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Béatrice M. Rivière, Chair,
Professor of Computational and Applied Mathematics,
Rice University

William W. Symes,
Noah Harding Professor of Computational and
Applied Mathematics, Rice University

Robert M. Hardt,
W. L. Moody Professor of Mathematics, Rice
University

Houston, Texas

December 2014



Abstract

On the approximation of the Dirichlet to Neumann

map for high contrast two phase composites and

its applications to domain decomposition methods

by

Yingpei Wang

My research is concerned with the analysis and numerical simulations of elliptic par-

tial differential equations that model steady state flow (electric, thermal, fluid) in

high contrast composite materials consisting of conducting and insulating inclusions

that are close to touching. The coefficients in these equations vary rapidly, thus mod-

eling the micro scale of the composites, and have large (even infinite) ratios of their

maximum and minimum values. It is difficult to simulate numerically flow in high

contrast composites because of singularities of the gradient of the solution between

the high contrast inclusions. Solvers need fine meshes to resolve these singularities

and lead to very large linear systems that are poorly conditioned.

In this thesis, we first approximate the Dirichlet to Neumann (DtN) map for high

contrast two phase composites. The mathematical formulation of the problem is to

approximate the energy for an elliptic equation with arbitrary boundary conditions.

The boundary conditions may have high oscillations, which makes our problem very

interesting and challenging. Our main result is more than general homogenization of
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problems in high contrast composites because we consider the problem with arbitrary

boundary conditions.

In order to approximate the energy of the problem with arbitrary boundary con-

ditions, we propose a method to divide the original problem into two subproblems in

two separated subdomains. One subdomain is close to the boundary, i.e. the bound-

ary layer, and the other subdomain is far from the boundary. We approximate the

energy in these two subdomains separately and then combine them together to obtain

the approximation in the whole domain. In the subdomain far from the boundary, the

energy is not influenced that much by boundary conditions and methods are studied

before. In the boundary layer, the energy strongly depends on the boundary condi-

tions. We use a new method to approximate the energy there such that it works for

arbitrary boundary conditions.

We then directly apply the approximation of DtN map into numerical methods

for solving problems in high contrast media. We use this approximation to construct

preconditioners in nonoverlapping domain decomposition methods. Preconditioners

constructed from the approximation of DtN map almost work as well as precondi-

tioners from solving problems numerically, however it is much cheaper to construct

preconditioners from theoretical approximation results. This leads to the idea of cou-

pling theoretical results and numerical methods in order to save computational time

for solving problems numerically in high contrast media.
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Chapter 1

Introduction

1.1 Problems in high contrast media

The Dirichlet to Neumann (DtN) map of an elliptic partial differential equation maps

the boundary trace of the solution to its normal derivative at the boundary. It is

used in inverse problems [42] for determining the coefficients of the elliptic equa-

tion, in nonoverlapping domain decomposition methods [40] for solving the equations

numerically, and elsewhere.

In this thesis we study the DtN map of equation

∇ · [σ(x)∇u(x)] = 0, x ∈ D , (1.1)

with high contrast and rapidly varying nonnegative coefficient σ(x) in a bounded,

simply connected domain D ⊂ Rd with smooth boundary Γ. Rapidly varying means

that σ fluctuates on a length scale that is much smaller than the diameter of D. High

contrast means that the ratio of the largest and smallest value of σ in D is very large,

even infinite. The coefficient σ models the electrical conductivity of a composite

1
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medium with highly conductive inclusions packed close together in D, so that they

are almost touching. The solution u of (1.1) is the electric potential and −σ∇u is the

electric current, which we also call the flow.

The first mathematical studies of high contrast composites [5, 32, 33] are concerned

with homogenization of periodic media with perfectly conducting (or insulating) in-

clusions. Due to the periodicity, the problem reduces to the local asymptotic analysis

of the potential in the thin gap of thickness δ between two neighboring inclusions.

The asymptotics is in the limit δ → 0. The potential gradient in the gap becomes

singular in this limit, as described in [2, 4, 27, 29], and the energy in the composite

is given to leading order by that in the gap, with effective conductivity

σ̄ = σ̄(δ, g, d) . (1.2)

Here d = 2 or 3 is the dimension of the space, and g is a geometrical factor depending

on the local curvature of the boundaries of the inclusions. The effective conductivity

blows up in the limit δ → 0 as δ−1/2 in two dimensions and logarithmically in three

dimensions.

Kozlov introduced in [34] a continuum model of high contrast conductivity in two

dimensions

σ(x) = σoe
S(x)/ε , (1.3)

where σo is a reference constant conductivity, S(x) is a smooth function with non-

degenerate critical points, and ε� 1 models the high contrast. An advantage of the

model (1.3) is that instead of specializing the analysis in the gaps to various shapes

of the inclusions, we can study a generic problem in the vicinity of saddle points of

the function S(x).
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In any case, independent of the model of high contrast, the problem does not

reduce to a local one if the medium does not have periodic structure. The energy is

still determined to the leading order by that in the gaps, and each gap has an effective

conductivity of the form (1.2), but the net flow in the gaps cannot be determined from

the local analysis.

The global problem is analyzed in [13], for the high contrast model (1.3). It uses

two dual variational principles to obtain sharp upper and lower bounds of the energy,

which match to the leading order. The result can be interpreted as the energy of a

network with topology determined by the critical points of S(x) i.e., σ(x). The nodes

of the network are the maxima of S(x), and the edges connect the nodes through

the saddle points of S(x). Each saddle point x
S

is associated with a resistor with

effective conductivity given by σ(x
S
) multiplied by a geometrical factor depending on

the curvatures of S(x) at x
S
.

The extension of the approach in [13] to homogenization of two phase composites

with infinite contrast is in [8]. The result is similar. The energy is given to leading

order by a network with nodes at the centers of the conductive inclusions. The edges

connect the nodes through the thin gaps separating the inclusions, and have a net

conductivity of the form (1.2). An error analysis of the approximation is in [9].

The analysis of the DtN map is related to that of homogenization because they

both reduce to approximating the energy in the composite, which can be bounded

above and below using dual variational principles. Indeed, the DtN map

Λ : H1/2(Γ)→ H−1/2(Γ)

defined by

Λψ(x) = σ(x)∇u(x) · n(x), x ∈ Γ , (1.4)
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where

u(x) = ψ(x), x ∈ Γ, (1.5)

and n(x) is the outer normal at Γ, is self-adjoint. Therefore it is determined by its

quadratic forms

〈ψ,Λψ〉 =

∫
Γ

ds(x)ψ(x)Λψ(x) , (1.6)

for all ψ ∈ H1/2(Γ), and using integration by parts we can relate it to the energy

E(ψ) =
1

2

∫
D
dxσ(x)|∇u(x)|2 , (1.7)

by the equation

〈ψ,Λψ〉 = 2E(ψ) . (1.8)

However, the analysis of Λ is different than homogenization because of the arbitrary

boundary potentials ψ. In homogenization ψ is a smooth function that gives a unit

net gradient of the potential along some unit vector e,

1

|D|

∫
D
dx e · ∇u(x) =

1

|D|

∫
Γ

ds(x) e · n(x)ψ(x) = 1,

where |D| is the volume ofD. We consider smooth and rough (oscillatory) potentials ψ

and show that in the latter case the problem is significantly different. The oscillations

of ψ induce current flow near Γ that must be coupled carefully with the flow in the

interior of D modeled by the network. The rigourous analysis of this flow coupling is

the main achievement of this thesis.

The DtN map of high contrast media with conductivity (1.3) is studied in [11]. It

is shown that Λ can be approximated by the matrix valued DtN map of the resistor

network described above, with topology determined by the critical points of S(x).



5

However, the approximation in (1.3) is on a subspace of boundary potentials that

vary slowly on Γ, on scales that are larger or at most similar to the typical distance

between the critical points of S(x).

In this thesis we study the DtN map of two phase composites with perfectly

conducting inclusions in a medium of uniform conductivity σo = 1. For simplicity we

work in two dimensions, in a disk shaped domain D of radius L, with disk shaped

inclusions of radius R � L. The results apply with minor changes to any D ⊂ R2

with smooth boundary and to arbitrary shaped inclusions. The changes amount

to replacing in formulas (2.17)-(2.19) below the curvatures 1/R and 1/L � 1/R

with the local curvatures in the gaps between the inclusions and between Γ and

the nearby inclusions. We refer to [28] for an example of how this is done in the

context of homogenization, for particles of arbitrary shape. High but finite contrast

can be handled by writing the approximation as a perturbation series in the contrast

parameter, with terms calculated recursively, as shown in [16, 26]. The analysis also

extends to three dimensions, with some additional difficulties in the construction of

the test functions used in the variational principles to bound the energy E(ψ). We

refer to [6] for a homogenization treatment of high composites in three dimensions.

Finally, convex duality [22] extends trivially our results to two dimensional high

contrast composites with insulating inclusions close to touching. An example of using

convex duality for high contrast problems can be found in [11]. Three dimensional

composites with insulating inclusions are more challenging and the results do not

extend to this case.

Our results show that Λ is determined by the DtN map of the resistor network

with nodes at the centers of the inclusions and edges with effective conductivity of

the form (1.2). This is the same network as in the homogenization studies [8, 9]. But

the excitation of the network depends on the boundary potential ψ. If ψ varies slowly
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in Γ, then the network plays the dominant role in the approximation of Λ, and the

result is similar to that in [11]. If ψ varies rapidly in Γ, there is a boundary layer of

strong flow which must be coupled to the network. We give a rigorous analysis of this

coupling. We show that the more oscillatory ψ is, the less the network gets excited,

and the more dominant the boundary layer effect in the approximation of Λ.

1.2 Domain decomposition methods

In general, solutions to high contrast problems vary rapidly inside the domain of in-

terest. Numerical methods require a very fine spatial discretization to capture these

rapid variations. For example, the mesh size should be smaller than the gap thick-

ness δ when solving problems numerically in high contrast composites. In general,

this leads to costly and ill-conditioned linear systems. In this thesis we attempt to

develop more efficient numerical methods for high contrast problems based on domain

decomposition algorithms [41].

Domain decomposition methods are numerical techniques to solve large systems

by iteratively solving smaller systems in subdomains, as well as providing proper pre-

conditioners [18, 41, 44, 45]. It is well known that domain decomposition methods

work very well for problems with smooth coefficients. However, traditional domain

decomposition methods may perform poorly when the coefficients have high contrast

values, because the condition number of the preconditioned system may depend on

the contrast. There have been recent attempts to carefully design domain decompo-

sition methods for high contrast problems [1, 30, 31, 25, 20, 37, 3]. In these works,

information on the multiscale properties of the particular problems is incorporated

in the construction of the preconditioners. In other words, by applying a proper pre-

conditioner which also contains some information of the coefficients, a system whose
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condition number depends on neither the mesh size nor the coefficients of the problem

can be obtained.

Nonoverlapping domain decomposition methods are based on a partition of the

domain into several nonoverlapping subdomains, see [18, 41, 45]. Different subdo-

mains exchange information with each other through the interface between them.

The most important part of a nonoverlapping domain decomposition method is to

solve an equation on the interface, that involves the trace or the flux of the solution.

After the equation on the interface is solved, it can be used as boundary conditions

in each subdomain and subproblems can be solved independently in order to obtain

the whole solution. The linear system resulting from the interface equation may be

ill-conditioned and is in general solved by iterative methods. Usually, for nonover-

lapping domain decomposition methods, applying the preconditioner to the linear

system is in practice done by solving subproblems at each iteration. These methods

are also referred to as substructuring methods [18, 41, 45].

In this thesis we propose an approximated preconditioner that is constructed from

asymptotic approximation of the DtN map Λ. We need not solve subproblems numer-

ically, but only need to do matrix-vector multiplication for applying the approximated

preconditioner. A related work is the method developed by Chan and Mathew [17]

based on probing techniques. The preconditioner there is obtained by solving a few

carefully designed subproblems ahead of the iterations. From asymptotic approxi-

mation of the DtN map Λ, we can obtain a preconditioner matrix up to any size

decided by numerical discretization. On the other hand, the total iteration num-

bers for solving the interface system with approximated preconditioner is similar to

that with preconditioner from solving subproblems numerically. Hence we can save

computational time from applying the preconditioner in each iteration when solving

the interface system iteratively. In many situations, the computational time for ap-



8

plying preconditioner from solving subproblems numerically is around a half of the

computational time at each iteration.

1.3 Outline

In Chapter 2, we present the mathematical formulation and asymptotic approxima-

tions of DtN map for two phase composites with perfectly conducting inclusions. We

also explain some generalization aspects of our methods and results.

In Chapter 3, we carefully discuss the proof ideas and details in order to obtain

the results in Chapter 2. More proof details are presented in Chapter A.

In Chapter 4, we discuss applications of results from Chapter 2 in nonoverlapping

domain decomposition methods for solving problems in high contrast media. Some

useful numerical methods are introduced in Chapter B.

In Chapter 5, we summarize the work in this thesis and discuss some possible

future work.



Chapter 2

Formulation and results

2.1 Formulation

We study the DtN map Λ of an infinite contrast composite medium in D ⊂ R2,

consisting of N � 1 perfectly conducting inclusions Di centered at xi ∈ D, in a

medium of uniform conductivity σo. See Figure 2.1 for an illustration. The domain

D is a disk of radius L, centered at the origin of the system of coordinates. For

simplicity we let the inclusions be identical disks of radius R� L. They are packed

close together, but they are not touching. The complement of the inclusions in D is

denoted by

Ω = D \
N⋃
i=1

Di .

2.1.1 Variational principles

The DtN map Λ is determined by the quadratic forms (1.8), and therefore by the en-

ergy E(ψ). We estimate it using two dual variational principles. The first variational

9
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Figure 2.1: Illustration of the setup. The domain D contains N perfectly conducting inclusions
denoted by Di. The medium of conductivity σo = 1 lies in Ω, the complement of the union of the
inclusions in D.

principle [6, 8, 9]

E(ψ) = min
v∈V(ψ)

1

2

∫
Ω

dx |∇v(x)|2 , (2.1)

is a minimization over potentials in the function space

V(ψ) =
{
v ∈ H1(Ω) , v|Γ = ψ , v|∂Di = constant, i = 1, . . . , N

}
. (2.2)

They have boundary trace v|Γ equal to the given ψ ∈ H1/2(Γ), and are constant at the

boundaries ∂Di of the inclusions. There is a unique minimizer of (2.1), the solution

of the Euler-Lagrange equations [8]

∆u(x) = 0 , x ∈ Ω , (2.3)

u(x) = Ui , x ∈ ∂Di , (2.4)∫
∂Di

ds(x) n(x) · ∇u(x) = 0 , i = 1, . . . , N , (2.5)

u(x) = ψ(x) , x ∈ Γ . (2.6)
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The unknowns in these equations are the potential function u(x) and the vector

U = (U1, . . . ,UN) of constant potentials on the inclusions. These are the Lagrange

multipliers associated with the conservation of current conditions (2.5).

The second variational principle

E(ψ) = max
j∈J

[∫
Γ

ds(x)ψ(x)n(x) · j(x)− 1

2

∫
Ω

dx |j(x)|2
]
, (2.7)

is a maximization over fluxes j in the function space

J =

{
j ∈ L2(Ω) , ∇ · j = 0 in Ω ,

∫
∂Di

dsn · j = 0 , i = 1, . . . , N

}
. (2.8)

It is obtained from (2.1) using Legendre (duality) transformations [22], as explained

for example in [8]. The divergence free condition on j, interpreted in the weak sense,

gives the conservation of current in Ω, and the constraints at ∂Di are the analogues

of (2.5). There is a unique maximizer of (2.7), given by

j(x) = ∇u(x), (2.9)

in terms of the solution of (2.3)-(2.6). It is the negative of the electric current in Ω.

If we could solve equations (2.3)-(2.6), we would have the exact energy. This

is impossible analytically. Moreover, numerical approximations of (u,U) are com-

putationally intensive due to fine meshes needed to resolve the flow between the

inclusions, and the poor condition numbers of the resulting linear systems. We use

instead the variational principles (2.1) and (2.7) with carefully constructed test func-

tions v ∈ V(ψ) and j ∈ J to obtain tight upper and lower bounds on E(ψ), which

match to leading order. The test potentials v are pieced together from local approx-

imations of the solution of (2.3)-(2.6) in the gaps between the inclusions and in a

-
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boundary layer at Γ. The construction of the test fluxes is based on the relation (2.9)

between the optimal potential and flux. Once we have a good test potential v ∈ V,

we can construct j ∈ J so that j ≈ ∇v.

2.1.2 Asymptotic scaling regime

There are three important length scales in the problem: The radius L of the domain

D, the radii R of the inclusions and the typical distance δ between the inclusions. To

define δ, we specify first what it means for two inclusions to be neighbors.

Let Xi be the Voronoi cell associated to the i−th inclusion

Xi = {x ∈ D such that |x− xi| ≤ |x− xj| , ∀j = 1, . . . , N, j 6= i} .

It is a convex polygon bounded by straight line segments called edges. The inclusion

Di neighbors Dj if the cells Xi and Xj share an edge. We denote the set of indices of

the neighbors of Di by Ni,

Ni = {j ∈ {1, . . . , N} , j neighbors i} , (2.10)

and let

δij = dist{Di,Dj} , (2.11)

for all i = 1, . . . , N and j ∈ Ni. These are the thicknesses of the gaps between the

inclusions.

Similarly, we say that inclusion Di neighbors the boundary if Xi ∩ Γ 6= ∅. Let us

say that there are NΓ such inclusions and let δi be their distance from the boundary

δi = dist{Di,Γ} . (2.12)
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We number henceforth the inclusions starting with those neighboring Γ, counter-

clockwise. Thus, Di neighbors Γ if i = 1, . . . , NΓ, and it is an interior inclusion if

i = NΓ + 1, . . . , N .

We assume that both δij and δi are of the same order δ, and seek an approximation

of the DtN map Λ in the asymptotic regime of separation of scales

δ � R� L. (2.13)

The reference order one scale is L.

