


ABSTRACT

Electron correlation in extended systems via quantum embedding

by

Ireneusz W. Bulik

The pursuit of accurate and computationally efficient many-body tools capable of

describing electron correlation is a major effort of the quantum chemistry community.

The accuracy of chemical predictions strongly depends on the ability of the models to

account for electron correlation. As the computational demand scales unfavourably

with the size of the system, an efficient way of identifying relevant degrees of freedom

may be an interesting avenue.

In this thesis, a quantum embedding approach is employed to study lattice sys-

tems, polymers, and crystals. Numerical data shows the accuracy of the quantum

embedding theory when combined with high-level many-body techniques. As the size

of the units that are embedded grows, a more approximate and more computationally

affordable tools are called for. In this thesis, we investigate the possibility of forming

such methods in the framework of coupled cluster theory.

We believe that the tools presented in this thesis could be important for accurate

treatment of electron correlation in applications to realistic materials.
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Chapter 1

Introduction

1.1 The electronic Schrödinger equation and chemistry

The collective goal of the quantum chemistry community is to provide computation-

ally affordable and accurate predictions for chemical systems. It is only in the last

century that we have known that all the quantities of chemical interest are built of

electrons and nuclei. The chemical reactivity and stability of materials is governed

by the movement of electrons in the electric field of the nuclei. Being able to properly

describe the behavior of the electrons would allow one, in principle, to accurately

explain not only chemical reactivity but also spectroscopic properties of materials.

Moreover, the description of the nuclei in the field of electrons gives us a well defined

way to predict, for example, vibrational spectra.

With the birth of quantum mechanics, this goal became seemingly within the

reach. With some standard approximations, such as the Born-Oppenheimer approxi-

mation, most of chemistry has been encoded in the simple mathematical form of the

time-independent Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉 (1.1)

where Ĥ is the Hamiltonian operator and |Ψ〉 an electronic wavefunction, an object

that describes the behavior of electrons. The Hamiltonian operator looks innocent



2

(in this work, Einstein summation convention is mostly employed),

Ĥ = H0 + hµνc
†
µcν +

1

2
Vµνλσc

†
µc

†
νcσcλ. (1.2)

Here, H0 is a constant, like a nuclei repulsion energy, h is the one body operator

describing the kinetic energy of electrons and their attraction to nuclei,

hµν =

∫
d~xµ⋆(~x)(−1

2
∇2 −

∑

A

ZA

~r1A
)ν(~x), (1.3)

with ZA being the charge of nucleus A and ~r1A the distance of an electron from

that nucleus. The functions µ are the single particle orbits in which we express the

Hamiltonian. The last term, V , represents the mutual electron repulsion

Vµνλσ =

∫
d~x2

∫
d~x1 µ

⋆(~x1)ν
⋆(~x2)

1

r12
σ(~x2)λ(~x1). (1.4)

In the above, ~x represents the spin and spatial degrees of freedom. Finally, the

operators c†µ and cµ create and annihilate a single particle state |µ〉 = c†µ|−〉 with |−〉

being the vacuum.

Even though the Hamiltonian admits such a simple form, the presence of the

two body interaction (electron-electron interaction) means that the solutions to the

Schrödinger equations for molecular systems remain elusive.

1.2 Two opposite ends: Hartree-Fock and exact diagonaliza-

tion

As we outlined in the previous section, the Schrödinger equation describes the move-

ment of electrons, which is the heart of chemistry. However, using quantum mechanics

to perform chemical predictions requires solving for the many-body wavefunction; a

computationally nontrivial task.
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As the main point of this thesis is to introduce and benchmark approximate meth-

ods for solving the Schrödinger equation, let us begin by explaining how to obtain

the exact wavefunction. At this point, let us note that by expressing the Hamiltonian

in a finite basis of single particle states, an approximation has been already made.

Fortunately, by extending the flexibility of said basis one may obtain a more and

more accurate description of the wavefunction. Therefore, by “exact” we mean the

eigenfunction of the Hamiltonian obtained within a given level of basis set truncation.

Let us imagine that one is interested in a particular system composed of N elec-

trons. Moreover, there are M single particle states in the basis. We can therefore

form any allowed N particle wavefunction by choosing N out of M creation operators

and acting on the vacuum, denoted |−〉. In other words, we form sets {c† . . .}i and

create a state |Φi〉 (so called Slater determinant) as

|Φi〉 = {c† . . .}i|−〉. (1.5)

We express the Hamiltonian in the basis of said states Hij = 〈Φi|Ĥ|Φj〉 and diago-

nalize it. This allows us to represent a given eigenstate j of the Hamiltonian as

|Ψj〉 = dij|Φi〉, (1.6)

with dij being the components of jth eigenvector of H.

This procedure to find a molecular wavefunction is not only exact but also concep-

tually simple. Unfortunately, as the reader may have noticed, in order to implement

such an approach, one has to choose every possible combination of N objects out

of the set of M states. Even a mediocre basis for the hydrogen atom contains 10

single particle states (spin-orbitals). Solving a very simple system of 10 interacting

hydrogen atoms requires therefore diagonalizing a matrix of dimension ≈ 1013. Of

course, using symmetry constrains, one can bring the dimension down. For example,
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considering only Sz = 0 determinants one can reduce the dimension of the above

problem by roughly a factor of 4. Nonetheless, the exact digitalization (also called

Full Configuration Interaction -FCI) remains computationally intractable.

1.2.1 Hartree-Fock and the electron correlation

We hope that previous section convinced the reader that the exact solution of the

many-body problem in quantum chemistry borders on being a trans-computational

task. If choosing all possible Slater determinants is beyond reach, what would happen

if one chooses only one? Clearly, an arbitrary choice of N creation operators (or

choosing a set of N orbits) by no means guarantees any sensible answer. In order to

hope for a reasonable description of the system one therefore performs a change of

single particle basis

p† = Dµpc
†
µ (1.7)

and chooses typically the first N states |p〉 to create a Slater determinant |0〉. If the

transformation D is chosen in a way that the energy of that determinant 〈0|Ĥ|0〉 is

minimized one arrives at the celebrated Hartree-Fock (HF) theory . [6, 7]

In order not to digress too far from the main topic of this thesis, we do not include

the derivation of the HF theory. Nonetheless we would like to point out that the HF

determinant is an eigenstate of an effective one body operator f̂ , the Fock operator

with matrix elements,

fpq = hpq +
∑

i

V̄piqi (1.8)

with V̄piqi = Vpiqi−Vpiiq and the summation over i limited to the single particle orbits

included in the state |0〉. The reader may notice that the two-body operator has

been replaced by an effective one-body operator. The physical interpretation of this
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Figure 1.2.1 : Potential energy of H2 molecule as a function of bond length. The data
show exact (within the cc-pVDZ basis) and HF energies, a classical example defining
weak and strong correlations. See text for details.

simplification is that the electrons cannot instantaneously react to the mutual change

of their position. On the contrary, the electrons see only the average or the mean

distribution of the other electrons. This means that their movement is uncorrelated,

which is not correct since they repel each other via Coulombic interaction.

Here we arrive at the central object of the current thesis: electron correlation.

Even though electron correlation is defined as just the difference between the exact

energy and the energy of the Hartree-Fock determinant, this single number, in the

author’s opinion, is probably the most partitioned quantity in quantum chemistry.

The literature is full of jargon about strong or static, dynamic or weak electron

correlation, etc. To give the reader a feeling of what quantum chemists intuitively
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mean by those types of correlation, let us consider the simple example of hydrogen

molecule dissociation. The results of calculations with HF and the FCI are shown

in Fig. 1.2.1. The HF reference is constrained to be an eigenstate of Ŝ2 operator.

Usually, the correlation is measured with respect to HF determinant that obeys the

spin symmetry. Clearly, close to the equilibrium bond length, the HF description

of the system does not deviate significantly from the exact answer. To illustrate

that point, let us consider that we only express the Hamiltonian in terms of the 1s

orbitals of the atom on the left and the atom on the right, sL and sR, respectively.

The optimal basis for the determinant is composed from the σ bonding and σ⋆ anti-

bonding orbitals

|σ〉 =
1√
2

(|sL〉 + |sR〉) (1.9)

|σ〉⋆ =
1√
2

(|sL〉 − |sR〉). (1.10)

The RHF determinant is

|0〉 = c†σ,αc
†
σ,β|−〉. (1.11)

Clearly, this state can be expressed in the terms of the underlying basis as

|0〉 =
1

2
(c†sL,αc

†
sL,β

+ c†sR,αc
†
sR,β + c†sL,αc

†
sR,β + c†sR,αc

†
sL,β

)|−〉. (1.12)

In the above, the first two terms correspond to the configuration where both electrons

are on the same atom, so called ionic states, whereas the last two represent the

situation where each electron is on a separate nucleus. If we now ask what the

probability of finding an electron with spin down on the left nucleus and an electron

with spin up on the right nucleus is (with the operator c†sL,βcsL,βc
†
sR,αcsR,α) we will

find that it is 1
4
. Similarly, the probability of finding an electron with spin up and
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down on the same nucleus is also 1
4
. This is clearly incorrect since the electrons repel;

the presence of one electron in the vicinity of a given nucleus should increase the

probability of the second electron being on the other side of the molecule. Close

to equilibrium, the qualitative agreement between FCI and HF suggests that such

correlation between electrons in weak. However, as the bond distance increases,

the ionic contributions must vanish. Indeed, the exact wavefunction should become

1√
2
(c†sL,αc

†
sR,β + c†sR,αc

†
sL,β

)|−〉. Now, the expectation value of c†sL,βcsL,βc
†
sR,αcsR,α is

1
2
, meaning that the electrons always stay at the opposite nuclei. In other words,

electronic correlation is strong.

In the jargon, strong correlation is usually associated with degeneracies and spon-

taneous symmetry breaking by the Hartree-Fock procedure. One often thinks that

whenever a single Slater determinant is not a good approximation to the ground state

the system is strongly correlated.

1.3 Importance of electron correlation

In the previous section we outlined the idea of electron correlation by explicitly point-

ing out the independent movement electrons, a consequence of the Hartree-Fock

approximation. Let us however elaborate on this topic by discussing the physical

consequences of neglecting this effect.

If one is only interested in the ground state energies, for most of the typical

problems in chemistry, HF accounts for about 99% of the total energy. [8] Nonetheless,

chemistry depends on the changes in the energy and in this relative quantity the

errors in the description of the electronic correlation have a significant contribution.

For example, in the case of atoms, [9] the HF excitation energies may be wrong by

more than 40%, and the correlation contributions to ionization potentials, though
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smaller, are still not negligible. The situation looks even worse in the case of electron

affinities, where HF may fail to predict stability of certain negative ions. On top of

that, the transition probabilities between states are also rather poor. Finally, let us

mention the polarizability of the atoms, which usually also displays large dependence

on the inclusion of the correlation effects. [10]

Let us now outline some of the aspects of correlation in molecules. Quoting

Ref. [11], though difficult to generalize, lack of correlation leads to too short bonds

at equilibrium, incorrect bond angles and errors in the dipole moments. This is

of course, provided that HF even qualitatively predicts molecules to exists, as the

atomization energies are underestimated. Moving towards chemical reactions, lack of

proper description of electron correlation leads to too high reaction barriers, which can

be understood by HF problems with stretched bonds. Finally, vibrational frequencies

are also usually too high. [12]

So far, we have only mentioned properties that suffer an error due to neglecting

electronic correlation, yet we have already described a variety of properties of chemical

interest. Let us now point out physical phenomena that are only due to the electron

correlation; Hartree-Fock theory fails to predict pure dispersion interaction [13], cor-

relation bound anions [14] and the like.

Finally, for extended materials the impact of electron correlation can be observed

not only in a similar fashion as in molecules, i.e. the lattice parameters, bulk moduli

and fundamental gap but also it can give rise to various intriguing properties. The

strong Coulombic repulsion in confined orbitals of d- and f -electron materials makes

the independent particle picture inapplicable. Strong interaction makes the various

degrees of freedom exhibit rich and exotic behaviour, very sensitive to external pa-

rameters. To name a few, large resistivity changes, huge volume changes across phase
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transition, heavy fermion behaviour and colossal magnetoresitance. [15, 16] Not to

mention high temperature superconductors which are examples of strongly correlated

materials of great importance and are subject of great theoretical interest.

1.4 Approximated methods for electronic correlation

Up to this point we hope to have convinced the reader of the importance of the

proper description of electron correlation in chemistry. Since the Hartree-Fock theory,

by very definition, does not contain electronic correlation, and the exact solutions,

even in small bases, are beyond the reach of current computational resources, the

main task of quantum chemists is to develop and benchmark approximate methods.

Over many years of theoretical development supported by rapid increase in accessible

computational power, much progress has been made.

Before we try to establish the current state of quantum chemical tools, let us

comment on what we believe should be the guiding principle in method development.

The discussion is based on Ref. [17]. In order for the approximation to be useful,

a theorist should strive to provide tools that can be applicable to a large variety of

problems, not only the problems that are inexpensive to calculate. In other words,

the approximate methods should be applicable to systems chemists care about. If

the goal of quantum chemistry is to provide theoretical guidance for experimental

chemists, the methods should be implemented in an efficient and easy-to-use fashion.

However, before deeming a method worth implementing and being made available, a

theoretical tool must be throughly benchmarked against systems where accurate data

are available. Such benchmark studies allow one to build confidence in the predictive

power of the model such that a user of a given tool can understand the strengths and

weaknesses of the model and interpret the results appropriately.
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With the above in mind, let us discuss the basic approximations that are well es-

tablished in the community. As we know, a single Slater determinant is not sufficient

for accurate treatment of chemical problems whereas inclusion of all determinants is

computationally prohibitive. The rather intuitive idea is therefore to include only

selected terms in the wavefunction expansion. If one starts with the HF determinants

and considers only those determinants that can be obtained by limited number of exci-

tations from the ground state the approximation is known as truncated configuration

interaction. Usually, one stops only at the level of single and double excitations. This

method however suffers from certain limitations, most importantly, the quality of the

results deteriorates with the system size.

