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THE WAVELET TRANSFORMS AND
TIME-SCALE ANALYSIS OF SIGNALS

RAMESH A. GOPINATH

Abstract

Orthonormal wavelet bases provide an alternative technique for the analysis of non-
stationary signals. Unlike the Gabor representation, the basis functions in the wavelet
representation all have the same bandwidth on a logarithmic scale.

This thesis develops a general framework for the time-scale analysis of signals. In
this context, the ON wavelets form a subclass of DWT wavelets. Efficient algorithms
for the computation of the wavelet transforms are also developed.

As an application, we discuss the problem of detection of (wideband) signals
subjected to scale-time perturbations. The probable unknown parameters for scale-
time perturbed signals are the gain, and the scale and time perturbations. This
problem is set in the context of classical composite hypothesis testing with unknown
parameters, and depending on what the unknown parameters are, one of the wavelet

transforms, developed is shown to naturally lead to a detector.
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Chapter 1

Introduction

For many signal processing applications the representation of a signal in the time or
the frequency domain is not adeguate. One needs to study the frequency content in a
signal locally in time. In such cases a mixed time-frequency representation is desirable
and sometimes necessary [10]. Typically such time-frequency representations are
useful in the analysis of non-stationary or time-varying signals like speech [8], music,
seismic signals [19], underwater acoustic signals [13] etc. In the past a number of time-
frequency representations like the Short Time Fourier Transform (also referred to as
the Gabor Transform when the window used in the STFT is Gaussian ), the Wigner-
Ville distribution [19], the ambiguity function [19] have been used to gain insight into
the signal characteristics of non-stationary signals. Perhaps due to simplicity, the
Gabor Transform is the most popular time-frequency representation.

All the different time-frequency representations take a function of one variable,tine,
and map it into a function of two variables, corresponding to {ime and frequency.
Because of this, there is some redundancy in these representations. Otherwise all
functions of two variables would correspond to the time-frequency representation of
a function of one variable! This redundancy has a number of characterizations the
simplest of which is that the time-bandwidth product, the smallest resolution cell in
time-frequency, is greater than 2.

This redundancy enables us, in some cases, to sample the representation at a
discrete set of points and yet be able to recover the original signals completely. The

ability to discretize the representation also means that one can store and manipulate

the representation on a computer.



If localizatior (with respect to variance as a measure) in time-frequency is the goal,
then the Wigner Distribution is the most appropriate [6, 3, 5, 4, 2, 20, 19]. However,
since the Wigner Distribution is bilinear, it is difficult to interpret the transform [20].
The Choi-Williams distribution partially solves this by suppressing the bilinear terms
[17, 6]. Besides ikere are no easy inversion formulas for these transforms.

The STFT, while it can be discretized, and easily interpreted, suffers from the
ad hoc choice of a window, the choice of which determines the resolution in time-
frequency. This inflexibility in time-frequency is undesirable for many classes of time-
varying signals [13]. Furthermore the reconstruction of the signal from the STFT,
may in some cases involve numerical instabilities [16]. A excellent and exhaustive
survey of time-frequency distributions can be found in [6].

This thesis develops the recently discovered wavelet family of functions, (which
lead to a time-scale representation) as an alternative to time-frequency analysis.
Wavelets are analogous to windows in the STFT, and viewed in terms of time and
frequency, they give flexibility in the time and frequency resolution. Most of the
published work on wavelets [7] is centered around orthonormal wavelet bases and
their properties, the expansion coefficients in terms of this basis and algerithms for
their computation etc. ON wavelets in themselves have a number of properties that

make the wavelet coefficients an attractive alternative to the Discrete STFT in the

representation of signals.

1. The analysis and reconstruction algorithms with ON wavelets are efficient and
can be implemented using efficient lattice implementations of Conjugate Mirror

Filters(a class of multirate filters that have been receiving considerable attention

recently [32]).
2. The wavelet coefficients of a real signal is real

3. The wavelet functions have constant bandwidth on a log scale and hence there

is some flexibility in time and frequency resolution.



Despite all these attractive features, the wavelet representation {(with only ON
wavelets) suffers from the lack of translation invariance. The wavelet coefficients of
a signal and an arbitrarily delayed version of it are very different. To solve this we
introduce the wavelet family of transforms, a generalization of the ON wavelet rep-
resentation. We define the transforms, give relationships between them, and develop
efficient numerical techniques for their computation. The efficient algorithms devel-
oped depend on the attractive computational techniques that are associated with ON
wavelets. Finally this thesis studies the detection of time-scale perturbed wideband
signals submerged in additive white Gaussian noise and gives detectors based on the
wavelet transforms developed. whose scale and time origin of occurrence are un-
known. The time-scale analysis framework could be used in the detection of unknown
signals like passive sonar data etc.

The thesis is organized as follows. The second chapter introduces an ON wavelet
bases with an example that is illustrative of the techniques involved in wavelet based
analysis of signals. The third chapter introduces the wavelet family of transforms
and discusses their properties. The fourth chapter discusses orthonormal wavelet
bases. The fifth chapter develops efficient computational techniques with wavelets.
And the last chapter discusses detection algorithms for signals subject to time-scale

perturbations.



Chapter 2

Orthonormal Wavelet Bases - An Example

Though the wavelet representation is a time-scalc representation, it is very closely
related to the Short Time Fourier Transform, which is a familiar tool for analyz-
ing non-statiorary signals. In this chapter we introduce an ON wavelet basis, that
brings out the essential similarities and differences between the wavelet coefficients
and the Discrete STFT cceficients. The time and frequency resolution tradeoff that

is permitted in the wavelet representation is also shown.

2.1 The sin(z)/z wavelet basis

Let f(t) be a finite energy signal (i.e f(¢) € L?(R)). The Fourier transform of f(1) is

given by
A r+co Lo
flw)y=[ fl)e™dt (2.1)
-00
where 7 is v/—1. By the uniqueness of the Fourier transform f uniquely determines
f

Now we will construct a local time-frequency represeniation. Let the frequency
axis be split into a set of contiguous bands, 5;, centered at the integrai muitiples of 27
and each of bandwidth 27 radians (i.e 1 Hz) as shown in Fig. 2.1. Clearly the bands

are non-overlapping the entire frequency axis is covered by these bands. Indeed

Bilw) = () (22)

where M(t) is defined by

0 otherwise

) ={ L i<s 2.3)
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Figure 2.1: Frequency Channels in STFT

Now f, is a decomposed into its components, ]:j each confined to band §;. Indeed,

we have
Jj=+o0

fwy= 3 filw)

j=—00

(2.4)

If f,- is represented as a a Fourier series confined to the band j, it follows that

k=too w—732
el J &
fJ(w Z a; k€ kn( —_—)
k=-o00
Hence f becomes
. I w— 327
)= 3 3T aen (BT =)

j==—00 k==c0

Taking the inverse Fourier transform on both sides

PN Gl ) JEA
0 =2 0=

This equation is precisely the defining equation for the Discrete
respect to the window
sin(7t)

— sinc(t)

w(t) =

(2.5)

(2.6)

(2.7)

STFT of f(t) with

(2.8)



The window, a sinc, is clearly concentrated around ¢ = 0 in time, and w = 0 in
frequency. Thus the basis function corresponding to j and k, namely %%E—f;—;‘-n,
is concentrated at (j,k) in time frequency. Furthermore, the basis functions are
mutually orthogonal.

The above orthonormal basis for L?(R) is obtained by initially dividing the fre-
quency domain into an infinite number of equally spaced bands. The absence of koles
in frequency enables us to obtain a complete representation for f. It is conceivable
that the frequency domain could be split in many other ways, each leading to an
orthonormal basis for LZ(R), and each having different time-frequency localization
characteristics.

Why would one be interested in doing this? The physiology of early mammalian
vision indicates that the retinal image is decomposed spatially-oriented freguency
channels each having the same bandwidth on a log scale [30]. That is, the retinal
system, splits the visual input into information at different scales. Furthermore, in
many naturally occurring classes of signals like transients, it has been observed that
the larger the center frequency of the signal, the smaller its duration, and hence
greater its bandwidth. Such a frequency behavior has been found to be useful in the
modeling of nearly —}- noise processes [35]

This suggests splitting the frequency domain into channels as shown in Fig. 2.2.
As in Eqn. 2.4, f can be represented as a Fourier series in each of the bands, say
B;. However, the different bands have dificrent fundamental periods. It is useful to
consider the §; as the difference between two I'1 functions centered at w = 0, with

support-widths 2/+'z and 277 respectively. Let x;(w) be defined by

xi(@) = N(z52) (2.9)

Then the j** band , say f; is given by

Bi(w) = x;(w) — xj-1(w)
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Figure 2.2: Frequency channels in a Wavelet Representation

Now the Fourier transform of f in band B; can bc written as
fi(w) = Bj(w) 3 biae™H” (2.10)
k

where {b;;} are the Fourier coefficients of f restricted to x;. From the conjugate
symmetry of the f (remember f is real), we see that the b;,’s are real. Now by

summing over all j and taking the Fourier transform on both sides we get

sin(2r(t —277k)), ,sin(2'n(t - 277k)) }

)= ; =1 .
e I

We have obtained a local representation of f(t). Now let us define the following :

o Sin(rt)

¢() = — (2.12)
P(t) = 24(2¢) - 6(2) (2.13)
éix(t) = 277¢(29t — k) (2.14)

pix(t) = 277p(2t — k) (2.15)



In terms of {¢;x} we can express f(t) as
f(t) = Z aj'k’l,ﬁj,k (2.16)
ik
Here the a;’s are scaled versions of b;;’s. In fact
aGr =V Z’jbj'k (2.17)

where the factor v/2-7 normalizes the expansion functions. Eqn. 2.16 is the wavelet
expansion of a function f(t) with respect to the wavelet 1. The basis functions are
translates and dilates of a single function 1. In the case of the STFT, the basis
functions are translates and modulates of the window.

Notice the wavelet (i) can be written as the difference between a function (¢}
and ¢(2¢). Such a function ¢ that is related to the wavelet is called the scaling func-
tion, and it plays an important role in the construction of, and analysis in orthonormal
wavelet bases.

In the specific ON wavelet basis developed, ¥ and ¢ are ideal continuous time
bandpass and lowpass filters respectively. The functions ¥(t) and ¢(t) satisfy the

following equations.

é(t) = 22 sin "k/ 2 42t — k) (2.18)
and
pity = oY SnmE+ /20, g (2.19)

= 7 w(k+1)

Fig. 2.3 and Fig. 2.4 shows the scaling function and the wavziet respectively. Let V;
denote the space of all functions spanned by {¢;:} for fixed j. Then Vj is the space
of ali real functions that are band-limited to 2/z. Let W; denote the space of all
functions spanned by {t;} for fixed j. Then Wj is the set of all real functions that
are bandlimited to [277,27*1x]. Therefore Eqn. 2.18 implies V; C V;;; and Eqp. 2.19
implies that W; C V4.

Furthermore the construction of 1; implies that {1} is an orthonormal basis

for L?, and that, for fixed j, {1;+} and {¢;:} are mutually orthonormal systems.
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This example has most of the features of the orihonormal waveiei basis that will
be used in this thesis in the analysis of transient signals. Notice that the supports of 3
and ¢ introduced here are of infinite support. Later we will see compactly supported

wavelet and scaling functions.



Chapter 3
The Wavelet Transforms

The wavelet transforms are the transformations of a finite energy signal into a time-
scale representation that is related to a certain function called the wavelet. The
two parameters of the transform, namely scale and time, could be both continu-
ous, both discrete or mixed; that is, the one could be continuous and the other
discrete. Corresponding to these four cases we identify four wavelet transforms. This
is somewhat analogous to the continuous and discrete Short Time Fourier Transforms
(STFTs). Chapter 2 introduced an ON wavelet basis, where the wavelet function was
a difference of sincs. This chapter introduces the various wavelet transforms, charac-
terizes the wavelets that give rise to these transforms and discusses their properties.
Since the goal is to introduce time-scale analysis as an alternative to conventional
time-frequency analysis, whenever possible the similarities and differences between

the STFT and the wavelet representation will be mentioned.

3.1 The Affine Group

The window function in the STFT is operated on by translations and moduliations (by
the complex exponential) to generate the STFT basis. Most of the properties of the
STFT can be directly linked to the nature of the underlying operations of translation
and modulation, which form the Weil-Heisenberg group.

In an aralogous way the wavelet representation is obtained by the action of trans-
lations and dilations on the basic wavelet function. The group of translations and
dilations is called the affine group. The affine group will be parametrized by u (cor-

responding to scale) and 7 (corresponding to time).

11
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Definition 3.1.1 The affine group Gy is made up of elements of the

form (u,7), u,7 € R, where the group operation is defined by

{(u3, 71)(u2, 72) = (u1 + u2, 271 + 72) (3.1)

a non-commutative group with identity element (0, 0). The inverse of an element u, 7
in G is given by
(5,7) = (~u,—27%7) (32)

since ‘
(v, 7)(-u,-27%7) = (v — 4,27%7 — 27%1) = (0,0)

Let G;, G, and G; be respectively, the subsets of G obtained by restricting u, 7

or both to take on only integral values.

Gl = {(.7, T)IT €ER,j € Z} (33)
Gz = {(u,k)lu € R, k € Z} (3.4)
GS = {(Ja )l]’k € Z} (35)

The wavelet transforms developed will be parametrized by one of the four sets Gy
through Gs. Let L(u,7) : L*(R) = L?(R), and R(u,a) : L*(R) — L*(R) be defined
by

Lu,7)f(t) = 2*/2f(2%t — 7) (3.6)

R(u, ) f(t) = 242f(2%(t — a)) (3.7)

It can be verified that both L(u,7) and R(u, ) act unitarily on L?(R). Moreover, L
are R are related by the equation

L(u,7) = R(u,27%7) (3.8)
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Consider the action of L(uy,7;) on L(uz,72)f.

L(uh TI)L(uz, Tz)f(t) = L(ul, 71)2"2/2f(2u2t _ TZ)
= 2“1/22u2/2f(2uz(2u1t -7)—7)
= L(uy + 2,27 + ) f(2)

= L((’ill, Tl)(u% T2))f(t)

Thus L(u,7) is the affine group acting as an operator on the space L?(R). The opera-

tors L(u,7) and R(u, ) are very useful in the development of the wavelet transforms

and hence we note relevant properties.

Let f,g € L*(R). Let fr = f(t — T) and fs = 25/2f(2°t). We have

1. Translation property:

L(u,7)fr = L(u,7+T)f (3.9
R{u,a)fr = R(u,a+27"T) (3.10)
2. Scaling Property:
L(u,7)fs = L(u + §,257)f (3.11)
R(u,e)fs = L{u+ S,a)f (3.12)

3. The Unitariness Property:

<f, L(us T)g> = <L(u7 T)f,g >=< R(—us —T)f,g > (313)

These properties are direct consequences of the definitions.

3.2 The Wavelet Trancfarme

The term wavelet as mentioned earlier has been used loosely in the literature. Here

we give precise definitions and try to motivate the restrictions imposed on a function
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to make it a wavelet. In the function domain the index is R (usually time), while in
the wavelet transform domain the index is the affine group G or one of its subsets
G1,G2 or G3. The transform should be linear and energy preserving. That is the
wavelet transform should be a linear operator from the space L*(R) onto the space

L*(R x R) that is a multiple of an isometry.

3.2.1 The Continuocus Wavelet Transform

As mentioned earlier the wavelet is analogous to the window in the STFT. But unlike
in the STFT case, where the window could be any function in L?(R), wavelets are
characterized by a certain restriction referred to as the admissibility condition. Group-
theoretic arguments for the need for this condition in the case of the CWT can be
found in [15]. Here we will impose some desirable properties on the transform and
the admissibility condition will arise as a natural consequence of this. We begin by

defining the CWT wavelet.

Definition 3.2.1 A CWT wavelet (or simply wavelet), is a function
w € L?(R), such that for all f € L?(R) we have the following identity

) = é Jos S22t — Y2y = r)dr dudy (3.14)
where c,, is a constant depending only on w.

The above condition on the CWT wavelet is not easy to work with. We would like
a simpler characterization. The reason for incorporating such a complicated definition

is that for other characterizations we have to derive this as a result and we wish to
avoid this, though it is actually a matter of taste.
If we define R,(t) to be the autocorrelation function of w, then Eqn. 3.14, on

changing the order of integration becomes

70 = fo 40 f, duf @2 B2t = 9)
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which automatically implies that

/ 2R, (2t)du = c,8(%) (3.15)
Taking the Fourier Transform on both sides it can be shown that

/ "”(“’)'2 dw = cylog?2 (3.16)

It is also clear that if w satisfies Eqn. 3.15 then Eqn. 3.14 is automatically satisfied.

Hence we have proved the following lemma

Lemma 3.2.1 Let function w € L*(R). Let R,(t) be the autocorrela-

tion of w. Then the following statements are equivalent

1. wisa CWT wavelet

2.
[d(w)f?

