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ABSTRACT
Essays in Energy Economics:
The Electricity Industry
by

Eduardo Martinez Chombo

Electricity Demand Analysis Using Cointegration and Error-Correction Models
with Time Varying Parameters: The Mezican Case. In this essay we show how some
flexibility can be allowed in modeling the parameters of the electricity demand func-
tion by employing the time varying coefficient (TVC) cointegrating model developed
by Park and Hahn (1999). With the income elasticity of electricity demand modeled
as a TVC, we perform tests to examine the adequacy of the proposed model against
the cointegrating regression with fixed coefficients, as well as against the spuriousness
of the regression with TVC. The results reject the specification of the model with
fixed coefficients and favor the proposed model. We also show how some flexibility
is gained in the specification of the error correction model based on the proposed
TVC cointegrating model, by including more lags of the error correction term as pre-
determined variables. Finally, we present the results of some out-of-sample forecast

comparison among competing models.

Electricity Demand and Supply in Mexico. In this essay we present a simplified
model of the Mexican electricity transmission network. We use the model to approx-
imate the marginal cost of supplying electricity to consumers in different locations
and at different times of the year. We examine how costs and system operations will
be affected by proposed investments in generation and transmission capacity given a

forecast of growth in regional electricity demands.



Decomposing Electricity Prices with Jumps. In this essay we propose a model
that decomposes electricity prices into two independent stochastic processes: one
that represents the “normal” pattern of electricity prices and the other that captures
temporary shocks, or ”jumps”, with non-lasting effects in the market. Each contains
specific mean reverting parameters to estimate. In order to identify such components
we specify a state-space model with regime switching. Using Kim’s (1994) filtering
algorithm we estimate the parameters of the model, the transition probabilities and
the unobservable components for the mean adjusted series of New South Wales’ elec-
tricity prices. Finally, bootstrap simulations were performed to estimate the expected

contribution of each of the components in the overall electricity prices.
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Chapter 1

Electricity Demand Analysis Using Cointegration
and Error-Correction Models with Time Varying
Parameters: The Mexican Case

1.1 Introduction

Cointegration analysis and error correction models (ECM) have become the standard
techniques for the study of electricity demand since their formal development by En-
gle and Granger (1987) and their early application to the forecast of the electricity
demand by Engle et al. (1989). Subsequent developments related to this approach
have relied on the use of new techniques to identify cointegrating relationships (for
example, the Johansen’s method (1988, 1991)), as well as on the inclusion of more
specific energy-related variables in the model. Some recent examples of these exten-
sions include Beenstock, et al. (1999) which analyzes the demand for electricity in
Israel, and Silk and Joutz (1997) who construct an appliance stock index for their
study of the US residential electricity demand. In most of these kinds of analyses
the demand equation is specified as a linear double-log function, as a way to obtain
elasticities directly from its coefficients, and the parameters are estimated using data
whose time span is rather long, going beyond forty years in some cases.

Despite the relative popularity of the above techniques, the long time span cov-
ered by these studies raises serious concerns about the validity of the fixed coefficients

(FC) assumption in the electricity demand equation. This assumption in a double-log
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functional form of demand simply implies constant elasticities for the entire sample
period under study. This feature of the model is indeed questionable in light of the
changes that could have taken place in the economy over such a long period of time
affecting the demand for electricity. See Hass and Schipper (1998) for more discus-
sions on this issue. Specific examples of the determinants for such changes include
the efficiency improvements in electrical equipments, the developmental stage of the
economy (whether the economy is in transition to later stages of development and
industrialization), and even the government energy policy and the habit persistence
of consumers. These determinants are not static, but rather tend to evolve slowly
through time and thus they constantly modify the responses of the aggregated elec-
tricity demand to variations in income and prices. Therefore, if we use data collected
over a relatively long time period to estimate an electricity demand function, we
should at least consider the possibility that the parameters in the regression may not

be constant.

As a way to capture this evolving nature of the electricity demand, some studies
have employed alternative functional forms for the demand equations, such as linear
functions, to indirectly calculate the elasticities as functions of the current levels of
the variables and the parameters of the demand equation (see, for example, Chang
and Hsing (1991)). However, these studies fail to see the possibility of allowing the
relevant parameters to vary over time. Another alternative suggested in the litera-
ture is to introduce some structural changes into the model, but this approach has
obvious shortcomings. Among others, it can neither handle the dynamics of the pa-
rameter changes nor provide the perspective of their possible future evolution. To our
knowledge, these alternatives have been applied in the energy literature without coin-
tegration analysis, which is necessary to properly identify the long-run relationships

among the relevant variables (see, for example, Hass and Schipper (1998)).
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In this paper, we estimate the electricity demand function for Mexico by apply-
ing a new alternative model that combines cointegration analysis with time varying
coeflicients in the demand equation. In other words, we look for cointegrating rela-
tionships in the electricity market that change over time. Park and Hahn (1999) have
developed the idea of the time varying coeflicients cointegrating regression, which we
employ here to estimate the time varying coefficient (TVC) on the income variable
in a double-log functional form of the electricity demand. The underlying assump-
tion in the model is that the TVC is generated by a smooth function that can be
approximated by a series of functions which expands appropriately as the sample size
grows. Taking into account the intrinsically slow changes in the general factors that
affect electricity demand, such as technology, developmental stage of the economy
and habit persistency, this basic assumption seems plausible. Park and Hahn (1999)
demonstrated that under some regularity conditions the estimators of general TVC
cointegrating regression models are consistent, efficient and asymptotically Gaussian.
Thus, in addition to the advantage of allowing for flexible coeflicients, this approach
exploits the available information efficiently to estimate the parameters of the model,
and gives a valid basis to forecast the possible path of the TVC into the medium

term.

To highlight the essence of the TVC cointegrating regression model we use a
basic electricity demand equation with electricity prices and income as explanatory
variables. In particular we focus our analyses on the models with time varying in-
come elasticities for three Mexican sectors: residential, commercial and industrial,
and work with the data that spans fifteen years from 1985 to 2000. As a proxy for
the income variable, we use private consumption for the residential and commercial
sectors and industrial production for the industrial sector. As we use monthly data

to estimate long-run relationships, we need to properly model the seasonality present
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in the electricity demand data. For this, we construct a seasonal variable from what
we call the temperature response function, which is estimated nonparametrically us-
ing intraday temperature data, such as the measures taken every three hours. This
seasonal variable provides a temperature measure that reflects the variations in elec-
tricity demand due to the factors related to changes in temperature. We work with
more general model which is invariant to the distribution of the error term, by em-
ploying a modified version of the TVC models based on the method of canonical
cointegrating regression (CCR), suggested in Park and Hahn (1999). Nonparametric
methods are employed to compute the long-run covariance matrices used in the CCR

transformations.

We also perform specification tests to examine the validity of the proposed model
against that with fixed coefficient and against the spuriousness of the regression with
time varying coefficients. These tests are modified Walt statistics which test the
presence of unit roots in the error terms and they were proposed by Park and Hahn
(1999). The results from the tests reject the specification of the model with fixed

coefficient and favor the proposed TVC cointegrating regression model.

It is also shown that this new specification can be used to extend the flexibility of
error correction models by allowing to include more lags of the error correction term
as predetermined variables. This is because the presence of the TVC in the error
correction terms eliminates the collineality problems between its lags and the lagged
differences of the other included variables. Using more lags of the error terms permit

to capture more complex adjustment paths in the short run dynamic of the model.

To evaluate the forecasting performance of the proposed model we develop an
out-of-sample forecast comparison among the TVC cointegrating regression model,
its error correction model and the alternative fixed coefficient model. Based on values

of the root mean squared error, we found that the TVC cointegrating regression model



gives a better forecast that the alternative model with fixed coefficients.

The rest of the paper is organized as follows. Section 2 introduces the theoreti-
cal background for the TVC cointegrating regression model, the CCR methodology,
and the model for the seasonality of electricity demand along with the temperature
response function. In Section 3, empirical results are obtained from the estimations
of the temperature reéponse function, the cointegrating TVC regression, the error
correction model and the out-of-sample forecast comparison for each sector. Finally,

some concluding remarks are provided in Section 4.

1.2 The Model

1.2.1 The time varying cointegrating regression model

The prototype electricity demand model used in the literature takes the following

form
dy = T + VY + Opy + Gz + uy

where d; denotes the demand for electricity, y the income or production, p; the
real price of electricity, z; the variable that captures the seasonal component of the
demand,! u; the stationary error and 7,7, and ¢ the parameters to be estimated.
All the economic variables are expressed in natural logarithms.

Let zy = (y¢, 1, 2), and & = (7, 6,¢)’. Then we may rewrite the above model as
de =7+ &z + uy (1.1)

In this linear double-log functional form of the demand, the parameters in the vector a
represents the elasticities, and they are assumed to be constant over the entire sample

period under study. However there is a possibility that the long-run relationships

YA detailed description on how to construct this seasonal variable z is given in Section 2.3.
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among the variables change through time, especially when we are analyzing the model
over a relatively long time period, such as ten or more years. In order to take into
account the time varying nature of the elasticities, we may allow the parameters to

evolve over time and accordingly specify the model as follows
dy = 7+ ajx + (1.2)

where the coefficients a; are now allowed to change over time.

Furthermore, given that the responses of the electricity demand to the changes
in the exogeneous variables could be affected by slowly evolving factors such as the
degree of economic development or the habit persistence of the agents, it is assumed

that «; changes in a smooth way. Specifically we let

o= o (%) , (1.3)

where n is the sample size, ¢t € {0,1,2,...,n} and « is a smooth function defined on
the interval [0,1]. Note that the subscript indicating the dependence of o, on n has
been suppressed for notational simplicity. As an estimand of the function «, we define

the following functional

(a) = (a(ry), eeey @(ra)), (1.4)

where r; is a number in the unit interval [0,1], and T : C[0,1] — R

If the function « in (1.3) is sufficiently smooth, then it is well known that « can
be approximated pointwisely by a linear combination of a sufficiently large number
of polynomial and/or trigonometric functions on [0,1|. For our study, we consider the
Fourier Flexible Form (FFF) functions, which includes a constant, a linear function,
r, and k pairs of the trigonometric series functions, (p;)¥_;, where each pair y; is

defined as ¢, = (cos \;r,sin A;r)" with A; = 2mi. That is, we assume that the smooth



function o can be approximated by the function ay defined as follows

k
ok = Opy + Pra 7+ Z(ﬂk,?i+17ﬁk,2i+2) " Pis (1.5)

i=1
with §,; € R® for j = 1,2,...,2(k + 1) and k sufficiently large. In fact, Park
and Hahn (1999) showed that the function « given in (1.3) can be arbitrarily well
approximated by (o) with increasing the number k& of the included trigonometric
pairs.? Alternatively, if we define fi(r) = (1,7, ¢\(r), ..., ¥ (r)) with r € [0,1] and

B = (Br1s Br - Prarya), the function oy, defined in (1.5) can be rewritten as

o = (ff @ I3) P4, (1.6)

and the estimand IT(oy) as

Mag) = (ag(ry)', ..., ar(ra)’) = TuBy, (1.7)

where T}, is the matrix given by T}, = F, ® I3 with Fj, = (fx(r1), ..., fe(ra)) for k > 1.
Note that we have suppressed the indicator r indicator for notational brevity, but it
should be understood that IT(ay) is a function of r.

Estimation of oy and II(ay) involves the estimation of the parameters in 3, as
can be seen from (1.6) and (1.7). A natural way to estimate these parameters is to

apply the ordinary least squares (OLS) to the following regression
dy = T + Bpre + Une, (1.8)
where

T = Jx (—2) ® 4

t /
ue = u+ (@ — ap) o I

2This result hold if it is assumed that « is at least twice differentiable, with bounded derivatives
on [0,1]. See Park and Hahn (1999, Lemma 2).
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using the notations defined earlier. Note that the new error uy includes an ad-
ditional term representing the error from approximating the original smooth func-
tion « in (1.3) by the series function ay given in (1.5). From the OLS estimators
B, = (B;k,l, Bizkﬂ? . ,ﬁ;mk 12) of B, from regression (1.8), the sample estimates of
ay and I1(ay) can be easily obtained by substituting 3, with its sample estimate B,
in (1.6) and (1.7). They are given by i = (f1 ® Is)B3,x and (&) = TiB,;, where
the subscript n is used to make it explicitly that the parameter estimates depend on
the sample.

Park and Hahn (1999) showed that II(d,;) is a consistent estimator of [I{«a) if
the number k of the trigonometric pairs included in the series (1.5) increases along
with the sample size n at an appropriate rate. The required expansion rate for k is
determined by the smoothness of the function a and the moment conditions of the
underlying time series. The required rate becomes lower as the function becomes
smoother and the number of the existing moments of the underlying time series gets
smaller.® Of course, the conditions on the smoothness of the function & can not be
verified as « is not observable, and therefore the validity of the resulting estimators
would be based on our perception of the way the time varying coefficients evolve
through time. They also showed that the convergence rate of the series estimators is
n~ 'k, which is slower, by a factor of k, than the convergence rate of the usual OLS
estimators for the FC models. They also found that the OLS estimators of model
(1.8) are asymptotically inefficient, and in general non-Gaussian,! which invalidates
the standard inferential procedures based on them, when the errors uy; are allowed
to have flexible distributions.

To obtain efficient estimators and a valid inferential basis for the parameters in

3The explicit assumption is that k = cn” with 2/(2¢9—1) < r < (p— 2)/3p, where c is a constant,
n is the sample size, p is the number of moments of the underlying variables and ¢ the number of
derivatives of a. See Park and Hahn (1999, Assumption 4).

4See Park and Hahn (1999, Theorem 7).
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our TVC cointegrating regression model (1.8) while allowing for general error spec-
ifications, we employ, as in Park and Hahn (1999), an extension of the canonical
cointegrating regression (CCR) method developed by Park (1992). The CCR method
is based on the transformations of the variables that are correlated in the long-run
with the error term, which effectively remove the long-run endogeneity of the regres-
sors and the serial correlation effects in the errors. In the following section, we apply
the CCR methodology for the estimation of our TVC cointegrating regression model
(1.2) or (1.8).

1.2.2 CCR Estimation

For the estimation the TVC cointegrating regression model (1.8) by the CCR method,
we first construct the required transformations for the variables d; yx and pg, using
their stationary components. Let Z; = (y,p:)’, vy = A% and w, = (uy,v))’, where

(uz) are the stationary errors in the original TVC model (1.2). For the process wy,

o0

we also need to define the long-run covariance matrix €2 = > oo

Ew,w;_,, the con-
temporaneous covariance matrix % = Ewpwy),, and the one-sided long-run covariance
matrix A = Y2 Bw,w;_,. We partition 2, ¥ and A conformably with the partition
of w; into cell submatrices €2;;, 2;; and Ay, for 4,5 = 1,2. Note that ¥;; and Oy

represent, respectively, the short and long-run variances of the error u;.

The CCR estimation of the TVC cointegrating model (1.8) is based on the follow-

ing regression

df = m+ By, + (1.9)
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whose elements are defined by

t !
dy = dy— (fk (E) ® Azzﬂl’wt> Br = (0, a5 Jwy

* t ~
i = (1()or )
* * t
vy = Uy + (e — ayg) o

using the transformed nonstationary explanatory variables Z; and the modified error

u; given below

* = -1 * -1 A4
Ty =T — DoX wy,  up = up — Q12foy Ay

where Ay = (Al,, Al,). We note that the long-run variance of the CCR error (u]) is

given by
w? = Oy — Q1af5 Qo (1.10)

which is the conditional long-run variance of the error (u;) given the innovations (v;)
of the regressors (v, p;), and is strictly less than the long-run variance $21; of w,,
unless the regressors are strictly exogeneous. Hence the CCR estimation, i.e., the
OLS estimation of the CCR transformed model (1.9), yields efficient and optimal
estimators. In practice, non-parametric methods can be employed to compute con-
sistent estimates of € and A using the fitted residuals from the OLS estimation of
model (1.8).° Denote by #* and B;k the CCR estimators, which are the OLS es-

timators of model (1.9). Then we may use them to obtain the efficient estimators

SDenote such residuals {7iz,) and define @y, = (G, v)). Then the components of the autoco-
b B t
variance function can be computed by

. 1 AT
WEESS K(E);wk,tw;,t_j (111)

71<hn

o1 N

Aw=t ¥ K(E)Zwk,tw;ﬁtﬁj (1.12)
0<i<hn t

where K is the kernel function and h,, the window width. Commonly used kernels, for example
Barlett, Parzen or the rectangular kernel, will assure the consistence of the estimators.
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& = (1 ® I)A., and TI(&%,) = TiB., for ay, and II(@) from the relationships given
in (1.6) and (1.7). Park and Hahn (1999) demonstrated that the CCR estimator
T1(&7,) is a consistent estimator of II(c) and that its limit distribution is normal.®
The consistency and efficiency of the CCR estimators of the TVC cointegrating
model (1.9) are attained presuming that the original time varying coefficient model
(1.2) or (1.8) is correctly specified. Hence it remains to justify the adequacy of the
model (1.2), and we will do so by performing two specification tests based on Walt
statistics modified to allow for serial correlation in the errors as proposed by Park
and Hahn (1999). The first statistic 7* tests whether or not the TVC model (1.2) is
cointegrated against the alternative that the model is spurious, following the variable

addition approach suggested in Park (1990). Specifically, the test is defined as

2
wy

T

(1.13)

where w? is the long-run variance estimate of (u}) given in (1.10), and RSSry ¢ and
RS Sy o are the sums of squared residuals, respectively, from the CCR transformed
TVC model (1.9) and from the same regression augmented with s additional superflu-
ous regressors. Under the null hypothesis that the true model is a TVC cointegrating
model, the limit distribution of the test 7* is a chi-square with s degrees of freedom.
The basic idea underlying the test 7* is to exploit the tendency of the unit root
processes to be correlated with superfluous variables with deterministic or stochastic
trend. If indeed the model (1.2) is spurious, it is well known that including such
superfluous variables will significantly improve the fit of the regression, and there-
fore reduce the sum of squared residuals, even when they are known to be irrelevant.
Otherwise, if the model (1.2} is an authentic cointegrating regression, the inclusion of
such variables will hardly affect the estimation results. The choice of the superfluous

regressors plays an important role for the actual performance of the test. In this

6See Park and Hahn (1999, Theorem 10).
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paper, we use time polynomials ¢,£%,#3, ... ,#* as superfluous regressors, following the
suggestion given in Park (1990).

The second statistic 77 tests the specification of a TVC cointegrating regression
model (1.2) against the cointegrating model with fixed coefficients (1.1) and it is given
by
_ RSSpc — RSS} e

o2

*

T3 , (1.14)

where as before RSSpc and RSSE are the sums of squared residuals, respectively,
from the fixed coefficient cointegrating regression model (1.1)7 and from the same
regression augmented with s additional superfluous regressors. However the error
long-run variance w? corresponds to that of the TVC cointegrating model (1.9). The
properties and limit distribution of the statistic are the same as 7*. Park and Hahn
(1999) showed that this statistic diverges under the TVC cointegrating regression
model and remarked that the use of the long-run variance from the FC model reduces
the divergence rate of the statistic.

Before proceeding to estimate the demand model for the Mexican case, we discuss
how we may specify and estimate the variable z; in our TVC model (1.2) that captures

the seasonal component of the electricity demand.

1.2.3 Modeling seasonality

We observe strong seasonality in the electricity demand, especially in high frequency
data such as monthly, which needs to be properly modelled for the consistent esti-
mation of the demand equation. Engle et al. (1989) have indeed shown that the
parameters in a cointegrating regression will generally be inconsistent if the seasonal-

ity is stochastic. The standard approach to overcome such inconsistency problem has

"To deal with models with general error specifications the stadistics 7% are based on CCR trans-
formed models.
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been to filter the data either by changing its periodicity (for example, from monthly
to annual data) or by taking differences of the variables at the seasonal frequencies.
The obvious consequences from using such solutions are reduction in sample size or
elimination of some long-run variations in the variables, which we want to avoid due
to data limitations and the low convergence rate of the series estimators for the pa-
rameters in our TVC cointegrating regression model (1.2). An alternative approach
is to directly model the seasonality by choosing a variable that captures the sea-
sonal component of the electricity demand. Traditional candidates for such variable
are temperature related-measures such as the number of heating and cooling days
per period (for example, in a month) and the average temperature. Certainly, this
approach will neither reduce the sample size nor eliminate the elements of long-run
variations in the data. However, this approach may introduce the risk of incorrectly
estimating the effect of temperature on the rate of electrical equipment usage, if based
on a broad temperature measure such as those mentioned above. For example, the use
of an air conditioner is determined by the high temperatures during the day time, not
by the overall daily average temperature. In this paper we take the latter approach,

but with a new temperature measure.

We assume that the seasonality of the electricity demand is mainly due to the
weather conditions, and construct a variable that captures such seasonality using
intraday temperature data. Specifically, we model the seasonality of the electricity
demand using a temperature response function that relates seasonal variations of the
demand with the current temperature levels. As a guide to construct such a function,
we consider three general patterns that characterize the influence of the temperature
on electricity demand. First, we observe that extreme temperatures, either high or
low, increase the demand for electricity. This means we would see a U shape graph, if

we plot demand versus current temperature. Second, which is related to the previous



14

observation, we also observe that the response of the electricity demand to change in
temperature is larger when temperature is high compared to when it is low. That is,
the response of the demand is different depending on the current temperature level.
This phenomenon would be reflected in an asymmetric U shape graph when demand
is plotted against temperature. Third, when comparing the responses by sectors,
we observe that the residential demand shows the largest responsiveness, while the
industrial sector demand exhibits the smallest responsiveness to the same change in
temperature. These general characteristics are what we attempt to capture with a
temperature response function, which will be used later to construct the seasonal
component z; of the demand. We assume that the temperature response function,

say g, takes the following FFF functional form
g(1p) = co+ c17p + €475 + €3 08(2wTy) + cysin(2m7y) + - - (1.15)

where 7, € [0, 1] is the normalized temperature at time p (ideally with hourly data)
and ¢;, 1=0,1,2,3,..., are the parameters to be estimated.

Although in principle the parameters of the above temperature response function
g could be estimated by regressing a measure of the seasonal component of the elec-
tricity demand against the terms on the right hand side of (1.15), the data limitations
we face generally shape the way in which those coefficients are estimated in practice.
It is important to notice that the temperature response function (1.15) is defined
in terms of current temperature in order to extract the information about extreme
temperatures and duration. In general any intraday data such as temperature read-
ings taken every hour or every three hours can be used to estimate the function g.
Although temperature data are available at such high frequencies, it is often diffi-
cult to find data for the electricity demand at a frequency higher than one month.

Consequently we need to come up with a new measure computed from the available
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temperature data at the frequency that matches with the available electricity demand
data. In this case, we may use the following ezpected response function defined over

the period of time determined by the frequency of the demand data

/p ) flrr, = ot l anft(Tp)d»rp”+ & /,,

T?,ft(Tp)dTp
et
+ c3 / cos(277,) fi(T,)d Ty

peEt

+ C4/ sin(277,) fi(Tp)dr, + - - (1.16)
J pet

where t is the period in which the demand data is indexed (for example, a month)
and f; is the density function of the temperature data over the period ¢. Notice that
the density functions f; of the temperature data are indexed by ¢, indicating that
we allow the temperature densities to differ across different time periods to capture
the changing weather conditions from one period to another in the same year or in

different years.

Computing the terms in the equation (1.16) is relatively straightforward. Using
intraday temperature data (around 720 observations per month if the data is hourly
or 240 if the data are collected every three hours) we can estimate the densities f; by
a non-parametric technique, such as kernel estimation, at each . Once we obtain the
estimates ft for the densities, we can easily compute the Riemann sum approximation
of the integrals in the right hand side of the expected response function (1.16). Finally,
the estimates for the parameters in (1.16) are obtained by regressing a measure of the
seasonal component of the electricity demand (for which we may use the detrended
demand series) against a constant term and the temperature variables represented

by some of the integrals on the right hand side of the expected temperature response
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function (1.16). That is, we estimate the following regression
d, = ep+c / Tpfe(T,)dT, + 2 / ’7'12, filr,)dr,
pet peEt

+ 2‘1: (CQi+1 / cos(i27T,) ft(Tp)dTp>
i=1

peEt
q
+ Z (CQ(Z‘_Jr.l)/ sin(iZWTp)ft(Tp)d7p> + & (1.17)
i=1 pEL

where d}, is the seasonal component of the electricity demand, g the number of trigono-
metric pairs, €; the error term, and the other variables and parameters are defined
as in (1.16). The OLS estimation of the above regression will give consistent and
efficient estimators (&, ¢1, €2, - . . , Gag42)’ of the parameters (¢, c1, o, - - . , C2g42)'; Pro-
vided that all of the included variables in the above regression are stationary. With

these estimators we can construct an estimate § for the temperature response function

g defined in (1.15) as

Glrp) = Go+ Ty + G2 + & cos(i2mTy) + Eysin(i2nTy) + - -

+ Cag1 cO8(i27Tp) + Eogpa Sin(i277p) (1.18)

and in turn use this to define the seasonal variable z; of our TVC model (1.2) as

follows

= / §(r)fo(r,)dr, (1.19)

pet
One advantage of our seasonality modelling described above is that it encompasses
other approaches seen in the literature. For example, the approaches that use the
first moment of the temperature distribution as their weather-related variable can be
easily formulated in our framework simply by imposing the parameter restrictions,

¢; = 0 for i > 2, in the temperature response function (1.15).
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1.3 Empirical Implementation of the Model: The
Mexican Case

1.3.1 Description of the data

We use the TVC cointegrating regression model (1.2) to estimate the demand for
electricity in Mexico for the residential, commercial and industrial sectors. Taking into
account the fact that the estimators of the parameters in the TVC models converge
at a slower rate compared to those in the usual FC models, we work with a relatively
large sample consisted of the monthly data from 1985:01 to 2000:05, with 185 monthly
observations in total. The electricity data are obtained from the Comision Federal de
FElectricidad (CFE), and include monthly sales and prices.® To identify the demand®
by sector we follow the CFE’s classification that categorizes the customers by their
energy consumption. For instance, private customers who demand low voltage are
classified into the commercial sector and those who demand medium to high voltage
are classified into the industrial sector. In the case of the residential sector, CFE has
a specific classification for these types of customers. It is important to mention that
the reported CFE’s data in general do not correspond to the energy consumption of
the reported month because of the lag between the month when the consumption was
realized and the month when the transaction was actually registered. This is mainly
a result of the routine schedule of payments followed by the government. Accordingly
we adjust the demand data before the estimation of the model.

In our study, we use a weighted average of electricity prices, since there are dif-
ferences in the prices across regions of the country and among the levels of energy

consumption per customer. Also, to analyze the impact of the price of substitute

8The sales of the CFE represents around 80% of the total in the country. The remaining 20%
of the sales is from Luz y Fuerza, also a stated owned company, whose data were not completely
available to us.

9Because the demand and supply of electricity are always in balance, we use without distinction
the terms sales and demand throughout the paper.
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goods, such as natural gas and diesel, we use relative prices in our regressions.’’ As
a proxy for the disposable income, we use private consumption!! for the residential
and commercial sectors, and an indicator for the industrial production that includes
mining, manufacturing and construction for the industrial sector.!?> Regarding the
frequencies of the data, the indicators for the industrial production are reported on a
monthly basis, while the private consumption data are reported on a quarterly basis.
To work with monthly data for our estimation, we therefore transform the quarterly
consumption data into monthly, using as a pattern the behavior of the monthly in-
dustrial production index. Finally, given that Mexico is a relatively large country, we
divide the country into five regions and collect the temperature data from their repre-
sentative cities'® to obtain the input variables for the temperature response function.
Although the frequencies at which the temperature data are collected vary across
regions and over time, we were able to obtain the temperature data taken every three

hours for all regions and the months covered in our sample period.

