0) and t, thereby changing wy9. As a result, objective functions computed from
primarily high-frequency (or high-resolution) intensities will have more local minima that
those computed from primarily low-resolution intensities.

4.3 Surrogate and true objective functions

Our algorithm will evaluate a surrogate function and a more accurate, true objective func-
tion. To define these functions, we must define two sets of reciprocal lattice points, one that
defines a set of primarily low-frequency intensities and another that defines a larger set of
higher-frequency intensities. (Here we use the adjectives “low” and “high” rather loosely.)
The low-frequency intensities will be used to compute the surrogate function, while the
high-frequency ones will be used to compute the “true” objective function.

More precisely, we define two index sets

T = {h: Rfin < < RF } k=12, (9)

d*(h)
where Rﬁi gh and Rfow, k = 1,2, define the resolution ranges such that
0< R%Ligh < Rflbigh < Rl20w < Rllow'

The index set Z; will define a set of low-frequency intensities and Zs a set of high-frequency
ones, where Z; C 7, in general. Normally, we choose R,Zw- gh O be close to the highest resolu-
tion of the observed data, and Rfow = Rllow to be the lowest resolution available. The choices
of these “algorithmic parameters”, especially R}”-gh, are important to the performance of
our algorithm, and thus require careful consideration.

For notational convenience, let u = (©,t) € R®, and let a function f(w(u),w°) be given
where w(u) and w® are two vectors of the same length whose elements are indexed by a set
of h € Z3 in an identical order. We use w(u) and w® in place of I¢(u) and I°, respectively,
to allow the flexibility of using some other quantities. Then we define two new functions
associated with f and Zj:

fe(w(u),w’) = f{wn(u) : h € I}, {wy, : h € I} }), k=1,2. (10)

The low-frequency function f; will be our surrogate function, while the the high-frequency
function fy will be the “true” objective function. The smoothness of the surrogate function
depends on how many higher-frequency intensities it uses. The fewer the higher-frequency
intensities it has, the smoother the surrogate function is, but also the less alike it is to the
true objective function.

4.4 Algorithm for the new strategy

Now we are ready to describe our algorithm, named SOMoRe which stands for Search and
Optimization for Molecular Replacement.

10



Algorithm SOMoRe: Given an objective function f(-,-), select index sets Zy, k = 1,2, a
set G of 6D grid points, and positive integers M; and Ms. Let fi, & = 1,2 be defined as
in (10).

Step 1. Evaluate the surrogate function fi(w(u),w®) at every point in G, and save the

My points u;, 1 = 1,...,M;, corresponding to the M; lowest function values of
fi(w(u), w?).
Step 2. Use {u;,i =1,...,M;} as the starting points for local minimization of the objec-

tive function fo(w(u),w?), and save the My local minima corresponding to the M,
lowest function values of fo(w(u), w?).

Step 3. Perform post-processing on the Ms best local minima, including examination of
free-function values and crystallographic packing checks, which will be defined in
sections 5.4 and 5.5, respectively.

The precise definitions of the entities in the algorithm, such as 7y, My, and G, as well
as the local optimization and post-processing components, will be given in the next two
sections.

We emphasize here that the grid G, will be a function of R,lw- gh the high-resolution
cut-off of the index set Z; that defines the low-frequency surrogate function f;. For an
appropriately chosen resolution range, fi(w(u),w?) will have a smoothly varying landscape
since it is computed from primarily low-frequency intensities, and at the same time will still
capture the global behavior of the objective function fo(w(u),w?). As a result, a coarse-grid
search can be used to sample of the variable space in a relatively short amount of time to
provide good starting points for the local optimization of the true objective function.

Due to the way the starting points are chosen in the algorithm, our local optimization
efforts will be focused on regions of the MR variable space where MR solutions are more
likely to exist. In comparison, either traditional methods or straightforward 6D searches
exhaustively sample a uniformly fine grid. Also in comparison, 6D stochastic methods rely
on random sampling of the variable space.

4.5 Distinct features of the new approach

We consider the following three features of our algorithm to be notable: (i) use of low
resolution data, (ii) use of a low-frequency surrogate function, and (iii) use of extensive
local optimization. The first two features are of course closely related.

In MR practice, normally only medium to high-resolution data are used. The use of
low-resolution data and a coarse-grid search is quite atypical. Low-resolution data are not
commonly used because (i) their measurement can be slightly more involved (but certainly
measurable) [12], and (ii) low-resolution intensities are considered to be less accurate because
they are more sensitive to the effects of the crystal’s solvent exterior to the protein, (see
[12], for example). Perhaps more importantly, low-resolution intensities have not provided
computational success when used with the traditional approaches [3].