The revolutionary idea of coupled cluster, [18–21] outlined in section 3.4 allowed

for a better parametrization of the many-body Hilbert space in terms of excited de-

terminants. This not only provided a more accurate description of the electronic

correlation as compared to the truncated CI method but did so with comparable

computational cost [22, 23]. The coupled cluster method quickly became the gold

standard in quantum chemistry as it proved to have great accuracy for weakly cor-

related systems [24, 25]. Coupled cluster is not, however, an ultimate solution. The

strong correlation involved in multiple bond breaking processes requires one to go to

high excitation level, which quickly becomes prohibitively expensive even for mod-

erately large molecules. [26, 27] Nonetheless, coupled cluster theory is a very good

approximation that is easy to use; it requires no special theoretical background and

can be used by experimental chemists to support their work.

On the side of strong electron correlation, the commonly employed tool is the

complete-active space self consistent field method [28–30] which can be thought of

as solving for the exact wavefunction in the space of chosen single particle orbitals.
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This method however requires a priori choice of the single particle space and has

rather large computational cost. Other methods with an efficient parametrization of

the many-body Hilbert space are also available, such as the projected Hartree-Fock

method which allows for accurate treatment of strong correlation without choosing an

active space. [31–33] Unfortunately, the quality of description is bound to deteriorate

with the increase of the molecular size.

Finally, let us mention the workhorse of the quantum chemistry community for

the past few decades, the density functional theory (DFT). This approach in principle

replaces the need of computing the wavefunction as it parametrizes the ground state

energy only by the electron density. [34, 35] A computationally efficient and exact

way of performing this parametrization is unfortunately unknown and a plethora

of approximate schemes have been devised over the years. [36, 37] Perhaps the best

way to justify DFT is its incredible success, resulting in a tremendous number of

publications where DFT was the tool of choice. Nonetheless, it may be considered a

non-systematically improvable approach.

We have striven to give the reader a feeling of what the current state of quantum

chemistry toolbox is. The choice of the approximations discussed above is clearly arbi-

trary and by no means close to exhaustive. The message though is clear. After many

years of effort, an accurate and computationally feasible treatment of electronic corre-

lation remains elusive and there is definitely much place for improvement. Whether a

new approach aims to provide answers of the quality comparable with existing meth-

ods but at lower computational cost, or allows to make more accurate predictions

at the same computational cost, all new methods let us learn about strengths and

weakness of certain approximations and will hopefully lead to better approximations.
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1.5 Aim of the study

Quantum chemistry remains an open and highly dynamic field, where the need of

more accurate approximations stimulates continuous improvement of existing meth-

ods and the introduction of new approaches to tackle electron correlation. In this

work we strive to contribute to this collective effort especially for the systems that

are sufficiently large to be intractable by well-established and accurate tools.

In chapter 2 we describe the recently developed density matrix embedding theory

and benchmark it against the exactly solvable one-dimensional (1D) Hubbard model.

As outlined in section 1.4, in order for an approximation to be useful, it has to

be shown to perform well for test cases where accurate or exact data is available.

While this approach by itself is not a many-body method used to solve the electronic

Hamiltonian, but rather an approach to identify physically relevant degrees of freedom

in the form of an effective Hamiltonian, the resulting equations are solved with exact

diagonalization.

Having established the accuracy of the method for the model system, in chapter

3, we apply the approximation to chemically relevant problems. For those cases, even

the dimensions of the simplified problem may be to large to be solved exactly. We

therefore employ a coupled cluster approach.

Finally, in chapter 4, we introduce and investigate a simplified coupled cluster

scheme, pair coupled cluster doubles, that may be employed as a way of solving the

effective Hamiltonian for rather large sizes of the Hilbert space of the problem. As

this approach is new, we proceed to first benchmark the approximation for molecular

problems in order to gain insights of the accuracy one may expect, without intro-

ducing extra complication of the embedding procedure in DMET. This research lead

us to further investigate the stability problem of the coupled cluster method. We
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consequently suggest a coupled cluster methods that exhibit remarkable stability for

strongly correlated systems, a feature that is desirable for the many-body approaches

to be applicable for impurity Hamiltonians.
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Chapter 2

Density Matrix Embedding Theory for Model

Systems

In the following chapter we shall introduce the key method employed in the present

work, the density matrix embedding theory. In particular, I will focus on the physical

interpretation of the approximations used therein as well as formulate several variants

of the theory which are benchmarked against exactly solvable model systems. The

discussion presented in this chapter is based on our published work, see Ref. [1].

2.1 Density Matrix Embedding Theory

As outlined in the previous chapter, the major obstacle in the treatment of electron

correlation in extended systems arises from the tremendous number of single particle

degrees of freedom. Density matrix embedding Theory (DMET) was introduced by

Knizia and Chan [38, 39] as a computationally efficient approach to truncate the

electronic degrees of freedom into a small, locally important subset.

In order to highlight the basic ideas behind DMET, let us consider an exact ground

state |Ψ〉 for the system under study. With that state at hand one can perform a

Schmidt decomposition of this wavefunction [40]:

|Ψ〉 =
∑

i

λi|αi〉|βi〉, (2.1)

where states |αi〉 and βi〉 can be chosen such that the former represent some spatially

localized part of the system, the fragment. The latter must then be a complement
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spanning the rest of the system excluded from the fragment, the bath. The summation

limit in the above summation is then limited by the dimension of the smaller of those

two subspaces. With such bases at hand, one may then formally project the physical

Hamiltonian onto the fragment and bath, defining the so called impurity Hamiltonian,

Ĥ →
∑

ijkl

|αi〉|βj〉〈αi|〈βj|Ĥ|αk〉|βl〉〈αk|〈βl| := Ĥimp. (2.2)

The key point to notice is that the size of the basis of the impurity Hamiltonian, even

though many-body in principle, can be chosen much smaller than the one of original

problem, if expressed in a single particle basis. As discussed by Knizia [38], the impu-

rity Hamiltonian shares the same ground state as the original problem, provided that

the projection is performed with the exact wavefunction; henceforth, the expectation

values of Ĥ could be obtained by studying the Ĥimp.

Though formally interesting, the above prescription offers no computational ad-

vantage as it assumes a priori knowledge of the solution to the problem at hand.

In order to form a computationally useful tool, DMET replaces the exact ground

state by its mean-field picture, a Slater determinant. With this approximation, the

Schmidt decomposition can be easily performed and the impurity Hamiltonian can be

expressed in terms of a few, locally relevant, single particle states. The consequences

of said approximation and physical interpretation of fragment and bath states are

outlined in the following section.

2.2 Schmidt Decomposition of Slater Determinant

The DMET computational procedure starts by solving the physical Hamiltonian at

the mean-field level, here the Hartree-Fock (HF). To remind the reader, this yields

a Slater determinant |Φ〉 = Πia
†
i |−〉, where |−〉 is physical vacuum and a†i creates a
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hole (occupied) state |i〉. The HF quasiparticles are defined by the underlying HF

transformation D from bare fermion operators [7],

a†p = Dµpc
†
µ. (2.3)

The basis µ is accounts for spin and spatial degrees of freedom. Let us choose a suit-

able µ basis in which one can easily define a subset of states connected to the fragment

(for example the on-site basis of lattice models or localized molecular orbitals) and

introduce a projector onto fragment states P̂F :=
∑

µF
|µF 〉〈µF | and its complement

P̂B = Î − P̂F which projects onto the bath. Following Ref. [41], we construct an

overlap matrix M,

Mij = 〈φj|P̂F |φi〉 (2.4)

with indices i and j being hole indices. This hermitian matrix can be diagonalized

by a unitary transformation V, V†MV = d where the diagonal matrix d (di ∈ [0, 1])

contains at most min(ne, nF ) non-vanishing eigenvalues, where ne is the number of

electrons in the system and nF is the number of single particle states associated with

the fragment. Let us assume in what follows we assume that nF ≪ ne as we generally

consider only a small part of the system as a fragment. Moreover, let us assume

that there are always nF eigenvalues different from 0 and 1. If this assumption fails,

one has to take a special care in constructing the Schmidt basis. This assumption

generally holds for the fragment sizes treated in the current chapter, therefore a

problem of linear-dependencies of the fragment and batch states shall be addressed

in the chapter 3. Each of the eigenvectors corresponding to a non-zero eigenvalue of

M gives rise to a normalized fragment state,

|fi〉 =
∑

j

V⋆
ji√
di
P̂F |φj〉 (2.5)
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and a corresponding bath state

|bi〉 =
∑

j

V⋆
ji√

1 − di
P̂B|φj〉. (2.6)

The single particles states that correspond to vanishing eigenvalues shall be denoted

as the inert core states. One may think about the inert core states as states with neg-

ligible coupling to the fragment states, at least in the mean-field picture. In Appendix

3.A we present an alternative way of understanding the Schmidt decomposition of a

Slater determinant and show that the additional properties of the overlap matrix M.

At this point let us just stress that due to the bounds on the number of nontrivial

eigenvalues of M the number of active single particle states (fragment and bath) is

limited by the chosen size of the fragment, i.e., if the physics of the system can be

reliably described by forming the impurity Hamiltonian of small fragment size, the

dimension of the single particle Hilbert space of extended system can be efficiently

reduced and approached with highly accurate many-body techniques. In particular,

in the present work we neglect the inert core state while projecting the Hamiltonian.

Now, the fragment and bath states become simple single particle orbits. As it can be

shown (see Appendix 3.A), the mean-field density matrix in the basis of fragment and

bath states carries an integer number of electrons; the number of electrons is more-

over equal to the number of fragment single particle states. Therefore, one may think

about the bath as an effective reservoir of electrons for the fragment. In particular,

the superposition of states with different number of electrons in the fragment (form

zero to nF ), can be achieved by assigning to each fragment a bath state. One can then

treat the fluctuating number of electrons in the fragment by means of Hilbert space

calculation in the fragment-bath space. This situation is analogous to the example of

hydrogen molecule described in section 1.2.1. Assuming that left hydrogen is chosen
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as a fragment and the right hydrogen as a bath, the bath states are needed to describe

configurations with no electrons in the vicinity of the fragment. Moreover, the extra

electron carried by the bath is needed to describe two electrons in the fragment space.

2.2.1 DMET Impurity Hamiltonian

Due to the approximations made in formulating the DMET problem one neither

guarantees the exactness of the approach nor that the impurity Hamiltonian will

yield physically significant results if no constraints supplement the formulation of

the theory. In order to alleviate the problem one introduces an effective one-body

potential v to the physical Hamiltonian for which the Slater determinant is obtained,

Ĥ =
∑

µν

hµνc
†
µcν +

1

2

∑

µνλσ

Vµνλσc
†
µc

†
νcσcλ +

∑

µν

vµνc
†
µcν . (2.7)

This effective potential in the current work is constrained to act only within fragment.

For the extended periodic systems studied here we chose the fragment to be always

commensurate with primitive cell. Then, the effective potential can be replicated

periodically over the lattice. Now, armed with the representation of the fragment

and bath single particle states in terms of the bare fermion basis, one can construct

the DMET impurity Hamiltonian,

Ĥimp =
∑

pq

h̃pqe
†
peq +

1

4

∑

pqrs

Ṽpqrse
†
pe

†
qeser +

∑

pq

ṽpqb
†
pbq, (2.8)

where e denotes both, the fragment (f) and bath (b) bases, the embedding basis. The

t̃ and Ṽ are the one- and antisymmetrized two-body matrix elements on the physi-

cal Hamiltonian in the embedding basis, respectively. The ṽ denotes the additional

effective potential. The reader should notice that this potential does not act in the

fragment subspace of the impurity Hamiltonian. Again, let us stress that replacing a
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correlated wave-function by a Slater determinant allowed us to retain the simplicity

of working with the single particle basis with significant reduction of the electronic

degrees of freedom.

As the dimension of the embedding basis is relatively small, a powerful and accu-

rate electronic structure tool can be now employed to solve it. The goal of the proce-

dure if to find an effective potential v (hence also ṽ) such that a suitable convergence

criterion is satisfied. In the original formulation, [38] one obtains v by minimizing

|γ − γ0| = |〈Ψimp|e†e|Ψimp〉 − 〈Φ|e†e|Φ〉|, (2.9)

which is the difference between the mean-field and correlated one-particle density

matrices over the embedding basis. Alternative choices of the convergence criterion

are described in the following section.

At convergence, the energy density of the fragment is computed according to

ǫ =
∑

f∈F

[∑

j

h̃fjγjf +
1

4

∑

jkl

ṼfjklΓklfj

]
, (2.10)

where Γijkl = 〈e†ke†l ejei〉 is correlated two-particle density matrix of the impurity

Hamiltonian. The index f in the equation above is summed over the fragment states

only whereas indices j, k and l run over the entire embedding space. It should

be stressed that the formula above is not a true expectation value of the physical

Hamiltonian, hence the DMET energy expression is not an upper bound of the true

energy.
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2.3 Computational Details

2.3.1 Convergence Criteria

In the original formulation of DMET [38], the objective function minimized by the

effective potential was expressed according to Eq. 2.9. Despite the success of this

approach, demonstrated by high quality numerical results, it introduces certain limi-

tations. First of all, as demonstrated in Appendix 3.A, the mean-field density matrix

in the embedding basis is idempotent. It is therefore not possible, in general, to find an

optimal effective potential that could satisfy a perfect match between the correlated

and the mean-field one-particle density matrix. A correlated impurity solver yields

a density matrix that is not idempotent, except in the trivial case of non-interacting

particles. Moreover, as the trace of the mean-field density matrix over the fragment

subspace is guaranteed to return the number of electrons per fragment (see Appendix

3.A), an imperfect match may lead to solutions to the impurity Hamiltonian that

do not strictly represent the physical system one wishes to study. This is especially

important for periodic, extended systems where the average number of electrons per

fragment must be a well defined quantity. Moreover, as the energy density of a system

is computed with the impurity Hamiltonian wavefunction, any error in the averaged

density in the fragment affects the predictions for the entire system. For this rea-

sons, in the current chapter, we shall define the objective function minimized by the

effective potential as

min
v

∑

ff ′

|γ − γ0|ff ′ . (2.11)

Provided that a perfect match is found, as it was the case in the present study, this

convergence criterion allows one to control the average filling of the fragment.

