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Abstract

Inexact Hierarchical Scale Separation for Linear Systems in Modal Discontinuous
Galerkin Discretizations

by

Christopher Thiele

This thesis proposes the inexact hierarchical scale separation (IHSS) method

for the solution of linear systems in modal discontinuous Galerkin (DG) dis-

cretizations. Like p-multigrid methods, IHSS alternates between discretiza-

tions of di�erent polynomial order to improve the computational performance

of solving linear systems. IHSS uses two discretizations, which are obtained

from a hierarchical splitting of the modal DG basis, resulting in two weakly

coupled problems for the low-order and high-order components of the solu-

tion (coarse and �ne scale). While a global linear system of reduced size is

solved for the coarse-scale problem, the �ne-scale components are updated

locally. IHSS extends the original hierarchical scale separation method, using

an iterative solver to approximate the coarse-scale problem and shifting more

computations to the highly parallel local �ne-scale updates.

Convergence and computational performance of IHSS are evaluated using

an example problem with applications in the oil and gas industry, the simu-

lation of the phase separation of binary �uid mixtures in three spatial dimen-

sions. The problem is modeled by the Cahn–Hilliard equation, a fourth-order,

nonlinear partial di�erential equation, which is discretized using the nonsym-

metric interior penalty DG method. Numerical experiments demonstrate the



applicability of IHSS to the linear systems arising in this problem. The results

show that the solution of these linear systems can be accelerated signi�cantly

when common iterative methods are used as coarse-scale solvers within IHSS

instead of being applied directly. All parameters of IHSS are discussed in de-

tail, and the method is easily calibrated for the test problems.
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Chapter 1

Introduction

This introductory chapter motivates the need for and construction of linear solvers that

are speci�cally designed for linear systems of equations arising in discontinuous Galerkin

approximations. It is divided into two sections. In the �rst section I discuss the gen-

eral framework of discontinuous Galerkin methods on a high level of abstraction. I then

employ this abstract procedure to derive a class of discontinuous Galerkin methods, the

interior penalty discontinuous Galerkin methods, using the well-known example of Pois-

son’s equation. This example will illustrate some of the main features of discontinuous

Galerkin methods and will help explain the interest in linear solvers that are suited to

these methods.

1.1 Discontinuous Galerkin methods

Discontinuous Galerkin methods are a family of methods for the discretization of partial

di�erential equations. They can be viewed as a special class of �nite element methods that

are based on a local formulation of the problem at hand and a coupling of these local prob-

lems using �uxes between neighboring elements. In this sense, discontinuous Galerkin

methods build upon the main ideas of �nite volume methods and extend them to the �-

1
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nite element framework. Before I turn to the construction of a discontinuous Galerkin

discretization of an example problem in section 1.2, I will describe the structure of these

methods on a more abstract level. I begin with a general discussion of nonconforming

Galerkin methods, since discontinuous Galerkin methods are typically nonconforming.

This presentation is inspired by Di Pietro and Ern [1, p. 7�.] and Rivière [2, p. 25�.].

The derivation starts with a Hilbert space V over the �eld of real numbers R. Fur-

thermore, let a : V ×V → R be a bilinear form, and let ` : V → R be a linear form on V .

Now consider the following variational problem: Find u ∈ V such that

∀v ∈ V : a(u,v) = `(v). (1.1)

I will refer to problem (1.1) as the weak problem, as it resembles the weak formulation of

a linear partial di�erential equation. The classical Galerkin approach is to approximate

the solution u ∈ V with an element of a �nite-dimensional subspace Vh ⊂ V , where the

subscript h indicates that the subspace hosts the solution to a discretized version of the

weak problem. However, it is also possible to choose a more general �nite-dimensional

space Wh 1 V for the approximation, which leads to so-called nonconforming Galerkin

methods. In this case, the task is to �nd uh ∈Wh such that

∀wh ∈Wh : ã(uh,wh) = ˜̀(wh), (1.2)

where ã and ˜̀ are (bi)linear forms on the spaceWh that are related to the (bi)linear forms

a and ` of the weak problem (1.1) in a way that I will soon de�ne more rigorously. From

now on, I will refer to problem (1.2) as the discrete problem.

Clearly, there must be a connection between the weak and the discrete problem in

order for the approximation uh to be meaningful. It is unreasonable to expect that u ∈

V ∩Wh, as this means that u itself is a member of the approximation space. Thus, we
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cannot simply insert the weak solution u into the bilinear form ã. Instead, suppose that

there exists another Hilbert spaceW that containsWh as a subspace, and that the (bi)linear

forms ã and ˜̀ can be extended to all of W . This extension allows us to consider the

variational problem of �nding ũ ∈W such that

∀w ∈W : ã(ũ,w) = ˜̀(w), (1.3)

to which I will refer as the broken weak problem, because W is usually a broken Sobolev

space with respect to some mesh of the domain on which the original problem (1.1) is

posed. That is, functions in W satisfy certain regularity requirements when restricted to

each element of the mesh. I will properly de�ne and discuss broken Sobolev spaces in

the next section. For now it su�ces to note that the spaces Wh and W both depend on

a particular mesh of the problem domain. This is an important observation, because it

means that the solution to the broken weak problem (1.3) depends on the mesh as well.

As any convergence analysis necessitates the use of multiple meshes, one must resort to

the mesh-independent space V to pose the problem whose solution is to be approximated.

The desired relations between the weak, the broken weak, and the discrete problem

can now be formulated: I will call the broken weak problem consistent if u ∈ V ∩W

solves (1.1) if and only if it also solves (1.3). Thus, consistency states that both problems

have the same solution, provided that the solution is contained in both spaces V and W .

This equivalence of the two problems warrants the search for an approximation in the

space Wh, even though it is not a subspace of V . However, it is important to realize that

unlike in conforming methods, essential properties of the bilinear form a, like bound-

edness and coercivity, do not automatically apply to the bilinear form ã in the discrete

problem, because it is de�ned on a di�erent space. One must therefore verify the well-

posedness of the weak and the broken weak problem separately. In fact, it is a nontrivial

task to construct a bilinear form ã in a way that ensures coercivity and boundedness while
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maintaining consistency with the weak problem. This gives rise to a variety of discontin-

uous Galerkin methods, as we will see in the next section.

1.2 The interior penalty discontinuous Galerkin

method: an example

In this section I derive a particular class of discontinuous Galerkin methods, the interior

penalty discontinuous Galerkin (IPG) methods, using Poisson’s equation as an example.

This derivation will illustrate the main features of discontinuous Galerkin methods, and

it will allow me to introduce some notation that is used in subsequent chapters. The con-

struction of the method follows Rivière [2, sec. 2.2], and I adhere to the abstract approach

from section 1.1 as much as possible.

Let Ω ⊂ R
d be an open polytope, where d ∈ {2,3}. Consider Poisson’s problem with

homogeneous Dirichlet boundary conditions,

−∆u = f in Ω, (1.4)

u = 0 on ∂Ω, (1.5)

where I assume su�cient regularity of all involved functions for now. If we multiply with

a test function v that satis�es the boundary conditions and integrate by parts, we obtain

∫
Ω

∇u ·∇v︸       ︷︷       ︸
=:a(u,v)

−
∫
∂Ω
∇u ·η∂Ωv︸           ︷︷           ︸

=0

=
∫
Ω

f v︸︷︷︸
=:`(v)

, (1.6)

where η∂Ω is the outward-pointing unit normal vector of ∂Ω. This is the well-known

variational formulation of (1.4)–(1.5). According to the approach from section 1.1 one

should now identify an appropriate Hilbert space V in which the weak problem is posed.
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A natural choice is the Sobolev space V = H1
0 (Ω), as it provides enough regularity for

equation (1.6) to be well-de�ned. Furthermore, the bilinear form

a(u,v) =
∫
Ω

∇u ·∇v

is a common inner product onH1
0 (Ω), and hence existence and uniqueness of the solution

u are an immediate consequence of the Riesz representation theorem.

In order to discretize the weak problem, let us introduce a conforming mesh Eh on Ω

whose elements have a maximum diameter of h. The mesh Eh will typically be a triangular

or quadrilateral mesh if d = 2, or a tetrahedral or hexahedral mesh if d = 3. Let Γh denote

the set of edges or faces of Eh, and let Γ̊h contain only the interior edges or faces.

Following the approach from section 1.1, one should now de�ne a Hilbert space W

based on Eh in which to pose the broken weak problem. Naturally, only piecewise reg-

ularity is enforced for the derivation of a discontinuous Galerkin method, so the broken

Sobolev space

W =H s(Eh) =
{
w ∈ L2(Ω) : w|E ∈H s(E) for all E ∈ Eh

}
is a good choice. Choosing s > 3/2 will provide su�cient regularity for the following

derivation, which requires directional derivatives and their traces on edges or faces of the

mesh Eh [2, theorem 2.5].

Now consider the restriction of problem (1.4) to an element E ∈ Eh. If we multiply

with a test function and use integration by parts, we obtain the local variational problem

∫
E
∇u ·∇w −

∫
∂E
∇u ·η∂Ew =

∫
E
f w,

but this time the boundary integral does not vanish. Summation over all elements E ∈ Eh
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yields

∑
E∈Eh

∫
E
∇u ·∇w −

∑
e∈Γ̊h

∫
e

(
∇u|E−(e) ·ηew|E−(e) −∇u|E+(e) ·ηew|E+(e)

)
−

∑
e∈Γh\Γ̊h

∫
e
∇u|e ·ηew|e =

∫
Ω

f w,
(1.7)

where E−(e) and E+(e) denote the two elements that share the edge or face e. The as-

signment is arbitrary, but it must be uniquely determined for each interior edge e ∈ Γ̊h.

For exterior edges e ∈ Γh\Γ̊h, I will also use E−(e) to refer to the adjacent element. By

ηe I denote the unit normal vector to e that points from E−(e) to E+(e) if e ∈ Γ̊h, and the

outward-pointing unit normal vector if e ∈ Γh\Γ̊h.

At this point, we can simplify equation (1.7) by introducing some additional notation.

Let us de�ne the jump of w ∈H s(Eh) across an edge or face e ∈ Γ̊h as the di�erence

~w� := w|E−(e) −w|E+(e),

and the average of w on e as

⦃w⦄ :=
1
2
w|E−(e) +

1
2
w|E+(e).