A || dw = c,log2 < >

/ 94 R(2*t)du = ¢, 6(1)

This condition imposed on w, usually in the form (2) above, is referred to as the
admissibility condition in the wavelet lilerature. The admissibility condition forces
w(0) (in all practical cases) to be 0. Thus loosely speaking a wavelet is a bandpass
filter. Moreover every bandpass filter is a wavelet.

In terms of a CWT wavelet the CWT is defined as follows,

Definition 3.2.2 Let f € L*R). The CWT or the (u,7) transform of
J with respect to a CWT wavelet w is given by

W fow)= [f©2 0@t -1) =<fLuw> (31
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For comparison, we give the equation for the STFT
STFT(w,7,f,w) = /f(t)w"(t ~ 7)e~ =" gy (3.18)

Here w is any finite energy window.

While the latter gives the decompostion of a signal into a set of equal bandwidth
filters sweeping over all frequency, the former gives the decomposition of a signal into
a continuous parameter (u) set of constant Q (or equal bandwidth on a logarithmic
scale) bandpass channels. The constancy of bandwidth on a logarithmic scale can be

seen from the following equation.

= Y

Bulw) = T (z:) (3.19)

where w,(t) = w(2%t). Fig. 3.1 shows the magnitude spectrum of the Fourier Transform

of a typical wavelet function for three different values of u at three consecutive in-
tegers. The roles played by the parameters is also different. The time parameter 7
in the STFT refers to the actual time instant in the signal, while the parameter 7
in the CWT refers to time instant 2=*7. In other words, the time parameter in the
wavelet representation measure time using a yardstick that is local in scale. This
makes sense, for if the frequency scale in which a signal resides is coarse or fine, then
the time scale should be appropriately big or small. This is the primary reason for the
efficiency of the wavelet transform domain as a representation of the signal relative
to the STFT. This fact also suggests that a multirate system would be involved in a
waveiet representation.

Fig. 3.2 and Fig. 3.3 show the fundamental difference between the STFT and
the CWT. There is an obvious time-frequency resolution trade-off. To understand
bow the CWT spans the time-frequency plane, the notions of resolution in time and
resolution in frequency must be defined. Let o; and o, be the standard deviations in

the time and the frequency domain. That is,

s (= Do) di .
%= T TR (3:20)
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Figure 3.1: Fourier Transform of a Wavelet at different scales. a, & and
c are the Fourier Transform of the same signal w(¢) at three scales at a
spacing of an octave

Figure 3.2: The STFT Time-frequency Resolution Cells

o— G =

*eq -
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Figure 3.3: The CWT Time-frequency Resolution Cells

and

1‘7"(“’)"2 de (3.21)

where

Jtlw(t)* dt

IO (5:22)
Jwld(w) dw

[ o(w)]? dw 523

Let w(t) be centered at 0,& in time-frequency. Then w,(t —27*7) is centred at 0,2*@

t=

@ =

with standard deviations o;/2* and 2%o,, in time and frequency respectively.

Properties of the CWT

Inverse Transform: From the defining equation we already have that the inverse is

the adjoint and hence the inverse transform is given by the equation

1 e . .
fit) = Z/R a’u‘/;tdr V2uw (24 — YW (u, 7, f,w) (3.24)



19

Energy Preserving Property: For every f € L*(R), W(x, 1, f,w) satisfies
2 __ 1 e7NI2 G o
fo du [ drWeu,nf0)P = e [ if)P dt (3.25)

where ¢, is given by
_ 1 |(w)[®
C‘U =
log2JR |w]

This can be first verified for f(t) = w(t) and $hen for f(t) = w(2%t—7), for arbitrary

(3.26)

constants u and 7. Then the relationship is seen to hold for any linear combination of
functions of the type w(2¥ — 7). By continuity this holds for all functions in L*(R).
A direct proof that brings out the need for the admissibility condition is as follows,
LHS = [gdufdr[dzfdtf(t)V2*w(2*t — 7)f(z)sqri2*w(2*z — )
= [du2® [dz [dtX[f dw|i(w)|?e (-]
3= [ ds [ dwld(w)Pif (w)]?
5 [ w2 L 1t f(2)]?
= cufat|f(t)P
The last step requires treating the cases where w is negative and positive separately.

Redundancy of the CWT: The redundancy of the CWT, as in the case of the

STFT, is expressed in the following reproducing kernel equation.
Theorem 3.2.1 Let the wavelet kernel X given by
K(uy,m,u2,72) = /R\/Z"l‘*"‘?w(Q"’t - 7)w(2%t — 1) dt
Then K satisfies the following equation.

W(uly T1, fa ‘U)) = Vé{ d’llz /R dT2 W(“Za 7z, W, f)I((ul, T1,82, 7'2) (3'27)

For time-scale analysis the most important properiies are what happens to the
CWT of a signal that is either translated or dilated.
Translation of f: Let fr(ij = f(t — T). Then,

W(u,T, fr,w) = W(u, 7 + 2°T, f,w) (3.28)
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Indeed we have
W(u,7, fr,w) =< fr, L(u, ")w>
Using Eqn. 3.13
W(u,7, fr,w) =< R(—u,—7)f,w>
which becomes
W(u,r, fr,w) =< R(—u,—7 + 2*T),w>
Using Eqn. 3.13 again we obtain the desired result.
Scaling of f: Let fs(t) = 25/?f(25t). Then,

W(u,7, fs,w) = W(u-S,7, f,w) (3.29)

This is obtained by invoking Eqn. 3.13 and Eqn. 3.12.

3.2.2 The Discrete Wavelet Transform

The CWT wavelet under mild conditions can be used to obtain discretizations that
gives rise tostable inverses. For such a function w, the set of ail functions {L(j, Kw, j,k € Z},
giverise to what is called a frame. Frames are generalizations of bases. In fact a frame
is a family {¢;(t)|j € Z} of functions such that any function can be projection onto
it and expanded back again in terms of a dual family {;} called the dual frame. A
frame and a dual frame are similar to a basis and its bi-orthogonal basis. Self-dual
frames, that are analogous to crthogonal bases are called tight frames. The essential
difference between a frame and a basis is that no function in the latter can be in the
ciosed linear span of its complement. The relationship between frames, bases etc. are
shown in Fig. 3.4. The DWT wavelet defined here will give rise to a tight frame.
We begin by defining a DWT wavelet.

Definition 3.2.3 A function w € L%(R) is called DWT wavelet if for
all f € L%(R) it satisfies the equation

£ = =S¥ [ dufwp@y - Bu@t-b] (330
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1 Spanning sets
L] Frames

Bases
Tight frames

Figure 3.4: Frames and Bases: A is the set of all spanning sets, B is the set
of all frames, C is the set of all bases and D is the set of all tight frames.
C N D is the set of all ON bases.

where ¢, is a constant that depends only on w.

There is a close relationship between the DWT wavelets and QMFs that will be
discussed later.
We now show that the DWT wavelet is characterized by its discrete autocorrela-

tion. Let 7, () denote the discrete autocorrelation of w. Then by changing the order

of summation in Eqn. 3.30 we obtain
1 .
—— J~(93 (1 _
1) == [y f@Pr@ e -)

which implies
>°29r(27t) = ¢, 6(t) (3.31)
J

Taking the Fourier Transform on both sides we have

> o(w +27k)b(27k) = ¢, (3.32)
k
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Hence we have the following lemma.

Lemma 3.2.2 Let w € L?*(R). Let r,(t) denote the discrete autocorre-

lation of w, i.e
r(t) = Y w(t)w(t + k)
k
Then the following conditions are equivalent
1. wis a DWT wavelet.

2.

S 27r(27t) = eué(?)
J

> (w + 2rk)d(27k) = c,,
k

There is a relationship between the sets of CWT and DWT wavelets. To see this
consider an arbitrary DWT wavelet w. First consider the effect of translation on the

expansion. Let f,(t) = f(¢ — z). Then applying Eqn. 3.30 to f, we get
7o) = —— 2 [ dy £y o(@y = Rpw(@it — k) (3.3
Cw 5k
or equivalently,
1) = = P [ dyf @y — o) - (@t -z) - K] (334
Cy Gk

Notice that the left hand side is independent of z. Therefore by averaging over all

time we get
. 1 1 ; : .
f(t) = Em X — cozzda = 327 / dyf(y)w(2(y —z) — Kyw(@ (t — z) - k)] (3.35)
ik
On simplification this equation becomes

1) = - S PR~ ) W)y (3:30)
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where R, is the continuous autocorrelation of w.

Now consider the effect of scaling on the expansion. Define f,(t) = f(2°t).
10 = = S duf)zu@-2) - ety -2 =B (33)
ik

Notice again that the left hand side is independent of z. Hence by integrating over 2

from 0 to 1, we obtain
1 U u
f@) = —/2 rw(2%(2 — y))du (3.38)

Now combining the eifect of scale and time on the expansion we get,
1 . . .
== 22 / dy f(y)2"w(2°2{t — z) — K)w(2*2(y — z) — k)] (3.39)
3k

Again the LHS is independent of z and 2. Now, averaging over time and then over

scale as before, it can be shown that
78) = — [ F@)2*Ru(2*(¢ ~ 9))dy (3.40)
Cy

Thus w is a CWT wavelet too!!

We note these results as a lemma.

Lemma 3.2.3 Let w be a DWT wavelet. Let R, () and r,{t) be its

continuous and discrete autocorrelations respectively. Then,

1.

/ Ry (2°4)2%du = e, 6(t) (3.41)

2.
/ du¥r,(21)dt = e,5(%) (3.42)

3.
Z 2 R,(27t) = cu,6(2) (3.43)

Now the DWT is defined as follows
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Definition 3.2.4 The j, k transform (or the Discrete Wavelet Transform)
is given by the equation
W0, E, fow) = / FO22w(2t - k) dt =< [, L{j,kjw>  (3.44)
This transform is analogous to the Discrete Short Time Fourier Transform. The
one big difference is that the DWT wavelet gives rise to a tight frame, while the
DSTFT gives rise to frame (not necessarily tight), and hence the inverse transform

has to be taken with respect to the dual frame in the case of the latter.

3.2.3 Properties of the DWT

Inverse Transform: The inverse DWT is given by the equation,
f@t) = L S W3, k, f,w)27w(27t — k) (3.45)
cul j‘k
Direct computation of the forward and inverse transforms is not efficient. Practically

always, associated with the DWT wavelet, is a unique function called the scaling

function, the scaling relationship of which will be used to compute the transform and
the inverse efficiently.
Energy Preserving Property: For all f € L?(R), W{j, &, f,w) satisfies the equa-

tion,

LIWGE Sl = e J it (3.46)

This is straightforward to venfy.

Scaling of f: As can be expected, unlike the CWT, for arbitrary scaling of f, the
DWT is not related in a simple fashion to the DWT of f, even though both contain
all the information about the waveform f. But for scaling integral powers of 2, we

have the following.Let f; = 2//2f(2't), where [ is an integer. Then,

W(]’ ka fla w) = W(j - Is k,f’w) (3‘47)
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The result follows directly fiom the fact that the DWT wavelet is in particular a
CWT wavelet, and has to satisfy the corresponding scaling relationship.

Translation of f: The DWT lacks translation invariance. The DWT of f and the
DWT of f(t — T) are quite different. Moreover, the energy of the DWT of f(i — T)
at a certain scale j may be quite different from the corresponding energy of f. This
is disappointing since without explicitly specifying the time origin one cannot speak
of a signal as residing in a particular scale or set of scales. However, for each scale
the DWT is periodically time varying, and hence, could be used in the study of many

statistical signals that are inherently periodically time varying.

3.2.4 The Discrete-Time Wavelet Transform

Definition 3.2.5 A function w € L*(R) is called a DTWT wavelet if
for all f € L*(R) we have

=% — [aulf ty2uy-Di@hEt-H  (648)

The DTWT is characterized by the discrete autocorrelation.
Lemma 3.2.4 The following statements are equivalent

1. wis a DTWT wavelet

2 TL Alommnda avedanamaslodlne o antialan
. 0€ QiSCieie auLvOTOTTC1aLi0N Ty SauisSiies

/ du2%r, (2(2)) = cu6(2) (3.49)
3.
w{2rk)w(w + 27k
>y = )Ia(J! oo, . (8.50)

k

From Lemma. 3.2.3 and Lemma. 3.2.4 it is clear that every DWT wavelet is a

DTWT wavelet. It can also be shown that every DTWT wavelet is a CWT wavelet.
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Cousider an arbitrary DTWT wavelet w, with corresponding constant ¢,. Then
for the function f.(t) = f(t — z), Eqn. 3.48 implies
)= =3 [dl [ 2wy - HLGWE-F)  (35)
Cw "}
which on a change of variables becomes
1 u 173 U 1 U2 u
f(t) = ——E/du[/dy2 w(2'y — 2z — B)f(y)]w(2i — 2z —F)  (3.52)
Cw %

The left hand side of the abeve equation is independent of z. Thus by averaging over

z on both sides,
1) = — Jim = / dz Z / du| / dy 2“w(24y— 24z — k) f(y)|w(2*t—2%z—k) (3.53)
The above equation after a few simplifications can be shown to reduce to
7t = — [ Rult = 9)f(5)dy (354)
Cw

Thus a DTWT wavelet is, in particular a CWT wavelet.

We have proved the result,

Lemma 3.2.5 Let w(t) be a DTWT wavelet. Let R,(t) denote its

continuous autocorrelation. Then,
J/ 2 R(2*t)du = £,5(t) (3.55)
That is every DTWT wavelet is a CWT wavelet.
In terms of the DTWT wavelet we define the DTWT as follows

Definition 3.2.6 The u,k (or the Discrete-Time Wavelet Transform) is
given by the equation

W(u,k, f,w) = / F)22w(2%t — k) dt = < f,L(u, k)w>  (3.56)
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2.2.5 Properties of the DTWT
Inverse Property: The inverse DTWT transform is given by the equation
f) == [l du S Wk, £, w0)2 (2t - k) (3.57)
w/R 4§ ’
Energy Preserving Property: The DTWT is an isometry upto a constant,
Theorem 3.2.2 For all f € L?*(R), W(u, k, f,w) satisfies
[au T Wik, fw)f = c. f1rwpra (3.58)
k
Scaling of f: Since the scale parameter is continuous and since the DTWT wavelet
is also a CWT wavelet we have,
W(u,k, fs,w) = W(u—-S,k, f,w) (3.59)

where fs is 25/2f(25t). Thus scaling of a function leads to a mere shift in the transform

in the scale dimension.

Translation of f: Since the time paraimeter is discrete, as in the case of the DWT
the transform is not translation invariant. This transform would be applicable when
the signal origin is known precisely.

3.2.6 The Discrete-Scale Wavelet Transform

Definition 3.2.7 A DSWT wavelet is defined to be any function w €
L*(R), such that, Vf € L?(R) we have,

1 . . .
_— ¥ Ty — It — 7 .
f0)= 22 [dal [ duf @y - lo@e-n]  @£0)
for scme constant ¢, that depends only on w.

The following lemma gives equivalent characterizations of a DSWT wavelet.

Lemma 3.2.6 The following conditions are equivalent



28

1. wis a DSWT wavelet

2. The autocorrelation R, of w, satisfies the equation

Y2 R,(2 (1)) = eub(2) (3.61)

E. [B(27w)]* = ¢y (3.62)

From Lemma. 3.2.3 and the lemma above it is clear that every DWT wavelet is

a DSWT wavelet. Now we proceed to show that every DSWT wavelet is a CWT

wavelet.

Consider an arbitrary DSWT wavelet w(t) with corresponding constant ¢,,. Consider

the effect of scaling on the DTWT expansion of f,(t) = f(2°t). Indeed we have,
L0 = =52 [ dal [ dyf.toyo@y - (@t - 7)) (3.63)
Ll
which becomes,
1 1+ 2 i+ i+z
f6)= =5 2% [do[[ dyf @@y - D@t -7)]  (369)
G j
The left hand side is independent of z. By averaging over z from 0 to 1, we obtain,
11 , . .
) = — Jj+z Jtz, _ Jt+zy .
1) = [[ d=- T2 [dal [ dyfu@ g = u-n] (365
which on simplification becomes
1 U u
7t) = = [ 2Bu(2¥(t - v))f(v)du (3.66)

Thus every DSWT wavelet is in particular a CWT wavelet.
Now we define the DSWT as follows
Definiticn 3.2.8 The j,7 (or the Discrete-Scale Wavelet Transform) is

given by the equation

Wi, fyw) = [ S0P 0@t —7)dt =<L(, 7w, f>  (3.67)
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3.2.7 Properties of the DSWT

Inverse Property: From the defining equation we have the inverse transform given

by
ft) = -:: / dr ZJ: W3, f, w)27 w(2t — 1) (3.68)

Energy Preserving Property:
[ar S IWG 5w = [ atlfoP (3.69)
i
Translation of f: Since the DSWT wavelet is in particular a CWT wavelet, we have
W, fr,w) = W(j,m = 2°T, f,w) (3.70)

Scaling of f: Clearly scaling in octaves only gives a simple relationship between the

corresponding DSWTs. We have
W(j’Taf-’vw) = W(] -—i,T,f,'LU) (371)

We summarize the relationships between the four different wavelets introduced in
the form of a theorem

Theorem 3.2.3 Let Dy,D;,D, and D; be the subsets of L2(R) that

v

ITWT, DSWT and DWT wavelets respectively.

s

are the set of aili CWT,

wing proper inclusion relationships between the

transforms.
D, C D, (3.72)

D, C Dy ' (3.73)

D;c D,nD, (3.74)



Chapter 4

Orthonormal Wavelet Bases

The previous chapter defined the CWT, DWT, DTWT and DSWT wavelets and the
corresponding transfocrms. The CWT wavelet has to satisfy an admissibility condition
Anatant) AF T2/D\ ts LZ(P has

thot swinlras 14 an seavatweer (“ntn 2 ~n v D) The or
ViAwy 2aaCanD BV Sess AuvALIL vy \Up v w VilO Uiy g W2 A \Ae ) VLo . N Ay 2 VR Wwiv

of the DWT wavelet under the action of the discrete subset G; of the affine group
must form a tight frame. Tight frames differ from orthonormal bases in that they
are overcomplete sets. Chapter 2 introduced the sinc wavelet, which is a DWT
wavelet which gave rise to an ON wavelet basis that had infinite supnort. This
chapter discusses the recently discovered ON wavelets that have compact support.
Computations involving compactly supported ON wavelets can be efficiently done
using Conjugate Quadrature Filters. Recently it has been proved that every FIR
CQF that satisfies a certain DC summation condition, is associated with a DWT

wavelet and hence gives rise to a tight frame [24].