There is one more parameter in the asymptotic analysis, denoted by k, which

defines the Fourier frequency of oscillation of ψ at Γ. It is independent of all the

other scales in the problem and it can vary between 0 and K, with K arbitrarily

large. For example, in domain decomposition, K would be determined by the mesh

used to discretize the domain. Because Γ is a circle of radius L in our setup, we

parametrize it by the angle θ ∈ [0, 2π], and suppose that ψ is a superposition of

Fourier modes

ψ(θ) =
K∑
k=0

[ack cos(kθ) + ask sin(kθ)] . (2.14)

We seek approximations of 〈ψ,Λψ〉 that are valid for any K.

2.2 Results

We state in Theorem 2.2.1 the approximation of 〈ψ,Λψ〉 for boundary potentials ψ

given by a single Fourier mode. The generalization to potentials (2.14) is in Corollary

2.2.2

The approximation involves the discrete energy and therefore DtN map of a resis-

tor network that is uniquely determined by the medium. It has the graph (X ,E) and
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edge conductivity function σ : E → R+. Each edge is associated to a gap between

adjacent inclusions or between an inclusion and the boundary, and models the net

singular flow there. The set of nodes of the network is given by

X =
{
xi, i = 1, . . . , N, xΓ

i , i = 1, . . . , NΓ
}
. (2.15)

The interior nodes xi are at the centers of the inclusions, for i = 1, . . . , N . The

boundary nodes

xΓ
i = L(cos θi, sin θi) (2.16)

are the closest points on Γ to the inclusions Di in its vicinity, for i = 1, . . . , NΓ. The

edges of the network connect the adjacent nodes

E =
{
eij = (xi,xj), i = 1, . . . , N, j ∈ Ni, eΓ

i = (xΓ
i ,xi), i = 1, . . . NΓ

}
, (2.17)

and the network conductivity function is defined by

σ(eij) = π

√
R

δij
=: σij, i = 1, . . . , N, j ∈ Ni , (2.18)

σ(eΓ
i ) = π

√
2R

δi
=: σi, i = 1, . . . , NΓ . (2.19)

The DtN map Λnet of the network is a symmetric NΓ ×NΓ matrix. Its quadratic

forms are related to the discrete energy Enet(Ψ) of the network by

Ψ · ΛnetΨ = 2Enet(Ψ) , (2.20)

where we let Ψ = (Ψ1, . . . ,ΨNΓ)T be the vector of boundary potentials. The energy
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has the variational formulation

Enet(Ψ) = min
U∈RN


NΓ∑
i=1

σi
2

[Ui −Ψi]
2 +

1

2

N∑
i=1

∑
j∈Ni

σij
2

(Ui − Uj)2

 , (2.21)

where the 1/2 factor in front of the second sum is because we sum twice over the

edges eij. There is a unique minimizer U ∈ RN of (2.21). It is the vector of node

potentials that satisfy Kirchhoff’s equations, a linear system which states that the

sum of currents in each interior node equals zero.

2.2.1 Boundary potential given by a single Fourier mode

Let the boundary potential ψ be given by

ψ(θ) = cos(kθ) , (2.22)

with k > 0. The case k = 0 is trivial, because constant potentials are in the null

space of the DtN map.

Theorem 2.2.1. We have that

〈ψ,Λψ〉 = 2E(ψ) = 2E(ψ) [1 + o(1)] , (2.23)

with the leading order of the energy given by the sum of three terms

E(ψ) = Enet (Ψ(ψ)) +
kπ

2
+Rk . (2.24)

The first term is the discrete energy Enet(Ψ(ψ)) of the resistor network described
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above in (2.21), with vector Ψ = (Ψ1, . . . ,ΨNΓ)T of boundary potentials defined by

Ψi(ψ) = ψ(θi)e
− k
√

2Rδi
L , i = 1, . . . , NΓ. (2.25)

The second term in (2.24) is the energy in the reference medium with constant con-

ductivity σo = 1. It is related to the reference DtN map Λo by

Eo(ψ) =
1

2

∫
D
dx |∇uo(x)|2 =

kπ

2
=

1

2
〈ψ,Λoψ〉 . (2.26)

where uo is the solution of (1.1) with homogeneous conductivity σo in D and boundary

condition ψ on Γ.

The last term in (2.24) is given by

Rk =
NΓ∑
i=1

σi
4

[√
2kδi
πL

Li1/2

(
e−

2kδi
L

)
− e−

2k
√

2Rδi
L

]
, (2.27)

in terms of the Polylogarithm function Li1/2.

The proof of the theorem is in section 3.1, and the meaning of the result is as

follows. The resistor network plays a role in the approximation if it gets excited.

This happens when the boundary potential ψ is not too oscillatory. As shown in

equation (2.25), the potential Ψi at the i−th boundary node of the network is not

simply ψ(θi). We have an exponential damping factor, which is due to the fact that

only part of the flow reaches the inclusion Di. As k increases, the flow near the

boundary becomes oscillatory, and has a strong tangential component. Less and less

current flows into Di and in the end, the network may not even get excited.

----
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The term Rk in (2.24), which we rewrite as

Rk =
NΓ∑
i=1

Ri,k , (2.28)

with

Ri,k =
σi
4

[√
2kδi
πL

Li1/2

(
e−

2kδi
L

)
− e−

2k
√

2Rδi
L

]
, (2.29)

describes the anomalous energy due to the oscillations of the flow in the gaps between

the boundary and the nearby inclusions. Roughly speaking, the mean of the normal

flow at the boundary enters the inclusions, and thus excites the resistor network. The

remainder, the oscillations about the mean, have no effect on the network, but they

may be strong, depending on k and δ. As we explain below, the term Rk is important

only in a specific “resonant” regime.

We distinguish three asymptotic regimes based on the values of the dimensionless

parameters

ε =
kδ

L
, η =

kR

L
. (2.30)

Equation (2.13) implies that

ε� η (2.31)

but depending on the value of k, these parameters may be large or small.

In the first regime k . L/R, so that

ε� η . 1 . (2.32)

The network is excited in this regime, and equation (2.25) shows that its boundary

potentials Ψi are basically the point values of ψ at the boundary nodes xΓ
i . The

energy of the network plays an important role in the approximation, and it is large,

----
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given by the sum of terms proportional to the effective conductivities σi and σij of

the gaps, which are O
(√

R/δ
)

. The term Rk is much smaller, as obtained from the

following asymptotic expansions of the exponential

e−
√
εη = 1−√εη +O(εη) , (2.33)

and the Polylogarithm function

Li1/2
(
e−2ε

)
=

√
π

2ε
+ ζ

(
1

2

)
− 2εζ

(
−1

2

)
+O

(
ε3/2
)
, ε� 1 , (2.34)

where ζ is the Riemann zeta function. We obtain that

Ri,k = σiO
(
ε1/2
)
� σi , (2.35)

and conclude that Rk is negligible in this regime. The leading order of the energy is

given by

E(ψ) ≈ Enet (Ψ(ψ)) +
kπ

2
. (2.36)

In the second regime the boundary potential is very oscillatory, with k & L/δ � 1,

so that

1 . ε� η. (2.37)

The network plays no role in this regime, because it is not excited. Its boundary

potentials are exponentially small, essentially zero, as shown in equation (2.25). The
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term Rk is the sum of

Ri,k =
σi
4

√
2kδi
πL

e−
2kδi
L

[
1 +O

(
e−

2kδi
L

)]
=

1

2

√
πkR

2L
e−2εδi/δ

[
1 +O

(
e−2ε

)]
, (2.38)

where we used the asymptotic expansion of the Polylogarithm function at small ar-

guments. We estimate it as

Rk ∼
√
kL

R
e−ε , (2.39)

because

NΓ ∼ L

R
, (2.40)

with symbol ∼ denoting henceforth approximate, up to a multiplicative constant of

order one. Consequently,

Rk

Eo(ψ)
∼
√

L

Rk
e−ε , (2.41)

and recalling the definition (2.30) of ε, we see that Rk becomes negligible as k in-

creases. The oscillatory flow is confined near the boundary Γ for large k, and it does

not see the high contrast inclusions. The energy is approximately equal to that in

the reference medium

E(ψ) ≈ Eo(ψ) =
kπ

2
. (2.42)

The third regime corresponds to intermediate Fourier frequencies satisfying

L

R
. k � L

δ
,

so that

ε� 1 . η. (2.43)
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We call it the resonant regime because Rk plays an important role in the approxima-

tion. Equation (2.25) shows that the network gets excited, with boundary potentials

that are smaller than the point values of ψ. The term Rk is estimated by

Rk ∼
NΓ∑
i=1

σi
[
1 +O(ε1/2)

]
∼ L

R

√
R

δ
=

k
√
εη
, (2.44)

where we used the expansion (2.34), and (2.40). All the terms in (2.24) play a role

in the approximation of the energy, with Rk of the same order as Enet when εη � 1,

and much larger for εη � 1. The term Rk dominates the reference energy Eo(ψ)

when εη � 1, but it plays a lesser role as the frequency k increases so that εη & 1.

2.2.2 General boundary potentials

Assuming a potential of the form (2.14), with K Fourier modes, we write

ψ(θ) =
K∑
k=0

ψk(θ) , (2.45)

with ψk(θ) oscillating at frequency k,

ψk(θ) = ack cos(kθ) + ask sin(kθ) . (2.46)

The maximum frequency K may be arbitrarily large. We obtain the following gener-

alization of the result in Theorem 2.2.1.

Corollary 2.2.2. For a potential ψ of the form (2.45) we have that

〈ψ,Λψ〉 = 2E(ψ) =
(
Ψ(ψ) · ΛnetΨ(ψ) + 〈ψ,Λoψ〉+ 2R(ψ)

)
[1 + o(1)] . (2.47)
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The first term is due to the network with boundary potentials

Ψi(ψ) =
K∑
k=0

ψk(θi)e
− k
√

2Rδi
L . (2.48)

The second term is the quadratic form of the DtN map Λo of the reference medium,

with uniform conductivity σo = 1. The last term R is given by

R =
NΓ∑
i=1

K∑
k,m=0

e−|k−m|
√

2Rδi
L Ri,k∧m {(ackacm + aska

s
m) cos[(k −m)θi]+

(aska
c
m − ackasm) sin[(k −m)θi]} , (2.49)

where k ∧m = min{k,m} , and Ri,k is defined in (2.29).

The proof of this corollary is very similar to that of Theorem 2.2.1, so we do not

include it here. It uses the dual variational principles (2.1) and (2.7) to estimate the

energy E(ψ) for potential (2.45). Actually, it suffices to consider

ψ(θ) = cos(kθ) + cos(mθ) , ψ(θ) = sin(kθ) + cos(mθ) , ψ(θ) = sin(kθ) + sin(mθ) ,

for arbitrary k,m = 1, . . . , K, because the energy is a quadratic form in ψ. We refer

to [43, section 4.3] for details.

The expression (2.47) is similar to (2.23), and the discussion in the previous section

applies to the contribution of each Fourier mode of ψ. The resonance R captures the

energy of the oscillatory flow in the gaps between the inclusions and the boundary

Γ. Its expression is more complicated than (2.27), but only the terms that are less

oscillatory have a large contribution in (2.49). We can see this explicitly in the special
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Figure 2.2: Numerical setup.

case where all the gaps are identical

δi = δ1 , Ri,k = R1,k , ∀ i = 1, . . . , NΓ,

and the boundary points are equidistant. Then (2.49) simplifies to

R =NΓ

K∑
k=0

R1,k

[
(ack)

2 + (ask)
2]+

2NΓ

K∑
k=0

R1,k

∑
q∈Z+

e−|q|N
Γ
√

2Rδ1
L 1[0,K](k + qNΓ)

[
acka

c
k+qNΓ + aska

s
k+qNΓ

]
,

because

NΓ∑
i=1

cos[(k −m)θi] = NΓδkm moduloNΓ ,
NΓ∑
i=1

sin[(k −m)θi] = 0 , θi =
(i− 1)2π

NΓ
.

Here we let 1[0,K] be the indicator function of the interval [0, K].

2.2.3 Numerical illustration

We illustrate in Figure 2.3 the accuracy of the asymptotic approximation of the

quadratic forms 〈ψ,Λψ〉 using numerical simulations. The set-up is shown in Figure

••••• •• ~.~ •• 
~-····· 
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Figure 2.3: Plot of the relative error of the asymptotic approximation of 〈ψ,Λψ〉 for ψ = cos(kθ)
and sin(kθ) and k = 1, . . . , 100. The contrast of the conductivity is 100 on the left and 1000 on the
right.

2.2. We have 19 inclusions in the unit disk D. They are identical disks of radii

0.195 and at distance δi = 0.013 from the boundary. The gaps δij between the

closest inclusions are 0.006. We estimate the relative error by using the numerical

approximation of 〈ψ,Λψ〉 as its “true value”. We compute it by first solving equation

(1.1) with a second order finite volume method on a fine uniform mesh in radius and

angle. We tested the convergence by verifying that the results change by less than

one percent when we refine the mesh. We approximate the integral (1.6) with the

trapezoidal quadrature rule.

Because the setup is approximately rotation invariant, the eigenfunctions of Λ are

approximately equal to cos(kθ) and sin(kθ). This is why we display the results for

these boundary conditions. Our asymptotic approximation is based on an infinite

contrast assumption. In the simulations the contrast is 100 in the left plot of Figure

2.3 and 1000 in the right plot. We see that the approximation is not that accurate

in the lower contrast case at small values of k, where the network plays the leading

order role in the approximation. However, the approximation improves dramatically

at contrast 1000, as expected and shown in the right plot of Figure 2.3. The error
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is less than 10% and it is larger at values of k in the “resonant regime” defined by

(2.43). This is in agreement with the analytic error estimates in appendix A.5.

2.2.4 Generalization to inclusions of different size and shape

We assumed for simplicity of the analysis that the inclusions Di are identical disks of

radius R, but the results extend easily to inclusions of different radii and even shapes.

The leading order of the energy is due to the singular flow in the gaps between the

inclusions and near the boundary. As long as we can approximate the boundaries

∂Di locally, in the gaps, by arcs of circles of radius Ri, and we have the scale ordering

δ ∼ δi � Ri ∼ R� L,

the results of Theorem 2.2.1 and Corollary 2.2.2 apply, with the following modifica-

tions: The effective conductivities of the gaps are given by

σij = π

√
2RiRj

δij(Ri +Rj)
, i = 1, . . . , N , j ∈ Ni , (2.50)

and

σi = π

√
2Ri

δi
, i = 1, . . . , NΓ. (2.51)

The resonance terms have the same expression as in (2.27) and (2.49), but R is

replaced by the local radii Ri of curvature in the sum over the gaps.



Chapter 3

Method of proof

3.1 The idea of proof

The basic idea of the proof is to use the two variational principles (2.1) and (2.7),

with carefully chosen test potentials and fluxes, to obtain upper and lower bounds on

the energy that match to the leading order, uniformly in k. The main difficulty in

the construction of these test functions is that, depending on k, the flow may have

very different behavior near Γ than in the interior of the domain. To mitigate this

difficulty, we borrow an idea from [7, 38] and introduce in section 3.2 an auxiliary

problem in a so-called perforated domain Ωp. It is a subset of Ω, with complement

Ω \ Ωp chosen so that the flow in it is diffuse, and thus negligible to leading order in

the calculation of energy.

The perforated domain is the union of two disjoint sets: the boundary layer B,

and the union of the gaps between the inclusions, denoted by Π. It is useful because

it allows us to separate the analysis of the energy in the boundary layer and that in

Π, as shown in section 3.3. The estimation of the energy in Π is in section 3.4, where

we review the network approximation. The energy in B is estimated in section 3.5.

25
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Figure 3.1: Illustration of the perforated domain Ωp. It is the union of two disjoint sets: the
boundary layer B and the set Π of gaps between the adjacent inclusions. The complement of Ωp in
Ω is the set T of triangles.

The proof of Theorem 2.2.1 is finalized in section 3.5.3.

3.2 The perforated domain

Let us denote by T the set of triangles that we wish to remove from Ω, based on the

observation that the flow there is diffuse and thus negligible in the calculation of the

leading order of the energy. There are two types of triangles, those in the interior of

the domain, and those near the boundary. The triangles in the interior are denoted

generically by Tijk, for indexes i ∈ {1, . . . , N}, j ∈ Ni and k ∈ Nj. We illustrate one

of them in Figure 3.2(a), where we denote by O the vertex of the Voronoi tessellation,

the intersection of the Voronoi cells

O = Xi

⋂
Xi

⋂
Xk .

The vertices of the triangle Tijk are at the intersections of the boundaries of the

inclusions with the line segments connecting their centers with O.

T 
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(a) (b)

Figure 3.2: (a) Illustration of a triangle Tijk. Its vertices are the intersections of the boundaries
of the inclusions with the line segments between their centers and the vertex O of the Voronoi
tessellation. (b) Illustration of a triangle T Γ

i+. It has vertices p+
i and p−

i+1, one straight edge and
two curved ones. One curved edge is the arc on the circle of radius L−R/2, shown with dashed line.
The straight edge connects the vertex p+

i with ∂Di+1 along the line that is parallel to that passing
through xi and xi+1. The other curved edge is on ∂Di+1.

The triangles near the boundary are denoted by T Γ
i+, for i = 1, . . . , NΓ. Note that

with our counting of the inclusions the triangle T Γ
i+ involves the neighbors Di and Di+1

for i = 1, . . . , NΓ− 1, whereas T Γ
NΓ+ involves DNΓ and D1. We define the triangles to

have one straight edge and two curved ones. Let p±i be the intersection of the circle1

of radius L − R/2 shown with the dashed line in Figure 3.2(b) and the boundary

∂Di of the i−th inclusion. Then p+
i and p−i+1 are vertices of T Γ

i+ and the arc of the

circle of radius L − R/2 between them is one curved edge of T Γ
i+. To determine the

straight edge of T Γ
i+, we draw two line segments that are parallel to the line through

the centers xi and xi+1 of the inclusions, and connect p+
i with ∂Di+1 and p−i+1 with

∂Di, respectively. One of these segments lies inside the circle of radius L−R/2, and

it is the straight edge of T Γ
i+. The remaining curved edge is an arc on the boundary

of one of the inclusions. If the straight edge stems from p+
i i.e., if Di is closer to Γ

than Di+1, the curved edge lies on ∂Di+1, as illustrated in Figure 3.2(b). Otherwise

1The circle of radius L−R/2 used in the definition of T Γ is somewhat arbitrary. We may chose
any radius L−R+ ρ, with

√
Rδ � ρ . R/2 and the result would be the same to the leading order.
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it lies on ∂Di. In the special case where the two inclusions have the same distance to

the boundary Γ, this edge degenerates to a point. That is to say, T Γ
i+ has only two

vertices p+
i and p−i+1, and two edges connecting them. One edge is straight and the

other is on the circle of radius L−R/2.