A grid search of a 6D, high-frequency objective function requires a very fine sampling
of the variable space, hence and a massive amount of computation. This is the driving

11



motivation for us to use a surrogate, low-frequency objective function in a more afford-
able, coarse-grid search. In this respect, the proposed new approach is very different from
mainstream MR approaches.

There indeed already exist a few early works in the 1980’s in which low-resolution data
and coarser-grid searches were utilized to reduce the run time of higher-dimensional searches
[29, 30]. However, such coarse searches, in a space of dimension greater than three, do not
appear to have been embraced by the X-ray crystallography community at large. The
aforementioned works are the only ones that we are aware of in which higher-dimensional,
coarse-grid searches of low-frequency objective functions were reported to have succeeded
in solving some MR problems.

One possible reason for such a lack of success by coarse-grid searches using low-resolution
data is that a coarse-grid search alone is unlikely to identify a MR solution, as we will show
later. When the grid is coarse, then it is likely that no grid point is close enough to a
global minimum to produce a function value that is low enough to stand out in comparison
to all the other function values evaluated. Moreover, the grid point corresponding to the
lowest objective value is most likely not near an MR solution unless the model is nearly
perfect. Thus, local optimization of many of the lowest-valued grid points found during the
coarse-grid search, for example, between 500 to 1000 points, is essential for success. Such an
extensive local optimization is an integral component our new strategy which shifts much
of the emphasis of most MR methods from a grid search or searches to local optimization.
In this respect, the new strategy is also very different from the strategies of current MR
methods.

We note that the use of a 6D formulation and the use of low-resolution data go hand to
hand. Not only will the calculated intensities be more accurate in a 6D formulation, but also
evidence indicates that traditional objective functions perform poorly when low resolution
data are used. Briinger and his co-workers reported that if predominantly low-resolution
data were used, then the global minima of a commonly used traditional objective function
were unlikely to correspond to MR solutions [3]. Furthermore, in [21] the author demon-
strates that a commonly used 6D objective function is more accurate than its traditional
counterpart when low-resolution data are used.

5 Implementation

In this section, we present a general discussion on several important issues about the im-
plementation of Algorithm SOMoRe (for more details, see [21]), including the choice of
an objective function and the specifics of the coarse-grid search, local optimization, and
post-processing.

SOMoRe was implemented by modifying the freely distributed MR program Queen of
Spades (Qs), which was developed by Glykos and Kokkinidis [15], because the code had
many of the required front-end and calculation components, including an efficient structure
factor calculation. The simulated annealing component of Qs code was replaced by the
implementation of our algorithm.

12



5.1 Objective function: Correlation Coefficient

Many objective functions have been devised to measure disagreement between the observed
and calculated intensities [6, 32]. A practical issue in choosing an objective function is
scaling. Since the observed intensities are measured on a relative scale, the calculated
intensities must be multiplied by a unknown scalar in order to match, in the best case, the
observed ones. For some objective functions, such as the least squares function, this scaling
factor must be determined as a variable.

The following correlation coefficient [19] is often used because it is scale invariant, mean-
ing that it does not depend on the scaling factor. It is well known that “scaling insensitivity
is very important when high-resolution data are not available and an accurate scale factor
cannot be obtained” [13].

The correlation coefficient function can be written as follows (which may differ slightly
from other definitions):

T S (Tg(u) — (I°(u)) )(Ig — (I°) )
C(I¢(u), I%) = :
(S (Ig(u) = (I¢(u)) )22 (S (Ig - (10) )27

where Ip, It (u) are the observed and calculated intensities occurring at the lattice point
h, ", is the summation over all h in the resolution range, and (I°) and (I¢) are the
average values of the observed and calculated intensities, respectively; (I°) = >, I} /m
and (I¢) = >, If/m, where m is the number of observed and calculated intensities. The
correlation coefficient can also be written as

(11)

w(uw)w®

R POl

1 — cos (w(u), w’), (12)

where w(u) and w° can take one of two forms depending on whether k£ =1 or 2:
w(u) = [F(uw)* = (|[F(u)|*) and w® = |F°|* — (|F°|"). (13)

The power of k = 2 (not superscript £ = 2) means that the objective function is evaluated
using intensities. An alternative is to use the magnitude of the structure factors, which
corresponds to using £ = 1. Since the latter choice often gives more satisfactory results,
most of the results presented in the next section were obtained using £ = 1. Further
discussions on the performance of the two functions defined by the two data sets can be
found in [21]. Finally, because we wish to pose the MR problem as a minimization problem,
the objective function is f(w(u),w®) =1 — C(w(u), w?).