1.3.2 Estimation of the temperature response function

For the estimation of the temperature response function defined in (1.15), we need
a measure for the seasonal component of the electricity demand, and estimates for
the terms in the expected temperature response function (1.16). To estimate the
terms in (1.16), we first estimate the temperature densities by kernel estimation, and
use them to approximate the integrals in (1.16) for each region. Then, using the

regional electricity consumption as weight, we obtain their weighted averages over

10 Al prices are obtained from the components of the Producer Price Index generated by Banco
de Mexico.

U Here we implicitly assume that consumers first decide the amount of their income that is saved
and consumed, and later they decide how much to consume of each good and service.

12 All the real variables are obtained from INEGI (Instituto Nacional de Estadistica, Geografia e
Informética).

13Source of the temperature data, Comision Federal del Agua, Mexico.
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Table 1.1: Temperature Response Functions
Residential Sector Commercial Sector Industrial Sector

Coefficient ¢ values Coefficient ¢ values Coefficient ¢ values
Co -0.096 -1.129 -0.241 -3.405 -0.042 -0.980
cy -1.251 -3.272 -0.188 -0.590 -0.410 -2.150
Co 2.418 6.356 1.088 3.428 0.822 4.326
R*  0.829 0.801 0.706

regions, and use them as the terms on the right hand side of the expected temperature
response function (1.16) for the whole country. A normal kernel with optimal'* fixed
bandwidth is used for the estimation of the density functions. On the other hand,
as the measure for the seasonal component of the demand, we use the detrended
series of the sectorial electricity sales, with the trend estimated as the centered 12
month moving average of the original series. Given that all of the involved variables
are stationary, by nature (temperature) or by counstruction (seasonal component of
demand), standard econometric technigues are applied to estimate the parameters
of the regression (1.17). In light of the three general observed patterns on the ways
temperature influences the electricity demand, we find from on our Mexican data
that the best specification for the temperature response function (1.15) is the one
that does not include any the trigonometric pair, for all sectors. The OLS estimators
for the parameters in the temperature response function for all sectors are presented

in Table 1.1 and the shapes of the functions are shown in Figure 1.1.

The shapes of the temperature response functions are as expected. They show
the asymmetric “U” shape, with the scale of the estimated parameters reflecting the
fluctuations of the seasonal component of the demand around its mean. We illustrate
in the following examples how one may interpret the results in Table 1.1. If we look at

the residential sector at 25°C, the estimated value of the response function is 0.0281

14Optimal in the sense that it minimizes the Approximation of the Mean Integrated Squared Error
(AMISE) for normal kernels.
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Figure 1.1: Temperature response function by sector.

and at 26°C, 0.0617. Hence, if there is an increase in the average temperature from
25%C to 26°C, the expected result is that the electricity demand will grow by around
3.27 percent.’®> On the other hand, if the temperature drops from 5°C to 4°C, the
expected increase in the demand will be only 0.74 percent. For the industrial sector,
the corresponding percentages for the same temperature references will be 1.17 and
0.18 percents, respectively, for an increase and drop in the current temperature by
one Celsius degree. These examples show the differences in the responses within the
sector, which depend on the current temperature level, as well as the differences across
the sectors, with the residential demand being the most responsive to the temperature
variations. It is also worth noting from Table 1.1 that the second moment as well as
the first moment of the temperature data are important in explaining the seasonal
patterns of the demand data. Indeed the second moment is the only variable whose
coefficient is statistically significant in the temperature response function for the

commercial sector.

15Gince the response functions give deviations from the average demand, the percentage change is
obtained straightforwardly from the following arithmetic operation, (1-+g(s2))/(1-+g(s1))-1.
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1.3.3 Estimation of the TVC model

In order to properly specify the model for the estimation, we first analyze the non-
stationary characteristics of the data. The presence of unit roots in the variables
involved is tested using Augmented Dickey Fuller (ADF) test with the short-run dy-
namics determined by the Schwartz Information Criterion (BIC). According to the
results reported in Table 1.2, there is evidence in favor of the presence of unit roots in
the private consumption, the industrial production and all the electricity demand se-
ries. The results for the price series are, however, mixed and thus inconclusive, which
is not surprising given the fact that the electricity prices in Mexico are controlled and
heavily regulated by the CFE. Based on these results, we treat the income (y,) and
demand (d;) series as known to be nonstationafy variables, while we allow the price

series (p) to be either stationary or nonstationary. Then we accordingly specify our

TVC model as
dy =7+ vy + 6py + bz we (1.20)

Notice that we allow the coefficient 7, on the known to be nonstationary regressor
y; to vary over time to capture its evolving long-run relationship with the depen-
dent variable d;, which is also known to be nonstationary. On the other hand, the
coefficient 6 on the potentially nonstationary regressor p; is modelled as a fixed pa-
rameter. We note here that the CCR methodology, which we will use for the efficient
estimation of our TVC model (1.20), is robust to the misspecification about the non-
stationarity characteristics of the data, as shown in Kim and Park (1998). Thus, we
may just regard the variable p,, whose nonstationary characteristics is uncertain, as
nonstationary and just follow the CCR procedure introduced in Section 2.2.

We specify the time varying coefficient v, as a smooth function as in (1.5), and

approximate it by a series of functions that include a constant, a linear time trend and



Table 1.2: Unit Root Test (Augmented Dickey-Fuller Test)

Variable Demeaned Series Lags Detrended Series Lags
dy
Residential -1.183 12 -0.903 12
Cominercial 0.250 13 -1.997 13
Industrial 0.550 12 -1.180 12
Yt
Private Consumption 0.212 16 -1.914 16
Industrial Production -0.221 2 -3.167 2
b
Residential -2.876 12 -3.172 12
Commmercial -4.105 1 -3.711 1
Industrial -2.170 2 -3.515 1
5% critical values -2.860 -3.41
Table 1.3: CCR Estimation of TVC Regression Model
Coefficients by Sector
Variable Residential Comimercial Industrial
Constant () 6.280 (4.04) 6.841  (4.70) 10.33  (7.92)
Price (6) -0.048 (-3.6)
2 (¢) 0.995 (28.4) 0.995 (29.5) 0.870 (15.5)
Parameter estimates of the TVC: v,
k 1 2 2
ﬁk,l 0.367 (4.81) 0.289 (4.04) 0.226 (3.34)
ﬁk’g 0.039 (20.5) 0.026 (15.2) 0.041 (20.7)
/Bk,g -0.002 (-8.0) -0.001  (-5.0) 0.0018 (9.21)
ﬁkA -0.0006 (-1.5)  0.0008 (2.17) 0.0016 (5.43)
ﬁk,g) 0.0014 (5.25) -0.0017 (-6.9)
ﬁk’ﬁ 0.0003 (1.23) -0.0006 (-2.3)
long-run variance of the CCR. errors
T 0.00278 0.00145 0.00079
SC -5.71 -5.90 -6.84
R? 0.975 0.957 0.99
DW 1.47 2.69 1.56

Note: The numbers in parentheses are the CCR adjusted #-values.
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Table 1.4: CCR Estimation of FC Regression Model
Coefficients by Sector
Variable Residential Commercial Industrial
Constant (7) -25.82 (-9.64) -15.73 (-16.84) -9.99 (-7.80)
Price (6) -0.44 (-347)  -0.07 (-1.09) -0.25 (-5.82)
Income (7) 1.95 (14.93) 1.40  (30.80) 1.29  (19.57)
)

2 (@) 0.70  (5.09) 0.83 (11.63) 0.43 (1.59
long-run variance of the CCR errors
11 0.0406 0.0068 0.0203
SC -4.212 -5.041 -5.028
R? 0.875 0.875 0.928
DW 1.097 1.867 0.923

Note: The numbers in parentheses are the CCR adjusted ¢-values.

k trigonometric pairs, as in (1.5). To determine the number k of the trigonometric
pairs to be used in the series estimation of the time varying coefficient v,, we use
BIC to pick a parsimonious model since it is known to favor simpler models by
giving heavier penalties to the models with larger number of parameters. The CCR
transformations are based on the differences of the detrended y; and p;, and the
nonparametric estimators of the long-run 2 and the one-sided long-run A covariance
matrices defined in (1.11) and (1.12).1° Table 1.3 reports the final results once the

statistically insignificant variables were removed from the models.

Before we analyze the results of our model (1.20), we first examine the validity
of our specification. To this end, we use the specification tests 77 and 7* intro-
duced in Section 2.2, which are constructed here by using four time polynomial terms
(t,t2,t%,t*) as the additional superfluous regressors. Table 1.4 reports the results
from the fixed coeflicient models meanwhile the computed test statistics for the three
sectors are presented in Table 1.5. The results of 77 clearly show that the fixed coeffi-

cient cointegrating regression model is rejected in favor of the time varying coefficient

For the nonparametric estimation, we used the Parzen window with the lag truncation number
selected by using the data-dependent selection rule suggested by Andrews (1991).
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Table 1.5: Specification Test

Model by sector T3 T*

Residential 663.97 6.74
Commercial 43873 2.47
Industrial 1042.36 11.66

1% critical value  13.28 13.28

(TVC) cointegrating regression model (1.20). Further more, the statistic 7* suggest
that the TVC model is well specified in all sectors at one percent significance level.
The evidence is especially strong for the commercial and residential sectors. Notice
that in the case of the fixed coeflicient model, which specification was rejected, the
elasticity of the electricity demand with respect to the income or production is higher

than one, and the price elasticity is significant in the residential and industrial sector.

Now that our TVC model (1.20) is tested to be an authentic cointegrated model,
we may notice that we allow the coefficient +, on the known to be nonstationary
regressor 1 to vary over time to capture its evolving long-run relationship with the
dependent variable d;, which is also known to be nonstationary. On the other hand,
the coefficient § on the potentially nonstationary regressor p; is modelled as a fixed
parameter. We note here that the CCR methodology, which we will use for the ef-
ficient estimation of our TVC model (1.20), is robust to the misspecification about
the nonstationarity characteristics of the data, as shown in Kim and Park (1998).
Thus, we may just regard the variable p;, whose nonstationary characteristics is un-
certain, as nonstationary and just follow the CCR procedure introduced in Section
2.2. Now meaningfully interpret the coefficient estimates reported in Table 1.3 as the

parameters of the long-run relationships among the variables.

We first note that contrary to the results of the fixed coefficient model, the param-
eter estimates for the prices are not statistically significant in the demand functions

for the residential and commercial sectors. This is still the case even when we include
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as explanatory variables the indices for the relative electricity prices with respect to
the prices of its close substitutes, such as natural gas for domestic use. One possible
explanation for this finding is the price distortions from the government subsidies to
the electricity prices. Indeed there have been large amount of governmental subsidies
in most of the developing countries. In Mexico, for instance, a government report
estimates the implicit subsidies to the electricity prices during the year 2000 is in the
amount of 4.5 billions of dollars, which amounts to an overall 31 percent subsidy to
Mexican electricity prices.!” The subsidy to the residential customers was approx-
imately 61 percent, while the subsidy to the commercial and industrial customers
was only 7 percent with respect to the real cost of electricity. These figures justify
very well the lack of explanatory power of the prices in the residential demand for
electricity. When there is large amount of subsidy in electricity prices, prices would
naturally become weak determinants of the demand for electricity. In such cases, the

factors related to electricity availability would become more relevant.

In the commercial sector, much of the burden from the price increases can be
treated as cost and eventually passed on to final customers, thereby generating a
significant amount of relief for the commercial customers. This along with the lack
of flexibility to use alternative energy sources in the commercial sector may explain
why the prices are not the significant determinants for the commercial demand for
electricity. Also in the industrial sector, we find that the electricity demand does not
respond to the electricity prices. However, it turns out that the industrial demand
responds to the relative price with respect to the price of diesel, although it did not
respond to other relative prices related to the price of natural gas. These findings
suggest that generators run by diesel are the main back source of electricity used

by the industrial plants for the whole sample period from 1985 to 2000. It is also

17TSHCP, Source: La Jornada, newspaper, Mexico, March 14, 2001.
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consistent with the fact that the use of the generators run by natural gas was promoted
only in the last few years. According to our results in Table 1.3, the price elasticity of
the industrial electricity demand is around —0.05, which is not nearly as big as those
reported for other countries in earlier studies with models of fixed coefficients !® and
that obtained from the rejected fixed coefficient model estimation reported in Table
(1.4). In general it is observed that once the TVC is introduced, the estimates for
all coefficients in the electricity demand equation become lower than those obtained
from the usual FC models used in other studies (see, Westley (1992)).

The estimated values of the time varying coeflicient v, on the income variable y,
are presented by sector at some representative months in Table 1.6, and Figure 1.2
plots these coefficients for the whole sample period. One consistent result comes out of
these estimations is that for all sectors the TVC follows a predominantly increasing
path during the entire fifteen years of the study. Since the values of v, are less
than one but Increasing, we can say that in all sectors the demand for electricity is
becoming less inelastic with respect to the income variable y; (private consumption
for the residential and commercial sectors, and industrial production for the industrial
sector). This suggests either that the stock of electrical equipments and appliances
was becoming less efficient in the consumption of energy,'® or that the new ones
are more intensive in the use of electricity. These perspectives are related to the
growth sources of the economy and the characteristics of the stock of the electrical
equipments. In any case, the changes that have occurred in the values of the time
varying income elasticities seem irreversible.

We find remarkable differences among sectors in the behaviors of the estimated
time varying coefficients v, (income elasticities), and also in the paths they have

taken over the sample period. See Table 1.6. In the residential sector, the total

B8They are between -0.5 and -1. See, for instance, Westley(1992), pp 86.
¥ For example, consider the case when the electrical equipment and appliances are becoming old.
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Table 1.6: Values of the TVC (v,)

Sector
Residential Comimnercial Industrial
Coefficient Value a* b* Value a* b* Value a* Db*
Y1985:02 0.37 0.29 0.23

Y1990:01 038 42 42 030 28 28 024 66 6.6
Y1995:01 039 37 80 031 28 57 025 37 106
Y2000:01 0.40 2.2 104 031 29 87 027 63 175
Y2000:05 040 02 106 032 03 90 027 03 179
a* Increment with respect to the previous value of the table (%)
b* Accumulated increment (%)

increments in the values of the income elasticities over the entire sample period is
10%. The path of the elasticity also shows a clear tendency of slowing down. The
increments are reduced from 4% in the first five years of the sample to only 2.2%
in the last five years, from January 1995 to January 2000. On the other hand, the
income elasticity of the commercial electricity demand increased on average 2.7%
every five years, and by 8% for the entire fifteen years of the study. We observe much
more noticeable variations in the estimates for the TVC (production elasticity) in the
industrial sector. The total increments in values of the TVC here is approximately
18% over the entire sample period, which is far greater than those in the residential
and commercial sectors. In May 2000, the last period of our sample, the value of
the production elasticity reaches the level 0.267, which is still much smaller than the
figures reported in other studies of Latin America and the US. They report essentially

unitary production elasticity, see Westley (1992, p 87) for example.

In the industrial sector, we find similar patterns of the estimated values of the pro-
duction elasticity for two sub-periods: the first from 1985 to 1992, and the other from
1993 to 2000. In each sub-sample, the values of the production elasticity increases
rapidly for the first 3-4 years, but the increments become smaller for the subsequent

years and eventually are stabilized. In both sub-samples, the values of the production
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elasticity increased by around 6.5%. It is interesting to note that the beginning of the
rapid increase in the production elasticity coincides with the periods of recession in
the economy (1985 and 1993) as well as with two events that significantly impacted
the industrial structure: the inclusion of Mexico to the General Agreement on Tariff
and Trade (GATT) organization in 1985 and the negotiation of the North America
Free Trade Agreement (NAFTA) in 1993. The recessions may have been reflected in
low production levels that did not allow an efficient use of the electrical equipment.
If that was the case then the electricity demand response is different depending on
the state of the economy: the increment in electricity demand due to an increment in
production would be higher if the economy is in recession than if the economy is in
expansion. However the increasing path of the production elasticity would be better
explained in terms of the specific characteristics of the industry. In this regards the
inclusion of Mexico to international trade agreements may have triggered industrial
expansion that in turn triggered an intensive use of electricity.

Besides its ability to allow for flexible coefficients, the TVC model also provides
a tool for forecasting the future path of the coefficients. The function that is used to
model the time varying income elasticity takes the form given in (1.5), which involves
only known variables. Hence, once estimated the parameters of the TVC, reported in
Table 1.3, such coeflicients can be readily used to forecast the path of the production
elasticity for the forthcoming months. Property exploited when forecasting electricity
demand either by the TVC cointegrating regression model or by the ECMs based on

such specification.

1.3.4 ECM and forecasting performance of the model

The ECM is formulated based on the TVC cointegrating regression model of the

electricity demand specified in (1.20). From the results on the CCR estimation of the
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TVC model (1.20), we first obtain the following error correction terms
ecy = dy — 7 — Yy — 8*2715 - (Ap*zt,

which is nothing but the fitted residuals, and where the values of fr*,’y;‘,g* and ¢
are reported in Table 1.3. To focus our analysis on the dynamics of the electricity
demand growth driven by those of the economic factors only, we define the following

mean and seasonality adjusted demand series

which extracts the component of the electricity demand explained by income / pro-
duction and prices (when they appear to be statistically significant).
Then we formulate an ECM for d, as follows
q p1 P2 s
Ad, = Z birecsy + Z bopAd,_, + Z bap Ay, + Z barAp;_i, + € (1.21)
k=1 k=1 k=1 k=1
We note that more than one lags of the error correction terms ec; may be included
on the right hand side of the above ECM. This is because the presence of the TVC
in the error correction term eliminates the collinearity problem between its lags and
the lagged differences of the other included variables, which is always an issue in the
estimation of the ECMs based on fixed coefficient models. The coefficients by, of the
lagged error correction terms characterize the adjustment path over ¢ periods of time
towards the equilibrium value of the demand after an innovation shock from factors
not related to the explanatory variables included in the demand equation (1.20).
Similar interpretations may also be obtained for the shocks from the variables in the
model (1.20).
From the estimation of the ECM we are interested in the coefficients of the lagged

error correction terms as they are the new feature of the model. As the data are
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Table 1.7: Error Correction Coeficients

Sector
Residential Commercial Industrial
Coefficient Value t value Value +t value Value ¢t value
by, -0.918 -6.487 -0.759 -5.526 -0.791 -5.520

monthly we set p;, p2 and p3 at 12 and focus our attention on the statistical signif-
icance of the coefficients by;. Estimating the model for several values of ¢ we found
that including more than one lag of the error correction term in model (1.21) makes
all the coefficients by, statistically not different from cero; however if only one lag
of such error term is included the coefficient by; become statistically different from
cero and with the expected negative sign which indicates a stable adjustment process
towards the long-run equilibrium. Such a result suggests that the adjustment of the
electricity demand is concentrated in the immediate period that follows the external
shock. The value of the error correction coefficients for each sector are reported in

Table 1.7.

Finally to compare the performance of the TVC cointegrating regression model
(1.20) with the previous ECM (1.21) and the rejected fixed coefficient model (1.4) we
develop an out-of-sample forecast comparison per sector. Our sample data is therefore
divided into two subsets: the in-sample set that runs from 1985:01 to 1999:05 and the
out-sample set that includes the remaining twelve months. The procedure to forecast
the electricity demand for the last year in the sample was the following. All models,
the fixed coefficient model (FCM), the TVC cointegrating model (TVCCM) and the
ECM were reestimated with the in-sample data. Then a twelve months forecast were
estimated using the observed data of the exogeneous variables, y;, p; and z;, and the
forecasted values of the time varying coefficients %4,. The results of such estimation
was then compared with the observed electricity demand. In Table 1.8 we present

the results of the estimation.
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As it was expected based on the specification model tests, the root mean square
error (RMSE) of the out-of-sample forecast shows that the TVC cointegrating regres-
sion model outperformed the out-of-sample forecast of the fixed coeflicient model in
all sectors. In particular the reduction of the RMSE is between 30 and 55% between
these two models. On the other hand in the residential and commercial sectors the
ECM predicts better the path of the electricity demand than the TVC cointegrating
model does. However, meanwhile in the residential sector the better performance of
the ECM is observed mainly in the short run, i.e. the first three months of the fore-
casting horizon, in the commercial sector the forecasted demand follows closely the
observed levels along all the twelve months of forecast. The better short run response
to external shocks observed in the residential sector can be understood taking into
account the bimonthly payment schedule followed by the CFE for the sector and the
inflexibility of the residential electricity prices. The schedule of payments not only
induce some lags in the response of the household but also contribute to dilute quickly
its effects on the overall electricity consumption in this two months period. Addi-
tionally, the fact that prices do not reflect the conditions of the electricity supply and
demand induce a high persistent in households electricity consumption. On the other
hand, the long lasting adjustment process of the commercial sector indicates the exis-
tence of more economics incentives to actively adjust its electricity demand according
to the variability of the private consumption. A different picture is obtained from the
forecasting comparison in the industrial sector. The RMSE obtained from the TVC
cointegrating regression model outperformed that obtained from the ECM, as it is
showed in Table 1.8. Such result suggests that in the industry sector the adjustment
in electricity consumption is more related with long term changes than to temporal
shocks in the industry. Part of the reason of this pattern is the inflexibility of the

equipment to use other kind of energy but also to the lack of available alternative



34

energy sources; for example the natural gas, which is not easily available in Mexico
because the limited infrastructure for its distribution. As long as the market becomes
less regulated and electricity substitutes become more available, we expect the forma-
tion of more economic incentives to continuously adjust electricity consumption and
therefore the presence of some lasting effect of the external shocks on the electricity

consumption patter of the sector.

1.4 Conclusion

In this chapter we have proposed and applied a time varying coefficient (TVC) coin-
tegrating regression model to estimate the demand for electricity in Mexico with
the income/production and electricity prices as explanatory variables. To deal with
the unknown distribution of the error term that follows from the approximation of
the TVC, we estimate canonical cointegrating regressions with the income/production
elasticity modelled as a varying coefficient. Performing Wald type specification model
tests we found that the fixed coefficient model was not accepted for any sector, which
means that a fixed cointegrating relationship does not exist among the variables. On
the contrary, the specification test of the validity of the proposed TVC cointegrat-
ing regression model was accepted for all sectors, favoring the notion of a changing
relationship between electricity demand and its main determinants. Also we found
the following evidences: first, the inclusion of the TVC in the electricity demand
model significantly reduced the levels of the estimated coefficients, which represent
the elasticities, compared to those estimated from the usual fixed coeflicient models.
In particular it was found that the income/production elasticity of demand is inelas-
tic for all sectors. This is quite surprising since many earlier studies in the literature
reported that the income/production elasticity of electricity demand is near unity.

Second, in the last fifteen years such elasticities have taken predominantly increasing
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paths in all sectors, and do not show evidence of returning to their previous levels.
Third, once we assume a TVC in the regression, price becomes irrelevant as an ex-
planatory variable for the long-run behavior of the demand for electricity, except for
the case of industrial demand which weakly responded to the relative price of elec-
tricity with respect to the price of diesel. This lack of explanatory power of prices in
the electricity consumption of the residential and commercial sector may be explained
by the rigidities of the prices, they are determined by the government and they are

heavily subsidized.

The idea of the temperature response function was also developed to construct a
variable that captures the seasonal pattern of the monthly data. In fact the proposed
Fourier Flexible Form (FFF) function encompasses other approaches suggested in
the literature, for example the inclusion of the average temperature as an explanatory
variable in the demand equation. The asymmetric “U” shape form of the function and
the differences across sectors were both obtained in our estimations. Using this form,
we found that the response of the residential sector is most sensitive to the changes in
temperature, while the industrial sector shows the lowest response to similar changes.
Another important finding was that the second moment of the temperature data is
also a relevant determinant, if not the most important determinant, of the seasonal

component of the demand for electricity.

Also we showed the possibility to include more error term lags in the specification
of the ECM as a direct result of having TVC in the cointegrating regression model.
With this last specification the problems of collinearity presented with fixed coeffi-
cients are eliminated. This new feature in the ECM allows to test the possibility of
adjustment towards the long-run equilibrium that span for more than one period.
For the estimation of the ECM of the electricity demand in Mexico we found that

the error correction adjustment process is concentrated in the first period. Also we
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performed an out-of-sample forecast comparison between the TVC cointegrating re-
gression model, its corresponding ECM and the fixed coefficient model. As it was
expected the TVC cointegrating regression model outperform the fixed coefficient
model in forecasting electricity demand in all sectors: sometimes reducing the root
mean square error more than 50%. In turn, the ECM outperform fhe TVC cointe-
grating regression model in the residential and commercial sectors. However some
inflexibilities to adjust the electricity demand were found in the industrial sector,
which were indicated by the better performance of the TVC cointegrating regression
model.

All of these results regarding the evolution and significance of the elasticities and
the forecasting performance of the models become relevant when considering the
enactment of energy policies based on electricity demand forecasts, in which case the
model can be used to forecast the path of the time varying coefficients in the medium
run. Finally, among the issues for further investigation are the apparent irreversible
increasing trend of the income elasticity, the low level of the price elasticity in the
industrial demand and the lack of explanatory power of prices for the residential and

commercial demand for electricity.
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Chapter 2

Electricity Demand and Supply in Mexico

2.1 Introduction

Wherever consumers obtain electricity supply from an integrated network, altering
supply to any one consumer generally affects the cost of supplying remaining con-
sumers connected to the network. In particular, an anticipated expansion of demand
in one location could affect the type and level of capital investment in many parts of
the network. This consideration is particularly important in a country such as Mexico
that is likely to experience not only a rapid expansion in total demand for electricity
over the next decade but also a geographical pattern of demand growth that differs
somewhat from the historical experience.

In this paper, we first present a model for forecasting electricity demand in Mexico.
The model has two components. Forecasts of the aggregate demand for electricity
are derived by fitting a time series model to the aggregate production data. Using
data disaggregated to the regional level we also estimate a model of regional demand
shares. The two models are then combined to yield a forecast of demand at the
regional level.

In section 3 of the chapter, we present a simplified model of the Mexican elec-

tricity transmission network. We use the model to approximate the marginal cost of
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supplying electricity to consumers in different locations and at different times of the
year. In the final section of the chapter, we examine how costs and system operation
will be affected by proposed investments in generation and transmission capacity and

the forecast growth in regional electricity demands.

The analysis presented in the chapter has implications for a number of critical
policy issues. In particular, our model reveals that the marginal costs of supplying
customers differ from electricity prices. Subsets of consumers are either being taxed
or subsidized, albeit often in a hidden or implicit way. Since such taxes or subsidies
affect the efficiency of resource use, they ought to be important to policy discussions

regarding the electricity industry.

The marginal cost of supplying electricity in different locations or under different
load conditions also has implications for how regulatory reform is likely to affect
different types of customers and therefore the political feasibility of reform. The
largest obstacle to such reforms is that they are likely to induce substantial cost
reductions, primarily through the elimination of excess employment in the industry.
Current employees in the industry therefore constitute a powerful vested interest
opposed to reform. Altering the system so that prices more closely reflect marginal
costs is also likely, however, to make some consumers worse off and they, too, are

likely to oppose reform.

Our demand forecasts also raise some critical policy issues. They imply that
large investments in the Mexican electricity industry will be needed over the next
decade. If the electricity industry remained fully publicly owned, the government of
Mexico would need to raise significant revenue to fund these investments. Mexico has
many alternative valuable uses for scarce tax revenues, however, and most of these
alternatives are far less amenable to private sector involvement than is electricity

supply. It therefore is not surprising that the government has turned to the private
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sector to supply much of the needed generating capacity. The route the government
has taken, however, is to rely on build, lease and transfer (BLT) projects. Under these
schemes, the private sector builds the new plant, leases it under a long term contract
with the government-owned utility, and ultimately transfers the plant to government
ownership at a specified future date. This approach leaves the government firm in
charge of operating the plant. It also leaves the government firm bearing all the risks
associated with inaccurate forecasts of future electricity demand.