The perforated domain is defined by

Ωp = Ω \ T . (3.1)

It is the union of the boundary layer B and the set of gaps Π, as shown in Figure

3.1.. The set B is bounded on one side by Γ, and on the other side by the inclusion

boundaries ∂Di and the curved edges of the triangles T Γ
i+ between them, for i =

1, . . . , NΓ. The set Π is the union of the disjoint gaps Πij between neighboring

inclusions

Π =
⋃

i=1,...,N,j∈Ni

Πij. (3.2)

They are bounded by ∂Di, ∂Dj, and the edges of the interior triangles.

3.3 Advantage of the perforated domain

We define the energy Ep(ψ) in the perforated domain by

Ep(ψ) = min
v∈Vp(ψ)

1

2

∫
Ωp

dx |∇v(x)|2 , (3.3)

where the minimization is over potentials in the function space

Vp(ψ) =
{
v ∈ H1(Ωp), v|Γ = ψ, v|∂Di = constant, i = 1, . . . , N

}
. (3.4)

-
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Note that the set V(ψ) of test potentials in the variational principle (2.1) of E(ψ) is

contained in Vp(ψ). Note also that the minimizer in (3.3) is the solution up(x) of the

Euler-Lagrange equations

∆up(x) = 0 , x ∈ Ωp , (3.5)

up(x) = Ui , x ∈ ∂Di , (3.6)∫
∂Di

ds(x) n(x) · ∇up(x) = 0 , i = 1, . . . , N , (3.7)

up(x) = ψ(x) , x ∈ Γ , (3.8)

n(x) · ∇up(x) = 0 , x ∈ ∂T . (3.9)

The first four equations are the same as those satisfied by the minimizer of (2.1),

except that Ωp is a subset of Ω. The unknowns are up and the vector U = (U1, . . . ,UN)

of constant potentials on the inclusions, the Lagrange multipliers for the conservation

of currents conditions (3.7). Equation (3.9) says that there is no flow in the set T

of triangles removed from Ω. The minimizer u(x) in (2.1) does not satisfy these

conditions, so

up(x) 6= u(x), x ∈ Ωp.

However, the next lemma states that when replacing u with up we make a negligible

error in the calculation of the energy. The proof is in appendix A.2.

Lemma 3.3.1. The energy E(ψ) is approximated to leading order by the energy in

the perforated domain, uniformly in k,

E(ψ) = Ep(ψ) [1 + o(1)] . (3.10)

Because the perforated domain is the union of the disjoint sets B and Π, it allows
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us to separate the estimation of the energy in the boundary layer from that in the

gaps, as stated in the next lemma. The two problems are tied together by the vector

UΓ = (U1, . . . ,UNΓ) of potentials on the inclusions near Γ.

Lemma 3.3.2. The energy in the perforated domain is given by the iterative mini-

mization

Ep(ψ) = min
UΓ∈RNΓ

[
EB(UΓ, ψ) + EΠ(UΓ)

]
, (3.11)

where EB(UΓ, ψ) and EΠ(UΓ) are the energy in the boundary layer and gaps respec-

tively, for given UΓ and ψ. The energy in the boundary layer has the variational

principle

EB(UΓ, ψ) = min
v∈VB(UΓ,ψ)

1

2

∫
B
dx |∇v(x)|2 , (3.12)

with minimization over potentials in the function space

VB(UΓ, ψ) =
{
v ∈ H1(B), v|Γ = ψ, v|∂Di = Ui, i = 1, . . . , NΓ,

v|∂Di = constant, i = NΓ + 1, . . . , N
}
. (3.13)

The energy in the gaps is given by

EΠ(UΓ) = min
v∈VΠ(UΓ)

1

2

∫
Π

dx |∇v(x)|2 , (3.14)

with potentials in the function space

VΠ(UΓ) =
{
v ∈ H1(Π), v|∂Di = Ui, i = 1, . . . , NΓ,

v|∂Di = constant, i = NΓ + 1, . . . , N
}
. (3.15)

The proof of this lemma is in appendix A.3. It uses that the minimizer uB of
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(3.12) satisfies the Euler-Lagrange equations

∆uB(x) = 0 , x ∈ B , (3.16)

uB(x) = Ui , x ∈ Di , i = 1, . . . , NΓ , (3.17)

uB(x) = ψ(x) , x ∈ Γ , (3.18)

n(x) · ∇uB(x) = 0 , x ∈ ∂B ∩ ∂T , (3.19)

and the minimizer uΠ of (3.14) satisfies

∆uΠ(x) = 0 , x ∈ Π , (3.20)

uΠ(x) = Ui , x ∈ Di , i = 1, . . . , N , (3.21)∫
∂Di

ds(x) n(x) · ∇uΠ(x) = 0 , i = NΓ + 1, . . . , N , (3.22)

n(x) · ∇uΠ(x) = 0 , x ∈ ∂Π ∩ ∂T . (3.23)

These equations are similar to (3.5)-(3.9). Note however that in (3.16)-(3.19) there

is only one unknown, the potential function uB(x). The constant potentials on the

inclusions near the boundary are given. We do not get conservation of current at

the boundaries of these inclusions until we minimize (3.11) over the vector UΓ. The

unknowns in equations (3.20)-(3.23) are the potential function uΠ(x) and the vector

(UNΓ+1, . . . ,UN) of potentials on the interior inclusions. There is no explicit depen-

dence of uΠ on the boundary potential ψ. The dependence comes through UΓ, when

we minimize (3.11) over it.

We estimate in the next two sections EΠ(UΓ) and EB(UΓ, ψ). Then we gather the

results and complete the proof of Theorem 2.2.1 in section 3.5.3.
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3.4 Energy in the gaps

The energy EΠ(UΓ) is given by (3.14). We follow [7, 38] and rewrite it in simpler

form using that Π is the union of the disjoint gaps Πij, for i = 1, . . . , N and j ∈ Ni.

Lemma 3.4.1. The energy EΠ(UΓ) is given by the discrete minimization

EΠ(UΓ) = min
UI∈RN−NΓ

1

2

N∑
i=1

∑
j∈Ni

(Ui − Uj)2Eij , (3.24)

where

U I = (UNΓ+1, . . . ,UN)

is the vector of potentials on the interior inclusions and Eij is the normalized energy

in the gap Πij. It is given by the variational principle

Eij = min
v∈Vij

1

2

∫
Πij

dx |∇v(x)|2 , (3.25)

where the minimization is over the function space of potentials

Vij =

{
v ∈ H1(Πij), v|∂Di =

1

2
, v|∂Dj = −1

2

}
. (3.26)

The proof of this iterative minimization is similar to that in Appendix A.3 and

is given in [7, 38]. The estimate of the normalized energy Eij is obtained in [8, 32].

It uses the variational principle (3.25) and a test potential v(x) obtained from the

asymptotic approximation of the minimizer uij(x) in the limit δ → 0 to obtain an
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Figure 3.3: Illustration of a gap Πij . The local asymptotic analysis is in the system of coordinates
shown on the right, with y axis connecting the centers of the inclusions.

upper bound of Eij. The lower bound is obtained from the dual variational principle

Eij = max
j∈Jij

[∫
∂Di∩∂Πij

ds(x)
1

2
n(x) · j(x) +

∫
∂Dj∩∂Πij

ds(x)

(
−1

2

)
n(x) · j(x)−

1

2

∫
Πij

dx |j(x)|2
]
, (3.27)

with fluxes j in the function space

Jij =
{
j ∈ L2(Πij), ∇ · j = 0 in Πij, n · j = 0 in ∂Π±ij

}
. (3.28)

Here ∂Π±ij are the boundaries shared by Πij and the set T of triangles, as shown on

the left in Figure 3.3.

The minimizing potential uij of (3.25) satisfies

∆uij(x) = 0 , x ∈ Πij , (3.29)

uij(x) =
1

2
, x ∈ ∂Di , (3.30)

uij(x) = −1

2
, x ∈ ∂Dj , (3.31)

n(x) · ∇uij(x) = 0 , x ∈ ∂Π±ij . (3.32)
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In the system of coordinates shown in Figure 3.3, with x = (x, y) and y axis along

the line connecting the centers of the inclusions, we see that x belongs to an interval

of order R and y belongs to an interval of length

hij(x) = δij + 2R

(
1−

√
1− x2

R2

)
. (3.33)

We expect that the leading order contribution to the energy comes from the center of

the gap, where hij ∼ δ � R and the gradient of the potential is high. A simple scaling

argument shows that we can approximate uij there by the potential v satisfying

∂2
yv(x, y) = 0,

with boundary conditions v(x,±hij(x)/2) = ±1/2. We obtain as in [8, 32]

v(x) =
y

hij(x)
, (3.34)

and let the test flux be the divergence free vector that is approximately equal to its

gradient

j(x) =
1

hij(x)
ey . (3.35)

Here ey is the unit vector along the y axis. It is parallel to the boundaries ∂Π±ij by

construction, so (3.35) satisfies the no flow conditions there.

It is shown in [8, 32] that the upper bound obtained with the test potential (3.34)
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is given by

1

2

∫
Πij

dx |∇v(x)|2 =
1

2

∫ R

−R
dx

∫ hij(x)

2

−
hij(x)

2

dy
1

h2
ij(x)

+O(1)

=
1

2

∫ R

−R

dx

hij(x)
+O(1)

=
σij
2

+O(1) , (3.36)

with

σij = π

√
R

δij
.

Moreover, the difference between the upper bound and the lower bound given by the

test flux (3.35) is order one. Therefore,

Eij =
σij
2

+O(1) (3.37)

and the energy EΠ(UΓ) follows from Lemma 3.4.1

EΠ(UΓ) = EΠ(UΓ) [1 + o(1)] , (3.38)

with leading order EΠ given by

EΠ(UΓ) = min
UI∈RN−NΓ+1

1

2

N∑
i=1

∑
j∈Ni

σij
2

(Ui − Uj)2 . (3.39)

This is the energy of the network with nodes at the centers xi of the inclusions,

edges eij and net conductivities σij, for i = 1, . . . , N and j ∈ Ni. It is not the same

network as in Theorem 2.2.1, because it does not contain the boundary nodes xΓ
i ,

for i = 1, . . . , NΓ. It also has an arbitrary vector UΓ of boundary potentials. The
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network in Theorem 2.2.1 has a uniquely defined vector UΓ(ψ) of potentials on the

inclusions near Γ, the minimizer of (3.11).

3.5 Boundary layer analysis

To estimate the energy EB(UΓ, ψ) we bound it above using the variational principle

(3.12), and below using the dual variational principle

EB(UΓ, ψ) = max
j∈JB

∫
Γ

ds(x) n(x) · j(x) +
NΓ∑
i=1

Ui
∫
∂B∩∂Di

ds(x) n(x) · j(x)−

1

2

∫
B
dx |j(x)|2

]
, (3.40)

with fluxes j in the function space

JB =
{
j ∈ L2(B), ∇ · j = 0 in B, n · j = 0 on ∂B ∩ ∂T

}
, (3.41)

and n the outer normal at ∂B.

Let us calculate the difference between the bounds, to gain insight in the choice

of the test potentials and fluxes in the variational principles. We denote it by

G(v, j) =EB(UΓ, ψ; v)− EB(UΓ, ψ; j) , (3.42)

where

EB(UΓ, ψ; v) =
1

2

∫
B
dx |∇v(x)|2 , (3.43)
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for v ∈ VB(UΓ, ψ) and

EB(UΓ, ψ; j) =

∫
Γ

ds(x)ψ(x)n(x) · j(x) +
NΓ∑
i=1

Ui
∫
∂B∩∂Di

ds(x) n(x) · j(x)−

1

2

∫
B
dx |j(x)|2 , (3.44)

for j ∈ JB. Integration by parts gives

∫
B
dx∇v(x) · j(x) =

∫
B
dx∇ · [v(x)j(x)]

=

∫
∂B
ds(x) v(x)n(x) · j(x)

=

∫
Γ

ds(x)ψ(x)n(x) · j(x) +
NΓ∑
i=1

Ui
∫
∂B∩∂Di

ds(x) n(x) · j(x) ,

because of the constraint ∇ · j = 0 and the boundary conditions of v. Therefore

G(v, j) =
1

2

∫
B
dx |∇v(x)− j(x)|2 , (3.45)

and to make it small, we seek fluxes j(x) ≈ ∇v(x) in JB, and potentials v ∈ VB(UΓ, ψ)

satisfying

∆v(x) ≈ ∇ · j(x) = 0 . (3.46)

3.5.1 Test potentials for the upper bound

Using the polar coordinates (r, θ) we write

B = {(r, θ), r ∈ (L− d(θ), L), θ ∈ [0, 2π)} , (3.47)
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Figure 3.4: Illustration of the decomposition of the boundary layer B.

with d(θ) the thickness of the layer given by

d(θ) =

L− ρi cos(θ − θi)−
√
R2 − ρ2

i sin2(θ − θi) , θ ∈ (θi − αi, θi + αi) ,

R
2
, θ ∈ (θi + αi, θi+1 − αi+1) ,

(3.48)

where

ρi = L−R− δi . (3.49)

The angles θi ± αi are defined by the intersections p±i of the circle of radius L−R/2

with the boundaries ∂Di of the inclusions. We estimate them as

sinαi .

√
3R

2ρi
= O

(
R

L

)
, (3.50)

using Heron’s formula for the triangle with edges of length L − R/2, ρi and R, and

vertices at the origin, xi and p+
i .

...... ··· 
....... ::.··.· 
:.·.· .. · 

i/::-· 
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Let us decompose the boundary layer in the sets

Bi = {(r, θ), r ∈ (L− d(θ), L), θ ∈ (θi − αi, θi + αi)} , i = 1, . . . , NΓ (3.51)

and

Bi+ = {(r, θ), r ∈ (L−R/2, L), θ ∈ (θi + αi, θi+1 − αi+1)} , (3.52)

for i = 1, . . . , NΓ − 1, as shown in Figure 3.4. Recall that with our counting of the

inclusions D1 neighbors D2 and DNΓ , so we let

BNΓ+ = {(r, θ), r ∈ (L−R/2, L), θ ∈ (θNΓ + αNΓ , θ1 − α1)} . (3.53)

We seek a test potential v that is an approximate solution of Laplace’s equation in

B, as stated in (3.46). We can solve the equation with separation of variables in

the domains Bi+, but not in Bi, where the layer thickness varies with θ. However,

the physics of the problem suggests that we neglect the variation of d(θ) in the

construction of v in Bi. Indeed, if it is the case that the tangential flow is dominant

in B, we expect that it is confined in a very thin layer near Γ, of thickness smaller

than δ, and does not interact with the inclusions. Otherwise, the normal flow near Γ

plays a role, and we expect that the leading contribution to the energy comes from

the gaps between the inclusions and Γ, where d(θ) is smaller, of order δ. Then, based

on a scaling argument similar to that in the previous section, we neglect the variation

of d(θ) in the local approximation of the solution of Laplace’s equation.

Consequently, we let the test potential be

v(r, θ) =

{
(r/L)k − [1− d(θ)/L]2k(L/r)k

1− [1− d(θ)/L]2k

}
ψ(θ) +

ln(r/L)

ln[1− d(θ)/L]
L(θ,UΓ) , (3.54)
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where we recall that

ψ(θ) = cos(kθ) .

The function L is constant on the inclusions

L(θ,UΓ) = Ui , θ ∈ (θi − αi, θi + αi) , (3.55)

and it interpolates linearly between the inclusions

L(θ,UΓ) =
Ui + Ui+1

2
+ (Ui+1 − Ui)

[
`i(θ)−

1

2

]
, (3.56)

for θ ∈ (θi + αi, θi+1 − αi+1), where

`i(θ) =
θ − (θi + αi)

(θi+1 − αi+1)− (θi + αi)
. (3.57)

The potential (3.54) satisfies all the constraints in VB, because

v|Γ = v(L, θ) = ψ(θ) , (3.58)

and

v|∂Di = v(L, d(θ)) = L(θ,UΓ) = Ui, θ ∈ (θi − αi, θi + αi) . (3.59)

Thus, we can use it in the variational principle (3.12) to obtain an upper bound of

the energy.
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3.5.2 Test fluxes for the lower bound

Since v is harmonic by construction in the sets Bi+, we let

j(r, θ) = ∇v(r, θ)− er
(L−R/2)

r
∂rv

(
L− R

2
, θ

)
in Bi+ , (3.60)

where er is the unit vector in the radial direction. We obtain that

∇ · j = 0 in Bi+ ,

and

n · j
(
L− R

2
, θ

)
= −er · ∇v

(
L− R

2
, θ

)
+ ∂rv

(
L− R

2
, θ

)
= 0 ,

for θ ∈ (θi + αi, θi+1 − αi+1), as required by the constraints in JB.

Since in Bi the potential v is not harmonic, we cannot let the flux be simply the

gradient of v. We define it instead by

j(r, θ) = ∇⊥H(r, θ) = −er
r
∂θH(r, θ) + eθ∂rH(r, θ) , (3.61)

with scalar function

H(r, θ) = −
∫ θ

0

dθ′ L∂rv(L, θ′)−
∫ L

r

dr′

r′
∂θv(r′, θ) . (3.62)

This construction gives

∇ · j(x) = 0 in Bi ,

with tangential flux equal to the tangential gradient of v in Bi

eθ · j(r, θ) = eθ · ∇v(r, θ) ,
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and normal flux matching the normal derivative of v at Γ

er · j(L, θ) = er · ∇v(L, θ) .