Furthermore, let us extend these de�nitions to exterior edges or faces e ∈ Γh\Γ̊h by letting

~w� = ⦃w⦄ = w|E−(e).

Notice that both ~w� and ⦃w⦄ are not just scalar quantities, but functions de�ned on e.

Observe that �
∇u ·ηew

�
=

�
∇u ·ηe

�
⦃w⦄+

⦃

∇u ·ηe
⦄

~w�
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holds for all interior edges or faces e ∈ Γ̊h, while we have

�
∇u ·ηew

�
=
⦃

∇u ·ηe
⦄

~w�

for all exterior edges or faces e ∈ Γh\Γ̊h. Both identities are easily veri�ed by direct com-

putation.

Using the new notation and identities, (1.7) can be written as

∑
E∈Eh

∫
E
∇u ·∇w −

∑
e∈Γ̊h

∫
e

�
∇u ·ηew

�
−

∑
e∈Γh\Γ̊h

∫
e

�
∇u ·ηew

�
=

∑
E∈Eh

∫
E
∇u ·∇w −

∑
e∈Γ̊h

∫
e

(�
∇u ·ηe

�
⦃w⦄+

⦃

∇u ·ηe
⦄

~w�
)
−

∑
e∈Γh\Γ̊h

∫
e

⦃

∇u ·ηe
⦄

~w�

=
∫
Ω

f w.

Now observe that �
∇u ·ηe

�
= 0,

provided that u is su�ciently smooth (see [1, lemma 1.23]). Since u is the solution of

the partial di�erential equation (1.4), it is reasonable to assume that u ∈ H2
0 (Ω). We can

therefore drop the term
�
∇u ·ηe

�
in the above equation to obtain

∑
E∈Eh

∫
E
∇u ·∇w −

∑
e∈Γh

∫
e

⦃

∇u ·ηe
⦄

~w� =
∫
Ω

f w. (1.8)

The �nal step in our derivation is to choose (bi)linear forms ã and ˜̀ on W = H s(Eh)

for the broken weak problem. The choice of ˜̀(w) =
∫
Ω
f w is natural, but the left-hand

side of (1.8) is not a coercive bilinear form, so it must be further modi�ed to ensure that ã

has all desired properties while maintaining consistency.
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Hence, let us de�ne the bilinear form for the broken weak problem as

ã(w1,w2) =
∑
E∈Eh

∫
E
∇w1 ·∇w2 −

∑
e∈Γh

∫
e

⦃

∇w1 ·ηe
⦄

~w2�

+ ε
∑
e∈Γh

∫
e

⦃

∇w2 ·ηe
⦄

~w1�︸                         ︷︷                         ︸
=:S(w1,w2)

+
∑
e∈Γh

σ

|e|β

∫
e
~w1�~w2�︸                    ︷︷                    ︸

=:P (w1,w2)

. (1.9)

The two additional terms S(w1,w2) and P (w1,w2) each have an intuitive purpose: The

term P (w1,w2) penalizes jumps between elements, which helps to make ã coercive. I will

call σ > 0 the penalty parameter, and β > 0 is a constant that depends on the spatial

dimension d of Ω [2]. On the other hand, S(w1,w2) makes the bilinear form symmetric if

ε = −1, and the resulting method is called the symmetric interior penalty discontinuous

Galerkin (SIPG) method. However, other choices of ε are also possible. For ε = 1 we obtain

the nonsymmetric interior penalty discontinuous Galerkin (NIPG) method, whereas ε = 0

results in the incomplete interior penalty discontinuous Galerkin (IIPG) method. The

properties and analysis of the di�erent methods are discussed in greater detail in the book

by Rivière [2]. Notice that both S(w1,w2) and P (w1,w2) vanish if w1 = u ∈ H1
0 (Ω) ∩

H s(Eh), so they do not a�ect consistency.

With the broken weak variational problem in place, it remains to identify a �nite-

dimensional subspace Wh ⊂ H s(Eh) for the approximation of its solution. Since s > 3/2,

elements of H s(Eh) can be represented by piecewise continuous functions [2, theorem

2.4]. Thus, the broken polynomial space

Pp(Eh) =
{
w ∈ L2(Ω) : w|E ∈ Pp(E) for all E ∈ Eh

}
is a natural choice, but other choices are possible and may be preferred in some in-

stances [2, p. 35]. Here, Pp(E) denotes the space of polynomials of degree less than or
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equal to p on the element E. With this choice of Wh, the discrete problem is to �nd

uh ∈ Pp(Eh) such that

ã(uh,wh) = ˜̀(wh) (1.10)

for all wh ∈ Pp(Eh).

It is interesting to note that while the bilinear form ãwas constructed to accommodate

the choice of Wh = Pp(Eh), one could still choose a �nite-dimensional subspace Wh ⊂

H1
0 (Ω)∩H s(Eh) of continuous, piecewise polynomial functions instead. In this case, all

jump terms in (1.9) vanish, recovering a continuous Galerkin method.

I will conclude this section by transforming the discrete problem (1.10) into a system

of linear equations. Let M = dim(Pp(E)) and let us denote the number of elements in

the mesh Eh by N , i.e., Eh = {E0, . . . ,EN−1}. For each k = 0, . . . ,N − 1 there exist basis

functions ψk,0, . . . ,ψk,M−1 of Pp(Ek). If these are extended by zero to all of Ω, then the

collection
⋃N−1
k=0

{
ψk,0, . . . ,ψk,M−1

}
is a basis of Pp(Eh). Suppose that

uh =
N−1∑
k=0

M−1∑
j=0

uk,jψk,j (1.11)

is the representation of the discrete solution uh with respect to this basis. Using the �nite-

dimensional nature of the space Pp(Eh) and the bilinearity of ã, problem (1.10) can be

further simpli�ed. The task is then to �nd coe�cients uk,j such that

N−1∑
k′=0

M−1∑
j ′=0

ã(ψk′ ,j ′ ,ψk,j)uk′ ,j ′ = ˜̀(ψk,j) (1.12)
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for k = 0, . . . ,N − 1 and j = 0, . . . ,M − 1. For all k,k′ ∈ {0, . . . ,N − 1}, let

uk = (uk,0, . . . ,uk,M−1)T ∈RM , (1.13)

`k = ( ˜̀(ψk,0), . . . , ˜̀(ψk,M−1))T ∈RM , (1.14)

and Ak,k′ =


ã(ψk′ ,0,ψk,0) · · · ã(ψk′ ,M−1,ψk,0)

...
. . .

...

ã(ψk′ ,0,ψk,M−1) · · · ã(ψk′ ,M−1,ψk,M−1)

 ∈R
M×M . (1.15)

The linear system (1.12) can now be written as


A0,0 · · · A0,N−1
...

. . .
...

AN−1,0 · · · AN−1,N−1




u0
...

uN−1

 =


`0
...

`N−1

 . (1.16)

To solve this linear system e�ciently, we must understand some of its essential properties.

It is evident from equation (1.16) that the system matrix is composed ofN ×N blocks,

each of size M ×M . Recall that each basis function ψk,j is supported on just a single

element Ek ∈ Eh. Hence, ã(ψk′ ,j ′ ,ψk,j) can be nonzero only if the elements Ek′ and Ek

are either identical or adjacent, because each integrand in (1.9) is a product of gradients,

jumps, and averages, and at least one of the factors in each integrand is zero if the involved

functions are supported on elements that are not identical or adjacent. We conclude that

the system matrix in (1.16) is very sparse, provided that the number N of elements in the

mesh is su�ciently large.

Another important property of the linear system (1.16) is that the unknowns uk,j are

not shared between the elements of the mesh Eh. Instead, each element Ek ∈ Eh corre-

sponds to a block uk in the vector of unknowns, and all of these blocks are of equal sizeM .

This property will be one of the key ingredients for the construction of the hierarchical

scale separation (HSS) method in chapter 3.
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I conclude this introduction with an overview of the remaining chapters: In chapter 2,

I discuss the origins of HSS and review the related literature. The HSS algorithm is derived

in chapter 3. This chapter also motivates several modi�cations to the algorithm, result-

ing in the inexact hierarchical scale separation (IHSS) method, which is the focus of this

thesis. Chapter 3 also discusses the e�cient implementation of the IHSS algorithm. The

convergence and computational performance of the method are evaluated in chapter 4.

The chapter begins with the introduction of the test problem, the simulation of the phase

separation of a binary �uid mixture, which is governed by the Cahn–Hilliard equation.

Section 4.1 discusses the discretization of the test problem. In the remaining sections of

chapter 4, I evaluate the computational performance of the IHSS method when applied to

the test problem and how performance is a�ected by the method’s parameters. The �nal

chapter summarizes the main results and suggests ideas for future work.



Chapter 2

Literature review

The inexact hierarchical scale separation (IHSS) method, which is derived and analyzed in

later chapters of this thesis, was recently proposed by Araya-Polo, Alpak, Rivière, Frank,

and myself as a way to accelerate the solution of linear systems in modal discontinuous

Galerkin (DG) discretizations [3]. It is a modi�cation and extension of the original hi-

erachical scale separation (HSS) method, which was introduced by Kuzmin in 2014 [4].

Before discussing the origins of the HSS method itself, let us begin with an overview of it-

erative linear solvers in general and solvers for linear systems arising in the discretization

of partial di�erential equations in particular. I will start with a discussion of stationary

iterative methods and Krylov subspace methods in section 2.1. After that, I will review

the main ideas of multigrid, p-multigrid, and hierarchical scale separation methods in

sections 2.2 and 2.3. This overview is not intended to be a comprehensive review of the

vast body of literature on iterative solvers. Instead, I will highlight some of the important

contributions in this �eld that led to the development of HSS, IHSS, and related methods.

This context will also help to better understand the key ideas in the derivation of the IHSS

algorithm in chapter 3.

12
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2.1 Iterative linear solvers

Systems of linear equations are at the core of many problems in applied mathematics, and

e�cient linear solvers are highly relevant for a multitude of applications in science and

engineering [5, preface]. While the development of linear solvers and preconditioners

for speci�c applications is an active �eld of research, it is unique in the sense that the

problem of solving a system of linear equations seems almost trivial from a purely theo-

retical perspective. An explicit formula for the solution of linear systems was published by

Cramer in 1750 [6], and an algorithm for numerical calculations, Gaussian elimination, is

known to most students at the early undergraduate or even high school level. Hence, ad-

vances in the development of linear solvers are not primarily driven by a desire to expand

mathematical theory, but by the restrictions that available computing resources impose

on speed, numerical stability, and scalability of existing algorithms. These restrictions,

the speci�c properties of the linear systems at hand, and the required accuracy of the

numerical solution give rise to numerous linear solvers.