4.1 Orthonormal Waveiet Bases

The multiscale analysis framework of Mallat and Meyer [26] gives the best framework

for understanding ON wavelets.

4.1.1 Multiscale Analysis

Multiscale analysis is a framework for approximating a signal by a sequence of smoothed
versions of the signal. The smoothing operation is accomplished by convolving with

a function called the scaling function. More precisely,

30



31

Definition 4.1.1 A multiscale analysis consists of a sequence {V; | j € Z}

of closed subspaces of L*(R) that satisfy the following conditions

1. Containment Property

LVacVachohichka... (4.1)

2. Completeness Property
N V;={0}s UY; = I*(R) (42)
i€z j€Z

3. Scaling Property
fC)eV; & f(2) € Vin (4.3)

for any function f € L*(R).
4. The Basis/Frame Property There exists ¢ € V, such that Vj € Z,
the set {¢;x = 279/2¢(2°t — k) | Vk € Z} spans V.

Let W; denote the orthogonal complement of V; in Vj41. Let us denote by P;
and @;, the projection operators from L3(R) onto V; and W; respectively. Clearly
the containment and completeness properties imply the existence of W; and hence
the projection operators are well defined. The completeness property also ensures
that Jlgx;xo P;f = f for any signal f € L?*(R), where the limit is taken in the L? norm.
The containment property implies that P;f, for successively increasing j, leads to
successively better approximations of f. That is, given P;f, P;_,f is completely
determined. The scaling property ensures that the approximations reside on different
scales. The scaling property is the crucial property that leads to the ON wavelet
basis.

If the ¢;, for fixed k, form a basis for V;, then by a Gram orthonormalization
process in the Hilbert space L*(R), a function ¢ is constructed from &, as in [25],
so that the ¢;; forms an orthonormal basis for L?. Therefore, henceforth {¢;4} is

assumed to be an orthonormal system.
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Properties of ¢

Now ¢(t) € Vo C V1, and V; = Span{¢(2t — k)}. Therefore we have the fundamental
scaling equation

$(t) =2 kolk)g{2t — k) (4.4)
k

for some sequence k.

This functional relationship (called a two-scale difference equation) for general
functions ¢ that do not necessarily give rise to a multiscale analysis has been studied
[9, 18]. Conditions for the existence and uniqueness of L!'(R) solutions of this func-
tional equation are well known. By assumption the ¢ in a multiscale analysis is in
L*(R). Futhermore, if ¢ is compactly supported, then by considering the restriction
of L?(R) to functions that are square integrable in the support of ¢, which is of finite
measure, ¢ is in L(R) too.

The fundamental scaling equation immediately implies
bik = \/EE ho(1)$s+1,2k+1 (4.5)
1

thus relating scaling functions that span V; and V..

Taking the Fourier Transform on both sides of Eqn. 4.4,
$(w) = 3 8(5)e 2 ho(k)
k
Let Hy{e™) denote the Fourier Transform of the sequence {ko(k)}, i.e.,

Ho(e®) = 5_’; e~k ho(k)

Then
$(w) = $(w/2)Ho(c™") (4.6)
which becomes the following infinite product equation for é
a ~ j=°° : 3] -
d(w) = 6(0) I Ho(e*'™) (4.7)

J=1
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" The sequence kg thus uniquely determines the multiscale analysis framework. If
ho € I2(Z), 4(t) is a unique L*(R) distribution. The sequence kg is characterized by
the CQF property. To see this the following lemmas are necessary.

Lemma 4.1.1 A set of functions ¢(- — k) form an orthonormal family

iff their Fourier transforms satisfy

S 1dw+27k)P =1 (4.8)
k

Lemma 4.1.2 A function ¢(-) is orthogonal to a set of functions {{- — k)}
iff
3wt (w—27k) =0 (4.9)
k

The above equations are merely the Fourier Transforms of the defining conditions of
orthonormality.
Since {¢(t — k)} forms an orthonormal system, Lemma. 4.1.1 implies

Eqn. 4.7 can now be invoked and with some simplification becomes
|Ho(e™)? + | Ho(e“+)* = 1 (4.10)

This is the equation characterizing the low pass filter iz two channel maximally dec-
imated perfect reconstruction CQF [31]. Thus a multiscale analysis gives rise to a
CQF. Moreover the sum of the coefficients kg is 1. The converse is also true. Every
CQF, that satisfies the summation condition gives rise to a multiscale analysis (where
the basis property is replaced by the frame property). Thus the sequence and hence
the multiscale analysis is completely characterized by the CQF-.

Lowpass property of ¢

Integrating both sides of the fundamental scaling equation, we get the following con-

ditions on hy,

> ho(k) =1 (4.11)
k
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or what amounts to the same

Hy(1)=1 (4.12)
which implies on substitution into Eqn. 4.7
$0)=1 (4.13)

Thus the scaling function is a low pass filter. Moreover the sequence is also a lowpass
filter in the sense of non-zero DC.
Compactness Property
The sequence ko can be of finite or infinite length. If it is of finite length N, and
Eqn. 4.4 is of the form

4(1) = Nz 2ho(k)p(2t — B) (414)

it is seen that ¢ is of compact support, with support in (0,N — 1). This has only
got to do with the nature of the two-scale difference equation and has nothing to do
with the fact that ¢ gives rise to a multiscale analysis framework. Conversely, if ¢ is
compactly supported, by taking the inner products with ¢(2t — k), it is clear that A

is of compact support.

Lemma 4.1.3 The scaling function ¢ is compactly supported if and
only if the sequence kg is of finite length. Moreover if the sequence is

supported in (0, N — 1), then ¢ is supported in (0, N — 1) and vice-versa.

Smoothness Property For typical engineering applications, the function ¢ must
usually be reasonably smooth. This restriction should be manifested in the decay of
the Fourier Transform ¢. Now this in turn must manifest itself in some preperties
on the sequence hy. Decay in the Fourier Transform can be achieved if the Fourier
Transform of the sequence has a factor of the form (1 + e=#*)" for some integer N. -
This introduces a w=" factor in the Fourier Transform of ¢. This idea was used by

I.Daubechies to prove the following sufficiency condition on the ko for the smoothness

of 4.
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Theorem 4.1.1 Let the Fourier Transform Hy(e*) be factorizable into
the form

Ho(e) = P(e*)(1 + )P (4.15)
for some trigonometric polynomial P(e*). Furthermore, let P(e') satisfy

the following equation
k=l
sup | [T P(¢“/?)| < 2/P-m-D) (4.16)
we k=0

for some ! > 1, then A gives rise to an L? scaling function that is m times

continuously differentiable.

Imposing these restrictions on the hy that characterizes a multiscale analysis
I.Daubechies constructed a family of scaling functions that are compactly supported

and have degree of regularity that increases approximately linearly with the support

of ¢.

4.1.2 Construction of the Wavelet Rasis

The ON wavelet in Chapter 2 was obtained by taking the difference of the lowpass
scaling function (the sinc function) at two different scales. A somewhat similar pro-
cedure can be applied in the case of a multiscale analysis to obtain an ON wavelet.

The space Wy is given by Vi © V5. Now ¢(t — k) € V, and ¢{2¢t — k) € V4. Since
s = Span{d(t—k)} and Vi = Span{4(2t—k)}, it is reasonable to expect the existence
of a function %, such that Wy = Span{y(t — k)}. This is indeed true and can be

proved by group representation arguments. This function i is the wavelet associated

L4

with the multiscale analysis. Clearly, by the scaling property, Span{y(2t - k)} =
W;. Now L?(R) can be decomposed as

LPPR)=---0W_;0W_ju®--Wo---0W,_,,0W,;®--- (4.17)

which implies that L%(R) = span{2//2y)(27t — k)}. The set {1;, = 27/2)(27t — k)} is

the wavelet basis associated with the multiscale analysis.
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Since Wy C V;, there exists a sequence k; such that
B(t) = 3 hi(R)g(2t - k) (4.18)
k

This is the fundamental wavelet equation, the dual of the fundamental scaling equa-
tion. The sequence h; is uniquely determined by the sequence Ao.

Taking the Fourier Transform on both sides of Eqn. 4.18
7 ~ ey
) = PG (k)
P
Let Hy(e*) be the Fourier Transform of A, i.e

Hl (e:'w) = Z e—iwkhl(k)
k

Then
$(w) = d(w/2)Hy(e™/?) (4.19)
which implies ‘
$() = $(0)H1(z'w/2)’_ﬁ: Ho(e/?) (4:20)

This is the infinite product equation for .
Since {+(t — k)} forms an ON basis for Wy, using Lemma 4.1.1,

|Hy(e“) + | Hy ()P = 1 (4.21)

Thus A, is also a CQF. In fact it is the dual of %; in the two channel CQF bank.
Indeed, Lemma 4.1.2 implies

Ho(e¥)H} (e™) + Hy(e'“ ) H(e“*™) =0 (4.22)

Equations 4.10, 4.21, and 4.22 are precisely the conditions to be satisfied by the

two filters in a two channel maximally decimated power-complementary Conjugate

Quadrature Filter Bank. In this case ko uniquely specifies kb, and vice versa. Borrowing

from the CQF literature A; is given by

ha(n) = (—1)*ho(—n + 1) (4.23)



Let W f(j,k) and Sf(j, k) denote the inner products of f with ;; and ¢;, re-
spectively. W f(4,k) and Sf(j, k) are are called the wavelet and scaling coefficients

of f respectively. Then,
Pif =Y Sf(i, k)¢ix

and
Qif = Zk: W13, k)bix
where (); denotes the projection operator onto Wi.

Since any ¢ satisfies Eqn. 4.4 for some Ay, and since kg uniquely determines ¢, a
probable approach to generate multiscale analysis is to start with a suitable kg and try
to construct a multiscale analysis. As mentioned earlier, the problem of existence and
uniqueness of L! solutions of two-scale difference equations has been studied [9, 18].

It turns out that if kg satisfies the DC summation condition,
z ho(k)=1 (4.24)

then there can be at most one function ¢ that satisfies the scaling property.

Since orthonormal multiscale analyses result in hg’s that are CQF’s a pertinent
question is whether all CQF’s give rise to an orthonormal wavelet basis. The answer
is in the negative [7] Despite this, all CQF’s do give rise to a tight wavelet frames {24].
Furtherinore, if some regularity conditions are imposed on kg, then it does indeed give
rise to an ON wavelet basis. This is precisely how compactly supported wavelet bases

were constructed.

Properties of the ON wavelet

The properties of the ON wavelets are direct consequences of the corresponding prop-

erties of the scaling function and the CQF condition relating them.

Bandpass Property

Integrating both sides of the wavelet equation and remembering that ¢(0) =1 we get
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the following conditions on h;,

S hy(k)=0 (4.25)
k

or what amounts to the same
Hy(1)=0 (4.26)

which implies on substitution into Eqn. 4.7
H(0) =0 (4.27)

Thus the wavelet is a bandpass filter.

Compactness Property

The sequence h, is infinite if the sequence hy is infinite. Assuming that kg is compactly

supported in [0, N — 1] it follows that

PO = 3 (b2t - ) (428)
_N+1

Lemma 4.1.4 The wavelet is compactly supported iff the sczling func-
tion is compactly supported. Moreover, if the scaling function is supported

in [0, NV — 1], the wavelet ¢ is supported in [1 — N/2, N/2]

Smoothness Property It is clear that if the scaling function is m times differentiable

then the wavelet is also m times differentiable.

4.1.3 The H=2ar Example

We already saw an orthonormal wavelet basis in Chapter. 2. Here we give the classical

Haar basis in order to illustrate multiscale analysis.

Let V; be the space of piecewise constant functions defined by
V; = {f € L*(R) : f is constant on [277k,277(k + 1)),Vk € Z} (4.29)

Then the sequence of spaces V; satisfies all the properties of a multiscale analy-
sis. The containment property is obvious since functions that are constants on in-

tervals of the type [277k,277(k 4 1)] are clearly constant on intervals of the type
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[2-U+1E,2-U+)(k 4 1)). The completeness property and the scaling property are also
fairly obvious. As for the frame property the function ¢ given by

0<t«l

{
¢(t) = !l (4.30)
L}

1
0 otherwise

and its integral translates span V5. Hence {¢;:} defined in the usual way forms
a frame. In fact they form a orthonormal basis for L>(R). The orthonormality is
obvious because for fixed j, @;, and ¢;x, overlap if and only if &; = k».

Now for an arbitrary function in L2, P;f, the projection of f onto V;, is simply
the step approximation of the function corresponding to steps of width 2=7. Clearly
with decreasing step-size, i.e. with increasing j, the approximation gets better and
better as is seen in Fig. 4.3.

In the case of the Haar system the unique filter corresponding to the multiscale

analysis is given by
1/2 ifk=0,1
ho(k) = { /2 1 (4.31)

0  otherwise
From Eqn. 4.23 the corresponding ki, the filter corresponding tc the wavelet is

obtained as

1/2 k=0
hi(k)=14 —1/2 ifk=1 (4.32)
0 otherwise

The correspording wavelet is given by

1 0<t<1/2
Ppt)=4 -1 1/2<t<1 (4.33)

0 otherwise

4.1.4 Daubechies Wavelets

Compactly supported wavelets of arbitrary degree of smoothness were constructed

by Daubechies by constructing the corresponding CQF using Theorem. 4.1.1 quite
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Figure 4.3: The Haar Wavelet

complicated and the interested reader can read the paper. The important result is

the following theorem.

Cheorem 4.1.2 Any CQF Ao with the DC summation condition is nec-

essarily of the form
Ho(w) = P(e)[(1 + &™) /2]

for some integer N > 2, where the polynomial P satisfies the following

equation
Pl o N/i—l N2—-1+Fk ) | 2k(£)+ . N(a_u_)R(cos(w))
[ = P k sin ) sin 2 —""—2
(4.34)

where R is is a polynomial such that

R{z) = -R(1 — z) (4.35)
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frame (i.e a DWT wavelet). Moreover, if R satisfies a certain growth
conditions that Ay leads to a multiscale analysis associated with an ON
wavelet basis. The support width of both the ¢ and ¥ associated with the
CQF is N —1if R =0. For fixed N, exactly N/2 — 1 of the moments of

the associated 3 vanish.

This includes all the CQF’s discussed in the engineering literature where K is typically
1 and R is arbitrary. Thus the resulting ¢ may be a distribution. Specifically by
letting R = 0 we get a whole class of CQF’s and corresponding wavelet bases. We
refer to them as the Daubechies wavelet bases and the corresponding wavelets the
Daubechies wavelets.

Figs. 4.4 and 4.5 show the Daubechies scaling functions, the Daubechies wavelets
and their Fourier Transforms for N = 6, and N = 8. Notice the increase in smoothness
of both ¢ and % with increasing N. Also note that the support of these functions

increases with IV, as does the Fourier Transform decay more rapidiy for increasing

N.