3.5.3 The energy estimate

We show in appendix A.4 that the test potential (3.54) and flux defined by (3.60)

and (3.61) give the following difference between the upper and lower bounds of EB,

G(v, j) =
NΓ∑
i=1

[
GBi(v, j) + GBi+(v, j)

]
, (3.63)

where

GBi(v, j) + GBi+(v, j) . O(1) . (3.64)

The upper bound EB(UΓ, ψ; v) on the energy is computed in appendix A.5. We write

it as

EB(UΓ, ψ; v) =
NΓ∑
i=1

[
EBi(UΓ, ψ; v) + EBi+(UΓ, ψ; v)

]
, (3.65)

with terms

EBi(UΓ, ψ; v) =
1

2

∫
Bi
dx |∇v(x)|2

=
kαi
2

+
π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2

+

π

4

√
2LR

ρiδi

[√
2kδi
Lπ

Li1/2
(
e−2kδi/L

)
− e

−k
√

2Rδi
Lρi

]
+O(1) , (3.66)
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and

EBi+(UΓ, ψ; v) =
1

2

∫
Bi+

dx |∇v(x)|2

=
k [(θi+1 − αi+1)− (θi + αi)]

4
+O(1) . (3.67)

Note that the remainder is of the same order one as the difference (3.64) between the

upper and the lower bounds. We show next that the first terms in (3.66)-(3.67) are

larger, and thus define the leading order of the energy in B.

The magnitude of (3.66)-(3.67) depends on the potentials Ui and the dimensionless

parameters ε and η defined in (2.30), satisfying

ε =
kδ

L
∼ kδi

L
, η =

kR

L
∼ kαi ∼ k(θi+1 − θi) . (3.68)

The potentials Ui are arbitrary in (3.66), but in the end we take them as minimizers

of the energy, like in Lemma 3.3.2. They are the solutions of Kirchhoff’s current

conservation laws in the network with boundary potentials cos(kθi)e
−k

√
2Rδi
Lρi , for i =

1, . . . , NΓ , and satisfy the discrete maximum principle (A.4). Thus, we can assume

that

|Ui − cos(kθi)e
−k

√
2Rδi
Lρi | ∼ e

−k
√

2Rδi
Lρi ∼ e−

√
εη .

To see that the remainder of order one is negligible in (3.66) and (3.67), we

distinguish two cases based on the value of η. When η . 1, which means that

ε � η . 1, the boundary potentials are of order one, the second term in (3.66)

dominates the others

π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2

∼
√
R

δ
� O(1) & kαi ∼ η ,
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and the remainder is negligible. Otherwise, η � 1 and the remainder is again negli-

gible to leading order, because

kαi ∼ η � 1.

We gather the results and rewrite the energy in the boundary layer as

EB(UΓ, ψ) =

kπ2 +
NΓ∑
i=1

π

2

√
2LR

ρiδi

[
Ui − cos(kθi)e

−k
√

2Rδi
Lρi

]2

+

π

4

√
2LR

ρiδi

[√
2kδi
Lπ

Li1/2
(
e−2kδi/L

)
− e

−k
√

2Rδi
Lρi

]}
[1 + o(1)] , (3.69)

with negligible relative error, uniformly in k.

The proof of Theorem 2.2.1 follows from (3.69), once we replace ρi = L [1 +O(R/L)]

by L in (3.69). We can do so without affecting the leading order, independent of the

value of k.



Chapter 4

Applications to domain

decomposition methods

4.1 The model problem

In previous chapters, we discussed the asymptotic approximation of the DtN map

for problems in high contrast composites. For applications to numerical methods, we

focus on the following elliptic problem in ΩN

−∇ · [σ(x)∇u(x)] = f(x), in ΩN (4.1)

with Dirichlet boundary condition

u(x) = 0, on ∂ΩN (4.2)

where ΩN is a simple connected and bounded domain in IR2.

The domain ΩN is partitioned into two nonoverlapping subdomains Ω1,Ω2, where

45
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ΩN = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The interface between two subdomains is denoted

by Γ = ∂Ω1 ∩ ∂Ω2. For simplicity, we assume that ΩN = B(0, 2), Ω1 = B(0, 1), Ω2 =

B(0, 2)\B(0, 1) and Γ = ∂B(0, 1), see Figure 4.1. The disk shape domain assumption

is not necessary, but we made it here for easily applications of results from Chapter 2.

The ideas in this chapter can be extended easily to problems in more general domains

and domain decomposition methods with many subdomains.

The DtN map Λi (i = 1, 2) on the interface Γ related to the subdomain Ωi is

defined by

Λiφ(x) = σ(x)∇ui(x) · ni, x ∈ Γ, (4.3)

where ni is the outside normal of the subdomain Ωi on Γ. The potential u1 solves

−∇ · [σ(x)∇u1(x)] = 0, in Ω1

u1(x) = φ(x), on Γ

(4.4)

and u2 solves

−∇ · [σ(x)∇u2(x)] = 0, in Ω2

u2(x) = φ(x), on Γ

u2(x) = 0, on ∂Ω2 \ Γ

(4.5)

We have obtained in Chapter 2 the approximation of the DtN map Λ1 as defined

by (4.3). The DtN map Λ1 has one and only one zero eigenvalue and the related

eigenfunction is the constant function. The DtN map Λ2 is positive definite since the

last condition in (4.5). Notice that the DtN map Λ2 is only defined on part of the

boundary ∂Ω2.

The function f in (4.1) is a proper source term and we assume f ∈ L2(ΩN). The
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Figure 4.1: The problem in high contrast composites with well conducting inclusions (black disks).
The conductivity is 1 in the background and a large constant in all inclusions. The domain ΩN

is partitioned into two subdomains Ω1,Ω2. The interface Γ separates these two subdomains. Well
conducting inclusions are only located in the subdomain Ω1.

source term f may generate some oscillations inside the domain, specially on the

interface Γ. The oscillations may have high frequency determined by the mesh size

in numerical simulations.

The equation (4.1) is used to model problems in high contrast conductive com-

posites. The conductivity σ is nonnegative and it has high contrast and fast varying

values inside the domain ΩN . We suppose that the conductivity is 1 in the background

and it is a large constant σ̂ in inclusions. Mathematically, we have

σ(x) =


σ̂ � 1, in inclusions

1, otherwise

(4.6)

In this chapter, we consider the problem with finite conductivity σ̂ instead of infinite

conductivity in inclusions. The differences between solutions of these two cases can

be analyzed asymptotically in the parameter of the high contrast σ̂ [16]. The large

••••• •••• •1:. 
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constant σ̂ reflects the contrast of the problem (4.1).

The equation (4.1) can be generalized to formulate problems in composites with

inclusions of other shapes. The conductivity can be more general other than two

constants as presented in (4.6). It can be functions, which depends on the spatial

parameter, as long as the values in inclusions and background have high contrast

properties. The problem can also be generalized to the case with many subdomains,

where some of them have well conducting inclusions and some have not.

4.2 Nonoverlapping domain decomposition meth-

ods

Domain decomposition methods in this thesis are based on the finite volume dis-

cretization of the problem (4.1). Details of finite volume discretization are described

in Section B.1. Other numerical methods like low order finite difference methods

and finite element methods are also applicable for domain decomposition algorithms

proposed in this thesis.

We only focus on nonoverlapping domain decomposition methods, where the do-

main is split into nonoverlapping subdomains [41]. Neighbor subdomains only share

part of their boundary, which is also called interface. The key idea of nonoverlapping

domain decomposition method is to solve equation on the interface first and then use

it as boundary conditions for solving subproblems. Usually, the interface equation

produces a linear system with much less degrees of freedom than that from the origi-

nal equation under the same numerical discretization. Subproblems are independent

of each other and can be solved in parallel.

In this section, we introduce nonoverlapping domain decomposition methods for
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problem with only two subdomains and two different kinds of interface equations.

Based on the partition of ΩN in Section 4.1, we rewrite the linear system (B.8) into

the following blockwise form:


A11 0 A13

0 A22 A23

AT13 AT23 A33



U1

U2

U3

 =


F1

F2

F3

 (4.7)

where we divide the degrees of freedom into Ω1,Ω2 and Γ, respectively. Notice that

U3 corresponds to the numerical potentials for primary nodes on the interface Γ. The

blocks A12, A21 are zero only under the assumptions that the primary nodes in Ω1

and Ω2 are not directly coupled in finite volume discretization. This fact is also true

for low order finite difference or finite element methods.

There are densely embedded, well conducting inclusions inside Ω1 and the solution

will vary fast in gaps between neighboring inclusions. The mesh size in Ω1 should be

smaller than the distance δ between neighbor inclusions in order to capture variations

of the solution well in Ω1. However, we can use a coarser mesh in Ω2. In other words,

problems in Ω1 are more difficult to solve than problems in Ω2.

4.2.1 The equation for the trace on interface

In this section, we obtain an equation for the trace of the solution on the interface Γ,

i.e. U3. If U3 is known, from (4.7) we have

U1 = A−1
11 (F1 − A13U3),

U2 = A−1
22 (F2 − A23U3).

(4.8)



50

Substituting for U1, U2 in (4.7), we have a reduced problem for the unknown U3

SU3 = g, (4.9)

where

S = A33 − AT13A
−1
11 A13 − AT23A

−1
22 A23

g = F3 − AT13A
−1
11 F1 − AT23A

−1
22 F2.

(4.10)

The equation (4.9) is for the potential U3 on interface Γ. After solving (4.9), we

only need to solve a linear system once in each subdomain from (4.8) to obtain the

potential U in the whole domain.

The matrix S ∈ IRNp×Np is the Schur complement of A33 in A, where Np is the

number of primary nodes on the interface Γ in finite volume discretization. From

the formula (4.10), the matrix S is very expensive to compute because it needs to

solve subproblems in each subdomain Np times in order to obtain A−1
ii Ai3. In general,

the system (4.9) is solved iteratively without the explicit form of the matrix S. It is

very important to use some preconditioner when solving (4.9) iteratively. The pre-

conditioner is usually applied to (4.9) through solving subproblems in each iteration.

However, if we have some approximation of S−1, we can use it as the preconditioner

directly for (4.9) without solving subproblems in each iteration.

It turns out very important to construct preconditioners for solving the Schur

complement system (4.9). The main idea is to split S into the sum of two parts,

which reflect the contribution from Ω1 and Ω2 in a more explicit way. The term A33

can be written as

A33 = A
(1)
33 + A

(2)
33 ,
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where A
(i)
33 corresponds to the contribution to A33 from the subdomain Ωi. Then we

can write

S = S1 + S2,

where

Si = A
(i)
33 − ATi3A−1

ii Ai3, i = 1, 2. (4.11)

Similarly, we split F3

F3 = F
(1)
3 + F

(2)
3 ,

and define

gi = F
(i)
3 − ATi3A−1

ii Fi. (4.12)

More details about preconditioners will be discussed later.

4.2.2 The equation for the flux on interface

An alternative way is to obtain the flux on the interface Γ first and use it as the

Neumann boundary condition for each subproblem. Now suppose j(x) = j1(x) =

−j2(x) is the flux on Γ which points from Ω1 to Ω2. If we see ji(x) as a Neumann

condition on the interface Γ and consider the following Neumann boundary problem

in each subdomain

−∇ · (σ(x)∇ui(x)) = fi(x) in Ωi,

ui(x) = 0 on ∂Ωi \ Γ,

σ
∂ui
∂ni

(x) = ji(x) on Γ,

(4.13)

--
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where ni is the outside normal on Γ to the domain Ωi. Notice that n1 = −n2 on the

interface Γ.

In Ω1, we have a pure Neumann problem and the solution is not unique. Such a

subdomain in domain decomposition methods is called a floating subdomain [39]. A

complement condition is needed in order to make sure that the solution in the floating

subdomain is unique. For example, a complement condition could be

∫
Γ

ds(x)u(x) = 0 (4.14)

For simplicity, we will not put this additional condition into our linear systems. When

we need to solve a Neumann problem in Ω1, we automatically apply the complement

condition (4.14) to obtain a unique solution.

In matrix form, we have the following linear system in each subdomain Ωi for

(4.13),

Aii Ai3

ATi3 A
(i)
33


 Ui

U
(i)
3

 =

 Fi

F
(i)
3 + Ji

 (4.15)

with

(Ji)j :=

∫
Γ∩∂Cj

ds(x)σ(x)
∂ui
∂ni

(x), i = 1, 2 (4.16)

where Cj is the finite volume cell which contains the jth nodes on Γ. The vector U
(i)
3

is the potential on the interface Γ respected to the subdomain Ωi.

We eliminate Ui from (4.15) and obtain

F
(i)
3 + Ji = ATi3Ui + A

(i)
33U

(i)
3 = ATi3A

−1
ii (Fi − Ai3U (i)

3 ) + A
(i)
33U

(i)
3 . (4.17)

--
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Now we have

U
(i)
3 = S−1

i (gi + Ji), (4.18)

where Si and gi are defined in (4.10) and (4.12) respectively. We need to ensure the

continuity of the potential on Γ from two sides,

U
(1)
3 = U

(2)
3 , on Γ. (4.19)

This leads us the following equation for the flux J = J1 = −J2 on Γ

LJ = d, (4.20)

where

L = S−1
1 + S−1

2 ,

d = d1 + d2 = −S−1
1 g1 + S−1

2 g2.

(4.21)

with gi defined in (4.12).

The linear system (4.20) is for the flux on the interface. Notice that each element

of the solution J is the total flux coming out the related element on Γ, see (4.16).

4.2.3 Preconditioners for interface equations

In this section, we discuss preconditioners for S = S1+S2 in (4.10) and L = S−1
1 +S−1

2

in (4.20). We expect condition numbers of the preconditioned systems to be small,

such that iterative algorithms converge faster.

For S, the preconditioner in general is αS−1
1 + (1−α)S−1

2 , where α ∈ [0, 1]. Then
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the preconditioned system is

(αS−1
1 + (1− α)S−1

2 )S = I + αS−1
1 S2 + (1− α)(S−1

1 S2)−1 (4.22)

Similarly for L, the preconditioned system is

(αS1 + (1− α)S2)L = I + (1− α)S2S
−1
1 + α(S2S

−1
1 )−1 (4.23)

If the two subdomain problems are very similar, S1 and S2 are spectrally equivalent

and we can simply choose α = 1/2. Chan and Mathew [18] discussed preconditioners

for interface equations in more details.

Since the discussion for the two preconditioned systems (4.22) and (4.23) are very

similar, we only focus on the first one in (4.22). In general, the matrix S1 and S2

are spectrally equivalent [10]. In other words, there exist two positive constants

Cl . 1 . Cu, which are independent on the mesh size, such that

Cl ≤ λ(S−1
1 S2) ≤ Cu

where λ(S−1
1 S2) is any eigenvalue of the matrix S−1

1 S2.

If the coefficients of the problems have high contrast values, the constants Cl, Cu

may depend on the high contrast coefficients. When the subdomain problems are

very different from each other due to the high contrast coefficients, the matrix S1 and

S2 may have very different spectral distribution. In other words, we may have Cl � 1

or Cu � 1. If Cu � 1, we do not want S−1
1 S2 shown on right hand side of (4.22).

We can simply choose the scalar α = 0 in (4.22) to eliminate the S−1
1 S2 term. On the

other hand, we choose α = 1 when Cl � 1 .

In our situation, the case is always that Cl � 1 and we will see this fact from the
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proof of Theorem 4.2.1. We choose α = 1 and obtain the following preconditioned

system

S−1
1 S = I + S−1

1 S2, (4.24)

for solving the Schur complement system (4.9). Similarly, we choose the following

preconditioned system

S2L = I + S2S
−1
1 . (4.25)

for solving the system (4.20).

For the condition number of the preconditioned system (4.25), we have the fol-

lowing results.

Theorem 4.2.1. The condition number of the preconditioned system S2L is bounded

above by a constant, which is independent on either the contrast of the media or the

size of the mesh.

Proof. The matrix S2 is symmetric positive definite and S1 is symmetric positive

semidefinite. The matrix S1 only has one zero eigenvalue and the null space is the

space with constant vectors. We abuse the notation here and denote S−1
1 the pseu-

doinverse of S1. We need to analyze the minimal and maximal eigenvalues for the

following system

S2L = S2(S−1
1 + S−1

2 ) = I + S2S
−1
1 .

We know that the minimum eigenvalue of S2S
−1
1 is 0. It is enough to prove that the

maximum eigenvalue of S2S
−1
1 is bounded above by a constant, which is independent

on either the mesh size or the contrast of the problem. For more details, see Lemma

C.1 in [41].
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The mesh size on the interface Γ is hθ = 2π/Np when there are Np equally spaced

primary nodes on Γ. For functions ψ, φ in L2(Γ), we recall the inner product defined

on the interface Γ

〈ψ , φ〉 =

∫
Γ

ds(x)ψ(x)φ(x).

Let Ψ,Φ be related vectors with the functions valued at the Np primary nodes in the

finite volume discretization. It is obvious that

〈ψ , φ〉 = lim
Np→∞

hθΨ
TΦ, (4.26)

There is a scale difference hθ between the continuous norm of functions and discrete

norm of related vectors.

For functions ψ, φ ∈ H 1
2 (Γ) we have

〈ψ , Λiφ〉 = lim
Np→∞

ΨTSiΦ, (4.27)

where Λi is the continuous DtN map in Ωi on the interface Γ as defined in (4.3).

This is ensured by the convergence of the numerical discretization as described in

Section B.1. For more details, see [10, 15].

Suppose ψ is an eigenvector with respect to an arbitrary eigenvalue λ of Λi, then

λ =
〈ψ , Λiψ〉
〈ψ , ψ〉

= lim
Np→∞

ΨTSiΨ

hθΨTΨ
= lim

Np→∞

ΨT ( 1
hθ
Si)Ψ

ΨTΨ
(4.28)

The formula (4.28) means 1
hθ
Si captures the Np smallest eigenvalues of Λi in the

asymptotic sense N → ∞. In other words, 1
hθ
Si is a discretization approximation of

the continuous DtN map Λi, see [10, 15].