5.2 Global search

The first step of the new strategy is a coarse global search, which is defined by a set grid
points that sample the variable space. The grid points, p; = (0;,t;), j = 1,2,---, are
determined by the step sizes in the MR variables.

The sampling of rotation space is in terms of Lattman angles using the so-called optimal
Lattman sampling because it samples the rotation space more uniformly than Eulerian
angles [25]. When a constant Eulerian sampling is used, the unit sphere is sampled finely at

13



the poles and coarsely at the equator [25]. If the optimal Lattman sampling is used instead of
a constant Eulerian sampling, then the number of rotational grid points evaluated decreases
by a factor of 2/m [25]. As mentioned, the step lengths of the Lattman angles that define
the coarseness of the grid search are functions of the high-resolution cut-off of the data set
used. For the definitions of the Lattman angles and their step lengths, see Appendix A.

The sampling of translation space is in terms of fractional coordinates. The step sizes
are also functions of the high-resolution cut-off, R,lu. oh:

Aty = Rilzigh/(?’a)v Aty = Rilzigh/(?)b)v and At = Rilzigh/(?’c)v (14)

where division by a,b, and ¢ converts units of Angstroms to fractional units. The larger
R,lw- oh is, the larger the step size and the lower the frequency of the surrogate function.
These are the step sizes used in X-PLOR Version 3.1 [2]. Finally, the 6D sampling can be
achieved by six nested loops.

5.3 Local Optimization

The local optimization method implemented in SOMoRe is the BFGS quasi-Newton method
(see [9], for example). We choose the BFGS method because an analytic expression for the
Hessian of C'(I¢,1°) is not readily available (since function evaluations involve fast Fourier
transform and interpolations; see [6] for more information). For the same reason, we use a
finite difference gradient calculation.

In addition, we implement two line searches: the standard Armijo backtracking line
search and a specialized line search scheme. The former is used whenever the norm of
the search direction is less than or equal to 0.5, which occurs in most iterations, and the
specialized line search is always used for the first iteration.

In most cases, the Armijo backtracking line search works very well. However, several
instances were observed when the search direction was very large. For such large directions,
if a full BFGS step is taken, then the next iterate would be far from the good local neighbor-
hood determined by the global search. In particular, this troubling behavior was observed
for starting points that were close to a MR solution. However, once the more specialized
line search was implemented for such large search directions, these iterates converged to the
nearby MR solution.

The specialized line search scheme begins with a very small step length and then incre-
ments this step length until an increase in function value is detected. As such, it locates
one of the first, if not the first, local minima along the given search direction. A pseudo
code for this special “first minimum line search” is given in [21].

Finally, because these line search schemes do not necessarily satisfy the Wolfe conditions
(see [27], for example), we skip an update whenever we detect that the positive definiteness
of the Hessian approximation is not guaranteed. In our computation, however, such skips
are quite infrequent.

5.4 Function values and “free” values

In MR, researchers primarily rely upon the examination of a number of rotation-translation
pairs that have the lowest objective function values. Ideally, a researcher would hope that
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the lowest function values reported by a MR code correspond to solutions of the MR prob-
lem. In addition, the greater the contrast between the lowest functions values and remaining
function values, the more confidence the researcher will have on the probability of having
indeed obtained solutions to the MR problem [1, 26].

However, often objective function values alone are not discriminating enough to delineate
solutions from non-solutions. This is the case especially when the quality of the model
protein is not sufficiently high. A common remedy for this situation is the use of so-called
free values — function values that are computed from a small percentage of intensities set
aside for the purpose of cross-validation; see [15, 17], for example. Using SOMoRe, we
randomly select 10% of the data, in each resolution range, to be set aside for free value
calculations.

5.5 Crystallographic packing check

In reality, symmetry mates of a protein never overlap in the unit cell of a crystal. This
fact can be used to check the correctness of MR solution candidates by a procedure known
as a crystallographic packing check. A solution candidate can be dismissed if the so-called
“packing of the model” in the crystal has some symmetry mates that inter-penetrate each
other. To determine whether two symmetry mates are inter-penetrated, we compute every
intra-atomic distance and then compare them to a threshold to see if any distance violations
occur, that is, inter-atomic distances smaller than the threshold. This a posterior: packing
check is described in [21] and [35].