When the exact solution of a linear system is not needed within machine precision,

iterative linear solvers can be used to approximate the solution step by step until a pre-

scribed tolerance is met. Stationary iterative methods such as the Richardson, Jacobi,

Gauss-Seidel, and SOR method are among the early iterative linear solvers, but they re-

main relevant to this day, as we will see in the next section (see also [5, chapter 4]). These

methods split the matrix A of a linear system

Ax = b

into

A = B +C.
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The resulting linear system

Bx+Cx = b

then leads to the iteration

Bx(k+1) = b−Cx(k),

starting from an initial guess x(0). The splitting is chosen such that the resulting linear

systems with system matrix B are easier to solve than the original system with matrix A.

Natural choices for B are the diagonal part of A (Jacobi method) or one of its triangu-

lar components (Gauss-Seidel method). A more detailed overview of stationary iterative

methods can be found in chapter 4 of the book by Saad [5].

Another popular class of iterative linear solvers are Krylov subspace methods. If we

assume for simplicity that the initial guess is x(0) = 0, these methods approximate the

solution x in the subspaces

Kk(A,b) = span{b,Ab, . . . ,A(k−1)b}.

An intuition for the choice of these particular subspaces can be gained by considering the

minimal polynomial χ(t) = α0 +α1t+ . . .+αdtd of the matrix A, which is the polynomial

of least degree that satis�es χ(A) = 0. Provided that α0 , 0, the solution of the linear

system Ax = b can then be expressed as

A−1b = − 1
α0

(
α1b+ . . .+αdA

db
)
∈ Kd+1(A,b).

The way by which x is approximated in Kk(A,b) depends on the particular Krylov sub-

space method. The well-known conjugate gradient (CG) method for symmetric positive
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de�nite matrices A �nds the minimizer of the functional

f (s) =
1
2
sTAs − sT b

in Kk(A,b) to approximate the solution of the linear system, which satis�es

∇f (x) = Ax −b = 0

and is therefore the unique global minimizer of f [5, section 6.7].

The Generalized Minimum Residual (GMRES) method instead minimizes the residual

f (s) = ‖b−As‖2

in Kk(A,b) to approximate the solution of the linear system [5, section 6.5].

2.2 Multigrid and p-multigrid

While certain stationary iterative methods or Krylov subspace methods may perform bet-

ter than others for a given problem, the algorithms themselves are not designed for any

speci�c application. The main ideas of these methods were derived in the previous sec-

tion using only the tools of linear algebra, and these iterative solvers are guaranteed to

converge for any linear system whose coe�cient matrix satis�es certain algebraic proper-

ties like symmetry and positive de�niteness in case of the conjugate gradient method [5,

section 6.7]. In this sense, the methods discussed so far can be viewed as general-purpose

iterative solvers.

A di�erent strategy is to incorporate the speci�cs of the application into the design

of the linear solver. While the resulting algorithm is less general, this approach can sig-

ni�cantly accelerate the linear solves in the targeted application [5, preface]. A popular
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class of methods that follow this approach are multigrid methods. These methods solve

linear systems arising in the discretization of partial di�erential equations, using a hi-

erarchy of discretizations with decreasing spatial resolution, i.e., multiple computational

grids. A linear system is solved to high accuracy only for the coarsest grid. On all other

grids, the corresponding linear systems are approximated roughly (smoothing), often us-

ing a �xed number of iterations with a stationary iterative method (see previous section).

These approximations are used to construct the right-hand side of the linear systems for

coarser grids (restriction) until the coarsest grid is reached. After the linear system for

the coarsest grid has been solved, the coarse-scale information is propagated back to �ner

grids (prolongation or interpolation). The multigrid method then cycles between �ne and

coarse grids until the residual on the �nest scale is su�ciently small. The order in which

the grids are visited may vary. For an overview of di�erent cycling strategies, common

smoothers, restriction and interpolation techniques, as well as a general introduction to

multigrid methods, I refer the reader to the book by Wesseling [7].

A more detailed discussion of the convergence behavior and performance of multigrid

methods is beyond the scope of this overview. However, the central idea of multigrid is

to view the discretization of a partial di�erential equation as a hierarchy of linear systems

on di�erent scales and to solve or approximate the linear systems on each scale in the

most e�cient way using di�erent linear solvers. I will revisit this idea when deriving the

IHSS algorithm in chapter 3, but there is another method that is based on this approach

and that links multigrid with IHSS: the p-multigrid methods.

Instead of discretizing a partial di�erential equation with di�erent spatial resolutions,

p-multigrid methods are based on a hierarchy of discretizations with di�erent polynomial

order. The �ne and coarse grids in the original multigrid method correspond to approx-

imations of higher and lower order in p-multigrid. The method was �rst introduced by

Fidkowski et al. in 2005 [8], building on ideas published by Rønquist and Patera for spec-
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tral element methods in 1987 [9].

Finally, the IHSS method shares a central idea with the hierarchical basis multigrid

method, which was introduced by Bank et al. in 1988 [10]. Both methods use a hierar-

chy of bases for the di�erent scales of approximation, and the unknowns associated with

each level of the hierarchy are updated independently. However, unlike IHSS and the p-

multigrid method, hierachical basis multigrid does not use a hierarchy of basis functions

with di�erent polynomial degree. Instead, the hierarchy is constructed by selecting nodal

basis functions of the same degree from grids with di�erent re�nement levels.

2.3 Hierarchical scale separation

The HSS method was introduced by Kuzmin in 2014 as a technique to solve the linear sys-

tems in discontinuous Galerkin (DG) discretizations with hierarchical basis functions [4].

Although the algorithm proposed in this �rst publication already resembles what I will

present as the HSS method in chapter 3 (see algorithm 1), Kuzmin did not focus on the

computational performance of the method. Instead, HSS was presented as a way to extend

hierarchical slope limiting strategies to time-implicit discretizations. In fact, the original

HSS algorithm explicitly includes a slope limiting step [4, p. 1149].

The computational performance of the method was �rst analyzed in a subsequent

publication by Aizinger, Kuzmin, and Korous in 2015 [11]. Their paper compares HSS to

the p-multigrid method, both from an algorithmic perspective and in numerical experi-

ments. Like p-multigrid methods, HSS cycles between multiple scales that correspond to

polynomial approximations of di�erent order, and a linear system is solved for each scale.

However, the HSS method uses only two scales, coarse and �ne, which in turn are less

coupled than in the case of p-multigrid [11, p. 2]. The paper of Aizinger et al. also presents

HSS as a more general algorithm in a linear algebra framework. It no longer includes an

explicit slope limiting step, but the algorithm is still closely connected to the discretization
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of a partial di�erential equation, as it is presented as a (pseudo-)timestepping method [11,

algorithm 1]. The paper compares the computational performance of HSS to that of p-

multigrid using a convection-di�usion problem in 2D. In these experiments, the authors

demonstrate a performance improvement with HSS in most test cases, with reductions in

CPU time by 50% and more in many cases [11, table 1].

Motivated by the paper of Aizinger et al., I developed the IHSS method with Araya-

Polo, Alpak, Rivière, and Frank. Our �rst publication presented HSS as an algebraic ap-

proach to the solution of linear systems in modal discontinuous Galerkin discretizations

that does not include (pseudo-)timestepping or other speci�cs of the application [12]. The

�rst key idea of the IHSS method is to approximate the linear system on the coarse scale

using an iterative linear solver to save CPU time. The second modi�cation is to shift

more work to the highly parallel �ne-scale solver using a di�erent cycling between the

scales. While this initial version of the IHSS method showed promising computational

performance, it is di�cult to calibrate it in the sense that the convergence of the coarse-

scale and �ne-scale components is often unbalanced. We addressed this issue in a second

publication, in which we modi�ed the IHSS algorithm to automatically maintain this bal-

ance while preserving good computational performance [3]. I will use this modi�ed IHSS

algorithm for the numerical experiments in this thesis, after deriving it step by step in

chapter 3.

Another recent development was the application of the original HSS algorithm to hy-

bridized DG discretizations by Schütz and Aizinger in 2017 [13]. Using a convection-

di�usion problem in 2D, the authors verify the convergence of the method for approxi-

mation orders of up to p = 7. They also compare the convergence of HSS when applied

to hybridized and non-hybridized DG discretizations of the same problem, showing that

for many test problems fewer HSS iterations are required in the hybridized case [13, �g-

ure 10]. Jaust, Schütz, and Aizinger extended this work to the hybridized DG discretization
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of Burgers’ equation, i.e., to a nonlinear problem, again verifying convergence of the HSS

method [14].



Chapter 3

Inexact hierarchical scale separation

In this chapter, I �rst motivate and derive the original hierarchical scale separation (HSS)

scheme. After a discussion of its main properties and potential improvements, I modify

the algorithm to obtain the inexact hierarchical scale separation (IHSS) scheme, which I

�rst published with Araya-Polo, Alpak, Rivière, and Frank in 2017 [3, 12]. For a discussion

of the history and development of these methods, please refer to the literature review in

chapter 2. In the �nal section of this chapter, I discuss the e�cient parallel implementation

of the IHSS method.

3.1 The hierarchical scale separation scheme

The starting point for the derivation of the HSS method is the linear system (1.16), which

results from the discontinuous Galerkin discretization outlined in section 1.2. Suppose

that the basis {ψk,0, . . . ,ψk,M−1} on each element Ek ∈ Eh admits a splitting

{
ψk,0, . . . ,ψk,M−1

}
=

{
ψk,0, . . . ,ψk,M−1

}
∪

{
ψ̂k,0, . . . , ψ̂k,M̂−1

}
, M =M + M̂,

20
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such that
{
ψk,0, . . . ,ψk,M−1

}
forms a basis of Pq(Ek) for some q < p. That is, the set⋃N−1

k=0

{
ψk,0, . . . ,ψk,M−1

}
forms a basis of the broken polynomial space Pq(Eh) with a poly-

nomial order less than that of Pp(Eh), the space which contains the discrete solution uh.