Following similar logic, one may further simplify the computations by requiring
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only the diagonal elements of said density matrices to coincide. At this point, let

us however note that due to the lack of invariance of the diagonal elements of the

one-particle density matrix with respect to unitary rotations, by “diagonal” entries

we understand the representation in the bare fermion basis, not the embedding basis.

This is allowed as the fragment states of the embedding basis are related to the bare

fermion basis by a unitary transformation. In this approach, referred to as density

embedding theory (DET), one simply requires that the local density of the system is

equivalent in the correlated impurity wavefunction and the mean-field solution used

to construct the impurity problem. Such a decrease in the number of constraints is

reflected in the simplification of the effective potential added to the physical Hamil-

tonian, i.e. Eq. 2.7 becomes:

Ĥ =
∑

µν

hµνc
†
µcν +

1

2

∑

µνλσ

Vµνλσc
†
µc

†
νcσcλ +

∑

µ

vµµc
†
µcµ. (2.12)

The numerical data and our experience suggest that the above approximation allows

one to greatly facilitate the convergence properties of the approach while delivering

results of similar quality to DMET.

2.3.2 Choice of mean-field

The original formulation of DMET for model systems neglected the effect of the

two-body interaction in the Hamiltonian used to obtain mean-field solution as well

as in the bath-bath block of the impurity Hamiltonian. [38] In this case, the entire

system is approximated by a set of fully noninteracting particles and the Hartree-Fock

determinant is the true ground state of the system. Due to this fact, no symmetry

breaking in the mean-field may occur, unless, of course, the ground state is degenerate.

We do not, however, consider here an explicitly symmetry-violating effective potential
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which indeed may violate translational invariance whenever chosen fragment does not

correspond to single primitive cell. We note that one may implicitly breaks other

symmetries by allowing the effective potential to do so.

In the present work we explore a different procedure. The full system is de-

scribed by the physical Hamiltonian, supplemented only by the effective potential.

The Hartree-Fock transformation is not constrained to be an eigenfunction of the Ŝ2

operator but just the Ŝz operator. As a consequence, the impurity Hamiltonian does

not need to commute with the Ŝ2 operator. However, in order to retain the simplicity

of the spin-restricted formalism, the effective potential is diagonal in the spin space.

Therefore, in order to determine its value, the spin diagonal block of the one-particle

density matrix derived from HF and correlated wavefunction is used in the fitting

procedure. This obviously does not affect the condition that a perfect match between

this objects guarantees no violation of the average number of electrons per fragment.

Moreover, let us stress that we do not attempt to fit the density matrix over the

entire embedding basis as the spin-dependent bath states are not easily expressible

in a common basis. The fragment states are related to bare fermion states by an

invertible transformation but the bath states are not.

Finally, let us point out that the spin unrestricted formalism may lead to solutions

for the full system that are not commensurate with the fragment size. In other

words, charge fluctuations may be beyond the size of the fragment. In order to retain

the simplicity arising from the periodicity of the extended systems we constrain the

mean-field transformation to be periodic with a primitive unit cell of the size of the

fragment. This can be easily done with the help of a translational symmetry-adapted

bare fermion basis.
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2.3.3 Impurity Solver

In the present chapter, the impurity Hamiltonian was solved by means of exact dig-

italization. The Slater determinant basis has been constructed without employing

Ŝ2 nor spatial symmetry. We have only enforced that 〈Sz〉 = 0 and that the single

particle basis is real.

2.4 Benchmark Calculations in the one-dimensional Hub-

bard Model

In the present section, we present benchmark calculations for the 1D Hubbard model,

Ĥ = −t
∑

〈µν〉σ
c†µσcνσ + U

∑

µ

c†µαc
†
µβcµβcµα (2.13)

where 〈. . .〉 denotes summation over nearest neighbours. This lattice Hamiltonian

was chosen due to availability of exact solution via the Bethe ansatz (BA) solved by

Lieb-Wu equations. [42–45] The results denoted as DMET(n) correspond to a spin-

symmetry broken mean-field solution with convergence criterion defined by Eq. 2.11

and the fragment composed of n sites whereas DET(n) corresponds to the fit per-

formed over the diagonal entries in the one-particle density matrix. For completeness,

we include the results obtained with the original formulation of DMET of Ref. [38]

where the two-body interaction is not present in the full lattice Hamiltonian nor in

the bath block of the impurity Hamiltonian. We label those calculations as nonin-

teracting, NI and NIF case. The additional subscript F “Full matrix” denotes that

the fit of the density matrix is performed over the entire embedding basis (see Eq.

2.9). The calculations for NIF were performed with the program made available in

Ref. [38].
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2.4.1 Half-lattice embedding

Here we shall focus on a particular benchmark case where the chosen fragment spans

half of the entire system. As outlined in Appendix 3.A, in such a case the total number

of fragment and bath states has the same dimension as the bare fermion basis of the

full problem. In other words, no core states are present in the Schmidt decomposition.

As a consequence, no computational saving arises due to the embedding procedure.

The results are shown in Table 2.1. Clearly, the DMET embedding scheme is not exact

in this case. Due to the fact that the impurity Hamiltonian is the physical Hamiltonian

for v = 0, but the mean-field density matrix does not agree with the exact one, the

DMET equations require solution with non-vanishing effective potential. This leads

to small but not negligible deviations of DMET from BA. On the other hand, the

mean-field solution does not break translational symmetry of the charge density for

systems studied; the DET convergence criterion is therefore satisfied by v = 0 and

the impurity Hamiltonian and its solution corresponds to the physical Hamiltonian

of the full lattice.

2.4.2 Half-filled Hubbard rings

Let us turn our attention to cases where embedding does offer significant computa-

tional savings. In the present work we choose a Hubbard ring of 400 sites where exact

diagonalization becomes unfeasible. The energy density obtained with the embed-

ding fragment size of 2 and 4 sites is presented in Fig. 2.4.1. As the reader may

notice, even with the small fragment size, the DMET and DET predictions overlap

well with the exact answer. The biggest error is observed for the intermediate cou-

pling strengths. For the weak and strong coupling regimes the embedding provides

accurate energies of the Hubbard model. One should also notice that DET agrees well
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Table 2.1 : Energies per site (in units of t) for small Hubbard rings evaluated with
D(M)ET approximations and Bethe Ansatz.

8 sites U=

2 4 6 8 10

BA -0.8210 -0.5754 -0.4261 -0.3333 -0.2721

DMET(4) -0.8382 -0.5609 -0.4118 -0.3210 -0.2616

DET(4) -0.8210 -0.5754 -0.4261 -0.3333 -0.2721

4 sites U=

2 4 6 8 10

BA -0.7071 -0.5257 -0.4087 -0.3301 -0.2750

DMET(2) -0.7262 -0.5090 -0.3860 -0.3091 -0.2568

DET(2) -0.7071 -0.5257 -0.4087 -0.3301 -0.2750

with DMET even though the errors are somehow larger. This supports our current

choice of determining optimal fit between correlated and mean-field density matrices.

By comparing to the embedding schemes introduces by Knizia and Chan [38] we ob-

serve improved quality of the description of the system introduced by spin symmetry

breaking. We should also stress that performing a fit to the entire density matrix

in the NIF scheme is superior to fitting in the fragment space only. Nonetheless,

every embedding approach presented in Fig. 2.4.1 for the fragment of 2 sites perform

extremely well taking into account that the many-body Hilbert space of the problem

was truncated from approximately 10238 to just 36 states.

Increasing the size of the embedded fragment to 4 sites, we notice systematic im-

provement of all presented approaches. DMET and DET based on spin symmetry



26

broken references are virtually indistinguishable from the exact answer. The NIF

approach becomes noticeably more accurate as the fragment size increases. Only

the NI approach shows significant deviations from the exact results at large cou-

pling strength, yielding energies comparable to the symmetry broken Hartree-Fock

approach, especially for U ≥ 8t. Again, one should keep in mind that the dimension

of the many-body Hilbert space used in these calculations was only 4900.

The accurate description of the energy density does not allow us to fully gauge the

quality of the impurity wavefunction. We now turn our attention to a two-body corre-

lation function, the double occupancy 〈n↓n↑〉. Correct description of this correlation

function confirms that not only the total energy but also the individual components

are reproduced well by the impurity Hamiltonian. Said correlation function was

computed as 〈Û〉
UnF

for the embedding schemes where Û is the two body interaction

operator in the fragment (we use the locality of the Hubbard interaction) and nF is

the fragment size. For the Bethe ansatz, the Hellmann-Feynman theorem was used,

〈n↓n↑〉 = ∂e
∂U

. The results are shown in Fig. 2.4.2. Again, the spin symmetry broken

formalism yields accurate results even with the smallest fragment size considered.

On the scale of the plot, the data is almost indistinguishable from exact values. The

embedding schemes arising from a noninteracting lattice deviate more significantly

from the BA, especially at larger values of interaction strength. This is consistent

with the behaviour of the energy density. Increasing the fragment size improves the

already good predictions of symmetry broken DMET and DET. The improvement

of NIF is more significant. The discrepancy with BA can be now only observed for

intermediate coupling strength. Consistently with the energy density, NI offers the

worst predictions of the double occupancy of all the methods studied here.
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Figure 2.4.1 : Energy per site of the 1D Hubbard model at half-filling evaluated with
various embedding schemes with a fragment of 2 (top panel) and 4 sites (bottom
panel). Bethe ansatz (BA) results are added for comparison. Figure taken from
Ref. [1].
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Figure 2.4.2 : Comparison of double occupancy for the 1D Hubbard model at half-
filling evaluated with various embedding schemes with fragment of 2 (top) and 4 sites
(bottom). The Bethe ansatz (BA) results are added for comparison. The error with
respect to BA is plotted in the bottom panel. Figure taken from Ref. [1].
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2.4.3 Hole-dopped Hubbard rings

As demonstrated in the preceding section, the broken symmetry DMET and DET

offer good description of the half-filled Hubbard model at any value of the interaction

strength. Let us now turn our attention to another parameter defining the model,

the filling fraction. In Fig. 2.4.3 and Fig. 2.4.4 we present the energy density as a

function of filling fraction 〈n〉 for the 400 sites Hubbard ring at U = 4t, 6t and 8t.

Additionally, we plot the percent error with respect to the exact answer.

As the reader may readily notice, for the lower interaction strengths presented,

all of the embedding schemes offer reasonable description of the model. We do not

observe errors beyond 4% at any filling fraction. For the fragment of 2 sites and U =

4t, we observe a good agreement between DMET and DET until around filling frac-

tions of 0.75, where broken-symmetry DMET starts deviating from the BA noticeably

more than DET. We also observe that the NIF approach seems to be slightly better

than the embedding schemes introduced in the present work. Let us stress however

that we were able to find a global minimum of the minimized objective function of all

of the systems, hence no error in the particle number was present. As the function

ǫ(〈n〉) shows not a negligible slope, any changes in the average particle number can

affect the results. In the case of U = 4t, we also present the curve for fragment of 4

sites evaluated with DET. One can observe a noticeable improvement with respect to

DET(2) calculations and small error in the entire range of filling fractions studied.

For the larger values of U , we can see that DMET and DET based on spin sym-

metry broken mean-field solutions becomes more accurate than the original NIF for-

mulation for most of the studied filling fraction. Only for very heavily doped systems

does the description provided by those approaches become similar. The reader should

notice that the difference of convergence schemes employed does not lead to notice-
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Figure 2.4.3 : Energy density of the 1D Hubbard model as a function of the filling
fraction evaluated with various embedding schemes for U = 4t (top) and U = 6t
(bottom). Bethe ansatz results are added for comparison. The percent error with
respect to BA are plotted in the bottom inset. Figure taken from Ref. [1].
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Figure 2.4.4 : Energy density of the 1D Hubbard model as a function of the filling
fraction evaluated with various embedding schemes for U = 8t. Bethe ansatz results
are added for comparison. The percent error with respect to BA are plotted in the
bottom inset. Figure taken from Ref. [1].

able differences in results as DMET and DET curves overlap very well. Interestingly,

the error again does not exceed the 4% level. Analogous to the half-filled case, we

observe that enforcing a perfect match between the mean-field and correlated density

matrices over the fragment space (NI approach) leads to significant deviations from

the BA for large values of U . The NI scheme clearly leads to the poorest description

of the energetics of the system for most doping regimes.

Finally, let us point out that after a certain doping fraction, the mean-field solu-

tions we were able to find cease to spontaneously break spin symmetry. This leads to

small, but unpleasant kinks in the DMET and DET curves.
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Let us now proceed to benchmark spin-symmetry broken embedding for doped

systems in more detail. To do so, we study the lattice density as a function of

chemical potential. The data in the current work was obtained by minimizing

Ĥµ = Ĥ − µN̂ (2.14)

with respect to electron number at given chemical potential µ. Here Ĥ is the Hubbard

Hamiltonian and N̂ is the number operator. We compare the symmetry-broken mean-

field embedding to the NI scheme only. The analogous data for NIF can be found

in the literature, see Ref. [38]. The behaviour of the average density as a function

of chemical potential was used by ground state techniques to gauge metal-insulator

transitions. [38,46] Vanishing derivative of density with respect to chemical potential

is identified with the incompressible insulating state.