4.1.5 The Moments of ¢ and 7

The moments of the Daubechies scaling function and wavelet have a number of in-
teresting properties. The first observation is that the moments of ¢ are completely
characterized by the discrete moments of the sequence ho. This means that the
moments of ¢ can be calculated exactly and efficiently without taking recourse to
any numerical integration. This property depends only on the fact that the scaling
function satisfies a two-scale difference equation. To see this, consider an arbitrary

function f(t) that satisfies the following two-scale difference equation
ft) =2 h(k)g(2t —k) (4.36)
k

for some function g and some sequence h.
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Table 4.1: The filters associated with Daubechies wavelets
Y ) 2y B
401 3.4150635e-01 | 1.7320508e+-00 | 1.2940952e-01

11 5.9150635e-01 | 3.7320508e+00
2| 1.5849365e-01
3 {-9.1506351e-02
6] 0] 2.3523360e-01 | 2.4254972e+400 | 3.5226292e-02
1} 5.7055846e-01 | -5.4609640e-01
2| 3.2518250e-01 | -9.4438141e+4-00
3| -9.5467208¢e-02
4 |-6.0416104e-02
5| 2.4908750e-02
810 1.6290171e-01 | 3.1029315e+00 | -1.0597402e-02
1| 5.0547286e-01 | -8.1093134e-01
21 4.4610007e-01 | 2.5929388¢-01
3 [-1.9787513e-02 | 2.1739085e+4-01
4 {-1.3225358¢e-01
5| 2.1808150e-02
6| 2.3251801e-02
7| -7.4934947e-03
10 | 0| 1.1320949e-01 | 3.7715192e+4-00 | -3.3357253e-03
1] 4.2697177e-01 | -1.0639434e+00
21 5.1216347e-01 4.2482928e-01
3| 9.788348ie-02 | -1.3318455e-01
4| -1.7132836e-01 | -4.7996278e+01
5 { -2.2800566e-02
6 | 5.4851329e-02
7]-4.4134001e-03
8 | -8.8959351e-03
91 2.3587140e-03

44
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Let my, pi and di denote the kth moments of f, g and & respectively, where the

dy is the discrete moment of the sequence k. We have

my = / thf(t)dt (4.37)

di = 3" n¥h(n) (4.38)

Now substituting for f(t) from Eqn. 4.36 in term of g(2t — k) and rearranging, the

kth moment of f can be expressed in terms of the discrete moments of & and the

moments of g up to k as follows,
my = — Z . d,'[lk_,' (4.39)

In particular when f = g, ux = m; and hence the continuous moments of f are
completely charactierized by the discrete moments of . From now on we shall assume
that f =g.

The above equations hold, even if f is shifted by a certain amount. Using this fact,
if f is shifted to its center of mass, then its first moment is zero. Now if the moments
of f are such that m; = mj, 1 < i < k, then by shifting to the center of mass all
moments upto order k vanish. This property will prove useful in the approximation
of functions in wavelet bases later on. This property can be characterized in terms of

the discrete moments which are more amenable to manipulation.

Theorem 4.1.3 For a given f as above, we have m; = mi, 1 <i <k,

ifand only ifforall 7,1 <: <k, dk=d§. Moreover m; = d;, 1 <:< k.

This theorem can be proved by induction using Eqn. 4.39 To prove some property of
the moments of f, it can be first converted into into a corresponding property for the

discrete moments of k. The discrete moments of & is given in terms of z transform

as follows
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Lemma 4.1.5 The discrete moments of f are given by the equation
a\
d,' = (ZE) H(Z)I;=1 (440)
where H(z) is the z-transform of k defined by
H(z) =Y h(k)z*F
k

In particular if g; and g, denote the derivatives of H(z) evaluated at z =1,
then d; = g1 and d; = g; + g, and hence we have m? = m;, if and only i
g2 =g1(1 + g1)

So far f has been any function that satisfies the two-scale difference equation.
What if f is either ¢ or 7 ¢ satisfies Eqn. 4.36 with f = ¢ = g and h = hy while
¥ satisfies the same equation with f = 9, ¢ = ¢ and A = h;. The one difficulty
with deducing the properties of ¢ and ¥ is that ¢ is characterized by the magniiude
of the Fourier Transform of kg on the unit circle. Hence the only way to obtain ¢
or 1 or hg is numerically by a spectral factorization of the |Hp(e*)|. Yet, from the
behavior of | Hy(e*)] in a neighborkood of w = 0, one can deduce certain relationships
between the derivatives of Hy and hence the discrete moments of ko and consequently
the moments of ¢. Indeed by differentiating Eqn. 4.34 all derivatives upto order K
are found to be zero. In particular the second derivative is zero. This implies that
g2 = 91(1 + g1) and hence for ¢, m2 = m,. Since this result is useful later on we note

it as a theorem.

Theorem 4.1.4 For the Daubechies scaling functions ¢, for N > 4, (i.e

excluding the Haar case), we always have that m? = m;,.

Again from Eqn. 4.34, using the form of h;, it can be shown that the discrete
moments of h; up to N/2 is zero, and hence the corresponding continuous moments

of ¢ are also zero. Explicitly we have
So(2n)rho = 3 (20 + 1)*ho(2n + 1) (4.41)
k k

for k < N/2—1.



Table 4.2: The moments of ¢

1.1939080e+4-00
1.4254164e+00
1.5802598e+00
1.4513041e+00

1.1939080e+00
1.4254164e+-00
8.5092254e-01
-2.0317424e+00

Nk mi dk
4| 0]| 1.0600000e+00 | 1.0000000e+00
1 6.3397460e-01 | 6.3397460e-01
2| 4.0192379e-01 | 4.0192379e-01
3 1.3109156e-01 | -6.1121593e-01
41 -3.0219333e-01 | -4.2846097e+00
5 1-1.0658728e+00 | -1.6572740e+01
6 0| 1.0000000e+00 | 1.0000000e+0G
1 8.1740117e-01 8.1740117e-01
2 6.6814467e-01 6.6814467e-01
3| 4.4546004e-01 | -1.5863308e-01
4 1.1722635e-01 | -1.8579194e+00
5| -4.6651091e-02 | 3.7516197e+00
81 0] 1.0000000e+00 | 1.0000000e+00
1| 1.0053932e+400 | 1.0053932e+00
2| 1.0108155e+00 | 1.0108155e+-00
3| 9.0736037e-01 | 2.5392023e-01
4 5.8377181e-01 | -2.0440853e+-00
) 6.3077524e-02 | -2.4420547e+-00
16| 0} 1.8600000e+00 | 1.0000000e+00
1
2
3
4
5

8.1371053e-01

-5.9644946e4-00

47
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4.2 Muitirate Filter Banks and Conjugate Quadrature Filters

Conjugate Quadrature Filter banks are very useful and have been extensively vsea in
sub-band coding and in irans-multiplexers {34, 32, 31, 27, 11]. Conjugate Quadrature
Filters are also known a Quadrature Mirror Filters, a term that has been used loosely
to refer to any set of filters in a multirate filter bank. A multirate filter bank is two
sets of filters that are arranged as shown in Fig. 4.6. The input signal z, is split into
a M channels using an analysis fiiter bank of M filters ko through has_;. The signal
in each channel is then decimated by a factor of N. This constitutes the analysis
bank. The signals in each of the M channels are then interpolated by a factor of N,
by interlacing adjacent samples with N — 1 zeros, and then passed through a set of
filters go through gps_;. The output of all the filters are added together to get the
output signal. This constitutes the synthesis bank. Thus the analysis and synthesis
banks of a filter bank together take an input signal z, and and produce an output
signal y. By transposing the analysis and synthesis banks, the filte bank (FB) can
also be considered to be one that takes in M signals and outputs M signals. The
former structure is caiied tie subband coder structure since it is used in subband
coders and the latter structure is called the transmultipiexer structure since it is
useful in transmultiplexers (FDM to TDM and TDM to FDM converters). The goal
in a FB design is to design good analysis and synthesis filters, where the goodness will
be determined by the application. The reason for considering FB structures is that
the decimation and interpolatior operations make the FB structures computationally
efficient. Depending on whether M is less than, equal to, or greater than N, the QMF
bank is called under-decimated, critically (maximally) decimated, or over-decimated.
filter bank.

In the remainder, only the subband coder structure is discussed since everything
carries over to the transmultiplexer structure naturally.

Historically, two channel FBs were considered where the filters ho and k; were

lowpass and highpass respectively, and the frequency response of the former was the
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Figure 4.6: A Multirate Filter Filter Bank

mirror image of the latter around #/2 as shown in Fig. 4.7. Hence the filters were
called Quadrature Mirror Filters (QMFs). In most of the Filter Bank literature, the
analysis and synthesis filters, independent of whether they satisfy the QMF property
or not, are referred to a QMFs.

The first step in the evolution of FBs was the design two channel critically dec-

imated FBs such that z and y were related by a simple convolution despite the

which introduces aliasing terms {{12]). Thus the FB

12 £ thn mvrod arn
1 LS SYSLEIT Wil

muitirate nature o
behaved from input to output exactly like an ordinary filter, with an amplitude and
phase distortion. Soon it was realized that not only could the aliasing terms be re-
moved, but exact reconstruction couid be achieved. That is, the impulise response of
the entire FB is a delayed discrete delta function (upto a constant) [31]. Such FBs
will be called Perfect Reconstruction Filter banks (PRFBs). In [31], the PR property

was achieved by enforcing a certain unitariness property on the analysis and synthesis
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Figure 4.7: The Mirror Property of QMFs

filters. More precisely, the filter Ay had to satisfy,
lHo(eiw)|2+ IHO(ei(w-i-r))l? =1 (442)

This property of the analysis filters was related to the losslessness property of the
scattering matrix in classical network theory by P.P.Vaidyanathan [32], enabling the
use of various factorization theorems for unitary (scattering) matrices in [1] to be
reinterpreted in terms of z transform matrices, leading to explicit parametrizations of
such PRFBs, which are called Conjugate Quadrature Filters (CQFs). Simultaneously
it was realized that the analysis and synthesis filters in two channel PRFBs could be
made linear phase [27] provided the unitariness property was given up. Such fiiters
are called linear phase PR filters (LPPRFs). It was also realized that if the number
of channels is greater that 2 then linear phase can be achieved without giving up
the unitariness condition. It is not clear why linear phase is always important in a
PRFB, since anyway the input z and output y are identical, (to wit, related by a

linear phase filter). It is well known that the symmetry of linear phase filters halves
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the computation of direct convolutions with those filters. Since a filter bank can in
itself be implemented efficiently as will be seen shortly, it is not clear, at least for most
applications, whether designing linear phase PRFBs is really necessary. Nonetheless,
LPPRF's are closely related to the construction of bi-orthogonal wavelet bases [33],
just a CQF's are reiated to ON wavelet bases and tight frames.

Let kg, hy,...,hps_y be the analysis filters, and let go, g1, - - . , gar—1 be the synthesis

filters in an M-channei PRFB. Let the modulated analysis filter matrix be defined as,

[ Hy(z)  Ho(Wz) - Ho(WN-1z)
Has) = | RGOV BT (443)
| Hy_1(2) Hya(Wz) - Hy(WN"12) |
where W = ¢?*/N and H;(z) is the z transform of h;. Let
Zm(2) = (X(2), X (W), ..., X (zWN-1)T (4.44)
be the modulated input vector, and
9(2) = (Go(2), G1(2), - .., Gua(2))7 (4.45)

be the output filter vector, where G;(z) is the z transform of g;. Let ¢; be the output

sequences of the analysis bank. Let ¢(z) be the vector of z transforms of the outputs

of tke analysis bank. That is
o(2) = (Cofz), Cu(2)s+++, Crra(2) (4.46)
with C;(z) being the z transform of ¢;. Then it is easily seen that,
o(2) = e H () (M) (4.47)
The output Y(z) is related to ¢(z) by the synthesis bank as

Y(z) = g7()e(=") (4.48)
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which implies
Y (2) = 1/N(9(2))" Hu(2)zm(2) (4.49)
For perfect reconstruction Y (z) must be related to X (z) which is the first component

of z,,(2), by just a delay. Therefore,
(Hn(2))79(2) = (=7*,0,...,0)7 (4.50)

for some integer k. Thus once an arbitrary analysis bank of filters {&;}is chosen it is
clear how to obtain the synthesis bank, i.e., by inverting Eqn. 4.50. Even assuming
that this z matrix inversion can be carried out, the filters g(z) may not be stable.
One way to avoid instability problems in a filter is to make if FIR. If g(2) is ensured
to have polynomial entries then all the synthesis filters would be FIR. It is clear that
this can happen if and only if det(Hn.(z)) is of the form 2’ for some integer j. If
the modulated analysis matrix is unitary on the unit cirlce (z = ), then trivially
it follows that PR is achieved without any instability problems. This is precisely the
unitariness condition referred to earlier. Notice that all we need is for H,,(z) to be
left unitary, i.e

Hn(zY)HI(2)=1 (4.51)

Definition 4.2.1 A CQF bank is a PRFB where the modulated filter

matrix corresponding to the analysis filters is left unitary.

The corresponding modulated synthesis filter matrix will also be left unitary. In
the critically sampled case, the synthesis filters are merely the time reversed versions

of the analysis filters. That is,
g(z) = z7%¥h(zY) {(4.52)

In the case of orthonormal wavelets with a scaling factor of 2, the filters 2 and h;

satisfy the orthogonality conditions (Eqn. 4.22 and Eqn. 4.21) which may be written

in the form
H,(z)HI(z"Y) =1 (4.53)
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where

Hn(z) = | Hole) Hal) (4.54)
| Bi(z) Hu(w2)
W = &27/2 = _1 in the above equations. Now it is clear that the modulated filter
matrix associated with hg and h, is a CQF. Notice that the orthonormality properties
of the wavelets manifests itself as a condition on the associated modulated filter matrix
that makes the sequences ko and k; have the CQF property. This might give one
the impression that the orthonormality of the wavelets and the CQF property are
synonymous. This is true only in the critically decimated case. If M # N then the
orthonormality condition implies that H,, is right unitary while the CQF condition
implies that it is right unitary. This can also be understood from the dimensionality
of H,,. If M > N then orthonormality cannot be achieved because there are too many
channels. On the other hand if M < N then the channels have been overdecimated

and there is no way to reconstruct the signal, and hence no way to satisiy the CQF

condition.

4.3 Computation with FIR CQF banks

For the general FIR CQF bank the most efficient way to implement the analysis and
synthesis banks is to use polyphase filter structures [29]. The polyphase implementa-
tion has an associaied polyphase flter matrix that is related to the modulated filter
matrix of the previous section by a Discrete Fourier Transform as will be seen shortly.

The analysis bank has to implement M equations of the form
ci(n) = Y hi(k)z(Nn — k) (4.55)
3
Let H;(z), X(z), and C;(z) denote the z transforms of k;,z, and ¢; respectively. Then,

Hi{(z) = Ni:l z7FH, 1 (V) (4.56)
k=0



54

where,
H;i(z) =>_ h(k+ Nn)z™" (4.57)
and
N=1
X(z)= 3 27X (V) (4.58)
k=0
where,
Xi(z) = z(k+ Nn)z™" (4.59)

n

The functions H;; and X} and the corresponding sequences are called the polyphase

components of the filter k; and the input z respectively. Then C;(z) is given by
N-1
Ci(z) = Xo(zjH; o(2) + Z‘: Xi(2)H; n-i(2) (4.60)
This is the polyphase implementation of Eqn. 4.55. Fig. 4.8 shows the block diagram
of the polyphase implementation of a filter.
Notice that only the output values that are not being thrown away by the dec-
imation operation is being computed. This is the reason why the polyphase imple-

mentation is computationally efficient compared to the direct implementation.

Now for the entire analysis bank, define the polyphase analysis filter matrix as

follows,

- -

Hop(2) Ho,(2) -+ Hon-a(2)
Hyz)= | o) Hal) e Bvea(e) (4.61)

| Hy11(2) Hym-ya(2) --- Hpoinva(2) i

Let J be the matrix defined by,
(10 ---0 0]
00 ---01
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Figure ¢4.8: Polyphase Implementation of an Analysis Filter Bank

and let the polyphase input vector z, be defined by,
25(2) = (%o Xa(2) -2 Ko ()] (4.63)
Then the analysis bank equation can Be written as
c(2z) = Hp(2)Jz,(2) (4.64)

If the length of the analysis filters are each K, and the length of the input is K then,
the direct computation of the analysis bank requires M(K, + K, — 1)K}, multipli-
cations, while the polyphase structure requires M N L%J(L% |+ Lgﬁij — 1) multipli-
cations. The computationally complexity of the polyphase implementation is lesser
than that of the direct implementation by a factor of N.

Now consider the synthesis bank that must implement the equation

M-1
y(n) = 3 c(k)gi(n — NE) (4.65)

=0
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Equivalently, in terms of z transforms,
Y(2) = ¢7(2)e(z")- (4.66)
Let the polyphase output vector 4, be given by, |
¥p(2) = (Yo(2), Ya(2), -+, Ya-a(2))T (4.67)

and the polyphase synthesis matrix by

[ Goo(z)  Goalz) -+ Gowaa(z) |
G G o Gineil2)
Gy(z) = ,1’0(2) ,l’l(z) TN (4.68)
| GM-11(2) Gum-1a(2) -+ Guoan-1(2) |
Then,
¥p(2) = G, (2)¢(2) (4.69)

This is the polyphase implementation of the synthesis bank. This equation does not
do any of the trivial computations in a direct implementation of the synthesis bank.
y(n) is obtained by interlacing the sequences corresponding to the components of
¥p(2). Fig. 4.9 shows the polyphase structure for the synthesis bank. The polyphase
synthesis bank is superior to the direct implementation approximately by a factor of
N.