In order to prove this theorem for arbitrary mesh size hθ, it is equivalent to prove
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that the maximal eigenvalue of Λ2Λ−1
1 is bounded above by a constant. However, we

are going to prove that the minimal positive eigenvalue of Λ1Λ−1
2 is bounded below

by a constant.

First of all, it is obvious that the constant function 1 is an eigenvector of Λ1Λ−1
2

and the eigenvalue associated with it is 0. The mapping Λ1Λ−1
2 has one and only one

zero eigenvalue. We are more interested in the first nonzero eigenvalue

λ+
min(Λ1Λ−1

2 ) = min
ψ∈S

〈ψ , Λ1Λ−1
2 ψ〉

〈ψ , ψ〉
(4.29)

where

S = span{cos(kθ), sin(kθ) : k ∈ Z+}.

It is easy to figure out that

Λ2ψk = λkψk,

where ψk(θ) = cos(kθ) or sin(kθ) and

λk = k
22k + 1

22k − 1
= k +

2k

22k − 1
, for all k ∈ Z+.

For each ψk, we have

〈ψk , Λ1Λ−1
2 ψk〉

〈ψk , ψk〉
=
〈ψk , Λ1ψk〉

λkπ
=

k

λk

〈ψk , Λ1ψk〉
kπ

(4.30)

From Theorem 2.2.1, we know that

〈ψk , Λ1ψk〉
kπ

≥ 1, for all k ∈ Z+
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Then we have that

〈ψk , Λ1Λ−1
2 ψk〉

〈ψk , ψk〉
=

k

λk

〈ψk , Λ1ψk〉
kπ

≥ k

λk
≥ 3

5
, for all k ∈ Z+ (4.31)

where the last inequality achieve its minimum 3/5 when k = 1.

From Corollary 2.2.2, the above inequality also holds for arbitrary ψ ∈ S. Then

we prove that the minimum positive eigenvalue of Λ1Λ−1
2 is bounded below by a

constant, and actually

λ+
min(Λ1Λ−1

2 ) ≥ 3

5
.

In other words, we proved that

κ(S2L) = κ(S2(S−1
1 + S−1

2 )) .
1 + 5/3

1 + 0
=

8

3
.

Here we use . because it is from the asymptotic result (4.27).

Remark 4.2.2. If we perform a more careful analysis, we can easily improve the

lower bound in (4.31) from 3/5 to 1.

For large k, we have k/λk ≈ 1.

For small k when k/λk < 1, we actually have

〈ψk , Λψk〉
kπ

= O(

√
R

δ
)� 1.

from the results in Chapter 2.

In other words, we always have

〈ψk , Λ1Λ−1
2 ψk〉

〈ψk , ψk〉
=

k

λk

〈ψk , Λ1ψk〉
kπ

& 1, for all k ∈ Z+ (4.32)

D 
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Hence we have

κ(S2L) = κ(S2(S−1
1 + S−1

2 )) . 2.

Similarly, we have the following theorem for the preconditioned system (4.24).

Theorem 4.2.3. The condition number of the preconditioned system S−1
1 S is bounded

above by a constant, which is independent on either the contrast of the media or the

size of the mesh.

Proof. In stead of analyzing the maximal eigenvalue of Λ2Λ−1
1 , we need to analyze

the maximal eigenvalue of Λ−1
1 Λ2 here. The proof will be very similar to that for

Theorem 4.2.1 since Λ2 is a self-adjoint map.

All discussions in this section are based on the matrix forms. However, we never

explicitly formulate these matrix in nonoverlapping domain decomposition methods.

Instead, we usually use iterative algorithms to solve interface equations. In next two

sections, we will talk more about iterative algorithms.

4.3 The Dirichlet-Dirichlet type algorithm

For the high contrast problem introduced in Section 4.1, the flux in gaps between

inclusions varies very fast. When solving the problem numerically, we need to make

sure that the mesh size is smaller than the thickness δ of gaps between well conducting

inclusions. In other words, the linear system from the subproblem in Ω1 is large.

This motivates us to avoid solving subproblems in Ω1, or to solve a smaller number

of subproblems in Ω1 in the process of solving the interface equation (4.20). The

idea in this section is that we only solve the subproblem in Ω2 in order to apply the

preconditioner S2 to (4.20) in each iteration. We already proved in Theorem 4.2.1

that S2 is a good preconditioner for the system (4.20).

D 
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4.3.1 The algorithm

The iterative algorithm for solving linear system with preconditioner is introduced

in Section B.2. In general, there are three different steps in each iteration. In this

section, we only explain what we need to do in each step.

In nonoverlapping domain decomposition methods, three steps are usually accom-

plished by solving subproblems. For example, when solving (4.20) iteratively, the

first step in each iteration is to compute the residual d − LJn when the current ap-

proximate solution is Jn. This requires to compute LJn = S−1
1 Jn + S−1

2 Jn, which is

equivalent to solve a Neumann problem in each subdomain. Similarly, applying the

precondition S2 to the residue requires to solve a Dirichlet problem in Ω2.

Now assume Jn = Jn1 = −Jn2 is the discrete flux on Γ in the nth iteration. The

three steps in nth iteration are like following.

1. Solve a Neumann problem in each subdomain in order to obtain the residual.

2. Solve a Dirichlet problem in Ω2 only in order to apply the preconditioner S2.

3. Update Jn.

Here we solve (4.20) iterative with the preconditioner S2. We proved in Theo-

rem 4.2.1 that the condition number of S2L is bounded above by a small constant.

On the other hand, applying S2 as preconditioner only requires solving subproblem

in Ω2 numerically in each iteration.

The highlight point of this Dirichlet-Dirichlet type algorithm is that it does not

require solving subproblems in Ω1 in order to apply the preconditioner. It does not

require any approximation of the DtN or NtD maps in the high contrast domain Ω1.

This algorithm is very easy to extend for solving more general high contrast problems.
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4.3.2 Numerical results

In this experiment, there are 19 inclusions in Ω1 and 12 inclusions near the boundary

of Ω1. The radius of all inclusions is R = 0.195 and the distance between neighboring

inclusions is about δ = 0.01. The number of primary nodes on Γ is Np = 600.

The contrast σ̂ 100 101 102 103 104 105 106 107 108 109

Preconditioner S2 11 11 13 13 13 13 13 13 13 13

Table 4.1: Iteration numbers of the Dirichlet-Dirichlet type algorithm to converge for different high
contrast problems with preconditioner S2 for solving the interface equation (4.20).

We test the Dirichlet-Dirichlet type algorithm for different high contrast problems

with different contrast σ̂. We use the conjugate gradient method (PCG) here, see

Section B.2 for more details. We obtain iteration numbers to converge with the

tolerance 10−8 in each case. From Table 4.1, the iteration numbers are very small,

which means the condition number of the preconditioned system S2L is independent

on the mesh size. Also, the iteration numbers are independent on the contrast of the

problems. It means the condition number of S2L is independent on the contrast of

the media as shown in Theorem 4.2.1.

4.4 The Neumann-Neumann type algorithm

In this section, we will first discuss how to obtain an approximate NtD map Λ−1
A from

the asymptotic approximation of the DtN map on Γ in the high contrast domain Ω1.

Then we will introduce a Neumann-Neumann type algorithm with the approximate

preconditioner Λ−1
A . The matrix Λ−1

A is constructed from the theoretical results in

Chapter 2 and it is an approximation of S−1
1 . We already shown in Theorem 4.2.3

that S−1
1 is a good preconditioner for solving the Schur complement system (4.9). We

expect that Λ−1
A is also a good preconditioner for the system (4.9) and we will see

II I I I I I I I I I I 
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this from numerical results in Section 4.4.3.

4.4.1 The approximation of NtD map

In this section, we are going to discuss how to obtain an approximation of the NtD

map S−1
1 in Ω1 providing the approximation of DtN map as presented in Chapter 2.

As before, we suppose that the number of primary nodes on the interface Γ is Np.

Let us introduce Fourier basis ψk where

ψk(θ) =


cos(k+1

2
θ), k is odd

sin(k
2
θ), k is even

(4.33)

Hence

||ψk||2 = 〈ψk , ψk〉 = π and 〈ψk , ψj〉 = 0, ∀ k 6= j ∈ Z+.

Let Ψk ∈ IRNp be related vector where ψk is evaluated at Np primary nodes in finite

volume discretization, then

ΨT
kΨk =

π

hθ
=
Np

2
and ΨT

kΨj = 0, ∀ k 6= j ∈ Z+.

Let Q be a Np × Np matrix with kth column qk =
√

2/NpΨk, then the matrix Q is

unitary, i.e. QTQ = I.

Discretized approximation of the DtN map will have the following form

ΛT = hθQΣQT (4.34)
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where hθ = 2π/Np is the discretization size on Γ and the matrix Σ is defined as

Σij =
〈ψi , Λ1ψj〉

(〈ψi , ψi〉 · 〈ψj , ψj〉)1/2
=
〈ψi , Λ1ψj〉

π
, for all 1 ≤ i, j ≤ Np (4.35)

The matrix ΛT is the restriction of the continuous DtN map Λ1 on the finite di-

mensional space spanned by the first Np Fourier basis. For any 1 ≤ i, j ≤ Np, we

have

ΨT
i ΛTΨj = hθΨ

T
i QΣQTΨj = hθ

√
Np

2
Σij

√
Np

2
= 〈ψi , Λ1ψj〉 (4.36)

From the above equation and (4.27), we see that ΛT is an approximation of S1. In

other words,

ΨT
i ΛTΨj = ΨT

i S1Ψj[1 + o(1)], for all 1 ≤ i, j ≤ Np (4.37)

Actually, ΛT and S1 are two different discretization approximation of the DtN map

Λ1. One is from the restriction of Λ1 into a finite dimensional subspace and the

other one is from numerical discretization. We can always make sure that ΛT and

S1 have the same size when we are constructing the matrix ΛT . The approximation

(4.37) is in the asymptotic sense that Np →∞. In other words, the error here comes

from numerical discretization. We choose Np large enough to make sure that the

approximation (4.37) is good enough, such that the numerical error from (4.37) will

not dominant in the whole approximation.

We use the asymptotic results in Theorem 2.2.1 and Corollary 2.2.2 to estimate

〈ψi , Λ1ψj〉 in (4.35). Let Σ̃ij denote the asymptotic approximation of Σij. We only

keep the leading order terms in the approximations to make sure that Σ̃ has the
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following block form

Σ̃ =

Σ̃1 0

0 Σ̃2

 , (4.38)

where Σ̃1 is a M ×M(M � Np) dense matrix and Σ̃2 is a diagonal matrix.

We can understand the zero blocks in Σ̃ from the analysis of results in Theo-

rem 2.2.1 and Corollary 2.2.2. When |i− j| is getting larger, the correlation between

ψi and Λ1ψj is getting smaller. The value of 〈ψi , Λ1ψj〉 is negligible comparing to

the leading order of the approximations, i.e. the value of 〈ψi , Λ1ψi〉 or 〈ψj , Λ1ψj〉.

When the media in Ω1 is homogeneous, the matrix Σ will be diagonal. For large

k, the DtN map Λ1 performs very similar to the DtN map Λo for homogenous media

in Ω1. This is why Σ̃2 is a diagonal matrix in (4.38). For small k, the approximations

in Theorem 2.2.1 and Corollary 2.2.2 are the sum of three terms and the value of

〈ψi , Λ1ψj〉 is not negligible any more. We use a dense matrix Σ̃1 to store all the

information for slowly oscillating boundary conditions.

We actually have

||Σ− Σ̃||∞
||Σ||∞

� 1, (4.39)

with some fixed size M for Σ̃1. The size M only depends on the asymptotic results

in Chapter 2, but does not depend on the size of Σ̃. In other words, the choice of M

is independent on Np. The inequality (4.39) is in the asymptotic sense that δ/R→ 0

and it depends only on the geometrical assumptions in Section 2.1.2. The example

we are using in this chapter satisfies all the assumptions in Section 2.1.2 in order to

obtain the above inequality (4.39).

We use the following matrix

ΛA = hθQΣ̃QT , (4.40)
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as an approximation of ΛT . Then we have

ΨT
i ΛAΨj = ΨT

i ΛTΨj[1 + o(1)], for all 1 ≤ i, j ≤ Np (4.41)

The above approximation is in the asymptotic sense that δ/R → 0. The matrix ΛA

and ΛT can have arbitrary size, and the approximation (4.41) holds. Here we choose

the size to be Np to make sure that they have the same size as S1.

From (4.37) and (4.41) we have

ΨT
i ΛAΨj = ΨT

i S1Ψj[1 + o(1)], for all 1 ≤ i, j ≤ Np (4.42)

The above equation means ΛA is an approximation of S1. In other words,

ΨTΛAΨ = ΨTS1Ψ[1 + o(1)], for all Ψ ∈ SNp , (4.43)

where

SNp = span{Ψi, i = 1, · · · , Np},

From Lemma C.1 in [41], we have

κ(Λ−1
A S1) ≤ C, (4.44)

where C & 1 is a constant, which is independent on either the mesh size or the

contrast of the media. When the approximation in (4.42) is good enough, we have

C ≈ 1 in (4.44). Hence we directly have the following corollary from Theorem 4.2.3.

Corollary 4.4.1. The condition number of the preconditioned system Λ−1
A S is bounded

above by a constant, which is independent on either the contrast of the media or the
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size of the mesh.

Proof. By Corollary C.2 in [41], we have

κ(Λ−1
A S) ≤ κ(Λ−1

A S1)κ(S−1
1 S) (4.45)

From (4.44) and Theorem 4.2.3, we have the proof for this corollary.

The upper bound of κ(Λ−1
A S) may be larger than the upper bound of κ(S−1

1 S).

However, when ΛA is a good approximation of S1, the two bounds will be very close.

It means Λ−1
A S is also a good preconditioned system. Later we will see this conclusion

from numerical results in Section 4.4.3.

The accuracy of approximation (4.42) depends on the approximations (4.37) and

(4.41). The approximation (4.37) is in the asymptotic sense that Np → ∞ as we

presented in (4.27). The approximation (4.41) is in the asymptotic sense thatR/δ → 0

as we assumed in Chapter 2. The model we are using in this chapter, as shown in

Figure 4.1, satisfies all the scale assumptions required in Chapter 2. In other words,

as long as we have a small enough numerical discretization, the matrix ΛA is a good

approximation of S1 as shown in (4.42).

Another problem here is how to choose the size M for the matrix Σ̃1 in (4.38) to

obtain a good approximation ΛA. The larger the M , the better the approximation

as presented in (4.39). However we need to use Λ−1
A later as the preconditioner,

we do not want M to be too large such that ΛA is difficult to invert. The reason

that we can choose a relative small M depends on the analysis in Chapter 2. The

effects of well conducting inclusions in Ω1 are only strong for low oscillating boundary

conditions on Γ, but relatively weak for highly oscillating boundary conditions. In

more details, there are three effects in the approximation of the DtN map in Ω1

on Γ: the discrete resistor network effect, the resonance effect and the reference

D 
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media effect. The discrete resistor network effect is very strong for slowly oscillating

boundary conditions, but it decays exponentially as the oscillation getting higher.

The resonance media effect is weak for very low and very high oscillating boundary

conditions, but it is strong in the middle regime and we call it the resonant regime.

The reference media effect contributes more to the approximation as the oscillations

of boundary data getting higher. In other words the first two effects exist because

of the high contrast inclusions and they are strong for slowly oscillating boundary

conditions, but weak for highly oscillating boundary conditions.

For highly oscillating data, the high contrast media performs very similar to the

reference media, which is a homogenous media with σ(x) ≡ σo = 1 in Ω1. It suggests

us to use a diagonal matrix Σ̃2 in (4.38) because the eigenfunctions for the homoge-

neous media are exactly ψi(1 ≤ i ≤ Np) defined in (4.33). However for low oscillating

boundary conditions, the eigenvalues and eigenfunctions of Λ1 are very different from

the those of a homogeneous media. That is why we would like to use a dense matrix

Σ̃1 to capture the effect from the well conducting inclusions.

We can choose a M � Np, such that Σ̃ in (4.38) is still sparse and easy to invert.

The choice of M will only depends on the media structure, but not on the size of

discretization. From the analysis in Chapter 2, we can roughly choose M as twice of

the number of inclusions near Γ in Ω1. The larger the M , the more information Σ̃

contains but it will be difficult to invert Σ̃1.

Remark 4.4.2. For highly oscillating boundary conditions, we even can approximate

Σ̃2 more roughly by

Σ̃ii =
〈ψi , Λ1ψi〉

π
≈ 〈ψi , Λoψi〉

π
= i, for all M < i ≤ Np

where Λo is the DtN map for homogenous problem in Ω1 with constant coefficients
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σ(x) ≡ σo = 1. The reason is that Λ1 performs very similar to Λo for highly oscillating

boundary conditions on Γ.

In this section, we want to have an approximation of the NtD map S−1
1 and we

need to invert the matrix ΛA. We let our approximation of S−1
1 to be

Λ−1
A = h−1

θ QΣ̃−1QT = h−1
θ Q

Σ̃−1
1 0

0 Σ̃−1
2

QT (4.46)

where Σ̃1 is a small square matrix and Σ̃2 is a diagonal matrix, which are both easy

to invert. Notice that hθ in (4.40) and (4.46) is a scalar factor which comes from

discretization, see[10, 15] for more details.

This is our way to have the approximation of the NtD map, since we know that

the network effect are strong and only strong for low oscillation boundary conditions.

That is why we choose Σ̃1 as a square dense matrix instead of a diagonal matrix.

This also provides us an idea for general problems, when we do not have a theoretical

approximation for the DtN or NtD maps. To obtain Σ̃1, we can solve M problems

numerically in Ω1, with boundary conditions ψk(1 ≤ k ≤ M) respectively. The

diagonal entries in Σ̃2 can be obtained by solving problems numerical in Ω1 with

homogeneous coefficients, which are not expensive. This step can be done before we

solve the interface equation (4.9), which is also called the offline computation. Once

it is ready, we can store it and use it later whenever we need it in the iterations.