6 Test Problems and Results

In this section, we describe a set of four test problems and numerical results produced by
SOMoRe on these problems.

6.1 Test problems

SOMoRe has been tested on a number of problems, but we consider four test problems to
be the most meaningful and representative: one has a very good model, two have either
defeated or severely challenged traditional MR software, and one simulates a range of models
that are complete to only 37% complete.

All test problems were taken from articles that introduce new MR software. (References
are provided in the discussion of the results.) Overall, these problems are designed to answer
two questions: (1) is our new approach more effective than traditional approaches on difficult
MR problems? and (2) how incomplete can the model be and a MR solution still be found?

We summarize the information for the four test problem in Table 1. For each test
problem, there is one molecule in the asymmetric unit so each problem is 6D. The first-
three columns of the table are self-explanatory.

In the fourth column, the number of symmetry operators is listed because the time
required to calculate an intensity is determined by the number of symmetry operators.
In addition, MR problems involving crystals with high symmetry, that is, with symmetry
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Table 1: Test Problems. The number of atoms does not include hydrogen atoms.

problem name Name of No. of | No. of translation optimal
(PDB ID protein atoms | sym. ops range RMSD (A)
1AKI lysozyme 1,001 4 sax 3b x e 1.2
1CGN cytochrome ¢’ 953 12 axbx %c 1.27
1B6Q Rop 575 4 taxibx e 0.2
6RHN histidine 878 8 saXx zbx rc 0.3

specified by a large number of symmetry operators, are typically more difficult for traditional
approaches than those with lower symmetry [1, 15, 35].

In the fifth column, we list the translation range for each problem. Due to crystallo-
graphic symmetry, the domain of the translation variables is often a proper subset of the
unit cell, known as the Cheshire-group unit cell [20]. For example, for problem 1CGN,
it is only necessary to search half way in the c-direction (or z-direction in the fractional
coordinates).

The sixth column gives the so-called “optimal” Root Mean Squared Deviation (RMSD).
In general, an RMSD is a norm measuring the deviation of two structures. Because each
test problem uses experimental data for which the crystal structure has already been solved
and deposited into the PDB, we can compute the RMSD between the coordinates of the
reoriented model protein produced by SOMoRe and the coordinates of the target protein,
which is known to us, and compare it to the optimal RMSD. The definition we use to
compute an RMSD is given in Appendix B.

The optimal RMSD values in Table 1 are taken from the literature and are an estimate
of the smallest possible RMSD between two structures, computed by different methods.
(See [18, p.601] or [37], for example.) In the case that the model and the target structures
are the same, then the optimal RMSD should be zero. However, typically the model and
the target structures are different so the optimal RMSD is positive.

6.2 Resolution ranges and computed solution

Since the larger the high-resolution cut-off, the larger the step sizes defining the 6D grid,
and the faster the grid search, it is important to know approximately the largest possible
high-resolution cut-off that will still allow the surrogate function to identify good starting
points.

To test the robustness of our algorithm, for each test problem we performed two global
searches: one using data between oo and 8A and another using data between oo and 10A,
except the 10% data that has been set aside for computing free values. We will refer to
these two search as an 84 search or a 104 search, respectively. All available low-resolution
data are used, as specified by the low-resolution cut-off of co. After each global search, local
optimization is performed using data between oo and 4A. In terms of our algorithm, these
resolution cut-off values are

1 1 2 2 _
Rhigh =8, Ry, = 00, Rhigh =4, Rj,, = .
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Now we introduce a precise definition for a computed solution. We will call a global search
successful if after optimization a minimum is found that has an associated RMSD within
.75A of the optimal RMSD. In addition, it is successful only if this RMSD is associated
with a minimum that is either the lowest valued minimum or the lowest valued minimum
after other minima are ruled out because they produce relatively high free values or bad
crystallographic packing. Therefore, a minimizer that produces a repositioned model that
has an RMSD within .75A of the optimal RMSD is a computed solution.

There are many other issues, some biological and some computational, that we choose
not to discuss in this paper because of space limitations and other considerations. For more
details on our numerical experiments, we refer interested readers to [21].

6.3 Results for test problem 1AKI

Problem 1AKI was taken from articles [15] and [17]. The data are the observed intensities
deposited with the coordinates of the protein lysozyme from chicken-egg-white (PDB ID
1AKI). The model is lysozyme from quail (PDB ID 2THL). The optimal RMSD is reported
to be 1.2A [15, 17].

