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1. INTRODUCTION

In [1], the Robust State Feedback Problem (RSFP) was formulated and solved
for a particular case of the linear servomechanism problem in which the exog-
enous signals to be tracked and/or to be rejected were arbitrary constants.

In this paper, the same problem is reformulated and solved for arbitrary exog-
enous signals, thus completing the theoretical developmeﬁt of robust solutions
to the general linear servomechanism probllem. We leave the discussion of com-
putational solutions to future articles.

As in [1] we consider the system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) : 1.1y
z(t) = Dx(t) x(Q) = xo, t2>0

where x(t) 1is the state, u(t) the contro], y(t) the.measured output and
z(t) the regulated output.

For the servomechanism problem, we regérd the 'system as being composed
of two parts, the plant and the exogenous signals. This endows A and B
with a particular structure described as follows. Let .Z = Z]@ ZZ where Z
is the state space of (T.l), Zl is the state space of the plant and 2% is
the state space of the exogenous signals. Assume d(Zi) =n and d(Zé) =n,.
For any x = X o Xy s define the maps

Ax

1}

(A]x] + A3x2) <) A2x2

Bu = B]u

Dx

D]x] + szz _ ‘ : (1.2)

Cx = C]x] + C2x2v

(A+BF)x = [(A]+B]F])x1 + (A3+BIF2)x2] S Ax,




These maps have a natural interpretation in matrix terms as follows

A A B
Al b3 gl !
0 A 0 .
2 (1.3)
C~ [;] c2] D~ [DI D2]

Define the unobservable space of (C,A) by

n R
N=0N Ker CA'_] where n = n, + n,

i=1

We assume that

Z ) n Z < (e ' (1.4)
Zynm=o | (1.5)
ata) < (1.6)

i.e., our plant is stabilizable, the system is detectable and the exogenous
signals are unstable. The problem is not realistic unles§ (1.4) is true. De-
tectability is assumed for clarity and bvaheorem 4 of [2] represents no loss
of generality. No control is required in the servomechanism problem for
system modes corresponding to stable eigenvalues of AZ’ so (1.6) is also a
reasonable assumption. In addition, we assume that B] is monic and D] is
epic.
The Regulator Problem with lnternal_Stability (RPIS) was formulated and
solved in [2] and fs concerned with finding an F:Z'-o%(.such that
Ker FD7 ‘ .7
2" (A+8F) N (Al®) + ) e I (41.8)

25 (A+BF) < Ker D ' (1.9)




The Robust State Feedback Problem (RSFP) is a generalization of RPIS in
that a solution F:X =Y is sought that remainé a solution under perturbations.
in §2, we formulate and solve RSFP; in §3 we consider state space extension
to enlarge the class of systems for which RSFP is solvable and in §4 we cor;-
sider perturbations in A and B . Alternate approaches to this prob'lem are
Davison [3] and Francis, Sebakhy and Wonham [4]. .The reader is assumed to be

familiar with the notation and terminology of [1] and [2].

2, ROBUST STATE FEEDBACK PROBLEM

In this section, we consider perturbations in the feedback map F of
the form
F=F+e f/|Ff (2.1)

where € is a scalar and F #0 is arbitrary. We define admissible pertur-
bations in F as follows. Given €, >0 and F such that Ker FO 7N . A
perturbation F is admissible if Ker FON and 0 <e< €, We now state

the main problem under consideration.

ROBUST STATE FEEDBACK PROBLEM (RSFP)

Given the maps A:X - X, B:Y - %, D:X -2, and a subspace N € X such

that AN €7 . Under what conditions do there exist F:X -U and €, >0

such that with Ker F > 7

% (A+BF) S Ker D A (2.2)
Z(a+8F) N (Al®) = 0 (2.3)

for every admissible F .

RPIS is clearly a special case of RSFP when ¢ = 0 . (2.3) is simpler

than (1.8) because of our special assumption (1.5). The solutjon of RSFP is




given by

Theorem 2.1

Assume (1.4) =~ (1;6) are true. RSFP is solvable if and only if

(i) RPIS is solvable

and
(ii) for any solution F:Z =-U to RPIS
Kk, . :
8c N (A+BF-)\E)J ker D C(2.4)
j=1
for each ). € O(Az) , where ki is the multiplicity of Ki as a root of
Lor each i, where

the minimal polynomial of A

9 °
Remark: In [1], A2 = 0, ki =1 s0 (2.4) reduced to ® < (A+BF) Ker D .

The proof of Theorem 2.1 is given in the Appendix.

This Theorem is not convenient to apply in its present form, but with an
additional assumption can be shown to be equivalent to a set of matrix rank
conditions. These conditions are easier to apply to problem solving and lead
also to a natural extension algorithm to be discussed in §3. Our additional
assumption involves the structure of the matrices A3 and 02 which describe
how the exogenous signals are coupled into the plant and the regulated output.
Assume that the matrix of A2 has been placed in Jordan normal form and ,the

Jordan blocks have been ordered in the following way. Assume <G(A2) =

{x],xz,...,xr} and define

q, = d(ker(Az- xi?) (2.5)




Then q; is the number of cyclic subspaces of Zé corresponding to li .
q. ,
1 , .
These subspaces can be written as Zzi,...,25;~ where we define
k.. = d(x ) (2.6)
i] 2j
Furthermore, these subspaces will be indexed so that kil Z'kIZ Z e kiq .
Corresponding to this ordering, the matrices of A3 and D2 are partitioned
as follows
A3 = [A]] A]2 . Arq ]
r
D, = [D]] Dy --- qu ]
r
where the partitioned matrices have the structure
A..=[a,. 0...0] ,
HJ H (2.7)
= 0...0
0, ; = [d, ]

Then using the matrix representations indicated by (1.3), the solvability con-

ditions for RSFP can be stated in the following way.