Another approach would be to reform and restructure the industry in a way that
allows a competitive wholesale electricity market to develop. Private investors then
would not only finance investments in the industry, but also would transfer risks from
consumers to the capital markets where they can be borne more efficiently. The
reforms would need to split the existing publicly owned firms into many separate
firms to ensure that the industry remains competitive enough to protect the interests
of Mexican consumers. The transmission, distribution and generation functions of
the existing firms would also need to be separated. New entrants to the industry
would not have any confidence that they could obtain non-discriminatory access to
the transmission and distribution networks if the operator of that system continues
to own generating plant.

Another advantage of developing a competitive wholesale market is that prices
would more closely reflect the true marginal costs of supply. In particular, a competi-
tive wholesale electricity market would eliminate cross-subsidies hidden in deviations

between prices and marginal costs of service.

2.2 Forecasting regional electricity demands

Electricity demand is measured by the metered final consumption of end users. To

supply power to consumers, however, generating plants also have to supply sufficient
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energy to compensate for the losses incurred in the process.! Hence, any forecast of
power needs must take account of losses that in some cases are hard to identify. In
particular, losses in Mexico arise not only from resistance losses on the transmission
and distribution wires, but also from theft. The approach we take is to forecast
total power generation. This implicitly assumes.that there is a constant relationship

between losses and total demand.?

2.2.1 Modeling aggregate electricity demand

The methodology used to make aggregate demand forecasts is based on the model de-
scribed in Chapter 1. The model is fit to total power generation data from Comisién
Federal de Electricidad (CFE) over the period January 1987 to November 2001. Es-
sentially, the logarithm of total power generation (Q) is related to GDP (y), the
relative price of electricity (p), and a variable (z), based on temperature records, that
accounts for seasonal variations. Details of the model and the estimated equations

can be found in Appendix A.

2.2.2 Using the model to forecast aggregate demand

In order to use the estimated model to forecast electricity demand, we need to forecast
the determinants, y,p and z. We use the average pattern holding over the sample
period for the temperature variable z. To forecast y, we use the GDP growth forecast

for 2002 and 2003 made by specialists and collected and reported by the Central Bank

In the year 1999, for example, Mexican electricity consumption by sectors represented
144,922GWh, or about 80% of the total 180,977GWh produced in the country. Net imports of
electricity into Mexico in 1999 were only 524GWh. Consumption within the generating plants was
about 8,887GWh, or 5% of total production. The remaining 27,621GWh (approximately 15% of
domestic production) represents transmission and distribution losses in the system and losses due
to theft.

2Given the lack of storability of electricity, the consumption of electricity (losses plus demand
from agents) is always equal to its generation.
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of Mexico.?

Beyond 2003, we assume that the annual GDP growth rate converges
gradually to an equilibrium level that gives an average growth of 5.2% for the rest of
the decade. This is the average growth rate assumed by the CFE in its projections of
electricity sales and has the virtue of making our forecasts more comparable to those
of the CFE.4

In order to forecast p, we note that the Mexican government has a stated policy
of applying a monthly adjustment to electricity prices that is aimed at compensating
for the effect of inflation. In practice, the adjustments have not kept the relative price
of electricity constant. Indeed, as we show in Appendix A, the relative price trends
to drift over time. The rate of price adjustment has also varied for different types of
customers.’ Evidently, politics has played a role in setting electricity prices. Since we
do not have a model of the political process, we simply assume that real electricity
prices will fluctuate around the mean observed in the previous six years. We preserve
the monthly seasonal component of p by estimating a regression (also presented in
Appendix A) that allows the mean value of p to differ systematically from one month
to the next.

Substituting the forecast values of y, p and z into the estimated model, we arrive
at the forecast of annual electricity demand in Mexico from 2002 to 2010 as reported
in Table 2.1. Our model actually delivers monthly total power generation forecasts.
These have been aggregated to yield the corresponding annual values. For some of
the subsequent analysis, however, we will be interested in the monthly variations.

For comparison, we have included the results before and after the recent price

3Private Expectation Survey, Bank of Mexico, May 20, 2002. The consensus forecast is reported
at http://www.banxico.org.mx/elnfoFinanciera /FSinfoFinanciera.html

4Secretaria de Energfa. “Prospectiva del sector eléctrico 2001-2010”. Page 96.

®Since January 2001, the montly adjustment for the residential sector has been 1.00526. This
corresponds to an annual increment of 6.5%. For the service sector, the average monthly adjustment
was 1.00682, yielding an annual increment of 8.5%. The adjustment factor for the electricity price
charged to-industry is indexed to the price of power generation fuels. This information was obtained
from the CFE, http://www.cfe.gob.mx/www2/ Tarifas



Table 2.1: Power needs forecast 2002 - 2010

GDP Total PowerGeneration
With price increase ~ Without price increase

Year Growth (%) GWh  Growth (%) GWh  Growth (%)
1991 118,348
1992 3.54 121,604 2.75
1993 1.94 125,864 3.50
1994 4.46 137,684 9.39
1995 -6.22 142,503 3.50
1996 5.14 151,890 6.59
1997 6.78 161,385 6.25
1998 4.91 170,983 5.95
1999 3.84 180,917 5.81
2000 6.92 191,340 5.76
2001 -0.38 191,340 -0.14
2002 1.50 199,857 4.60 203,830 6.68
2003 4.30 207,724 3.94 215,895 5.92
2004 5.45 220,942 6.36 229,921 6.50
2005 5.91 234,428 6.10 244,585 6.38
2006 6.20 247,401 5.53 258,742 5.79
2007 5.96 260,008 5.10 272,487 5.31
2008 5.85 273,247 5.09 286,950 5.31
2009 5.90 288,510 5.59 303,660 5.82
2010 5.90 306,221 6.14 323,103 6.40
Average Growth Rates
1991-2001 3.09 4.94 4.94
2001-2010 5.20 5.38 6.01
1991-2010 4.09 5.15 5.45

Note: The electricity price increaseresults from the reduction of subsidies
to households. We calculate this will result in a 6.97% increase in p.
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adjustment that reduced federal subsidies in the residential sector. This one time
increase in residential electricity prices is estimated to be around 30%.% To translate
the residential price increase into an effect on p, we note that this sector represented
23.23% of total electricity sales over the last five years. Hence, the overall increase
in electricity prices from the subsidy reduction will be about 6.97%. Our estimated
model implies that a price increase of that magnitude will reduce the average annual
growth rate of electricity generation in the period 2001-2010 from 6.01% to 5.38%,

with the effects concentrated in the first two years.”

2.2.3 Forecasting regional demand shares

Mexico has large contrasts in climate, topography, resource availability, economic de-
velopment and population density among its different regions. These contrasts have
direct implications for the optimal siting of power generating plant and the distri-
bution of electricity demand around the country. Regions with insufficient natural
energy resources, underdeveloped infrastructure, or a large demand for power, are
likely to import electricity generated elsewhere. Conversely, regions with substantial
hydroelectric generating capacity, or substantial reserves of fossil fuels, are likely to
have surplus power available for export. Differences in climates also mean that peak
demands for electricity do not necessarily occur at the same time, allowing regions to
save on generating capacity by exchanging power with neighboring regions.

To capture the regional differences in the Mexican electricity demand we began

with data on electricity sales in the 14 administrative regions of the CFE. Although

6 According to a report in the newspaper Reforma on February 9, 2002, Banxico estimated the
reduced subsidy would increase residential electricity prices by 30%.

"This estimated reduction in power needs is probably an upper bound. Although household
electricity demand is likely to be more elastic than demand in the services sector (where lighting is
the dominant use), it would be less elastic than demand in industry. Using the overall elasticity may
thus overstate the responsiveness of demand to price. In addition, a price increase for households is
likely to raise electricity losses through theft.
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8. Centro Occidente
9. Centro Oriente
10. Centro

11. Oriente

12. Sureste

13. Peninsular
14. Luz y Fuerza

1. Baja California
2. Noroeste

3. Norte

4. Goifo Norte

5. Golfo Centro
6. Bajio

7. Jalisco

Figure 2.1: Administrative regions of the CFE

sales do not necessarily reflect demand,® they are likely to be a better indicator than
local production. In most of the cases, regional power consumption will differ from
regional power generation because of trading among regions through the transmission
system. In order to link electricity supply and demand we also need to account for
losses. In this section of the chapter, we compute and forecast regional sales shares
as a first approximation to the regional power consumption. The next section focuses
on estimation of the losses. The administrative regions of the CFE are illustrated in
Figure 2.1.

To forecast regional sales, we hypothesized that sales shares would change only
slowly through time as the relative industrialization and population growth rates
shift from one region to the next. In particular, we estimated a set of equations that

allowed the shares S;; of demand in region 7 in period ¢ to vary from one month to the

8Flectricity demand and sales can differ because of billing lags and the theft of electricity. If
the latter factors do not differ systematically across regions, however, the pattern of sales ought to
approximate the geographic distribution of demand.
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next and to grow at a declining or accelerating rate. Details of the modeling strategy

are provided in Appendix A.

The regions with the highest (region 8) and second highest (region 10) positive
growth in demand share both include suburban parts of Mexico City. The positive
relative growth in both of these regions is, however, slowing down. By contrast, the
third fastest growing region (region 4, the north gulf including Monterrey) has 'an ac-
celerating growth rate. Baja California has an even stronger accelerating growth rate,
although its current growth rate is below that of the north gulf. Other regions with
a reasonably strong, and statistically significant, growing share of demand include
Norte (region 3) and Golfo Centro (region 5), both of which border region 4. Unlike
region 4, the growth rate of their demand shares is tending to decline, although the
deceleration is not significant in region 3. The Yucatan peninsula (region 13), like

region 3 has a positive but weakly decelerating growth in demand share.

The central Mexico City region served by Luz y Fuerza exhibits the strongest
declining share of demand and there is little evidence that the trend is changing over
time. Since this is already the most developed area in Mexico, it is not surprising
that the market has relatively fewer opportunities to grow. The share of demand in
region 11 (Sureste, the gulf coast east of Mexico City) is falling almost as fast as for
Mexico City, but there is stronger evidence that the rate of decline is slowing. Region
7 (Jalisco) is the only other region with a strong and statistically significant declining
share of demand, but it also reveals stronger evidence that the rate of decline is

slowing.

The estimated monthly changes in shares (presented in Table 5.6 in Appendix A)
allow the regions to be placed into groups with similar patterns of demand variation
across months. Regions 1 (Baja California) and 2 (Noroeste) have a tendency to show

smaller demand shares February-April and larger shares June-November. Regions
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5 (Golfo Central) and 13 (Peninsula) also have significantly smaller demand shares
February—April, but do not share the tendency of the two northwestern regions to
have significantly higher demand shares in the second half of the year. Region 11
(Oriente), which lies between regions 5 and 13 on the Gulf coast, has demand shares
that do not differ significantly from month to month. The remaining northern regions,
3 (Norte) and 4 (Golfo Norte) are like regions 1 and 2 in that they have significantly
larger demand shares May—November, but they do not have significantly lower shares

in first half of the year.

The remaining central (6, 9 and 14) and southern Pacific coastal (7, 8, 10, 12)
regions tend to have smaller, not larger, demand shares in the second half of the
year. In regions 7 (Jalisco), 10 (Centro Sur), 12 (Sureste) and 14 (Centro, Luz y
Fuerza) the months with significantly lower demand shares last April-November. In
regions 8 (Centro Occidente) and 9 (Centro Oriente) the period with significantly
lower demand is only July—October. The northernmost of these regions, 6 (Bajio),
only has a significantly lower demand share from August—November. Regions 6, 8
and 9 are also the only ones to have significantly larger demand shares in the early
part of the year. In region 6 it lasts January—June, while in regions 8 and 9 the period

of above average demand share is shorter, lasting February—April.

The estimated regional share model can be used to forecast demand shares by
month and year. We can obtain an idea of how the different growth paths influence
demand shares by examining forecast annual demand shares for 2005 and 2010. These
are presented in Table 2.2. They suggest that by 2005 the demand in Golfo Norte will
be approximately equal to, if not slightly above, the demand in the Mexico City area
served by Luz y Fuerza. The share of the Luz y Fuerza region is expected to decline
further by 2010. The regions surrounding Mexico City (Bajio, Centro Occidente,

Centro Oriente and Centro Sur) will, however, all see growing shares of demand.
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Table 2.2: Actual 1999 and forecast electricity demand shares by administrative region

(%)

Region 1999 2005 2010
1 Baja California  5.83% 6.65%  7.39%
2 Noreste 7.09% 7.22% 7.13%
3 Norte 7.94% 8.14% 817%
4  Golfo Norte 15.28% 17.02% 18.72%
5  Golfo Centro 4.66% 4.56%  4.49%
6  DBajio 8.79% 883% 8.95%
7 Jalisco 586% 5.69%  5.72%
8  Centro Occidente 5.57% 593%  6.08%
9  Centro Oriente 4.42%  4.56%  4.65%
10 Centro Sur 3.70%  3.58%  3.59%
11 Oriente 6.25% 5.47%  5.06%
12 Sureste 2.96% 2.95%  3.00%
13 Peninsular 2.87%  2.98%  3.08%
14 Luz y Fuerza 18.78% 16.36% 13.97%

Total 100.00 100.00 100.00

Table 2.3: Power demand and demand growth (from 1999) by region

1999 2005 2010 Annual

Region GWh GWh %Inc GWh %Inc growth
1 Baja California 8,165 13,312 63.0 20,031 1453  8.50
2 Noroeste 10,331 14,460 40.0 19,335  87.2 5.86
3 Norte 11,458 16,298  42.2 22,153 93.3 6.18
4 Golfo Norte 21,908 34,105 55.7 50,743 131.6 7.94
5 Golfo Centro 6,589 9,142 38.8 12,170  84.7 5.74
6 Bajio 12,849 17,809 38.6 24,247 88.7 5.94
7 Jalisco 8,454 11,402 349 15506 834 5.67
8 Centro Occidente 7,785 11,874 525 16466 111.5  7.05
9 Centro Oriente 6,429 9,140 42.2 12,601 96.0 6.31
10 Centro Sur 5,398 7,165 32.7 9,737 804 5.51
11 Oriente 9,128 10,968 20.2 13,684 499 3.75
12 Sureste 4,206 5,918  40.7 8,127 93.2 6.17
13 Peninsular 4,144 5967  44.0 8,337  101.2 6.56
14 Luz y Fuerza 27,445 32,763 194 37,868 38.0 2.97
Total 144,285 200,324 38.8 271,005 87.8 5.90
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Baja California, like Golfo Norte, is also likely to see a substantial increase in its
share of demand by 2010.

We obtain a forecast of regional electricity demand by combining the overall de-
mand forecast derived in the previous section of the chapter with the forecasts of
regional shares. Table 2.3 gives the resulting regional demands (in GWh annually)
and total and average annual growth rates for demand in each region.

The substantial differences in forecast regional electricity demand growth rates
may have important policy implications. A high overall rate of growth of demand
for electricity will require substantial investment in the industry. This problem could
be exacerbated, however, if the geographical distribution of future demand differs
greatliy from the current distribution. The above average growth of demand in the
northern regions, for example, is likely to require a substantial increase in generating
plant in the north or a substantial upgrading of the transmission links either from

further south in Mexico or from the US.

2.3 A model of the electricity supply system

In this section, we discuss a model of the Mexican electrical network that allows us
to approximate the spatial and temporal variations in the marginal cost of supplying
electricity in 1999. Discussion of some of the more technical issues, including an
outline of the equations included in the model, can be found in Appendix B.

The model calculates the least cost pattern of electricity production and trans-
mission required to meet a discrete number of demand loads on the system. The
demands are chosen to be “representative” of different times of the year. The geo-
graphic dispersion of demand also is approximated in a discrete way by assuming that
the demand for a particular region is concentrated at a single “node.” The model

delivers an estimate of the “usual” short run marginal cost of supplying electricity in
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different regions and at different times of the year.

The aggregated demand data and the broad assumptions about other technical
characteristics of the system make the marginal costs obtained from the model ap-
proximations to the true marginal cost. They are useful for indicating how prices
might change were they to more closely reflect marginal costs. The model also is
useful for examining longer run issues, such as the effects of investment and demand
growth on average system costs. Our model would not be useful, however, for dis-
patching generators to ensure least cost operation of the system or for predicting how

costs or system operations are likely to be affected by an emergency.

2.3.1 Approximating spatial and temporal variation

Geographical structure. In principle, the cost of supplying electricity will differ at
every single connection point to the transmission network. For our current purposes,
it is impractical to calculate all these nodal prices. We instead consider a discrete
approximation to the physical layout of the network and the location of major centers
of supply and demand.

In general, there is no unique method to determine the boundaries of the geo-
graphic regions. The appropriate level of aggregation can depend on the objective
of the analysis. For example, a highly aggregated model may be sufficient when the
objective is to identify electricity trade among countries, states or utility districts.
Small or isolated regions can be subsumed into larger regions without having much
of an impact on the questions of interest.

The number of regions included in the model, and the size of each, also depends
on the available data. We based the geographical division of the country on the 32
“transmission regions” defined by the CFE. The regional data examined above was

based on the CFE accounting records. In order to calculate costs or examine opti-
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Table 2.4: Generating capacity, production and estimated demand by transmission
region, 1999

Transmission Generators at year end 1999  Total QOutput Demand
Region Total Type® MW GWh GWh
1. Sonora Norte 4 T 807 3,876 4,691
2. Sonora Sur 6 3T, 3H 746 3,343 3,261
3. Mochis 8 2T, 6H 1,187 3,050 2,288
4. Mazatldn 1 T 616 3,467 992
5. Judrez 1 T 316 1,561 4,197
6. Chihuahua 7 5T, 2H 1,118 6,289 3,698
7. Laguna 5 T 643 3,619 6,168
8. Ri6 Escondido 5 3T, 2H 2,710 18,359 2,238
9. Monterrey 10 T 1,215 5,841 19,214
10. Huasteca 1 T 300 4,732 3,922
11. Reynosa 2 T 521 2,680 3,090
12. Guadalajara 9 1T, 8H 1,352 2,147 9,620
13. Manzanillo 2 T 1,900 11,194 1,355
14. Ags-SLP 4 1T, 3H 720 3,963 7,384
15. Bajio 13 3T, 0H, 1R 1,447 8,895 17,197
16. Lazaro Cardenas 3 1T, 2H 3,395 16,043 414
17. Central 20 7T, 13H 3,526 19,023 43,089
18. Oriental 17 3T, 12H, IN, 1R 4,719 29,835 14,796
19. Acapulco 4 1T, 3H 681 1,498 2,212
20. Temascal 3 2H, 1R 358 1,736 1,521
21. Minatitlan 1 H 26 119 2,989
22. Grijalva 7 H 3,928 - 17,342 2,918
23. Lerma 2 T 164 902 924
24. Mérida 4 T 277 1,261 2,415
25. Chetumal 1 T 14 12 275
26. Cancun 7 T 529 1,471 1,199
27. Mexicali 5 2T, 3R 684 4,680 3,061
28. Tijuana 2 T 830 2,785 5,118
29. Ensenada 2 T 69 9 906
30. Cd. Constitucién 6 5T, 1R 120 402 190
31. La Paz 2 T 156 709 825
32. Cabo San Lucas 1 T 30 59 153
Total 164 83T, 73H, 1IN, TR~ 35,5685 180,901 172,319

a. T = oil, coal or gas thermal, H = hydroelectric, N = nuclear,

R = plant using “renewable” wind and geothermal energy sources.
g gy
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Figure 2.2: Mexican electricity transmission network, 1999.

mal investments, we need to relate the demand data to the physical supply system,
primarily the generating plants and transmission lines. The engineering data sup-
plied by CFE is organized by transmission region. This subdivision highlights the
high voltage transmission network that connects the most important industrial and
population centers of the country. The geographical distribution of such regions and
the 1999 transmission network (with its capacities in MW) are illustrated in Figure
2.2. Table 2.4 gives basic data on generating capacity located in the 32 transmission

regions.

The number of transmission regions exceeds the number of accounting regions,
and the boundaries of the two sets of regions sometimes overlap. We constructed the
demand shares per transmission region by disaggregating the shares for the 14 ad-

ministrative regions into the 32 transmission regions based on population data of the
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main Mexican cities.® The right-hand column of Table 2.4 shows our allocation of the
1999 demand data. The remainder of the analysis will be based on the transmission
regions with demand imputed in this manner.

By the end of 1999, the Mexican electric supply system had 164 active fixed
generating plants'’ with a total effective capacity of 35,584 MW. While 44% of the
plants were hydroelectric and 46% thermal, the capacity shares were more unequal,
with these two types of plant supplying 27% and 63% of the total capacity respectively.
Capacity data for each plant were collected from annual public reports of the CFE.!!
We approximated the current annual “availability” of each plant by its maximum

annual production in the last three years of operation.

Temporal structure. An important feature of most electricity systems is that the
demand load on the system varies over time. In particular, extreme weather conditions

can significantly affect the demand for electricity.!?

Our analysis of the regional
variation of demand showed that, in the north of Mexico, electricity consumption is
considerably higher during the second half of the year. In the southern half of the
nation, demand shares tend to be lower during this period.

The demand for electricity for cooking also displays a distinct daily pattern that
also tends to coincide with the daily fluctuation in demand for electricity from elec-
trified commuter rail systems. Industrial demand for electricity tends to be higher

during daylight hours, although 24 hour operation of some large plants can also raise

the demand for electricity during off-peak periods. The demand for electricity for

97To allocate the forecast future demand shares to the transmission regions, we used the population
growth projections of the Consejo Nacional de Poblacion (CONAPO), http://www.conapo.gob.mx,
the main governmental institution in Mexico involved in demographic analysis.

WO fficially, 170 plants were said to be available in December 1999, but not all of them operated
at some time during that year.

1 The relevant CFE reports are titled “Informe de Operacion.”

12The seasonal pattern of electricity demand also is affected by the fact that many businesses have
non-working days at the same time.
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lighting (for which there are no good substitutes) is, of course, highest during the
night, but drops substantially in the early morning hours. Electrical water heaters
can be operated at night when the demand for electricity is otherwise relatively low,
but in this application natural gas is a strong competitor for electricity.

In addition to the daily and seasonal fluctuations in demand, there are also sub-
stantial weekly patterns. Most obviously, demand is lower on the weekends than
during the week.

The seasonal, weekly and daily fluctuations in demand matter because the costs
of supplying electricity can change substantially as a function of both the total sys-
tem load and its geographic distribution. The generating plant have different costs
of production, while there are also costs associated with generating electricity in one
location and transmitting it large distances to be consumed elsewhere. Furthermore,
the difficulty!® of storing electrical energy makes it difficult to arbitrage price differ-
ences over time. We therefore need to approximate the pattern of demand fluctuations
over time in order to obtain a realistic idea of how costs vary over time. As with the
geographical diversity discussed above, however, a discrete approximation to the time
variability allows us to simplify the model.

Again, the optimal level of detail will depend on the purpose for which the model
is being constructed. As with the geographical information discussed above, however,
the detail we can include in the model is limited by the data that are available to us.

The Secretary of Energy™® published average daily load curves for the year 1999.
These curves are available separately for the North and South areas of the country,*®

for two seasons, Summer (May to August) and Fall (November to February), and

13Tn some situations, pumped storage can be used to store a limited amount of energy. More
generally, the availability of hydroelectricity increases the intertemporal substitutability of electricity
supply.

14 «prospectiva del sector eléctrico 2000-2009”, Secretary of Energy.

13The North region includes the North and Northeast areas. The South region includes the
Occidental, Central, Oriental and Peninsular areas.
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for weekdays and holidays. The curves, graphed in Figure 2.3, represent the average
demand per hour during a typical day expressed as percentage of the maximum
annual demand.!® For the remaining months (March, April, September and October)
we constructed a daily load curve that was a weighted average of the two published
curves, having as weights the electricity demands in the Summer and Fall seasons.
We assume that all the transmission regions within an area (North or South) have the
same daily pattern of electricity demand and thus the same daily load curve shape.
We derived the total demands (weekdays plus weekends and holidays) in each
of the 32 transmission regions in each season by aggregating the monthly demands.
The daily load curves were used to allocate demand in each season to weekdays ver-
sus weekends or holidays. Finally, demands in a weekends-holidays “season” were
obtained by aggregating the weekend or holiday components across seasons. In sum-
mary, the data allows us to calculate, in each of the 32 transmission regions, the

electricity demands for four seasons:

1. Fall, covering working days for the 4 months from November to February;

2. Summer, for working days for the 4 months from May to August;

3. Shoulder, for working days for the 4 months of March, April, September and
October; and

4. Weekends-Holidays, that includes non-working days during the whole year.

To capture the intraday demand dynamics, we could, in principle, use the average
daily load curves in each season to construct hourly electricity demand.!” How-
ever, to keep the model manageable, we approximate the hourly demand fluctuations

using step functions. The details of this approximation procedure are provided in

16 None of the load curves in Figure 2.3 attain the maximum demand since they represent “average”
loads in each season.

Y"Even this involves a simplifying assumption that all days in a season have the same demand
pattern that can be scaled up or down according to the monthly demand.
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Appendix A.

For constructing the hourly demand in 2005, we assumed that the daily load curves
are the same as those in 1999. This approach was used because of the limited nature
of our investigation. In principle, one could estimate the change in the load duration
curves over time based on changes in the prices of electricity (including changes in
peak relative to off-peak prices), economic growth (as measured by GDP) and weather
conditions. In effect, the demand estimation carried out above would be repeated for
different load patterns on the system. The estimated variation in demands by time
of day (as determined by system load) could then be used to make forecasts in place

of the aggregate forecasts with an unchanging pattern of demand that we have used.

2.3.2 Generation and transmission technologies

To calculate the costs of supply, we need information about the generation and trans-
mission technologies. With regard to the generating plants, we need to know not
only generating costs but also capacities and the average level of availability. For the
transmission links, we need to know the overall capacity and, to calculate the loss

factors, the number of circuits per link.

Generating plant costs. Regardless of the type of generating technology, we as-
sume that the cost function of a plant can be represented by two components. The
first component is an annual fixed cost. It includes the fixed components of the op-
eration and maintenance costs of the plant, such as the labor force required to keep
the plant operational even if it is not generating electricity. We assume that the fixed
costs, given in dollars per MW, are a linear function of the total capacity of the plant
set at the beginning of the year. The variable cost is the second component of the
generating cost of each plant. It includes the cost of fuel and some other operation

and maintenance costs, mainly on the cost of labor, that vary with the amount of
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electricity that the plant is generating. We assume that this cost is a linear function
of the MWh generated by the plant. The variable cost per MWh is constant during
a given period, but could vary from one period to the next as a result of seasonal
fluctuations in fuel prices in particular.

We based the operation and maintenance costs for thermal plants on cost estimates
provided by the CFE (COPAR, 1999) for “typical plants” in Mexico classified by size

of the plant and type of technology.!®

The fuel cost of thermal plants was calculated using the average technical efficiency
of each plant (fuel/MWh). In turn, we obtained the average efficiency of a plant by
dividing its overall fuel consumption for the year 1999 by its power output in the same
year. The monthly cost in pesos was then obtained by multiplying the required fuel
input by the monthly fuel prices. The seasonal prices, for example the price for the
peak period May-August, were computed as the average price in the months falling
into that period. The relevant information was obtained from the CFE.!*?

The hydroelectric plants do not have a fuel cost as such but are required to pay
“resource levies” on the cubic meters of water they use. We shall take these “resource
levy” payments as part of the variable cost.

The CFE publications do not provide “typical” operation and maintenance costs
for hydroelectric plants. This may be because such plants are more heterogeneous
than the thermal plants. They vary in size and efficiency much more than do the
thermal plants, and the MWh of electricity generated only approximates water use.
The CFE publications do, however, provide costs for ten existing large hydroelectric

plants and we use these to extrapolate the costs for other plant sizes. Specifically,

18«Costos y Parametros de Referencia”, COPAR, CFE 1999. In practice, costs are also likely to
depend on the age of the plant, but this information was not available to us.