I will therefore call this basis hierarchical, as it gives rise to a hierarchy of broken poly-

nomial spaces Pq(Eh) ⊂ Pp(Eh). As before, the functions ψk,j ,ψk,j , and ψ̂k,j should be

interpreted either as functions on the element Ek or as their extensions by zero to all of

Ω, depending on the context.

Henceforth, I will refer to Pq(Eh) as the coarse scale, whereas Pp(Eh)\Pq(Eh) will be

referred to as the �ne scale. Any functions, quantities, etc., related to the coarse scale will

be marked with a line, e.g., ψk,j , and functions, quantities, etc., related to the �ne scale

will be marked with a hat, e.g., ψ̂k,j .

With this notation, the discrete solution (1.11) can be written as

uh =
N−1∑
k=0

M−1∑
j=0

uk,jψk,j +
M̂−1∑
j=0

ûk,jψ̂k,j

 ,
and the linear system (1.16) can be rearranged into

A C

Ĉ Â

︸  ︷︷  ︸
=:Ah

uû
︸︷︷︸

=:uh

=

`ˆ̀
︸︷︷︸

=:`h

(3.1)

where I simply accumulated all coarse-scale quantities in the upper left-hand block A.
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More speci�cally, let us de�ne

u = (u0,0, . . . ,u0,M−1,u1,0, . . . ,u1,M−1 . . . ,uN−1,0, . . . ,uN−1,M−1)T ∈RNM ,

û = (û0,0, . . . , û0,M̂−1, û1,0, . . . , û1,M̂−1 . . . , ûN−1,0, . . . , ûN−1,M̂−1)T ∈RNM̂ ,

` = (`0,0, . . . , `0,M−1, `1,0, . . . , `1,M−1 . . . , `N−1,0, . . . , `N−1,M−1)T ∈RNM ,

ˆ̀= (̂`0,0, . . . ,ˆ̀0,M̂−1,
ˆ̀

1,0, . . . ,ˆ̀1,M̂−1 . . . ,
ˆ̀
N−1,0, . . . ,ˆ̀N−1,M̂−1)T ∈RNM̂ .

The matrix Ah in (3.1) is then obtained by permuting the rows and columns of the system

matrix in (1.16) accordingly.

While it is instructive to consider the original system matrix with a structure as shown

in (1.13)–(1.16), which is essentially the Gram matrix of the bilinear form ã, it should be

noted that the HSS scheme can also be applied to more general matrices, e.g., matrices that

are the result of a Schur complement reduction (see chapter 4 and [3]). In this sense, the

above rearrangement of the linear system is a purely algebraic manipulation that depends

only on the numbers M and M̂ in the splitting of the basis functions.

The �nal step of preparation is to split the rearranged system (3.1) into two coupled

linear systems  Au+Cû = `

Ĉu+ Âû = ˆ̀
. (3.2)

If we furthermore split Â into Â =: Âdiag+Âoff, where Âdiag is the M̂×M̂ block diagonal

of Â, the system (3.2) can be written as

 Au = `−Cû

Âdiagû = ˆ̀− Ĉu− Âoffû
, (3.3)

which is still equivalent to (3.1).

The main idea of HSS is now to start with initial guesses u(0) and û(0) and to alternate
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between the two linear systems in (3.3) until both components converge, using the most

recent approximations to u and û on the right-hand side of both systems to solve for a

new approximation [4, 11]. The full method is described in algorithm 1, which takes as

inputs the matrix Ah, right-hand side `h, and initial guess uh(0), as well as a tolerance η

for the relative residual.

Algorithm 1: Hierarchical scale separation (cf. [4, 11])

uh = HSS(Ah, `h, uh(0), η)

1 i := 0

2 While ‖`h −Ahuh(i)‖/‖`h −Ahuh(0)‖ ≥ η:

2.1 i← i + 1

2.2 Solve coarse-scale system Au(i) = `−Cû(i−1).

2.3 Solve �ne-scale system Âdiagû
(i) = ˆ̀− Ĉu(i) − Âoffû

(i−1).

3 Accept solution uh := uh(i).

There are two key observations: Due to the block-diagonal structure of Âdiag, the

�ne-scale solve in step 2.3 of algorithm 1 is equivalent to solving N independent linear

systems, each of size M̂×M̂ . As M̂ is usually very small compared toN , these linear solves

can be performed e�ciently and in parallel, as I will discuss in sections 3.2 and 3.5. The

second observation is that the linear system in step 2.2 of algorithm 1 is of sizeNM×NM

and smaller than the original system (3.1), which has size NM ×NM . Thus, one might

expect that solving the coarse-scale system is computationally less expensive than solving

the original system. However, the tradeo� is that the coarse-scale update is repeated in

each iteration of the HSS algorithm. The numerical experiments in chapter 4 will show

that this tradeo� can indeed be bene�cial in applications, but �rst I motivate some further

modi�cations to algorithm 1 in the next section.
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3.2 The inexact hierarchical scale separation scheme

The inexact hierarchical scale separation (IHSS) scheme modi�es and extends the HSS

method in order to use the highly parallel �ne-scale update more extensively. These mod-

i�cations, which will be discussed in more detail soon, are based on two key ideas: Since

HSS updates the coarse-scale and �ne-scale components of the solution in an iterative

process, it may not be necessary to solve the coarse-scale system to machine precision in

each iteration. Instead, an iterative linear solver can be used to approximate the coarse-

scale component u(i) in each HSS iteration. The second key idea of the IHSS method is

based on the observation that one of the �ne-scale approximations û(i) and û(i−1) appears

on either side of the linear system in step 2.3 of algorithm 1. Thus, the �ne-scale update

resembles a �xed-point iteration, and it can be repeated multiple times before returning

to the coarse scale.

Combining the approximation of the coarse-scale system with the repeated �ne-scale

updates results in a basic version of the IHSS method, which I �rst published with Araya-

Polo, Alpak, Rivière, and Frank in 2017 [12]. It is presented in algorithm 2. The function

CSS is simply an iterative solver for the coarse-scale system. Its arguments are the system

matrix, right-hand side, an initial guess, and a tolerance. The function FSS on the other

hand solves the �ne-scale system to machine precision. The method also introduces a

parameter δ > 0 that governs the approximation of u(i) (see algorithm 2, step 2.2) and a

parameter ν ∈N that determines the number of �ne-scale updates in each IHSS iteration

(see algorithm 2, step 2.4). For now, the tolerance δ can be thought of as either an absolute

or relative tolerance. Notice that the choice of ν = 1 and su�ciently small δ essentially

recovers the HSS method in algorithm 1.

While algorithm 2 already illustrates the workings of IHSS, it is of limited use for actual

computations, because its computational performance depends strongly on an appropriate
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Algorithm 2: Basic inexact hierarchical scale separation (as �rst published by Thiele
et al. in 2017 [12])

uh = IHSS_basic(Ah, `h, uh(0), η, δ, ν)

1 i := 0

2 While ‖`h −Ahuh(i)‖/‖`h −Ahuh(0)‖ ≥ η:

2.1 i← i + 1

2.2 u(i) := CSS
(
A, `−Cû(i−1), u(i−1), δ

)
(approximate coarse-scale system)

2.3 û(i)
0 := û(i−1)

2.4 For k = 1, . . . ,ν:

2.4.1 û(i)
k := FSS

(
Âdiag, ˆ̀− Ĉu

(i) − Âoffû
(i)
k−1

)
(solve �ne-scale system)

2.5 û(i) := û(i)
ν

3 Accept solution uh := uh(i).

choice of the parameters δ and ν (see chapter 4 and [12]). Moreover, it is not obvious

that the repeated �ne-scale solves in step 2.4 are indeed a �xed point iteration in all cases.

Thus, the IHSS algorithm is further modi�ed in sections 3.3 and 3.4 to resolve these issues.

3.3 Adaptive choice of coarse-scale solver tolerances

The approximation of the coarse-scale system is one of the features that distinguish the

IHSS method from the original HSS method. Intuitively, one might expect the coarse-

scale solver tolerance δ in algorithm 2 to have a major impact on the behavior of the IHSS

method: If δ is small, the coarse-scale systems are solved to an accuracy that may not be

needed for su�ciently fast convergence of the method, incurring unnecessary computa-

tional cost. On the other hand, if δ is chosen too large, the coarse-scale approximation

u(i) may converge slowly, or it may not converge at all.

A simple way of choosing δ is to use a �xed relative tolerance in all IHSS iterations.
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Our �rst experiments with the method showed that this approach can result in good com-

putational performance. However, the experiments also revealed that δ and ν, the number

of �ne-scale updates per IHSS iteration, cannot be chosen independently (see section 4.3

and [12]).

While this interplay of δ and ν makes it di�cult to calibrate the IHSS method, it can

also be used to choose one of the parameters automatically. My collaborators and I pro-

posed an approach to e�ectively eliminate the coarse-scale tolerance δ from the calibra-

tion process in our second publication on IHSS [3]. This approach, which is presented

below, is based on the intuition that the convergence of the coarse-scale and �ne-scale

components should be balanced: It seems unreasonable to solve the coarse-scale system

to great accuracy while the error in the �ne-scale approximation û(i) is still large and vice

versa. To formalize this idea, consider the absolute residual ‖`h −Ahuh(i−1)‖ of the linear

system 3.1 after i−1 IHSS iterations. If we choose the Euclidean norm, the block structure

of the system allows us to write

‖`h −Ahuh(i−1)‖22 =

∥∥∥∥∥∥∥∥∥
`ˆ̀

−
A C

Ĉ Â


u

(i−1)

û(i−1)


∥∥∥∥∥∥∥∥∥

2

2

(3.4)

=‖`−Au(i−1) −Cû(i−1)‖22 + ‖̂`− Ĉu(i−1) − Âû(i−1)‖22. (3.5)

Since the convergence of the coarse-scale and �ne-scale components should be balanced,

both terms in equation (3.5) should be of similar magnitude, i.e.,

‖`−Au(i−1) −Cû(i−1)‖22 ≈ ‖̂`− Ĉu
(i−1) − Âû(i−1)‖22. (3.6)

Note that the �rst term in (3.5) resembles the squared absolute residual

‖`−Au(i) −Cû(i−1)‖22
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of the coarse-scale solve in step 2.2 of algorithm 2, except that the coarse-scale approxi-

mation has a di�erent index. Assuming that the change from u(i−1) to u(i) is small, one

can make the approximation

‖`−Au(i) −Cû(i−1)‖22 ≈ ‖`−Au
(i−1) −Cû(i−1)‖22. (3.7)

This approximation can be combined with (3.6) to obtain the requirement that

‖`−Au(i) −Cû(i−1)‖22 ≈ ‖̂`− Ĉu
(i−1) − Âû(i−1)‖22.