The results for the fragment size of 2 are presented in Fig. 2.4.5. It is clear that

the NI approach clearly does not reproduce any transition, even qualitatively; NIF was

reported to provide quantitatively correct behaviour. We conclude therefore that em-

ploying a noninteracting reference for embedding calculations suffers from restraining

the correlated density matrix to exactly match the mean-field one over the fragment

space. In the DET approach the transition is clearly visible and quantitatively cor-

rect. The reader may notice that an abrupt jump in the 〈n〉(µ) curve which implies

that certain filling fractions are not stable at any chemical potential. This error can

be traced back to the behavior of the energy density versus filling fraction. As is clear

from Fig. 2.4.3 and Fig. 2.4.4, the DET approach yields a little too low energies for

the half-filled lattice and significantly doped lattices and larger energies at very small

doping fractions, as compared to BA. This implies that the small doping fractions are

fictitiously under-stabilized in the current approach. Again, one may also notice some

discontinuities at small filling fractions arising from the transition of spin symmetry
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Figure 2.4.5 : Lattice filling as a function of chemical potential evaluated with various
embedding schemes and the fragment size of 2 lattice sites. Exact Bethe ansatz data
is shown for comparison. Figure taken from Ref. [1].

broken to spin preserving solutions. Despite these formally unpleasing features, the

DET results predict the transition at chemical potentials close to the exact ones. The

impact of the fragment size used for embedding is presented in Fig. 2.4.6. The reader

may verify that for U = 4t the fragment of 4 sites offers significant improvement over

fragment of 2, not only for the point of chemical potential at which the transition

occurs but also in the size of the unstable filling fractions. The NI approach does not

yield any sort of transition even with the larger fragment.
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is shown for comparison. Figure taken from Ref. [1].
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2.4.4 Long-range properties

So far we demonstrated that density matrix embedding theory can be considered a

fairly accurate approach for the description of the energetics of the Hubbard model

as well as its local properties. In this section, we wish to remind the reader that the

intrinsically local picture included in the approximation may fail. To this end, we

study the spin-spin correlation function (SSCF),

SSCF(j) = 〈Ŝ1 · Ŝj〉,

where Ŝj is the spin operator at site j. In order to evaluate this property, we transform

the on-site representation of said operator into the embedding basis and evaluate

it with the exact solution for the impurity problem. At this point we note that

alternatively one may evaluate this operator with the inclusion of the core states

neglected in the impurity Hamiltonian. However, as the core state are neglected in

the evaluation of the energy and we want to study the long-range properties included

in the embedding basis, we do not attempt to do it here. Therefore, the discussion

here presents the extent at which the bath states spread into the full lattice and are

aware of the distant parts of the system. Finally, let us stress that the site 1 has been

chosen as the first site of the embedded cluster.

In Fig. 2.4.7, we present the SSCF for the 8-sites Hubbard ring at half-filling with

the fragment of 4. Once again, this corresponds to the case where the embedding

scheme offers no computational advantage. The spin-symmetry broken DET approach

constitutes here the exact solution so the SSCF overlaps perfectly with the exact data.

The DMET self-consistency criteria are not however satisfied by vanishing effective

potential and the solution deviates for the exact ground state. This affects the SSCF

which deviates somewhat from the exact correlation function. Proceeding to larger
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lattices, here 30 sites with 30, 26 and 22 electrons (Fig.2.4.8), we observe that the

DET approach deviates significantly for the exact data for virtually all site indices not

included in the fragment. In order to illustrate it in more detail, Fig. 2.4.8 contains

also single particle basis coverage defined as

1

2

∑

e

〈e|P̂j|e〉 (2.15)

where the summation runs over the embedding basis and P̂j is the projector on site

j. Clearly, the sites included in the fragment are fully represented by the embedding

single particle states in the impurity Hamiltonian. The contributions to the bath

states, however, decay rapidly with the distance from the fragment, especially at half-

filling. This effectively screens the long-range information resulting in rapid decay of

the SSCF.

2.5 Conclusions

In the present chapter, we have investigated several possible DMET schemes within

the spin-symmetry broken formalism. We included the effects of the two-body in-

teraction in the lattice mean-field. We have shown that fitting the diagonal of the

fragment density matrix leads to results of similar quality to the full method while

our experience shows that the convergence of the method is significantly improved.

The numerical data suggests that the current approach yields very good description

of the energetics and the local properties of 1D Hubbard model. For the hole-doped

systems, the approach predicts good Mott gaps and density profiles.

As formulated, the current approach does not provide a good description of the

correlation functions beyond the size of the fragment. From this perspective, devel-

oping and benchmarking reliable and accurate impurity solvers that allow for the
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treatment of larger fragment sizes is important and it will be discussed in chapter 4.
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Appendix

2.A Schmidt Decomposition of Salater Determinant

In the following, we shall investigate some properties of the embedding basis. In

particular, we show that the mean-field density matrix in embedding basis must be

idempotent and commute with the mean-field Fock matrix in the embedding basis.

2.A.1 Complete set of states

In the following, we will use indices i, j, k and l for the hole states and a, b, c and d

for particles states. Let us define matrices

Mij = 〈j|P̂F |i〉 (2.16)

Mab = 〈b|P̂F |a〉 (2.17)

Mia = 〈a|P̂F |i〉. (2.18)

Clearly, the matrices Mij and Mab can be diagonalized by a unitary transformation

V and U, respectively. Their eigenvalues d are bound in [0, 1].

Let us assume that the number of single particle fragment states is bigger neither

than the number of particles nor holes in the system. Moreover, let us assume that

all eigenvalues of the matrices Mij and Mab that could possibly be different from 0 or

1, actually are different from 0 or 1. Otherwise, linear dependencies exist. We shall

deal with such situation in the next chapter.

From the matrices Mij and Mab one can form nf orthonormal fragment and bath
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states and nh − 2nf and np − 2nf core states where nh (np) is the total number of

holes (particles). We shall now prove that the fragment and bath states obtained

from Mij and Mab span the same space, to which the core states are orthogonal. In

other words, we show that the fragment states obtained from hole orbitals

|fi〉 =
V⋆

kiP̂F |k〉√
di

(2.19)

and the particle states

|fa〉 =
U⋆

baP̂F |b〉√
da

(2.20)

are the same up to a phase, just as their corresponding bath states,

|bi〉 =
V⋆

kiP̂B|k〉√
1 − di

(2.21)

and the particle states

|ba〉 =
U⋆

baP̂B|b〉√
1 − da

. (2.22)

However, the core states (corresponding to vanishing eigenvalues) obtained from the

hole basis,

|ci〉 = V⋆
kiP̂B|k〉 (2.23)

and particle basis

|ca〉 = U⋆
baP̂B|b〉 (2.24)

are orthogonal to each other and to fragment and bath states.

Lemma 1. A column vector Uba which is an eigenvector of Mab corresponding to

eigenvalue da satisfies the following relation,

MckMkbUba = (da − d2a)Uca. (2.25)



42

Proof. Using resolution of identity and the fact that the projector operator is idem-

potent we quickly get,

McbUba = MckMkbUba + d2aUca = daUca, (2.26)

hence

[
MckMkb

]
Uba = (da − d2a)Uca. (2.27)

Lemma 2. A vector MibUba is a null vector whenever vector Uba is an eigenvector of

Mab with eigenvalue 0 or 1 and it is not a null vector otherwise.

Proof. Let us define np column vectors Xia = MibUba. The overlap matrix (X†X)ab is

X⋆
iaXib = (da − d2a)δab (2.28)

where we used the result of Lemma 1.

Lemma 3. If Mab has an eigenvalue da different than 0 and 1, then Mij has an

eigenvalue di = 1 − da.

Proof. We showed that whenever eigenvector Uba corresponds to eigenvalue da that

is not 1 nor 0, a vector MkbUba is nontrivial. Therefore,

MlbUba = MlkMkbUba + McbMlcUba = MlkMkbUba + daMlcUca, (2.29)

hence,

Mlk

[
MkbUba

]
= (1 − da)

[
MlbUba

]
. (2.30)

Clearly, MkbUba must be parallel to vector Vki if it corresponds to eigenvalue di =

1 − da and orthogonal to all other vectors Vkj.
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Now, we are in position to show that the set of fragment, bath and core states

form a complete set of states of the problem. First, we note that fragment states

obtained from either hole or particle orbitals are orthogonal to bath and core states

due to orthogonality of the projectors. Moreover, the hole (particle) bath states are

orthogonal to each other and the hole (particle) core states due to unitarity of V

(U). The orthogonality of particle and hole core states follows from lemma 3. It is

then sufficient to show that each hole fragment state is parallel to one fragment state

obtained from particle orbitals. Indeed,

〈fa|fi〉 =
1√
dida

V⋆
kiMkbUba, (2.31)

according to lemma 3 is 0 unless di = 1−da and there is a one to one correspondence

between eigenvalues di and da; there can be therefore only one vector in each set that

can satisfy this condition. Because those vectors are parallel and normalized, they

cannot differ by more than a phase. Analogous discussion follows for bath states.

2.A.2 Mean-field density matrix in the embedding basis

Let us consider a lattice density matrix γ0 that has been projected onto the embedding

(fragment and bath) basis,

γ0 =



γ0

FF γ0
FB

γ0
BF γ0

BB


 (2.32)

The FF takes the form

(γ0
FF )ij =

VkiMmkMlmV⋆
lj√

didj
= δijdi. (2.33)

Analogous straightforward calculations follow for the other blocks. Finally

γ0 =




d
√
d(1 − d)

√
d(1 − d) 1 − d


 . (2.34)
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One can now verify that the mean-field density matrix remains idempotent in the

embedding basis. On the other hand, the FF block is not as it eigenvalues are

expressed by the eigenvalues of the Mij matrix. Additionally, we point out that upon

unitary transformation of fragment states to the on-site basis, the trace is invariant.

Therefore, we conclude that the trace of Mij is the average number of electrons per

fragment in the mean-field solution of the full system.

2.A.3 Commutativity of the mean-field and the Fock matrix in the em-

bedding basis

Let us consider the mean-field Fock matrix in the embedding basis, f . Since γ0 and f

are hermitian, they commute if and only if their product t = fγ is hermitian. Since

t and f have the same block structure as γ0 (Eq. 2.32), we can investigate one block

at the time. And so,

tFFij = fFF
ij dj + fFB

ij

√
dj(1 − dj) =

√
didj

(
V ⋆

kjǫkV ki

)
, (2.35)

where ǫk is an eigenvalue of the full system Fock matrix. Similarly,

tBB
ij =

√
(1 − di)(1 − dj)

(
V ⋆

kjǫkV ki

)
. (2.36)

The above matrices are manifestly Hermitian. Finally,

tFBij =
√
di(1 − dj)

(
V ⋆

kjǫkV ki

)
(2.37)

and

tBF
ij =

√
(1 − di)dj

(
V ⋆

kjǫkV ki

)
(2.38)

so clearly (tFB)⋆ij = tBF
ji . Therefore, t is Hermitian and f and γ0 commute.
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Chapter 3

Application of Density Matrix Embedding Theory

to Realistic Extended Systems

The discussion presented in this chapter is based on our published work, see Ref. [2].

3.1 Motivation

In the previous chapter, we outlined the basics of the density matrix embedding the-

ory and performed benchmark calculations for the one dimensional Hubbard model.

For this prototypical model of strongly correlated electrons we obtained satisfactory

results even with small fragment sizes. In the present chapter we wish to extend the

applicability of DMET to real materials. We primarily seek to determine whether the

local nature of the approximation will cause a break-down for Coulombic systems.

Moreover, we investigate the applicability of less expensive impurity solvers. Indeed,

the size of the primitive cells used in the present work excludes the use of exact diag-

onalization as an impurity solver. The ultimate goal, however, remains unchanged;

we seek for approximate computational tools that allow one to access an accurate

description of electronic correlation in realistic extended systems.

Just as in the Hubbard model, electron correlation plays a central role in un-

derstanding physical phenomena in extended systems. Despite significant progress

recently made in applying highly accurate many-body theories to crystalline materi-

als, [47–50] this field remains dominated by density functional theory. Even though

this approach is computationally very compelling and may yield results of satisfac-
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tory accuracy [51,52], the limitations due to the approximate nature of the exchange-

correlation functional still pose a challenge. [53–55]

The size-extensive wavefunction-based approaches to solids treat the system as a

whole, imposing translational symmetry and Brillouin zone integration. Alternatively,

numerical complexity arising from numerous degrees of freedom has been simplified,

for example by means of the method of increments. [56–58] Finite order perturbation

theory [59–63] and coupled cluster (CC) methods [64–66] have been formulated and

implemented for extended systems. With all the previous efforts in mind, we proceed

to benchmark DMET for prototypical 1-, 2-, and 3-dimensional extended systems.

3.2 Schmidt decomposition for periodic systems

Recall that DMET calculations require a definition of a suitable single particle basis

that can be associated with a fragment. While in the case of the Hubbard model, the

choice of the on-site basis was natural, for the case of realistic systems, such a choice

is not so obvious. In the case of the present work, we employ the maximally localized

Wannier functions. [67–69] These orbitals are obtained by a unitary transformation

of the mean-field basis |ψn~k〉, where n is the band index and ~k labels the irreducible

representation of the translational group. [70] This yields an orthonormal set of single

particle states |Fµ~G〉, where µ labels a basis in a cell ~G. The orthonormality condition

reads

〈Fµ~G′ |Fν ~G〉 = δµνδ ~G~G′ . (3.1)

Let us be more specific at this point. First, one may replace the need of using the

Wannier basis in lieu of the atomic-centered orbitals. Those orbitals are not orthog-

onal; one loses therefore the simplicity of the formulation of the approach. Second,
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in order to form a suitable basis one must allow for mixing of the particle and hole

states during the localization procedure yielding the required states. In order words,

we employ the localization procedure as an affective algorithm for forming localized

set of orthogonalized “atomic like” basis functions used to construct a fragment.

