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ABSTRACT

Differentiable Program Learning with an Admissible Neural Heuristic

by

Ameesh Shah

We study the problem of learning differentiable functions expressed as programs

in a domain-specific language. Such programmatic models can offer benefits such as

composability and interpretability; however, learning them requires optimizing over a

combinatorial space of program “architectures”. We frame this optimization problem

as a search in a weighted graph whose paths encode top-down derivations of program

syntax. Our key innovation is to view various classes of neural networks as continuous

relaxations over the space of programs, which can then be used to complete any partial

program. This relaxed program is differentiable and can be trained end-to-end, and

the resulting training loss is an approximately admissible heuristic that can guide

the combinatorial search. We instantiate our approach on top of the A⇤ algorithm

and an iteratively deepened branch-and-bound search, and use these algorithms to

learn programmatic classifiers in three sequence classification tasks. Our experiments

show that the algorithms outperform state-of-the-art methods for program learning,

and that they discover programmatic classifiers that yield natural interpretations and

achieve competitive accuracy.
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Chapter 1

Introduction

In the past decade, the entire paradigm of computational research has exploded with

the advent of usable and effective machine learning techniques for scientists. State of

the art Machine learning tools, such as deep learning models, have allowed for state

of the art performances in a variety of domains, which has enabled us to reach new

heights in tasks like translation, object recognition, and robotics [1]. In research labs

across both industry and academia, researchers are continuing to create more and

more complex models that can produce and imitate intelligent behaviors. As a result,

the number of parameters that these models contain are often on the order of millions

[2].

With modern machine learning models becoming so computationally complex, a

number of critical issues are now surfacing that have yet to be addressed by the research

community at large. One of the foremost issues in this space is that of explainability

and interpretability. As a concrete example of how modern machine learning models

can operate in often inexplicable ways, consider the work done in [3], which identifies

that an adversarial agent can fool highly performant deep learning models, causing

these models to fail on seemingly obvious examples in a highly uninterpretable and

confusing way. These sorts of failures stem from the notion of deep learning models as

black boxes ; that is, models that do not have a human-interpretable methodology that

underlines their decision-making policy.

The relative opaqueness and black-box nature of deep learning models becomes an
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increasingly important issue in environments where trustworthiness and interpretability

are critical. Environments such as autonomous vehicle operation or precision medicine

are domains where machine learning cannot be faithfully deployed without a thorough

understanding of how the models work and where failures may occur. This is also

true in fields of research within the natural sciences, such as behavioral classification

in biology, which is a particular problem that will be addressed in this thesis. For

machine learning models that can accurately perform a task like behavior classification

to be accepted by a group of explanation-driven scientists, the methodology of the

model requires a certain level of interpretability.

A number of recent efforts have aimed to create new interpretations of deep learning

models [4], reduce the complexity of such models [2], or formally verify these models [5].

These approaches, while important steps in demystifying the black-box nature of deep

learning models, do not propose an end-to-end interpretable solution for canonical

machine learning tasks.

1.1 Program Learning

Recently, an emerging body of work has proposed the use of program synthesis

as an approach to interpretable end-to-end machine learning. The methods here

learn functions represented as programs in symbolic, domain-specific programming

languages languages (DSLs) [6, 7, 8, 9, 10]. Such programs are more interpretable than

neural networks and more expressive than linear models and decision trees. As such,

methods in this space are appropriate for domains such as the natural sciences, where

solutions to nontrivial learning problems must provide a high level of interpretability.

The constraints that the DSL imposes through the functions and primitives that

constitute the programming language can also serve as a form of regularization and



3

Figure 1.1 : A visual representation of the program learning paradigm.

allow for more reliable learning. In figure 1.1, we provide program learning framework

diagrammatically. Recent work has shown that learned programmatic solutions can

be more data-efficient, interpretable, and robust than state-of-the-art models. In this

thesis, interpretability will remain the focus: we will aim to learn programs that are

performant with respect to the original learning task, while remaining appropriately

performant and interpretable.

In particular, we study how to learn differentiable programs, which use structured,

symbolic primitives to compose a set of parameterized, differentiable modules. Unlike

many traditional programming languages, that use the standard semantics of control-

flow conditionality, differentiable programs define a space of programs that can be

executed in an end-to-end differentiable manner. These differentiable programs have

recently attracted much interest due to their ability to leverage the complementary

advantages of programming language abstractions and differentiable learning. For

example, recent work has used such programs to compactly describe modular neural

networks that operate over rich, recursive data types [8]. The work done in [8] shows

that complex tasks can be solved by using a combination of standard functional
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program semantics and deep learning models defined as library functions. By ensuring

that the programs that call such deep learning functions are themselves differentiable,

the entire resulting programs remains differentiable as well.