Corollary 2.1

Assume (1.4) - (1.6) and (2.7) are true, RSFP fs solvable if and only if

rank (A]_kil) B] = rank (A]_kil) B] aij =
D 0 D 0 d..|° ™
. ! ij-
~ 2 2
(A]-x.l) (A]-x.l)B] B.|. - (A -\.1) (A, =).1)B B a,.
rank i i 1 = rank L 17 1 1 iji_
D 0 0 D 0 0 0

| 1 1




6
- k. k=1
N e VIO E T N 1
rank D] 0 0 =
k k,.-1
B [ i ceo B .
A P A 5 1%
rank ' ' =n (2.8)
LD, 0 0 0
for i €r = (1,2,...,r)
j€a, =(1,2,..0,0)

The proof is given in the Appendix and yields an interesting result which

we state as

Corollary 2.2

Assume (1.4) - (1.6) are true. 1f RSFP has a solution, then any admis-

sible F:Z +% satisfying X (A+BF) N (A|®) = 0 is a solution.

This simply means that if RSFP has a solution, then any admissible F

that stabilizes the plant is a solution.

3. STATE SPACE EXTENSION

There will be systems for
2.1 shows that this can happen
ties of (2.8). From the proof

equality is a consequence only

fails there is no solution.

ERPIS (Extended RPIS) is not solvable [2].

which RSFP fails to have a solution and Corollary
because of the failure of either or both equali-~
of this Corollary it follows that the first

of solvability of RPIS. Thus, if this equality

This follows because if RPIS is not solvable, then

However, there will be cases for

which problems only occur in the second equality of some of the equations of
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(2.8). In these cases there is hope for solution via state space extension.
The state space extension to be developed is defined as follows: Let
=2 <] JC3 and the extended maps have the properties
A%.2% 2%, A%(x @ x3) = Ax & L(x ® x,)
e
where L% -*ZS
Be;’L( - x° , Beu = Bu
c%:x® -9, Cix o x,) = Cx © x, ‘ (3.1)
De:ZL’e - Z‘ s De(x @ x3) = Dx
where x €X , Xs 62’3 » U €U . The state space of the ‘extended plant'
is ZT = Zl ®Z3 and the maps have matrix representations as follows
AS = Al 0 AS = A3
] L] L 3 L3
o 0 0 0
e
D] = [D] 0] D2 = [D2] L = L] L, L3
0 0 0
o 0 c
2
cf =1 D = (3.2)
0 I 0

where L], L2, and L3 must be determined. Thus, the maps of the extended
system are specified by (3.1) and the Extended Robust State Feedback Problem

is defined as follows:

EXTENDED ROBUST STATE FEEDBACK PROBLEM (ERSFP)

Given the maps A:X = X%, B:Y - X, C:X =%, and D:X - Z , under what con-

ditions does there exist a state space extension (i.e., a map L:Ze ~23) such

that RSFP is solvable for (A&,Be,c®,p®).




It is clear that a necessary condition for a ;olution to ERSFP to ‘exist
is that RPIS be solvable. It wili be shown that this is also a sufficient
condition and the extension that solves ERSFP is developed via the presenta-
tion of an algorithm, the Extension Algorithm, that systematically investigates
and corrects the rank conditions of (2.8).

Three lemmas are used in developing the Extension Algorithm.

Lemma 3.1

Assume that (A],B]) is stabilizable. For any ) € C+ and any positive

integer k
k k=1
rank [(A]-XI) (A]-)\,l) B] v e (A]-)\I)B] B]] = n]

Lemma 3.2

Assume that (A],B]) is stabilizable and )\ € C+ . Let D] be an s x n]

matrix of rank s and j the smallest integer such that

= 1)) iy 7! -
(A =0 1) (A] Al) B] (A] )\I)B] B1

rank E] 0 0 o|™™ T
then
t -1
(AT AT L (A, B,
rankl 3 0 0 of =M ts

] .
for all t>j .

The proofs of these lemmas are straightforward and are left to the reader.

Lemma 3.3

Given (A,B,C) where A is an nxn matrix




(i) (A,B) is stabilizable if and only if rank [(A-A1) B] =n for

all y ech .

(ii) (A,C) is detectable if and only if rank lEA-é'ﬂ =n for all
+
A €C

The proof of (i) is straightforward and that of (ii) follows by duality.

THE EXTENSION ALGORITHM

Step 1

This step examines the first rank condition of (2.8) for each A € o(AZ)
and the plant is extended as required. The procedure begins by looking at

the first rank condition and i.e., consider

] ?
(A;=x,1) B

| . 1 -

rank =n, +t

D] 0 ]

By Lemma 3.1, t > 0 and if t = 0 no extensjon is required. |If an extension
is not necessary, the algorithm next consider§ XZ and the first rank condj-
tion. Suppose Xi is the first element of c(Az) requiring extension in

this step. Then

(A A 1) -
rank - t>0 (3.3)
and by Lemma 3.1 there are t outputs represented by D = [D] Dz] such
that
(AI-KEI) B, _
= = (3.4)
rank D 0 n, + t .

1
Note that by Lemma 3.2 all ki = ki rank conditions fail for these t out-

puts, i.e.,
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At aan®s s _
K 1 7 17 1 1 —h 41
ran D, 0 ... 0 I

- . e
for 1 <4 <k, . The system is extended by tki dimensions to give n, =
. = =7

n] + ?k_ and the extended maps have the representations
i

_ - - s
A 0 0. 0 A, |
0 A 0 0
SR
0 | 0
D D, 0
| Mt | 72 | =" -
e e
= = 3.5
D] [D] 0......0] D, [DZ] _ (3.5)
C, 0......0 c,
0 ! 0
e . e .
c, = . c, =
0 { 0
L. -1 . ]

The detectability of the extended system and the stabilizability of the extended
plant follow from Lemma 3.3. Thus the assumptions (1.4) - (1.6) remain valid

for the extended system.

From (3.3) - (3.5) it is clear that this extension corrects the rank con-

dition of concern, i.e., now

(AJ-1. 1) 85 (AT 1) B 2%
i 1 | R ij e
rank e = rank e ‘ e | n]

D 0 D 0 d,.

] 1 ij

for each j € qi . Simple matrix manipulations also show that the outputs

involved in the extension of (3.5), i.e., those represented by D » Now satisfy.
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all rank conditions of (2.8) with respect to Xi . Thus these outputs need

not be checked for Xi in any of the subsequent steps of the algorithm.