In the next section, we will discuss how to use the approximated NtD map Λ−1
A

as a preconditioner in a Neumann-Neumann type algorithm. We would like to use it

to replace some numerical computations in order to obtain more efficient algorithms.
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4.4.2 The algorithm

Assume Un
3 is the discrete potential on Γ in the nth iteration. The three steps in nth

iteration are like following.

1. Solve a Dirichlet problem in each subdomain in order to obtain the residual.

2. Two different ways to apply preconditioners:

• Solve a Neumann problem in Ω1 in order to apply the preconditioner S−1
1 .

• Apply the approximated NtD map Λ−1
A as the preconditioner directly.

3. Update Un
3 .

When we would like to apply S−1
1 as the preconditioner, we need to solve a Neu-

mann problem in Ω1 in each iteration. When we would like to apply Λ−1
A as the

preconditioner, we only need to multiply Λ−1
A to some vector in each iteration. With-

out considering the time for constructing the preconditioner Λ−1
A , multiplying Λ−1

A to

some vector is much faster than solving a Neumann problem in Ω1. In this algorithm,

we can save the computational time for applying the preconditioner Λ−1
A in each it-

eration. We would like to compare the performance of the preconditioners S−1
1 and

Λ−1
A in the next section.

In iterative algorithms, the initial guess is also very important for algorithms to

converge fast. There is also an easy to construct a good initial guess U0
3 from the

approximated NtD map Λ−1
A . We actually have

Λ−1
A g = Λ−1

A SU3 = Λ−1
A (S1 + S2)U3 ≈ (I + Λ−1

A S2)U3, (4.47)
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since Λ−1
A is an approximation of S−1

1 . We can use the solution of

Λ−1
A g = (I + Λ−1

A S2)U3, (4.48)

as the initial guess U0
3 . Solving (4.48) iteratively only involves solving subproblems

in the subdomain Ω2, which is very cheap because Ω2 is a domain with homogeneous

media in our example.

4.4.3 Numerical results

In this section, we solve the system (4.9) by the PCG method with the same numerical

setups in Section 4.3.2. We terminate the iteration when the norm of the residual is

less then 10−8. We obtain iteration numbers to converge for problems with different

contrast σ̂. We test the algorithm with two different preconditioners S−1
1 and Λ−1

A for

the same Schur complement system (4.9).

The contrast σ̂ 100 101 102 103 104 105 106 107 108 109

Preconditioner Λ−1
A 13 13 11 10 10 10 10 10 10 10

Preconditioner S−1
1 2 9 9 9 9 9 9 9 9 9

Table 4.2: Iteration numbers of the PCG methods with approximated preconditioner P and exact
preconditioner S−1

1 for problems with different contrast coefficients.

In Table 4.2, we see the iteration numbers to converge with different contrast. In

the construction of Λ−1
A , we choose M = 50 where Np = 600 in our finite volume

discretization. We start from the same initial guess for different preconditioners Λ−1
A

and S−1
1 .

For homogeneous problem with contrast 100, the preconditioner Λ−1
A performs

worse than S−1
1 . The reason is that Λ−1

A comes from the approximation of DtN map

in an infinite high contrast media as presented in Chapter 2. The preconditioner

II I I I I I I I I I 
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Λ−1
A is expected to work better for problems with high enough contrast coefficients as

shown in Table 4.2.

We also see from Table 4.2 that for high enough contrast media, the preconditioner

Λ−1
A works very well. The iteration numbers to converge are very similar to the case

when using the preconditioner S−1
1 . The preconditioner S−1

1 is almost optimal for

high contrast problems as we proved in Theorem 4.2.3. The preconditioner Λ−1
A ,

which comes from theoretical approximation, performs almost as well as S−1
1 . It is in

agreement with the result in Corollary 4.4.1.

We also see that the preconditioned system is very stable when the contrast of

the problems increase. It means the condition number of the preconditioned system

with preconditioner S−1
1 or Λ−1

A is independent on the contrast of the coefficients. It

also agrees with results shown in Theorem 4.2.3 and Corollary 4.4.1.



Chapter 5

Summary and Future Work

5.1 Summary

In this thesis, we first obtained an asymptotic approximation of the DtN map for

conductive composites with perfectly conducting inclusions. This part of the work is

also published in our paper [12]. Then we discussed applications of asymptotic results

to domain decomposition methods for the purpose of saving computational time, also

see our paper [14].

5.1.1 Approximation of the DtN map

We obtained an asymptotic approximation of the Dirichlet to Neumann (DtN) map

Λ of the partial differential equation describing two dimensional electrical flow in

a high contrast composite medium occupying a bounded, simply connected domain

D with smooth boundary Γ. The high contrast composite has perfectly conducting

inclusions packed close together, so they are close to touching. To simplify the proofs,

we assumed that D is a disk of radius L, and that the inclusions are identical disks of

radius R. Extensions to general domains, sizes and shapes of inclusions are discussed,
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as well. The analysis is in the regime of separation of scales δ � R � L, where δ is

the typical thickness of the gaps between adjacent inclusions.

Because the map Λ is self-adjoint, it is determined by its quadratic forms 〈ψ,Λψ〉,

for all boundary potentials ψ in the trace space H1/2(Γ). The main result of this

thesis is the explicit characterization of the leading order of these quadratic forms

in the regime of separation of scales described above. The result is intuitive once

we decompose the potential ψ over Fourier modes, and study the quadratic forms

〈ψk,Λψk〉 for modes ψk oscillating at arbitrary frequency k. It says that the leading

order of 〈ψk,Λψk〉 is given by the sum of three terms: The first is the quadratic form

Ψ(ψk) · ΛnetΨ(ψk) of the matrix valued DtN map Λnet of a unique resistor network

with vector Ψ(ψk) of boundary potentials. The second term is the quadratic form

〈ψk,Λoψk〉 of the DtN map Λo of the homogeneous medium with reference conduc-

tivity σo = 1 in which the inclusions are embedded. The last term R is labeled a

resonance term, because it plays a role only in a certain “resonant” regime.

The resistor network approximation arises due to the singularity of the potential

gradient in the gaps between the inclusions, and the gaps between the boundary

and the nearby inclusions. The network is unique, with nodes at the centers of the

inclusions and edges connecting adjacent inclusions. The edge conductivities capture

the net energy in the associated gaps. Network approximations have been derived

before in homogenization studies of high contrast composites. What is new here is

that the excitation of the network, the vector of potentials Ψ(ψk) at its boundary

nodes, depends on the frequency k of oscillation of ψk. If k is small, then the entries

in Ψ(ψk) are the values of ψk at the points on Γ that are closest to the inclusions.

However, for large k, the entries in Ψ(ψk) are damped exponentially in k. There is

a layer of strong flow near the boundary Γ, and the network plays a lesser role as

k increases. We distinguished three regimes in the approximation of 〈ψk,Λψk〉. In
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the first regime k is small, so that the entries in Ψ(ψk) are large, of order one. The

network is excited and plays a dominant role in the approximation,

〈ψk,Λψk〉 ≈ Ψ(ψk) · ΛnetΨ(ψk) .

In the second regime the frequency k is very large, so that the flow is confined in a

very thin layer near the boundary Γ and does not interact with the inclusions. The

entries in Ψ(ψk) are basically zero, the network is not excited and the flow perceives

the medium as homogeneous

〈ψk,Λψk〉 ≈ 〈ψk,Λoψk〉 .

In the third, intermediary regime, some of the flow penetrates in the domain and

excites the network. The remainder is tangential flow near the boundary, as in the

homogeneous medium, and oscillatory flow squeezed between the boundary and the

nearby inclusions. The latter gives an anomalous energy, captured by the resonance

term R. All three terms play a role in the approximation in this resonant regime,

〈ψk,Λψk〉 ≈ Ψ(ψk) · ΛnetΨ(ψk) + 〈ψk,Λoψk〉+ 2R .

Our analysis justifies these approximations and gives explicit formulas for Ψ(ψk) and

the resonant term R.

5.1.2 Applications to domain decomposition methods

In Chapter 4, we discussed nonoverlapping domain decomposition methods for prob-

lems in high contrast media. We presented our idea with an example which has



75

two subdomains, one with inclusions and the other one without any inclusions. We

focused on finding efficient preconditioners for solving equations on the interface.

We first discussed a Dirichlet-Dirichlet type algorithm for solving the flux equation

(4.20) on the interface. In the algorithm, we use S2 as a preconditioner, which is

proved to be a very good preconditioner for the system (4.20) in Theorem 4.2.1. It

only requires to solve a Dirichlet problem in Ω2, but not any problem in Ω1, in order to

apply the preconditioner S2 in each iteration. This makes our algorithm better than

the traditional Dirichlet-Dirichlet algorithm, since it solves less problems in order to

apply the preconditioner for solving the system (4.20). What is more, the part we

avoided in our algorithm is solving problems in Ω1, which is the more expensive part

since the mesh size in Ω1 needs to be very small.

Then we discussed a Neumann-Neumann type algorithm for solving the Schur

complement system (4.9) on the interface. In this algorithm, we first proved that S−1
1

is a good preconditioner for the system (4.9) in Theorem 4.2.3. Later, we constructed

Λ−1
A , which is an approximation of S−1

1 , from asymptotic results in Chapter 2. We

explained why Λ−1
A is also a good preconditioner for (4.9) and presented the result in

Corollary 4.4.1. We compared the performance of S−1
1 and Λ−1

A as preconditioners for

the same system (4.9) The numerical result in Section 4.4.3 shows that Λ−1
A preforms

almost as well as S−1
1 . However, it does not require to solve any problems numerical

in order to apply the preconditioner Λ−1
A . This idea is very important because we

successfully coupled theoretical results into numerical algorithms in order to save

computational time.
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5.2 Future work

High contrast problems arrises in various different applications and the models varies

in different situations. Analysis and numerical algorithms are both important and

necessary for such kind of problems. Here are some work I would like to focus on in

the future.

New mathematical models for high contrast media. As introduced before,

there are two models for high contrast media, two phase composites model and Ko-

zlov’s continuum model. These models are very clever, but also very limited to

practical applications sometimes since they are simple. In many applications, the

asymptotic scale may not be totally separated and more general mathematical mod-

els are necessary to be designed. One of my interest is to develop new mathematical

models for high contrast media, which are suitable for more practical applications.

Asymptotic analysis for general problems. The analysis and the results in this

thesis are for two phase composites with perfectly conducting inclusions, which is an

infinite high contrast situation. In applications in Chapter 4, we directly use it for

a finite high contrast problem without analysis for DtN maps between infinite and

finite high contrast media. In practical applications, the problems usually have finite

high contrast coefficients. The asymptotic analysis for effective conductivity, DtN

maps, solutions between finite and infinite high contrast problems are necessary and

very interesting.

Another situation is that the coefficients in inclusions are much smaller than that

in the background. For example, the permeability in inclusion shaped rocks is much

smaller than that in other places when modeling fluid flow in porous media. The

analysis will be very similar, but it is worth to have some analysis there for the
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purpose of numerical applications.

In many cases, nonlinear problems also arise in applications. Some asymptotic

analysis of related nonlinear problems will be very useful for the purpose of numerical

applications. Foe example, when a Newton type algorithm is used to solve some

nonlinear problem, some knowledge of the Jacobian will be very useful.

Asymptotic analysis in 3D. We analyzed a high contrast problem in a 2D do-

main in this thesis. It will be very useful and necessary to extend the analysis and

applications to 3D case. In 3D case, we will have a network in 3D, which will be more

complicate than a 2D planar network. The local analysis also needs to be extended

to 3D case in order to obtain the effective resistor on each edge of the 3D network.

Applications to overlapping domain decomposition methods. In this thesis,

we only have results for the approximation of DtN maps, but we constructed test

functions in explicit forms in order to obtain sharp upper and lower bounds. The

constructions of test functions are actually approximations of the potential and flow

in high contrast conductive media. It is possible to construct coarse basis from these

approximations in a two level Schwarz method. In [25], Galvis and Yachin show that

carefully constructed coarse basis are very necessary in a two level Schwarz method

for solving high contrast problems. However, it is very expensive to compute these

coarse basis because it requires to solve local spectral problems numerically in [25].

It will be great if we can use asymptotic approximations to construct such coarse

basis without numerical computations. Still, the coarse basis is obtained to construct

preconditioners in two level Schwarz methods and asymptotic approximations will

be applicable since it does not require very exact information in the construction of

preconditioners.
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In the approximation of DtN maps, we coupled the flow in the network with

that in the boundary layer. The analysis in the boundary layer is very important

in the analysis, but it only involved local analysis. On the other hand, the resistor

network connects local analysis together in order to obtain the global analysis for the

whole problem in high contrast media. For constructing coarse basis in a two level

Schwarz method, the global information is more concerned than local information

because local information is usually handled by solving local problems numerically in

overlapping domain decomposition methods. It means the resistor network is enough

to provide the global information for problem in high contrast media. In other words,

we can directly use it as a “coarse” discretization in a two level Schwarz method..

The problem left is how to couple the resistor network into a numerical algorithm

such that it performs like a coarse discretization for problems in high contrast media.

Applications to other numerical methods Analysis in this thesis is like a two

level scheme, local analysis in gaps between inclusions and global analysis with the

resistor network. This provides us some ideas for applications to multiscale numerical

methods, such as MsFEM introduced in [21]. In many situations, for example prob-

lems in porous media with long channels inside, global information is very necessary

for MsFEM to have good performance. Hence, the network approximation idea is

also applicable to MsFEM in order to provide approximate global information when

solving problems in high contrast media.



Appendix A

Proof details

A.1 Maximum principle for the potentials on the

inclusions

We show here that the potentials Ui on the inclusions Di, for i = 1, . . . , N , are

bounded in terms of the boundary data ψ.

Consider the solution (u,U) of equations (2.3)-(2.6). Since u is harmonic in the

connected set Ω, it takes its maximum and minimum values at the boundary ∂Ω =

Γ
N⋃
i=1

∂Di . Suppose that there exists an index i for which

u|∂Di = Ui = M = max
x∈Ω

u(x) ,

and define the function

f(ρ) =
1

2π(R + ρ)

∫
|x−xi|=R+ρ

ds(x)u(x)

=
1

2π

∫
|y|=1

ds(y)u(xi + (R + ρ)y) , (A.1)
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for ρ ≤ O(δ), so that the annulus

Cρ = {x = xi + r(cos θ, sin θ) , r ∈ [R,R + ρ] , θ ∈ [0, 2π]} ,

is contained in Ω. We obtain using integration by parts and the conservation of

currents (2.5) at ∂Di that

f ′(ρ) =
1

2π

∫
|y|=1

ds(y) y · ∇u(xi + (R + ρ)y)

=
1

2π(R + ρ)

∫
|x−xi|=R+ρ

ds(x) n(x) · ∇u(x)

=
1

2π(R + ρ)

[∫
|x−xi|=R+ρ

ds(x) n(x) · ∇u(x) +

∫
Di
ds(x) n(x) · ∇u(x)

]
=

1

2π(R + ρ)

∫
Cρ
dx ∆u(x)

= 0 ,

and therefore f(ρ) is constant

f(ρ) = f(0) = Ui = M . (A.2)

Moreover, integrating in polar coordinates we get that the average of u(x) in the

annulus equals its maximum value

1

|Cρ|

∫
Cρ
dxu(x) =

1

|Cρ|

∫ R+ρ

R

dr

∫
|x−xi|=r

ds(x)u(x)

=
1

|Cρ|

∫ R+ρ

R

dr2πrf(r −R)

= M .

This implies that u(x) = M in Cρ, and using the maximum principle for the harmonic
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function u(x), that u(x) = M , in Ω.

A similar argument shows that if the minimum value of the potential is attained at

the boundary of one inclusion, then u is constant in Ω. Thus, we have the maximum

principle

min
x∈Γ

ψ(x) ≤ Ui ≤ max
x∈Γ

ψ(x), i = 1, . . . , N . (A.3)

A discrete version of the maximum principle for networks can be found in [36,

19]. It says that the potential at the nodes of the network attains its minimum and

maximum values at the boundary nodes. Thus, if we let Ψi for i = 1, . . . , NΓ be the

boundary potentials, we have

min
j=1,...,NΓ

Ψj ≤ Ui ≤ min
j=1,...,NΓ

Ψj , i = 1, . . . , NΓ . (A.4)

A.2 Proof of Lemma 3.3.1

Recall that the solution u(x) of equations (2.3)-(2.6) minimizes (2.1). We have

E(ψ) =
1

2

∫
Ω

dx |∇u(x)|2 ≥ 1

2

∫
Ωp

dx |∇u(x)|2 ≥ Ep(ψ) . (A.5)

The first inequality is because Ωp ⊂ Ω. The second inequality is because the re-

striction of u(x) to Ωp belongs to the function space Vp(Ψ) of test potentials in the

variational formulation (3.3) of Ep(Ψ). To complete the proof we need the following

result, obtained in sections 3.4 and 3.5.

Lemma A.2.1. There exists a potential vp(x) ∈ Vp(ψ) such that

1

2

∫
Ωp

dx |∇vp(x)|2 = Ep(ψ) [1 + o(1)] . (A.6)
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Moreover, if let T be any edge of a triangle in T , and denote by |T | its length, we

have the pointwise estimate

|∇vp(x)| ≤ C

|T |
, x ∈ T ⊂ ∂T , (A.7)

with order one constant C that is independent of δ and k.

The estimate (A.7) is valid in the vicinity of the boundary of the triangles, not

only on ∂T . Moreover, by our definition of the triangles,

|T | = O(R) . (A.8)

Using Kirszbraun’s theorem [24] we extend vp(x) from the boundary of each triangle

inside the triangle, in such a way that |∇vp| remains bounded by O(1/R) in T . The

extended vp is a function in V(ψ), so we get the upper bound

E(ψ) ≤ 1

2

∫
Ω

dx |∇vp(x)|2 =
1

2

∫
Ωp

dx |∇vp(x)|2 +
1

2

∫
T
dx |∇vp(x)|2 . (A.9)

The first term in the right hand side is given in (A.6). To estimate the second term,

let Tijk be an arbitrary interior triangle, for i = 1, . . . , N , j ∈ Ni and k ∈ Nk. By

construction, the area of the triangles is O(R2), so we have

1

2

∫
Tijk

dx |∇vp(x)|2 = O(1) . (A.10)

This is much smaller than the contribution of the gaps given in section 3.4

1

2

∫
Πij

dx |∇vp(x)|2 = O

(√
R

δ

)
,

1

2

∫
Πjk

dx|∇vp(x)|2 = O

(√
R

δ

)
. (A.11)
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A similar result holds for the triangles near the boundary layer. We obtain that

1

2

∫
T
dx |∇vp(x)|2 = Ep(ψ) o(1) , (A.12)

and the proof of Lemma 3.3.1 follows from (A.9) and (A.5).