To learn a differentiable program, one needs to induce the program’s “architecture”

while simultaneously optimizing the parameters of the program’s modules. This

co-design task is difficult because the space of architectures is combinatorial and

explodes rapidly. This is a central challenge for researchers in program synthesis: as

programs scale in complexity, how can large swaths of the program space be explored

and exploited efficiently? Prior work has approached this challenge using methods

ranging from greedy enumeration, Monte Carlo sampling, and evolutionary algorithms

[9, 8, 11]. These methods, while effective in a number of program synthesis settings,

still face the challenge of scale in the search for a proper program architecture. In the

setting of program learning, in particular, we identify that more fully exploiting the

structure of the underlying combinatorial search problem will allow us to accelerate

search through a given program space.

More specifically, in this thesis, we show that the differentiability of programs

opens up a new line of attack on this search problem. A standard strategy for

combinatorial optimization, which we pursue in this paper, is to exploit (ideally fairly

tight) continuous relaxations of the search space. Optimization in the relaxed space is

typically easier and can efficiently guide search algorithms towards good or optimal

solutions. In our case of program learning, we propose to use various classes of neural

networks as relaxations of instantiated partial program architectures. In order to

pursue this line of attack, we frame our problem as searching through a graph, in

which nodes encode program architectures with missing expressions, and paths encode

top-down program derivations. For each partial architecture u encountered during
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this search, the relaxation amounts to substituting the unknown part of u with a

type-corresponding neural network with free parameters. Because the greater space of

programs are end-to-end differentiable, this network can be trained on the problem’s

end-to-end loss. If the space of neural networks is an (approximate) proper relaxation

of the space of programs (and training identifies a near-optimum neural network),

then we reason that the resulting training loss for the relaxation can be viewed as an

admissible heuristic. So long as this training comes close to a global optimum, the

heuristic h(u) comes close to underestimating the cost to go at u. This means that

the heuristic h is (approximately) admissible.

We instantiate our approach, called Near (abbreviation for Neural Admissible

Relaxation), on top of two informed search algorithms: A⇤ and an iteratively deepened

depth-first search that uses a heuristic to direct branching as well as branch-and-bound

pruning (Ids-bb). These informed search algorithms are used frequently in graph-

search literature and have provable guarantees on completeness and optimality under

the condition of an admissible heuristic, which we expand upon in the context of our

approximately admissible heuristic. We evaluate these search algorithms in the task

of learning programmatic classifiers in three behavior classification applications for

sequences of agent actions, in two animal biology applications and a sports analytics

application. We show that these algorithms substantially outperform state-of-the-art

methods for program learning in terms of both performance accuracy and efficiency.

More importantly, we show that our strategies are able to learn classifier programs

that bear natural interpretations and are close to commonly used neural models in

accuracy.

So far as we know, this is the first approach to exploit the differentiability of a

programming language in program synthesis.
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1.2 Structure of this Thesis and Contributions

This thesis will be structured as follows:

In section 1, the overall field of machine learning is surveyed at a high level,

and interpretability and explainability are identified as key issues for researchers to

tackle. The concept of program learning, or program synthesis for machine learning,

is introduced, and key challenges with program learning are discussed, primarily

the challenge of exploring a broad space of programs when such a space explodes

combinatorially with the scale of increasingly complex programs. We propose Near

as a solution and briefly outline the important technical details of the strategy. Lastly,

we establish the context of how our strategy will be used and mention the experimental

domains that we will use to show the effectiveness of Near in comparison to state-of-

the-art program learning and machine learning strategies.

In section 2, we establish the context in which this thesis work is rooted. The

problem of program synthesis with a domain-specific language is defined and specific

works that demonstrate the effectiveness of this methodology are offered. We follow

by referencing work on neural program induction, which is captured in our admissible

heuristic based on neural relaxations of programs. We identify key works and explain

how this thesis distinguishes itself from prior efforts. Lastly, we discuss works dealing

with discrete structure search using relaxations, which is closely related to the problem

of program learning. The challenges that prevent the works identified in this section

from being more general-purpose are mentioned.