The 8A global search was successful. However, the 10A global search was not. During
the 8A search, the points that produced the 1,000 lowest function values were identified
and used as starting points for local optimization. Of these points, the closest grid point to
a global minimum was the 108th lowest valued point. This point had the lowest RMSD of
2.11A.

During multi-start local optimization, the starting points with the four lowest RMSDs
converged to local minima with associated RMSDs of 1.01A. Furthermore, when the result-
ing 1,000 local minima were ranked in ascending order according to their function values,
the minima with associated RMSDs of 1.01A were at the top of the list of local minima,
where they are expected to be.

The leftmost bar chart in Figure 3 shows the “true” objective function values of the
starting points (light gray bars) that converge to the 30 lowest valued minima and the
function values of the 30 minima (dark gray bars). In addition, the right most bar chart
in Figure 3 shows the corresponding RMSDs, demonstrating that the lowest valued local
minima are solutions. The white bars in the RMSD bar chart indicates that the RMSD
increased as a result of optimization by the height of the white bar. Most importantly,
an increase in RMSD has not been observed when an starting point is close to a solution.
For every bar chart, the horizontal axis is the function value rank of the minima when the
function values are ranked in ascending order.

6.4 Results for difficult problems

These two test problems are problems that either could not be solved using traditional MR
software or the solution to the problem was not immediately obvious using such software.

6.4.1 Test problem 1CGN

Problem 1CGN was taken from [23]. The data are the observed intensities deposited with
the coordinates of a protein known as cytochrome ¢’ from a bacteria (PDB ID 1CGN).
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Figure 3: Local optimization results from an 8A global search for 1AKIL. Bar charts
indicating function values and RMSDs before (light gray) and after optimization (dark
gray). The contrast in function value between the first four points and the fifth is an
accurate indicator that the remaining minima are not solutions.

The protein crystallized with twelve symmetry mates in the unit cell, that is, with high-
symmetry. The model is a part of another cytochrome ¢’ from a related bacteria (PDB ID
2CCY), which was one of the models used in the original structure determination.

The optimal RMSD between 2CCY and 1CGN is somewhat high in comparison to the
other optimal RMSDs. In this respect, the model was poor. We estimate that the best
possible RMSD between 2CCY and 1CGN to be 1.27A, using the optimal RMSDs cited
between 2CCY and 1CGO [1] and between 1CGO and 1CGN [10]. Our RMSDs calculations
are similar to those described in [1]; for more information, see [21].

The original determination of this protein structure required a great deal of extra effort
and supplemental information. The first attempts at solving the structure using traditional
software were unsuccessful. X-PLOR [2] failed, and the rotation function of the MR program
ALMN [7] produced “no convincing” solution [1]. Subsequently, searches using AMoRe [26]
were performed using four models and two different resolution ranges, 10 to 4A and 15 to
3.5 A, with the “expectation [being| that the correct solution would appear in most, if not
all, of the experiments, . . . even if it was not necessarily the top solution in each case”
[1]. However, this too proved to be unsuccessful. In the end, Baker et al. did solve the
problem using AMoRe but not without using considerably more information and additional
techniques [1].

SOMoRe was successful using both an 8A search and a 10A search. We present only
results for the former (even though the results for the latter are more impressive). Figure
4 shows the function values of the 40 lowest valued local minima. The function values
themselves are not discriminating, so we need to consider the free values that are shown in
the top bar chart of Figure 5. In this chart, sixteen minima have low free values. The local
minima with relatively high free values should be ruled out from consideration.

If the distance violations of these sixteen minima, calculated from packing checks, are
taken into consideration, every minima except two can be ruled out, as the middle bar chart
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Figure 4: Function values before (light gray) and after optimization (dark gray) of 8A
global search results for 1CGN.

in Figure 4 shows. The other minima produce inter-penetration of the symmetry mates that
was detected by the packing check, which used a distance threshold of 2A. In fact, the last
two remaining minima are solutions with RMSDs of 1.38A, as shown in the bottom bar
chart.

Two inter-penetrated symmetry mates, which have fourteen distance violations, are
shown in Figure 6. These symmetry mates correspond to the second distance violation bar
in Figure 5, which is associated with the fourth lowest valued minima.

6.4.2 Test problem 1B6Q

Test problem 1B6Q appears in [17]. The data and accurate model were both supplied to
us by Nicholas Glykos [16]. The target structure is a small protein composed of two helices
(PDB ID 1B6Q). The search model is an “essentially perfect” polyalanine model [16]. The
optimal RMSD between this model and 1B6Q is reported to be less than 0.2A [17].