The maps A], A3, B], etc. are now redefined as A] = AT , A

i

e
3 A3 ’

B] = BT , etc. and ", is redefined as ni = nT .. Since RPIS remains solvable

and the assumptions (1.4) - (1.6) are still valid, the situation is equivalent -
to the one existing prior to extension except that an additional rank condi-

tion is now satisfied. Next the first rank condition is examined for Ki+i

and if extension is necessary, it is accomplished as in (3.5) using Xi+l in=-

stead of Xi and the appropriate outputs. This systematic procedure is con-

tinued through xr and clearly the first rank condition is now equal to nI

for all xi € O(AZ) where n. may have been redefined several times. This

1

completes step 1.

Step 2

This step examines the second rank condition of (2.8) for each A, € o(AZ)
i

beginning with X] . Suppose that ki for some i € r is the first element
of G(AZ) requiring extension, then

2
(A]-Xil) (A]-xil)B] B]

rank 01 0 o | =M + t (356)
and there are t outputs represented by D = [5] ﬁz] such that
, ,
(A]-Kil) (A]‘XiI)B] B]
rank ﬁ] 0 o | =™ + t (3.7)
(A]—xil) B,
From step 1 rank 5 o | =M and since (A],B]) is stabilizable,

1

there exists a { x n matrix G such that

G(A -\ 1) = ﬁ] GB, =0 (3.8)
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Furthermore, G has the property that

(A,=-x.1) B
1 7

= 3.9
rank 6 0 n, + & (3.9)

as can be seen from noting that

2

(A -k.l)2 (A,=x.1)B B (A=) 1) (A -r.1)B
17 LI ] ] 4 R 17

n. + = rank A = rank :

1 D] 0 0 : G(A]-kil) 0

1

(A]-xil) B] (Al_)‘il) B] 0

= rankl g 0 0 0
and recalling that the rank of the product of two mairices can be no greater
- than that of either of its factors.
Lemma 3.2 implies that the remaining ki-] rank conditions fail for the

t outputs represented by D . Thus, an extension of dimension E(ki-l) is

required and the system is extended to give n? =n, + f(ki-l) and

e s o . [—- —— r— ——
A] 0 0...0 A3 B]
0 b 0 : 0
Ale = : * . ‘ - A: = L] BT = .
0 . I . .
¢ Al 0 | 0
e _ e _ :
D] [D] 0 . . . 0] 02 = [02] (3.10)
¢ 0. .. ..
1 0 c2
. 0 I . 0
c] = . ¢, =1.
Lo Ll 0 _

The detectability of the extended sfstem follows directly from Lemma 3.3, and

equation (3.9) and Lemma 3.3 combine to yield b]ant stabilizability. Thus the
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assumptions of (1.4) - (1.6) remain valid.

To see that the extension corrected the rank condition of concern, observe

that
) ;
a0 s st
rank DT 0 0 0 =
N 2 L 7
(A]-)\il) 0...0 (A] Ail)B]‘ B] aij
0 l 0 0 0
0 I L]
rank
G 0. . 0 . .
6] 0 . 0 0 0 0
Dl 0 . 0 0 0 0
' ' e 2 e e e e
= rank [(A]-kil) (A]-xil)sl B] aij]
and since (AT,BT) is stabilizable, Lemma 3.1 implies
2
@S- D% (A% 1)8°  8° (RS- D" (AS-n.1)B® 8% A%
1 7 T % 1 1 T 7 | ] 1 ij
rank e = rank e
D] 0 0 ‘ D] 0 0 0
e
=n

1

for each j € qi . Similar matrix manipulations also show that the outputs
involved in the extension of (3.10), i.e., those represented by 0 , now‘satisfy §
all rank conditions of (2.8) with respect to ki . Thus these outputs need

not be checked for Xi in any of the subsequent steps of the algorithm.

The maps A], A3, Bl’ etc. are now redefined as A, = A

e e e
] 1’

Ay = Ay By s B,
etc. and n] is redefined as n] = n? . Since RPIS remains solvable and the

assumptions of (1.4) = (1.6) are still valid, the situation is equivalent to
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the one existing prior to extension except that an additional rank condition

is satisfied. Next,the second rank condition is examined for Xi+l and if

extension is necessary it is accomplished using the technique of (3.7) - (3.10).
This procedure is continued in the same systematic manner as in step | and it
is clear that at the end of step 2 the second rank condition of (2.8) is equal

to n for all A; € G(Az) where n may have been redefined several times.

1 1

Step 3

This step examines the third rank condition of (2.8) in the same manner
as the two previous steps. The oniy difference between the technique of step
2 and that of step 3 is the following: Suppose the t" outpufs represented

by D' = [DT D;] are such that

(A1) (A -nD%B. (A-r.D)B. B
rank 17 | A 1 | 1 -
D 0 0 0

L 1 -

A0 (0%, (A-r B, B
1 7 | ] | 1
rank =n. + t"

L D! 0 0 | 0_|

Then the extension is of dimension t“(ki-Z) and the: t'" x n, matrix G

is determined by

2
(A=), 1) (A, -\.1)B B
1 7 1 i 1 1
rank =n

0"
D] 0 0

2
1" - = ) - = =
G (A] kil) Df G“(A1 kil)Bl G'B] 0 (3.11)

The algorithm continues through as many steps as necessary, the maximum

being max ki and upon completion, all rank conditions of (2.8) are equal
i€r
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to ", (where the system maps and n, have been redefined several times).

This procedure is a constructive proof of the -following.

Theorem 3.1

Assume that (1.4) - (1.6) and (2.7) are true and RSFP is not solvable.

ERSFP is_solvable if and only if RPIS is solvable.