A.3 Proof of Lemma 3.3.2

The proof is a consequence of Euler-Lagrange equations (3.5)-(3.9), (3.16)-(3.19) and

(3.20)-(3.23), which have unique solutions as follows from standard application of

Lax-Milgram’s Theorem. It is convenient in this section to emphasize in the notation

their dependence on the data. Thus, we let up(x;ψ), U(ψ) be the solutions of (3.5)-

(3.9). Moreover, for a given UΓ = (U1, . . . ,UNΓ) we let uB(x;ψ,UΓ) be the solution

of (3.16)-(3.19), and uΠ(x;UΓ) and U I(UΓ) = (UNΓ+1(UΓ), . . . ,UN(UΓ)) the solution

of (3.20)-(3.23). The index I stands for interior inclusions.

Note that the restriction of up(x;ψ) to the boundary layer solves equations (3.16)-

(3.19) for UΓ = UΓ(ψ) = (U1(ψ), . . . ,UNΓ(ψ)),

uB(x;ψ,UΓ(ψ)) = up(x;ψ) , x ∈ B . (A.13)

Similarly, the restriction of up(x;ψ) to the set Π of gaps

uΠ(x;UΓ(ψ)) = up(x;ψ) , x ∈ Π , (A.14)

and the vector of potentials on the interior inclusions

U I(UΓ(ψ)) = (UNΓ+1(ψ), . . . ,UN(ψ)) , x ∈ Π , (A.15)

-



84

solve equations (3.20)-(3.23) for UΓ = UΓ(ψ). Therefore, we have

Ep(ψ) =
1

2

∫
Ωp

dx |∇up(x;ψ)|2

=
1

2

∫
B
dx |∇uB(x;ψ,UΓ(ψ))|2 +

1

2

∫
Π

dx |∇uΠ(x;UΓ(ψ))|2

= EB(UΓ(ψ), ψ) + EΠ(UΓ(ψ))

≥ min
UΓ

[
EB(UΓ, ψ) + EΠ(UΓ)

]
. (A.16)

For the reverse inequality let UΓ be arbitrary in RNΓ
and define v ∈ Vp(ψ) by

v(x) =

 uB(x;ψ,UΓ) , x ∈ B ,

uΠ(x;UΓ) , x ∈ Π .
(A.17)

We obtain that

Ep(ψ) ≤ 1

2

∫
Ωp

dx |∇v(x)|2

=
1

2

∫
B
dx |∇uB(x;ψ,UΓ)|2 +

1

2

∫
Π

dx |∇uΠ(x;UΓ)|2

= EB(UΓ, ψ) + EΠ(UΓ), (A.18)

for all UΓ. The result follows by taking the minimum over UΓ in RNΓ
.
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A.4 Tightness of the bounds on EB

Definition (3.60) of the flux in Bi+ and the expression (3.54) of the potential give that

GBi+(v, j) =
1

2

∫
Bi+

dx

∣∣∣∣(L−R/2)

r
∂rv

(
L− R

2
, θ

)∣∣∣∣2
=

1

2

∫
Bi+

dx

∣∣∣∣∣2(L−R/2)

rL

k
(
1− R

2L

)k−1

1−
(
1− R

2L

)2k
cos(kθ) +

L(θ,UΓ)

r ln
(
1− R

2L

)∣∣∣∣∣
2

.

(A.19)

We estimate the first term by

∣∣∣∣∣2(L−R/2)

rL

k
(
1− R

2L

)k−1

1−
(
1− R

2L

)2k
cos(kθ)

∣∣∣∣∣ ≤ 4

R
,

because r ∈ (L−R/2, L) and the function kak/(1−a2k) for any a ∈ (0, 1) is monotone

decreasing in k for k ≥ 1. In particular, for a = 1−R/(2L), we have

k
(
1− R

2L

)k
1−

(
1− R

2L

)2k
≤

1− R
2L

1− 1 + R
2L

=
2L

R

(
1− R

2L

)
.

The second term in (A.19) satisfies

∣∣∣∣∣ L(θ,UΓ)

r ln
(
1− R

2L

)∣∣∣∣∣ ≤ 2

R
(1 +O(R/L))

because L(θ,UΓ) is the interpolation between Ui and Ui+1, and their absolute value

is bounded by one, as shown in (A.3). Thus, we have

GBi+(v, j) ≤ 13 (1 +O(R/L))

R2

∫
Bi+

dx = O(1) , (A.20)
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because

∫
Bi+

dx =

∫ L

L−R/2
dr r

∫ θi+1−αi+1

θi+αi

dθ =
LR

2

(
1− R

4L

)
(θi+1 − θi − αi+1 − αi) ∼ R2 ,

and

θi+1 − θi − αi+1 − αi .
2π

NΓ
∼ R

L
.

Definition (3.61) of the test flux gives after a straightforward calculation that

GBi(v, j) =
1

2

∫
Bi
dx |∇v(x)− j(x)|2

=
1

2

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr r

∣∣∣∣∂rv(r, θ) +
1

r
∂θH(r, θ)

∣∣∣∣2
=

1

2

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr

r

[∫ L

r

ds s∆v(s, θ)

]2

, (A.21)

and using expression (3.54) of the test potential we obtain

GBi(v, j) =
1

2

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr

r

{∫ L

r

ds

s

[
cos(kθ)∂2

θwk(s, θ)−

2k sin(kθ)∂θwk(s, θ) + Ui∂2
θw(s, θ)

]}2

≤ 3

2
[Si,1 + Si,2 + Si,3] . (A.22)

Here we let

wk(s, θ) =
(s/L)k − [1− d(θ)/L]2k(L/s)k

1− [1− d(θ)/L]2k
, w(s, θ) =

ln(s/L)

ln[1− d(θ)/L]
, (A.23)

used the inequality

(a+ b+ c)2 ≤ 3(a2 + b2 + c2) , ∀a, b, c ∈ R ,
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and introduced the integrals

Si,1 =

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr

r

[
2k sin(kθ)

∫ L

r

ds

s
∂θwk(s, θ)

]2

, (A.24)

Si,2 =

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr

r

[
cos(kθ)

∫ L

r

ds

s
∂2
θwk(s, θ)

]2

, (A.25)

Si,3 =

∫ θi+αi

θi−αi
dθ

∫ L

L−d(θ)

dr

r

[
Ui
∫ L

r

ds

s
∂2
θw(s, θ)

]2

. (A.26)

(A.27)

A.4.1 Estimate of (A.24)

We obtain from definition (A.23) that

∂θwk(s, θ) = − 2kd′(θ)p2(θ)

(L− d(θ))(1− p2(θ))2

[( s
L

)k
−
(
L

s

)k]
, (A.28)

with

p(θ) = [1− d(θ)/L]k , (A.29)

so we can bound Si,1 as

Si,1 ≤ 16

∫ θi+αi

θi−αi
dθ

[
kd′(θ)p2(θ)

(L− d(θ))(1− p2(θ))2

]2∫ L

L−d(θ)

dr

r

[∫ L

r

ds

(
ksk−1

Lk
− kLk

sk+1

)]2

.

The integral in r is estimated by

∫ L

L−d(θ)

dr

r

[∫ L

r

ds

(
ksk−1

Lk
− kLk

sk+1

)]2

=

∫ L

L−d(θ)

dr

r

[
2− rk

Lk
− Lk

rk

]2

≤ −(1− p(θ))4

p2(θ)
ln

[
1− d(θ)

L

]
, (A.30)
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where the monotonicity in r of the function in parenthesis implies

(
2− rk

L2
− Lk

rk

)2

≤
[
2− (L− d(θ))k

L2
− Lk

(L− d(θ))k

)2

=
(1− p(θ))4

p2(θ)
, (A.31)

for all r ∈ [L− d(θ), L]. Moreover, since

1

1− p2(θ)
≤ 1

1− p(θ)
, (A.32)

we obtain the bound

Si,1 ≤ 16

∫ θi+αi

θi−αi
dθ

[
d′(θ)

L− d(θ)

]2{
− [kp(θ)]2 ln

[
1− d(θ)

L

]}
. (A.33)

Function kp(θ) attains its maximum at k = −1/ ln [1− d(θ)/L]

kp(θ) = k

[
1− d(θ)

L

]k
≤ e−1

− ln
[
1− d(θ)

L

] , (A.34)

and after expanding the logarithm we get

Si,1 ≤ C

∫ θi+αi

θi−αi
dθ

[d′(θ)]2

Ld(θ)
, (A.35)

with positive constant C of order one.

To estimate (A.35) we obtain from definition (3.48) that

d(θ) = L− ρi cos(θ − θi)−
√
R2 − ρ2

i sin2(θ − θi)

= δi + ρi[1− cos(θ − θi)] +R−
√
R2 − ρ2

i sin2(θ − θi)

≥ R−
√
R2 − ρ2

i sin2(θ − θi) , (A.36)
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and note that its derivative satisfies

|d′(θ)| = ρi sin |θ − θi|√
R2 − ρ2

i sin2(θ − θi)
[L− d(θ)] ≤ 2L

R
ρi |sin(θ − θi)| . (A.37)

Here we used (3.50) to write

1√
R2 − ρ2

i sin2(θ − θi)
≤ 2

R
, ∀ θ ∈ (θi − αi, θi + αi) .

The second derivative of d(θ), needed in the next section, is bounded similarly

|d′′(θ)| ≤ 8L2

R
. (A.38)

Inequalities (A.36)-(A.37) give

[d′(θ)]2

Ld(θ)
≤ 4L

R2

ρ2
i sin2(θ − θ1)

R−
√
R2 − ρ2

i sin2(θ − θi)

=
4L

R2

[
R +

√
R2 − ρ2

i sin2(θ − θi)
]

=

(
8L

R

)
, (A.39)

and the estimate

Si,1 ≤ O(1) (A.40)

follows from (A.35) and αi = O(R/L).
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A.4.2 Estimate of (A.25)

We obtain from (A.28) that

∂2
θwk(s, θ) =

{
2[d′(θ)p(θ)]2 [(2k + 1)p2(θ) + 2k − 1]

[1− p2(θ)]3[L− d(θ)]2
− 2d′′(θ)p2(θ)

[1− p2(θ)]2[L− d(θ)]

}
×[

ksk

Lk
− kLk

sk

]
,

and using the estimate (A.30) of the integral in r we get

Si,2 ≤ C

∫ θi+αi

θi−αi
dθ

{
−(1− p(θ))4

p2(θ)
ln

[
1− d(θ)

L

]}{[
d′′(θ)p2(θ)

[1− p2(θ)]2[L− d(θ)]

]2

+

[
[d′(θ)p(θ)]2 [(2k + 1)p2(θ) + 2k − 1]

[1− p2(θ)]3[L− d(θ)]2

]2
}
,

with positive constant C of order one. Now use inequality (A.32) and expand the

logarithm and the terms L− d(θ) in the denominator to simplify the bound

Si,2 . C

∫ θi+αi

θi−αi
dθ
d(θ)

L


[
d′′(θ)

L

]2

p2(θ) + 16

[
[d′(θ)]2

L

]2 [
kp(θ)

L[1− p(θ)]

]2

 .

The derivatives of d(θ) are estimated in (A.38) and (A.39), p(θ) ≤ 1, and

kp(θ)

1− p(θ)
=

k [1− d(θ)/L]k

1− [1− d(θ)/L]k
≤ L

d(θ)
[1− d(θ)/L] . (A.41)

This is because the function kak/(1 − ak) is monotonically decreasing in k for any

a ∈ (0, 1) and k ≥ 1. In particular, for a = 1 − d/L we have (A.41). Gathering all

the results and using that αi = O(R/L) we get

Si,2 ≤ C1

∫ θi+αi

θi−αi
dθ
d(θ)L

R2
≤ O(1) . (A.42)
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A.4.3 Estimate of (A.26)

We recall from (A.3) that Ui is at most of order one, and obtain from (A.23) that

∂2
θw(s, θ) =

{
2[d′(θ)]2/ ln[1− d(θ)/L] + [d′(θ)]2 + [L− d(θ)]d′′(θ)

[L− d(θ)]2 [ln[1− d(θ)/L]]2

}
ln
s

L

≈
{
d′′(θ)

L
− 2

[d′(θ)]

d(θ)L

}
ln(s/L)

[ln[1− d(θ)/L]]2
. (A.43)

The integrals in s and r give

∫ L

L−d(θ)

dr

r

[∫ L

r

ds

s
ln
( s
L

)]2

=
1

4

∫ L

L−d(θ)

dr

r

[
ln
r

L

]4

= − 1

20

{
ln

[
1− d(θ)

L

]}5

,

and with the bounds (A.38) and (A.39) of the derivatives of d(θ), and the expansion

of the logarithm, we obtain the estimate

Si,3 ≤
9

20

∫ θi+αi

θi−αi
dθ
L d(θ)

R2
≤ O(1) . (A.44)

A.5 Energy in the boundary layer

We use the test potential (3.54) to calculate the upper bound of the energy in the

boundary layer. Given the decomposition of the layer in the sets Bi and Bi+, we write

the bound as in (3.65), and estimate the two terms in sections A.5.2 and A.5.1.

A.5.1 Energy in the sets Bi+

Let us introduce the simplifying notation

U i =
Ui + Ui+1

2
, Ũi = Ui+1 − Ui , (A.45)
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and

θi =
θi + θi+1

2
− αi+1 − αi

2
, θ̃i = (θi+1 − αi+1)− (θi + αi) , (A.46)

for the average and difference potentials and angles, so that

L(θ,UΓ) = U i + Ũi
(
θ − θi
θ̃i

)
(A.47)

in Bi+. We obtain after straightforward calculation that

EBi+(UΓ, ψ; v) =
kθ̃i
4

+ PBi+ , (A.48)

with perturbation term

PBi+ =
kp2θ̃i

4(1− p2)
−
k2p2 ln

(
1− R

2L

)
2(1− p2)2

∫ θ̃i/2

−θ̃i/2
dθ cos

[
2k(θi + θ)

]
+

1

2 ln
(
1− R

2L

) ∫ θ̃i/2

−θ̃i/2
dθ

(
U i + Ũi

θ

θ̃i

)
cos
[
k(θi + θ)

]
−

1

4 ln (1−R/2L)

∫ θ̃i/2

−θ̃i/2
dθ

(
U i + Ũi

θ

θ̃i

)2

−
Ũ2
i ln

(
1− R

2L

)
6θ̃i

+

Ũi [(1− p2) + 2p ln p]

2(1− p2) ln p

1

θ̃i

∫ θ̃i/2

−θ̃i/2
dθ sin

[
k(θi + θ)

]
, (A.49)

where

p =

[
1− d(θ)

L

]k
=

(
1− R

2L

)k
.

Now let us show that PBi+ = O(1). The first term in (A.49) is estimated as

kp2θ̃i
(1− p2)

=
k
(
1− R

2L

)2k
θ̃i[

1−
(
1− R

2L

)2k
] ≤ (

1− R
2L

)2
θ̃i[

1−
(
1− R

2L

)2
] = O(1) ,
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because the function is monotonically decreasing in k and θ̃i = O(R/L). The second

term in (A.49) satisfies

∣∣∣∣∣k2p2 ln
(
1− R

2L

)
(1− p2)2

∫ θ̃i/2

−θ̃i/2
dθ cos

[
2k(θi + θ)

]∣∣∣∣∣ =

(
kp

1− p2

)2
∣∣∣∣∣cos(kθi)sinc

(
kθ̃i
2

)∣∣∣∣∣×
θ̃i

∣∣∣∣ln(1− R

2L

)∣∣∣∣ ≤ ( kp

1− p

)2

θ̃i

∣∣∣∣ln(1− R

2L

)∣∣∣∣ ≤ O(1) ,

where we used the inequality (A.41) and expanded the logarithm. The third, fourth

and fifth terms in (A.49) are also order one, because the integrands are order one and

θ̃i ∼ − ln

(
1− R

2L

)
= O

(
R

L

)
.

The last term in (A.49) satisfies

∣∣∣∣∣ Ũi [(1− p2) + 2p ln p]

(1− p2) ln p

∣∣∣∣∣ 1

θ̃i

∫ θ̃i/2

−θ̃i/2
dθ sin

[
k(θi + θ)

]
≤
∣∣∣∣ [(1− p2) + 2p ln p]

(1− p2) ln p

∣∣∣∣ ≤ 1 ,

because the potentials satisfy the maximum principle (A.3). The last inequality is

easy to see, for example by plotting the function for p ∈ (0, 1).

A.5.2 Energy in the sets Bi

The test potential in this set is of the form

v(r, θ) = wk(r, θ) cos(kθ) + Uiw(r, θ) , (A.50)
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with functions wk(r, θ) and w(r, θ) defined in (A.23). We write the contribution of Bi

to the energy bound as a quadratic polynomial in the potentials

EBi(UΓ, ψ; v) =
1

2

∫
Bi
dx |∇v(x)|2 = aiU2

i + 2biUi + ci . (A.51)

The leading coefficients are independent of k

ai =
1

2

∫
Bi
dx

{
[∂rw(r, θ)]2 +

[
1

r
∂θw(r, θ)

]2
}
, (A.52)

and are estimated in section A.5.2.1. The coefficients of the linear term are

bi =
1

2

∫
Bi
dx

{
cos(kθ)∂rwk(r, θ)∂rw(r, θ)− 1

r
∂θw(r, θ)×[

k sin(kθ)

r
wk(r, θ)−

cos(kθ)

r
∂θwk(r, θ)

]}
, (A.53)

and are estimated in section A.5.2.2. The coefficients

ci =
1

2

∫
Bi
dx

{
[∂rwk(r, θ)]

2 cos2(kθ) +

[
k sin(kθ)

r
wk(r, θ)−

cos(kθ)

r
∂θwk(r, θ)

]2
}

(A.54)

are estimated in section A.5.2.3.