Nonetheless, as outlined in Appendix 3.A one may constrain the indices of the bands

in order to further truncate the electronic degrees of freedom. This procedure is a di-

rect equivalence of orbital “windows” commonly used in molecular calculations where

only the highest valence bands and the lowest conduction bands are treated with the

correlated method.

Analogously to the fragment states, the hole states are localized to yield |φi ~G〉

orbitals which correspond to the ith hole state associated with cell ~G. For consistency

of the approach, whenever a truncation of the valence band was used in formation of

the fragment states, the same level of truncation should be applied while localizing

the hole states.

The Schmidt overlap matrix may now be constructed as

M ~G~G′
ij =

∑

µ

〈φj ~G′ |Fµ~0〉〈Fµ~0|φi ~G〉 (3.2)

where ~0 is the reference cell constituting a fragment. In cases where more than one

primitive cell is embedded, this index should be understood as the extended cell

formalism. As the reader may verify, the formally infinite matrix M can be efficiently

truncated due to the locality of the Wannier basis, i.e. lim| ~G|→∞〈Fµ~0|φi ~G〉 = 0. The

localization of the hole states dictates therefore a natural length scale considered in

the problem. From the practical point of view, we have considered as a measure of

the convergence of the truncation the overlap matrix of the embedding basis as well

as the norm of the commutator of the mean-field density matrix and the Fock matrix
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in the embedding basis.

Finally, let us point out that unlike the model Hamiltonian studied in the previous

chapter, for the realistic systems with a multi-band basis the nontrivial eigenvalues of

the M matrix are very close to 1 and 0 making the Schmidt decomposition numerically

noisy. As this is just a technicality, we do not focus on that issue here and refer the

reader to Appendix 3.A.

3.3 Impurity Hamiltonian for crystalline materials

The main difficulty in adopting DMET for realistic materials lies in the formation

of the impurity Hamiltonian. For realistic systems, the physical Hamiltonian can be

written as

Ĥ = ENN + V̂Ne + V̂ee + T̂ = E0 + ĥ+ V̂ (3.3)

with ENN being nuclear repulsion energy, ˆVNe and V̂ee the potential energy of electron-

nuclei and electron-electron interactions and T̂ the electronic kinetic energy. Those

can be expressed in terms of a constant E0 and one- and two-body operators, ĥ

and V̂ . Due to the delicate nature of Coulombic systems, the summation over the

infinite number of electrostatic terms must be handled with care. The same is true

for the transformation of the physical Hamiltonian to the embedding basis. In the

present approach, we propose to avoid problems with electrostatic terms as follows.

We start by expressing the Hamiltonian in the second quantized form with the aid of

the mean-field Fock matrix (F ) and density matrix (γ)

Fµν = hµν +
∑

λσ

Vµλνσγσλ, (3.4)
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as

Ĥ = E0 −
∑

µν

Fµνγνµ +
1

2

∑

µνλσ

Vµλνσγσλγνµ

+
∑

µν

(Fµν − Vµλνσγσλ)c†µcν +
1

4

∑

µνλσ

Vµνλσc
†
µc

†
νcσcλ (3.5)

where E0 = EN with E being the mean-field energy per unit cell and N the num-

ber of cells. Here, V is an antisymmetrized integral. Clearly, the above is just

an rearrangement of the physical Hamiltonian. No approximations have yet been

made. The problem of divergent terms is still present. For example, the constant

1
2

∑
µνλσ Vµλνσγσλγνµ cannot be summed independently as it has no meaningful ther-

modynamic limit. We propose therefore to express all quantities in Eq. 3.5 in the

embedding basis first, and then perform required summations. In other words we in-

dependently transform the two-body matrix elements, Fock operator and the density

matrix into the embedding basis, i.e. Fµν → F̃ee′ , γµν → γ̃ee′ and Vµνλσ → Ṽee′e′′e′′′ .

While the two-body elements are transformed as usual, let us write explicit form of

the one-body matrix elements and the constant term. They become:

h̃ee′ = F̃ee′ −
∑

e′′e′′′

Ṽee′′e′e′′′ γ̃e′′′e′′ (3.6)

Ẽ0 = ENF −
∑

fe

(
F̃fe −

1

2

∑

e′e′′

Ṽfe′ee′′ γ̃e′′e′
)
γ̃ef . (3.7)

Again, E denotes the mean-field energy of the fragment and NF is the number of

fragments. As the reader may notice, a restriction of the summation indices was

introduced to the constant term. The range of index f covers only the single particle

states associated with fragment, not the full embedding basis. The reason for that

will become apparent soon.

Let us stress that the above construction is an approximate way of defining the

impurity Hamiltonian. This approximation is, however, well justified. As is shown
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in Appendix 3.A, the mean-field density matrix projected into the embedding basis

commutes with the Fock matrix projected to the embedding space, i.e. [F̃ , γ̃] = 0.

Moreover, γ̃ is idempotent. In our approximation, the Fock matrix of the impurity

Hamiltonian constructed from γ̃ takes the form

F imp
ee′ = h̃ee′ +

∑

e′′e′′′

Ṽee′′e′e′′′ γ̃e′′′e′′ = F̃ee′ . (3.8)

It the therefore clear that the mean-field density matrix in the embedding basis is

a valid solution of HF equations for the impurity Hamiltonian as defined above.

Moreover, the energy of the fragment computed according to Eq. 2.10 reduces to

ENF ; hence we must conclude that employing Hartree-Fock as an impurity solver

yields the energy equivalent to the full lattice problem. It it important to note that

the effective potential required to achieve DMET convergence criterion was set to

0 in the demonstration above. In the case where a method capable of accounting

for electron correlation is employed, the solution to DMET equations will require

a non-zero effective potential. As this works constitutes a first application of the

DMET procedure to crystalline material, we choose a minimalistic approach to the

convergence criterion. In what follows, the effective potential is not only diagonal,

but also independent on the sites. Therefore, in the full lattice problem it acts as a

chemical potential which cannot change the HF solution. We do not need therefore to

resolve the HF problem during the optimization procedure as the mean-field density

remains constant. As a consequence, the suitable convergence criterion is that the

average number of electrons in the fragment carried in the correlated wavefunction

agrees with the physical electron number of the fragment. Once again, for the periodic

system the average number of electrons per unit cell is known and well defined. Due

to the simplification, we denote calculations in the present chapter as DET for sake

of consistency with the previous chapter.
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3.4 Impurity Solver

As the size of the many-body Hilbert spaces considered in the present work exceeds

the feasibility of solving the impurity Hamiltonian exactly, in this work we tackle

the problem with coupled cluster methods. In this approach [25], the ansatz for the

ground state wavefunction can be expressed as

|Ψ〉 = eT̂ |0〉, (3.9)

where |0〉 is a Slater determinant and T̂ is a cluster operator

T̂ = T̂1 + T̂2 + T̂3 . . . (3.10)

with T̂n being a n-tuple excitation operator, for example,

T̂2 = tabij a
†b†ji (3.11)

where indices a and b denote particle and i and j hole states. In the typical imple-

mentation the CC equations are solved in a projective manner. The first step involves

a truncation of the cluster operator to a given level of excitations. In practical ap-

plications, only the T̂1 and T̂2 operators are retained, giving rise to coupled cluster

single and double excitations (CCSD). Alternatively, one may neglect also the single

excitation operator which is known as coupled cluster with double excitations (CCD).

Then, the physical Hamiltonian undergoes similarity transformation

H̄ = e−T̂ ĤeT̂ (3.12)

and is projected onto a truncated Hilbert space spanned by the reference determinant

|0〉 and all excited determinants with the excitation level commensurate with the

elements of the cluster operator retained. Defining |Z〉 as a representation of the
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projective subspace of excited determinants, the matrix representation of the CC

(non-hermitian) Hamiltonian takes the form

Ĥ =




〈0|H̄|0〉 〈0|H̄|Z〉

〈Z|H̄|0〉 〈Z|H̄|Z〉


 . (3.13)

The excitations amplitudes are then solved subject to the constraint that a vector



1

0


 (3.14)

is a right eigenvector of the CC Hamiltonian in the projective space, i.e.



〈0|H̄|0〉 〈0|H̄|0〉

〈Z|H̄|0〉 〈Z|H̄|Z〉







1

0


 = E




1

0


 . (3.15)

This yields an energy expression E = 〈0|H̄|0〉 with the constraints 〈Z|H̄|0〉 = 0 for

every determinant in the projective subspace. Defining an operator

Ẑ = Ẑ1 + Ẑ2 + . . . (3.16)

with, for example, Ẑ2 = zijabi
†j†ba, the above can be written in the term of CC

Lagrangian,

L[t, z] = 〈0|(1 + Ẑ)H̄|0〉. (3.17)

Now, the equations for the t-amplitudes can be expressed as

∂L[t, z]

∂zijab
= 0. (3.18)

While the numerical values or the z-amplitudes are irrelevant from the point of view

of the energy, it is conceptually useful to view 〈0|(1 + Ẑ) as the eigenbra of the CC

Hamiltonian in the projective space [71,72] with the z-amplitudes defined by requiring

∂L[t, z]

∂tabij
= 0. (3.19)
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With the above bi-orthogonal framework, the necessary density matrices required in

DMET approach can be computed as [73]

γpq = 〈0|(1 + Ẑ)e−T̂ q†p eT |0〉 (3.20)

Γpqrs = 〈0|(1 + Ẑ)e−T̂ r†s†qp eT |0〉. (3.21)

The above constitutes the so called “CC expectation value” [73] which we deem correct

for the purposes of DMET. We therefore did not include the orbital relaxation term

contribution to the density matrices.

3.5 Application to crystalline materials

3.5.1 Computational details

The construction of Wannier functions was implemented in Gaussian Developement

Version [74] that was also used to perform the periodic HF calculations. The spin

symmetry was preserved. The localization of crystalline orbitals was performed by

adapting the scheme of Ref. [75] where the Boys localization is replaced by Pipek-

Mezey localization [68] with Löwdin population [69]. For 1D systems, we used a

~k-point mesh of at least 400 points; for 2D and 3D 400 and 70000 ~k-points were used,

respectively.

Due to linear-dependencies in the HF calculations, the most diffuse basis functions

of the 6-31G basis [76,77], were changed to 0.35, 0.30 and 0.20 for the carbon, nitrogen

and boron atoms, respectively.

In all calculations, the threshold for the retaining of the bath states was set to

10−6. The fragment states corresponding to eigenvalues that were closer to 1 or 0

than this threshold were constructed according to the formalism outlined in Appendix

3.A.
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3.5.2 1D carbon system

Here we benchmark the DET approximation against three carbon polymers, polyyne

(C≡C)∞, polyacetylene (CH=CH)∞, and polyethylene (CH2−CH2)∞. In the present

work, we adopt the geometries from Ref. [66]. The geometrical parameters are rC≡C =

1.263Å, rC−C = 1.132Å for polyyne, rC=C = 1.369Å, rC−C = 1.426Å, rC−H = 1.091Å,

∠C=C−C = 124.5◦, ∠C=C−H = 118.3◦ for polyacetylene, and rC−C = 1.534Å, rC−H =

1.100Å, ∠C−C−C = 113.7◦, ∠H−C−H = 106.1◦ for polyethylene. In order to gain

better insight into the performance of the DET approximation, we additionally deform

the above systems by keeping all variables, apart from the carbon-carbon bonds,

fixed, while scaling the carbon-carbon bonds uniformly with a parameter α. In all

calculations, the 1s orbitals of carbon were eliminated from consideration in DET and

coupled cluster calculations. DET(n) denotes calculations with n unit cells used as a

fragment. The benchmark data (Extr) was obtained by extrapolating the correlation

(Ecorr) of given method, i.e.,

EExtr = EHF + Ecorr(n) − Ecorr(n− 1) (3.22)

EHF is the HF energy per unit cell of infinite system and n denotes the number of

monomers in the oligomer used for the extrapolation. We found that a satisfactory

accuracy of extrapolation was achieved with n ≈ 9.

Polyyne

Let us begin with the most challenging system for the embedding calculations, polyyne.

In this case, one expects the slowest decay of the correlation energy contributions from

further cells to the unit cell. [66] The results of the calculations with STO-3G basis

are presented in Fig. 3.5.1. Clearly, even for the calculations with a single unit cell,
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the CCD and CCSD impurity solvers provide a reasonable description of the system

for almost all values of the stretching parameter α. The discrepancy with respect

to the oligomeric extrapolation does not exceeds 10 mEh which accounts for roughly

5% difference in the correlation energy. Extending the embedded fragment to two

unit cells further improves the agreement with the thermodynamic limit and tends

to make the discrepancy fairly independent on the value of the parameter α. Impor-

tantly, the DET embedding correctly predicts the carbon-carbon bond elongation due

to the inclusion of the electron correlation effects which impacts the optimal value of

parameter α.

The qualitative and quantitative agreement between the extrapolated and DET

results remain valid with the larger basis set as well. The data for the 6-31G basis

are presented in Fig. 3.5.2. The absolute discrepancy between those two approaches

do increase, but so does the magnitude of the correlation energy. The overall shape

of the energy profile is properly reproduced as is the bond elongation due to the

correlation effects.

Let us also comment on the size of the impurity space. For the fragment of 1

unit cell taken as a fragment there are 8 fragment and 8 bath states with 16 electrons

present in the impurity problem. One can therefore clearly recognize the efficiency of

the current embedding scheme in truncating the single particle Hilbert space of the

problem.