19The source for annual power generation and fuel consumption was “Informe de Operacion 1999”
and “Unidades Generadoras en Operacion 19997, CFE. The fuel prices were obtained from “Evolu-
cion de Precios Entregados y Fletes de Combustibles 1999-2000”, CFE.
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we extrapolated the fixed component of the operating and maintenance costs of large
hydro plants by regressing the log of costs for the ten hydro plants on the log of
their capacities.’® The relationship reported on page 5.5 of COPAR(1999)*! was
used to compute the variable cost, that is the operation and maintenance costs and
resource levies. This equation was estimated using regression analysis with a larger
sample than the ten plants whose costs were reported. Finally, we assumed small
hydroelectric plants (less than 50 MW) had constant costs (an average fixed cost of
152,802 pesos per MW per year and a variable cost of 10.58 pesos per MWh).

The generating costs do not include any capital cost (that is, interest payments
or depreciation). Implicitly, we are anticipating that investment projects would be
evaluated on a cash flow basis. Any time a firm could expect market prices to exceed
the “short run” costs as calculated here, there would be a positive cash flow that
could be offset against the negative up-front costs of a new investment.

In particular, in periods or regions where the demand is pushing against capacity,
prices would be expected to rise to ration the demand to the available capacity.
This would provide “rents” in excess of the costs excluding interest payments and
depreciation. In a competitive market, such rents would attract entrants once the net
present value of the cash flows flowing from an investment would be positive when
discounted at the appropriate risk adjusted rate.?> The additional capacity would
in turn drive prices closer to the short run costs, making entry less attractive to

subsequent firms until demand expands further or some old plant is retired.?® The

20The estimated equation for annual fixed costs in pesos/MW was Cr = 782, 784K ~04151 where
K is the capacity of the plant in MW.

21The equation was C, = 0.3122Q %1271 where Cy is average costs in pesos/MWh and @ is the
output of the plant in MWh.

22The model does not, however, explicitly incorporate any decisions regarding investments in new
generation and transmission capacity. In this sense, it is a short run model where the optimal genera-
tion schedule is based on marginal cost of operating existing plants and a given transmission network.
We shall, however, examine the model in 1999 and again in 2005, when additional investments have
been made in both generating and transmission capacity and when demand is higher.

23Gince new capacity is added in discrete “lumps,” the gap between equilibrium prices in a com-
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latter decision in turn will also depend on a net present value calculation comparing
the likely revenue in excess of variable operating costs with the fixed maintenance
and other costs of keeping the plant operational for another year.

While this argument has been couched in terms of a competitive market, a similar
set of calculations ought to drive the investment decisions of a publicly owned firm,
such as CFE. The main change would be that the word “rents”, interpreted as the
“anticipated difference between price and short run costs,” would be replaced by the

“appropriately calculated shadow price of additional capacity.”

Transmission. The model allows trade in electricity through the high voltage trans-
mission network (see Figure 2.2 above). Since the possibility of not using a link at
all during the year is not a relevant option, we ignore any managerial, maintenance
or capital costs associated with transmission and distribution. We nevertheless need
to compute the transmission losses associated with electricity flows, which in turn re-
quires information about the capacity and other technical characteristics of the links.
Specifically, the losses on a transmission link depend on the length, the voltage and
the number of circuits per link. This information was collected from the Secretary
of Energy.?* We approximated the non-linear transmission losses by piecewise linear

functions. Details are provided in Appendix B.

Other losses. The transmission losses are only part of the source of losses in the sys-
tem. In 1999, for example, the Mexican electricity system generated 180,917 GWh of
electricity, but only 145,127 GWh were recorded as sales. Almost 25% of the electric-

ity generated was either lost in the transmission or distribution network for technical

petitive wholesale electricity market and short run marginal costs could be expected to fluctuate
over time. Nevertheless, our model is likely to under-estimate the average equilibrium prices in a
competitive wholesale market.

24 «prospectiva del sector eléctricol 2000-2009”, Secretary of Energy.
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reasons or was consumed without monetary compensation. As we shall see later, only
about 3 of this 25% can be accounted for by losses in the high voltage transmission
network. Consumption within the generating plants was about 8,887GWh, or 5%
of total production. We cannot directly measure some sources of losses, including
in particular theft of electricity by consumers and losses on the lower voltage trans-
mission and distribution networks. We therefore calibrate the model by including an
additional factor that substitutes for these unmeasured losses.

The Luz y Fuerza company reported that in 1999 losses approximated 30% of its
total sales.?” Since Luz y Fuerza sales accounted for about 19% of total sales that
year, losses in the Mexico City region served by Luz y Fuerza account for almost
another 6 of the 25% of losses. Luz y Fuerza reports that its losses are mainly in
distribution and unbilled consumption. The latter, in turn, includes waived debts
as well as theft of electricity. We apportioned the remaining losses (about 11% of
production) on the basis of regional population. A justification is that the resistance
losses in the transformer stations and distribution network, and the losses through
undetected leaks and theft, are all likely to increase along with regional population

and the number of customers.

2.3.3 The Linear-Optimization Model

We now combine the various components of the model to derive estimates of the
least-cost pattern of generation and transmission required to meet the representative
demands in each period and region. Minimizing the cost of generation is the basic
objective, but setting this as an objective on its own would make no sense. The cost
could be minimized by generating zero electricity. The constraints that have to be met

ensure that the solution to the problem is non-trivial. The solution process also yields

25 «tIpidades Generadoras en Operacion 1999”, CFE, March 2000, pp 99.
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values for the “co-state” variables, or the “multipliers” which measure the effects on
minimized costs of imposing the various constraints. In particular, the multipliers on
the demand constraints can be interpreted as the marginal costs of supplying demand
at each node in each time period.

The main constraints that prevent zero generation of electricity from solving the
cost minimization problem are that the amounts of electricity supplied need to satisfy
the demands of consumers at every node and for every hour in each of the periods.
The minimized cost thus represents the cost of meeting the specified demands.?

Since electricity can be transmitted over the high voltage network, power plants
in each region do not necessary have to meet the demand for electricity in that
region. Exchanging electricity through the high voltage network, however, incurs
transmission losses as discussed above. Many regions are linked by more than one set
of transmission lines. As part of the solution, the model simulates the inter-regional
power flows along the high voltage transmission network. The model also calculates
how to allocate the required down time for maintenance of generating plant in order
to minimize the overall annual costs of production.

Another set of constraints results from the need to maintain plant on a regular
basis. Each plant must be off-line a certain amount of time during each year. Random
technical problems may also take plant out of operation for hours or several days.
Hydroelectric plant may also need to be taken off-line for days or even months to
conserve limited supplies of water.

We focus on the planned maintenance schedule as a key determinant of the avail-
ability of both generating capacity and electrical energy. We represent this restriction
as a limit on the total MWh that the plant can generate in the whole year, while al-

lowing the model to schedule the down time optimally across periods.

26This section discusses the cost function and constraints in general terms. Appendix B provides
a more precise algebraic formulation of the cost. function and the various constraints.
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As the equations in Appendix B reveal, we treat large “base” plants in a different
way to the remaining plants. The large base plants tend to be operated around the
clock when they are used at all. They also typically require a substantial block of
time for planned maintenance. Effectively, they can only be off line for complete days

and not for just hours.

In addition to generating electricity to satisfy “normal” demand loads, the sys-
tem needs sufficient reserves of capacity to meet unexpected increases in demand or
unexpected equipment failures. In most electricity supply systems, consumers are
willing to accept some voltage or frequency fluctuation in return for a lower price
of electricity. Consumers with a strong need for stable supply can purchase their
own on-site generation plant and many find this worthwhile in countries with weaker
systems that are more prone to instability. Nevertheless, one of the advantages of an
integrated network is that it can supply reserve capacity to cope with emergencies at

a relatively low cost.

One can view reserve capacity, or consumers who agree to have their supply in-

terrupted in return for a payment, as “options contracts.”
Y

Under specified circum-
stances, the producer or consumer will be called upon to supply a specified amount
of output or demand reduction, in return for a specified payment.?” The “ancillary
services” provided under such contracts can assist with controlling voltage, frequency
and power flow or with restarting the system in the event of a failure (when blackouts
occur). Contracts to provide ancillary services can be priced just as financial and
commodity options are priced. Firms supplying the services could earn revenue even

if they are not actually called upon to produce energy. In fact, Australia is gradually

introducing a set of such options markets and already has an operational market for

2TThe specified circumstances are analogous to the “strike price” for a financial option, the volume
of output or demand reduction is analogous to the number of options contracts purchased, and the
specified payment is analogous to the cost of the options contracts.
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frequency control services.

In a centralized system managed by a publicly owned monopoly, the amount of
reserve capacity should in principle balance the capital cost of excess capacity against
the benefits to consumers of a more stable power supply. It is unclear to us how
one could in practice obtain the required information about the benefits of reserve
capacity in the absence of an ancillary services market. We can, however, calculate
the consequences of maintaining a specified level of excess reserves.

To capture the need to maintain reserve capacity to meet unexpected peak de-
mand, we calculate the generating capacity and associated transmission amounts for
a set of “virtual” periods of extreme demand. The notion is that such periods last
for a brief period and thus do not require a substantial amount of additional energy
to be produced. They do, however, require plant capacities to be higher than would

be the case if demand was always at its “normal” level.

2.4 Base case results

According to data reported by the CFE,?® generation costs accounted for 38% of the
total cost of supplying electricity in 1999. Depreciation and capital costs accounted
for 15.2% and 1.6% respectively.?? The remaining 45% of expenditures covered ad-
ministration and the costs of operating the distribution and transmission networks.
The expenditure amounts in pesos were: generation costs, 35,448 million pesos; de-
preciation 14,020 million pesos, financial costs 1,457 million pesos and total cost,
92,397 million pesos.

The linear programming model objective function represents the generation costs

alone for the period November 1998 to October 1999, which corresponds to the timing

28 “Resultados de Explotacion, 1999.”
29The depreciation and capital costs pertain to the transmission and distribution as well as the
generation sectors of the business.
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of the four seasons considered in the model. The minimized costs of production from
the model for this period were 30,376 million pesos. Our estimation is for the period
November 1998-October 1999 rather than calendar 1999. Furthermore, some fixed
costs that are absent from the model may have been included in the accounting data.
Finally, the lack of data required us to make various approximations to the demand
load curves, generating costs and many other factors, so it is not surprising that our

minimized costs differ somewhat from the accounting figures.

2.4.1 Production, transmission and consumption

Table 2.5 summarizes the generation, transmission and consumption results for the
Base Case. The central region (17) has the highest electricity consumption in the
country, with a 26% share of total gross demand. However, this region generated
only around 10% of the total power supply. The concentration of population and
industry in the central region resulted not only in high consumption but also in levels
of losses (or power supplied at zero cost) on the order of 23% of the region’s total
annual electricity needs.?® The model results imply that the central region imported
60% of its electricity. Two regions neighboring the central region, Lazaro Cardenas
(16) and Oriental (18) are major exporters of power. The Oriental region is also
a significant center of electricity consumption. Two other regions connected to the
Central one are Bajio (15) and Acapulco (19). Both of these are, however, importers
of power. Bajio (the third largest importing region) is a high consumption region with
a high level of electricity losses (13.7%). Acapulco on the other hand is primarily an
importing region because of its low level of generation.

The hydroelectric plants located on the Grijalva river (region 22) are also a major

source of energy for the central region of the country. These plants total more than

30 As we noted above, the losses in this region were obtained from a report by Luz y Fuerza.



Table 2.5: Base Case, Annual Regional Results (GWh)

Gross Net Gross Other
Region Generation® Transmission® Demand® Losses?
1 3,599 752 4,140 4.0%
2 3,159 -139 2,842 2.8%
3 3,080 -913 2,016 3.9%
4 3,789 -2,695 855 1L.7%
5 5,110 -1,092 3,813 6.0%
6 2,644 863 3,335 5.3%
7 2,647 3,192 5,685 7.4%
8 17,192 -13,885 1,970 3.0%
9 6,192 13,116 19,019  13.9%
10 5,036 -1,134 3,536 5.2%
11 2,813 134 2,757 4.2%
12 2,146 7,418 9,545 13.9%
13 11,037 -9,229 1,177 1.6%
14 4,700 2,599 6,978 9.7%
15 8,059 9,354 16,983  13.8%
16 16,031 -14,884 354 0.4%
17 18,398 25,603 42948  23.4%
18 28,697 -12,394 14,909  15.2%
19 1,702 294 1,985 5.0%
20 1,736 -378 1,341 2.8%
21 119 2,560 2,674 4.3%
22 17,342 -14,390 2,660 6.0%
23 964 -82 811 2.0%
24 1,386 898 2,178 4.6%
25 0 238 238 0.6%
26 1,262 -124 1,059 2.6%
27 4,315 -1,420 2,695 3.5%
28 4,197 726 4,641 6.2%
29 147 637 780 1.2%
30 475 -287 166 2.6%
31 641 189 782  10.3%
32 46 88 133 2.1%

a. As estimated by the model.
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b. Positive values indicate the net electricity delivered to the region, while negative values indicate the net

supply transmitted out of the region.

c. Calibrated sales and theft of electricity, plus distribution and internal generation losses.

d. Distribution and internal generation losses and losses due to theft of electricity.
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3,900 MW of capacity and more than 80% of the electricity they produce is exported
north not only to the center but also to neighboring region of Minatitlan (21) and
the Yucatan peninsula.

Bajio (15), Guadalajara (12) and Ags-SLP (14) constitute a significant area of
consumption to the north of the Central region. These areas together form an indus-
trial corridor that links the center of the country with the north. Manzanillo (13) is
a major source of energy for these regions as well for the center. It has two thermal
plants with a joint capacity of 1,900 MW. Another important regional electricity sup-
plier is Lazaro Cardenas (16), which supplies the corridor (12-14-15) and the center
(17), with a thermal plant of 2,100MW capacity and a 1,000MW hydroelectric plant.

The northern city of Monterrey (9) is the second largest consuming and importing
region in the country. The large coal-fired plants in Rio Escondido (8), with a total
capacity of 2,600 MW, are a major source of energy for Monterrey. Other regions
neighboring Monterrey are Laguna (7) to the west, Huasteca (10) to the south-east
and Reynosa (11) to the north-east. Of these, Laguna is also a moderate importing
region while Huasteca is a moderate exporter. Further growth of demand in the
north-east of the country is clearly going to require additional generating capacity in
the region, or a strengthening of the transmission links from the south of the country

or from Texas.

2.4.2 Scheduled maintenance

Any least cost scheduling of generation plants to meet power demands and provide
reserve capacities has to allow plants to be taken out of service for maintenance. The
optimal solution may involve some rolling maintenance, depending on factors such as
the seasonal pattern of the regional demand and the seasonal behavior of fuel prices

for different plant types. In our model, plant availabilities are choice variables, and
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the set of availability percentages per plant and per period are an important model
output.

Table 2.6 summarizes the calculated availabilities by region and season. The sea-
sonal variation in availabilities reflects the pattern of aggregate electricity demand,
which attains its lowest values during the Fall and is the highest during the Sum-
mer months. There are, however, some interesting regional variations. In particular,
plants in some regions are made fairly uniformly available throughout the year, en-
abling them to compensate for the reduced availability of other plant taken off line
for maintenance when demands tend to be lower. This backup task appears to be
important in Mazatldn (4), which compensates for the low availability of plant in the
northwest during the Fall, and Huasteca (10) and Oriental (18), which support the
low availability of plant in the northeast during the Fall. Oriental (18) and Manzanillo
(13) are interesting in so far as both have lowest availabilities in the Shoulder season,
enabling them to provide greater capacity and output during both the Summer and
Fall seasons. By contrast plant in Guadalajara (12) and Ags-SLP (14) have their

highest availabilities during the Shoulder season of the year.

2.4.3 Calculated costs

A major motivation for constructing the model is that it allows us to examine total,
average and marginal costs of electricity supply in Mexico. We wish to compare the
marginal costs in particular with current electricity prices. In the next section of the
chapter, we study how the forecast increase in demand for 2005, and the completion
of the planned new additions to generating and transmission capacity over the next
few years, both affect costs.

As noted in the introduction to this section, the total generation costs calculated

by the model are 30,376 million pesos for 178,664 GWh generated during the period



Table 2.6: Base Case, Allocation of availability by region and season

Region Year® Summer Shoulder Fall WE-Hol
1 0.51 0.53 0.53 046  0.51
2 0.49 0.59 0.51 042 042
3 0.32 0.41 0.33 0.21 0.26
4 0.70 0.70 0.70 0.70  0.70
) 0.71 0.84 0.73 0.61 0.62
6 0.51 0.53 0.51 0.51 0.48
7 0.51 0.63 0.55 045  0.30
8 0.72 0.75 0.73 0.69 0.73
9 0.62 0.72 0.65 033 061

10 0.80 0.94 0.45 1.00  0.54
11 0.66 0.83 0.67 0.62 041
12 0.63 0.03 0.71 0.02  0.03
13 0.74 0.89 0.35 0.89  0.56
14 0.75 0.81 0.80 0.70  0.69
15 0.65 0.69 0.70 0.68  0.52
16 0.54 0.57 0.60 0.53 047
17 0.61 0.67 0.68 0.56  0.50
18 0.70 0.69 0.71 0.73  0.66
19 0.31 0.35 0.36 0.32  0.15
20 0.61 0.75 0.75 0.42 0.36
21 0.52 0.52 0.52 0.52 0.52
22 0.51 0.51 0.55 0.49 0.47
23 0.67 0.67 0.67 0.67  0.67
24 0.59 0.65 0.69 0.63 045
25 0.00 0.00 0.00 0.00  0.00
26 0.28 0.36 0.28 0.24 0.22
27 0.58 0.63 0.59 0.52  0.58
28 0.41 0.54 0.40 0.33 031
29 0.28 0.16 0.36 0.02 001
30 0.45 0.53 0.43 0.40  0.40
31 0.48 0.54 0.51 0.42 0.43
32 0.02 0.02 0.01 0.00  0.00
Average® 0.62 0.67 0.63 0.62 0.55

a. Weighted average, with generation per region or season as weights.
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under analysis (November 1998 to October 1999). By contrast, the CFE reported
that total generation costs for 1999 were 35,448 million pesos. It is therefore possible
that the calculated marginal costs are too low. The calculated marginal costs would
not be affected, however, if the accounting data includes fixed costs that have been
omitted from our objective function.®!

Tables 2.7, 2.8, 2.9 and 2.10 present the calculated marginal costs of power supply
for each transmission region and in each time period. For the peak periods in Summer
and Fall, the marginal costs have been separated into the components associated with
the demand constraints (5.10) and those associated with the reserve constraints (5.15).
Although the latter could in principle bind in any period,** we find that they bind
only in either the summer or fall periods of peak demands, and even then not for all
regions in both seasons.

The weighted average system-wide marginal cost (with weights determined by
consumption shares) is 32.08 cents Mexican per kWh. By contrast, the calculated
total cost of generation corresponds to an average of only 17.00 cents Mexican per
kWh, implying that the marginal cost is around 88% higher than the average cost.

Evidently, generation of electricity in Mexico is not a “natural monopoly” activity
in the sense that average costs exceed marginal costs. This is usually the case in all
countries, since plant with higher operating costs is used only to supply electricity in
peak periods. The marginal costs in peak periods also reflect the cost of maintaining
additional generating capacity to cope with emergencies.

The finding that the weighted marginal cost exceeds the average cost has another

important implication. If wholesale prices reflected the marginal cost of generation,

31Some items that accountants count as costs, including depreciation and interest costs, are ap-
propriately excluded from an economic measure of costs. These items have, however, already been
excluded from the reported cost of 35,448 million pesos.

32Tn particular, it is possible that scheduled maintenance, differences in seasonal demands or
transmission constraints might cause the reserve constraints to bind in periods other than those of
peak demand.
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the revenue raised would exceed the costs of generating the electricity. In fact, the
excess revenue would more than cover the reported annual “capital costs” for the
CFE.** If the depreciation and interest charges in the CFE accounts represent a
competitive return to capital, then setting wholesale electricity prices equal to the
marginal costs of generation ought to attract considerable entry into the industry,
were that to be permitted by law. This is another sense in which the generation of
electricity in Mexico is not a natural monopoly. The essence of the natural monopoly
idea is that a large incumbent firm has a cost advantage relative to smaller poten-
tial entrants making entry unattractive. Our calculations suggest that, if wholesale
electricity prices reflected marginal costs, new generators would be delighted to set
up business in Mexico. Entrants would need to be guaranteed the same access to the
transmission network, and receive the same wholesale price for electricity supplied
at the same time and location, as the incumbent producers. In reality, this would
require the transmission business of the CFE to be separated from the generation
business. Effective competition in the wholesale market also would require that the
existing generating stations be parceled out into many competing companies and not
kept as a monopoly entity.

The spatial and temporal variation of marginal costs is also of interest. Ta-
bles 2.7 and 2.8 give the costs arising from both the demand and the reserve con-
straints for time periods in which the reserve marginal cost is non-zero for at least
one region. The “full” marginal costs include both constraints since an increase in
“normal” demand within a period is assumed to increase extreme demand in the
same proportion. To begin with, however, the discussion will focus on the demand
constraints only. These determine the energy requirements for the system and the

“usual” pattern of electricity transmissions. The reserve constraints indicate how the

33 As noted earlier, in the 1999 CFE accounts, capital costs, primarily depreciation and interest
payments, were almost equal t0:43% of total generation costs.



Table 2.7: Marginal costs by transmission region: Summer (May—August)

(cents per kWh, Mexican Pesos)

Demand periods
1 2 3 4 5

Region | Dem Res Dem Res .

1 27.3 1520 273 95 273 265 26.5
2 26.1 1496 261 91 261 261 261
3 243 1394 243 00 243 243 243
4 25.4 1458 254 006 254 251 251
5 23.5 2381 235 0.0 235 235 235
6 26.3 2515 263 0.0 263 259 259
7 274 2622 274 00 274 270 270
8 25,0 2419 250 0.0 250 246 246
9 26.7 2584 267 0.0 267 263 263
10 25.5 2356 255 0.0 255 255 255
11 26.5 2611 265 00 262 262 26.2
12 27.1 - 1495 270 0.0 270 269 269
13 252 139.0 252 0.0 252 250 @ 25.0
14 28.3 2409 219 0.0 279 279 - 279
15 28.1 2458 279 00 279 279 279
16 24.5 588 245 0.0 245 245 245
17 27.3 2384 269 00 269 269 269
18 24.7 2140 247 0.0 247 247 247
19 27.1 0.0 271 00 271 271 271
20 224 839 224 00 224 224 224
21 210 - 714 210 00 210 210 210
22 197 620 197 00 197 197 197
23 86.9 190.9 336 0.0 336 331 331
24 90.3 1983 350 0.0 349 345 345
25 96.0 2109 372 00 371 367 36.7
26 84.4 183 339 00 339 339 339
27 1256 1884 123.0 0.0 123.0 123.0 1218
28 130.3 192.8 1303 0.0 1303 130.3 130.3
29 133.2 1964 133.2 0.0 1332 1332 1332
30 1034 1735 954 0.0 951 951 - 95.1
31 111.5 1871 1029 0.0 1026 1026 1026
32 108.8 1826 105.1 0.0 1051 1051 105.1

Weighted averages across groups of regions (with the shares
of group electricity needs as weights):

1-26 243.4 27.1 265 264 264
27-29 320.7 128.1 1281 1281 127.7
30-32 284.2 102.0 1017 1017 101.7

1-32 248.6 33.7 332 330 329




Table 2.8: Marginal costs by transmission region: Fall (Nov—Feb)

(cents per kWh, Mexican Pesos)

Demand periods
11 12 13 14 15

Region | Dem  Res .

1 25.1 0.0 241 241 241 241
2 24.7 0.0 23.7 237 237 237
3 24.1 0.0 240 236 236 231
4 25.2 0.0 25.1 247 247 240
5 234 0.0 234 234 234 234
6 24.6 0.0 246 246 240 240
7 26.1 0.0 26.1 261 259 259
8 23.4 0.0 234 234 232 232
9 25.0 0.0 25.0  25.0 248 2438
10 24.2 0.0 242 242 240 24.0
11 25.3 0.0 25.3 252 25.0 250
12 27.1 0.0 271 266 265 258
13 25.2 0.0 25.2 247 247 240
14 280 1964 277 272 272 272
15 28.5 2083 283 277 275 0 270
16 24.5 0.0 24.5 245 245 242
17 277 21477 274 269 266  26.2
18 24.7 0.0 246 241 239 235
19 271739 271 271 271 271
20 224 0.0 224 223 223 221
21 21.0 0.0 21.0 210 21.0 210
22 19.7 0.0 19.7 197 197 197
23 30.9 0.0 304 297 297 288
24 32.1 0.0 31.6 310 310 310
25 34.1 0.0 336 330 330 316
26 31.1 0.0 31.1 311 311 311
27 1181 0.0 1178 °117.8 117.8 117.8
28 126.4  0.00  126.1 126.1 125.8  125.8
29 128.7 0.0 128.7 1284 128.2 128.2
30 91.9 0.0 91.9 883 879 879
31 98.3 0.0 98.3 906 . 90.6 90.6
32 1007 0.0 1007 929 929 929

Weighted averages across groups of regions (with the
shares of group electricity needs as weights):

1-26 120.7 26.2 258 256 253
27-29 123.8 123.6 1235 1234 1234
30-32 97.6 976 906 905 905

1-32 120.8 315 309 306 . 30.3
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Table 2.9: Marginal costs by transmission region:

Shoulder (March, April, Sept, Oct)
(cents per kWh, Mexican Pesos)

Demand periods

Region 6 7 8 9 10

1 26.5 26,5 265 265 25.4
2 26.1 261 261 261 25.0
3 243 243 243 243 24.3
4 252 252 252 252 25.2
5 23.8 238 238 238 23.8
6 26.1 261  26.1 259 25.9
7 272 272 272 272 272
8 247 247 247 240 24.7
9 264 264 264 264 26.4
10 25,5 255 255 255 25.5
11 26.2 262 262 262 26.2
12 271 271 271 271 27.1
13 26.5 265 26,5  26.5 26.5
14 28.2 280 - 28.0 280 28.0
15 284 281 281 281 28.1
16 245 245 245 245 24.5
17 275 273 2711 271 27.1
18 247 247 247 247 24.7
19 271 271 271 271 271
20 224 224 224 224 224
21 21.0 210 210 210 21.0
22 19.7 197 197 197 19.7
23 51.3 335 330 321 31.7
24 53.3 348 343 334 33.0
25 56.7 370 36,5 3355 35.1
26 50.8 = 338 33.8 338 33.8
27 119.6 1196 1195 1195 119.0
28 127.9 1279 1279 1279 - 127.3
29 130.3 1303 130.3 1303  129.7
30 93.0 93.0 - 93.0 905 87.9
31 1004 998 998 929 92.9
32 102.3 1023 1023 95.2 95.2

Weighted averages across groups of regions (with
the shares of group electricity needs as weights):

1-26 273 266 266 265 26.4
27-29 | 1253 - 1253 1253 1253 1248
30-32 994 99.0 99.0 928 924
1-32 33.2 325 323 322 32.0




Table 2.10: Marginal costs by transmission region: Weekends-Holidays

(cents per kWh, Mexican Pesos)

Demand periods

Region 16 17 18 19 20

1 253  25.0 249 249 24.9
2 249 246 246 246 24.6
3 243 240 240 240 24.0
4 252 0 252 251 251 25.1
5 23.2 232 232 232 23.2
6 251 251 242 242 24.2
7 2677 267 267 26.7 26.7
8 23.9 239 236 234 234
9 255 255 252 250 25.0
10 247 2477 247 247 24.7
11 25.8 258 258 258 25.8
12 271 2710 270 27.0 27.0
13 254 254 254 254 25.4
14 277 217 27T 277 27.7
15 276 276 276 276 27.6
16 245 245 245 245 24.5
17 266 266 266 266 26.6
18 24.0 240 240 240 24.0
19 271 271 271 271 271
20 223 223 223 223 22.3
21 21.0 210 210 210 21.0
22 197 197 197 . 19.7 19.7
23 32.0 315 315 305 30.5
24 33.3 328 32.8 328 32.8
25 354 349 349 335 33.5
26 33.0 330 330 330 33.0
27 1199 1199 1185 1185 1185
28 128.3 128.3 126.8 126.8 126.8
29 130.7 130.7 129.2 129.2 129.2
30 93.3 897 879 879 87.9
31 1002 921 921 921 92.1
32 102.7 944 944 944 94.4

Weighted averages across groups of regions (with
the shares of group electricity needs as weights):

1-26 26.0 260 259 25.8 25.8
27-29 1 125.7 1257 1243 1243 1243
30-32 99.4 920 917 917 91.7
1-32 32.1 318 316 315 31.5
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system behaves under extreme conditions and will be discussed later.