Hence, using an absolute tolerance of

δabs := ‖̂`− Ĉu(i−1) − Âû(i−1)‖2

for the coarse-scale update in the ith IHSS iteration should balance the convergence of

the coarse-scale and �ne-scale components. Equivalently, a relative tolerance of

δ := ‖̂`− Ĉu(i−1) − Âû(i−1)‖2/‖`−Cû(i−1) −Au(i−1)‖2

can be used as well, where δabs was simply scaled by the initial residual of the coarse-

scale system. The argument for this choice of δ is heuristic, but it is supported by good

computational performance in numerical experiments (see chapter 4 and [3]).

Algorithm 3 describes the modi�ed IHSS method with the adaptive choice of toler-

ances for the coarse-scale systems as discussed above. The Euclidean norm is now used

throughout the entire algorithm, as the computation of the tolerance δ(i) depends on this

particular norm. Notice that the iterative solver used in step 2.2 of algorithm 3 must also

be con�gured to compute residuals in this norm.

While an initial tolerance δ(1) still has to be provided, its choice has a limited impact
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on the behavior of the method, as the tolerance is adjusted automatically in subsequent

iterations (see subsection 4.3.2).

Algorithm 3: Modi�ed inexact hierarchical scale separation (based on [3])

uh = IHSS_modified(Ah, `h, uh(0), η, δ(1), ν)

1 i := 0

2 While ‖`h −Ahuh(i)‖2/‖`h −Ahuh(0)‖2 ≥ η:

2.1 i← i + 1

2.2 u(i) := CSS
(
A, `−Cû(i−1), u(i−1), δ(i)

)
2.3 û(i)

0 := û(i−1)

2.4 For k = 1, . . . ,ν:

2.4.1 û(i)
k := FSS

(
Âdiag, ˆ̀− Ĉu

(i) − Âoffû
(i)
k−1

)
2.5 û(i) := û(i)

ν

2.6 δ(i+1) := ‖̂`− Ĉu(i) − Âû(i)‖2/‖`−Cû(i) −Au(i)‖2

3 Accept solution uh := uh(i).

3.4 Stabilization of the repeated �ne-scale update

The �nal modi�cation to the IHSS algorithm concerns the �ne-scale updates in step 2.4 of

algorithm 3. These repeated �ne-scale updates resemble a �xed point iteration. However,

it is not guaranteed that the corresponding mapping

g : û 7→ Â
−1
diag

(̂
`− Ĉu(i) − Âoffû

)
is indeed a contraction or that a �xed point even exists for general Âdiag and Âoff. While

it is certainly possible to derive conditions on these matrices or the original system matrix

Ah that ensure that the mapping g has the desired properties, I will instead augment the
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repeated �ne-scale updates with an Anderson acceleration. My collaborators and I �rst

proposed this idea in our second publication on IHSS [3].

The Anderson acceleration improves the convergence of a �xed point iteration

xk+1 := g(xk)

by incorporating not only the evaluation of g at the current iterate xk , but also eval-

uations at previous iterates. The new iterate is then chosen as an a�ne combination of

g(xk), g(xk−1), g(xk−2), etc. The full method is described in algorithm 4. The presentation

follows Walker and Ni [15].

Algorithm 4: Anderson acceleration with �xed number of iterations (see Walker
and Ni [15])

xν = Anderson_acceleration(g, x0, m, ν)

1 x1 := g(x0)

2 For k = 1, . . . ,ν − 1:

2.1 mk := min{m,k}
2.2 F k := (g(xk−mk )− xk−mk , . . . ,g(xk)− xk)

2.3 Find α that minimizes ‖F kα‖ s.t.
∑mk
j=0αj = 1

2.4 xk+1 :=
∑mk
j=0αjg(xk−mk+j)

The Anderson acceleration can now be included into the IHSS method. The result is

algorithm 5, to which I will simply refer as the IHSS method from now on.
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Algorithm 5: Inexact hierarchical scale separation (as �rst published by Thiele et
al. in 2017 [3])

uh = IHSS(Ah, `h, uh(0), η, m, δ(1), ν)

1 i := 0

2 While ‖`h −Ahuh(i)‖2/‖`h −Ahuh(0)‖2 ≥ η:

2.1 i← i + 1

2.2 u(i) := CSS
(
A, `−Cû(i−1), u(i−1), δ(i)

)
2.3 De�ne g : û 7→ FSS

(
Âdiag, ˆ̀− Ĉu

(i) − Âoffû
)

2.4 û(i) := Anderson_acceleration(g, û(i−1), m, ν)

2.5 δ(i+1) := ‖̂`− Ĉu(i) − Âû(i)‖2/‖`−Cû(i) −Au(i)‖2

3 Accept solution uh := uh(i).

3.5 Implementation details

With the IHSS algorithm in place, it is time to discuss some aspects of its implementa-

tion before proceeding with numerical examples and an evaluation of the computational

performance in the next chapter. The remarks made in this section are general, but I will

also mention the speci�c programming language, tools, and design choices for the IHSS

implementation that I used for my experiments.

The key ingredients for the IHSS method are the linear solvers for the coarse-scale

and �ne-scale problems. The coarse-scale solver (function CSS in algorithm 5) can be any

iterative linear solver that is suitable for the matrix A. Note that the previous coarse-

scale approximation u(i−1) is used as an initial guess in order to accelerate the solution

of the coarse-scale system. If a preconditioner is used, it can likely be reused for all IHSS

iterations, as the matrix of the coarse-scale system remains unchanged. Finally, it is worth

reiterating that the IHSS method as shown in algorithm 5 requires the coarse-scale solver
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to terminate based on the relative residual norm measured in the Euclidean norm.

The matrix Âdiag of the �ne-scale system also remains the same throughout all IHSS

iterations. This fact can be used to speed up the �ne-scale solves (function FSS in algo-

rithm 5). Since the �ne-scale system is block-diagonal, an LU or QR decomposition can be

computed for each individual block. The �ne-scale updates then reduce to a backward and

forward substitution for each block in case of an LU decomposition, or a matrix-vector

product and a backward substitution for each block in case of a QR decomposition. Fur-

thermore, solving an individual block is computationally inexpensive, as the blocks are

typically very small. For example, piecewise linear discretizations result in blocks with

just four rows and columns (see subsection 4.2.1). The block structure of Âdiag and the

low computational cost for solving each individual block make it very easy to parallelize

the �ne-scale solve with good load balancing.

At this point, it should be emphasized that solving the coarse-scale and �ne-scale sys-

tems are not the only steps in the IHSS algorithm that incur signi�cant computational

cost. For instance, the cost of the matrix-vector product Âoffû in step 2.3 of algorithm 5

is not negligible, because even though the matrix Âoff is sparse, it is still large. The com-

putation of residuals in steps 2 and 2.5 is also computationally expensive, again due to

the size of Â. The high cost of residual evaluations to some extent precludes the use of

residual-based stopping criteria such as relative or absolute tolerances for the Anderson-

accelerated �ne-scale updates. Computing a residual in each iteration of the Anderson

acceleration would increase its computational cost signi�cantly. Thus, a �xed number ν

of iterations is used instead.

The Anderson acceleration itself can be implemented e�ciently by reusing the columns

of the matrix F k in step 2.2 of algorithm 4. Only the most recent error g(xk)−xk needs to

be computed in each iteration, while the error with the lowest index can be dropped from

the matrix F k . The minimization problem in step 2.3 can be solved using a QR decompo-



3.5 Implementation details 32

sition of F k [15].

The IHSS implementation used for the numerical experiments in chapter 4 is written

in C++, and it is based on the Trilinos framework [16]. It uses Trilinos’ Tpetra package

for hybrid parallel linear algebra computations. More speci�cally, it combines distributed

memory parallelism using MPI and shared memory parallelism using OpenMP. Krylov

solvers from Trilinos’ Belos package are used to solve the coarse-scale systems. The �ne-

scale systems are solved using precomputed QR decompositions for each block of Âdiag.

The blocks are stored in a single contiguous array to improve cache e�ciency. Both the

computation of the QR decompositions and their application during the �ne-scale update

again use MPI and OpenMP for parallelism by simply assigning a subset of the diagonal

blocks of Âdiag to each MPI rank and OpenMP thread.

Based on this implementation, I evaluate the computational performance of the IHSS

method in the next chapter.



Chapter 4

Numerical experiments

In this chapter I evaluate the computational performance of the IHSS method. I begin

with a description of the test problem, a two-component �uid simulation based on the

Cahn–Hilliard equation. Using this test problem, I then report results from a number of

experiments to determine the e�ect of the parameters ν,δ, and m (see algorithm 5) on

the computational performance. Finally, I analyze how the performance characteristics

change with increasing problem size.

4.1 The Cahn–Hilliard problem

The test problem for the performance evaluation of IHSS will be the Cahn–Hilliard equa-

tion [17, 18]. This fourth-order, nonlinear partial di�erential equation models the separa-

tion of an immiscible binary �uid mixture into areas that are dominated by one of the two

�uids. Figure 4.1 shows an example of this process, which is of interest in the simulation

of �uid �ow in porous rocks in the oil and gas industry [12].

My presentation of the Cahn–Hilliard model follows that in a recent publication by

Frank, Liu, Alpak, and Riviere [19]. Indeed, the discretization and implementation used

for the numerical experiments in this thesis are the same as those discussed in their paper.