In section 3, the problem of Programmatic Sequence Classification is formally

defined in both the contexts of canonical machine learning and program synthesis. A

bilevel optimization problem is introduced to balance a learned program’s architecture

and parameters, balancing performance and accuracy with parsimony and simplicity.
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Upon defining the problem statement, we offer a template functional programming

language that maintains end-to-end differentiability for any instantiated program

in the language. We detail the provided functions in the language, as well as the

ability for a user to provide their own functions to incorporate further domain-specific

knowledge for a given task.

In section 4, the problem of program learning (more specifically, programmatic

sequence classification) is formulated as an instance of top-down graph search. We

explain how existing methods may lack effectiveness in this setting due to the combi-

natorial explosion of program space as we scale up in program complexity. We offer a

solution in the form of a heuristic, titled Near, that utilizes continuous relaxations of

program space modeled by neural networks. We explain how Near can be used in

our graph search formulation, and instantiate two informed search methods that can

utilize our heuristic. Additionally, we discuss the approximate admissibility of Near,

and we outline proofs on the resulting approximate optimality of the program search

process as a consequence of using an approximately admissible heuristic.

In section 5, we concretize the usage of Near-based strategies by providing three

experimental domains for sequence classification tasks. Programs are learned to classify

behaviors in these domains, two of which are rooted in the natural sciences and one

of which is rooted in sports analytics. We explain the experimental setup for each

domain, and demonstrate that the informed search strategies proposed in this work

yield more accurate learned programs than existing state-of-the-art program learning

strategies. We also show drastic improvement in the efficiency at which these learned

programs are found. In comparison to deep neural networks, we find that our learned

programs achieve close competitive accuracy. We perform auxiliary analyses to show

the tradeoff between program simplicity and accuracy using our designed optimization
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function.

Lastly, in section 6, we discuss the overall findings from this thesis and evaluate

directions for future work. We close by explaining the broader impact of program

learning, and how a greater focus on interpretable machine learning can advance highly

important areas of science and research.
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Chapter 2

Related Work

2.1 DSL-based Program Synthesis

The well-defined problem of Program Synthesis is traditionally defined as the process

automatically searching for a program in a given programming language that satisfies a

given formal specification, most often a logical constraint that dictates the input/output

behavior of a program [12]. The programming languages which make up the space

of programs that a synthesizer will search through are denoted as Domain-Specific

Languages, or DSLs. Domain-Specific Languages are widely used across problems

in program synthesis due to the added benefits of both inductive bias as well as

reduced program space complexity. Consider the task proposed in [13], where string-

manipulations problems are approached from a program synthesis standpoint. If a

general-purpose programming language was used as the backdrop for this synthesis

problem, a number of issues would immediately arise: First, given that the problem

is focused specifically on string transformations, other primitive types in a general-

purpose language would be unnecessary. To include these primitives as options would

make the space of programs larger without any possibility for that enlargement leading

to additional solutions to the problem. This same issue extends to any functions or

methods that do not operate over strings. The second problem is that of domain

specificity: if a general-purpose programming language is provided with little additional

functionality, any inductive bias towards the domain of problems must be automatically
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learned by the synthesizer.

Now, let’s consider the Domain-Specific Language presented in [13]. This DSL

directly addresses the previous two issues with a general purpose language. In order

to deal with the specificity of the problem at hand, the language operates only over

string type primitives, and only offers limited functionality to operate over these

strings. This limited operation allows for the definition of subtypes within the greater

category of strings, such as alphanumeric characters or other symbols. With an

expressive string-based type system, the language also allows for the incorporation of

inductive bias by way of string-transformation functions. These functions, such as the

creation of regular expressions (regexes) or changing the case of letters, provide useful

domain-specific use that would otherwise be challenging to implement with a general

purpose language.

There is a large body of research on synthesis of programs from DSLs. In most of

these methods, the goal is to find a program that satisfies a hard logical constraint.

Foundational work such as [14] defines this problem of logical constraint solving via

program synthesis by formally outlining the conditions for logical satisfaction, the

solution space of programs, and methods of synthesis. This work was followed upon

by [15], where the program synthesis paradigm was extended to use input-output

(IO) examples that could guide candidate solutions that did (or did not) satisfy the

existing set of examples. The groundwork laid by [14] and [15] allowed for a breadth

of follow-up work: in [16], program sketches are introduced as a way to allow for

program synthesis to learn low-level functionality in a given high-level programmatic

structure. Other work, such as in [17, 18], exploit knowledge about a given space of

programs, such as type signatures, to reduce the complexity of the program search

space at a given step during the synthesis process. In this work, we will further exploit



11

the structure of the program space, in a continuous setting, in order to accelerate

program search.