A.5.2.1 Estimate of ai

We obtain from (A.23) and (A.52) after integrating in the radial direction that

ai =
1

2

∫ θi+αi

θi−αi

dθ

− ln [1− d(θ)/L]
+ PBi,ai , (A.55)
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with remainder

PBi,ai = −1

2

∫ θi+αi

θi−αi
dθ

[d′(θ)]2

3[L− d(θ)]2 ln [1− d(θ)/L]
. (A.56)

We can bound it as

|PBi,ai| ≤ O(1) , (A.57)

using the estimate (A.39) of d′(θ), expanding the logarithm and recalling that the

angle αi = O(R/L).

To calculate the first term in (A.55), we expand the logarithm

∫ θi+αi

θi−αi

dθ

− ln [1− d(θ)/L]
= L [1 + o(1)]

∫ αi

−αi

dθ

d(θi + θ)
, (A.58)

and obtain an integral that is basically the same as that in (3.36). Recalling definition

(A.36) of d(θ) and using that αi = O(R/L), we have the approximation

L

d(θi + θ)
=

L

δi + ρiL
2R
θ2

+O

(
L

R

)
, (A.59)

and the coefficient becomes

ai =
1

2

∫ αi

−αi
dθ

L

δi + ρiL
2R
θ2

+O(1)

=
1

2

√
2LR

ρiδi

∫ αi

√
ρiL

2Rδi

−αi
√

ρiL

2Rδi

dt

1 + t2
+O(1) ,

=
π

2

√
ρiL

2Rδi
+O(1) . (A.60)
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A.5.2.2 Estimate of bi

We obtain from (A.23) and (A.53) after integrating in the radius that

bi =
1

2

∫ θi+αi

θi−αi
dθ

{
cos(kθ)

ln [1− d(θ)/L]
+
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
+

− 2[d′(θ)]2 cos(kθ)

[L− d(θ)]2 ln[1− d(θ)/L]

p(θ) [1− p2(θ) + (1 + p2(θ)) ln p(θ)]

[1− p2(θ)]2 ln p(θ)

}
.

(A.61)

We show next that the first term may be large, but the last two are at most order

one.

We estimate the last term in (A.61) using (A.39) and the bound

p [1− p2 + (1 + p2) ln p]

(1− p2)2 ln p
≤ lim

p→1

p [1− p2 + (1 + p2) ln p]

(1− p2)2 ln p
=

1

6
,

which holds because the function on the left is monotonically increasing in the interval

p ∈ (0, 1). We have

∣∣∣∣∫ θi+αi

θi−αi
dθ

2[d′(θ)]2 cos(kθ)

[L− d(θ)]2 ln[1− d(θ)/L]

p(θ) [1− p2(θ) + (1 + p2(θ)) ln p(θ)]

[1− p2(θ)]2 ln p(θ)

∣∣∣∣ ≤
1

6

∫ θi+αi

θi−αi
dθ

[d′(θ)]2

Ld(θ)[1− d(θ)/L]2
≤ O(1) , (A.62)

where we expanded the logarithm, and used that αi = O(R/L).
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The second term in (A.61) is estimated using integration by parts

∫ θi+αi

θi−αi
dθ
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
=

−d
′(θ) cos(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

∣∣∣∣θi+αi
θi−αi

−∫ θi+αi

θi−αi
dθ cos(kθ)

[[L− d(θ)]d′′(θ) + [d′(θ)]2]

[L− d(θ)]2
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2
−∫ θi+αi

θi−αi
dθ cos(kθ)

d′(θ)

[L− d(θ)]

d

dθ

{
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

}
.

We have that

[1− p2 + 2 ln p]

(1− p2)2(ln p)2
≤ lim

p→1

[1− p2 + 2 ln p]

(1− p2)2(ln p)2
=

1

6
,

because the function is monotonically increasing in the interval p ∈ (0, 1). Moreover,

d

dθ

{
[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

}
=

2d′(θ)

[L− d(θ)] ln[1− d(θ)/L]
×

[1− p2(θ)]2 + p(θ)[1− p2(θ)] ln p(θ)− p(θ)[1 + p2(θ)][ln p(θ)]2

[1− p2(θ)]2[ln p(θ)]2

with the last factor bounded in the interval p ∈ (0, 1), as can be seen easily by

plotting. Thus, gathering all the results and using the estimates (A.38) and (A.39)

for the derivatives of d(θ), we get

∣∣∣∣∫ θi+αi

θi−αi
dθ
kd′(θ) sin(kθ)

L− d(θ)]

[1− p2(θ) + 2p(θ) ln p(θ)]

[1− p2(θ)][ln p(θ)]2

∣∣∣∣ ≤ O(1) . (A.63)
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We have obtained that

bi =
1

2

∫ θi+αi

θi−αi
dθ

cos(kθ)

ln[1− d(θ)/L]
+O(1)

= −L
2

cos(kθi)

∫ αi

−αi
dθ

cos(kθ)

d(θi + θ)
+O(1)

= − L

2δi
cos(kθi)

∫ αi

−αi
dθ

cos(kθ)

1 + ρiL
2Rδi

θ2
+O(1) , (A.64)

where we expanded the logarithm and the cosine, discarded the sin term which is odd,

and used approximation (A.59). The integral in (A.64) is similar to that in (A.58) for

small k, but for large k the result is smaller due to the oscillatory cosine. Explicitly,

we have

bi = −cos(kθi)

2

√
2RL

ρiδi

∫ αi

√
ρiL

2Rδi

−αi
√

ρiL

2Rδi

dt
cos
(
k
√

2Rδi
ρiL

)
1 + t2

+O(1)

= −π cos(kθi)

2

√
2RL

ρiδi
e
−k

√
2Rδi
ρiL +O(1) . (A.65)

A.5.2.3 Estimate of ci

We obtain from (A.23) and (A.54) after integrating in the radius that

ci =
kαi
2

+
1

2

∫ θi+αi

θi−αi
dθ

{
kp2(θ)

[1− p2(θ)]
− 2k2p2(θ) ln[1− d(θ)/L] cos(2kθ)

[1− p2(θ)]2
+

2kd′(θ)p(θ) sin(2kθ)

[L− d(θ)]

p(θ)[1− p2(θ) + (1 + p2(θ)) ln p(θ)]

[1− p2(θ)]3
+

2k2[d′(θ)]2p2(θ)cos2(kθ) ln[1− d(θ)/L]

L− d(θ)]2[1− p2(θ)]2
[1− p4(θ) + 4p2(θ) ln p(θ)

[1− p2(θ)]2 ln p(θ)

}
, (A.66)

and proceeding as in the previous two sections, we conclude that the last two terms

are at most order one.
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To calculate the first integral in (A.66), let us introduce the notation

p2(θi + θ) =

[
1− d(θi + θ)

L

]2k

= e−2kx , x = − ln

[
1− d(θi + θ)

L

]
, θ ∈ (−αi, αi) ,

and use that d� L to write

x =
d

L
+O

(
d2

L2

)
=
d̃

L
+
d− d̃
L

+O

(
d2

L2

)
,

for

d̃ = δi +
ρiL

2R
θ2 ,

the parabolic approximation of d(θi + θ). We have from (A.59) that

|d− d̃| ≤ O

(
d2

R

)
,

and therefore

x =
δi
L

[
1 +

ρiL

2Rδi
θ2

]
+O

(
d2

LR

)
.

Next, we let

kp2

1− p2
=

ke−2kx

1− e−2kx
=

k

e2kx − 1
=: f(k, x) ,

and use the mean value theorem to write

f(k, x) =
k

e2kd̃/L − 1
+ ∂xf(k, x′)

[
x− d̃

L

]
,

for some x′ ∼ d̃/L. Note that because |∂xf(k, x)| is monotonically decreasing in k,
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we have

|∂kf(k, x)| = 2k2e2kx

[e2kx − 1]2
≤ |∂kf(x, k = 1)| = 2e2x

[e2x − 1]2
= O

(
1

x2

)
= O

(
L2

d2

)
.

Therefore, we can approximate

f(k, x) =
kp2

1− p2
=

k

e2kd̃/L − 1
+O

(
L

R

)
,

and since αi = O(R/L), we write the first integral in (A.66) as

∫ αi

−αi
dθ

kp2(θi + θ)

1− p2(θi + θ)
=

∫ αi

−αi
dθ

k

e2kd̃/L − 1
+O(1)

=
1

2

√
2RL

ρiδi

∫ Yi

−Yi
dy

λ

eλ(1+y2) − 1
+O(1) , (A.67)

with

λ =
2kδi
L

, Yi = αi

√
Lρi
2Rδi

∼
√
R

δi
� 1.

Moreover,

∫ Yi

−Yi
dy

λ

eλ(1+y2) − 1
=

∫ ∞
−∞

dy
λ

eλ(1+y2) − 1
+O

(√
δ

R

)

=
√
πλLi1/2

(
e−λ
)

+ O

(√
δ

R

)
,

with remainder estimated as

∫ ∞
Yi

dy
λ

eλ(1+y2) − 1
≤
∫ ∞
Yi

dy

1 + y2
=
π

2
− arctan(Yi) = O

(
1

Yi

)
= O

(√
δ

R

)
.
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Here we used that the integrand is monotonically decreasing in λ to write

λ

eλ(1+y2) − 1
≤ lim

λ→0

λ

eλ(1+y2) − 1
=

1

1 + y2
.

Gathering the results, we obtain that the first integral in (A.66) is given by

∫ θi+αi

θi−αi
dθ

kp2(θ)

1− p2(θ)
=
π

2

√
2RL

ρiδi

√
2kδi
Lπ

Li1/2
(
e−2kδi/L

)
+O(1) . (A.68)

The second integral is obtained similarly, so we write directly its expression

−
∫ θi+αi

θi−αi
dθ

2k2p2(θ) ln[1− d(θ)/L] cos(2kθ)

[1− p2(θ)]2
= π

√
2RL

ρiδi
cos2(kθi)e

−2k

√
2Rδi
ρiL −

π

2

√
2RL

ρiδi
e
−2k

√
2δiR

ρiL +O(1) . (A.69)

The result stated in (3.66) follows.



Appendix B

Numerical algorithms

B.1 Finite volume discretization

In this section, we introduce the finite volume discretization methods [23] on a stag-

gered grid. We follow the idea of finite volume discretization in [35] for problems

in a disk shape domain. We use (4.1) as the example to explain the finite volume

discretization here.

A staggered grid has primary (solid) and dual (dashed) lines as shown in Fig-

ure B.1. Primary nodes are intersections of primary grid lines and they have integer

subindexes. Dual nodes are intersections of dual grid lines and they have noninteger

subindexes.

A volume near a primary node Pij is a cell Cij of the dual grid with boundaries

∂Cij = Γi,j+ 1
2
∪ Γi+ 1

2
,j ∪ Γi,j− 1

2
∪ Γi− 1

2
,j (B.1)

They are the north, east, south, west boundaries of Cij, separately, see left Figure B.1.
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Pi ,j−1

Pi−1 ,j Pi ,j Pi+1 ,j

Pi ,j+1

Pi−1/2 ,j−1/2 Pi+1/2 ,j−1/2

Pi−1/2 ,j+1/2 Pi+1/2 ,j+1/2

Figure B.1: Left: staggered grid near a primary node Pij . Primary lines are solid and dual lines
are dashed. Primary nodes are marked by × and dual nodes are marked by o. Right: a simple
staggered grid in a disk shape domain. In the example with two subdomains, we always make sure
that interface Γ is a solid line in the discretization.

More precisely,

Γi,j± 1
2

=
(
Pi− 1

2
,j± 1

2
, Pi+ 1

2
,j± 1

2

)
, Γi± 1

2
,j =

(
Pi± 1

2
,j− 1

2
, Pi± 1

2
,j+ 1

2

)

For convenience later, we also denote

Γ⊥
i,j± 1

2
= (Pi,j, Pi,j±1) , Γ⊥

i± 1
2
,j

= (Pi,j, Pi±1,j) .

Notice that Γ⊥α,β is the primary line which is perpendicular to Γα,β, where

(α, β) = (i, j ± 1

2
) or (i± 1

2
, j). (B.2)

I 
I 

------~--------------r------

I I 

------~--------------~------
' 
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Integrate (4.1) in Cij,

∫
Cij

dxf(x) =−
∫
Cij

dx∇ · σ(x)∇u(x) = −
∫
∂Cij

ds(x)σ(x)
∂u

∂n
(x)

=−

∫
Γ
i,j+ 1

2

ds(x)σ(x)
∂u

∂n
(x) +

∫
Γ
i+ 1

2 ,j

ds(x)σ(x)
∂u

∂n
(x)

+

∫
Γ
i,j− 1

2

ds(x)σ(x)
∂u

∂n
(x) +

∫
Γ
i− 1

2 ,j

ds(x)σ(x)
∂u

∂n
(x)

 .

(B.3)

In the finite volume method, we will use finite difference methods to approximate the

integration on the boundaries of each cell Cij. We have

∫
Γ
i,j± 1

2

ds(x)σ(x)
∂u

∂n
(x) ≈ σ(Pi,j± 1

2
)
|Γi,j± 1

2
|

|Γ⊥
i,j± 1

2

|
(Ui,j±1 − Ui,j) = σi,j± 1

2
(Ui,j±1 − Ui,j)

∫
Γ
i± 1

2 ,j

ds(x)σ(x)
∂u

∂n
(x) ≈ σ(Pi± 1

2
,j)
|Γi± 1

2
,j|

|Γ⊥
i± 1

2
,j
|
(Ui±1,j − Ui,j) = σi± 1

2
,j(Ui±1,j − Ui,j)

(B.4)

where | · | means the arc length of the related arc, see right Figure B.1 for curve arcs

in a simple discretization. The unknown Ui,j is the numerical approximation of the

potential u(x) at the primary point Pi,j. The effective conductance σα,β associated

with each Γ⊥α,β is defined by

σα,β = σ(Pα,β)
|Γα,β|
|Γ⊥α,β|

(B.5)

where (α, β) is presented in (B.2).

The discrete equation for the discretized solution Ui,j is

− σi,j+ 1
2
(Ui,j+1 − Ui,j)− σi+ 1

2
,j(Ui+1,j − Ui,j)

− σi,j− 1
2
(Ui,j−1 − Ui,j)− σi− 1

2
,j(Ui−1,j − Ui,j) = Fij

(B.6)
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where

Fij =

∫
Cij

dxf(x). (B.7)

We can use quadrature rules to approximate the above integration for the right hand

side. We use lower letters for parameters in the differential equations and related

upper letters for parameters in discrete systems.

From finite volume discretization, we obtain the following linear system

AU = F. (B.8)

for solving the problem (4.1) numerically.

B.2 Iterative algorithms

In general, problems are solved iteratively with preconditioners in domain decompo-

sition methods. There are three steps to update the solution from an old version to

a new version in each iteration [39, 44]. Consider the linear system

Ax = b. (B.9)

Suppose M−1 is an approximation of A−1, and is used as the preconditioner for (B.9).

As a preconditioner, we expect that computing M−1x is much easier than computing

A−1x. In many cases, we do not need explicit forms for A or M−1. Instead, we only

need to know how to evaluate Ax and M−1x for any feasible vector x. In nonover-

lapping domain decomposition methods, this can be done by solving subproblems

independently in general.

Let xold be the current approximation. We would like to update it through some
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iterative algorithm. Here are three steps in each iteration.

1. Compute the residual: r = b − Axold = Ae, where e is the error of current

approximation.

2. Obtain an approximation of the correction e ≈M−1r.

3. Update the solution to xnew.

The algorithm starts with zero initial guess or any approximation of the solution.

In general, there is no easy way to compute the residual in the first step for

nonoverlapping domain decomposition methods. We have to solve subproblems in

each subdomain independently to obtain the vector Axold, otherwise the algorithm

will not converge to the exact solution. The good news is that the subproblems are

totally independent and we can solve them in parallel. In Chapter 4, we are not going

to discuss too many details about solving subproblems numerically. Instead, we focus

on constructing efficient and powerful preconditioners for solving interface equations

(4.9) and (4.20).

In the second step, we do not need to evaluate the correction e very exactly. We can

do some approximation here such that it takes less time to apply the preconditioner

M−1. However, the approximation of correction cannot be too rough. Otherwise the

total iteration numbers to converge will be large, which makes the total computational

cost high since we cannot avoid numerical computations in the first step of each

iteration. Furthermore, the matrix M−1 should have full rank since the corrections

will never happen in directions located in the null space of M−1.

There are many ways to update the solution, for example Richardson’s method,

the conjugate gradient method (PCG), GMRES and so on. Methods that converge

fast are usually called accelerators in iterative algorithms [39]. In iterative algorithms,
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preconditioners and accelerators are in general independent on each other. In this

thesis, we focus on the performance of different preconditioners. We will use the same

accelerator, i.e. the PCG method, for all situations since we always have symmetric

systems. The PCG algorithm for solving (B.9) with preconditioner M−1 is given as

follows.

1. Start from initial guess x0,

r0 = b− Ax0,

z0 = M−1r0,

p0 = z0.

2. Iterate n = 0, 1, 2, · · · until convergence

αn =
rTn zn
pTnApn

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

zn+1 = M−1rn+1,

βn =
zTn+1rn+1

zTn rn
,

pn+1 = zn+1 + βnpn.

In nonoverlapping domain decomposition methods, the most expensive parts are

evaluating Apn and M−1rn. In Chapter 4, we only give details on how to evaluate

Apn and M−1rn, but do not repeat details about the PCG algorithm any more.

More specifically, we are going to discuss how to evaluate M−1rn more efficiently

in different situations. One idea is to construct preconditioners in nonoverlapping

domain decomposition methods from theoretical approximation of the DtN map.
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