In the North (regions 1 to 11 and all of Baja California), the demand for electricity
exhibits a strong seasonality with Summer as the peak season. This behavior of the

demand is reflected in marginal costs that are higher in the summer than they are in

the fall.

Within a given season, the peak hours represented by periods 1, 2, 6, 11 or 16
tend to have the highest cost. Marginal costs are raised not only by the need to use

more expensive generating plant, but also by the higher transmission losses.

In some regions, relatively abundant hydroelectric resources allow the price spikes
to be smoothed out or even eliminated. Since stored water can be run through the
turbines at any time, the shadow value of using the water to generate electricity
should be equal in all periods in which it is used. Otherwise, costs could be reduced
by saving water in periods when its value is lower and using it instead when the
cost of generating electricity using other technology is higher. Hydroelectric capacity
is, in a sense, a substitute for storing electricity. Without it, marginal costs would
fluctuate much more as the demand load on the system varies and plants with different
operating costs become the marginal source of supply.

If hydroelectricity is available, but the amount of stored water is limited, prices
may still fluctuate seasonally. The water is optimally used first to supply electricity
at the peak periods. If water remains after doing that, it is used next in the near-
peak periods and so on. In the off-peak periods when water is not used, the price of
electricity would be lower than in the periods when water is used.

Transmission losses, and transmission constraints, also influence the regional pat-
tern of marginal costs. It is simplest to consider first the case where none of the
transmission links is congested. The marginal cost at the sending end of an ac-

tive link then has to exceed the marginal cost at the receiving end by the marginal
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transmission loss. If the marginal costs in the two regions differ by less than the
transmission loss, transmitting power between them is not worthwhile and the link

will be Inactive.

Laguna (7) and its neighboring regions (6, 4, 9 and 14) illustrate the effect of
transmission losses. In all periods, the marginal cost is higher in Laguna than in the
three regions Chihuahua (6), Mazatlan (4) and Monterrey (9) to the north, west and
east. Evidently, power flows from these latter regions to Laguna. On the one hand,
in all periods the marginal costs are higher in the Ags-SLP region (14) to the south
than they are in Laguna. Power must therefore flow from the north to the central
region along the Laguna to Ags-SLP link. The differences in marginal costs along

these links reflect the marginal transmission losses.

With an annul demand of 5,685 GWh, Laguna is a medium sized consumption
center, but its scarce local generating capacity means that about 60% of its electricity
needs are supplied from other regions. Laguna is also a trans-shipment point, however,
for power flowing from the north to the large demand load in the center of the country.
Even though Laguna is a net importer of electricity, the link to the south has power
flowing out of the Laguna region. Evidently, the excess demand for power in the

central region of the country is even greater than the excess demand in Leguna.

The Monterrey region (9) has the second highest demand for electricity in the
country and meets about 68% of its electricity needs with imports from other regions.
The marginal costs in Monterrey therefore are higher than in the surrounding regions
(8 and 10) that export power to Monterrey. On the other hand, we have already seen
that the marginal costs in Monterrey are below those in Laguna so that, even though
Monterrey is a net importer of electricity, power nevertheless flows from Monterrey

toward Laguna in all of the model periods.

The pattern of marginal costs in Monterrey (9) versus Reynosa (11) is consis-
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tent with the direction of power flow reversing over the course of the year. In the
summer and shoulder periods, the marginal costs in Monterrey are higher than those
in Reynosa, implying that power flows west toward Monterrey. In the fall, and on
weekends and holidays, however, the marginal costs are lower in Monterrey implying
that power flows east toward Reynosa. This may be the result of the different pattern

of scheduled maintenance in the two regions.

There is also a reversal in the direction of power flow between the Huasteca (10)
and Oriental (18) regions. For most of the year, the marginal cost is higher in region
10 than in region 18, implying that power flows north. In the two highest demand
periods in the fall, however, the marginal cost is higher in region 18 than in region
10 implying that power flows south. As the estimated monthly deviations in demand
shares presented in Table 5.6 show, the seasonal fluctuation in demand is less in the
south than in the north and also shows a slight peak in the fall as opposed to the
summer. These different seasonal patterns can explain the reversals in the direction
of flow between the seasons. It is also interesting to note that even though power
tends to flow south from Huasteca to Oriental in the fall, for the three lowest demand
periods in the fall, the flow is either from south to north or the link is inactive. As
the representative daily load curves in Figure 2.3 show, the fall season in the south
is characterized by a much greater peak to off-peak daily fluctuation than occurs in
either season in the north or in the summer in the south. Thus, demand in the south
during the three lowest demand periods in the fall is still low enough that additional

power is not required from the north.

The lowest marginal costs occur in the Grijalva region (22). As we noted above,
there is more than 3,900 MW of hydroelectric capacity located on the Grijalva river.
The total hydroelectric generating capacity in the Grijalva region is sufficient to ensure

that marginal generating costs there are constant throughout the year. As one moves
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away from the Grijalva region to the north, marginal costs reflect more seasonal
variation as transmission costs fluctuate with the load and high cost local plant is

used to supply peak demands.

Limited transmission capacity also plays a role in allowing costs to fluctuate across
seasons and times of the day as one moves away from the Grijalva region. The Yu-
catan peninsula (regions 23-26) dramatically illustrates how costs are affected when
transmission links become congested. The power flowing on the weak link?* between
Grijalva and neighboring Lerma (region 23) is not sufficient to equilibrate marginal
costs net of transmission costs. The higher costs are then passed on to regions fur-
ther down the system. In particular, further weak links between regions Lerma and
Mérida (region 24) and Mérida and Chetumal (region 25) produce additional large
increments in marginal costs. On the other hand, Cancin (region 26) has marginal
costs below those in Mérida and almost as low as the marginal costs in Lerma. The
Canciin region has the largest concentration of generating plant in the Yucatan and
evidently exports power to the Mérida region despite the high costs of satisfying the
local demand. A strengthening of the Cancin to Mérida link would actually raise

prices in Canciin even further as more power was exported to the west.

The large marginal cost differences between two regions linked by a binding trans-
mission constraint represents the “shadow value” of increasing the capacity of the
link. If there were competitive wholesale power markets at both ends of the link,
market prices would reflect the marginal costs in each region. A new entrant building
a new link (or strengthening an existing one) could earn the price differential in each
period. If the discounted present value of these anticipated revenues were sufficient
to cover the capital cost of the link upgrade, the project would be profitable and effi-

cient to undertake. Independent entrepreneurs have already invested in such network

34The capacity is 110 MW at 230 kV.
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upgrades in the wholesale electricity markets in Australia.

The value of additional links in Mexico is even more apparent in the Baja Califor-
nia peninsula. Currently, there are two systems in Baja that are not connected to the
rest of the Mexican grid, although the system in the north of Baja is connected to the
United States via California. The marginal costs of generation are in Baja California
are higher than they are anywhere else in the country. The region currently depends
on diesel generating plants that are expensive to operate. If market prices reflected
marginal costs, there would be a large incentive to strengthen connections between
Baja California and the remaining networks in both Mexico and the United States.*

A change in one network link is likely to have consequences elsewhere in the
system. For example, strengthening the Canciin to Mérida link also would reduce the
differential in marginal costs between Lerma and Mérida and therefore the implicit
value of augmenting the capacity of the Lerma to Mérida link. It is not inefficient,
however, for a potential investor in one link to ignore these effects on other links.
As in any market, a change in supply or demand conditions can affect the prices
paid or received by other consumers or producers. The price changes signal that the
opportunity cost of using scarce resources has changed and that supply and demand
decisions need to be adjusted accordingly. There is, therefore, no need to centrally
coordinate network investment decisions on these grounds.

It might be thought that the need to maintain the physical stability of the network
is a different matter. In general, the stability of voltage levels, frequencies and power
flows depends on the whole network and not just individual links. Even in this

case, however, if there were competitive markets in ancillary services (as discussed

35The model does not consider international electricity trade with the USA. There are plans to
place new generating plant in Baja California using imported LNG as fuel. These plans, if brought to
fruition, would strengthen the transmission grid in Baja and turn the region into a power exporter
to the US. One of the perceived advantages of siting the plant in Baja and exporting the power
north is that it would enable US utilities to circumvent political constraints on siting new plants in
California.
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above) actions that stabilize, or destabilize, the network would be priced and private
individuals and firms would receive appropriate signals to take these factors into
account when making their decisions about supply and demand.

Concerns about imperfect competition, however, may justify oversight of network
operation and expansion. Network operation is a “natural monopoly” activity in
the sense that only one agency can be responsible for scheduling generators to supply
demand while maintaining system operating parameters within specified bounds.?® A
network operator that also owned generating plant or transmission links would have
an incentive to manipulate the dispatch of generators to increase returns to its own
assets. Similarly, an owner of one network link who owned other links, or generating
plants, may have an incentive to limit transmission capacity in order to drive up the
rents on other assets. Regulatory oversight may be needed to prevent the abuse of
monopoly if the industry is not structured to ensure adequate competition.

Tables 2.7 and 2.8 also report non-zero marginal costs associated with the reserve
constraints (5.15). These costs represent the lowest fixed operation and maintenance
costs that the system must incur in order to provide the last kW of capacity reserve
required to cope with emergencies. While the reserve constraints for each region could
bind in any period, in practice they do not bind in periods other than 1, 2 or 11,%
which are peak periods of demand for some regions of the country. Summer demand
in the south, and demand for the system as a whole, peaks in period 1, while period
2 corresponds to the summer peak in the north. Period 11 coincides with the fall
peak in the south, which for some regions exceeds the summer peak in period 1. The
generating capacities, g,, associated with the reserve constraints do not vary period

by period. They are established for the year as a whole and potentially constrain

36 Extensive and frequent use of sub-contracting, however, would allow the construction and main-
tenance of network facilities to be organized as a competitive industry.

37The marginal costs associated with all reserve constraints in periods other than 1, 2 or 11 are
zero and have not been reported in the tables.
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generation output in each period. Ensuring that capacity is sufficient to cope with
extreme demand fluctuations in the peak periods, however, is likely to guarantee also
that capacity will be more than sufficient to cope with the same proportional variation

in demand in off-peak periods.

In all regions except Acapulco (19), the reserve constraints bind in the peak period
for the system as a whole. If there were no binding transmission constraints, we would
expect to find the reserve constraints binding only in the peak period for the system
as a whole. Even if demand peaked in other periods in particular regions, there would
have to be surplus capacity elsewhere in system at those times since the system as a
whole needs suflicient capacity to meet the highest overall demand peak. Although
there are transmission losses associated with using surplus plant located in other
regions to meet local demand surges, such extreme demand surges are brief. The
transmission losses generally would be small relative to the cost of keeping additional
generating capacity available to supply output for only short periods of time. Regional
demand variations that are negatively correlated will not affect the overall system
demand as much as positively correlated demand shocks. Analogously to financial
markets, the undiversifiable component of demand variation is the relevant “risk” that

gives rise to a demand for the “insurance” supplied by surplus generating capacity.

The argument that there should be only one period when the reserve constraints
bind implicitly assumes, however, that there is an unrestricted ability to arbitrage
costs differences between regions. Transmission losses raise the costs of arbitrage,
but transmission capacity constraints can prevent arbitrage altogether. In particular,
the variation in marginal costs associated with the reserve constraints in Mexico is
much more extreme than the variation in marginal costs associated with the demand
constraints. Evidently, many of the transmission links in the Mexican system are

weak and become congested under conditions of extreme demand.
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The Acapulco region (19) provides an obvious example of the effect of transmission
constraints. The fact that the reserve constraint does not bind in this region in period
1, despite its connection with the rest of the system, implies that the 240MW link
between Acapulco and the Central region (17) must be congested. Table 2.6 provides
a further indication of this. The availability of the plant in Acapulco remains at just
35% in the summer season despite the high implicit return to providing capacity to
the Central region in times of extreme demand during those months. The reserve
constraint in Acapulco thus depends on local demand variation more than system-
wide variation in demand, and hence binds at the local peak in the fall rather than
the system peak in the summer. The associated marginal cost (in cents per kWh)
is determined by the local cost of providing additional capacity and the number of

hours over which that cost will be spread.

Transmission constraints also play a role in producing the remaining binding re-
serve constraints in periods 2 and 11. These cases are somewhat different, however,

in that the reserve constraints also bind during the system peak in period 1.

The Ags-SLP (14), Bajio (15) and Central (17) regions have binding reserve con-
straints in the fall as well as the summer. Bajfo and Central both have very high
total demand, with a local peak in period 11 during the fall. The reserve constraint
can be binding in both periods 1 and 11 since the transmission levels are different. In
particular, the fact that the reserve constraints are not binding in regions 7, 12, 16
or 18 in period 11 implies that the transmission links from these regions to regions
14, 15 and 17 must be congested under an extreme demand load during period 11.
By contrast, under an extreme demand load during the system peak period, power
flows north from region 14 to region 7, for example, so the link from 7 to 14 cannot
be congested in the southern direction. Local reserve capacity in regions 14, 15 and

17 that is sufficient to meet the local extreme demand in period 11, with maximum
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import of power from elsewhere in the network, therefore is not sufficient to meet

local extreme demand in period 1 when less power is available from other regions.

A similar explanation applies to the Sonora Norte (1) and Sonora Sur (2) regions,
which have binding reserve constraints in the second as well as the first summer period.
These regions (as do all regions in the north) have local peak demands during period
2 rather than period 1.3 Regions 1 and 2 are connected to the rest of the network
via a relatively weak 220MW link to region 3 (Mochis). Since the reserve constraint
in region 3 is not binding in period 2, the transmission link must be congested under
an extreme period 2 load. Under an extreme demand load in period 1, however, the
demand for power in southern regions is substantially greater than it is in period 2,
leaving less available to satisfy demand in the north. The transmission link between
regions 3 and 2 remains uncongested, but more local capacity is required to satisfy

the slightly reduced extreme demand load.

Region 16 (Lazaro Cérdenas) has much stronger links (950MW, 460MW and
400MW) to the rest of the network than do the Acapulco or Sonora regions. Nev-
ertheless, it can also be affected by transmission constraints. The marginal reserve
cost in period 1 is only 58.8 cents Mexican per kWh in region 16 but 149.5, 238.4 and
245.8 in the three neighboring regions 12, 15 and 17. These differences in marginal
cost greatly exceed the transmission losses and indicate congested transmission lines.
Lézaro Cédrdenas has its local peak in the fall and will need greatest capacity during a
temporary demand surge in period 11. The link to region 12 is not congested during
period 11, however, and can transmit power to region 16 from the north. As a result,
the reserve capacity needed in region 16 in the summer is sufficient to also cover a

demand surge during period 11.

38Recall, however, that the differences in demand between periods 1 and 2 in the north are slight.
This may explain why there are not more northern regions with binding reserve constraints in period
2 in addition to period 1.
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Lazaro Cédrdenas actually has the smallest reserve marginal cost of any region. As
Table 2.4 reveals, this region has only three generating stations with a 1999 capacity
of 3,395MW. The marginal cost of expanding the available capacity of these plants
evidently is relatively small.

The Grijalva region (22) has marginal reserve costs that are almost as low as those
in Lazaro Cardenas. Table 2.4 shows that the Grijalva region has only hydroelectric
plants, with capacity that can be made available at a higher level at relatively low
cost. The large jump in marginal reserve cost in period 1 between regions 20 and 18
implies that the transmission link between these regions is congested under extreme
demand conditions in period 1. The congested link between regions 18 and 20 prevents
the Grijalva hydroelectric plants from providing further relatively low cost capacity
to meet demand surges in regions further to the north and west of region 18.

From the values presented in Tables 2.7 and 2.8 it is clear that the high marginal
reserve costs in periods 1 and 11 help drive the weighted average marginal cost above
the average cost of generation. As we noted above when introducing the reserve
constraints, in an ideally structured wholesale market for electricity at least some
of these payments would take the form of payments for ancillary services. Under
extreme demand loads, additional generating capacity is placed on standby in case it
is needed to maintain voltage and frequency levels, or to re-start the system in the
event of a blackout. Owners of plant that is cheap to keep on stand-by and fast to
convert to supplying output could earn a return for providing the reserve capacity

even if they are not actually called upon to supply power.

2.4.4 Prices and marginal costs

The model calculations show that the marginal costs of generating electricity vary by

the location of the consumer and the time at which consumption occurs. In reality,
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Table 2.11: Average price versus marginal generation cost by region and season

Administrative Summer Shoulder Fall
region price cost price cost price cost
Baja California 0.6000 1.3445 0.5899 1.2198 0.5312 1.1992
Noroeste 0.5272 0.3372 0.4767 0.2568 0.4787 0.2395
Norte 0.4527 0.3693 0.4645 0.2588 0.5065 0.2484
Golfo Norte 0.4836 0.3770 0.4926 0.2619 0.5166 0.2483
Golfo Centro 0.4712 0.3586 0.4829 0.2554 0.4946 0.2418
Bajfo 0.4842 0.3977 0.4865 0.2809 0.5207 0.3755
Jalisco 0.5602 0.3397 0.5675 0.2705 0.5871 0.2638

Centro Occidente | 0.4248 0.2740 0.4294 0.2454 0.4453 0.2452
Centro Oriente 0.4887 0.3507 0.5007 0.2470 0.5130 0.2414

Centro Sur 0.5025 0.2712 0.5256 0.2712 0.5490 0.3071
Oriente 0.4617 0.3428 0.4762 0.2449 04873 0.2397
Sureste 0.5821 0.2364 0.6034 0.2037 0.6338 0.2036
Peninsular 0.5949 0.4653 0.6236 0.3560 0.6488 0.3101
LyF 0.5831 0.3848 0.6038 0.2714 0.6356 0.3734

the latter dependence primarily reflects different costs of supply as the total load on
the system varies.>® Prices of electricity in Mexico, however, typically do not vary
much by location or time of demand and thus do not closely mimic the marginal
generation costs. In particular, while there is limited seasonal variation in prices,

there is little variation by time of day.

Electricity suppliers incur costs apart from generation, including the costs of main-
taining the distribution network and providing customer service, that do not vary as
systematically by time or location. Nevertheless, prices are unlikely to accurately
signal the marginal costs of supply to consumers unless they vary by location and

time of supply.

Table 2.11 presents the average electricity price paid in each administrative re-

39Marginal costs also vary by time, however, because of factors such as the need to assign con-
tiguous periods for scheduled maintenance, allowing for holiday periods or seasonal availability of
water supplies for hydroelectric plant.



86

gion in the three main seasons. For comparison, it also provides the weighted aver-
age marginal generating costs calculated from the model. The latter are derived by
weighting the marginal costs in Tables 2.7, 2.8, 2.9 and 2.10 by the corresponding
demands in each transmission region and each season. Since the revenue needs to
cover more than generating costs, it is not surprising that prices on average exceed
the marginal generating costs. It is somewhat more interesting, however, to note that
the average prices vary much less by season and region than do the marginal costs.
Furthermore, in many cases, the pattern of marginal cost variation across regions and
seasons is not reflected in the price variations. This is particularly apparent for those
regions where the reserve marginal costs are positive in periods other than the sum-
mer peak. It would appear that consumers, and potential genérators of electricity,
are not being given very appropriate signals about the costs or benefits of changing
electricity demands or supplies at different locations on the network or at different

times of the year.

The electricity tariffs in Mexico fall into two main categories. One category, known
as “specific rates,” classifies customers by the purpose for which they use electricity.
The tariffs for residential, commercial, agricultural and public services demand largely
fall into this category. The second group of tariffs differentiate between customers
based on the amount of energy that they consume and other characteristics of their
supply including in particular the voltage level at which they draw power. The latter
is important because many losses occur in the distribution network or result from
transforming power to lower voltage levels. Hence, it is generally much less costly to
supply power to large customers drawing directly from the high voltage transmission

network.
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Residential tariffs. The price of electricity for households is a step function with
three price levels that depend on demand. The prices for each step change according
to region and season and thus could, in principle, partially reflect cost differences.’
All residential customers face the same rate scale in non-summer months. During
the summer, however, households are charged different rates according to the average
termnperature of the region. A common problem with step function tariffs is that
different households pay a different price for electricity that costs the same amount
to supply to each of them. This leads to inefficiencies since the household paying a
higher price would be willing to pay more for the marginal power consumed by the

household paying the lower price but is prevented from doing so.

Agricultural tariffs. Agricultural users face two different tariffs depending on the
voltage level at which they take supply. In either case, the tariff schedule is a step
function with four levels. As with residential tariffs, prices vary somewhat by region

and season.

Commercial tariffs. Commercial users also face a step function tariff, with the
marginal price determined by the maximum demand and the total consumption within
the billing period. In this case, the prices on the steps of the tariff do not vary by
region or season, but are changed from one billing cycle to the next via indexation to

components of the wholesale price index.

Industrial tariffs. There are 16 different schedules for the industrial sector and
two additional rates for firms willing to allow their service to be interrupted at short

notice.! All but one of the industrial tariffs includes some price differences by region

408uch a price structure could not reflect all cost differences since marginal costs vary within a
day or across days of the week in addition to seasons.

415 the latter case, companies enrolled in the program are asked, at least 15 minutes in advance,
to reduce their demand for electricity. They are then credited an amount that depends on the
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and by hour of use. The latter differentiation is based on base, intermediate and
either semi-peak or peak demand. Charges are further differentiated depending on
the voltage level at which service is provided, total energy consumed within the
billing period, the overall maximum demand within the billing period or the sum of
the maximum daily demands within the period or whether the firm agrees to pay a
fixed charge. In this sector, the price for electricity is indexed to the variation of fuel
prices and to the producer price of three industrial components of the wholesale price

index.

2.4.5 Altered plant availability

The base case has demonstrated that hydroelectricity plays a significant role in the
Mexican electricity supply system. An important problem that Mexico faces, however,
is that rainfall is not always reliable and the availability of hydroelectric plants can
be severely curtailed as a result of drought.

To see how the system is affected by reduced hydroelectric plant availability, we
re-computed the costs of meeting the 1999 demand levels but using the availability
of plants from 1998. As a result of dry weather, hydroelectric plant had much lower
availability levels in 1998 than in 1999. To compensate, many of the thermal plants
were run at higher availability levels.

Table 2.12 gives the differences in annual availabilities in the two years by regions.
The differences between the two years are not only the result of different availabilities
of hydroelectric plant. Using the actual availabilities from 1998, however, allows us
to examine what can happen under an alternative “realistic” scenario.

Comparing Table 2.12 with Table 2.4, we see that the main regions with reduced

availability in 1998 relative to 1999 are those with substantial hydroelectric generating

reduction in demand. There are two categories of such service, one for demands equal or higher
than 10,000 kW in peak hours and another for demands equal or higher than 20,000 kW.



Table 2.12: Difference in availability by region with reduced hydro

Region 1999 1998 % diff
1 0.51 053 4.7%
2 049 0.52 5.8%
3 032 035 10.8%
4 0.70 070 0.0%
5! 071 079 11.4%
6 051 052 2.6%
7 0.51 068 34.8%
3 0.72 073 0.0%
9 062 064 4.0%
10 0.80 0.78 -2.3%
11 066 0.65 -1.2%
12 0.63 027 -57.8%
13 0.74 078 6.3%
14 0.7 077 2.7%
15 0.65 070 9.2%
16 0.54 056 3.2%
17 0.61 067 10.0%
18 0.70 070 0.7%
19 031 025 -20.3%
20 061 056 -9.3%
21 052 034 -35.7%
22 0.51 031 -39.6%
23 0.67 067 0.0%
24 0.59 058 -1.5%
25 0.00 0.01 00
26 0.28 0.33 16.2%
27 0.58 065 12.1%
28 041 039 -4.7%
29 0.28 0.05 -80.8%
30 0.45 046 4.0%
31 048 048 0.0%
32 0.02 001 -36.8%

Average® 0.62 063 2.5%

a. Weighted average, with generation per region as weight.

89
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plant. In particular, the availabilities in regions 21 (Minatitlan) and 22 (Grijalva),
which have only hydroelectric plant, were 35.7% and 39.6% lower in 1998 than in
1999. Guadalajara (region 12), which had 57.8% lower availability in 1998, has 8
hydroelectric generating plant and only 1 thermal plant. Other regions with signifi-
cantly lower availability in 1998 were Acapulco (region 19, with 3 hydroelectric and 1

thermal plant) and Temascal (region 20, with 2 hydroelectric and 1 renewables plant).

Low water supplies were, however, not the only problem in 1998. Three regions in
Baja California with only thermal plant (Ensenada, 29, Tijuana, 28, and Cabo San
Lucas, 32) each had substantially reduced availability, although the very small Ense-
nada, and particularly the Cabo San Lucas, plants also had fairly low availabilities

in 1999.

The most significant increases in availability in 1998 relative to 1999 typically
were in regions with substantial thermal generating plant. Examples include regions
7 (Laguna, with 5 thermal plants), 26 (Cancin, with 7 thermal plants), 27 (Mexicali,
with 2 thermal and 3 renewable plants) and 5 (Judrez, with 1 thermal plant). On
the other hand, three regions with significant numbers of hydroelectric plant also
had higher availabilities in 1998 than 1999. These were Central (region 17, with 13
hydroelectric and 7 thermal plants), Bajio (region 15, with 9 hydroelectric, 3 thermal
and 1 renewables plant) and Mochis (region 3, with 6 hydroelectric and 2 thermal

plants).

It might be thought that if thermal plant can be made more available in drought
years they could be made more available in all years. Using thermal plant to generate
more electricity is, however, likely to lead to increased maintenance problems in the
future. Higher availability in one year therefore is likely to lead to reduced availability
in future years as plants are taken out for maintenance. Running plants harder in one

year is also likely to raise the annual maintenance costs in future years. This factor
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has been ignored in our cost estimates presented below.

We will not discuss all the details of the altered availability scenario.*? We shall
instead focus on the major differences in costs and system operation relative to the
base case.

In the scenario with 1998 availabilities, the system generates only 177,971 GWh
compared with 178,664 GWh generated in the base case. Both scenarios have the
same final demand levels. Hence, the difference between generation levels implies
that transmission losses are lower under the altered availability scenario.

The minimized total generating cost of meeting the 1999 demands with the 1998
plant availabilities is 31,595 million pesos compared with 30,376 million pesos in the
base case, even though more electricity is generated under the base case. Changing
the plant availabilities raises the minimized total costs, and average costs per kWh
of power provided to consumers, by about 4%. The differences in marginal costs
between the two scenarios are even larger. The weighted average marginal cost (with
final demands as weights) in the reduced availability case is 38.58 cents per kWh
compared with 32.08 cents per kWh in the base case, which is an increase of 20.3%.
The dramatic increase in marginal costs resulting from the reduced availability of
hydroelectricity reflects the higher costs of marginal thermal generating plant. It is
another indication that electricity generation is not a “natural monopoly” in the sense
of exhibiting declining costs as output expands.