The Extension Algorithm does not differentiate between real and complex
roots of the minimal polynomial of A2 . However, any extension that is
actually realized must use only real elements. This difficulty is resolved
by application of a simple coordinate transformation to the extension developed
by the Extension Algorithm. This follows because the roots of the minimal poly-
nomial of A2 occur in complex conjuéate pairs and a simple calculation shows
that if a rank condition fails for some group of outputs and Xi then it also
fails for the same group ofvoutputs and K? . Now suppose\that some rank con-
dition failed for a group of outputs represented by E, Ki’ and A# . Then

the combined extension is

| 0
: A% wk
L . L

where w = wk = Dx if step | was used or w = [6 0 ...0]x and the matrix

G was determined by an equation 1ike (3.8) or (3.11) if step 1 was not used.
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‘The state variables of the extension can be redefined using fv = ¢ where

the transformation matrix T s given by

i

i

i

1
.

d

- L
i 3
b=Jl Bl

1] —
b

where j = JCT . Then the extension is represented by

where Xi

utilizing

ol -B1 ) 1 0, T [0
i I *
i I
Bl el o 1]
vV = . v +
. A 0" .
.. l L]
W01 0
(ol =Bl 2w]
{
| B ol _?WZ

@+ jB,ws= w] + jw2 , and the ektension is expressed in a form

only real numbers.

It appears that certain measurability assumptions are required to realize

the extensions developed by the Extension Algorithm. However, the detecta-

bility of the system always permits the extensions to be realized using mea-

surable outputs. For example, suppose that the matrix G defined by (3.8)

yields some variables that are not measurable. Since (A,C) is detectable,

Lemma 3.3 gives

(A]-k.l) a,. ... a,
i

rank H AT " + q,
i




where the ¢,

are defined as in (2.7), i.e., the matrix has full column
rank and so

Then equation (3.12) implies that there exist matrices

!

HI
that

H](A]-Xil) + H]C] =G

=0 ; —_
H]aij +H1Cij j €aq,
Continuing in this manner it is possible to define matrices HL and E;
having the properties
g A 1)+ H Gy =y
ey TS = 0 J &g
for 4 € k,-2

; . Observe that the H

1 determined in this manner can be used
to define measurable variables

”& = HLCX 4 € ki-l
and the extension of (3.10) is realized as
- 1L 7 LT
MEo "k, -1 Hki-IBl
v = - : LY + . + u
N M s TR I L ML

Note that only measurable variables are used to couple this form of the exten-

sion to the system and the extended system is




_
A

M -1
]
HG

[D]

_

¢

0

0

-

a,.
1]
H c
e ki-l ij
a,, = .
ij .
chij
. -
e
EN
1)
0
e .
c.. =
]
0

18

The system of (3,13) can be transformed into a similar system using the trans~

formation T

N

-1 e
11

0

1

where T

]

. 0]

. . €
is an ny xn

1

matrix given by

07 a, .
bl
0
!\e =
ij
|
KilJ L 0 _
e

(3.14)
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which is immediately recognized as the extension of equation (3.10). Since
rank conditions, stabilizability, and detectability are invariant under simi-
larity transformations, the extension of (3.14) obviously has the desired
properties. Observe that this development used the vériables defined by the
matrix G of (3.8) only for illustration. The same procedure applies to the

variables defined by D of (3.4), G of (3.11), etc.

4. PLANT PERTURBATIONS

The coordinate system introduced in §2 provides a convenient framework
in which to introduce perturbations in the sy;tem maps A and B . It is
apparent that plant perturbations in A are in effect only variations in
A] and the columns of A3 that are not identically zero and perturbations

in the map B only result in changes in B] . Define

Aé = [a]] 8y e arqr] 4.1
thén perturbations in (A,B) are perturbations in (A],Aé,B]) and we write these
as

K] = A+ 5A]/|\A1|

Ay = AL + SAL/|IAY (4.2)

5, =8, + 6 /[8]

Using these ideas, arbitrary perturbations in A and B are defined by

Definition 4.1. RSFP is solvable for arbitrary perturbations in A and B

if there exists a 6,> 0 such that RSFP is solvable for (A,8,C,D) with

- ~ l
0<8< 60 and arbitrary A], AB’ ﬁl
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It is easily shown that the assumptions (1.4) - (1.6) remain valid under
arbitrary perturbations in (A,B) and a simple -applica tion of Corollary 2,1
proves that RSFP is never solvable for arbitrary perturbations in (A,B). This

result is presented as

Theorem 4.1

Assume (1.4) - (1.6) and (2.7) are true and RSFP is solvable for (A,B,C,D).

RSFP is _never solvable for arbitrary perturbations in (A,B).

Examples can be constructed for which certain types of perturbations are

admissible. That is, for a particular (ﬂ],ﬂé,ﬁl) there exists a 60 > 0 such

that RSFP is solvable for (A,B,C,D) with 0O <8< 60 . It will often be the

A!, or B

case that certain elements of A], 3

, are known and not susceptible

to error; for example, definitional relations 1ike él = §2 fall into this

category as do equations expressing well known physical laws. Thus, it is

realistic and useful to characterize admissible perturbations which are de-

fined by

Definition 4.2, Given (A,B,C,D) and (A],Aé,ﬁl), a perturbation is admissible
if there exists a 8,> 0 such that RSFP is solvable for (&,5,C,D) for
0<s86<s .
- o
From Corollary 2.1 it is clear that constraints on (ﬂ],ﬂé,ﬁl) must be
determined so that there exists a 60 > 0 for which

(B =21 B, (B -x.1) B &,
rank ‘ = rank b Yl n
D 0 D, . 0 d,, ]

1 , ] o]
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~ 2 ~ ~ Fad
(A]'Xil) (A]‘XII)B] B]
rank D] ‘ 0 0 =
~ 2 ~ ~ o~ ~
(A-x. 1) (A =\.1)B B a,.
K 1 7 T 7 1 ] [ .
ran 0, 0 0 o0 ]
4.3)
_ kl ki.-l »
A1) &Y B .8
K 1 71 | 1 1 -
ran D, 0 ... 0
_ K, . ki.-
A0S &' B L..B 3
1 7 i 1 1 ijl
rank . = n]
L- D] O . 00 O 0

for 0<6< 8, and each | €r, j € q; -
A straightforward but tedious development provides a test by which the admis-

sibility of a given (Al’Aé’él) can be determined. This test is given in the

following theorem:

Theorem 4.2

Assume (1.4)-(1.6) and (2.7) are true, RSFP is solvable for (A,B,C,D)

and F = [F] F2] is_a solution. (ﬂl,ﬁé,ﬁl) is admissible if and only

if for each i € r and j € ai
o, [vi wH =0 L=1,2 tn (4 .4)
] L & ’ ’..', ] L]

t t -t t t .
[vo wo] = Axi[Bl aU] [vL wL] =0 if 4<0
[Vt Wt] [Vt Wt] A t 6] i:‘ii

IS ER PORA S TACLTET TR

i
t

t t t t

V, W] =
v wil= = sV pes Wyl 1>2
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Ak. = (A]+B]F]-xil) and the Lts are defined by
i . t )
R+BF - D" = (A48 F -\ DS - T 6% ) :
(Aj+B,F =), RSS! o tts

Theorem 4.2 cfearly reveals the technique to be followed when certain
parameters of (A,B) are susceptible to variations. RSFP is solved and an F
is obtained. Then the perturbation of concern (A],Aé,ﬁl) is tested via (4.4)

to see whether or not it is admissible.

5. CONCLUS I ON

In this paper we have formulated and solved a general linear servo-
mechanism problem using the approach developed in [1] and [6]. We have shown
conditions under which it is possible to design a robust control system so
that tracking and internal stability are maintained in the case of perturba-
tions in the controller parameters. We have shown that robuét solutions do
not exist for arbitrary perturbations‘in plant parameters and have defined a
class of admissible plant perturbations for which our problem is solvable.

In general, when RSFP is not solvable without extension, the édditiona] dynamics -
introduced by the extension must duplicate exactly a partial (in general) de-
scription of the class of exogenous signals. This situation has been referred
to in [4] as the "internal mode] principle' and isvof fundamental importance

in the theory of linear servomechanisms."
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APPENDIX
Two Lemmas are necessary for the proof of Theorem 2.1,
Lemma 2.1
| Given A:Z =%, B:'Y =X and F:X =%, such that ‘0(A+BF) cc . There

exists eo > 0 such that o(A+BF) c ¢~ for all F and

0<e<e .
= o
The proof follows by direct application of Theorem 1.10 in [7] and will

not be reproduced here,

Lemma 2.2

Assume (1.4) - (1.6) are true, RPIS is solvable and F:X =% is a solu-

tion to RPIS. Then
®c (A+BF-)\i)J Ker D

if and only if

oy
(B] c (A]+B]F] )\i) Ker D]

B D are defined in

[

where ki € o(Az) and | s a positive inteqger. A],

(1.3) and F, 1s a partition of F = [F] F2] .

In order to present the basic ideas in a simple manner, the following
proofs are presented under the assumption that the minimal polynomial of A2

has only real roots. These proofs are easily modified for complex roots using

the concept of complexification as discussed, e.g., by Halmos [5].

Proof of Lemma 2.2

(suff) Assume ®, CI(A]+B]F]-}\i)J Ker D] . Clearly Ker D‘ C Ker D and using

(1.2)
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® =@ C(A+B F —xi)J Ker D. = (A+BF-)\i)J Ker D

F c (A+B|=-xi)J Ker D
]

] 1

(nec) Since F is a solution to RPIS, F stabilizes the plant. Thus,

2 (A+BF) N %, =0 and d(X (AtBF)) = d(%,) . Let £ =Ker D CZ,

£ ﬂZ+(A+BF) =0 and £ ®Z+(A+BF) C Ker D . By assumption D] is epic, thus

D is epic and d(®) = d(ﬁl) . Then d(£) = d(Z]) -'d(ﬂl) = d(Z]) - d(®)

, then

‘and  d(& ® XN (A+BF)) = d(%)) = d(®) + d(X,) = d(X) - d(8) = d(Ker D). So

£ ® ZT(AHBF) = Ker D .
The subspace Z%(A+BF) is (A+BF)-invariant. Thus for any real Xi and
integer j , (A+BF-)\i)JZ+(A+BF) CZ+(A+BF) . Now assume that ® cC (A+BF-ki)JKer D.

Since CB=(B] CZ] ,

03] c [(A+BF-xi)j Ker D] ‘n Z] = [(A+BF-xi)j£ + (A+BF-xi)jx+(A+BF)] n ZI
- (A+BF-xi)j£ + [(A+BF-xi)jx+(A+BF)] nzx,
< (A8 F o) Ker D) + X (akr) nz,
= (AI+B]F]—>\i)j Ker D,
Q.E.D.
The proof of Theorem Z.i utilizes the structure inherent in the Jordan

decomposition of a space relative to a given map. In particular, the Jordan

decomposition technique can be used to decompose Zé relative to A2 into

a direct sum of cyclic subspaces. As discussed in 82, let G(Az) = {X], ..,xr]

and define

qi s.d(Ker(Az-Ai)) : (A.D)
Then g, is the number of cyclic subspaces of Zé related to Xi in this
‘ q. .
decomposition. These subspaces are written as zéi,...,zzf and their dimen-
. i
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sions are
k.. = d() ) (A.2)
ij 2]
Furthermore, the subspaces can be indexed so that k“‘ > ... kiq . Note
i
that this yields k,, = k, .

il i

Assume that RPIS is solvable and F i{s a solution. In the same manner

as above, X can be decomposed relative to (A+BF) . Since F solves RPIS,
- +

F stabilizes the plant and O’(A]+B]F]) cC . This implies O(A+8F) NC =

O(AZ) and d(Ker(A+BF-_)\i)) = qi for each )‘i € o(A+BF) N C+ . The cyclic

q, :
subspaces related to )‘i are written as Z:,...,Zi' and can be indexed so

that

- 4 .
kij = d&Z) ‘ (A.3)

1 .
Now consider Z} and xZi for some i € r where r 1is the number of

distinct eigenvalues of A Since Z;i CZZ is a cyclic subspace, there

9

is a vector ok EZZ that generates Z;i . That is Z], = {x }

i 2i 21""”‘2ki

where
k.-t

; -
(Az-xi) x2ki =X, t € ki ‘ (A.4)