However, Glykos and Kokkinidis report that even though the “search model is excep-
tionally accurate and the data of high quality, conventional methods [program MOLREP]
could not identify the correct solution during the default run” [17]. In general, this MR
problem is more difficult for traditional approaches to solve than 6D approaches because
the molecule has an elongated shape and the crystal contains relatively little solvent, only
30%. Traditional approaches are known to have difficulty on MR problems that involve
such molecules [1, 6, 17] and crystals [6, 15, 33, 35]. These difficulties essentially arise be-
cause traditional approaches split the MR optimization problem into two three-dimensional
problems [15, 21, 23].

In contrast, SOMoRe efficiently finds a solution to this MR problem, using either an
8A or a 10A search. The leftmost bar chart of Figure 7 shows the function values of the
lowest valued minima found by optimizing 500 starting points that were identified by the
8A global search. The function values of the starting points that converged to these minima

19



Free values of 40 lowest function values

0 10 20 30 40
Function Value Rank

N
o

[EEN
(S]]

[ERN
o

distance violations

(9]

20 30
Function Value Rank

RMSDs of 40 lowest function values

Angstroms
= = N
N (o] N o)) o

OO

10 20 30 40
Function Value Rank

Figure 5: Free function values, distance violations, and RMSDs from optimization of 8A
search results for 1ICGN, showing that the MR solution can be found if only minima with
low free values and no distance violations are considered.
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Figure 6: Two inter-penetrated symmetry mates of the repositioned model 2CCY. The
lines trace the backbone of the protein, and the atom pairs that have inter-atomic distances
smaller than the threshold are indicated by the large dots.

are also depicted. The rightmost bar chart in Figure 7 show the corresponding RMSDs of
these minima and starting points. One can clearly see that there is a jump, or contrast, in
the function values that accurately distinguishes solutions from non-solutions.

6.5 A test problem using incomplete models

Test problem 6RHN is defined in [23] and [24]. This test problem is designed to determine
how much of the model protein can be removed without preventing the MR, problem from
being solved. In the first article, the 6D stochastic approach EPMR is compared to the
traditional approaches X-PLOR and AMoRe. In the second article, the relationship between
increased model truncation and decreased search efficiency of EPMR is discussed.

For this MR problem, the model is the polyalanine part of a histidine protein from a
rabbit (PDB ID 4RHN). The data are the experimentally observed structure factor mag-
nitudes deposited with the coordinates of the same protein (PDB ID 6RHN), except these
coordinates were determined from a crystal with different symmetry. The optimal RMSD
between the polyalanine parts of 4RHN and 6RHN is cited as 0.30A [24].

In both articles, the polyalanine part of 4RHN is truncated. In the first article, amino
acids are truncated either by five or six amino acids at a time from the initial model that
contained 104 out of 115 amino acids [23]. As a result, an approximate upper bound
was determined for the maximum amount of model truncations that EPMR, X-PLOR and
AMoRe could tolerate and still find a MR solution. In the second article, amino acids were
removed from the model one at a time until EPMR could not find a solution; that is, the
highest correlation coefficient obtained after 100 searches by EPMR did not correspond to
a solution.

SOMoRe was similarly tested, using an 8A search, on models that contained: 104, 99,
93, 88, 82, 77, 71, 66, 60, 55, 49, and 44 amino acids or residues. Because the 8A search
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Figure 7: Function values and RMSDs before (light gray) and after optimization (dark

gray) of the 8A global search results for 1B6Q.

Table 2: Maximum amount of model truncation tolerated by MR methods

No. of amino acids in the | Truncation of the model
MR code least complete model (115 amino acids)
SOMoRe 42 63%
EPMR 44 62%
X-PLOR ~ 62 ~ 46%
AMoRe ~ 67 ~ 42%

was successful using the polyalanine model containing 44 residues and because the least
complete model that EPMR could use to solve the MR problem contained 44 residues, the
model containing 44 residues was truncated one residue at a time until SOMoRe failed.

The least complete model that allowed EPMR to succeed contained 44 residues [24],
while the least complete model that allowed X-PLOR. and AMoRe to solve the problem
contained approximately 62 and 67 residues respectively [23]. In comparison, SOMoRe
finds a solution to the MR problem using a model containing only 42 residues. The number
of residues for X-PLOR and AMoRe are approximate because the polyalanine models for
X-PLOR and AMoRe could be truncated by approximately 40% and 35%, respectively,
where 100% of the model is the first 104 residues of 4RHN [23]. Table 6.5 summarizes these
results.