Although the weighted average marginal cost is higher under the alternative avail-
ability scenario, the dispersion in marginal costs across regions is less in all periods,
except only for the marginal reserve costs in period 2. This result may seem surprising.
Since stored water can be used to generate hydroelectricity at any time, it generally

allows the dispersion in costs across time periods to be reduced. Thus, a lower avail-

42Complete results are available from the authors upon request.
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ability of hydroelectric capacity might be expected to produce more variable marginal
costs. In the Mexican system, however, lower availability of hydroelectricity requires
a greater use of localized thermal generation to satisfy demand. With less hydro-
electricity being produced and transmitted over long distances, the network becomes
less congested. When links are being used at less than capacity, a marginal change
in local demand can be met by a marginal change in transmission levels. The price
differentials between regions then become the marginal transmission losses. These
are generally much smaller than the marginal cost of increasing output from different

local thermal plants.

The different marginal costs of reserves under the two scenarios also reflect the
lower extent of network congestion when hydroelectricity is less available. In particu-
lar, when it is possible to meet demand fluctuations by adjusting transmission levels,
cost differences can be arbitraged away to a greater extent and the network behaves
more like a unified system. Except for regions 1 and 2, the reserve marginal costs are
positive only in period 1 when the system-wide demand peaks. In particular, trans-
mission links to the central regions 14, 15, 17 and 19 can carry more power in the fall
than they do in the summer, allowing the local generating capacity required for the
system peak to cope with the local peak in the fall. From Table 2.12, generators in

regions 14, 15 and 17 were used much more extensively under the 1998 regime.

In regions 1 and 2, marginal reserve costs are positive during both the local peak
(in period 2) and the system-wide peak (in period 1). Since the transmission con-
straint from region 3 to region 2 is constrained in period 2, higher demand in period

2 can be met only by increased use of local plant.

The marginal costs in the Baja California regions (27-32) are the other major
difference between the base and the altered availability scenarios. The Baja California

costs are lower under the alternative scenario, while costs in most other regions are
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higher. The major explanation, as Table 2.12 and Table 2.4 show, is that the regions
within Baja California that had increased availability in 1998 tended to have higher

available plant capacities in 1999 than the regions with reduced availability.

2.5 The anticipated situation in 2005

In this section, we combine the model of the electricity supply system with the demand
forecasts to investigate how planned additions to generating and transmission capacity
will enable the system to deal with the anticipated growth between 1999 and 2005.
We focus on 2005 since the investment schedule until then has been approved and
most of the projects are already under construction. For years beyond 2005, the
investment projects are more uncertain.

Table 2.13 presents the expected construction of generating capacity from 2000
to the end of 2004 in each of the 32 transmission regions.*> Table 2.13 also gives
our estimates of the forecast evolution of electricity sales** and generation output by
transmission region.

The state-owned CFE recently has encouraged greater private investment in elec-
tricity generation. This has taken the form of self-generation by large industrial plants
with sales back to the CFE when output exceeds the firm’s own needs (co-generation),
and also private construction under various types of contracts with the CFE. The lat-
ter category includes BLT, IPP and “turnkey” plants built by the private sector, but
with all of the output produced or purchased by the CFE. Co-generators are allowed

to sell only up to 25% of the capacity of their plants to the CFE, and only under very

$3The data on planned additions to generating capacity and their costs are from
the CFE, “Prospectiva del Sector Electrico 2001-10,” the  Ministry of - Finance and
Public Debt (SHCP), “Presupuesto de Egresos de la Federacion 2002, available at
http://www.shcp.gob.mx/docs/pe2002 / pef/temas/pidiregas/cfe.pdf, and the Energy Regulatory
Commission (CRE), http://www.cre.gob.mx/estadisticas/stat98/electr.html.

44Gales and demand for electricity are different because of the losses.



Table 2.13: Additions to the installed generating capacity by the end of 2004¢

Capacity (MW)

Generation Demand

Region No. Type® Added  Total GWh GWh
1 2 cC 525 1,332 7,075 5,888
2 746 3,159 3,641
3 1,167 3,080 2,760
4 616 3,789 1,161
5 1 CcC 268 584 7,334 5,628
6 2 1CC, 1Ga 583 1,701 4,019 4,859
7 643 2,288 8,518
8 2,710 17,192 2,969
9 4 3CC,1Ga 1,545 3,211 16,512 29,840
10 2 cC 1,691 2,391 16,186 4,970
11 2 CC 1,032 1,544 10,568 4,086
12 1,352 2,146 12,432
13 1,900 9,850 1,516
14 2 O 480 1,200 7,854 9,758
15 5 4CC, 1Ge 1,390 2,837 12,582 26,657
16 3,395 16,031 612
17 1 CC 257 3,614 16,875 49,656
18 2 CC 1,576 6,268 39,281 21,186
19 681 1,496 3,437
20 358 1,736 1,783
21 1 D 25 51 3,623 3,633
22 1 H 936 4,864 21,610 3,530
23 1 cC 261 425 1,829 1,164
24 1 CC 531 808 3,392 3,124
25 14 0 281
26 1 CC 100 629 3 1,582
27 1 Ge 100 784 4,073 3,993
28 2 CC 1,066 2,181 9,122 7,423
29 55 0 1,244
30 3 2D, 1Ge 52 181 951 262
31 156 857 1,235
32 30 25 209
Total 34 12,308 48,308 944,514 228,827

a. Includes some 1999 capacity that was not available until 2000. Expected retire-

ments (of 560MW) are not included since the. location of these is unknown.

b. CC = combined cycle, D = Diesel, Ga = gas turbine, Ge = geothermal,

H = hydroelectric, O = oil
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restrictive conditions.

Under the BLT, IPP and turnkey schemes, firms bid through public tender to
provide new plants. The BLT plants are operated by the CFE, but leased for a
period before being turned over to the CFE. By contrast, the private builder of an
IPP plant also operates the plant under a long term contract to supply power to the
CFE. In a turnkey project, the private firm constructs the plant for the CFE, which

then owns and operates the plant.

Table 2.13 covers all private and public sector projects. In fact, of the expected
69,084 million pesos (in year 2001 currency) of proposed investments in generating
plant between 2000 and 2004, 66,891 million pesos will be undertaken by private
firms. Seven of these are co-generation projects expected to provide about 1,889
MW of capacity by the end of 2004. Of the 12,308 MW of additional capacity by
the end of 2004, 7,303 MW will be built by private firms, with 6,198 MW of this in
combined cycle plants. Public investment is expected in just two plants — a 114 MW
hydroelectric plant and a 125 MW combined cycle plant.

In addition to new generating plant, the CFE have plans for substantial enhance-
ments to the transmission network. These involve building new links between some
regions and enhancing some of the existing links. Figure 2.4 illustrates the changes
that are expected to be in place for the period November 2004 to October 2005.

As with the generation investments, much of the investment in the transmission
system is being undertaken by the private sector. Of the 75,272 million pesos (in 2001
currency) required to undertake the transmission investments illustrated in Figure
2.4, 46,684 will be financed by the private sector and 28,588 by the public sector.
The private schemes are BLT and turnkey projects, or else transmission investments

associated with co-generation projects.

The estimated total generation costs in 2005 (in year 2000 currency) are 40,116
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Figure 2.4: Planned changes to the transmission network by 2005

million pesos. The forecast power generated for the period November 2004 to October
2005 is 244,539 GWh. Recall that the corresponding numbers for 1999 were a cost
of 30,376 million pesos and a total output of 178,664 GWh. The average generation
cost in 2005 is 16.40 cents per kWh compared with 17.00 in 1999. The average
generating costs are thus predicted to decline slightly despite a forecast growth in
production of almost 6.5% per year. Whether or not the investments are justified
depends on the magnitude of the investments relative to the value of the additional
electricity generation for consumers. We do not have sufficient information to make
this judgment. The rather low price elasticity of demand estimated in the first section
of the chapter implies, however, that the loss in consumer surplus associated with a
reduction in electricity consumption is likely to be quite large.

If all the planned investments are completed, our model also forecasts that the

demand-weighted marginal costs will decline from 32.08 cents per kWh in 1999 to
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25.46 cents per kWh in 2005. This is an even larger percentage decline than for
the average costs. The geographical and temporal variation of marginal costs is also
forecast to change. Tables 2.14, 2.15, 2.16 and 2.17, corresponding to Tables 2.7, 2.8,
2.9 and 2.10 in the base case, present the forecast marginal costs in 2005. In particular,
reserve costs are expected to be non-zero only in the summer peak period in 2005,
while the marginal costs associated with the demand constraints are also expected to
vary less than in 1999. Both of these results suggest that the transmission network

is likely to be less constrained in 2005 than it was in 1999.

2.5.1 Reduced transmission investment

The level of planned investment in generating and transmission capacity from 2000~
2004 is 144,356 million pesos (in 2001 currency). Of this amount, over 30,000 million
pesos is slated to come from the public sector. There are also large planned expen-
ditures for investments in the distribution system and the maintenance of existing
capital. The public sector is expected to finance over 50,000 million of the more than
62,000 million pesos expected to be invested in the distribution system, while main-
tenance expenditure of almost 30,000 million pesos will also need to be financed by
the public sector.

The proposed transmission investments rely much more heavily upon direct public
expenditures than do the generation investments. If the Mexican government encoun-
ters fiscal problems in the next two years, some of the transmission investments may
be postponed. We therefore considered a scenario where all the generation invest-
ments are made as planned, but some of the investments in the transmission system

do not eventuate.

Excluding all transmission investments expected to be completed beyond the end

of 2002 made it impossible to meet the forecast demands for 2005 with the planned



Table 2.14: Marginal costs by transmission region: Summer (May—August)

(cents per kWh, Mexican Pesos)

Demand periods
1 2 3 4 3

Region | Dem  Res

1 25.9 1921 259 257 244 244
2 25,6 189.9 256 256 247 24.7
3 25.1 '180.0 231 251 251  25.1
4 26.0 1862 260 - 26.0 258 25.8
5 26.1 1956 257 252 240 239
6 26.5  199.3 262 257 245 244
7 283 2183 279 275 265 26.5
8 25.0 195.0 247 242 235 233
9 26.86 2063 264 258 251 249
10 25.2 186.3 248 248 248 248
11 25.7 1980 253 248 241 239
12 26.8  188.6 26.7 265 265 26.5
13 2477 1741 247 247 247 247
14 271 203.8 267 0 26.3 26.0  26.0
15 27.5 2023 271 269  26.7 26.7
16 249 170.0 249 249 249 249
17 26.3 1835 2555 255 255 255
18 244 1701 244 244 244 244
19 25.9 1803 258 259 259 259
20 22.3 1484 223 223 223 223
21 20.8 1326 208 20.8 20.8 2038
22 204 1249 204 204 204 204
23 21.2 - 1764 212 21.2  20.8 20.7
24 21.7 1832 215 215 21.2 209
25 22.0 1858 -21.8 21.8 215 212
26 21.9 183 218 21.8 214 21.2
27 242 329.0 242 242 242 220
28 23.8 3127 238 23.8 238 224
29 24.8 3258 248 248 242 227
30 101.2 1805 976 97.6 976 86.3
31 106.9 189.9 1034 1034 1026 90.8
32 105.1 1 186.8 105.1 105.1 104.3 92.3

Weighted averages across groups of regions (with the
shares of group electricity needs as weights):

1-26 215.5 256 254 250 25.0
27-29 343.3 241 241 240 223
30-32 293.7 1027 1027 1620 90.3

1-32 225.3 262 260 256 254




Table 2.15: Marginal costs by transmission region: Fall (Nov—Feb)

(cents per kWh, Mexican Pesos)

Demand periods
11 12 13 14 15

Region

1 241 241 235 235 23.5
2 245 244 238 23.8 23.8
3 250 248 242 242 24.2
4 259 257 251 25.0 24.8
5 236 236 236 236 23.6
6 241 241 239 239 23.9
7 264 262 262  26.0 25.7
8 23.3 232 232 232 23.2
9 249  24.8 248 2438 24.8
10 241 240 240 239 239
11 239 23.8 23.8 238 23.8
12 26.8 264 258 257 25.5
13 24.7 244 240 240 23.9
14 26.3 259 258 25.6 25.2
15 275 271 264 26.1 25.9
16 249 244 237 235 23.5
17 26.8 264 256 25.2 24.7
18 247 244 238 23.8 23.6
19 264 259 259 255 25.0
20 223 223 223 223 22.2
21 208 - 208 208 20.8 20.8
22 204 204 204 204 204
23 212 0 212 207 207 20.5
24 216 215 21.0 209 20.6
25 219 218 213 21.2 20.9
26 219 218 212 21.2 20.9
27 22.8 220 220 220 22.0
28 224 224 224 224 224
29 227 227 227 227 22.7
30 942 86.2 86.2 86.2 86.2
31 99.1 907 90.6 90.6 90.6
32 106.7 922 921 921 92.1

Weighted averages across groups of regions (with
the shares of group electricity needs as weights):

1-26 255 252 248 246 24.4
27-29 225 223 223 223 22.3
30-32 98.5 90:2 901 90.1 90.1
1-32 259 255 251 249 24.7




Table 2.16: Marginal costs by transmission region:

Shoulder (March, April, Sept, Oct)
(cents per kWh, Mexican Pesos)

Demand periods

Region 6 7 8 9 10

1 244 244 244 244 24.4
2 24.7 247 247 247 24.7
3 251 251 251 25.1 25.1
4 26.0 260 26.0 26.0 26.0
5 243 243 243 240 23.9
6 247 247 247 245 24.4
7 271 271 271 26.7 26.7
8 24.0 240 240 236 234
9 256 256 25.6 252 25.0
10 24.8 248 248 248 24.8
11 246 246 246 242 24.0
12 27.0 268 26.8 26.8 26.8
13 26.4 264 264 264 26.4
14 26.6 265 264 26.1 26.1
15 275 272 271 269 26.9
16 249 249 249 249 24.9
17 26.6 263 256 25.6 25.6
18 24.5 245 245 245 24.5
19 25.9 259 259 259 25.9
20 22.3 223 223 223 22.3
21 20.8 20.8 20.8 208 20.8
22 204 204 204 204 20.4
23 21.2  21.2 208 208 20.7
24 21.6 216 212 21.2 20.9
25 21.9 219 215 21.5 21.2
26 219 219 214 214 21.2
27 243 243 236 220 22.0
28 239 239 232 224 22.4
29 24.2 242 235 227 22.7
30 95.5 955 864 864 86.4
31 100.6 1005 90.9 909 90.9
32 102.3 1022 924 924 92.4

Weighted averages across groups of regions (with
the shares of group electricity needs as weights):

1-26
27-29
30-32
1-32

25.6
24.0
100.0
26.1

25.5
24.0
99.9
26.0

25.3
23.3
90.3
25.7

25.2
22.3
96.3
25.5

25.1
22.3
90.3
254

100



Table 2.17: Marginal costs by transmission region: Weekends-Holidays

(cents per kWh, Mexican Pesos)

Demand periods

Region | 16 17 18 19 20

1 23.9 239 238 238 23.8
2 244 244 241 241 24.1
3 248 248 245 245 24.5
4 25.7 257 253 253 25.3
5 23.5 235 234 234 23.4
6 23.9 239 239 239 23.9
7 26.2 26.2 262 26.2 26.2
8 23.2 232 232 23.2 23.2
9 248 248 248 248 24.8
10 240 240 240 240 24.0
11 23.8 238 238 238 23.8
12 26.5 264 261 26.1 26.1
13 254 254 254 254 25.4
14 25.8 258 258 25.8 25.8
15 26.5 265 264 264 26.4
16 244 244 244 244 244
17 255 251 251 25.1 25.1
18 23.8 238 238 238 23.8
19 259 259 259 259 25.7
20 223 223 223 223 22.3
21 20.8 20.8 208 20.8 20.8
22 204 204 204 204 20.4
23 20.8 20.y 207 207 20.5
24 21.2 210 209 20.8 20.6
25 215 21.3 212 211 20.9
26 214 212 212 21.0 20.9
27 22.8 220 220 220 22.0
28 224 224 224 224 22.4
29 22.7 22,7 227 227 22.7
30 86.2 86.2 86.2 86.2 86.2
31 90.7 90.7 90.7 90.7 90.7
32 92.2 922 922 922 92.2

Weighted averages across groups of regions (with
the shares of group electricity needs as weights):

1-26
27-29
30-32
1-32

24.8
22.5
90.2
25.2

24.7
223
90.2
25.1

24.7
22.3
90.2
25.0

24.7
22.3
90.2
25.0

24.7
22.3
90.2
25.0

101
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additions to generating capacity. If planned transmission investments beyond 2002
do not eventuate, therefore, additional investment in generating capacity would be

needed to meet the forecast demand growth.

We then examined the transmission investments expected to be completed by
the end of 2003. Five major transmission projects should be completed in that year.
There are three new links between nodes 1 and 5 (380MW), nodes 9 and 14 (568MW)
and nodes 10 and 14 (1,500MW). There are also two significant upgrades between
nodes 18 and 20 (an additional 1,600MW of capacity) and nodes 20 and 22 (an
additional 1,000MW of capacity).

The projects to upgrade the links between regions 22-18 increase the amount
of power that can be transmitted from the hydroelectric plants in the Grijalva river
region (22) to the central part of the nation. We found that these projects are critical.
If they are not completed by the end of 2004, the forecast demands from November

2004 to October 2005 cannot be met without building more generating capacity.

On the other hand, if the upgrade projects are completed on time while the three
new links slated for completion in 2003 are not, the resulting system (with all new
generating plant completed on schedule) is capable of satisfying the forecast demand
in 2005. The resulting average cost of generation is 16.57 cents per kWh instead of
16.40 cents per kWh if all planned transmission investments are completed. On the
other hand, the weighted marginal cost (at 25.34 cents per kWh) is actually lower
if the new links are not built. The marginal costs are more variable across regions
and seasons when the system is less well-connected. In the two regions with the
largest demands (the central and Monterrey areas), however, the marginal costs are
lower in the system with weaker links. These results show that marginal and average
costs do not necessarily move in the same direction as a result of new investments.

In particular, if prices reflected marginal costs, stronger transmission links could
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make some consumers worse off by facilitating increased arbitrage and equilibration
of marginal costs across the network.

Another interesting consequence of not building the 1,500MW link from region 10
to region 14, while nevertheless adding all the new generating capacity planned for
region 10, is that the reserve constraint does not bind in region 10 in any season. This
result illustrates how transmission and generating investments interact. Without the
accompanying transmission investment, some of the investment in new generating

capacity can be wasted.

2.6 Conclusion

Although our analysis reveals the necessity of substantial investments to meet the
growing demand for electricity in Mexico over the years 2002-2010, the forecasted
investment proposed by the government for the year 2005 will be sufficient, according
to the results of our supply model, to take advantage of the low production costs of
the new private owned power plants. It is questionable, however, if the method that
has been chosen to encourage private investment is the most suitable. In particular,
BLT, IPP and turnkey projects leave most of the risks to the public sector. One of
the major functions of the privately owned companies and equity holders in the power
sector is to share risks optimally and facilitate the funding of these large, long-term
and risky investments. The return required to compensate investors for the risks
they are bearing represents also the appropriate return for investment evaluation
purposes. The lack of such information makes it much more difficult for publicly
owned companies to analyze whether an investment is attractive or not.

Another potential disadvantage of BLT and turnkey projects is that the operation
of the facility remains the responsibility of the publicly owned company. One of the

major reasons for the inefficiencies resulting from public ownership is that the state-
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owned company is not receiving a strong incentive to minimize its operating costs.
Even the owners of IPP projects are not very motivated to control costs if these define

the contractual capacity and energy rates, which is normally the case.

On the other hand, the estimated costs for the year 2005, assuming that all the
planned investment is completed on time, anticipate that the electricity system will
be in good conditions to start restructuring the industry, as there will be no risk of a
price escalation due to the lack of generating capacity, at least during the first years

of the reform.

The second major conclusion from our analysis is that in Mexico there are sub-
stantial differences between the electricity prices and the marginal costs of supply. In
particular, the regional and the intertemporal price variations are not closely related
to the corresponding variations in marginal costs. As a result, consumers are not re-
ceiving accurate signals about the costs related to their demands and are not getting
a clear guidance about the benefits of changing their location, or the timing of their

electricity demands, so as to reduce the costs for the system as a whole.

Allowing the private sector to enter the wholesale market for electricity, and setting
prices through an auction mechanism, may also help to define the tariffs on a cost
base. Before introducing such reforms, however, the existing state-owned suppliers
would need to be split according to their functions (with transmission and distribution
separated from generation) and the remaining generating assets allocated to various
competing companies. It may even be counter-productive to introduce a wholesale
market for electricity that is not competitive. The price signals sent to consumers
and potential producers would provide a distorted reflection of the costs, encouraging

inefficient consumption and production decisions.

The third major conclusion from our analysis is that the hydroelectric plants

in Mexico are quite valuable as a mechanism to smooth temporal and geographical
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variations in marginal generation costs. In effect, the storage of water compensates
to some extent the inability to store electricity. However, the benefits of hydro plants
are limited by the existing lack of transmission capacity. The major hydro plants are
located in the Grijalva river region in the south of the country and the transmission
links to other regions can often become congested. Upgrading the transmission links
is thus a major priority. The public sector is expected to remain the main investor
in transmission facilities in the immediate future. However, there is a risk that the
required funds may be sacrificed for fiscal reasons that have nothing to do with the

needs of the electricity industry
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Chapter 3

Decomposing Electricity Prices with Jumps

3.1 Introduction

When considering deregulation of the electricity industry, it is first necessary to de-
termine a mechanism to price electricity in a competitive framework given the non
storability of electricity and the permanent need for maintaining the balance between
demand and supply. Now after more than ten years of international experience in
competitive electricity markets, there exists a set of alternative mechanisms based on
the interaction between the demand and supply that warrants the uninterruptible op-
eration of the power market. However, the specific characteristics of the industry and
the decentralized decisions about when, where and how much power to produce have
resulted in greater price volatility, which is also accompanied by huge spikes in prices.
For example it is not uncommon to see power price levels that peak at 100 times
the normal rate. These characteristics of electricity spot prices have encouraged the
development of financial derivatives that help market participants to hedge price risks
in the new and volatile environment. Pricing those financial instruments has become
one of the main topics in the research agenda that traditional financial literature has
yet to satisfactory model. In particular the high dependence of such derivatives on

the assumption regarding the stochastic processes that follow the underlying assets
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has opened a discussion about models that best fit the particulars of electricity spot
prices. This study tries to contribute to the still developing discussion of modeling

electricity prices in a deregulated market.

The standard approach to modeling electricity prices has been take from the theory
of finance. Some of the first attempts to model electricity prices were assuming stan-
dard diffusion processes such as Geometric Brownian motion or Ornstein-Uhlenbeck
types of processes. However, although they aim to capture some characteristics of
electricity prices, such as its strong mean reversion, they did not capture the pres-
ence of spikes in prices. One natural method of modeling such spikes was to use
the diffusion-jump model developed by Press (1967). Press considered that the daily
(log) returns in security markets can be divided in two components: the continuous
diffusion part, which can be described by a Wiener process, and a discontinuous jump
that represents shocks in the market and that can be modeled as a compound Pois-’
son process. Under this specification, the resulting distribution of the (log) prices
becomes a Poisson mixture of normal distributions whose parameters have to be es-
timated simultaneously. This approach was later used to model all types of financial
instruments and became one of the standard models for series that present continu-
ous jumps in their paths. In modeling electricity prices such jump-diffusion part is
in general added to mean reversion models to account the relative short life of the

jumps.

Although appealing, such jump-diffusion approaches have some limitations in
practice. The main problems come from an identification problem as the resulting
distribution of the (log) prices is a mixture of normal distributions and the estimation
methods imply the use of the same data to estimate the parameters of both processes
simultaneously (i.e. see Huisman, et. al. (2001)). The outcome of estimating such

models is well known. Bates (1995) has documented that the jump-diffusion specifi-
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cation in general tends to capture small and high frequency jumps, which is exactly

the opposite of what is relevant in the study of electricity prices.

Alternatively, there is a more natural approach to model such spikes in electricity
prices assuming a diffusion process augmented with regime-switching. Sudden jumps
in electricity prices are always related with the state of the generation and transmis-
sion system. If the electrical system is in a shortage of electricity state (because some
lines become congested or because the sudden break down of a generation plant), mar-
ket prices adjust drastically to balance the supply and demand of electricity. This is
the response in prices regardless of the policy with respect of the maximum level of

prices that can be achieved in the market.

In the last few years there has been an increase in the use of regime-switching
models in the literature. Examples of this trend include Deng (2000), who developed
a general model in which the regime-switching is used to capture the seasonal com-
ponents of electricity prices; Chourdakis (2000), who generalized the idea of discrete
regime-switching models to a continuous framework; and Huisman and Mahieu (2001)
who observed the need for modeling jumps as regime-jumps as a way to separately

estimate the parameters of the “normal” component of electricity prices.

However modeling electricity prices as a switching Markov process implies that
the effect of a shock in price tends to die out rather quickly, even when new jumps
are allowed for the following periods. A close inspection of the electricity price raises
some doubt about using only a switching Markov process, as the effects of price shocks
in this market do not die out quickly. If that is the case the scenario in which the
effects of shocks in prices remain at least for a while would be an empirically testable
feature of electricity as a stochastic process. For that event we propose a model in
which electricity price is compounded by two parts: what we call the “normal” be-

havior of prices, represented by a Ornstein-Uhlenbeck type process, and the “jump”
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component, which follows a mean reverting process with regime-jumps. With this
specification the degree of mean reversion of the “jump” component becomes an ex-
plicit and separate parameter to be estimated in the model. To focus our attention
on the jumps and spikes of electricity markets, we abstract from the seasonality and
other components of prices and estimate the model for the Australian market. To
estimate the probabilities of the regimes, the unobservable variables and the parame-
ters of the diffusion processes, the model is treated as state-space model with regime
switching and the estimation is made using the algorithm developed by Kim (1994),
who extended the Hamilton Markov-switching model to the state-space representation
of dynamic linear models.

The remainder of the chapter is organized as follows. In the next section we
describe briefly how prices are determined in a deregulated electricity sector. In
section three we present the model and in section four we describe the estimation
method. Finally in section five we present the results for the demeaned Australian

electricity prices.

3.2 How Power Prices are Determined

As in any other market, competitive electricity prices are determined by the inter-
action of demand and supply. Ideally the price clearing mechanism for this market
will involve a two-side biding process, one for each side of the market. However, the
atomization of the demand side has been one of the main obstacles of its complete
implementation. Alternatively many countries have adopted a one side bid mech-
anism or have limited the participation to customers with high electricity demand,
including the distribution companies that buy electricity in the wholesale market and
then distribute the power to small consumers. In fact, the implementation of a supply

side bid mechanism, sometimes with participation of large customers in the demand
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Figure 3.1: Balance between demand and supply in power markets. Shock in demand.

side, is considered the first step towards the liberalization of the sector.

In practice the one side bid mechanism may be described as follows. For each
trading period (in general for each hour of the day) all the private power generators
submit prices and the amount of power that they are willing to trade (in general in
a day ahead market). Once the bids are submitted, the pool’s regulators order the
bids from the lowest to the highest prices and create an aggregate supply curve for
the sector, which is matched with aggregate electricity demand to determine the spot
prices and the dispatching order of generators. In this setting the marginal generator
is the one which determines the clearing price in the market. One example of such a

price clearing mechanism is illustrated in Figure 3.1.

Among the determinants of the supply curve are the number of generation plants,
their technology and the transmission lines that connect generators with consump-
tion centers. If there is a large number of generators with similar technology and
unrestricted transmission capacity, we would expect to observe gradual changes in
prices as long as demand changes gradually. In the real world, however, there is a big
variation in technologies across power plants, some of them better suited to supply

power under specific conditions. For instance in order to recover its fixed costs, big
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plants with low variable costs are scheduled to operate most of the time. Meanwhile,
plants with high marginal cost but low cost of capital are economically better suited
to operate only during periods of peak demand. There are some peaking plants that
work a relatively small number of hours during the year but charge a high price for
their power as a way to cover fixed costs. If the maximum electricity demand is close
to the total generation capacity of the system, such peaking plants are most probable
to be scheduled to operate. In such case, electricity prices tend to rise drastically in

face of any increase in demand.