Polyacetylene

Let us now turn the attention to polyacetylene. The results of the calculations with

DET embedding with STO-3G basis are presented in Fig. 3.5.3. Analogously as

in the case of polyyne, the agreement between the DET energy profile and the ex-
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Figure 3.5.1 : Energy per unit cell profile for polyyne (C≡C)∞ with respect to uni-
form deformation (see text for details) with the STO-3G basis. The DET(1) and
DET(2) results with CCSD(left panel) and CCD(right panel) as the impurity solver
are compared to corresponding CCSD and CCD oligomeric extrapolations (Extr)
and Hartree-Fock (HF). The bottom insets shows the difference between DET and
extrapolated data. Figure taken from Ref. [2].
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with CCSD(left panel) and CCD(right panel) as the impurity solver are compared
to corresponding CCSD and CCD oligomeric extrapolations (Extr) and Hartree-Fock
(HF). The bottom insets shows the difference between DET and extrapolated data.
Figure taken from Ref. [2].
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trapolated one is more than satisfactory. The single unit cell embedding is virtually

indistinguishable for the extrapolated data on the energy scale of the figure. Enlarg-

ing the fragment to two unit cells brings the error to almost 0 over the entire range

of the parameter α considered. With the increased basis set size, (see Fig. 3.5.4) the

extrapolated and embedded results can be told apart, especially for very contracted

systems (α ≤ 0.95), but the difference is not large. The error in the correlation

energy is roughly 5 mEh. The extrapolated data and the embedding data lead to

the same conclusions: electron correlation effects in this system favour the elongated

carbon-carbon bonds.

Again, in order to give the reader a feeling of the dimension of the impurity prob-

lem, the single cell STO-3G calculation describes merely 20 electrons in 20 orbitals.

Polyethylene

The last system under investigation in this section is polyethylene. In this case, the

STO-3G DET(1) (see Fig. 3.5.5), coincides very well with the extrapolated data. In

particular, the CCD impurity solver yields an energy profile that almost completely

overlaps with the extrapolated data. Regardless, the CCSD and CCD DET(2) cal-

culations improve further on the quality of the data. In both cases, the discrepancy

between the embedded and extrapolated energy profile becomes virtually 0. The

calculations involving larger basis, presented in Fig. 3.5.6, one again observe some

sort of minor discrepancy between two curves, especially for more contracted systems.

The physics, however, remains correct. The correlation contribution to the unit cell

energy tends to shift the lengths of the carbon bonds towards larger values, yet the

impact is noticeably smaller than in the case of conjugated polymers.
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Figure 3.5.3 : Energy per unit cell profile for polyacetylene (CH=CH)∞, with respect
to uniform deformation (see text for details) with the STO-3G basis. The DET(1) and
DET(2) results with CCSD(left panel) and CCD(right panel) as the impurity solver
are compared to corresponding CCSD and CCD oligomeric extrapolations (Extr)
and Hartree-Fock (HF). The bottom insets shows the difference between DET and
extrapolated data. Figure taken from Ref. [2].
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with CCSD(left panel) and CCD(right panel) as the impurity solver are compared
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Figure taken from Ref. [2].
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Figure taken from Ref. [2].
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3.5.3 2D and 3D: boron nitride and diamond

Having established that the DET approach yields a correct description of the correla-

tion energy in 1D systems, we now turn our attention 2D and 3D materials, where the

extrapolation may not be feasible. For the purpose of demonstration, we attempt to

study an model of infinitely separated sheets of hexagonal BN, [78,79] and diamond.

In both cases, the single-cell embedding calculations were performed with the two

lowest bands excluded from consideration.

In Fig 3.5.7 we present the dependence of the energy density as a function of

the translational vector defining the 2D lattice. Clearly, the inclusion of electron

correlation effects has a significant impact on the predicted optimal structure with

both CCD and CCSD impurity solvers. We note, however, that the predicted lattice

constant is somewhat larger than the one reported in the literature for hexagonal

BN. [80] Whether this effect can be explained by not including a solid substrate,

by treating only one sheet of BN, or by the limited size of the basis set is beyond

the scope of the current study. The point we should stress is that the embedding

scheme presented allows us to fold the tremendous single particle Hilbert space into a

small impurity Hamiltonian. Moreover, the size of the impurity Hamiltonian does not

depend of the dimensionality of the material. Indeed, the dimension of the problem

one actually solves for the BN is the same as for polyyne, i.e., 16 electrons in 16

orbitals for STO-3G and 32 electrons in 32 orbitals for 6-31G.

The calculations for the 3D diamond structure are presented in Fig. 3.5.8. Again,

even with the smaller STO-3G basis, the reader may observe that the electron corre-

lation effects tend to favour a larger translational vector as compared to Hartree-Fock

calculations. We do not present any sort of quantitative discussion of the data pre-

sented here as it would require using larger basis sets. The main point remains;
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Figure 3.5.7 : Energy per unit cell of honeycomb BN lattice as a function of lattice
parameter. The DET(1) calculations with CCSD and CCD impurity solvers are
compared with the HF for the STO-3G (left panel) and the 6-31G basis (right panel).
Figure taken from Ref. [2].

the Hilbert space of the impurity Hamiltonian is the same as in the case of BN and

polyyne, despite the fact that we describe a 3D system.

3.6 Conclusions

In this chapter we presented the first application of the density matrix embedding

theory for realistic periodic systems. We proposed a way of preparing the impu-

rity Hamiltonian that mitigates the problem of Coulombic sums and performing the

Schmidt decomposition of Slater determinants describing infinite systems. While we

have benchmarked the approach with the coupled cluster based impurity solver, we
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must stress that the approach can be combined with any impurity solver.

The current approach was benchmarked against realistic 1D models with satisfac-

tory quantitative agreement with the oligomeric extrapolations. We should, however,

stress that even though the description offered by these two approaches agree, the

nature of the problem is quite different. In the oligomeric extrapolation, the coupled

cluster treats the excitations over the entire lattice whereas in DMET or DET, the

coupled cluster treats an effective Fock space calculation of the fragment with the

electron reservoir mimicked by the bath.

We should note that DMET, despite being quite a recent model, seems to be

capable of providing accurate and computationally affordable description of extended

systems with a significantly truncated single particle Hilbert space. We hope that

this chapter helps to support the confidence in the predictive power of the method.
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Appendix

3.A Handling band truncation and the disentangled states

In the following, we outline more details on how the formation of bath and fragment

states was performed in the present study. The discussion here is based on Ref. [2].

The indices p and q denote hole states.

3.A.1 Fragment states with truncated bands

In order to fix the notation, we note that both, Bloch and Wannier representations

are normalized according to

〈ψi~k|ψj~k′〉 = δijδ~k~k′

〈φi ~G|φj ~G′〉 = δijδ ~G~G′ , (3.23)

and are related by the discrete Fourier relation [67]

|φi ~G〉 =
1√
N

∑

~k

e−i~k· ~G
∑

j

U~k
ji|ψj~k〉, (3.24)

where N is the number of unit cells. The density matrix becomes

γ̂ =
∑

p~k

|ψp~k〉〈ψp~k| =
∑

p ~G

|φp ~G〉〈φp ~G| =
∑

p′

|φp′〉〈φp′|, (3.25)

where index p denotes hole states at given ~k or labeled by cell index ~G, whereas in

the last term p′ = (p~G) denotes all hole states in all cells.
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The orthonormal single-particle basis |Fi ~G〉 becomes

|Fi ~G〉 =
1√
N

∑

~k

e−i~k· ~G
∑

j

U~k
ji|ψj~k〉, (3.26)

with index j running over the chosen subset of bands. Because the states Fi ~G are

orthogonal to the states not included in the localization procedure, such states do not

overlap with the localized basis define above. To simplify notation, the summation

over hole states can be therefore carried out over the entire range.

It now clear that the one particle density matrix in the embedding basis admits

the blocked structure

γ̃ =



γFF γFB

γBF γBB


 =




d
√
d(1 − d)

√
d(1 − d) 1 − d


 , (3.27)

where d is the diagonal matrix with entries being the non-zero eigenvalues of M.

Again, the Fock matrix projected onto embedding basis commutes with the density

matrix in the embedding basis, which one can show by studying matrix t = F̃ γ̃ which

turns to be Hermitian.

The fragment-fragment block reads,

tFFij = F̃ FF
ij dj + F̃ FB

ij

√
dj(1 − dj)

=
√
didj

∑

pq

Vpi〈ψp|F̂ |ψq〉V⋆
qj = [tFFji ]⋆, (3.28)

where F̂ is the crystal Fock operator. We have used the fact that a vector F̂ |φq〉

does not contain contributions from particle states. Hence it can be written as

∑
r |φr〉〈φr|F̂ |φq〉 with indices q and r being the hole states. Similarly,

tBB
ij =

√
(1 − di)(1 − dj)

∑

pq

Vpi〈φp|F̂ |φq〉V⋆
qj = [tBB

ji ]⋆

tFBij =
√
di(1 − dj)

∑

pq

Vri〈φp|F̂ |φq〉V⋆
qj = [tBF

ji ]⋆. (3.29)
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3.A.2 Handling disentangled states

Here, we propose a way of constructing fragment states that would correspond to very

small eigenvalues of the Schmidt overlap matrix. We assume that the eigenvalues

differ from 0 or 1 by an arbitrarily small value. Let us consider that there exists a set

of eigenvalues d that are close to 1. In such a case, we propose to remove the bath

state and retain a modified fragment state that takes the form

|f̃i〉 =
∑

p

V⋆
pi|φp〉. (3.30)

Because V is unitary, these states are orthonormal and orthogonal to all other frag-

ment and bath states. Additionally, the density matrix in such a basis is expressed

as,

γ̃ =




d
√
d(1 − d) 0

√
d(1 − d) 1 − d 0

0 0 1



, (3.31)

where the last block corresponds to the basis |f̃〉. With such a definition, the density

matrix in the embedding basis remains idempotent and one could also easily verify

that it commutes with Fock matrix in the embedding basis.

In the case where the eigenvalues d are close to 0, we propose to construct an

auxiliary matrix N,

Nkl = 〈Fl|
(
I−

∑

p

|φp〉〈φp|
)
|Fk〉. (3.32)

This matrix can be decomposed as N = UλU†. Let us demonstrate that for every

eigenvalue di of M different from 0, N has eigenvalue 1− di. One can define a column

vector U⋆′
ki =

∑
q〈Fk|φq〉V⋆

qi with a norm
∑

k U′⋆
kiU′

ki = di. This vector is therefore
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a non-trivial vector whenever di is not an exact zero. One may also check that

∑
k NlkU′

ki = (1 − di)U′
li.

We suggest that one could replace a fragment state |fi〉 corresponding to an eigen-

value close to 0, with the state

|f̄i〉 =
∑

k

U⋆
ik√
λi

(
I−

∑

p

|φp〉〈φp|
)
|Fk〉, (3.33)

with eigenvalue λi = 1 − di and neglect a bath state entangled with |fi〉. We now

show that f̄i corresponding to eigenvalue λi is orthogonal to all fragment states |fj〉

corresponding to dj not equal to 1 − λi, that is,

〈fj|f̄i〉 =
1 − dj√
djλi

∑

kp

Vpj〈φp|Fk〉U⋆
ki

=
λi√
djλi

∑

kp

Vpj〈φp|Fk〉U⋆
ki (3.34)

must vanish whenever λi 6= 1 − dj. Analogously, for the bath states not associated

with fragment |fj〉,

〈bj|f̄i〉 = −
√

dj
1 − dj

〈fj|f̄i〉. (3.35)

The orthogonality to states |f̃i〉 (Eq. 3.30) also holds. The density matrix in the basis

defined above admits the form

γ̃ =




d
√
d(1 − d) 0 0

√
d(1 − d) 1 − d 0 0

0 0 1 0

0 0 0 0



. (3.36)

Again, this matrix remains idempotent and the commutation relations with the Fock

operator are preserved. (one again uses the fact that F̂ |φp〉 =
∑

q |φq〉〈φq|F̂ |φp〉 to

show that 〈f̄i|F̂ |φp〉 = 0).
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The density matrix above traces to the integer number of particles and dictates

the number of electrons we include in the impurity problem. Let us note, however,

that such truncation may violate the average number of electrons in the fragment.

Nonetheless, the error is proportional to a cutoff used to determine whether given

eigenvalue is close to 0 and 1.
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Chapter 4

Towards lower scaling impurity solvers:

unconventional Coupled Cluster Methods

The efforts towards accounting for electron correlation in the extended systems de-

scribed so far were focused on the development of the quantum embedding theory.

The main focus was put on the formation of the impurity problem and investigating

its properties. The impurity Hamiltonian was, however, solved either exactly, or with

the aid of well-established approaches such as conventional coupled cluster. Despite

the fact that the description of the correlation energy was more than satisfactory

even with very small fragments, more realistic calculations with the embedding of

many unit cells may be beyond the reach of the impurity solvers employed. In the

present chapter we therefore shift the focus to investigate the possibility of develop-

ing a robust and accurate many-body approaches that allows us to study larger-scale

problems. The aim of this chapter is to formulate a technique that is capable of effi-

cient treatment of strong correlation: the pair coupled cluster method. By analyzing

its success, we provide insights on how to generalize this approach towards robust

tools that allow for balanced description of the total correlation energy.

The discussion presented in this chapter is based on our published work, see Ref. [3]

and Ref. [5].
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4.1 The concept of seniority

The cornerstone of pair coupled cluster doubles (pCCD) is the concept of seniority.

Its definition is very simple: the seniority of a determinant is the number of unpaired

electrons. In other words, each spinorbital φi is paired with another orbital φī and the

total number of paired orbitals which contain only one electron between them defines

a seniority number. A given mapping connecting a given spinorbital to its partner is

called a paring scheme. For the purpose of this work, we shall consider only a paring

scheme where an α-orbital is connected to a β-orbital that has the same spatial form.

The seniority operator Ω is then

Ω̂ = N̂ − 2D̂, (4.1)

where N̂ is the number operator and D̂ is the double occupancy operator. As the

reader may easily notice, the double occupancy operator D̂ =
∑

i ni↑ni↓ is not invari-

ant to a unitary transformation of the basis defining the local number operators ni.