The analysis and synthesis banks can be characterized by either the polyphase
representation or the modulated representation. The modulated representation is the
more natural representation, while the polyphase representation is computationally
more efficient . The two representations are related as follows: If z,, is a modulated

vector, then it is related to z, the corresponding polyphase vector as
Tm(z) = DFT(N)diag{z2,z7%,---, 27"} z,(2") (4.70)
where DFT(N) is the length N, DFT matrix. From Eqns. 4.47 and 4.64,

Hy(z)Jz,(z) = %Hm(zlm)xm(z]/N) (4.11)
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Figure 4.9: Polyphase Implementation of an Synthesis Filter Bank

which implies,
H,(2) = DFT(N)diag{z"*,z72, .., 2= N1} H (V) (4.72)

A similar relationship holds for the corresponding synthesis matrices too. From the
last equation, it is clear that the unitariness of the matrix f7, is equivalent to the
unitariness of the matrix /7,. Thus the analysis filters form a CQI iff A, is unitary.
This characterization of CQFs is superior to the characterization in terms of H,,.
This is because a filter coeflicient (of any filter) in the analysis bank aflects exactly
one and only element in /,, while it occurs in all the rows of a column in Hy,(2). I,
is a general unitary matrix in z hile H,, is not. Hence all the beautiful theorems on
the factorizations of unitary polynomial matrices in [1] can be applied directly to f,

to get a set of independent laitice parameters for the CQF bank.
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4.3.1 Lattice structures and CQFs

Every FB has a polyphase analysis and synthesis structures associated with it, inde-
pendent of whether the fiiters form a CQF or not. But when the analysis filters do
form a CQF there are some special lattice structures associated with the CQFs. This
is related to the unitariness of H,. Lattice structures for analysis and synthesis in
M channel critically decimated CQF's are well understood [11]. They were developed
to characterize the CQF's with an independent set of parameters, so that the design
of CQFs is facilitated. Essentially the lattice structures depend on the factorization
of unitary polynomial matrices. The filters arising naturally in the theory of ON
wavelets are CQFs. Therefore we proceed to review lattice structures for analysis
and synthesis in two channel critically decimated CQF banks.

Consider the analyzer part of a two-channel critically decimated CQF bank. The
input z goes through the analyzer to give sequences ¢y and ¢;. Both ¢g and ¢; depend
linearly on z. Furthermore, if z is delayed by 2 units, ¢y and ¢; are delayed by 1
unit. Thus the analyzer can be considered to be a 1 input 2 output periodically
time-varying system with period 2. Now consider the polyphase components zo and
z; of the input. Both ¢y and ¢; depend linearly on 7 and r; and furthermore, the
dependence is shift invariant. That is, a delay of 1 unit in zq leads to a delay in both
co and ¢;, when z, is zero. Thus, the analyzer can also be considered to be a 2 input
(zo and z;), 2 output linear shift-invariant system. Thus there would be 2 2 x 2 z
transform matrix relating Cg(zj and C;(z) with X;{2) and X;(2).

Since the analyzer filters form a CQF, the energy of input z gets distributed
between c¢q and ¢;. Planar rotations and shifts are the only unitary shift-invariant
operations for a two input 2 output system of degree 1. Thus it is reasonable to
expect that the most general 2 input 2 output unitary shift invariant system can be

implemented as a cascade of planar rotation and shift blocks.
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In fact ¢y and ¢; are related to zo and z; by a cascade of rotation and shift blocks

Co(z)] [ cosBypmz  simgy, }Nﬁz f1 o 1T cosf; sing, ] ng(z
Cl(z)J [-sinBN/g_l cosOle_lJ =0 [0 z"J [—sinﬂ; cosG;J [X,(z

Here N is the length of filter ky. Since this implements the filters Ay and k;, the

parameters §; are related to the filter k. The angles §; could also be parametrized
in terms of sin §;, cosf; or tan ;. The above equation represents the lattice imple-
mentation of the analysis bank. The structure above is called the normalized iattice
structure to distinguish it from the de-normalized structure where the tangent of the
angle is used to parametrize the lattice. In the remainder the tangent parametrization

is used since it involves the least amount of computation as is seen below. Let

N/2-1
B= I cos(8:) (4.74)
=0
and let
k; = tan6; (4.75)

Then we have,
Co(z) | 1 kv V2221 0 || 1 k][ Xe(2)
[cl(z)} —ﬁ[—km_l 1 } ! [0 2 } | =& 1 ] [XI(Z)J
(4.76)
The next step is to obtain the k parameters from the filters. Let F)'(z) and H(2)
be the two analysis filters. Here N denotes the length of the filters, or equivalently,
N —1 is the degree of the z transforms. Then by a suitable planar rotation, the HY

and HY are transformed into another CQF pair, H}' =2 and H¥~? of degree two less.

Repeating this process of extraction of rotations until the degree of the resulting CQF

becomes zero we get all the rotation angles. Define,

knjz-1 = —hg (N —1)/hY (N = 1) (4.77)
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Then it can be shown that
[ HY2(2) } _ [ 1 knj2-1 J [ HY(2) ] wrs)
2"2HN-2(2) 14+ ky/pm —knj2y 1 l 272H]N(z)
where HY~%(z) and H]'-?(z) form a CQF pair of length N — 2. The parameters
extracted are precisely the tangent parameters.
As for the synthesis bank z has to be obtained from ¢; and ¢,. The equation
for the ¢;s in terms of the z;s can be directly inverted to obtain the z;’s from which
gives z. It is seen that the synthesis bank is identical in structure to the analysis

bank. Moreover, in software, the same program may be used for both the analysis

[ 1 k,-] l[X,(z)

-k 1

and synthesis. The synthesis bank equation is given by,

[ C](Z) [ 1 kN/g_l } N/_sz r 1 0 ]

Col2) 1l

—kN/2—1 1 =0 0 Z-l J

The synthesis bank can aiso be implemented as a lattice. Programs htok.m, and

ktoh.m in the appendix A, respectively convert the filter hg to the k parameters and

vice versa.

4.4 Generalization of ON wavelet bases

The theory of ON wavelets can be generalized naturally in two directions. Firstly the
scale factor 2 in the fundamental scaling equation could be replaced by any integer
M. Secondly, one could obtain ON wavelet bases for LZ(R").

Counsider a function ¢ and a multiscale analvsis where the scaling property is

replaced with a factor M. That is,
8(t) = MY ho(k) (Mt — k) (4.80)
k

As in the case where scale factor was 2, there is a sequence of embedded closed vector

spaces {V;}. Define
ik = VMig(Mit — k) (4.81)
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Then Vj is spanned by {4} for fixed j. Now it is reasonable to expect that there
exist functions %y, 2, ..., ¥a—; such that their integral translates span the orthogonal
cocmplement of V; in V;, though no one has come up with a proof so far. Moreover

the spaces W7, W}, ..., W~ would be such that
VisViaeW, oW, e...0 WY (4.82)

for all j. Thus we have filters ky, ks, ..., hpr_;. If the wavelet basis is orthonormal then
the bank of filters Ay through kas_; should form an M-channel maximally decimated
CQF. Again most of the properties for the case M = 2 carry over to orthonormal
wavelet bases arbitrary M.

As for multidimensional wavelet bases, one could directly obtain them as a tensor
product of one dimensional wavelets. A more general approach would be to consider

a multiscale analysis framework with R replaced by R®. In this case the scaling

b whan
v nuua

[¢]

factor has tc be replaced by a scaling matrix M, whose entries are real bu
determinant is some integer m, which gives the number of wavelets plus one (since it
includes the scaling function too). Both these generalizations have been considered

and constructed in [28]. Ref. [23] also gives some facts about these generalizations.



Chapter 5

Computational Techniques using ON Wavelets

In the remainder of the thesis the only DWT wavelets considered are the Daubechies
wavelets. The wavelets are parametrized by an integer N and the wavelet is uniquely
specified by the minimal phase condition. All this is clearly described in [7]. In this
chapter we give a brief summary of the computational techniques associated with ON
wavelets. The relevant MATLAB programs may be fouﬁd in the appendix. Though
the wavelet based analysis of a signal involves analcg processing, it turns out that

one can do very well by processing only in the discrete domain.

5.1 Generation of ¢ and ¥

Both ¢ and % are generated from the corresponding filters kg and k;. There are
two techniques to generate the scaling functions and the wavelets. Both techniques
compute the values of ¢ and 3 at the dyadic rationals. We will assume that ¢ and
3 are continuous. The first method is best understood as a time-domain technique,

while the second is best understood as a frequency-domain technique.

5.1.1 Interpolation Method

The values of ¢ and 1 are obtained initially at the integers (remember that by as-
sumption ¢ and i are continuous). Using Eqn. 4.4 the values of ¢ at half integers are
obtained. This process is continued recursively to obtain ¢ at all the dyadic rationals.
To obtain the values of ¢ and ¥ at the integers, form the scaling equation one obtains

an eigen-equation for the values of ¢ at the integers. Let ®(¢) be a vector of length

62
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N defined by
;(t)=¢(t+7k0<j<N (5.1)

Since ¢ is supported in [0, NV — 1], it is clear that ¢(t) is completely determined by

®(t) for t € [0,1]. Now define two N x N matrices Mo and M; by

(Mo)i; = 2ho(2¢ — j)
(M1)i; =2ho(2i — 5+ 1)

(5.2)

Then Eqn. 4.4 becomes

o) - { Mo®(2t)  H0<t<1/2 63)

M®2t-1) ifi/2<t<1
In particular when ¢ = 0 we have that
®(0) = M®(0)

Thus the value of ¢ at the integers can be obtained by solving this eigenvalue problem.
® is simply the eigenvector of M, corresponding to an eigenvalue of 1. In fact if ¢ = 1
we have

o(1) = M, ®(1)
Thus we can again obtain the value of ¢ at the integers by solving this equation. If
¢ is continuous it is completely specified by its values at the dyadic rationals (i.e real

numbers that admit a representation of the form

N -
> o2
M

for finite M and N and t; € {0,1}). Let ¢ be a dyadic rational in [0,1]. Then ¢ can

be written as .t;t5t5...¢x. Then from Eqn. 5.3 one easily obtains

@(.t}tg o t}() = Mgl Mgz tee .A’.ngé(O) (5.4)
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Thus ¢ at the dyadic rationals can be obtained. The same analysis can be done for
. Define matrices Ny and N; by

(Noji; = 2h1(2¢ — 7) (5.5)
(M)i; =2m(2 -5 +1)
Then we have
U(tyty. .. tg) = Ny My, ... M, 9(0) (5.6)

Though this notation suggests that matrix products are involved in the computa-
tion, actually once the values at the integers are obtained (by solving the system of
linear equations) the rest is merely going through the synthesis equations of the CQF
bank corresponding to the wavelet and can be done very efficiently. This technique
for generating ¢ and v was first used by H.Resnikoff and later used by I.Daubechies
to study the differentiability properties of the wavelets.

5.1.2 Infinite Product Method

This method is a frequency domain technique and computes only an approximation
to ¢ and ¢. The Fourier Transform of @, can be writien as an infinite product.
The infinite product in the frequency domain becomes an infinite convolution in the
time domain. The infinite convolution is directly implemented. This is illustrated in
Fig 5.1. A very good approximation is obtained by terminating the infinite product
after about 8 or § stages. This technique for generating the ¢ and v was first used
by I.Daubechies.

In the first method the values of ¢ at the integers are first obtained exactly.
Hence the values at the dyadic rationals are also obtained exactly within limits of
numerical errors. In the second method since an infinite product is trurncated only
an approximaticn of ¢ is obtained. Ia practise the error in generating using this
method is very small after about 8 iterations are done. The big advantage with the

second method is that there is no need to solve a system of linear equations. Both
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Figure 5.1: Generation of ¢ using infinite product

techniques are identical in their implementation in that the interpolation starts with
the values at the integers and goes through a process while the infinite convolution
method starts off with a delta and goes through the same precess. Eventually they

both converge to the same values.

5.2 Analysis/Synthesis in Wavelet Bases

The wavelet expansion of a function f can be written as
f(t) = ZW(Jv k, f)¢j,k
3.k
Omn a computer since one cannot represent infinite sequences this form cannot be used.
If f is compactly supported, which is a realistic assumption, and if % is compactly
supported, then the index % can take only a finite number of values. As for the index j
since the wavelets are bandpass filters, to represent any function with DC j begins at

—oo. To avoid this one has use the scaling function too in the expansion for f. Again,
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since the signal energy will usually be very small for sufficiently large frequency, it is
realistic to assume that the wavelet coefficients of a signal are 0 for all levels greater

that j;. Thus one has to expand f as
16) = 3 SCios b o+ 5 35 Wik, 5alt) )

E k j=30

How do we obtain the coeflicients in the above equation? Since the coeflicients are
merely the inner-product of f with the corresponding scaling function, one method is
to directly evaluate these inner products by numerical integration. Besides, usually a
signal is specified in terms of its samples, and hence to completely specify the signal,
one has to interpolate between the samples. Both integration and interpolation,
introduce errors. Since, as already mentioned, practically all signals have a certain
finest scale of interest, we can represent the signal completely in terms of scaling
functions at that scale. We now discuss how to project a signal onto the finest
scale of interest. More precisely we discuss how to compute Sf(j; + 1, k) since this

completely determines all the coefficients in Eqn. 5.7

5.2.1 The Projection onto the Finest Scale

We know that
/ $ix(t)dt =1 (5.8)
With increase in j the support of ¢;; decreases. Hence for sufficiently large j,say
J1+1, the functions ¢, can be considered tc be the Dirac delta measure. Then the
scaling coefficients at the level j; + 1 are given by the samples of the functions as
follows.
SfGr+ 1,k f) = f(27" %) (5.9)
Notice that since the support of ¢ is in (0, N — 1), vanishing at both endpoints, it

makes more sense to sample f, where the function is concentrated, i.e at its maximum
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value or at its center of mass. That is if m, is given by
my = j'dt t6(t) (5.10)

then sampling f on the lattice {2-7*-1(k + m,;) | k € Z}, would give a good approxi-
mation.

Sf(71+1,k) = f27 7Nk +my)) (5.11)
In the initial experiments with D wavelets this approach was used and found to give
very good approximations even for mederate values of j;. We shall see the reason for
this later.

The second approach is to sample f uniformly at the rate of 217! and use any of
the standard interpolation techniques, like piecewise Lagrangian, Hermite, or vari-
ations thereof, spline interpolation etc. and integrate by quadrature. Since by
Eqn. 4.39 we know that the moments of ¢ can be computed ezactly, integration
by quadrature reduces to some form of convolution and hence is greatly simplified.

The third method is to use the cartographers’ technique of approximating the
function f locally (by a polynomial in our case!) for finding the scaling coefficients
at the finest level required and go through the analyzer. Notice that this is quite
different from interpolating with some set of basis functions and integrating as in the
previous paragraph. Arguments in favor of this technique can be given intuitively.
Besides, computationally this technique is the best and has been studied extensively
[21]. From the point of view of accuracy also this works pretty well. This can be seen
as follows. Let us say we want to obtain S(j; 4+ 1,0). In fact, we have from a Taylor

series expansion of f around 0
2 3
1(2) = £(0) +££(0) + 5;£A(0) + 7 /(6) (512)

where 6 € (0,1). Now integrating with ¢ shifted to the center of mass, we have

[ atr@ete +mi) = £(0) + T2 10 (5.13)
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Thus the samples of f themselves give a third order appreximation to the coefficients
S(0,k, f). This automatically implies that the samples of f at S(2-%-(k + m,), f)
give a third crder approximation of Sf(j; + 1, %, f}.In other words by increasing the
sampling by a factor of 2, we decrease the approximation error by a factor of 8!. This
is precisely the reason why the samples themselves gave excellent numerical results
even for moderate values of j;. This result was first noticed in numerical investigations

with wavelets by W.M.Lawton [21].
As an aside, we mention that for all the programs in the appendix the prejection
is done by merely taking the samples. Hence this operation is assumed to have zero

computational cost.

5.2.2 One level Analyzer

We know that W; ® V; = Viy;. Thus S(j, &, f) and W(j,k, f) can be obtained from
S(j+1,k, f). From Eqn 4.4

$ix(t) = V2 ? ho()$js14(t — 2711 — 2K)) (5.14)
Now projecting f onto the functions above we get

SG,k, f) = \/52 ho(l — 2k)S(5 + 1,1, f) (5.15)
Similarly from Eqn 4.18 we obtain

W3k, f)=v2 ; hi(l — 2k)S(G + 1,1, f) (5.16)

These are precisely the equations for the analyzer part of a two-channel CQF bank
as shown in Fig. 5.2. The obvious method to implement the analyzer is to simply
filter the sequence S(j+1,-, f) through z~(¥=1 Hy(z=1) and z=V-V H,(z~!) and take
every other sample. This could either be implemented as a polyphase structure or as

a lattice structure. The advantages of 2 lattice structure are plenty.