33
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Figure 4.1: The spinodal decomposition scenario. Pseudo-random initial data (after 0
steps, upper left), early interface structure (after 10 steps, upper right), and progressing
phase separation (after 100 and 300 steps respectively, bottom row). The two �uid com-
ponents are shown in red (c = 1, dark in grayscale) and blue (c = −1, light in grayscale).
The center of the interface between the components (c = 0) is shown in green.
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The Cahn–Hilliard equation reads

∂tc −∆µ = 0 in (0,T )×Ω, (4.1)

µ = Φ ′(c)−κ∆c in (0,T )×Ω, (4.2)

∇c ·η = 0 on (0,T )×∂Ω, (4.3)

∇µ ·η = 0 on (0,T )×∂Ω, (4.4)

c = c0 on {0} ×Ω, (4.5)

where Ω ⊂ R
3 is the spatial domain, and (0,T ) is some time interval. The vector η

denotes the outward-pointing normal vector on the boundary of Ω. The two unknowns

of the equation are the order parameter c and the chemical potential µ. The order parameter

c(t,x) is closely related to the volume fraction of the two �uids that are present at location

x and at time t, and it assumes values in the interval [−1,1]. A value of c(t,x) = ±1

indicates that only one of the �uids is present, whereas a value of c(t,x) = 0 means that

the relative amount of both �uids is equal [19]. The initial �uid distribution is prescribed

by c0. The chemical potential µ is an auxiliary unknown that is introduced by writing the

Cahn–Hilliard equation as a system of two second-order equations.

If the order parameter c satis�es equations (4.1) to (4.5), then the Helmholtz free energy

F(c) :=
∫
Ω

(
Φ(c) +

κ
2
‖∇c‖22

)

decreases over time [19, section 2.1]. The role of the two terms in the integrand of this

energy functional is intuitive: The nonlinear function Φ(c) = 1
4(c2 −1)2 assumes its min-

ima at c = ±1 (see �gure 4.2), so its contribution to the energy F(c) is minimized when the

order parameter is close to ±1 in large parts of Ω, i.e., when the two �uids in the domain

are mostly separated.

The gradient term κ‖∇c‖22 is related to the tension of the interface between the �uids.
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Figure 4.2: The potential function Φ(c) = 1
4(c2 − 1)2. It assumes its minima at c = ±1,

thereby penalizing order parameters other than c = ±1 in the free energy functional F(c).

The constant κ > 0 determines the thickness of this di�use interface [19]. Note that ‖∇c‖22
denotes the square of the Euclidean norm of ∇c at a point, i.e.,

‖∇c(t,x)‖22 = ∇c(t,x)T∇c(t,x).

4.1.1 Time discretization

In order to discretize equations (4.1) to (4.5) in time, the nonlinear function Φ is split into

a convex part Φ+ and a concave part Φ− such that

Φ = Φ+ +Φ−.

In the nth time step, the task is then to �nd cn and µn such that

cn − cn−1 − τ∆µn = 0, (4.6)

µn = Φ ′+(cn) +Φ ′−(c
n−1)−κ∆cn, (4.7)
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where τ > 0 is the time step size. The convex part Φ+ is treated implicitly, while the

concave part Φ− is treated explicitly. This is done to ensure unique solvability of the

equation as well as energy dissipation, i.e., F(cn) ≤ F(cn−1) [19, section 3.2].

4.1.2 Space discretization

The fully discrete formulation of the numerical scheme in equations (4.6) to (4.7) can

now be obtained using the interior penalty discontinuous Galerkin (IPG) approach for

the Laplace operators (see section 1.2). Let a denote the resulting DG bilinear form. The

problem is then to �nd cnh and µnh such that

(cnh ,wh)− (cn−1
h ,wh) + τa(µnh,wn) = 0, (4.8)

(µnh,wh) = (Φ ′+(cnh),wh) + (Φ ′−(c
n−1
h ),wh) +κa(cnh ,wh), (4.9)

(c0
h,wh) = (c0,wh) (4.10)

for allwh ∈ Pp(Eh) [3, section 2.3]. Here, Pp(Eh) is the broken polynomial space as de�ned

in section 1.2, and (·, ·) denotes the standard inner product on L2(Ω). Using a uniform

hexahedral mesh Eh of elements with an edge length of h, the bilinear form a reads

a(c,w) =
∑
E∈Eh

∫
E
∇c ·∇w −

∑
e∈Γ̊h

∫
e

⦃

∇c ·ηe
⦄

~w�

+ ε
∑
e∈Γ̊h

∫
e

⦃

∇w ·ηe
⦄

~c�+
∑
e∈Γ̊h

σ
h

∫
e
~c�~w�

(4.11)

(cf. [3, section 2.3] and [19, section 3.4.1]). This bilinear form strongly resembles the one

derived for Poisson’s equation in section 1.2, but this time the integrals over the exte-

rior faces e ∈ Γh\Γ̊h vanish due to the homogeneous Neumann boundary conditions (4.3)

and (4.4).

For the numerical experiments in subsequent sections, I used the nonsymmetric IPG
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discretization, i.e., ε = 1 with a penalty of σ = 1.

4.1.3 Derivation of the linear systems

Let the functions {ψk,j} form a Legendre basis for the space Pp(Eh). Using the notation

from section 1.2, let us de�ne matrices M , A, and the vector EΦ ′±(X
n
c ) by

(M)kM+j,k′M+j ′ := (ψk′ ,j ′ ,ψk,j), (4.12)

(A)kM+j,k′M+j ′ := a(ψk′ ,j ′ ,ψk,j), (4.13)

(EΦ ′±(X
n
c ))kM+j := (Φ ′±(c

n
h),ψk,j), (4.14)

where the vector Xn
c contains the coe�cients of cnh with respect to the basis functions

{ψk,j}. Note that the Legendre basis functions can be scaled to make them orthonormal on

the reference element. Then the matrix M is a scalar multiple of the identity matrix, i.e.,

M = γI

for some constant γ > 0.

The fully discrete scheme (4.8) to (4.9) can now be written in matrix form as

κA −M

M τA


X

n
c

Xn
µ

+

EΦ ′+(Xn
c )

0

 =

−EΦ ′−(X
n−1
c )

MXn−1
c

 .
This nonlinear system can be further simpli�ed using a Schur complement reduction

(cf. [3, section 2.3] and [19, section 3.4.1]). The upper block of the equation yields

κAXn
c −MXn

µ +EΦ ′+(Xn
c ) = −EΦ ′−(X

n−1
c )

⇔Xn
µ =M−1

(
κAXn

c +EΦ ′+(Xn
c ) +EΦ ′−(X

n−1
c )

)
,
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which is inserted into the lower block to obtain

f (Xn
c ) :=

(
γ2

τ
I +κA2

)
Xn
c︸              ︷︷              ︸

linear

+AEΦ ′+(Xn
c )︸      ︷︷      ︸

nonlinear

+AEΦ ′−(X
n−1
c )−

γ2

τ
Xn−1
c︸                       ︷︷                       ︸

constant

= 0. (4.15)

Finally, this root-�nding problem forXn
c is linearized using an inexact Newton method,

which is described in algorithm 6. Like the classical Newton method, the inexact Newton

method �nds a root of f using the function itself, its Jacobian f −1, and an initial guess

z(0). However, the linear system in each Newton step is not solved to high accuracy, but it

is approximated up to a certain tolerance in order to save computational cost (see steps 2.2

and 2.3 of algorithm 6). This idea is similar to that of IHSS, and indeed it in�uenced the

design of the IHSS method. For more detail on how the tolerance η(i) and the step length

α(i) are chosen in each Newton step, I refer the reader to the book by Kelley [20, chapters 6

and 8]. Kelley also suggests the stopping criterion in step 2 of algorithm 6 [20, section 5.2].

Algorithm 6: Inexact Newton method (see [20])

z = inexact_newton(f , f ′, z(0), εabs, εrel)

1 i := 0

2 While ‖f (z(i))‖ ≥ εabs + εrel‖f (z(0))‖:

2.1 i← i + 1

2.2 Determine a relative tolerance η(i).

2.3 Approximate the solution of f ′(z(i−1))∆z(i) = f (z(i−1)) to a tolerance of η(i).

2.4 Determine a step length α(i).

2.5 z(i) := z(i−1) −α(i)∆z(i)

3 Accept solution z := z(i).

In order to apply the inexact Newton method to the root-�nding problem (4.15), the

Jacobian f ′ must be available numerically. The implementation used for the experiments
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in this thesis computes f ′(Xn
c ) using the matrix in the linear part of (4.15) and an ana-

lytic formula for the Jacobian of the nonlinear part (see [19, section 3.4.5]). Hence, the

implementation does not use automatic di�erentiation.

4.2 Experimental setup

This section describes the experimental setup for the analysis of the convergence behav-

ior and computational performance of the IHSS method in subsequent sections. After

the introduction of the two test scenarios in subsection 4.2.1, I discuss the hardware and

software platform in subsection 4.2.2

4.2.1 Test scenarios

Two test scenarios are used for the performance evaluation and analysis of the conver-

gence of the IHSS method. In both scenarios, 10 time steps are computed for the Cahn–

Hilliard equation on the domain Ω = [0,1]3. This number of time steps results in a su�-

cient number of linear solves, since multiple Newton steps are required in each time steps.

A greater number of linear solves also helps to limit the impact of cases in which the num-

ber of Newton steps is di�erent with and without IHSS. This behavior can sometimes be

observed because the inexact Newton solver often prescribes rather high relative toler-

ances on the order of 10−3 to 10−1 for the linear solvers. While the solutions obtained

with and without IHSS both satisfy these tolerances, they may result in di�erent nonlin-

ear residuals, causing the Newton solver to stop after di�erent numbers of iterations (cf.

algorithm 6).
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The �rst test scenario uses the initial data

c0(x) =


1, if

∥∥∥∥x − (12 , 12 , 12)T ∥∥∥∥1
< 1

2

−1, otherwise
,

which is shown in �gure 4.3. This data contains large areas in which only one of the

two �uids is present. It is therefore representative of the later stages of Cahn–Hilliard

simulations when the �uids are mostly separated. Due to its structure, I will refer to it as

the droplet scenario.

Figure 4.3: The droplet scenario. Over time, an initially cubical droplet assumes a more
stable spherical shape (after time steps 0, 1, 3, and 10, from left to right, top to bottom).
The two �uid components are shown in red (c = 1, dark in grayscale) and blue (c = −1,
light in grayscale). The center of the interface between the components (c = 0) is shown
in green.
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The second test scenario uses pseudo-random, piecewise constant initial data with

values in {−1,1} (see �gure 4.1, upper left image). It is more representative of the early

stages of Cahn–Hilliard simulations when the system is far from its steady state and stable

interfaces between the �uids have not yet developed. In fact, this initial data can be seen

as the most complicated of all possible initial �uid distributions. I will refer to this test

scenario as the spinodal decomposition scenario (see [19, section 4.2]). While it appears en-

tirely random, the same initial data is used for all experiments on the same computational

grid in order to ensure comparability of the results.