Since d(Z:) = d(Zzli) and Z]I ﬂZ] = 0 there is a vector x]k EZ] such

that X, = x]k @ X0k is the generator for the cyclic subspace Z: . Hence
i - i .
1
Zi = {x],...,xk.] where
|
ki-t . —_ '
A+BF - =
(ABFA) ' ox = x tek, (A.5)

Observe that the xt can be written aS
X =X, & x_. (A.6)

where ¥p¢ and X1y are defined by (A.4) and (A.5). Finally note that
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X, being a generator implies (A+BF-)\i) X = 0 and using (A.5) it follows
i k. _ i
that (A+BF-).) 'xt =0 for t €k, . Thus
1 + ‘
Zi C X (A+BF) C Ker D . (A.7)

Proof of Theorem 2.}

(nec) Assume that RSFP has a solution. Thus there exists an F:X - Y and

an eo > 0 such that 71 € Ker F' and

%" (A+BF) € Ker D ,
+ (A.8)
2 (A+BF) N (A|®) = 0

for all admissible F € N(F,eo) . Since € =0 clearly results in an admis-

sible perturbation, (A.8) implies that RPIS is solvable and F is a solution.
Consider some F and € such that N cKer f and 0< € < eo ,» then

F=F+ e]?/n?\[ is admissible. Thus RPIS is solvable for F and X can be

decomposed relative to (A+BF) . The same development as before leads to a

. 1 v ~ ~
cyclic subspace Zi C %X that is generated by a vector xk = x]k & x2k and
i i i
spanned by basis vectors defined by '

k.=t :
~ [} ~ ~ -
+BF - = '
(A+BF xi) xki X t € ki €A.9)
In addition
Z: C Ker D (A.10)

and the it can be written as

X =X &x (A1)

For t =1, equations (A.9) and (A.10) give
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(A+B?-xi)£] =0
% =0

Dx]
And from (A.5) - (A.7)

(A+BF-Xi)x] =0

=0

Dx]
Subtracting the above equatiéns and defining 211 = ill-x]] and ¢! = e]/H?H
yields

- * 1 £ g A, =

A8 PRy + B (FiRp )+ Fpxy ) = 0

D]x” =0
Since 7 C:Z1 , F] = 0 yields an admissible perturbation for 0 < ¢, <e, .
Thus

-y )X, = =gl F
AUBIF AR = a8 Fyxy,
(A.12)

D]x” =0
Note that ‘x2] # 0 and admissibility restrictions affect only ?1 «» Thus
(A.12) must have a solution ill E.Zi for any Fz . This implies

(B] c (A]+B]F1-)\i) Ker D]
and by Lemma 2.2

® cC (A+BF-Ai) Ker D

Now consider t such that 1 <t < ki and assume that
® < (A8 F a7 Ker D €l (A.13)

~ From equations (A.9) - (A.11) and the relations of (1.2)

A8 FimA DR+ (A8 F)x, = %
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Similarly
ApFBy P n % + (AgkB R ) = X
D]x]t + DZXZt =0
and upon setting F] = 0 , defining ilt = ZI; - %, » and subtracting the
above equations
AR = =g} %
BAPFB P AR = o8 Py &y
' (A.14)
D%y = 0
The map (A]+B‘F]—ki) operates on the first equation of (A.14) to give
(A+B.F -A )% = ~¢; (A8 F -1.)B F.x . -e'B P x
1711 7 It 122t 171 2 2t~ 1 1t~2
Repeated application of (A]+B]F]-ki) leads to
(A +B F -x,fi = -¢!(A +B F_ -\ )t']B F x
| F N I R & | HS TR B B 1 272¢ »
. (A.15)
-e (A +BIF] -\, )B]F2x22
gl '
€181F %y
D.X. =0

it

But from (A.13), (A]+B]F]-xi)J6] C:(A1+B]F]-xi)t Ker D for j €t-1 . Thus

t-s
. . 1 - =
there exist xi € Ker D, such that e (A8 F, A) B]?ZXZt_S+]

- tl - = X i N !
(A]+B]F1 xi) x]S for s € t=1 . Let xﬁt x]t + x]] L R Xl em - then

(A.15) becomes

- t = mpl
(Ap#BIF =d ) >k = -g1B Fox,

D.xx =0
11t

implying

Foox)% Ker D t €k

[
B < (A48, F A, I i

]
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Thus by Lemma 2.2

(A+BF-)\i)J Ker D
]

® <
J

I DO x

for each A, € a(A,) .
(suff) Assume that RPIS is solvable, F is a solution and (2.4) is true. By
Lemma 2.1 an €, > 0 can be selected such that Z%(A+B?) il (A|®) = 0 for
all admissible F . Upon choosing any admissible F , the procedure of the
necessity of proof can essentially be applied in reverse to define the sub-
spaces 2% with the properties |

ZJI: c % (A+BF)

iﬂ C Ker D

for each i €r, j€ qi . Then

+ T
Z (AMBF) = @[ ® %] cKer D
i=1 j=1
Q.E.D.

Proof of Corollary 2.1

(nec) Assume that RSFP has a solution. The feedback map F:X - Y that solves

RSFP has a matrix representation F = [F] FZ] and F2 can be partitioned

consistent with the partitions of A3 and 02 as

F2 = [F” Flz Frqr]

where Fij is an m x kij matrix . Since F solves RPIS, the plant is sta-

bilized and O(AI+B]F]) cc . Thus there exist n] X kij matrices V.. such
1]

that
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-
Pll V12 v qu

+ | 0 ...0

% (A+BF) = . \
o [
- . 0
o.....0 1

Recall that (A+BF)Z+(A+BF) CZ+(A+BF) and Z+(A+BF) CKer D . So for each

i,j such that i €r and j € Ei , the following matrix equations are true:

(A+B.FIV.. + (A, +B.F. ) =V_J, .

| R I R ij 1 ij ij ij
(A.16)
DV.,,+0D,, =0
11 ij
where Jij is the ijth‘ Jordan Block of A2 . The matrices Vij and Fij
can be written as Vij = [v] Vo eee vk..] Fij = [fI f2 cee fk,.] . Then
ij t]

by (A.16) ' :