1. The basic building blocks for the structure are simple rotation and shifts.
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Figure 5.2: The One Level DWT analyzer

2. The structure is simple and regular and modular, and hence amenable tc VLSI
implementation. With fixed point implementation a number of tricks can also

be used to increase efficiency [14].

3. Since both rotations and shifts are unitary, the condition number of the mapping

from input to output is 1, and hence the error properties of this implementation

are very good.

4. Again because the mapping is unitary, the inverse transform is merely the trans-
b
pose and hence the inverse transform can be computed using the same program

as the forward transform.

5. The lattice structure uses the minimal number of parameters to characterize 2

CQF.

Since we are not using an arbitrary CQF, but a specific CQF, that has to satisfy

the regularity conditions, we might expect that the incorporation of this will further
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reduce the computation [21]. This is indeed true, and if the number of multiplies is all
that is critical, then this can be accomplished. But in the process the CQF properties
of the filters cannot be exploited. Besides the structure is not very regular and the
number of adds get out of hand (analogous to the Winograd Fourier Transform in
the theory of Fast Discrete Fourier Transform algorithms).

Since the Daubechies CQF's for a fixed even N are unique, ( upto the degree of
freedom in a spectral factorization and assuming the polynomial R in the Daubechies’
characterization of CQFs is zerc), and since in 2 lattice characterization of 2 CQF
there are N/2 independent parameters, the remaining /N/2 degrees of freedom (in the
Daubechies CQFs), manifest themselves as some non-linear relationships between the
angles in the lattice parametrization. These N/2 conditions arise from the N/2 — 1
conditions in Eqn. 4.41 and from the summation condition all on the filter hy. For
example the latter condition expresses itself in the form of the sum of the angles in
the lattice parametrization being —45°.

Practically the most irksome thing about wavelet-based signal analysis is that one
has to keep in mind at all times the time origin of the sequences that denote the
scaling or the wavelet coefficients at each level. This problem can be alleviated in
some cases by using a periodization of the wavelets, and assuming that the signal

being analyzed is periodic.

Complexity cf the One Level Analyzer

Let the number of filter coefficients be N (i.e the number of lattice parameters is
N/2). The number of additions in the lattice for a pair of output points is N, while
the number of multiplies is N +2 (assuming de-normalized implementation) as can be
seen from Fig. 5.3. Let K be the number of input samples. Then number of output
samples in the next coarser level for both the scaling and the wavelet levels are both

[E2N=1], where N is the length of the filter ho. The total number of adds 4, and
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Figure 5.3: Lattice Analyzer of Two Channel CQF

number of multiplies M are therefore given by,

K+1 N?—-2N N

N
FK<A=N[—=+ —— < S(K+N) (5.17)
and
> 2 N
(-]22+1)1<<M=(N+2)r"{;1+N 42N<(5+1)(K+N) (5.18)

The total complexity per input sample is approximately N.

5.2.3 One level Synthesizer

Given S(j,k, f) and W(3,k, f), S(j + 1,k, f) is obtained as follows. Actually since
the one level analyzer is exactly the implementation of the analysis part of a per-
fect reconstruction CQF bank, one would expect the one-level synthesizer to be the

corresponding synthesis filter bank. Clearly Pji1f = P;f + @;f. We have

Fisaf =50,k )din + W3 K, v (5.19)
%
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and
S(] + 17 ka f) =< ¢j+1'k’ Pj-i—lf > (520)

By substitution we get
S(+1,kf) = V2 ko1~ 20)SG, L) + (I-2R)W(LLS]  (5:21)
1

which is precisely the equations governing the synthesis bank of a CQF bank. Again

this is best implemented using a lattice structure.

Complexity of the one level synthesizer

The lattice implementation of the one level synthesizer is shown in Fig. 5.4. Notice
that both the analyzer and the synthesizer can be implemented by the same program.
Let K denote the number of the scaling and the wavelet coefficients. Then the number

of additions and multiplications are given by the following formulas

2 —
Moo N2 52)
2 —
PP e

Once again the complexity per input point is approximately N (if each input in
both the scaling and the wavelet sections are counted separately). The number of
output points is given by 2K + N — 1.

5.2.4 Mocdified one level analyzer

Later on we will have need to implement the following equation
1

and
a(k) = Z hi(Dz(2k + M) (5.25)
1
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W(j- 1,k —= fz - H1(z")

Figure 5.4: The One Level Synthesizer

where Ao and &, are our familiar Conjugate Mirror Filters. Taking the z-transforms

on both sides we get

Col2) = 5[X(2)Ho(z") + X(=2)Ho((-2)™)] (5.26)

Ci(2) = 5IX(2)Hy(2M) + X (=2) o ((~2)™)] (5.27)

Fig. 5.5 shows the block diagrams corresponding tc these equations. From the z-

transforius we can see that the equaiions can be impiemenied in a lattice using a

modified analyzer.

Complexity of the Modified Analyzer

For an input of K samples, the number of multiplies and adds for the modified one

level analyzer can be shown to be

M=(N+2) [g] +Mivz (5.28)
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Figure 5.5: Modified One Level Analyzer
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As in the one level analyzer a few more adds can be saved at the cost of coding com-

(5.29)

plexity which would lower the speed of a program in MATLAB due to its interpretive
nature. Overall the complexity per input sample is approximately N + 1 as in the

case of the one level analyzer.

We have no need to implement the modified one level synthesizer. Yet for the sake
of completeness we give the equations and the structure for the modified one level

synthesizer. Here we are interested in implementing the following equation
z(n) =Y ho(k)eo(M1 - 2k) + > hy(k)ey (M1 - 2k) (5.30)
k P

This can also be implemented as a lattice structure.
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This structure is merely the transpose of the corresponding structure for the mod-
ified analyzer. It is interesting to note that the synthesizer leads back tc the original

sequence if and only if M is odd.

5.2.6 Expansion at any scaling or wavelet level

Let us assume that we have to compute the values of a function f(¢) at 2~'n given
S{j,k,f). Then,

f@7n) = 328G, k, £)22¢(2'n — k) (5.31)
Three cases may be identified depel;ding on whether 17 is greater than, equali to or iess
than j.

When ¢ = j, the required samples of f(t) are obtained by convolving S(j, %, f)

When ¢ < j, the required samples are cbtained by convolving the samples of ¢
at the integers with S(4, k, f) and decimating by the factor 27~*. An efficient way to
implement this would be as a polyphase structure.

When ¢ > j, the required samples are obtained by first upsampling S(j, k, f) by

a factor of 2~/ and then convoiving it with ¢(n). This can also be implemented as a

polyphase structure.
An alternative method to obtain f(t) would be to go through the synthesizer

enough times until the samples of the function f(#) by its scaling coefficients at a

sufficiently fine level.

XETmM
4

5.3 Computation of the DW

We have already seen the basic building blocks in a the computation of a DWT and
inverse DWT.

1. Projection onto a scaling level

2. The one-level analyzer
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Figure 5.6: Modified One Level Synthesizer

3. The one level synthesizer
4. Expansion at a scaling or wavelet level

The most efficient way to compute the DWT is find the projection of the function onto
Vj 41, where j; is the finest scale of interest, and then use the analyzer recursively on
the scaling coeficients at coarser levels to find the wavelet cocflicients at the coarsest
level of interest.

Computaticnally the cost is split between the initial projection onto the finest
level, and the analysis. As mentioned earlier we will always assume that the cost
of projection is zero. The analyzer and synthesizer can be used to go down and up
scaling levels.

Assuming the analyzer is used j; — jo + 1 times, and that the number of scaling
coefficients at the scale j; + 1 is K we compute the number of additions and multipli-

cations as follows. Let K; be the number output scaling coefficients after i analyzer
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runs. Then we have

L,

"=

9 v

{K(,'_l) + N - l.l {5 32)

And the number of additicns and multiplications in the ith run are given respectively

by

N K;+1 N?-2N N
EK;(A,-:N[ 5 ]+ 2 <~§(K,'+N) (5.33)

N ,- 2_oN N
(5—+1)K;<M;=(N+2)|’K;1]+N4 <(FHDE+N) (539

Solving this for the total number of additions and multiplications we obtain the

following inequalities

(%+1)(2(K—N+1)(2"-—1)/2"+n(N—1)) <M< (g-i—l)(2(K—-N—1)(2"—1)/2"+n(2N+1))

{5.35)

and

%(2(K—N+1)(2"—1)/2"+n(N—-1)) <A< g(2(K—N—1)(2“—1)/2"+n(2N+1))
(5.36)
As a rough estimate the number of additions is nearly NK and the number of mul-
tiplications roughly (N <+ 2)K. Thus the entire DWT computation takes almost as
much time as convolving the input with the filter ho!! This is property of CQFs that
makes wavelet bases analysis of signals so attractive computationally. One can rea-
sonably expect that almost all major applications of wavelets will be centered around
the DWT wavelets or more generally CQFs. In some sense wavelets have facilitated
looking at a class of CQFs that have excelent properties when the signals being
studied bekave like polynomials locally.
Since the computation of the DSWT, DTWT and the CWT with respect to arbi-
trary DSWT, DTWT and CWT wavelets depends on the computation of the corre-

spending transforms with respect to a DWT wavelet describe how to compute them

next.
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5.4 The DTWT with respect to a DWT wavelet

Let i be a DWT wavelet. Let ¢ be the associated scaling function. We wish to
compute W(u, k, f). Let us assume that scale is sampled at a rate of L samples per

octave. Then our goal is to compute
W(G/L,E, f) = j/ F(8)29/2 (2184 — k)dt (5.37)
From Eqn. 4.5 we have already noted that,
ik =2 XI: ho(1) 41,2641 (5.38)

This equation is true not only feor integral values of 7 and %, but also for arbitrary

real values. This can be seen directly from the fundamental scaling equation. Indeed

we have,

Gk = V2 ho(D)bur1,2e4t (5.39)
l

and

Yuk = \/EE h1(k)Pusr2r+k (5.40)
k

This means that there is no preferred origin in scale. The vector spaces {V;} in the
multiscale analysis framework could have been replaced by {V;;,} for arbitrary u,
where V4, is understood to be the appropriately interpolated vector space.

Now by taking the inner product of f(¢) with both sides of Eqn. 5.39 and Eqn. 5.40

we get

S(u,k, f) = 3 ho()S(u +1,2k + 1, §) (5.41)
{

and
W(u,k, f) = hi()S(u+1,2k+1, f (5.42)
1
Thus once the Discrete Time Scaling Transform for scale u is known the DTST
and DTWT for all scales, ({u — j|j € N}) can be obtained. Indeed, the DWT with
respect to v is merely the samples of the DTWT at integers in scale and we have

already seen how to compute it in the previous section.
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Now let us asc ne that we are given the DTST at the L finest scales of interest,
which are separated by 1/ octave each respectively. Then by going through the one

level analyzer of the DWT for each of these DTSTs we have effectively computed the

DTWT. Indeed we have the following equations
] 1+ L
S,k ) = VES ho(DS(LEZ, 28 +1,7) (5.43)
1
] T
WLk f) = V2L ()S(E5=, 2k +1,1) (5.44)
1

As for the computational complexity, note that one has to compute the projection
of f onto the L coarsest scales. The rest is the run through the DWT algoritkm L
times. So approximately the computation is L times the complexity of the DWT.

5.5 The DSWT with respect to 2a DWT wavelet

Here we wish to compute W(j, 7, f). Assuming we sample time at the rate of M Hz,

we have to compute
WG, k/M, f) = [ F@)2/ (@t~ /M)t (5.43)

for integers j and k. From the fundamental scaling equation we have

Pir = ﬁ}; ho(k)djt1,2r+k (5.46)
and
Vjr = \/5%_‘ h1(k)@is1,2r+k (5.47)
Now by taking the inner product of f(t) with both sides of Eqn. 5.46 and Eqn. 5.47
we get
SG, 7 f) = V23 ho(DS(G + 1,27 + 1, ) (5.48)
and l

Wi, f) = V23 m(D)SG + 1,27 + 1, f) (5.49)
H
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Thus once the Discrete Scale Scaling Transform for scale for the finest scale j
is known the DTST and DTWT for all scales, ({j; — j|j € N}) can be obtained.
Letting 7 = k/M, we obtain the following two equations

(i k/M, f) = V23 ho(D)S(j +1,2k/M +1, f) (5.50)
l

and

WG, kM, f) =2 zlj hy(DS(G +1,2k/M + 1, f) (5.51)
These equations can be implemented by the modified analyzer discussed earlier in
this chapter.

The computational complexity of this algorithm is divided as always between
the initial prejection onto the DSWT at the finest scale, and the run through the
modified analyzer. Typically we assume that f(2~7'~![k + m,] is given, where j; + 1
is the finest scale of interest. But now we need to find S(j; +1,2-1k/M, f). If we
can sample at M times the usual rate then the samples may themselves be taken as
the corresponding projection. Else some form of interpolation must be used to obtain
the necessary DSWT at the finest level. Approximately the number of additions and
multiplications increases by a factor of A over the computation of the DWT because
of the fact that the modified analyzer is being used and hence the complexity is about

M times the complexity of the DWT as should be expected.

5.6 The CWT with respect to a DWT wavelet

We wish to compute W(wu, 7, f). The CWT is basically the combination of the DTWT

and the DSWT given the underlying wavelet is a DWT wavelet. Let scale be sampled

at the rate of L samples per octave, and time be sampled at the rate of M samples

per octave. Hence for all integers j and k& we want

WG/LEM.f) = [ Fe)2/2(2/% ~ k[ M)dt (5.52)
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for integers j and k. From the fundamental scaling equation we kave

¢u,7 = \/EE ho(k)¢u+l,21'+k (5.53)
k
and
Yur = ‘/iz h1(k)Gut1,27+k (5.54)
P
Now by taking the inner product of f(t) with both sides of Eqn. 5.53 and Eqn. 5.54
we get
S(u,m, £y =vV2 S ho{D)S(u+ 1,27 + 1, f) (5.55)
1
and
W%, f) = V23 h(DS(u+ 1,27 +1, ) (5.56)
1
Letting u = j/L and 7 = k/M, we have
1
ard
WG/LEIM, f) = VB m()SG/L +1,26/M +1, f) (5.58)
1

Hence once the CST at the finest scale is known, one can find the CWT and CST at
all scales coarser by an integral multiple of an octave exactly as in the DSWT by using
the modified analyzer. If one starts with the CST at L fine scales each separated by
1/Lth an octave, then the entire CWT can be computed.

As f5r the computational complexity, approximately the number of additions and
multiplications increases by a factor of LM over the computation of the DWT because
of the fact that the modified apalyzer is being used L times and the complexity of

the modified analyzer is M times the complexity of the one level analyzer.

5.7 Computation of the CWT

If scale is assumed to be sampled at L samples per octave 7 at every integral multiple

of 1/M, then for integers j and k, and for a given function f, and CWT wavelet w,
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we have to compute
WG/L kM, fow) = [ dt FE)P/ (20 — k/M) (5.59)

It is clear from the equation that direct computation using numerical integration
is time-consuming. Besides errors are introduced in the transform not only by the
numerical integration process, but also by the interpolation of f(t) from its samples,
the scaling of the w(t) etc. We attempt to solve these by using the CWT with
respect to an DWT wavelet, preferably a Daubechies wavelet of small support, %, as
an auxiliary computation.

Since ) forms an orthonormal basis we can expand both f and w in terms of

Pike

f(t) =3 W3,k /L3, k) (5.60)
ik
and
w(t) = S WG,k w)L G, k) (5.61)
ik
The CWT is given by
W(u, 7, f) = <f7 L(ua T)¢> (562)

Substituting for f and w from Eqn. 5.60 and Eqn. 5.61 we have

Wu,r,fyw)= > WK W3 kw) <L, K)b, L, 7)L(G, k> (5.63)

7.k k!

But from Eqn. 3.13 we get
<L(5', K'Y, L(u, T)L(G, k) > = <9, U((7', ') YU (u, 7)U (4, k)b > (5.64)
which on simplifying becomes
<L(5', K'Y, L{u, T)L(j, k) > = <, U(u + j — j', —2*H K + 27 + k) > (5.65)
Hence the CWT of f with respect to w can be written in the form,

W(u,r, f,w) = Z WG K, b, YW, k,w)W (u+j— 5, =25+ =7k + 21 4 k,,7)
ik
’ (5.66)



83

This equation gives a method for computing the DWT efficiently. The actual
computation of this equation involves six loops, two for running through the values
of u and 7 and four for the four indices in the summation.

Notice that W (u,7,%,) can be precomputed, since it depends only on the aux-
iliary DWT wavelet %) used in the computation.

Now consider the case that the wavelet w is known. Then W(j, k,w, %) can also
be precomputed. Besides the summation over j and k in Eqn. 5.66 can also be

precomputed. Thus the computation of the CWT of f with respect to w, reduces to,
1. Compute the DWT of f(t)

2. Do the summation over j’ and %’ in Eqn. 5.66 which is similar to doing one 2

dimensional convolution.