For example, a HF determinant is an eigenfunction of individual the ni operators in

the canonical basis, which does not have to be true in the case where the ni operators

are expressed in the on-site basis.

The question the reader may ask, however, is why may the seniority be important.

Generally, the seniority operator does not commute with the Hamiltonian (apart from

some spacial cases such as the reduced paring Hamiltonain [7]) so it cannot be used

to block-diagonalize it. Moreover, the very idea of seniority depends on the arbitrary

choice of the paring scheme. While the above is true, the seniority number can be

used as a convenient way of organizing the Hilbert space of the problem.

In the conventional approach to many-body problems in quantum chemistry, one

usually starts with a reference determinant and parametrizes Hilbert space in terms
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Figure 4.1.1 : Dissociation of N2 molecule with seniority-based truncated configura-
tion interaction with cc-pVDZ basis and minimal active space. Figure taken from
Ref. [3].
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of particle-hole excitations, via defining single excitations, double excitations etc. The

reader may notice that this division is also not-unique and depends on the choice of

reference state. The concept of excitation level is, however, crucial for truncation of

the Hilbert space of the problem. Limiting the excitation levels present in the model

is the heart of the truncated configuration interaction based methods and the coupled

cluster methods. By analogy, the entire Hilbert space can be classified by a seniority

number and then subjected to a suitable truncation. For example, by suitable choice

of the paring scheme it is possible to diagonalize the Hamiltonian only in the space of

seniority 0 determinants, seniority 0 and 2 determinants, and so on. The important

feature of this truncation is that the convergence of the energy seems to be very

rapid with the seniority number for strongly correlated systems. In other words,

the exact ground state of the problem can be expressed in terms of determinants

with low seniority number, provided an appropriate choice of pairing scheme can be

found. [81] In Fig. 4.1.1, we show the dissociation of the nitrogen molecule computed

by diagonalization of the Hamiltonian with a given level of the seniority truncation.

As is clear, even with the retention solely of the seniority 0 determinants, the potential

energy curve exhibits significant improvement over the uncorrelated HF description.

The amount of correlation energy recovered, especially for the large bond lengths,

suggests that the strong correlation is already well accounted for. Extending the

model to larger seniorities brings the description of the missing correlation, yielding

a quickly convergent expansion in Ω.

In the majority of the current chapter we therefore limit ourselves to the seniority

0 approximation. Diagonalizing the Hamiltonian in the Ω = 0 space is known in the

literature. [82–84] While called various names, we shall refer to this approximation

as the doubly occupied configuration interaction (DOCI). Unfortunately, the DOCI,
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though good at describing strong correlation, does not qualify as a computationally

affordable tool. As opposed to truncation of the configuration expansion in the terms

of particle-hole excitations, the seniority based approaches suffer from exponential

scaling of the cost with the size of the problem. Therefore, the efforts of this work is

to apply the concept of seniority to the coupled cluster methods.

4.2 Pair coupled cluster doubles

Formally, pair coupled cluster doubles does not differ significantly from the conven-

tional CC approaches described in Section 3.4. The wavefunction ansatz takes the

usual form

|Ψ〉 = eT̂ |0〉, (4.2)

with T̂ creating only double excitations. The difference is that not all double excita-

tions are allowed. Only the excitation operators that do not change the seniority of

the underlying determinant are included in the cluster operator. In other words,

T̂ =
∑

ia

tai P̂
†
aP̂i, (4.3)

with P̂ †
p = p†↑p

†
↓ and, as usual, i (a) denoting a hole (particle) index. The rest of the

approach follows directly. One defines a Lagrangian

L(t, z) = 〈0|(1 + Ẑ)e−T̂HeT̂ |0〉, (4.4)

with Ẑ =
∑

ia z
i
aP̂

†
i P̂a, and finds the t and z amplitudes by making the Lagrangian

stationary. The resulting t equations take the form

2tai (fii − faa) = vaaii + vaacc t
c
i + vkkii t

a
k − 2tai (2v

ia
ia − viaai) + takv

kk
cc t

c
i (4.5)

− 2tai (v
ii
cct

c
i + vkkaat

a
k) + 2tai v

ii
aat

a
i
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and the z equations

0 = viiaa + 2zia(faa − fii − takv
kk
aa − tciv

ii
cc) + zkav

ii
kk + zicv

cc
aa + tck(zkav

ii
cc + zicv

kk
aa) (4.6)

− 2viiaa(z
k
at

a
k + zict

c
i − 2ziat

a
i ) − 2zia(2v

ia
ia − viaai).

As the reader may notice, the pair approximation yields a very simple set of

equations which can be readily solved by an iterative approach with merely O(N3)

time. This should be compared with the O(N6) time needed to solve the full CCD

model. We note in passing that the pCCD is equivalent to the recently introduced

AP1roG approach. [85–87]

Unfortunately, the above formalism is not sufficient to describe the strongly cor-

related systems with the pCCD approach. In order to have a complete model, an

appropriate definition of the paring scheme must be provided. For the purpose of this

work we augment the definition of the pCCD Lagrangian with a one-body antiher-

mitian operator κ̂,

κ̂ =
∑

p>q

∑

σ

κpq(p
†
σqσ − q†σpσ), (4.7)

as

L(t, z, κ) = 〈0|(1 + Ẑ)e−T̂ e−κ̂Heκ̂eT̂ |0〉. (4.8)

We then require that

∂L(t, z, κ)

∂κpq

∣∣∣∣
κ=0

= 0. (4.9)

For simplicity, we always work with κ = 0 by iterative transformation of the basis

in which we express the Hamiltonian. This allows us to recast the resulting orbital

gradient and Hessian only in terms of the Hamiltonian matrix elements and the pCCD
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density matrices,

γpq =
∑

σ

〈0|(1 + Ẑ)e−T̂ q†σpσe
T̂ |0〉 (4.10)

Γpqrs =
∑

σσ′

〈0|(1 + Ẑ)e−T̂ r†σs
†
σ′qσ′pσe

T̂ |0〉 (4.11)

which can be constructed in a computationally efficient way as outlined in Ref. [3].

The above approach is analogous to the standard orbital optimization procedure in the

CC methods, [88,89] with the only distinction that the hole-hole and particle-particle

blocks must be considered, because unlike the standard CC approaches which depend

only on the reference determinant, the pCCD depends also on the choice of orbitals in

which said determinant is expressed. We have found that a simple Newton-Raphson

algorithm is sufficient to converge most of the studied cases rather rapidly. In fact, a

diagonal approximation to the Hessian seems to be sufficient for most situations.

4.3 Results

As was outlined so far, DOCI seems to be quite a robust method for capturing the

majority of strong electron correlation. The usefulness of the pCCD approach could

then be established by comparing the quality of the pCCD predictions against those

of DOCI. In this section, we study a few potential energy surfaces for the dissocia-

tion process of small molecules where DOCI is feasible. Apart form looking at the

correlation energy description, we shall also investigate the “closeness” of the pCCD

eigenbra and eigenket to the corresponding DOCI states. In particular, we compute

an overlap S

S = 〈0|(1 + Ẑ)e−T̂ |DOCI〉〈DOCI|eT̂ |0〉, (4.12)
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We note that a value of S close to 1 would imply that the ground state DOCI state

is well represented by the pCCD approach. One should, however, keep in mind that

due to the biorthogonal framework employed in CC methods, the overlap need not be

bound between 1 and 0. We posit, nonetheless, that an overlap close to 1 and good

reproduction of the correlation energy allows one to conclude that physical predictions

made with pCCD will closely mimic analogous predictions made with DOCI.

4.3.1 Hydrogen networks and lithium hydride

We start our investigations by examining a commonly employed prototypical system

dominated by strong correlations, the hydrogen chains. In Fig. 4.3.1 we present

the difference between the DOCI energy and pCCD energy evaluated in the orbitals

optimized for the pCCD Lagragnian. As the reader may notice, during the course

of symmetric dissociation of said system, the pCCD does not differ from DOCI sig-

nificantly. The major discrepancy appears in the intermediate distances where the

transition from molecular character to atomic character happens. This discrepancy is

also visible by investigation of the overlap S. Clearly, a tiny deviation of this quantity

from 1 is only visible in the intermediate coupling.

The remaining question is whether such good agreement between the pCCD and

DOCI is just a feature for the optimized orbitals only. From our numerical experience

we found that the optimal pCCD orbitals tend to be highly localized, forming effec-

tively a set of weakly interacting electron pairs which are then treated very accurately

by the pCCD ansatz. We have therefore performed analogous calculations employing

de-localized HF canonical orbitals for the same systems. The results are presented in

Fig. 4.3.2. We find that in this case the agreement between the DOCI and pCCD is

less satisfactory, but the difference is not big.
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Figure 4.3.1 : Dissociation of equally spaced hydrogen chains. The figure shows the
difference between DOCI and pCCD energies (top panel) and the deviation of the
overlap S (bottom panel). The calculations were performed with the cc-pVDZ basis
and the orbitals were optimized with the pCCD Lagrangian. N denotes the number
of electron pairs. Figure taken from Ref. [3].
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Let us clarify the above statement that the pCCD ansatz tends to favour formation

of weakly interacting electron pairs where the intrapair correlations are accounted for

with high precision by the pCCD and DOCI approaches. To do so, we study the

dissociation of LiH molecule. In this system, the 1s orbitals of lithium are relatively

inactive and the physical description of the dissociation process requires us to account

only for the LiH bonding pair. As exemplified in Fig. 4.3.3, the DOCI and pCCD for

such systems agree perfectly with the exact solution (FCI). All three curves overlap

perfectly in the potential energy profile and the overlap between the DOCI and pCCD

states does not deviate significantly from unity.

4.3.2 Water and nitrogen molecules

Let us now turn our attention to slightly more challenging systems where the total

correlation energy is not expressible as set of weakly interacting electron pairs. Here

we study the symmetric dissociation of the water molecule and the nitrogen molecule.

For the case of water, the results are shown in Fig. 4.3.4. Here, we benchmark

the DOCI/pCCD against unrestricted CCSD and CCSD(T). As the reader may no-

tice, the pCCD/DOCI agreement holds equally well for the dissociation of the water

molecule as in the simple examples of hydrogen chains. Nonetheless, restriction of the

seniority sectors to Ω = 0 clearly does not suffice to account well for the residual cor-

relations around the equilibrium bond length. The important thing to keep in mind

is that pCCD does account for strong correlation at the large bond distances. The

resulting error may again be described by the tendency of pCCD to exhibit a perfect

paring structure of the t amplitudes. In other words, the dominant configurations in

the cluster operator correspond to individual couplings between the hydrogen-oxygen

σ and σ⋆ orbitals. Of course, the pCCD ansatz is more flexible than the perfect paring
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Figure 4.3.3 : Dissociation of lithium hydride. The figure shows the energy obtained
with pCCD, DOCI and the exact one (FCI) within the cc-pVDZ basis employed (top
panel), and the difference between DOCI and pCCD energies and the deviation of S
from unity (bottom panel). The orbitals used for pCCD and DOCI were optimized
with pCCD Lagrangian. Figure taken from Ref. [3].
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approximation and some residual correlations are also accounted for.

Let us be more specific in what we mean by pCCD being able to account for

strong correlation. In order to illustrate the point clearer, we present the nitrogen

molecule dissociation curve in Fig. 4.3.5. In this case, apart from the unrestricted

CCSD (UCCSD), we also include the restricted CCSD (RCCSD). As apparent from

the figure, the RCCSD curve displays an unphysical behaviour where the potential

energy exhibits a bump, after which the curve becomes dissociative. This behaviours

is not, however, present in the DOCI and pCCD. Despite the fact that the over-

all energy predicted by those methods are somehow underestimated, no qualitative

breakdown of the approximations is visible. This observation is even more intriguing

as the pCCD is just a simplification of the RCCSD. Indeed, the RCCSD includes de-

terminants of higher seniority in the projective subspace. A more detailed discussion

of this issue is presented in Section 4.4. Here, let us just notice that the unrestricted

HF formalism provides a reasonable description of the N2 energy over the entire dis-

sociation curve and the CCSD approach based on this determinant does not exhibit

any of the unphysical behaviour.

4.4 Why does pair coupled cluster work?

In the preceding sections we have outlined the formalism of the pair coupled cluster

approach and benchmarked it on the examples of prototypical strongly correlated

systems. Despite extensive efforts, we were unable to find a single example where the

pCCD breaks down (for repulsive Hamiltonian), even though the standard CCSD and

CCD models are known to fail catastrophically if based on restricted Hartree-Fock

determinant in the cases where strong correlation is dominant. This could be clearly

seen in the example of nitrogen molecule dissociation. In the present section, we try
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Figure 4.3.4 : Symmetric dissociation of water molecule. The figure shows the energy
obtained with pCCD, DOCI as well as standard CC approaches (top panel). The
differences between the DOCI and pCCD are highlighted in the bottom panel. The
calculations were done using cc-pVDZ basis. The orbitals for pCCD and DOCI were
obtained by optimizing the pCCD Lagrangian. Figure taken from Ref. [3].
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Figure 4.3.5 : Dissociation of nitrogen molecule. The figure shows the energy obtained
with pCCD, DOCI as well as standard CC approaches (top panel). The differences
between the DOCI and pCCD are highlighted in the bottom panel. The calculations
were done using cc-pVDZ basis. The orbitals for pCCD and DOCI were obtained by
optimizing pCCD Lagrangian. Figure taken from Ref. [3].
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to understand the reason of such great robustness.

The most obvious feature of the pCCD is that the cluster operator cannot change

the seniority of the reference determinant, i.e.

T̂ =
∑

ia

taiP
†
aPi. (4.13)

The straightforward interpretation of the pCCD success in the strongly correlated

system could therefore be attributed to this fact. Let us however suggest an alterna-

tive explanation that will result in formulation of a coupled cluster method that goes

beyond the Ω = 0 space of determinants while still exhibiting surprising robustness

against catastrophic failures in the strong correlation regime.