Sudden and drastic changes in prices that quickly revert can be the result of a
temporary surge in demand (for example, due to temporal changes in temperatures)
or the result of temporary drops in supply (for example, due to temporal generators
or transmission failures). These temporary movements are called the “jump” state
in this chapter . Demand shocks may be identified with temporal movements of the
demand curve to the right and the corresponding schedule of higher cost generators
in the system. Figure 3.1 illustrates this movement: given the shock in demand,
generator 6 at price P2 is dispatched. On the other hand, in the case of a shock
on the supply side there would be a temporal movement of the supply curve to the
left. Figure 3.2 illustrates this situation: if generator 4 temporarily goes off line,
generators 5 and 6 will be activated at the higher price P2. It is even possible that
because of such shocks, demand will not intersect the supply curve. In such a case
electricity prices must be determined exogenously from the market mechanism, either
by the regulators or by the price of exogenous power sources (i. e. price charged by
power plants external to the pool). Although there are several mechanism to price
electricity when demand is higher than the total capacity, generally prices are set at

such a high level to induce the entrance of new generator plants.

A different kind of pattern in power prices is observed when electricity demand
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Figure 3.2: Shock in supply.

or supply is not exposed to extremely temporal shocks that require most or all the
generation capacity. This condition is called in the study the “normal” state and it
is characterized by the lack of extreme jumps in prices.

Similar to other competitive markets, electricity prices play the role of signals of
the general conditions in the sector. Therefore it is important to distinguish between
changes in prices that represent temporary shocks with non-lasting effects and changes
in prices that correspond more closely to the intrinsic dynamics of the market. The

goal of the next section is to explicitly differentiate these two components.

3.3 Model

Taking into account that the extreme jumps which revert quickly correspond to dif-
ferent dynamics than the normal pattern in electricity prices, we consider a model
that breaks apart such components. Specifically we express the electricity price B,
as the sum of two independent stochastic processes, one that represents the normal

behavior of prices (X;) and other that represents the effect of temporary shocks (¥;):

P=X:+Y, (3.1)
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We also assume that X, and Y; are governed by the following stochastic differential

equations:

dXt = k(a — Xt)dt + O'dBt (32)

dY; = —aY,dt + zdg; (3.3)

with dB; representing an increment to a standard Brownian motion B; and dg; rep-
resenting a Poisson process. Both the Poisson and the diffusion process are assumed
to be independent. of each other,

Notice that X; follows an Ornstein-Uhlenbeck process, with instantaneous vari-
ance o2, long-run mean a, and a speed of adjustment k > 0. This specification of the
normal pattern of prices attempts to capture the mean reverting property which is a
characteristics of electricity prices. One straightforward extension of such specifica-
tion is to allow a to change through time; either because it would be a function of
exogenous variables (such as the average price of the inputs to generate electricity)
or because the seasonality pattern of the electricity demand. In such case the model
would be specified with a varying parameter a; instead of fixed a. For the purposes
of the present study, that focus on modeling the “jump” component of prices, we
assume that the long-run mean is constant.

On the other hand, Y, is also specified to evolve as a mean-reverting process, with
zero long-run mean and reverting rate o > 0. However its stochastic part is defined
as a Poisson error component (dg;) with an arrival frequency parameter X and jump
size z. Finally, 2, is assumed to be drawn from a normal distribution, with mean pu,
and variance 62, independent of the diffusion and Poisson processes.

In order to estimate the model we approximate the Poisson error component of

Y, with a Markov-switching model. Consider the following specification of (3.3) that
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involves the latent variable S;
dY; = —aYidt + % g, (3.4)

where

210 = 0,with probability 1 — Mt + o(A¢)?,
21 = z,with probability AAE + o(At)?,
Ztm = N - 2, n > 2 with probability o(At),
S; =0,1,2,...n is a latent variable and

2" N(p,, 6%) is the size of the jump.

Notice that the expressions of the probabilities that govern z; 5, are obtained from
the Taylor series expansion of the Poisson density; i.e. the probability of no jump in
a “small” interval of time is approximately 1 — AA¢, and of one jump, AAL.

To translate this specification to a Markovian switching model we construct a
manageable transition probability matrix to define the evolution of the state variable.
In order to specify a Markov-switching model with two states, the “normal” state
with S; = 0 and the “jump” state with S; = 1, we first assume that the probability
of more than one jump in one unit of time is negligible!. We also assume a first
order Markov-switching process for Sy, that is, the discrete variable S; will depend
only upon S;_i. In order to capture the spikes in prices due to short-lived shocks
we assume that once the state variable indicates a jump at period ¢ it will return
to the “normal” state at period t + 1 with probability myy and it will jump again
with probability mi; = 1 — my. Therefore the relevant transition probabilities for
the model are Pr[S; = 0]5;_; = 0] = mgy (that approximate the probabilities of the

Poisson distribution 1—AA¢#) and Pr[S; = 1|S;_; = 1] = my;, with the complementary

'In fact if data is available with high enough frequency, as is the case of electricity prices (for
instance, hourly data), we can assume that in a short period of time only one jump may occur.
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probabilities Pr[S; = 1]S;_; = 0] = mo1 = 1 — mgp and Pr[S; = 0|S;_1 = 1] =mqp =
1—mqq.

Notice that in (3.4) the mean reverting component of Y; is not affected by the
latent variable, S;, hence there is a continuous adjustment even when the temporal
shock has disappeared. This characteristic of the model gives some flexibility to
capture possible lags in the effect of supply and demand shocks over the behavior of

immediate future prices.

3.4 Estimation Method

The proposed model contains inferences about the undistinguished variables X; and
Y;, as well as inference about the evolution of the state variable S;. To solve the model
we can take advantage of its state-space representation and use Kim’s (1994) filtering
algorithm, which merge switching states with dynamic models involving unobservable
variables.

Assuming an Euler approximation to the stochastic differential equations (3.2)
and (3.4), we can write the state-space representation of the system as follows:

Measurement, Equation:

Transition Equations:
Xt = kat -+ (1 hae kJAt)Xt._At + O'Atgt (3.6)
Y, = (1 — CMAt)Y;_At +es, (37)

with €t~N(O, ].), €g, = ,U'zSt -+ 5St€t, etNN(O, 1) and St = 1, 0.
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Or in matrix notation, and normalizing At =1 :

B, = g, + FBy_1 + Qs (3.8)
with
| X _ _ | ka 1 (1—-k) 0
ﬁt"“[}/t])H“[11}7u5t—|iuzst]7F“l: 0 (1—“04) ’

o 0 _ | &
QSt“‘[O 6St]andutw!:est}.

The subscripts in fig, and (Jg, indicate that these expressions depend on the

unobservable switching variable S;, whose transition probabilities are given by

M= ( Mmoo 1= m ) (3.9)

1—myp mn

where as before Pr[S; = 0|S;_; = 0] = mqo, and Pr[S, = 1|S;_; = 1] = my.

Kim’s algorithm is a mixture of Kalman and Hamilton filters, and includes a
“collapsing” step to avoid the explosion of possible paths of the state vector due to
the transition probability matrix. A complete discussion of the algorithm can be
found in Kim (1994) and Kim and Nelson (1999). In this section we summarize the
principal equations of the algorithm fitted to our model.

The goal of the filter is to form a forecast of 3, based on the vector of observations
available up to t —1 (¢,_,), but also conditional on the random variables S; and S;_;.

In terms of notation we have
/Bg[ztﬂ_)l = E['Btl"pt—h St = ja St~1 = Z]a

and the associated mean squared error matrix is

P = BB, — Bue1)(B: — Byor ) 1t0e 1, S = 4, S = 1],
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Conditional on S; = j and S;_; = t, the Kalman filter algorithm follows the next

computational steps:

’Bilit’i)l = p; + F/H§~1|t—17
By = FPLy o F' + Q05
iy =p— HBGY,

ft(i,j) — HP(ZJ) HI)

[t—1 tit—1

t)t tjt—1 tlt—1 t)t—1

P(i’j) - (I . P(iJ) i [f(’i,j) ]—1Hj)P(iJ)

t)t th—1 tlt—1 tli—17

where 771511:2]31 is the conditional forecast error of p, given ¢, 4, S; = j and S, 1 = ¢;

and ft(l’ti >1 is the conditional variance of forecast error nﬁt’j_)l with 4,5 =0, 1.

Notice that each iteration of the Kalman filter produces two more cases to consider

per estimation of Bglit’j ) 2,

The Hamilton filter component focuses on calculating Pr[S;, S;—|¢,] and Pr{S;|v,]

as follows:

Pr(S; = j, St-1 = il 1] = Pr[S; = j|S; = 1] - Pr{St—1 = ith,_1] = muj - m;

) ) Sy=7,8s_1=itpy_1)-PriSe=4,8s—1=iltp,_
Pr(S; = 4,51 =ij,] = (el Qﬁ(rtﬁb,,_?)t et

2

PT[St = JWt] = E PT[St = 5,51 = Z|¢t]

i=1

with

ptISt = j7 St~1 = i; ¢t—1~N(T’1(§}Zt7{,)17 ft(lzt’:?.)l ’

2The size of the transition probability matrix (M).
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f(pta St - j7 St——l = ihbt—l) = f(PtiSt - j: St-l = 7:,7/),5_1) : Pr[St - jv Sf,—l = itwt-—lL

2 2

f(Pt|¢t—1) = Z E f@e, S = 3,8 = i’¢t~1)'

F=14=1

where 7; is the steady state probability of S;_; = ¢ and m,; is taken from the transition
probability matrix (3.9).

To avoid the explosion of the number of cases to consider, Kim (1994) proposed
the following approximation that collapses the number of terms ﬂg;j ) and their cor-

responding mean squared errors Pt(li’j ) to only two cases (those corresponding to the

number of states of S;):

i }:]2-:1 PT‘[St:jvst——-I:ilwt]'ﬂiﬁj)
th Pr{Se=jlt] ’

pi . Zim PriSy=j,Se—1=ilp AP +(8y,— A7) (84, BV}
tt = PriSi=jT] '

With this approximation, ﬁilt is no longer the linear projection of 3, on 9, as in the
pure Kalman filter, but now the algorithm is manageable and Kim has showed that
the loss in efficiency produced by the approximation is only marginal. In our case,
this algorithm is used to identify two stochastic components of electricity prices and
therefore it permits us to estimate the parameters of the “normal” electricity process
without considering the noise of temporal shocks. What follows is an application of

the above model to a competitive wholesale electricity market.

3.5 Application: Electricity Spot Prices in New
South Wales, Australia.

In this section we show the results of applying the above model to New South Wales’

electricity spot prices’. This market began operations as regional market in 1996.

3Data source: http://www.nemco.com.au
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Later, it was integrated into the national grid creating the Australian National Elec-
tricity Market (NEM). The NEM operates a supply bidding mechanism that sets
electricity prices every half hour. The period studied in this analysis begins with the
integration of the national market on January 1999 and ends on May 2002 with a

total of 59,835 observations.

Secondary markets have traditionally used average daily prices to price futures
and other derivatives in electricity markets®. Following this practice we based our
estimations on average daily prices, which results in a total sample of 1,247 daily
observations. With this transformation we also avoid the strong intraday cyclical

behavior of the electricity market.

A complete characterization of the stochastic process of electricity prices involves
specifying its seasonal component as well as its relationship with other exogenous
variables that may determine its trend, such as the average cost of the mmputs. In
the model we assume that all of these elements are captured with the time varying
mean (a;) of the normal component. However, to focus on the decomposition into
“normal” and “jump” components, we estimate a; with nonparametric techniques
instead of explicitly assuming a specific functional form °. Once we have estimated
such time varying “mean” to which the “normal” component is reverted, we proceed
to estimate the diffusion parameters (3.6) and (3.7) over the prices’ deviations from
that mean. Figure 3.3 shows the original and the transformed data the estimations

of our model are based on.

With the transformed price series we estimate the parameters of the transition

4For example see Lucia and Schwartz (2001) for a description of the Nordic Power Exchange.

?Specifically we follow the next three steps to transform the data. (1) We decompose the original
price series into a pseudo “normal” and a pseudo “jump” component using Kim’s algorithm (they
are called pseudo components because they still capture some movements in a; ). (2) Taking as
our data the pseudo “normal” component, we non-parametrically estimate its mean using a normal
kernel with the optimal window width k = 0.250,n~1/% and ¢t = 1,2...n.(3) Finally we substract the
estimated mean from the original prices.
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Electricity Spot Prices in New South Wales, Australia.
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Table 3.1: Estimation results of the model
Parameter Estimates Std. err. t values

Transition Probability Matrix

Moo 0.9567 0.2157 14.349
M 0.7160 0.2821 3.279
“Normal” component

k 0.2392 0.0221 10.844
a -0.0039 0.0195 -0.202
T 0.1457 0.0050 28.926
“Jump” component

o 0.7509 0.0869 8.645
1, 0.4811 0.0883 5.451
b, 0.6101 0.0436 14.008
ML 0.168604

equations (3.6) and (3.7) and the probabilities of the transition probability matrix
(3.9). Maximum Likelihood estimates of the parameters are shown in Table 3.1.

By examining the results, it seems clear that the conditional probability of the
occurrence of a jump given, provided that there was already a jump in the previous
period, is not negligible (my; = 0.75). This means that “jumps” are significantly
correlated in the NSW market, implying that for modeling purposes such parameters
must at least be checked to be different from zero. From the parameters of the Markov
transition matrix we can also compute the unconditional probability that the process

will be in a “jump” state as follows:

.
i1 = Pr[Sp = i) = ——— = (.1323.
2 — Mgy — My

On the other hand, it is not surprising that the long-run mean of the “normal”
component is not significantly different from zero since we worked with mean adjusted
series. The results show that in spite of a high reverting parameter for the “jump”
component (o = 0.75), prices, after a jump, do not fall back completely on the day
after , but follow a gradually decreasing adjustment process. Such a result raises

doubts about the assumption of short-lived effects on the jumps in other studies (i.e.
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Huisman and Mahieu (2001)), and suggests the need of considering such gradual
adjustment in electricity prices. One explanation of this result may be that after
a supply failure or a sudden demand change, the market participants are unsure of
the likelihood that such behavior is repeated in the subsequent periods (observation
consistent with the high value of my;). As a consequence, the participants adjust the
prices gradually.

As part of the estimation process, the filtering algorithm also split electricity prices
into two components, {X;} and {Y;}, and estimates the unconditional probability
that the process will be in a jump state at any period. The decomposition and the
probabilities are plotted in Figure 3.4.

A direct application of the decomposition of electricity prices is the estimation
of the contribution of the “jump” component contribution to the average electricity
price in a certain period of time. Since financial instruments are traded according
to their price per kilowatt-hour and the amount of electricity delivered in a certain
period time, the knowledge about the contribution of the “jump” switching process
provides a cost estimate of having a market mechanism that allows certain frequency,
size and persistence of the jumps.

As an illustrative example we consider the contribution of each component on
the average monthly price of the sample over the last four months and the average

weekly price over the last two months. The results from this decomposition are given

in Table 3.2.

3.6 Bootstrap simulation

We use the bootstrap method to simulate electricity prices and estimate their expected

value in the future. In particular we are interested in knowing the price component
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Table 3.2: Estimated Decomposition of the Average Electricity Price for the Year
2002 (Australian Dollars)

Period Observed Normal Jump
Prices Component Component

January 25.50 24.91 0.59
February 29.53 26.61 2.92
March 25.89 25.25 0.64
April 26.59 25.74 0.84
May 74.94 28.02 46.91
April/06-April/12 °  25.68 25.63 0.05
April/13-April/19 25.73 25.69 0.04
April/20-April /26 30.87 27.37 3.49
April/27-May /03 26.97 26.94 0.03
May/04-May/10 30.91 27.60 3.32
May/11-May/17 25.72 25.73 -0.001
May/18-May/24 114.75 29.19 85.56
May/25-May/31 149.27 30.39 118.89

that is attributable to the “jump” state in comparison with the contribution of the
“normal” state in the industry. This price decomposition may be used to evaluate
the benefits of reducing the size or frequency of such “jumps”. Also, based on the
previous model, the bootstrap technique provides an alternative method to estimate
the price of futures and other derivatives in the electricity market.

The bootstrap method is mainly used for estimating test statistics or the distri-
bution of an estimator through simulation techniques that resample the real data set.
Here we use the method to simulate the electricity price pattern from decomposing
the contribution of the “normal” and “jump” components®. From the simulations we
may calculate the expected value of the average price for future weeks or months, the
periods of time in which electricity flows are generally traded.

The simulation is based on the Euler approximation (3.6) and (3.7). Notice that

the parametric model of the “normal” component of electricity prices (3.6) reduces

6 The discussion does not attempt to provide a detailed description of the bootstrap method. For
a comprehensive description of the method see, for example, Horowitz (1999).
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its data generation process to a transformation of the independent random variable
;. Then a bootstrap sample of {X*} can be directly generated by random sampling

the residuals from the fitted model. That is, we estimate
X} =ka+(1-k)X;, +06et,

where IAc, a and ¢ are the Maximum Likelihood (ML) estimates of the parameters of
(3.6) and {¢;} is a random sample of the normalized estimated residual {2;}.

In a similar way we can generate bootstrap sample of {Y*} taking into account
that the parametric model (3.7) does not produce independent errors because of the
first order Markov-switching process that governs S;. Such bootstrap sample can be

generated using the following relationship
Vi=01-&Y, +eg,

where & is the ML estimate of o and {e%, } is a conditional sample of the estimated
residual {ég:}.

To deal with the dependence of the fitted errors we performed a conditional boot-
strap sample of the residuals as follows:

First, we identify a jump in any particular period using estimated unconditional
probabilities of observing a jump obtained from Kim’s smoothing algorithm (see Fig-
ure 3.4). If this probability is greater than that deduced from the estimated parame-
ters we consider that there was a jump in that particular period. In terms of notation

there is a jump if the following condition applies:

1 — Mmoo

P(S, =1]¥,) > 7 = .
= A > T =

where P is obtained from the smoothing algorithm and 7w and 7y are the ML

estimates of mgy and my; respectively.
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Once we identified the periods in which a jump in prices has occurred, we classified
the estimated residuals in two subsamples: one that collects all the residuals that
follow a jump, sub-sample called J;, and another that collects all the residuals that
do not follow a jump, sub-sample called J,,. Then we generate bootstrap samples of
{e%,} by randomly sampling these two sets conditional on the state at ¢ —1 (S;_; =0
in the “normal” state or S;_; = 1 in the “jump” state) as follows

ot :{ e € J,if S, =0,
St e; € J;if S =1

For comparative and illustrative purposes we estimate by bootstrap simulation the
expected average price of electricity by October 1st, 2001, for energy to be delivered
during the same periods as in Table 3.2. As before, we assumed that the mean of the
normal component is given exogenously and computed the decomposition of electricity
prices based on deviation from that mean. To estimate the expected monthly and
weekly average price, we simulate 10,000 paths of electricity prices for the period
between October, 2001 and May, 2002. The expected average price by component
and the probability interval for the maximum average price is reported in Table
3.3. From the same simulations we compute the probability density of the average
electricity prices for a specific month and week, the result of which is shown in Figure
3.5.

According to the simulation results, the percentage of the expected price at-
tributable to the “jump” component is around 14% for both monthly and weekly
average prices. This average contribution appears to be low if compared with “jumps”
that rise up to 10 times the average price in a single day. Also, if we compare the
expected average price with the observed average in Table 3.2, we notice that May
2002 was an exceptionally high price period, with the highest prices primarily con-

centrated in the last two weeks of the month. Looking at the estimated confidence
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Figure 3.5: Comparison of the Estimated Probability Density of the Monthly and
Weekly Average Electricity Prices by October 2001.

interval of the average prices, we find that as an average there is a 95% of probability
that average prices do not increase more than 37% of the expected monthly value and
not more than 68% of the expected weekly average. These expected average prices
appear to be maintained regardless of the starting date of the simulation, provided

that there is enough time to dissipate the initial shock in prices.

3.7 Conclusion

This study highlights the necessity of decomposing the electricity prices movement
into two components: one driven by normal market conditions and the other that
captures the effect of supply failures and/or constraints, or sudden increases in the
demand. The proposed model treats the stochastic process of each component as
independent from the other, each one with its own mean reverting parameter. It is
also maintained that considering the jumps and spikes in prices as a jump switching
process in which the effects do not disappear quickly, bears a certain advantages,

since, technologically speaking, it is natural to consider two states, the failure and
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the normal state, in electricity markets. Technically this approach overcomes identi-
fication problems by capturing the big jumps with low frequency instead of the small

jumps with high frequency, as is usually the case in jump-diffusion type processes.

We applied the model to New South Wales’ electricity spot prices and found all
the parameters of the model to be statistically significant. One of the most important
results is that the estimated mean reverting parameter of the jump component does
not completely eliminate the effect of a jump in the next period. There is evidence
that jumps are not independent but correlated in this market. This results contrast
with the assumptions of other studies, suggesting the need of explicitly testing the
mean reverting speed of the jumps and their independence. With respect to the
decomposition of the observed average electricity prices, we found that in May 2002
the jump component rose up to 70% above the average of the normal component, and

up to 300% in the last week of the same month.

The bootstrap simulation technique was also implemented to estimate the vex—
pected average price over a future month or week. It was found that as an average
the expected contribution of the “jump” component in the expected average price is
around 14% in the NSW electricity market. On the other hand it was estimated that
there is 95% of probability that average prices do not increase by more than 37% of

the expected monthly value and not more than 68% of the expected weekly average.

Finally, although the model deals with the identification of the “normal” and
“jump” components in prices, seasonality is another factor that is not treated explic-
itly in this study. The assumption from which we construct our decomposition is that
prices do not follow a time varying mean to which they revert, but that there is a
fixed long-run mean in the “normal” component. This assumption is obviously not
true for markets with strong seasonality or in situations in which exogenous variables

play an important role in the price determination, such as the price of natural gas.
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However the model can be extended to explicitly include such components, allowing

functional specification of the time varying mean of the “normal” component.
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Appendix

5.1 Appendix A: Modeling electricity demand

As we noted in the text, the aggregate demand forecast is derived by relating the
logarithm of total power generation to GDP, the relative price of electricity, and a

variable, based on temperature records, that accounts for seasonal variations.

Income. The GDP can be viewed as a proxy either for “household income” or for
“industrial input demand.” The data was converted from a quarterly to a monthly
frequency using the relationship between industrial production and GDP. Specifically,
the GDP for each quarter was allocated to each month in the quarter using the relative
values of industrial production for each of those months in the quarter. The variable
included in the analysis, denoted 1, is the natural logarithm of the estimated monthly
GDP. Information other than the electricity data obtained from the CFE was obtained

from the Instituto Nacional de Geografia e Informatica. *

Electricity prices. The relative price of electricity was calculated by dividing an
implicit price for electricity by the producer price index. The implicit price for elec-

tricity was in turn obtained by dividing CFE monthly revenues by the quantity of

Unstituto Nacional de Geograffa e Informdtica (INEGI), http://www.inegi.gob.mx
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Table 5.1: Estimated monthly component of relative electricity prices
Parameter  Coefficient t value

Ia % 0.1897 (133.7234)
Q3 -0.0074 (-2.7073)
Oy -0.0120 (-4.4114)
o -0.0110 (-3.9850)
O -0.0123 (-4.5365)
a7 -0.0096 (-3.5232)
Qg -0.0085 (-3.1285)
Qg -0.0061 (-2.2384)
a1g -0.0080 (-2.9543)
Q11 -0.0061 {-2.2607)
R? 0.30
Observations 70

electricity that CFE sold in each month. We use lagged prices in the regression to
allow for the lags between consumption and billing (when most of the consumers re-
alize how much they consumed). The variable included in the analysis, denoted py,
is actually the natural logarithm of the relative price lagged three periods.? When
forecasting the relative price of electricity, we need to preserve the monthly seasonal

component. To do so, we estimated the following regression:

11

Dt = Qo+ Z a; D; + wy, (5.1)

i=1

where «q represents the mean value of p in December, D; is an indicator variable for
months i other than December and hence «; represents the difference in the average
value of p in month ¢ relative to its value on December. The sample covers the
period from February 1996 to November 2001. The estimates from this regression are

reported in Table 5.1.

Seasonality. The aggregate demand for electricity is known to depend on seasonal

factors in addition to GDP and the relative price of electricity. Since weather is the

2 Although most bills are issued every two months, there is an additional one month grace period
for paying the bill.
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main determinant of seasonality in electricity demand, temperature variables should
capture seasonality in a more parsimonious way than a set of monthly indicator
variables.?

Following Chapter 1, to capture such seasonality the total power generation J; was
decomposed into an annual moving average! and a “short run” deviation, denoted g;,
from that moving average. The short run component was then related to the weighted
average per region® of the mean (z1;) and variance (zo;) of the temperature, using the
following regression (observations N = 179, R? = 0.8657, t-values of the coefficients

are in parentheses):

@ = —0.1833+0.1333- 2, + 0.3522- 23 + & (5.2)

(=5.57) (0.899) (2.395)

The variable z, was then defined as the predicted value of ¢; based on (5.2).

Long run relationships. Variables that are systematically related to each other in
the long run display a consistent pattern in their trends. Deviations from these long
run relationships constitute stationary shocks that gradually disappear over time.
For most time series of economic variables, trends primarily result from permanent
shocks that accumulate over time and lead to “unit roots” in the series. While the
series itself displays a trend, changes in the series from one period to the next are
driven by shocks drawn from a stationary distribution. Table 5.2 presents results of
tests for the presence of unit roots in the natural logarithms of total power generation
(denoted @), GDP and the relative price of electricity. If a unit root is absent, the

series itself is stationary, and the test statistic presented in Table 5.2 should be below

3Factors such as holidays, or even variations in the mumber of days in each month may, however,
also contribute to seasonal effects that are not readily captured by temperature changes.

4For a given month ¢, the moving average was calculated as (1/13) 216:_6 Qi1

We consider six region as in Chapter 1 and the weights are the share of electricity consumption
per region with respect to the total.
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the 5% critical values listed in the bottom row of the table. The tests for the presence
of stochastic trends can be affected if the series have trends that are deterministic
functions of time or if the variables are strongly serially correlated. The tests were
performed using two different criteria (Akike and Schwartz) to select the number of
lags included to eliminate serial correlation. Two separate sets of tests allowing for
the presence or absence of a deterministic time trend also were conducted. In eleven
of the twelve results, the evidence indicates the presence of a unit root in the series.