In subsequent sections, I show numerical results for both the droplet scenario and the

spinodal decomposition scenario using piecewise linear DG basis functions and problem

sizes N1 ∈ {32,64,128}, where N1 is the number of elements in each spatial dimension.

Hence, the total number of elements is N = N 3
1 , and it ranges from 323 ≈ 3 · 104 to

1283 ≈ 2 · 106. The size of the resulting linear systems is MN = 4N 3
1 , because M =

dimP1(Ek) = 4 is the number of basis functions on each element Ek ∈ Eh. The basis

is split into piecewise constant components for the coarse scale (M = 1) and piecewise

linear components for the �ne scale (M̂ = 3).

Note that smaller time steps must be used as N1 increases. More speci�cally, a time

step size of τ = 1/N 2
1 is used, which is consistent with the choice made by Frank et

al. for the same discretization of the Cahn–Hilliard equation [19, section 4.1]. Due to

the di�erent time step sizes, the simulation results after 10 time steps are not directly

comparable for di�erent problem sizes even if the same initial data is used. However,

my experiments will focus on the convergence and performance of IHSS with di�erent

parameters for a �xed problem size. Thus, the simulation results are not important so

long as they are the same for all parameter choices. To ensure convergence of the IHSS

method, the �nal residuals after each linear solve were computed again using the original,

non-rearranged linear system.
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4.2.2 Hardware and software platform

All numerical experiments were performed on computing nodes with the hardware con-

�guration shown in table 4.1 using one MPI process per CPU socket and 12 threads per

process. Although the code supports distributed memory parallelism (see section 3.5),

only a single computing node was used for each experiment in order to avoid any in-

�uence of the network connection on the results. A future comparison of the scalability

of IHSS and other iterative solvers could provide further insight into the performance of

IHSS, but here I focus on the convergence behavior and single-node performance of the

method.

Table 4.1: Harware used for the numerical experiments

Processor(s) 2× Xeon E5-2680 v3 (Haswell)
Cores 24 (2× 12)

Frequency 2.5 GHz
L3 cache 30 MB

Instruction set AVX2
Memory 256 GB (8× 32 GB)

The Trilinos version used for the experiments was obtained from the Git master branch

on May 31, 2017 [21]. The Intel C++ compiler in version 16.0.3 was used to compile Trili-

nos, the Cahn–Hilliard solver, and the IHSS implementation. For parallelism, the Intel

OpenMP runtime was used, as well as Intel MPI in version 5.1.3.

4.3 Results

In this section I present a number of numerical experiments that will help to understand

the convergence behavior and computational performance of the IHSS method. Each sub-

section starts with a description of the experiment, followed by the results. First, I estab-

lish a baseline for the convergence behavior and computational performance of IHSS for
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both test scenarios from subsection 4.2.1 and all problem sizes using di�erent numbers

of �ne-scale updates per IHSS iteration. I then analyze the in�uence of the initial coarse-

scale solver tolerance δ(1) on convergence and performance, and I compare the adaptive

choice of tolerances to using a �xed tolerance. Next, I investigate the impact of the Ander-

son acceleration for the repeated �ne-scale updates. Finally, I repeat some experiments

using a di�erent coarse-scale solver to ensure that the observed performance of IHSS does

not depend on a particular choice.

Whenever elapsed times are reported and compared, the corresponding experiments

were repeated three times, and the results were averaged. The measurements represent

the accumulated time for the solution of linear systems in all time and Newton steps.

The measurements do not include the overhead for rearranging the linear system into the

form (3.1) for IHSS, as this step could easily be avoided by assembling the system in this

way in the �rst place.

4.3.1 E�ect of the number of �ne-scale updates per iteration

For the �rst experiment, 10 time steps of both test scenarios are computed, using the

restarted GMRES method with a restart length of 30 and IHSS to solve the linear systems

in all time and Newton steps. The same GMRES implementation from Trilinos’ Belos

package is also used as the coarse-scale solver within IHSS. No preconditioners are used,

since they might have a di�erent e�ect when GMRES is used on its own and as a coarse-

scale solver, thereby complicating the performance analysis. I brie�y discuss ideas for

preconditioning IHSS in section 5.2. The initial tolerance for the coarse-scale solver is

chosen as δ(1) = 10−1, and m = 2 is used for the Anderson-accelerated �ne-scale updates

(see algorithm 4). Values of ν ∈ {2,4,8,16} are tested for the number of �ne-scale updates

per IHSS iteration.

The setup for this experiment is similar to the one my collaborators and I conducted
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for our previous publication on IHSS [3]. I repeat the experiment here to ensure that all

experiments use the same set of parameters and the same version of the Cahn–Hilliard

code. It will be used as a baseline and reference for the additional experiments in subsec-

tions 4.3.2 to 4.3.5, which will provide further insight into the convergence behavior and

computational performance of the IHSS method.

The results of this �rst experiment are presented in tables 4.2 and 4.3. They show the

accumulated number of IHSS iterations and coarse-scale solver iterations from all time and

Newton steps, as well as the accumulated elapsed time for the linear solves using either

GMRES or IHSS. The time for the assembly of the linear systems is not taken into account,

since it does not depend on the selected linear solver. The last column shows the achieved

speedups, which are the ratio of the elapsed time using GMRES and the elapsed time

using IHSS. These speedups are shown for two reasons: First, they demonstrate that for

this application, using the GMRES method as a coarse-scale solver within IHSS is indeed

more e�cient than using the same GMRES implementation to solve the linear systems

directly. Second, the speedups help to compare the e�ectiveness of IHSS for di�erent

choices of ν. However, the obtainable speedups depend on the simulation parameters and

time step size, so not too much emphasis should be put on the exact speedups achieved for

this test problem. Instead, the important result is that signi�cant speedups are observed

for both test scenarios and all problem sizes and values of ν.

As ν increases, the number of IHSS iterations decreases, resulting in improved per-

formance up to a value of ν = 8. When ν is increased further, the number of coarse-scale

solver iterations rises, and computational performance begins to deteriorate. The choice

of ν = 8 resulted in optimal or near-optimal performance in all cases. Hence, the IHSS

method is easily calibrated for the test scenarios.

Even though the optimal speedups are similar for all problem sizes, I would like to

remind the reader that results for di�erent problem sizes cannot be compared directly,
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Table 4.2: Computational performance of IHSS for the droplet scenario (10 time steps
δ(1) = 10−1, m = 2). CSS stands for coarse-scale solver.

N1 ν IHSS iter. CSS iter. Time GMRES Time IHSS Speedup

32 2 348 985 5.0 s 2.0 s 2.5 ×
–”– 4 131 983 –”– 1.3 s 3.8 ×
–”– 8 74 976 –”– 1.2 s 4.2 ×
–”– 16 65 1414 –”– 1.6 s 3.1 ×

64 2 266 752 21.9 s 9.3 s 2.4 ×
–”– 4 104 793 –”– 5.9 s 3.7 ×
–”– 8 60 792 –”– 5.6 s 3.9 ×
–”– 16 50 1066 –”– 8.3 s 2.6 ×
128 2 165 486 132.9 s 44.9 s 3.0 ×
–”– 4 69 525 –”– 32.1 s 4.1 ×
–”– 8 43 557 –”– 33.9 s 3.9 ×
–”– 16 40 837 –”– 56.2 s 2.4 ×

Table 4.3: Computational performance of IHSS for the spinodal decomposition scenario
(10 time steps, δ(1) = 10−1, m = 2). CSS stands for coarse-scale solver.

N1 ν IHSS iter. CSS iter. Time GMRES Time IHSS Speedup

32 2 312 922 5.1 s 1.9 s 2.7 ×
–”– 4 133 918 –”– 1.3 s 3.9 ×
–”– 8 75 954 –”– 1.2 s 4.3 ×
–”– 16 55 1071 –”– 1.4 s 3.6 ×

64 2 272 794 24.3 s 10.0 s 2.4 ×
–”– 4 112 776 –”– 6.6 s 3.7 ×
–”– 8 63 789 –”– 6.1 s 4.0 ×
–”– 16 48 878 –”– 8.1 s 3.0 ×
128 2 206 601 175.0 s 58.9 s 3.0 ×
–”– 4 90 618 –”– 42.6 s 4.1 ×
–”– 8 49 597 –”– 40.3 s 4.3 ×
–”– 16 39 730 –”– 57.2 s 3.1 ×

because a di�erent time step size was used for each of them. This also explains why both

the number of IHSS iterations and the number of coarse-scale solver iterations decrease

with increasing problem size, which would be a very surprising observation if the same

parameters were used for all problem sizes.
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4.3.2 E�ect of the initial tolerance for the coarse-scale solver

For the intermediate problem size ofN1 = 64, di�erent choices for the initial tolerance δ(1)

for the coarse-scale solver are compared using the spinodal decomposition test scenario.

The convergence behavior and performance of IHSS during the computation of 10 time

steps are shown in table 4.4.

Table 4.4: In�uence of the initial tolerance δ(1) on convergence and computational perfor-
mance of IHSS (spinodal decomposition scenario, 10 time steps, N1 = 64, ν = 8, m = 2).
CSS stands for coarse-scale solver.

δ(1) IHSS iter. CSS iter. Time GMRES Time IHSS Speedup

10−1 63 789 24.3 s 6.1 s 4.0 ×
10−3 45 1072 –”– 5.5 s 4.4 ×
10−6 45 2057 –”– 7.4 s 3.3 ×

We see that reducing the initial tolerance δ(1) results in fewer IHSS iterations, while

each iteration becomes more expensive due to the increased number of coarse-scale solver

iterations. Even though decreasing δ(1) from 10−1 to 10−3 reduces the elapsed time, it does

so by less than 10%. When the initial tolerance is further reduced to 10−6, no additional

reduction in the number of IHSS iterations is achieved, but the elapsed time increases,

because the coarse-scale systems are solved to an accuracy that is not needed. These

results indicate that the choice of δ(1) = 10−1 in previous experiment was reasonable.