In the commonly employed approach to derive a spin-restricted CCD equations,

one starts by casting the cluster operator in terms of spin-symmetry adapted excita-

tion operators Ea
i =

∑
σ(a†σiσ) [90] as

T̂2 =
1

2

∑

abij

tabijE
a
iE

b
j. (4.14)

Let us now define a set of operators,

(P+
ab)

† = a†αb
†
α (4.15)

(P−
ab)

† = a†βb
†
β (4.16)

(P 1
ab)

† =
1√
2

(a†αb
†
β − b†αa

†
β) (4.17)

(P 0
ab)

† =
1√
2

(a†αb
†
β + b†αa

†
β), (4.18)

that creates pair of particles in states a and b and the corresponding pair-anihilation

operators acting in the hole states. The operators can be classified as creators of

triplet pairs with mz component of +1, −1 and 0 for Eq. 4.15-4.17 and singlet pair

for Eq. 4.18, respectively. Then, the cluster operator in the terms of the above
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operators becomes,

T̂2 =
1

4

∑

abij

taαbαiαjα
(P+

ab)
†P+

ij +
1

4

∑

abij

t
aβbβ
iβjβ

(P−
ab)

†P−
ij +

1

2

∑

abij

sabij (P 0
ab)

†P 0
ij

+
1

2

∑

abij

aabij (P 1
ab)

†P 1
ij . (4.19)

In the above expression, sabij = 1
2

(
t
aαbβ
iαjβ

+ t
aαbβ
jαiβ

)
and aabij = 1

2

(
t
aαbβ
iαjβ

− t
aαbβ
jαiβ

)
. As

noted in Ref. [90], the spin adaptation of the cluster amplitudes poses constraints in

the individual components of t, namely, taαbαiαjα
= t

aβbβ
iβjβ

= 2aabij . Clearly, setting aabij = 0

and constraining the singlet paring operators to have only a = b terms is equivalent

to pCCD.

Guided by the exceptional robustness of pCCD we proceed to investigate whether

a generalization of pCCD to include electron correlation beyond the Ω = 0 sector is

possible. To that extent, we implemented the constrained coupled cluster where the

cluster operator takes the form

T̂2 =
1

2

∑

abij

sabij (P o
ab)

†P o
ij = σ̂. (4.20)

We denote this cluster operator as σ and refer to the coupled cluster approach with

said operator as CCD0, as it comes from excitation operators composed of singlet

paring operators. Alternatively, one may also define the operator

T̂2 =
1

4

∑

abij

taαbαiαjα
(P+

ab)
†P+

ij +
1

4

∑

abij

t
aβbβ
iβjβ

(P−
ab)

†P−
ij +

1

2

∑

abij

aabij (P 1
ab)

†P 1
ij = π̂, (4.21)

which is composed of the triplet paring operators.

At this stage, let us comment on the physical intuition underlying the above

development. Let us begin with an established connection between the random phase

approximation (RPA) and the coupled cluster approaches, namely, coupled cluster

doubles can be simplified to be equivalent to RPA. [91–93] It is well known that
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RPA breaks down ( i.e. the correlation energy may become complex), whenever a

restricted HF approach becomes unstable towards spin symmetry breaking. [94, 95]

This is an indication of strong electron correlation. While by including all the terms

in coupled cluster breaks the explicit connection with the RPA, we numerically verify

that the removal of the RPA parts cures the instabilities. In particular, removing just

the quadratic RPA terms in the amplitudes equations can alleviate that problem as

well. On the other hand, pair coupled cluster does include all of the terms. Guided

by that insight we proceed to investigate whether the coupling between the σ and π

amplitudes in the quadratic terms could be part of the instability problem in coupled

cluster. Unfortunately, removing only parts of the coupled cluster equations means

that one no longer has a well defined ansatz that diagonalizes a Hamiltonian in

the projective subspace. On the other hand, forming an ansatz that prevents the

coupled cluster from breaking down retains all the formally pleasing properties of the

traditional coupled cluster approach.

As pCCD is just an approximation to CCD0, we think that the incredible ro-

bustness of pair coupled cluster doubles does not need to be fully accounted for by

the seniority argument. As we show in the following section, CCD0 displays no in-

stabilities while describing the dissociation of molecules, a typical example of strong

correlation, despite including all seniority determinants in the expansion. Therefore,

the description of the electron correlation is more accurate. Moreover, the invariance

with respect to particle-particle and hole-hole mixing is restored, rendering the orbital

optimization not crucial. Nonetheless, the computational scaling of pCCD remains

lower than CCD0.
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Figure 4.4.1 : Total energy of H4 on a ring (see text for details). The FCI data and
the basis set is adapted from Ref. [4]. Figure taken from Ref. [5].

4.4.1 CCD0: benchmark calculations

Let us start by a simple model of strongly correlated system where the restricted

coupled cluster fails miserably. We consider a system of 4 hydrogen atoms located

on a ring of a radius 1.738 Å such that the angle between adjacent hydrogen pairs

is Θ and π − Θ. If the value of the angle Θ is small, then the system is represented

by two separate hydrogen molecules, whereas as the angle approaches π
2
, the atoms

form a square and individual molecules cannot be meaningfully defined. We now ask

the question, what is the most stable arrangement of that system? The results of

the calculations are shown in Fig. 4.4.1. The data compares CCD with CCD0 and

CCSD with CCSD0. The exact results are included for comparison. Clearly, both,

CCD and CCSD methods predict that the square is the most stable arrangement,
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which is somehow counterintuitive from the chemical point of view. By constraining

the T̂2 cluster operator to be composed of the singlet-paring operators the results

are completely different. In agreement with the exact answer (FCI), CCSD0 and

CCD0 identify the square arrangement as the most unstable. Nonetheless, the exact

answer provides a smooth curve over the entire range of the Θ angle studied while

CCSD0 and CCD0 include a nonphysical kink. This kink was also observed in other

approaches aiming to amend coupled cluster theory. [4]

Let us now move to another prototypical example of system where the CCSD

based on restricted Hartree-Fock reference breaks down, the N2 molecule, as shown

in Fig. 4.4.2. In this case, we have extended the cluster operator to also include triple

excitations, CCSDT. The results where the T̂2 operator is composed of only the singlet

paring channel and triple excitations are included is denoted as CCSDT0. Once again,

we observe that the equations with the full set of the amplitudes leads to unphysical

barriers of bond formation. On the other hand, the singlet-only approximation yields

curves that are smooth and do not have unphysical features. Nonetheless, CCSD0

and CCSDT0 are not a ultimate solution. Clearly, both methods miss significant

amount of correlation at the equilibrium geometry and dissociation limit.

4.4.2 CCD1: another stable channel ?

So far, guided by the pCCD approach we suggested an extension to this model in the

form of CCD0. Just as in pCCD, we observe significant robustness of this approxima-

tion in the strongly correlated regime. The reader may be then curious whether the

second part of the cluster operator, π̂ of Eq. 4.21 is the reason of the instabilities of

coupled cluster. The results of the calculations, labeled CCD1, are presented in Fig.

4.4.3 for the case of nitrogen molecule. Please note that here we used a smaller basis
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Figure 4.4.2 : Potential energy profile for N2 molecule with cc-pVDZ basis, evaluated
with different coupled cluster schemes (see text for details). Figure taken from Ref. [5].

set in which the failure of traditional coupled cluster is more visible. Clearly, CCD1

and CCD0 are both separately stable. The amount of correlation provided by CCD0

is significantly larger. This can be understood by the same-spin (provided by CCD0)

and opposite-spin correlation (provided by CCD1) effects. In other words, much of

the same-spin interaction is already taken into accounted by via exchange.

4.4.3 CCD0 and CCD1: insights

How can one make sense of the results presented here? Pair coupled cluster, as

far as our numerical results suggest, is an unbreakable approximation for repulsive

Hamiltonians. The seniority arguments, though, may not be the only reason for

its stability. Both, CCD0 and CCD1 seems to be stable for molecular systems as
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well, even though both include higher seniorities whereas the latter does not contain

seniority zero. Nonetheless, keeping both σ̂ and π̂ parts of the cluster operator leads

to unstable results. It would then seem that allowing for the cross terms between

those operators may be the culprit though removing simply those terms requires one

to sacrifice the wavefunction.

We do not claim that CCD0 and CCD1 are valuable computational tools by

themselves. On the contrary; one should put the missing bits of the correlation

back into CCD0. We just point out that this has to be done with care in order

not to introduce the original instabilities. Clearly, the CCD0 approach falls into a

category of improvement by simplification, just like pCCD. While there were many

studies that tried to amend coupled cluster my making it more complete [4, 96] the

alternative outlined here did not receive much attention. Successful approaches have

been reported [97–99] yet those would fall into category of modifying the resulting

CCD equations not the CCD ansatz.

4.5 Conclusion

In the present section we introduced the idea of seniority and explained how it can be

applied to simplify the coupled cluster approaches. We outlined pair coupled cluster

doubles and benchmarked it for typical bond breaking processes. The method turned

out to provide a satisfactory description of strong correlation with a low computa-

tional cost. Strikingly, we found numerical evidence that pCCD reproduces extremely

well DOCI, where DOCI is the limit of the accuracy in the Ω = 0 sector. In other

words, by including higher and higher excitations operators into the cluster operator

we are bound to converge to the DOCI limit. While the latter has an exponential com-

putational scaling, pCCD seems to provide an excellent polynomial parametrization



94

−108

−107.8

−107.6

−107.4

−107.2

−107

−106.8

 0.5  1  1.5  2  2.5  3

E 
(E

H
)

RN−N (Å)

RHF
CCD1
CCD0
CCD

Figure 4.4.3 : Potential energy profile for N2 molecule with the STO-3G basis, eval-
uated with different coupled cluster schemes (see text for details). Figure taken from
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of this wavefunction, at least in the repulsive Hamiltonians.

As the density matrices are readily available, the methods seems to be well suited

for large scale impurity problems in the DMET embedding. Nonetheless, it can also

serve as a viable stand-alone quantum-chemical tool or in combination with other

standard approaches as the density functional theory. Indeed, we tried to account

for the missing correlation effect by combination of pCCD with DFT with promising

results [100].

While trying to understand the robustness of pCCD, we were able to provide its

generalization to higher seniority sectors that retains a good behaviour in the strongly

correlated limit when the standard coupled cluster breaks. With slight increase of

the computational cost, we were able to account for higher seniority determinants in

the projective space of the coupled cluster. Of course, neither pCCD nor CCD0 are

capable of accounting for all of the electron correlation. Nonetheless, we believe that

both methods are a good starting point for suggesting more elaborate many-body

theories.
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Chapter 5

Conclusions

In the present thesis we tried to contribute to the collective efforts towards accurate

description of electron correlation. In particular, we aimed to develop and benchmark

quantum embedding theory. From that perspective, we studied the density matrix

embedding theory as a tool for truncating the dimension of the many-body Hilbert

space by defining locally important single particle degrees of freedom. We were guided

by a desire of developing easy-to-use and computationally efficient theories that are

benchmarked against accurate reference data. In that respect, we investigated the

performance of the embedding approach for model systems where exact results are

known and found satisfactory performance. We then proceeded to apply this theory

for model chemical systems with an approximate method to solve the resulting im-

purity problem. Again, the data suggest that DMET works very well, even though

it significantly reduces the dimension of the Hilbert space. Finally, we discuss and

present a computationally efficient many-body theory that can be considered as an

impurity solver for the systems where strong electron correlation may be important

and the size of the fragment is sufficiently large that exact of very accurate approaches

are computationally intractable.

Some of the problems treated in the present thesis are not fully resolved. A more

extensive benchmark for the embedding procedure is clearly called for. The tools

required to perform the calculations are available and can be employed in further

studies. The pair coupled cluster approach may be further improved by combination
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of this ansatz with other many-body approaches. At the point of submitting this

thesis, the author have combined pCCD with other similarity transformation based

methods and applied it to model systems. Finally, the CCD0 approach outlined

here needs to be further investigated. Again, initial trials of accounting for missing

electronic correlations were attempted but not included in the present thesis.



98

Bibliography

[1] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014).

[2] I. W. Bulik, W. Chen, and G. E. Scuseria, J. Chem. Phys 141, 054113 (2014).

[3] T. M. Henderson, I. W. Bulik, T. Stein, and G. E. Scuseria, J. Chem. Phys

141, 244104 (2014).

[4] T. Van Voorhis and M. Head-Gordon, J. Chem. Phys 113, 8873 (2000).

[5] I. W. Bulik, T. H. Henderson, and G. E. Scuseria, submitted (2015).

[6] A. Szabo and S. Ostlund, Neil, Modern Quantum Chemistry (Dover Publica-

tions, Inc., Mineola, N.Y., 1996).

[7] P. Ring and P. Schuck, The nuclear many-body problem (Springer, Berlin, 2005).

[8] K. Raghavachari and J. B. Anderson, J. Phys. Chem. 100, 12960 (1996).

[9] K. Jankowski, in Methods in Computational Chemistry, edited by S. Wilson

(Springer US, ADDRESS, 1987), pp. 1–116.

[10] H.-J. Werner and W. Meyer, Phys. Rev. A 13, 13 (1976).

[11] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular electronic-structure theory

(John Wiley & Sons, ADDRESS, 2014).

[12] A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502 (1996).



99

[13] A. M. Lesk, J. Chem. Phys 59, 44 (1973).

[14] V. K. Voora, L. S. Cederbaum, and K. D. Jordan, J. Phys. Chem. Letters 4,

849 (2013).

[15] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[16] G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004).

[17] M. J. Frisch, Reflections on Jhon Pople’s Career and Legacy, 2004,

http://www.gaussian.com/g people/pople.htm, accessed April, 2015.

[18] F. Coester, Nucl. Phys. 7, 421 (1958).
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