Although each of the variables O,y and p is non-stationary, if the demand for
electricity is a stable function of these variables the relationship between them will
be stationary (the variables will be “co-integrated”). One of the innovative features
of the model of electricity demand presented in Chapter 1 is that allows the long run
relationship between the dependent variable, in this case (), and its determinants, in
this case y and p, to change gradually over time in a deterministic fashion. This mod-
ification may be especially important in a country such as Mexico that has recently
undergone substantial economic change. In particular, the recent rapid growth of the
Mexican economy, and the change in industry structure resulting from the NAFTA,
both are likely to have changed the relationship between electricity demand and its
key determinants. Following Chapter 1, the time varying elasticities of total power

generation with respect to GDP and the relative price, v, and §; in the equation:
Qi =T + Yy + 6upr + P2 + wy, (5.3)

are approximated by a Fourier Flexible Form (FFF) function, using the Schwartz
criterion to select the number of terms in the functions. The estimates were derived
using the method of canonical co-integrating regression (CCR) suggested by Park and
Hahn (1999). The results are reported in Table 5.3.°

6 Although z; is stationary, it is included in the co-integrating regression to help control for
seasonality in @,y and p. In the estimation of the adjustment process presented below, we allow 2
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Table 5.2: Augmented Dickey-Fuller (ADF) tests for stationarity

Variable Demeaned series lags Detrended series- lags
Lag selection criterion®

Total power generation, ();

AIC 0.4167 12 -2.641 12
sC 0.4167 12 -4.798 7
GDP, y,

AIC 0.6244 16 -1.110 16
SC 0.6244 16 -1.110 16
Relative prices, p;

AIC -2.013 14 -1.4549 14
sSC -1.330 4 -1.9035 5
5% critical values -2.86 -3.41

a. Akike (AIC) and Schwartz (SC) criterion

Table 5.3: Estimated cointegrating relationship for total power generation

Variable Coeflicients (t values®)
Constant (1) 7.0766 (4.7866)
2 (¢) 1.0632 (20.4203)
Parameters of the TVC: ~,
k 0
B 0.4261 (5.9735)
Boka -0.0161 (-2.2235)
Parameters of the TVC: 8,
k 2
Bs o -0.5025° (-6.5293)
Bsra 0.0047¢ (2.3271)
SC = -6.7665 R? =0.9839 DW =2.01

observations N = 176
Long run variance of the CCR errors

Q1 0.0010
Unit root test for estationary of the errors 1 of the regression®
T* 10.6039 Critical value 1%: 13.28

a. Computed using CCR standard errors.

b. Indicates that there are no trigonometric terms.
¢. Coeficient of the linear trend.

d. Coeflicient of the trigonometric term cos(4nr).

e. T ~ %?(4) for Ho : errors are stationary. Park and Hahn (1999) statistic.
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We found that the long run elasticity of (J; with respect to the GDP, ~,, can be
approximated by a series function that includes a constant coefficient (3., ,) and
a linear trend (with slope 3, ;,). The parameter estimates imply that 7, has been
decreasing over time from 0.426 at the beginning of the sample to about 0.4099 at
the end of the sample. This is consistent with industrialization and economic growth
leading to more widespread use of grid electricity.

In the case of the relative price of electricity, the results in Table 5.3 imply that
the elasticity, é;, of power generation with respect to p can be approximated by a lin-
ear trend (B, ,) and a trigonometric function (cos(4mi),i = 1...n). The estimated
coefficients on the relative price variables imply that, while electricity demand was
insensitive to price at the beginning of the sample by the end of the period the elas-
ticity of demand with respect to price was about -0.5006. Such a change might again
be consistent with a growth in the relative importance of industry in the economy,
which probably has more options to alter demand in response to price variations.

The final panel of Table 5.3 presents the results of a test of whether the errors
from the regression, wu;, contain a unit root. Since the value of the test statistic is
below the 1% critical value, it would appear that, once the model allows for time
varying coefficients, power generation, GDP and the relative price of electricity are

cointegrated.

Short run adjustments. Equation 5.3 represents the long run relationship be-
tween total power generation , GDP and relative price of electricity. The dynamic
adjustment of the model is driven in part by deviations of power demand from the
long run relationship. The short run dynamic adjustment process can be represented

by a so-called “error-correction model” (ECM). This equation relates the change in

and its lags to enter separately from 1wy, so including z; in equation 5.3 does not restrict the dynamic
adjustment of ¢} to z.
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electricity demand (which is a stationary variable) to the lagged error term w;_; and
other stationary variables. For a stable adjustment process, we would expect the
coefficient of u;_1 to be negative. Then, if electricity demand is above its long run
equilibrium relationship with GDP and the relative price, demand will tend to fall
and conversely. In addition, the adjustment could occur gradually. For example, an
increase in the electricity price initially may influence the length of time that equip-
ment is used. If the higher price persists, however, firms may buy new equipment that
requires lower electricity input. Including the lagged change in electricity demand as
another explanatory variable can accommodate such a lagged adjustment process.

The estimated ECM can be written as:

P1 P2
AQ; = Z b1 AQ + Z byt +
I=1 I=1

P3 P4 Ps
Z b3 1 Ay + Z by Ap;_; + Z bs 1211 + €4
1=0 =0 1=0

There is little theoretical reason for expecting one dynamic pattern of adjustment

(5.4)

rather than another. To determine the lags of each variable included in the model, we
first estimate a general model with py, po, p3, P4, ps = 12. Lags were then progressively
eliminated beginning with those having coefficients b;; that were least statistically
significantly different from zero. The lags retained in the model, and reported in
Table 5.4, all have coefficients that are not statistically different from zero at the 5%
level. Table 5.4 also reports a Box-Pierce statistic that tests for the presence of serial
correlation in the error term €. The p-value of more than 0.29 suggests that sufficient
lags have been included in the model to eliminate the serial correlation.

The parameter estimates in Table 5.4, and the negative coeflicient on the error
term u;_y in particular, imply that a gap between power generation and its long run
determinants sets up an adjustment process that eventually restores the long run

relationship. If power generation is above the long run equilibrium level (u > 0),



Table 5.4: Estimated dynamic adjustment equation for AQ,

Parameter [ Variable
AQi (j=1) uy (j=2)
Coeff.  (t val.) | Coeff.  (t val)
b1 -0.1695  (-3.86) | -0.4631 (-7.78)
bja 0.1231  (2.94)
b;s 0.1480  (3.78)
bj12 0.5263  (12.74)
Ay (1=3) Apiy (=4) z-1 (j=95)
Coeff. (twval) | Coeff. (twval) | Coeff. (tval)
bjo 0.3469  (8.02) -0.1662 (-2.39) | 0.5835 (7.30)
bj3 0.1717 ~ (5.00)
b4 -0.1295 (-2.41)
bjs 0.1514  (2.76)
bjs 0.1430 - (2.79)
b1 0.3130  (3.91)
bj12 -0.2340  (-5.35) | 0.1065  (2.07) -0.2910 (-3.40)
R 0.9115
Box-Pierce Xzo 44.3359  p-value 0.2938
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Figure 5.1: Implied dynamic adjustment of power generation to shocks
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generation in subsequent periods will decline (AQ < 0). Further adjustments will
occur in subsequent periods as prior movements in A(Q) continue to produce continuing
movements as a result of the significant b, coefficients. Eventually, however, the

adjustments will decay to zero.

The dynamic adjustment process implied by the estimated ECM is illustrated
in Figure 5.1. This graphs the response of Q to a one percent permanent shock to
GDP, y, and relative prices of electricity, p, and a 1% temporary shock to z. The
adjustments graphed in 5.1 have been calculated setting the long run elasticities of
power demand with respect to y and p to their values at the end of the sample period.
In reality, we would expect these elasticities will continue to change over time, making

the adjustment process a function of the time when the shocks occur.

As Figure 5.1 illustrates, AQ — vy, = 0.4099 for a permanent 1% shock to y,
AQ — b7 = —0.50057 for a permanent 1% shock to p, and AQ — 0 for a temporary
shock to the stationary variable z. In all cases, there is a seasonality to the response
with “patterns” in the adjustment process being “mirrored” with 12-month lags. The
annual seasonality is also evident in the large estimated coefficients at lag 12 in Table
5.4. Any change in income, prices or weather that induces a home or business to alter
their stock of electrical equipment or appliances is likely to have continuing effects on

power demand in similar seasons in subsequent years.

The response of total power generation to a permanent increase in GDP is, for the
first two months, somewhat below the ultimate long run response. Generation then
“overshoots” the long run response for the remainder of the first year. Thereafter, the
pattern is more or less repeated on an annual frequency with ever smaller fluctuations

around the ultimate long run effect.

An increase in the relative price of electricity produces a different type of adjust-

ment process. Whereas a permanent increase in y causes () to jump almost immedi-



145

ately to values in the proximity of the long run effect, the response to price changes is
more gradual. Such a delay in the responsiveness of demand to price changes may be
explained in part by the infrequent billing schedule, and perhaps by the fact that a
significant amount of electricity appears to be taken illegally. It is also possible that
the seasonal component in prices makes it difficult for consumers to clearly identify
price changes. In addition to displaying a more gradual adjustment of ¢) toward its
long run value, the price response path displays much less “overshooting” than does
the response to y. Again, however, the adjustment pattern set for months 4 through
16 has a tendency to be repeated, albeit with oscillations of declining magnitude, in
months 16 through 28, 28 through 40 and so on.

A temporary shock to the temperature variable z also ultimately produces an
adjustment path that tends to repeat in an annual cycle. In this case, however, the
initial period of response lasts about 10 months instead of 4. The response of () to
z, like its response to a GDP shock, is rapid. On the other hand, like the response to

p, the response to z does not involve sustained “overshooting”.

Regional demand shares. The regional shares of aggregate demand are, by def-
inition, bounded between 0 and 1. In addition, as the share of demand in any one
region increases toward 1 (or decreases toward zero) we would expect further increases
(respectively, decreases) to be much less likely. A natural way of representing such
behavior in a way that is also likely to yield normally distributed error terms (which

range from —oo to +00) is to use a logistic functional form:

S ,
lIl (1 T Sﬁ) = X,LtsD7 + €it (5.5)

Since we do not have data on regional GDP or industrial production we used monthly
indicator variables, time and time? as components of X. The monthly indicators

capture differences in the seasonal patterns of demand across regions. The linear trend
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terms indicate regions where electricity demand is growing faster (the coeflicient of
time is positive), or slower (the coefficient is negative), than in the nation as a whole.
The coefficient on time? indicates whether the trend is accelerating (the quadratic and
linear coefficients have the same sign) or decelerating (the coefficients have opposite
signs). When making forecasts, we proportionally adjust the estimated shares in each
region to ensure that they always sum to 1.0 in all periods.”

Table 5.5 gives the estimated quadratic equations for the regional demand shares.
Table 5.6 presents the estimated monthly effects on the demand shares for January

through November relative to shares in the month of December.

Daily demand variation. Since the load on the system is the most important
feature of the demand fluctuations, we first convert the load curves in Figure 2.3
to load duration curves. A daily load duration curve is analogous to a probability
distribution function and plots the number of hours in the day that electricity demand
exceeds a given load. For the minimum load of the day, the load duration curve will
have a value of 24 hours. For the maximum load of the day, the load duration
curve will be 0 hours. Essentially, the load duration curve orders times of the day
not according to where they come by the clock but by what the demand load on
the electricity system was at that time. A step function approximation to the load
duration curve then divides the day into periods of roughly constant levels of demand.

In the model, we need to divide each day into time periods that cover the same
hours of the day in both the north and the south region. The bottom two panels in
Figure 2.3 show that, during the summer season, the peak demand is in the afternoon
hours in the north, but in the evening hours in the south. Therefore it is not possible

to define a time period that yields a coincident peak in both regions. Since the load

? Although the error terms in the share equations will be correlated, there is no value in estimating
the equations as a seemingly unrelated set since they have identical regressors.
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curves are different shapes it is difficult to group hours into a small number of blocks
of roughly constant demand. Instead of approximating the individual load duration
curves, we partitioned the curves in such a way that the durations of the steps coincide

in both regions.



Table 5.5: Estimated time variations in shares®

Region Constant Time Time? Adjusted R?
1 Baja -3.0915 4.5x1074 1.4x1075 0.8791
California  (0.0233)  (6.1x1074) (5.1x1076 )
2 Noroeste -2.5813 -2.9x1074 -2.8x1076 0.9211
(0.0178)  (4.6x1074) (3.9x1076 )
3 Norte -26098 1.1x1073 -3.5x1076 0.8229
(0.0134)  (3.5x1074) (2.9x1076 )
4 Golfo -1.9964 1.7x1073 2.7x1076 0.9493
Norte (0.0004)  (2.4x1074) (2.0x1076 )
5 Golfo -2.9886 1.2x1073 -1.4x1075 0.3729
Centro (0.0012) (3.8x1074) (3.2x1076)
6 Bajio -2.3829 7.2x1074 -4.9x1076 0.6792
(0.0236)  (6.1x1074) (5.1x1076 )
7 Jalisco -2.6334 -1.8x1073 7.3x1076 0.6491
(0.0153)  (4.0x10"4) (3.3x1076 )
8 Centro -3.2295 6.3x1073 -2.5x1075 0.8312
Occidente (0.0267) (7.0x1074) (5.8x1076)
9 Centro -3.1237 7.4x1075 7.5x1076 0.6684
Oriente (0.0204) (5.3x1074) (4.4x1076)
10 Centro -3.3450  3.5x1073 -1.8x1075 0.6740
Sur (0.0230)  (6.0x1074 ) (5.0x1076 )
11 Oriente -2.5389 -2.1x1073 1.0x1075 0.1412
(0.0334) (8.7x1074) (7.3x1076)
12 Sureste -3.3673 -7.0x1074  -1.6x1077 0.3661
(0.0265)  (6.9x1074) (5.8x1076)
13 Peninsula -3.5776 1.0x1073 -4.6x1076 0.3233
(0.0199)  (5.2x1074) (4.3x1076)
14 Centro -1.0879 -2.8x1073 6.1x1077 0.9009
Luz y Fuerza (0.0166) (4.3x1074) (3.6x1076)

a. Esthiimated standard errors are given in parentheses.
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Figure 2.3 shows that the north has a higher peak demand in the summer, while
the south has a higher peak demand in the remaining periods. Thus, we arranged the
hours according to the load duration curve for the north in the summer period while
we used the load duration curves for the south for the remaining periods. Table 5.7
shows, however, that we defined period 1 in the summer season and period 6 in
the shoulder season to correspond with the daily peak periods for the south. Total
demand in the south (which includes the central region) is so much larger than in the
north, and the differences between peak and second highest demand in the north are

so small, that the overall system peak demand corresponds with the southern one.

Figure 5.2 illustrates the step function approximations to the load duration curve
for the north in the summer season and the load duration curves in the south for the
remaining seasons. We used five steps in the approximations for each of four seasons,
yielding a total of twenty time periods in our model. Figure 5.2 also graphs the load
curves for the south during the summer season, and for the north during the remaining
seasons, with clock time rearranged in the same manner as was done to obtain the
load duration curves. The different shapes of the northern and southern load curves
are reflected in the fact that the rearranged southern curve in the summer, and the
rearranged northern curves in the other seasons, do not appear as load duration
curves ordered from highest to lowest demand. Finally, Figure 5.2 also shows how
we approximated the rearranged loan curves using the same time periods as for the
load duration curve approximations in each period. The durations and sizes of each
the steps in the approximations were determined to maximize the fit between the
approximations and the real load curves subject to the constraint that the areas
under the step function approximations equaled the areas under the real load curves.
As Figure 5.2 shows, five steps allowed us to fit the shapes of the curves reasonably

well. The worst fit 1s for the south in the summer season.
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The step function approximations were converted back to demands in each trans-
mission region using the following procedure. Use SL to denote the season length
(in days). An aggregated seasonal step load duration function in hours per season is
obtained by multiplying the daily period length of each step (PL) by the number of
days in the season (PL x SL). The share of total power demand that is consumed at
a specific period of time ¢ in season s in the Northern (k = N) or Southern (k = 5)

regions the country can be computed from this seasonal step function as follows:

k RLSk,s,t : SL,37t . PLS,t
v ZtES RLSkt,s,t : SLSJ . PLs,t’

where RLSy s, is the relative demand load in region k, period ¢, and season s. Table
5.7 provides numerical values for these variables in our approximation.
'To compute the level of power demand for each transmission region ¢ in a particular

time period and season, we used the formula:
— k.
di,s,t - 51’,3 E d57t ) ds

where 523 is the share of total demand in region k£ and season s originating in trans-
mission area ¢ and d, is the aggregate demand in GWh in season s. Including a set
of multiplicative scaling factors Z; > 0 in this formula allows us to calibrate demand

to compensate for the (unknown) power losses per season:

di,s,t = 51’,3 . dit . Czs . Zs-
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Table 5.7: System Load Curve (%)

Period No. Period Season Season Relative Load Steps
Length Length North South

(t) (hrs., PL) (s) (days, SL) (RLSy) (RLSg)
1 1 Summer 82 0.94 0.89

2 4 (May-Aug) 0.95 0.81

3 10 0.93 0.81

4 7 0.83 0.70

5 2 0.80 0.64
6 1 Shoulder 87 0.84 0.89
7 3 (March, April 0.85 0.86
8 10 Sep., Oct.) 0.85 0.79
9 7 0.78 0.71
10 3 0.73 0.64
11 2 Fall 83 0.79 0.96
12 3 (Nov.-Feb.) 0.79 0.91
13 9 0.75 0.78
14 6 0.68 0.70
15 4 0.64 0.63
16 3 Weekends- 113 0.76 0.79
17 4 Holidays 0.72 0.70
18 ) 0.67 0.62
19 8 0.66 0.60
20 4 0.65 0.58
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5.2 Appendix B: Modeling electricity supply

Since details of system operation at hourly or finer time scales are not relevant to our
main objectives, most of the stochastic components are eliminated from the problem.®
We instead examine a deterministic linear programming model based on expected
values of demand and supply variables. We also modify the model, however, to incor-
porate “normal” levels of excess capacity that are maintained to cope with unusual

emergencies.

Generating costs. The generating plant costs were based on data provided by the
CFE as discussed in the text. The total cost of generation for IV plants in the system
during the year is approximated by

N N T
C= Z bngn + Z Z htcntgnt’ (56)
n=1

n=1 t=1

where n = 1,...N indexes the plants, ¢ = 1,...T" denotes the period (where now one
period represents a set of hours of the day throughout a season), and h; is the number
of hours in period ¢ (number of hours per day times number of days per season). The
annual fixed cost per MW of total capacity of plant n is b,. The total capacity of
plant n, g,, is set for the whole year and constrains the variable output levels, g, of

each plant n in each period t:

=
VAN

gt < Gn, Vin (5.7)

0 < §o<Gn Vin (5.8)

where G, is the designed capacity of the plant. The variable cost of plant n in period

1 is Cnt-

8For stochastic programming models of power markets look at Wallace, Stein W. and Fleten
Stein-Erik. (2002) “Stochastic programming models in energy,” Working Paper 01-02, Department, of
Industrial Economics and Technology Management, Norwegian University of Science and Technology.
http://ideas.uqam.ca/ideas/data/Papers/wpawuwpge0201001 .hitml
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Transmission losses. Transmission losses on a link are a function of the power
flowing between two nodes and the resistance of the line. Specifically, transmission

losses rise with the square of the current being transmitted on a link:
Li; = 3Ry7%; (5.9)

where the subscripts (4,7) indicate the nodes that are connected by the line, L;;
equals the losses (in MW /km), R;; is the resistance of the line (ohm/km) and 7
is the current (in kamps, where 1 kamp = 1,000 amps). The relationship between

current and power for a three-phase alternating current circuit is given by the formula:
P=+3-E-I-pf

where P is the power (in watts), E is the voltage (in volts), I is the current (in amps),
and pf is the “power factor” of circuit. The latter term determines the relationship
between direct and alternating current and, for our calculations, was assumed to be
0.6 (its typical gross value). In general, the engineers try to maintain the system so
that there are minimal fluctuations in the voltage F, so this, too, can be subsumed
in a constant.

Finally, the resistance depends on the physical characteristics of the transmission
lines.? Table 5.8 shows the typical resistance we used to compute the losses specified
in (5.9). These figures are based on data collected by Scherer (1977, 213) and EIRRG
(1998).1°

To include transmission losses in the linear programming model, we approximate
equation 5.9 with linear functions as is illustrated in Figure 5.3 in the case of a two

step approximation.

9Lower resistance can be obtained by using additional circuits or heavier gage wire, but this raises
the capital costs of the towers needed to support the wires and the land needed for the right of way.
Implicitly, another optimization problem underlies the design of the transmission network

10T he resistance of the 115kv lines was taken from Scherer (1977) pp. 213. For the 400kV lines, the
resistance was linearly extrapolated from lines with nominal voltages of 345kV and 500kV, EIRRG
(1998) http://www.nrcce.wvu.edu/special /electricity /elecpaper5.htm.
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Table 5.8: Typical resistance of transmission lines

Nominal Voltage 115 kv 230 kv 400 kv

R (ohm/km) 0.068 0.050 0.033
Line loss
A
Linear J
approximation/

Transmission
> level

Figure 5.3: Approximation of quadratic transmission losses

For a two step approximation, the piecewise linear function that minimizes the
difference between equation 5.9 and its approximation has a break point at half the
total transmission capacity of the line. The slope of the first linear function represents
the average losses (in percentage terms) for transmission up to half of the line capacity,
while the slope of the second function captures the average losses for the remaining
transmitted current. A similar interpretation can be given for the slopes of the linear
pieces when more than two steps are involved in the approximation.!! Table 5.9
presents some characteristics of the transmission lines as reported by the Secretary

of Energy together with the estimated loss coefficients we calculated. The numbering

HFor links with more than one transmission line, the number of steps in the transmission loss
function can be increased.
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of the transmission regions in this table corresponds to the numbers assigned in

Figure 2.2 and Table 2.4 above.

Table 5.9: Characteristics of the transmission lines

Link  Voltage Total Cap. Loss coefficients
kV MW Step1 Step2 Step3 Step 4
1-2 230 330 0.016 ~ 0.0479
2-3 230 220 0.0245 0.0735
4-3 230 350 0.0462  0.1387
4-7 230 240 0.0261 0.0784
4-12 400 260 0.0173  0.0520
6-5 230 230 0.0250 0.0751
6-8 400 140 0.0117 0.0351
7-6 230 235 0.0426  0.1279
7-9 400 260 0.0103  0.0308
230 0.0241 0.0723
7-14 230 200 0.0352  0.1057
8-9 400 2100 0.0234 0.0703
230 0.0447 0.1341
400 0.0158 0.0474
9-10 400 900 0.0224 0.0672
9-11 400 250 0.0073  0.0220
230 0.0221 0.0664
10-18 400 750 0.0233  0.0700
12-14 400 650 0.0158 0.0474
400 0.0162  0.0485
12-15 400 750 0.0134 0.0402
230 0.039  0.0926
400 0.0083  0.0249
13-14 400 1700 0.0157 0.0470
400 0.0173  0.0520
230 0.0250 0.0749
15-14 230 600 0.0202  0.0606
230 0.0350  0.1049
15-17 400 750 0.0216  0.0647
230 0.0398 0.1194
230 0.0310  0.0929
16-15 400 450 0.0204 0.0611
16-12 400 400 0.0235 0.0706
16-17 400 950 0.0193  0.0580
18-17 400 3100 0.0105 0.0316
400 0.0263 0.0790
400 0.0239 0.0718
400 0.0206  0.0618

continued on next page



Table 5.9 Continued

Link  Voltage Total Cap. Loss coefficients
kV MW Stepl Step2 Step3 Step4
230 0.0463 0.1390
230 0.0507  0.1521
18-20 400 2100 0.0146 0.0437 0.0728 0.1020
400 0.0135 0.04040 0.0673 0.0943
230 0.0200 0.0599 0.0998 0.1397
19-17 230 240 0.0199 0.0597
20-21 400 1400 0.0174 0.0522 0.0871 0.1219
20-22 400 1000 0.0136  0.0407 0.0678 0.0950
21-22 400 2200 0.0149 0.0448 0.0746 0.1045
22-23 230 110 0.0188  0.0564
23-24 230 150 0.0134 0.0403
115 0.0090  0.0270
115 0.0162  0.0487
115 0.0083 0.0249
24-26 230 100 0.0104 0.0312
115 0.0105 0.0314
115 0.0105 0.0449
24-25 115 45 0.0135 0.0405
27-28 230 250 0.0233 0.0700
28-29 230 180 0.0187 0.0560
30-31 115 60 0.0168  0.0504
31-32 115 40 0.0160  0.0480
24-26 230 100 0.0104 0.0312
115 0.0105 0.0314
115 0.0105 0.0449
24-25 115 45 0.0135 0.0405
27-28 230 250 0.0233  0.0700
28-29 230 180 0.0187  0.0560
30-31 115 60 0.0168  0.0504
31-32 115 40 0.0160  0.0480

The general regional demand constraint can be written:

Z Nnfnt + Z ZTi:i,t = Z

neN(1)

where 1 = 1,.....

JES(3)

£(5.5)

{

£(3,5)

Jjes@E) 1

(1+ pﬁj)’rﬁj,t + dit,

Vi, t
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(5.10)

, D denotes the region, N(i) denotes the set of generation plants

located in region i, 7, is the fraction of electricity generated by plant ¢ that is sent

out to the electrical system (so (1 —17,,)g.: is consumed within the plant), S(i) denotes
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the set of regions connected to region %, £(i, j) denotes number of steps in transmission
loss function for the link between ¢ and j, 7%, is the power transmission flow from
region 7 to region ¢ in period ¢ and on step [ of the loss function, pﬁj is the loss factor
on step ! of the transmission loss function of link (7, j), and d;; is the hourly electricity

demand at region ¢ in period ¢.

The demand restrictions allow transmission to incur in either direction. Since
all variables in the model are required to be non-negative, we double the number of
transmission variables. The links (i, 5) and (j,¢) represent the same physical wires
but the different indices indicate opposite directions of the flow. The physical wires
limit the amount of electricity that can be transmitted between two regions. Thus, if

7;; denotes the transmission capacity between regions ¢ and j in MW:

£(3,5) £(4,5)

ZT]’Lt + Z ngt S T’l:lv tv (27]) € L (511)

where L is the set of transmission links in the system. Since all the variables are
non-negative, (5.11) implies 0 < 7, < 'rz], Vt, Vi, 5 € S(i),Vl. Furthermore, since
transmissions involve losses, the program will not choose to have power flowing in
both directions at once, that is, only one of 3¢ ﬁjt or YO0 7l 74+ will be strictly

positive.

Availability constraints. The plant availability restrictions can be represented

algebraically as follows:
T
> hugm < 87600,Gr, ¥, (5.12)
t=1

where 8, 760 is the number of hours in a year and «,, is the faction of hours that plan

n is available for generation in the whole year.
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For the subset of large “base” plants, we imposed additional restrictions:

&, < g, Vs, with s =1,.....5, (5.13)

S
> hagh, < 8T6005GY, (5.14)
s=1

where the superscript b indicates a “base” plant, S is the number of seasons in a year
and h, is the number of hours in season s. With this restriction, the allocation of the
optimal maintenance schedule for base plants is over seasons and not over periods.
Whereas a non-base plant could be off line for just two or three hours every day,
planned maintenance of a base plant must affect availability in all periods within a
season. Thus, maintenance of base plant must affect availability for complete days at

a time.

Reserve constraints. These constraints require that plant capacities g, be large
enough to meet brief periods of extreme demands. Since the periods are brief, they
do not require substantial additional energy production. We denote the transmission
levels in such extreme demand periods by 7;;; and modify the demand constraints

(5.10) to become:

£(4,5) £(i.j)

oGt D ) Hz > D () (1 +D)dy, Vit (5.15)

neN{i) jeSE) 1 FESE) 1
where W is the percentage increment in demand that would be covered in an emer-
gency. The reported average load for all of Mexico in 1999 was 20,827 MW while
the maximum load observed in that year was 29,580 MW.!2 Using our assumed load
curves, such a difference between the anmial average load and the maximum demand
in a year corresponds to a 13% gap between the average demand for the peak sea-

son and the peak demand for the year. Hence, we set ¥ =13%." While (5.15) is

12Q0urce: “Prospectiva del sector electrico 2001-2010”, Secretary of Energy, pp 66.
13For the year 2005, we use the same percentage increase to represent unexpected demand. Ac-
cording to the CFE; the projected average and maximum load for the year 2005 will be 41,159 and
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required to hold for every period, in practice the constraint would not be binding in
most periods. The plant capacities g, are fixed for all periods. Reserve capacity suf-
ficient to cover extraordinary demand levels at the peak would also more than cover
extraordinary demand during the off-peak periods.
In addition to satisfying (5.15), the “virtual” extreme demand transmission levels
7 jir aust satisfy constraints analogous to (5.11):
£(i,5) £(1,5)

Dot D e STy V4 () el (5.16)
! .

where L is the set of transmission links in the system.

29,293 MW respectively. The ratio of these two figures is similar to that for the year 1999. Source:
“Prospectiva del sector electrico 2001-2010”, Secretary of Energy, pp 106.