Now assume that one has to compute the CWT of f with respect to a number
of wavelets, say wy(f). Such an instance occurs in the detection of multiple time-
scale perturbed signals as discussed in the next chapter. Then, it is more efficient to
compute the summation over j’ and %', initially than over § and k. Then the order

of computation becomes,
1. Compute the DWT of f(¢)

2. Do the summation over the primed variables in Eqn. 5.66

o

Do the summation over j and k for all the wavelets w;.

Assuming there are M — 1 wavelets with respect to all of which the CWT is taken,
the entire computation is approximately equivalent to M 2 dimensional convolutions
and a DWT computation. The alternative ordering is equivalent to approximately
2(M —1) 2 dimensional convolutions. There is another way to interpret this sequence

of operations,

1. Compute the CWT of f(t)
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2. Discretely convolve the CWT with the DWT of w; for each ! over the affine
group
In all these computations, since the associated CWTs are available only as uni-
? e

formly spaced samples, interpolation is necessary to get the exact value of W{u+j —

§'y=2u+=3'k! 4 27 4 k,1,1), and this also introduces errors in the computation.

5.8 Computation of the DTWT

Again with scale sampled at L scales per octave we have to find for arbitrary f, for

a given DTWT wavelet w, and for all integers j and k,

Wwk, fiw)= Y WG AWGLw)W (u+ 5 — 3, =21 1 2k 41,9, )
j,i,j’,l’
(5.67)

This is similar to the equation for the CWT.

5.8 Computation of the DSWT

Once again we can show that the computation of the DSWT involves the computation
of the following equation
W@,nf)= 32 WK, HWLEwW(G+I-1, -2 K 121+ k,9,9) (5.68)
Lk, k!
This equation is similar to the implementation of the CWT and in fact the same

program may be used.



Chapter 6

Detection of Time-Scale Perturbed Signals

6.1 Introduction

This chapter addresses the problem of detection of time-scale perturbed signals. As
an example consider the radar detection problem. In the'detection of moving targets,
the received radar signal is a scaled and translated version of the transmitted signal.
Assuming that a moving target exists, the received signal results from a time-scale
perturbation of the transmitted signal. The wavelet transforms give the necessary
framework for the study of this and similar problems where scale is an important
parameter. For narrowband signals like radar, scaling is approximated by shifts in
the center (carrier) frequency of the transmitted signal. Hence it is possible to apply
conventional time-frequency matched filtering to detect and estimate range and clos-
ings from radar echoes. However, for general wideband time-scale perturbed signals,
scaling effects cannot be approximated by a frequency shift. The time-scale prop-
erties of the wavelet representation makes it a natural candidate for the analysis of
such signals [22, 21]. This chapter uses the wavelet transforms to develop detectors
for time-scale perturbed wideband signals. No performance measures have been ob-
tained. Nor have any comparisons been made. The aim 1s to show that the wavelet
transforms introduced earlier do indeed give a set of tools in order to do time-scale

analysis. As an aside it must be mentioned that that the time variable could be

replaced by space or any other variable.
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6.2 The Problem

The goal is to detect multiple wideband signals that are time-scale perturbed and
submerged in additive White Gaussian noise. The signals are assumed to reside in a
finite dimensional subspace spanned by a finite set generated by a DWT wavelet, 1,
by certain translations and dilations.

Given the lack of transiation invariance of the DWT, in order to say that a signal
resides in a scale, a signal and its time translates ought to be distinguished. Consider
a signal f(t) = (). Then the signal is trivially one dimensional with respect fc the
DWT wavelet 1. Now consider the signal f{t) = ¥{{ — T). It is quite possible that
f(t) cannot be represented exactly (in the basis 1;x) unless all scales j are included,
as can be expected from the lack of translation invariance of the DWT. Thus even
though f(¢) is one dimensional with respect to 3, f(t — T') is infinite dimensional
with respect to the same wavelet ¢. This explains why general time-scale analysis
cannot be done just with the DWT, even though the DWT is a complete and efficient
representation and can be computed with O(N) complexity where N is the length
of the input. Hence one is lead to consider finite dimensional approximations to the
signal. Clearly, depending on the nature of the signals being studied, one of the
many DWT wavelets may be used as the underlying DWT wavelet. The smoother
the nature of the signals, one of the smooth DWT wavelets could be used.

Since there is no reason to expect the signal studied to be an exact linear combi-
nation of ¥, one has to find a finite dimensional approzimation to it. The natural
measure of approximation error is the L? or energy norm. The approximation should
not only try to minimize the squared error, but also try to make the dimension of
the signal as smali as possible. This would reduce the arithmetic complexity of the
CWT which has to be computed to solve the detection problem. This makes the
implicit assumption that the classes of signals considered (upto a translation) can be
efficiently represented by DWT wavelets. A number of experiments with synthetic

and natural (underwater transient) signals show that nearly 95% of all the energy
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is concentrated in about three consecutive scales when the Daubechies wavelets for
moderate N are used. That is, most of these signals are confined to a bandwidth
spanning approximately three octaves.

in summary, given a signal two choices have to be made. Firstly, the DWT
wavelet 1 to be used in the analysis. Secondly, the exact translation of the signal
that minimizes the dimensionality of the signal for a given approximation error. The
two are inter-related and we have no simple technique to make these choices. But once
the DWT wavelet is fixed, the appropriate translation can be chosen. Let most of the
signal energy be concentrated around some level J. Then if the signal is translated
by 2~7, the DWT approximately shifts by 1 unit in the time index at that level. So
by empirically trying out a number of translations by fractions of 27/, a reascnable
translation of the signal that simultaneously minimizes the energy and dimensionality
can be found.

In summary, a signal being detected is of the form

I3

w(t) = Z arprit)
I

—~~
P\
oy

—

for some DWT wavelet 3, and where I is a finite set composed of elements of the
form (7, k), j and k integral.
Let {wi({)}l = 1,2,...,M — 1}, be the set of ali possible received signais. The
received signal is then assumed to be of the form,
M-i
)= b A24 2wy (24t — 7)) + n(t) (6.2)
=1
where u;,7;,andA; are defined to be the scale, time and amplitude perturbations
respectively of the signal w;, and & is a Boolean variable that is 0 or 1, depending
on whether signal w is present or not. By assuming that at most one of the possible

signals is present in the received signal, at most one of the s is 1. This greatly

simplifies the number of hypotheses being tested.
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Given the received signal, the problem is to find the ¥;s, and, given b is 1 for a
particular [, to estimate the values of u; and 7;, which are respectively, the scale and

time perturbations.

6.3 Detection and Estimation

The detection problem can be classified as an M-ary hypothesis testing problem with
unknown parameters. There is the null hypothesis and the M — 1 hypotheses, one
each corresponding to the presence of each of the signals. The unknown parameters
are the scale, time and gain parameters. The unknown parameters are assumed to
be non-random.

Let us recall a few classical results. For a known signal with an unknown transla-
tion signal w(t —%o) that is submerged in: additive white Gaussian noise, the optimum
detector consists of a likelihood ratio test, that compares the output of a matched
filter or correlation receiver to a pre-determined threshold. The threshold is set in
order to fix a certain probability of error or detection etc. That is,

r(t) = Aw(t —tp) + n(t) (6.3)

A(t) = / r(r)w(t — 7)dr (6.4)
If A(T) exceeds a, the threshold, the signal is detected at 7. Fig. 6.1 shows the
detector. Moreover the output of the matched filter forms a sufficient statistic for the
detection problem. In the M-ary hypothesis testing, the sufficient statistic is given
by the vector of outputs from the matched filters corresponding to each of the signal
w;. measure required (using Bayes’ criteria with suitable costs), decisions regions are
formed. Depending on where the sufficient statistic vector falls, one or the other of
the hypotheses is selected.

Notice that the gain parameter is not important in the above detection in the sense

that it merely alters the threshold by a constant. Hence in the detection of a single

signal subject to time-scale perturbations, once the scale and the time parameters
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Figure 6.1: Matched fiiter Receiver

are known, the problem is trivial. Since the scale and time perturbation parameters
are non-random, they cannot be estimated by a Bayesian technique. Therefore, a
bank of matched filters for all possible values of scale perturbations must be used.
This is exactly analogous to the use of the ambiguity function in the radar detection

problem. For a single signal w(t), and for a family of perturbations we must compute
Mu,7) = [ r(t)2425(2%  7)at (6.5)

Thus A is a function on the affine group Go. Moreover, ) is the CWT of the received
signal with respect to the wavelet w(¢). The maximum likelihood estimate of u
and 7 are given by the point in Gy where X attains a maximum. Thus assuming
a single signal s(%) is present, the maximum likelihood estimate of (u,7) is given
by the maximum of the outputs of the matched filters. Furthermore, the maximum
value gives the output of the matched filter assuming the signal transmitted had the

estimated time-scale perturbations.
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When multiple signals are present, the extension is obvious. Again a bank of
matched filters is used, one for each signal. For each bank, the maximum of the
output is obtained. The global maximum over these maxima gives the output of the

matched filter corresponding to the maximum likelihood estimate of u; and 7; of the

signal.

6.3.1 7,u known

For signal [ both, u; and 7; are known. The only unknowns are thus A; and 4. This is
the M-ary hypothesis testing problem. In fact by redefining the signals, both u; and
71 could be assumed to be zero. The optimum detector computes the matched filter
output corresponding to each of the possible signals to obtain the vector of sufficient
statistics A;. Let

max A=A (6.6)

and the maximum be attained for I = L. Let the threshold be a. Then,

> a,signal L detected
< a,NULL hypothesis

(6.7)

Thus given the received signal r(t), for signal w;, one must either match it to
L{w;, )wy(t) or match L(—u,27%7)r(i) to wy(t). it is more efficient to do the former,
since the scaling of each signal becomes a precomputable operation. if the number of
signals, M — 1, is large, then it may be more efficient to do the matched filtering in
the DWT domain. This is because corresponding to every signal w,(t), there would
be a window in the DWT domain, I;, such that the DWT coefficients W (I, w;) can be
considered zero in If, the complement of I;. Thus once the DWT of r(t) is obtained,

each ), is obtained as,

AI = ZW(I[/UJ{)W(I[, 1‘) (68)
I
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The cardinality of I; is expected to be much less than the number of samples of the
signal r(t). Thus this method is superior to direct implementation of matched filtering
in the time domain after scaling.

In summary, given the r(2),

1. Compute W(j,k,r)

2. Compute A; as in Eqn. 6.8

3. Find maximum of A;, compare to threshold « and make decision

For a single signal, it may be more efficient to directly implement the matching

operation in the time domain.

6.3.2 7 unknown, u known

For signal I, 7 is unknown. From r(t), A;(7) is obtained by matched filtering,
A7) = / (1) 2w, (2% — 1) (6.9)

Let,
max Ai(t)=A (6.10)

and the maximum be attained for [ = L and 7 = T. Let the threshold be a. Then,

(6.11)

A > a,signal L detected
< a,NULL hypothesis

The maximum likelihood estimate for the time parameter is given by
7=T
Moreover, the estimator for the physically relevant delay is

b= 27U (6.12)



6.3.3 o known, u unknown

The time parameter 7 is local and has no physical significance like the global time
parameter a. So it is more reasonable to assume that e is known rather than that
7 is known. In other words we know exactly when the received signal might be the

signal being detected. From r(¢) we obtain,
A(u) = / r()24%w (2% (t — ) (6.13)

Let
max A{u)=A (6.14)

and let the maximum be attained for ! = L and u = U. Then,

A { > a,signal L detected (6.15)

< a,NULL hypothesis

The maximum likelihood estimate for the scale parameter u is given by

u=U

6.3.4 7,u unknown

This is the most general setting where none of the paramters are known. From the

received signal r(t) we compute,
Ml 7) = / r(£)2%2wy (2% — 7)dt (6.16)

which is essentially the CWT of the received signal with respect to the wavelet w; for

each l. Let
max Af(u,7) = A (6.17)

lLu,r

and let the maximum be attained for /= L and u = U and 7 = 7. Then

(6.18)

A > a,signal L detected
< a,NULL hypothesis
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The maximum likelihood estimate for the scale parameter u, the time parameter

7 and the delay o are given respectively by

=U

tnd J

=T

~3»

a=2"r

The computation of the CWT can be carried out efficiently using the algorithms
developed in the previous chapter.

The efficiency of the estimate is quantified by the covariance matrix of the random
field (u, 7), whose asymptotic value is given by the Cramér-Rac bound. One can set up
a minimizatior problem to minimize this covariance over all possible CWT wavelets.
The functions that minimize this covariance are the Klauder wavelets [22]. That is,

they give the maximum concentration in time-scale.

6.4 Conciusion

In summary, we have developed a framework for the scale-time analysis of signals,
given efficient algorithms for the computation of the various wavelet transforms, and

finally given an outline as to how the wavelet framework may be used in the detection

of time-scale perturbed signals.



Appendix A
Program Listing

A.1 The Programs
A.1.1 ko the scaling filter - daubemf.m

function k_0 = daubcmf (N2)

AFunction to compute the Daubechies CMF. The program implements

%the CMF as described in the paper, "Orthonormal bases of compa

4ctly supported wavelets", CPAM, Oct.89. The program returns the
Jminimum phase filter h_0 and may be modified to generate other

“filters. The polynomial R in the reference is set to 0.

4INPUT :

% N2 : N2 = N/2, where N is the length of the filter.

OUTPUT :

% h_0 : Minimal phase Daubechies CMF of length 2#N2.

R.G. 10/10/88

for j = 1:N2-1,

b 0= [0k 0] + [b.0 0];

p = [0 -p] + [p 0];

p = [0 -p]l + {p 0];

q = [0 q 0] + a%p;

end;

q = sort(roots(q));

h_C = conv{nu_0,real{poiy{q{i:N-1)1));
h 0 = h_0/sum(h_0);

A.1.2 4- phim

functizz phi = phi(h_0,J);
%function phi = phi(h_0,J);
4Function to generate samples of phi, the scaling function
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%at the dyadics. The program uses an efficient polyphase
*implementation of the infinite product method.

%INPUT :

% b_0 : The scaling function filter.

% J : an integer.

%OUTPUT :

% phi : Vector of samples of phi at 2-{-J}k.

%by R.G. 10/11/88

if nargin < 2,

J = 5;

end;

h_0_len = max(size(h_0));
h_0 = 2*h_0;

ho = h_0(1:2:h_0_len);

ki = h_0(2:2:h_0_len);
phi = h_0;

m = 3¥h_0_len-2;

for i = 2:7J,

phi0 = conv(phi,ho);
phil = conv(phi,hi);
phi = zeros(i,m);

phi(1:2:m) = phio;
phi(2:2:m) = phii;
m = m+m+h_O_len-2;
end;

%Adding zeros to make support [0,N);
phi = [phi zeros(1,h_0_len-1)];

A.1.3 9 - psiam

function psi psi(h_0,3);

4function psi = psi(h_0,J);

4Function to compute the wavelet psi corresponding to the
4scaling filter h_0. The infinite product method is used
4with 2 polyphase implementation of the filters.

AINPUT :

% h_0 : The scaling filter.

% J : An integer.

4O0UTPUT :

%4 psi : Vector of samples of psi at 2°{-J}k

%by R.G. 10/11/88

if nargin < 2,



end;

h_0O_len = max(size(h_0));

h_0 = 2«h_0;

hO = h_0{3:2:0_0_len);

hi = 2_0{2:2:h_0_1len);

psi = h_0(h_O_len:-1:1);

psi(2:2:h_0_lezn) = -psi(2:2:h_0_len)
2;

for i = 2.J,

psi0 = conv(psi,h0);

psil = conv(psi,hi);

psi = zeros(i,m);

psi(1:2:m} = psil;

psi(2:2:m) = psii;

m = m+m+h_0_len-2;

end;

%Adding zeros to make the support width N
psi = [psi zeros(1,h_O_len-1)];

A.1.4 The one level Analyzer - latdec.m

function [x1,xh] = latdec{z,k,beta);

Afunction [x1,xh] = latdec(x,k,beta);

AFunction to implement the one level analyzer as a lattice.
%INPUT :

4 x : The input scaling coeffs. (input)

% k : The vector of denormalized lattice coeffs.

% beta: The lattice normalization const.

o ArTTTTrT
hUVLII VL

% x1: The scaling coeffs. at next coarser level. (low pass)
% xh: The wavelet coeffs. at mext coarser level. (high pass)
%by R.G. 9/27/89. Last modified 11/6/89

k_len = max(size(k));

x_len = max(size(x));

flag = rem(x_len,2);

xl = x(1:2:x_len);

= [0 z(-.:.x len)];
1f flag ==
= [x1 0];

end;
t = x1-k(1)*xh;
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for 3i=2:x_len,
t = [x1 0] - [0 k(i)* xh];
- = [elale/2N AT - A 17
&Kil T LALFRN4, V3 T LV Xul,
xl = t;
end;

if nargin < 3,
beta = fbeta(k);

end;
xl1 = xl=*betsa;
xh = xh*beta;
end;

A.1.5 The one level Synthesizer - latrec.m

function z = latrec(xzl,xh,k,beta);
%function x = latrec(xl,xh,k,beta);
AFunction to implement the one level synthesizer as a
%derormalized lattice.