Furthermore, according to the second article [24], if the search model has been truncated
by 60% (leaving a 46 residue polyalanine model), then the search efficiency for EPMR is
approximately 5% (i.e., 5 out of 100 runs were successful) [24]. In contrast, SOMoRe’s
search efficiency using the 44 amino acid model is 100% because it is deterministic rather
than stochastic.
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6.6 Summary of results

SOMoRe was successful on every test problem. Table 3 lists the RMSDs of solutions found
by SOMoRe and the optimal RMSD from the literature.

Table 3: The Best RMSDs computed for each test problem, showing that the new strategy
successfully solved each problem. For test problem 6RHN, the best RMSD computed when
the least complete model was used was 0.95 A.

problem name/ | best RMSD optimal
PDB ID computed (A) | RMSD (A)
1AKI 1.01 1.2
1CGN 1.38 1.27
1B6Q 0.39 0.2
6RHN 0.32 (0.95) 0.3

In our tests, the grid points associated with the lowest RMSDs are generally not at
the top of the list produced by the first step of the SOMoRe algorithm. This is so not
only because the low-frequency surrogate function is not as accurate as its high-frequency
counterpart, but also because the grid search is a coarse sampling of the variable space
which cannot guarantee that grid points will lie very close to a global minimum. The test
results demonstrate the necessity of extensive local optimization to increase contrast in
function values so that MR solutions can stand out amongst non-solutions. In practice, an
accurate ranking of solution candidates is essential; otherwise a researcher would be forced
to carefully investigate a large number of solution candidates in order not to miss a solution.

In general, run time is a function of the number of intensities in the resolution range,
and the number of symmetry operators. The more symmetry mates in the unit cell, the
larger the unit cell, and the longer the run time because the step lengths in the MR variables
are inversely related to the average length of the unit cell basis vectors. In addition, the
larger the unit cell, the smaller the spacing of the diffraction pattern and the more data in
a given resolution range.

The run times for SOMoRe are quite reasonable given that 6D searches are performed,
as shown in Table 6.6. All experiments were run at Rice University on a 300MHZ R12000
processor of an SGI Origin2000 machine. Table 6.6 lists run times for both 8A and 10A
searches. In Table 6.6, the asterisk following 1AKI indicates that the 10A search was
unsuccessful. The run times for 6RHN are the average of all run times over the range of
incomplete models. In Table 6.6, the third column lists the number of intensities in the
prescribed resolution range; the fourth column gives one of the angular increments in the
search grid; M; is the number of starting point in the local optimization; and the meanings
of the other columns should be clear. As can be seen, the time for local optimization is
almost negligible in comparison to that of global search. Another observation is that while
8A search is safer, 10A search can be much faster. For example, ICGN was solved in a little
over one day in 10A search, while it took the 8A search almost nine days.

Finally, to show the efficiency of our approach over a straightforward 6D fine-grid search,
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Table 4: Global search and optimization run times for each test problem.

Prob. No. of No. I} No. function | Search time Opt. time
name | sym. ops. | co-8A | A6, evaluations (hrs.) M, (min.)
1AKI 4 143 8.7° 21,919,248 3.35 1,000 49
1CGN 12 99 4.8° 747,367,992 213.36 1,000 102
1B6Q 4 72 8.9° 16,720,896 1.25 500 9
6RHN 8 165 6.2° 58,832,256 19.14 1,000 111
oo-10A

1AKT* 4 70 10.9° 5,982,075 0.45 1,000 49
1CGN 12 45 5.9° 210,458,470 27.12 1,000 98
1B6Q 4 41 | 11.2° 5,104,190 0.22 500 10
6RHN 8 86 7.7° 18,286,653 3.08 1,000 114

Table 5: Estimated run times for fine 6D global searches of objective functions computed
using all data between oo and 4A.

Prob. | No. of I{ No. of function Estimated search
name co4A | Al evaluations | Factor time (days)
1AKI 1133 4.4° 1,317,513,600 | 476.2 67