(A]+B]F])v] +_aiJ, + B]fl =V

D]v] + dij =0
which can be written as

(AH8,F -2 Dv, + B F, + 2, =0

Dlv] + dij =0
This implies

+ - - .
rank (A] B]F] Xi) . B] = rank (A]+BIF] Xi) B] aij (A.17)
D 0 n D 0 d.. '
] 1 ij
From equation (2.4)
(A 4+B.F_-).) (A+B.F -r».) B
V711 7 : | I B B 1
rank 5 = rank D 0 (A.18)

1 ]

and since (A]+B]F]-xi) is invertible, equations (A.17) and (A.18) combine
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to give
(Ay-rp) 8 ) k(Al-)‘i) By @y o
rank| 0 ran D o 4. ]
1 ] i
Looking at (A.16) again, it is clear that
(A]+B]F‘-ki)v2 + B]f2 = v] + Xivz
DIVZ = Q
Rewriting and multiplying by (A]+B]F]-xi) gives
2
(AI+B]F]-Ki) Vo + (A]+B]F]-)\i)81f2 = (A]+BIF]-xi)v]
= ey B
Thus
2 .
(A]+B]F]'Xi) v2 + (A]+B]F]-xi)Blf2 + B]f] +‘aij = 0
D]yz =0
which implies
(A4+B_F -x,)z (A.+B . F_=-)\.)B B
rank | S I B [ N A R 1
D] 0 0
— _
(A +B. F -x.)z (A +B _F_-)\.)B B a,. (A.19)
= K | RS B B | I B I R ] ij
ran D, 0 0 o
From equation (2.4) &]~+ (A]+B]F]-xi)@] C:(A]+B]F]-)\i)2 Ker D] or
(A +B.F -x.)z (A +B.F -x.)z (A +B.F =1.)B B
rank [ IR T I _ K | I T [ I S Rl 1
n b = ran b 0 0
1 ]
(A.20)
Equations (A.19) and (A.20) combine to give
A -20% (A -A)B, B A -x)% (A -x)B, B
1™ 17A8 By Y 178 By

rank D] 0 ol = rank D] 0 0
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Since k., k.], this procedure can clearly be continued to show the
ij =i ,

validity of (2.8)

(suff) Assume (2.8) is true. By (1.4) and (1.6), an F] can be selected

such that O(A]+B]F]) cC  and N < Ker F for any F2 .

- +
Pick any i,]j such that i €r and j €q. . Since Xi eC ,

(A]+B]F]-x,5t
(A]+B]F]-Xi) is invertible and rank D ' =n for any integer
1 .
t . Then from the first equation (2.8)
{(A 4B F_=\.) (A+B.F -A.) B ‘
rank o = rank L ! (A.21)
D D 0 '

1 1

which implies ® & (A/+B,F -1.) Ker D Equation (2.8) also implies

] 1

(A +B_F_=2.) (A+B.F -\.) B a..

Fank 1711 % - h = rank | I B B ] ij
D 1 n D 0 d..

: 1 1 ij

Hence, for any f] there exists a matrix v] such that

F.=A.)v. +a,. +B f =0
1 7701 ij

(A]+B 1

1

+ =0
D]v] dij

From the second equation of (2.8) it follows that

2 )
(A]+B]F]-x,) (A +B.F -A.)z (A +B . F. =-).)B B
rank i = rank 1711 7 7711 %77 1
o] D] 0 0
(A.22)

and thus

® c (A]+B F -xi)z Ker D

1 11 1’

Equation (2.8) é]so.implies
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Foox)? (A+B F -\)° (A+4B.F -\.)B. B. a
(A1+Bll>‘i___kllli TR By
rank D] =n, = ran D] 0 0 0
So for the f] selected above and any f2 there exists a matrix v, such
that
2
- - + =0
(A]+B]F] Xi) v2 + (A]+B]F] )\i)B]f2 + B]fl aij
D]v2=0

and multiplying by (A]+B]F]‘Xi)-] gives

(A]+B]F]-)\i)v2 + B]fz =V
D]v2 =0
Continuing in this manner clearly defines a matrix Vij = [v] Vo e vk ]
, ij
for any Fij = [f] f2 ees fk..] selected such that
1]
(A+B.FOV. +A . +BF, = V.. J..
1 1774) ij 1 ij ijij
(A.23)
bV .+0D,, =0
1 ij ij
and
t —
® c + - .
p © (A BF =A.) " Ker D, t € kij | (A.24)
Following this procedure for each i € : and | € Ei . Defines matrices
Voo, Vo, wu. ), , ce
1 12 qur for any F]] FIZ’ , Frqr selected such that if
Y <X is defined by
— 7
V]] V]2 e qu
r
l
v =4 | r
- b

and F, = [F” F]2 Frq ] , then (A.23) implies that (A+BF)V € ¥ and
r
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- +
¥ CKer D . Observe that since G(A]+B]F]) cC , d¥) = d(X (A+BF)) and

from (A.23) 7 C:Z%(A+BF) . Thus F = [F F.] solves RPIS. Finally,

1 2
Lemma 2.2 can be applied to (A.24) to give (2.4).

Q.E.D.

Proof of Theorem 4.1

Assume the contrary, i.e., there exists a 6°.> 0 such that RSFP is solv-
able for (A,8,C,D) for 0< 6< 8, with ﬂ],ﬂé,sl arbitrary. Since A] and

Q] are arbitrary, we can pick A] = 0, 31 = 0 and from Corollary 2.1

(A=) 8y &,
= .2
rank D] 0 dij n, (A.25)

for 0 <8< 60 . By assumption (A],B]) is stabilizable. Thus there is an

F, such that G(A]+B]F]) ©C  and from (A.25)

- (A]+B]F]-xi|) ,= o (A]+B]F]-xil) B] aij
D 1 D 0 d..
] 1 ij

for 0<8< 60 and éij arbitrary. Hence a vector ¥ exists such that
(A+B F -3V = 3, ,
| I I B

1)

D,V =d,,
1 ij

Since (A.25) is also valid for 31; = 0 , there exists a vector v -such that
(A+B F ~\.)v = a_ .
LI T B ij
D.v =d. .
1 ij

Define ¥ = V-v and subtract to obtain
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(A+B.F -0 = 8 aiJ./HAH
D]v =0

for 0< 6K 60 and aij arbitrary. There can be a solution ¥ for these
equations for each possible value of & and érbitrary aij only if

Z] c (A]+B F‘-)\i) Ker D

] ]

which is obviously impossible. Thus the original assumption was false.