The results also underline the e�ectiveness of a central idea of IHSS, namely, to reduce

computational cost by relaxing the tolerances for the coarse-scale solver: Reducing the

initial tolerance δ(1) from 10−3 to 10−6 does not change the number of IHSS iterations in

this test case, but it results in a signi�cant increase in the number of coarse-scale solver

iterations and thus in degraded performance.
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4.3.3 Non-adaptive choice of coarse-scale solver tolerances

In order to verify that the adaptive choice of tolerances proposed in section 3.3 helps to

balance the coarse-scale and �ne-scale solvers, the spinodal decomposition experiment

is repeated using a �xed relative tolerance δ in each IHSS iteration. The results of this

experiment are presented in table 4.5.

Table 4.5: Computational performance using �xed coarse-scale solver tolerances (spinodal
decomposition scenario, 10 time steps,N1 = 64, ν = 8,m = 2). CSS stands for coarse-scale
solver.

Type δ(1) IHSS iter. CSS iter. Time GMRES Time IHSS Speedup

adaptive 0.9 72 823 24.3 s 6.9 s 3.5 ×
–”– 0.5 72 815 –”– 6.8 s 3.6 ×
–”– 10−1 63 789 –”– 6.1 s 4.0 ×
–”– 10−3 45 1072 –”– 5.5 s 4.4 ×
–”– 10−6 45 2057 –”– 7.4 s 3.3 ×

�xed 0.9 647 1513 –”– 50.0 s 0.5 ×
–”– 0.5 150 825 –”– 12.4 s 2.0 ×
–”– 10−1 59 802 –”– 5.8 s 4.2 ×
–”– 10−3 35 1260 –”– 5.2 s 4.7 ×
–”– 10−6 35 2725 –”– 7.9 s 3.1 ×

We see that �xed tolerances of 10−1, 10−3, and 10−6 yield speedups similar to those

observed with the adaptive choice of tolerances when starting with the same initial tol-

erances. However, speedups of roughly 3.5 × are preserved when the adaptive choice

of tolerances is used with large initial values δ(1), whereas performance quickly deteri-

orates when large �xed tolerances of 0.5 or 0.9 are used. While this indicates that the

adaptive choice of tolerances had little e�ect on computational performance in previous

experiments, where δ(1) = 10−1 was used, it does simplify the calibration of IHSS when

appropriate tolerances δ are unknown. This simpli�cation is particularly helpful when

IHSS is �rst applied to a new problem. Indeed, my collaborators and I initially used large

�xed tolerances for the coarse-scale solves (see [12]), and hence the introduction of adap-

tive tolerances greatly simpli�ed our early experiments with IHSS.
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4.3.4 E�ect of theAnderson acceleration on convergence and com-

putational performance

In order to analyze the e�ect of the Anderson acceleration on the repeated �ne-scale

updates in each IHSS iteration, di�erent choices of the parameter m are compared using

the spinodal decomposition scenario of size N1 = 64. Recall that m is the number of

previous function evaluations taken into account in the Anderson acceleration to compute

the next iterate

xk+1 :=
m∑
j=0

αjg(xk−m+j).

Hence, the choice of m = 0 e�ectively disables the Anderson acceleration, falling back to

a regular �xed point iteration

xk+1 := g(xk).

The results for the spinodal decomposition scenario with di�erent choices of m are

shown in table 4.6. While the parameter has no signi�cant impact on computational per-

formance, we see that the Anderson acceleration indeed stabilizes the IHSS method. When

disabled (m = 0), IHSS diverges for all tested values of ν, whereas the method converged

in all cases when the Anderson acceleration is enabled (m ≥ 1). This observation was the

main motivation for my collaborators and me to augment the repeated �ne-scale updates

with an Anderson acceleration (see [3, section 3.3.1]).
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Table 4.6: In�uence of the Anderson acceleration on convergence and computational per-
formance (spinodal decomposition scenario, N1 = 64, 10 time steps, δ(1) = 10−1). The
choice of m = 0 disables the Anderson acceleration. CSS stands for coarse-scale solver.

m ν IHSS iter. CSS iter. Time GMRES Time IHSS Speedup

0 2 div.1 n/a 24.3 s n/a n/a

–”– 4 div.1 n/a –”– n/a n/a

–”– 8 div.1 n/a –”– n/a n/a

–”– 16 div.1 n/a –”– n/a n/a

1 2 272 794 –”– 9.8 s 2.5 ×

–”– 4 123 765 –”– 6.8 s 3.6 ×

–”– 8 67 739 –”– 6.1 s 4.0 ×

–”– 16 49 781 –”– 7.6 s 3.2 ×

2 2 272 794 –”– 10.0 s 2.4 ×

–”– 4 112 776 –”– 6.6 s 3.7 ×

–”– 8 63 789 –”– 6.1 s 4.0 ×

–”– 16 48 878 –”– 8.1 s 3.0 ×

3 2 272 794 –”– 10.3 s 2.4 ×

–”– 4 107 813 –”– 6.4 s 3.8 ×

–”– 8 61 811 –”– 6.2 s 3.9 ×

–”– 16 48 1001 –”– 8.7 s 2.8 ×

1IHSS diverged

4.3.5 Using a di�erent coarse-scale solver

For the �nal experiment, GMRES(30) is replaced with BiCGStab as the coarse-scale solver,

and the experiment from subsection 4.3.1 is repeated for the spinodal decomposition

scenario of size N1 = 64. Again, the BiCGStab implementation is taken from Trilinos’
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Belos package. This experiment is intended to verify that the performance of the IHSS

method and the adaptive choice of tolerances for the coarse-scale solver do not depend

on speci�c features of the GMRES(30) algorithm. Note that on average, the coarse-scale

solver performed fewer than 30 iterations in each IHSS iteration in previous experiments

(cf., e.g., the third and fourth column of table 4.3). Hence, the GMRES algorithm was

rarely restarted when used as a coarse-scale solver within IHSS, whereas the restart did

come into play when the linear systems were solved directly with GMRES(30). Since the

BiCGStab method does not require the choice of a restart length or other parameters, it

can be used to eliminate these concerns.

The results of this experiment are shown in table 4.7. We see that the speedups ob-

tained with BiCGStab as the coarse-scale solver are similar to those previously observed

(cf. table 4.3). In particular, the optimal choice of ν does not change. These results con-

�rm that the observed speedups are indeed due to the IHSS algorithm and that they do

not depend on speci�c properties of the restarted GMRES method.

Table 4.7: Computational performance using BiCGStab as coarse-scale solver (spinodal
decomposition scenario, N1 = 64, 10 time steps, δ(1) = 10−1, m = 2). CSS stands for
coarse-scale solver.

ν IHSS iter. CSS iter. Time BiCGStab Time IHSS Speedup

2 286 465 23.6 s 9.9 s 2.4 ×
4 111 482 –”– 6.3 s 3.7 ×
8 62 512 –”– 5.9 s 4.0 ×

16 49 643 –”– 8.1 s 2.9 ×

The experimental results reported and analyzed in this chapter show that the linear

solves in the test problems are accelerated signi�cantly when common iterative solvers

are used as coarse-scale solvers within IHSS rather than being applied directly. The IHSS

method is easily calibrated for the test problem. The relaxation of the coarse-scale toler-

ances and the repeated �ne-scale updates both reduce computational cost, which under-

lines the e�ectiveness of the two central features of the IHSS method.



Chapter 5

Conclusions

The �nal two sections of this thesis summarize the main features of the IHSS method

and important results from the numerical experiments detailed in the previous chapter.

Section 5.2 discusses possible future work and suggests further improvements to IHSS.

5.1 Summary of the results

The IHSS method extends the original hierarchical scale separation method for the so-

lution of linear systems in modal discontinuous Galerkin discretizations. The key modi-

�cations to the algorithm are the use of an iterative solver for the approximation of the

coarse-scale problems and the repetition of the parallel �ne-scale update in each itera-

tion. The repeated �ne-scale updates are augmented with an Anderson acceleration, and

an adaptive choice of the coarse-scale solver tolerances is proposed to balance the coarse-

scale and �ne-scale updates for improved convergence and performance.

Guidelines for the parallel implementation of the method were provided, and a series

of numerical experiments was conducted using a three-dimensional, fourth-order, nonlin-

ear model problem with applications in the oil and gas industry. For these test problems,

speedups of up to 4.7 × are observed when a GMRES or BiCGStab solver is used for the

52
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coarse-scale updates within IHSS instead of being applied to the linear systems directly.

The calibration of IHSS for the test problems is easy, with an initial coarse-scale toler-

ance of δ(1) = 10−1 and ν = 8 �ne-scale updates per iteration resulting in speedups of

3.9 × and more for all tested problem sizes. While augmenting the repeated �ne-scale

updates with an Anderson acceleration has little impact on computational performance,

it stabilizes the method and ensures convergence in all test cases. The adaptive choice of

tolerances for the coarse-scale solver simpli�es the calibration of the IHSS algorithm, pre-

serving computational performance even for initial tolerances close to one. Furthermore,

the experiments show that the relaxation of the coarse-scale tolerances can save compu-

tational cost and that the repeated �ne-scale updates improve convergence of the method

for the test problems, thereby con�rming the e�ectiveness of the two central features of

the IHSS method.

5.2 Future work

Future work could include an investigation of the applicability of IHSS to other problems

in �uid dynamics such as the Navier–Stokes equations, the evaluation of preconditioned

coarse-scale solvers, an analysis of the scalability of IHSS, and the use of GPUs for its

implementation.

While preconditioners could be applied to the coarse-scale solver in the IHSS algo-

rithm presented in this thesis, doing so may change the balance of the coarse-scale and

�ne-scale updates. Thus, the calibration of the method and the adaptive choice of coarse-

scale solver tolerances would have to be further analyzed in order to use preconditioners

e�ciently. Moreover, the use of IHSS itself as a preconditioner for other iterative methods

could be investigated.

The scalability of parallel IHSS implementations is another important aspect that could

be analyzed. Existing iterative solvers may scale better when applied to the smaller coarse-
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scale systems within IHSS, and the decoupled �ne-scale updates should further improve

parallel e�ciency.

Finally, GPUs could be used to solve the decoupled �ne-scale systems, possibly even in

conjunction with CPUs. Due to their limited memory, GPUs might also be more suitable

to solve the smaller coarse-scale systems in IHSS than to solve the full linear system.
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