%INPUT :

%4 x1 : The scaling coeffs (low pass)

% xh : The wavelet coeffs (high pass)

% k: The lattice coeffs. vector

% beta: The lattice normalization const.
%OUTPUT :

% x : The output vector.

% xh : The high freq. output.

%by R.G. 9/27/89. Last modified 11/6/89
k_len = max(size(k));

if max(size(xl)) ~= max(size(zh))
disp(’error:both channels must have same length’);
end;

t = x1;

x1l = xh;

zh = t;

k = k(k_len:-1:1);

t = x1-k(1)*xh;

xh = x1*k(1)+xh;

x1 = t;

for i=2:k_len,

t = [x1 0] - [0 k(i)* xh];



xh = [x1*k(i) 0] + [0 xnl;
x1l =t¢t;

end;

if nargin < 4,

beta = fbetalk);

end;

x1 = xl*beta;

xh = xh*beta;

x_len = max(size(x1l));
x_len = x_len + x_len;
x = zeros(1,x_len);
x(1:2:x_len)=x1;
x(2:2:x_len)=xh;

end;

A.1.6 The modified Analyzer - mlatdec.m

function [x1,xh] = modlatdec(x,k,beta,M);
%function [x1,xh] = modlatdec(x.k,beta,M);

4Function to implement the modified one level

%a lattice.
%INPUT :

analyzer as

% x: The input scaling coeffs. at spacing of 1/M.
P g P g

% k: The denormalized lattice coeffs.
% beta: The normalization constant.
L M : No. of samples per unit time parameter
%OUTPUT :

% x1: the low freq. output.

% xh: the high freq. output.

%by R.G 1/7/89

k_len = max(size(k));

x_len = max(size(x));

tmp = zeros{1,¥);

tmpl = zeros(1,floor(M/2));

Mflag = rem(M,2);

if (Mflag == 0),

x = x(1:2:x_len);

x1 = [x tmp1] - [tmpl k(1)*x];

xh = [x*k(1) tmpi] + [tmpl x];

else

xflag = rem(x_len,2);

xl = x(1:2:x_1en);
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xh = [0 x(2:2:x_len)];

if xflag == 0,

x1 = [x1 0];

end;

t = [x1 tmp1] - [tmpi k{i)*xh];
xh = [x1*k(1) tmpi] + [tmpi xh];
xl1 = ¢t;

end;

for i=2:k_len,

t = [x1 tmp] - [tmp k(i)*xh];
xh = [x1*k(i) tmp] + [tmp xh];
x1 = t;

end;

if nargin < 3,

beta = fbeta(k);

end;
x1 = xl¥beta;
xh = xh*beta;
end;

A.1.7 The modified Synthesizer - mlatrec.m

function x = mlatrec(xl,xh,k,beta,M);

%function [x1,xh] = mlatrec(xl,xh,k,beta,M);

AFunction to implement the modified one level analyzer as
%a lattice.

%INPUT :

% x1 : The scaling coeffs (low pass)

% xh : The wavelet coeffs (high pass)

% k: The dencrmalized lattice coeffs.
% beta: The normalization constant.

% M : No. of samples per unit time parameter; M is odd;
%0UTPUT :

% x : The output vector.

%by R.G 1/7/89

Mflag = rem(M,2);

if Mflag == 0,

’M must be odd for modified synthesizer’;

end;

k_len = max(size(k));

xl_len = max(size(x1));

xh_len = max(size(zh));
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if (xl_len "= xh_len),

’both x1 and xh must be of equal length’;
end;

tnp = zeros(1,M);

tmpd = floor(M/2);

tmpi = zeros(1,tmp0);

t =zx1;
xl = xh;
xh = t;

k = k(k_len:-1:1);

t = x1-k(1)*xh;

xkh = x1*k(1)+xh;

xl = t;

for i=2:k_len,

t = [x1 tmp] - [tmp k(i)* xh];

xh = [x1*k(i) tmp] + [tmp xh];
xl = t;
end ;

if nargin < 4,
beta = fbeta(k);

end ;

xl = xl*beta;

xh = xh*beta;

1o aeeh aaoed o

ACyvlala,

tmp2 = max(size(xh));
xh = xh(1:tmp2-tmp0-1);

x1 = x1(2+tmp0:tmp2);

x_len = tmp2-impO+tmpZ-tmp0 -2;
x(1:2:x_len) = xh;

x(2:2:x_1len) = x1;

end;

A.1.8 The DWT - dwt

function [d,ixd] = dwt(f,n_level,k,beta);
%function [d,ind] = dwt(f,n_level,k,beta);
#Function to compute the DWT of $f$ upto n_level
%levels.

%INPUT :

4 £ : The samples of the input signal.

% n_level : The number of ievels.

% k : The denormalized lattice parameters.
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beta : The mormalization constant.

OUTPUT :

d : Vector of DWT of £ arranged back to back from
the finest level to the coarsest level. The
DWT starts at f_time_start - (¥-1), where N
is the length of the scaling filter.

ixd : is a vector of pointers that point to where the
nth level starts in d.

%by R.G. 9/28/89

f_len = max(size(£));

4Projection onto finest scale of interest.

s = [zerds{i,8) £];’

if nargin < 4,

beta = fbeta(k);

end;

%DWT analyzer.

d=[1;

index = 1;

for i=i:n_level,

[s,w] = latdec(s,k,beta);

ixd(i) = itmp;

index = index + max(size(w));

d = [d vl;

end;

end;

T 3L L 3L L e 2 e

A.1.9 The DSWT with respect to 3 - dswtpsi

function [dswt,ixdswt]= dswtpsi(f,k,beta,n_level,M);

“function [dswt,ixdswt]l= dswtpsi(f,k,beta,n_level,M};
AFunction to compute the DSWT with respect to DWT wavelet psi. -
%INPUT :

% £ : Samples of the function at M times the rate

% corresponding to the finest scale i.e f(2°{-n_level-1}k/M
% k : The denormalized lattice parameters.

% beta : The normalization constant.

%4 n_level : The index of the finest scale.

% M : The sampling rate of time in Hz.

%OUTPUT :
% dswt : The DSWT with scales arranged back to back starting
% with the finest scale.

% ixdswt : Index for scale into the DSWT vector.
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%by R.G.

8 = [zercs(1,6*M) ];

M2 = M/2;

index = {;

dswt = [I;

for j = 1:n_level,

[s,w] = modlatdec(s,k,beta,M);
ixdswt(j) = index;

index = index + max((size(w)));
dswt = [dswt w];

end;

end;

A.1.10 The DTWT with respect to 3 - dtwtpsi

function [dtwt,ixdtwt] = dtwtpsi(f,k,beta,n_level,L);
%function [dtwt,ixdtwt] = dtwtpsi(f,k,beta,n_level,L);
AFunction to compute the DTWT with respect to DWT wavelet psi.
%INPUT :

% £ : Samples of f-Projection onto finest scale.

%4 k : The denormalized lattice parameters.

%4 beta : The normalization constant.

% n_level : The number of levels.

4 L : The number of subscales per octave.

%0UTPUT : )

4 dtwt : The vector of DTHT coeffs.

%4 ixdtwt : The index into dtwt.

by R.G.

if nargin < 5,

L = 8;

end;

for i = 1:L,

ni = num2str(i-1);

di = [’d’,ni];

izei = [’ixc’,ni];

fi = scale(f,(i-1)/L);

eval([’[’,di,?,?,ixci,’] = dwtpsi(fi,k,beta,n_level);’]);
end;

ACreation of a single vector c

c =[1;

j=1;

index = 1;
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for 1 = 1:n_level,

for i = 1:L,

izc(j) = index;

i = num2str(i-1);

eval{f’d’,nil]);

¢ci = eval{[’ixc’,ni]);
= ixci(i);

if 1 < n_level,
= ixci(l+1) - 1;

[« T ~ ]
[T
ot

i2 = max(size(di));

end;

¢ = [cdi(i1:i2)];

index = index + i2 - il + 1;
j= j+1;

end;

end;

A.1.11 The CWT with respect to ) - cwtpsi

furction [c,ixc] = cwtw(f,k,beta,n_level,L,M):
%function [c,ixc] = cwtw(f,h_0,n_level,L,¥);
JFunction to compute the CWT with respect to DWT wavelet psi.
AINPUT :

% £ : Samples of f at 2-{-n_level-1}k

% k : The denormalized lattice parameters.

% beta : The normalization constant.

%“ L : No. of samples of scale per octave.

% M : No. of samples of time per second.

% c : Vector of CWT outputs arranged back to back starting
% vith the finest scale.

% ixc : Index into c where the j“th scale begins.
%by R.G.

if nargin < 4,

L = 8;

M =8;

end;

for i = 1:L,

ni = num2str(i-1);

di = [’d’,ni];

ixci = [?ixc?,nil;



fi = scale(f,(i-1)/L);

eval([’[’,di,?,’,ixci,’] = dswtpsi(fi,k,beta,n_level M);’]);

end;
4Creation of a single vector c

c =[J;
i=1
index =
for 1 :n_level,

for i = 1:L,

ixc(j) = index;

ni = num2str(i-1);

di = eval([’d’,ni]);

ixci = eval([?ixc’,ni]);

i1 = ixci(1);

if 1 < n_level,

i2 = ixci(l+1) - 1;

else

i2 = max(size(di));

end;

c = [e di(i1:i2)];

index = index + i2 - i1 + 1;
Jj = 41

end;

@nd;

"

1
1
i

.
3
-
.

A.1.12 The CWT - cwt.c

#define MAX(a,b) ((a > b) 2 a : b)
#define MIN(a,b) ((a>Db) ?b : a)
#define LOG2 6.9314718055u345e-01
¥define SUBSCALES 8

#define RATE 8

#define F_ORIGIN -57

#define W_ORIGIN -7

#define PSI_LENGTH 8

/* maximum length of the input arrays */
#define MAXINDEX 100

#include <stdio.h>

#include <math.h>

#include <errmno.h>

struct vec {
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double *data[MAXINDEX];

int index[MAXINDEX] ;

};

int

main(argc, argv)

int argc;

char *argv([];

{

/* temp declarations */

register i, j, k;

int itmp;

double tmp, tmpl;

char *filename;

struct vec f, w, c;

FILE *fopen(), *fp, *fpi;

/* declarations */

double f_finest_scale, w_finest_scale, c_finest_scale;
double f_coarsest_scale, w_coarsest_scale, c_coarsest_scale;
int f_no_ofscales, w_no_ofscales, c_no_ofscales, nw, nf. nc:
int c_no_oftimes;

int w_scale_index., f_scale_index, c_scale_index;
int v_time_index, f_time_index, c_time_index;
int c_index;

double f_time_indexx;

double wv_time, f_time, c_time;

double w_scale, f_scale, c_scale;

double w_scale2;

double c_time_min, c_time_max;

int scale_count, time_ccunt;

double scale_spacing, time_spacing;

double w_support_width;

double value, sum;

scale_spacing = 1.0 / SUBSCALES;
time_spacing = 1.0 / RATE;

/* read index for f */
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filename = (char *) "ixf";
if ({fp = fopen(filename, "r"))
fprintf(stderr, "¥s:canrer opex
exit(1);

-
”

for (j = 0; j < MAXINDEX; j++) {

if (fscanf(fp, "%le", &tmp) == EOF) {

break;

}

f.index[j] = (int) tmp;

/* printf("%1d\n",f.index[j1); =/

}

f_finest_scale = (double) f.index[--j];
f_no_ofscales = --j;

printf("f_no_ofscales = %d\n", f_no_ofscales);
f_coarsest_scale = f_finest_scale - scale_spacing * (f_no_ofscales - 1);
printf("f_coarsest_scale = %le\n", f_coarsest_scale);
fclose(fp);

= (FILE *) NULL) {
ile ¥=\n", argv[0], filename);

hoH

/* read f */

filename = (char *) "f";

if ((fp = fopen(filename, "r")) == (FILE *) NULL) {
fprintf(stderr, "s:cannot open file ¥s\n", argv[0], filename);
exit(1);

}

for (j = 0; j < f_no_ofscales; j++) {

itmp = f.index[j + 1] - f.index[j];

if ((f.datalj] = (double *) melloc(sizeof(double) * itmp)) == NULL) {
perror(“malloc failed for array f");

exit(1);

}

for (k = C; k < itmp; k++) {

if (fscanf(fp, "/le", &tmp) == EOF) {

break;

}

f.data[jl[kx] = tmp;

/* printf("%22.16e\n",tmp); */

}

}

fclose(fp);

/* read w.index */
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filename = (char *) “ixw";

if ((fv = fopen(filename, "r")) == (FILE *) NULL) {
fprintf{stderr, *Ys:cannot open file ¥s\a", argv[0], filename);
exit(1);

}

for (j = 0; j < MAXINDEX; j++) {

if (fscanf(fp, "%Wle", &tmp) == EOF) {

break;

}

w.index[j] = (int) tmp;

/* printf("%1d\n",v.index[j1); =*/

}

v_finest_scale = (double) w.index[--j];

w_no_ofscales = --j;

w_coarsest_scale = w_finest_scale - w_no_ofscales + 1;
fclose(fp);

/* read w */

filename = (char *) "w";

if ((£fp = fopen(filename, "r")) == (FILE *) NULL) {
fprintf(stderr, "Js:cannot open file Ys\n", argv[0], filename);
exit(1);

}

for (j = 0; j < w_no_ofscales; j++) {

itmp = w.index[j + 1] - w.index[j];

if {(w.data[j] = (double *) malloc(sizeof(double) * itmp)) == NULL) {
perror("cannot malloc for w");

exit(1);

}

for (k = 0; k < itmp; k++) {

if (fscanf(fp, "Yle", &tmp) == EOF) {

break;

}

w.data[j][k] = tmp;

/* printf("}22.16e\n",w.dataljI1[k]); */

}

}

fclose(fp);

/* ranges for c_scale */
c_finest_scale = f_finest_scale - w_coarsest_scale;
c.coarsest_scale = f_coarsest_scale - w_finest_scale;
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c_no_ofscales = SUBSCALES * (c_finest_scale - c_coarsest_scale) + 1;

fp = fopen(“c.mat", “w");
fpl = fopen("ixc.mat", "w");

c.index = 1;
c_scale_index = -1;

for (c_scale = c_finest_scale; c_scale >= c_coarsest_scale; c_scale -= scale_spa
c_scale_index++;

nw = w_no_ofscales;

modf ((double) (f_no_ofscales - 1) * scale_spacing, &tmp);
nf = (int) tmp;

nf++;

modf ((c_scale_index * scale_spacing), &tmp);

nc = (int) tmp;

nc++;

if {nc < nw) {

scale_count = nc;

} else if (nc <= nf) {

scale_count = nw;

} else {

scale_count = nf + nv - nc;

}

w_scale_index = w_no_ofscales;

f_scale_index = c_scale_index + SUBSCALES;

v_scale2 = exp((w_coarsest_scale - 1) * L0OG2);

for (i = 0; i < scale_count; i++) {

w_scale_index--;

f_scale_index -= SUBSCALES;

w_scale? += w_scale2;

/* estimate w_support_width */

itmp = w.index[w_no_ofscales] - w.index[w_no_ofscales - 1] + PSI_LENGTH;
w_support_width = exp(-LOG2 * w_coarsest_scale) * itmp;

c_time_min = -floor(w_support_width);

tmp = f.index[f_scale_index + 1] - f.index[f_scale_index] + F_ORIGIN;
c_time_max = time_spacing * tmp;

c_no_oftimes = (int) (floor((c_time_max - c_time_min) * SUBSCALES));
c.index[c_scale_index] = c_index;

c_index += c_no_oftimes;

if (fprintf(fpi, "%le ", (double) c.index[c_scale_index]) == EOF) {
perror(“cannot write ixc");
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exit{i);

3

if ((c.datalc_scale_index] = (double *) malloc(sizeof{double) * (c_no_oftimes)))
perror("cannot malloc for c.data");
exit{1);
}
c_time_index = -1;
for (c_time = c_time_min; c_time < c_time_max; c_time += time_spacing) {
c_time_index++;
f_time = w_scale2 * c_time + W_DRIGIN;
time_count = w.index[w_scale_index + 1] - vw.index[w_scale_index];
sum = 0;
for (w_time_index = 0; w_time_index < time_count; w_time_index++) {
f_time++;
f_time_indexx = (f_time) * RATE - F_ORIGIN;
f_time_index = (int) floor(f_time_indexx);
if (f_time_index < 0) {
continue;

}

if (f_time_index >= (f.index[f_scale_index + 1] - f.index[f_scale_index] - 1)) {
break;

}

tmp = f.data[f_scale_index] [f_time_index];

tmpl = f.data[f_scale_index][f_time_index + 1];

value = tmp + (f_time_indexx - f_time_index) * (tmpl - tmp) * RATE;

value = w.data[w_scale_index] [w_time_index] #* value;

sum += value;

}

c.datalc_scale_index][c_time_index] = sum;
if (fprintf(fp, "’%22.16le ", sum) == EOF) {
perror("cannot write c");

L R RS
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