1CGN 727 2.4° | 43,360,941,130 | 426.1 3,788
1B6Q 515 4.5° 1,009,536,576 | 431.9 22

6RHN 1168 3.1° 3,584,438,784 | 431.3 344

we estimate the run time for a 6D fine-grid search of an objective function that is computed
using data between co and 4A. Because SOMoRe calculates the structure factors according
to the method described by Chang and Lewis [6], the run time is linear in the number of
reflections [17] and in the number of grid points. (The structure factor calculations are
identical to those implemented in the MR program Qs [15, 17].) Thus, to compute the
estimated run time, we determine go, the number of grid points that would be in such a fine
search, and ds, the number of intensities in the resolution range oo to 4A (both of which
are computed by SOMoRe). Then, for each problem, we compute

d
factor = g2 &2

g dy’ 5)

where ¢; is the number of grid points in the 8A global search grid and d; is the number of
intensities in the resolution range co and 8A. Finally, we multiply the run time for the 8A
search by (15) and list the results in Table 5. Obviously, 6D fine-grid searches using high-
frequency objective functions are still out of reach for most problems, unless a massively
parallelized search is performed.
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7 Conclusions

Our strategy was able to successfully and straightforwardly solve all test problems, including
two that could not be directly solved by traditional codes and one with a less complete model
than required by three other codes. These results suggest that the new global optimization
method can extend the applicability and improve the robustness of the MR methodology.

The strengths of our method lie in the effective use of low-resolution data and a low-
frequency surrogate function, and in the novel integration of a coarse-grid global search
and multi-start local optimization. Unlike traditional methods, our method spends more
computational effort in promising areas of the variable space where solutions are more likely
to occur. Also, unlike stochastic 6D methods, our method is deterministic in nature. We
predict that as computing resources improve, more accurate and robust approaches such as
ours will become increasingly more attractive to the X-ray crystallographic community not
only for solving more difficult problems, but for general use as well.

More recently, we have just used SOMoRe to solve a new protein structure that has not
been previously determined by any other method. The lowest valued local minimizer found
by SOMoRe is indeed a solution verified by inspection of electron density maps. The protein
structure is currently being refined at the atomic level by researchers at the University of
Wisconsin-Madison.
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A Lattman Angles

Lattman angles are defined in terms of Eulerian angles, which represent consecutive counter
clockwise rotations about three axes. We choose the convention used by Rossman and Blow
[31]: 6; is a rotation about the z-axis; f5 is a rotation about the z’-axis, the rotated z-axis;
and 03 is a rotation about the z'-axis, the rotated z-axis. As a result, the Eulerian rotation
matrix 9(01, 02, 03) 18

— sin @7 cos 69 sin 3 + cos 01 cos 05 cos 4 cos 05 sin 03 + sin #; cos 3 sin 0, sin 03
— sin @4 cos 6 cos 03 — cos 01 sin O3 cos 01 cos 0 cos O3 — sin 01 sin O3 sinfy cosf3 | ,
sin 64 sin 09 — cos 01 sin Oy cos 05

and Q0 + m, —02,05 + 1) = Q(01, 05, 03).
Lattman angles, 87,6, and 6~, have the following simple relationship with Eulerian
angles:
6" =01 + 05, 02 = 0o, 0~ =0, — 0s. (16)

To produce all possible rotations of the model, the ranges of the angles are
0<6" <m, 0<6y<m, and 0<6 <2
Moreover, Lattman determined the optimal sampling of Lattman angular space to be:
AOT(03) = Aby/ cos(02/2), A0 (03) = Aby/sin(02/2),

where Afy remains constant during the global search [25]. The definition of Afy used by
SOMoRe is
ABy = 2arcsin (Ry;,,/(2(a + b+ ¢)/3)), (18)

where Rflngh is the high-resolution cut-off of the data set. This is also the definition used
by CNS Version 1.0 [4].

B Root Mean Squared Deviation (RMSD)

Let {x;}) be the fractional coordinates of the model protein after it has been rotated and
translated where x; € R**Y contains the coordinates of the jth atom as in (7). In addition,
let {y;} be the fractional coordinates of the known target structure where y; contains the
coordinates of the jth atom. Then, we define the RMSD to be the minimum of all RMSDs
computed between the known target structure and the symmetry mates of the repositioned
model structure, namely,

1/2

N
. 1 2
RMSD = g:IR}II’G N E ‘ |Ay; — A(Syx; + s4)|| )
]:

where N is the number of atoms being compared and G is the number of symmetry mates
in the unit cell. We define the RMSD as such because a rotation-translation pair identified
by a MR method may map the model structure onto any one of the symmetry mates of the
known target structure.
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In addition, some of the symmetry mates may end up in unit cells other than the unit
cell of the target structure. Therefore, before calculating the RMSD, each symmetry mate
should be moved an integer number of basis-vector translations so that it is the closest
symmetry mate of its kind to the target structure to ensure the RMSD will be as small as
possible. A pseudo code for determining the closest symmetry mate is presented in [21].
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