Q.E.D.

Proof of Theorem 4.2

(nec) Given (A],B],C]) stabilizable and detectable, it is straightforward

to show that there exists a 60 > 0 such that (K],ﬁl,cl) is stabilizable and

detectable for 0 <6< 60 and arbitrary (A],ﬁl). Thus there exists an F]

such that

o(K]+§]F]) cc 0<6<6 (A.26)

Now assume that (4.3) is true. Then for any i €r, j€ Ei » the first equa-
tion of (4.3) yields

(R+8 F_ =x.1) . (R+B.F ~x.1) &
rank Pt = n_, = rank L ] (A.27)
D] 1 D] 0 :

for 0<6< 60 - This implies that there exists a matrix \Vl such that

(K]+B"]F]-xil)V‘ = El
g | (A.28)

By (A.26) (KI+§]F]-xil) is invertible for 0< 6 < 8, and so 7! can be

written as
=1 ] 1 21
V' = Vo + 6V] + § V2 + ...
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where the Vl are constant matrices. Equation (Ai28) becomes
A (=8l (v +ev +e2y s ...) =B, + 68 /|8
Xi 11 o) 1 2 | 1 1

1 1 21
D](Vo+6VI+6 v2+ ) =0

for 0<68< 60 where AX and L]] were defined in Theorem 4.2, Writing
i

the equations as polynomials in & gives us

V =A 'B D V]

o Xi 1 l o =0
viaL vl e alls /|B]] 'o viao (A.29)
1 110 ki 1 11
V] = L V] D V] =0 4L =2,3
e 11°4-1 12 e
From the second equation of (4.3)
(A+B . F -\.1) (A+B F =x.1) (A +B F_-).1)B B
rank 1711 7 = n. = rank 1T 711 % | I T I T 1
D 1 D 0 0
1 1
~ 2 ~
(A8 F - D7 B,
= rank b 0 (A.30)

1

using (A.27). Equation (A.30) implies the existence of a matrix Vz such
that

(KI+§ F

2~2 .
1 ]-Xil) V =8

which can be written as

2 2 2, ..2 272
Al (l-6L2]-6 L22)(V°+6V]+6

Vi) = B, + 66,/[8]]
i

D, (V<23+6V?+62V2+. ) =0

for 0<6< 60 . Writing this as polynomials in & clearly gives
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2 -2 2

= D V = O
v, A)\iB] | vy
2 2 -2 2

= D V = 0 A.3]
Vi =L Vo + A)\i ﬁl/llﬁll Vi ( )
2 2 2 - 2

= = = 2 s e
A ST R PA PV 0 t=125

This technique can be followed for the rest of equation (4.3) to establish the

. t
remainder of the equations of (4.4) that are associated with the VL .

Observe that the first equation of (4.3) also yields

(A +B. F -x.1) - (A+8.F
| St B RAY

-x.1) B a,

k = = rank LR
ran D n] n D 0 d_,
1 ] ij

and upon using (A.27), this becomes

(A48 F -r.1) (A +B.F.-x.1) 3&..

K 711 ™ - K 1711 7
ran D ran D d.
1 ] iJ

Then in a manner analogous to that used to derive (A.29), the equations for

w; of (4.4) can be obtained. Similarly from (4.3)

(KI+§]F]-)\EJ) (A +B.F ->\,|)2 3

rank = rank ot 'J

D] D] 0

2 .
and the equations for the WL can be derived. This process is continued in

the same manner to obtain the remainder of (4.3)

(suff) The sufficiency of (4.4) is established by essentially applying, in

reverse, the technique of the necessity proof. Assume (4.4) is true, then for

t =1 we have

(A.32)
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where
] -1 . T =1 4
= = B B
v, Axi By ‘ V=L vt A}\i vl
V] = L V] L>2
o 11°4-1 .=
Observe that V; may be written as
1 -1 1 :
V£ = (L]l) V] for 42> 1
and by (A.32)
4 1 :
D](L]]) V] =0 £ = 0,1,...,n1-1
Since L]] is an n] X n] matrix, the Cayley-Hamilton theorem can be used .
to extend the index of (A.32). The solvability of RSFP yields D]Vl =0 and
so
1
D]VL =0 £ =0,1,2,...

and the reversé of the arguments leading to (A.29) can be applied to obtain

(Kl+§lFl-xi|) B"] (Kl')‘i') é’l
n, = rank D] o | = rank D] 0 0<6<K 8
(A.33)
For t =2 we have from (4.3)
5 .
DV, =0 L=12,...,m (A.34)
where
2 =2 2 _ 2 -2 .
v = AXiB] Vi =LV Aki B]/HQH
2 2

<
]
-
<
+
P
<

L T21 -1 T R22 -2 1> 2

Observe that for 4 > 1
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7 -1 [ 2
Ve |t Rz i
1 2
v, | 0 v,
- and 2-1 2
Ly L Yy
[o, 0] =0 | ¢ =0,1,...,20 -1
| 0 v, :

b1 oo '
Since | 0 is a 2n] X 2n] matrix, the Cayley-Hamilton theorem can

be used to extend the index of (A.34) and, combining this with the solvability

of RSFP, we have

2
D]V& =0 t =0,1,2,...

Applying the reverse of the ideas leading to (A.31) gives us
~ 2 ~ 2
(A]+B]F]-x.l) (A]+BIF]-XiI) §]
n, = rank ' = rank 0<6< 6

1 D] D] 0

and combining this with (A.33)

(K +8.F -x.l)z (A +B F. -\ 1)F B
n,o=rank| | 117 L. 0<6<8
1 D] 0 0 = o
which implies
~ 2 ~ - ~
(A]-Xil) (A]-xil)B] B]
n, = rank D 0 0 0<6< 60

]

This same technique can be applied to the remainder of (4.4) which establishes

(4.3) and proves the theorem.

Q.E'DC