To further improve upon methods of program synthesis, many recent methods in

this area have used statistical models to guide the synthesis process. Some methods,

such as [19, 20, 6] use a model learned over existing program synthesis examples to

guide a search through program space. Others, such as [21, 7, 22, 13, 23], use learned

models over a dataset of program synthesis instances as the primary means of synthesis.

In particular, Lee et al. [24] use a probabilistic model to guide an A⇤ search over

programs. Most of these models (including the one in Lee et al. [24]) are trained using

corpora of synthesis problems and corresponding solutions, which are not available

in our setting. There is also category of methods based on reinforcement learning

(RL) [23, 25]. Unlike Near, these methods do not directly exploit the structure of the

search space. Combining them with our approach presents a number of opportunities

for future work, which will be addressed in section 6.

Beyond synthesizing programs to solve logical constraint problems, a number

of recent work focuses on learning programs that optimize a quantitative objective

[26, 27, 9, 7, 28, 10]. We are aware of only one program synthesis effort that explicitly

targets the synthesis of differentiable programs [28]. However, unlike in Near, the

combinatorial search in that work neither receives neural guidance nor does it exploit

the programs’ differentiability.

2.2 Neural Program Induction

Just as NEAT induces programs to complete partial program architectures, similar

efforts have tackled neural program induction, where a neural network is trained to

generate a program’s outputs by learning a latent representation of the target program
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within its parameters. The literature on neural program induction (NPI) [29, 30, 31, 32]

develops methods to learn neural networks that can perform procedural (program-like)

tasks, typically using architectures augmented with differentiable memory. These

efforts have shown that neural program induction can be more data-efficient and robust

than purely neural methods in both discrete and continuous settings [33, 34] compared

neural program induction to neural program synthesis on a variety of discrete tasks

[13, 19, 35]. Others have used neural networks augmented with differentiable modules

to induce programmatic behavior [29, 30, 31, 32]. Our approach differs from these

methods in that its final output is a symbolic program. However, since our heuristic,

Near, involves using neural approximations of programs, our work can be seen as

repeatedly performing NPI as the program is being produced. While we have so

far used classical feedforward and recurrent architectures to implement our neural

heuristics, future work could use richer models from the NPI literature to this end.

2.3 Discrete Structure Search using Relaxations.

The problem of program learning, framed as a search through program space, bears

similarities with the problems of searching over neural architectures and the structure

of graphical models. The problem of discrete structure search has become increasingly

prominent in the current age of deep learning, where it is highly expensive to manually

design an optimal neural architecture for a deep learning model. In early deep

learning works, these neural architectures were not optimized, and design was done on

largely a trial-and-error basis. However, recent work has emerged to learn the precise

connections and architectures of these neural models. This work is rooted in discrete

structure search that precedes neural learning methods.

The key difference between these efforts and ours is that the design space in our



13

problem is much richer, making the methods in prior work difficult to apply. Some prior

works have used various types of relaxations to solve these problems [36, 37, 38, 39, 40].

Specifically, the A* lasso approach for learning sparse Bayesian networks [40] uses a

dense network to construct admissible heuristics [36, 37]. These works on structure

search have also relied upon using a single function class that encapsulates the optimal

solution; for example, composition of softmaxes over all possible candidate operations

between a fixed set of nodes [36]. In particular, Darts [36] uses a composition of

softmaxes over all possible candidate operations between a fixed set of nodes that

constitute a neural architecture, and the heuristics in the A* lasso method come from

a single, simple function class. This prior work draws a number of similarities to our

problem, in that both aim to optimize over bilevel optimization problems, where both

a discrete structure and continuous parameters within that structure must be learned

in conjunction with one another. Another similarity between the Darts work and

our efforts lies in that both works train the bilevel optimization problem end-to-end,

opting to train both levels of optimization simulataneously as opposed to fixing a

level and then training the other level with respect to that fixed solution. However,

a number of differences distinguish our work from these previous endeavors. In our

setting of program learning, there is no fixed bound on the number of expressions

in a program. Moreover, different sets of operations can be available at different

points of synthesis, and the input and output type of the heuristic (and therefore, its

architecture) can vary based on the part of the program derived so far. As an example,

there are a different number of functions (and a different set of functions) available for

choosing an expression that operates over sequences, as opposed to the options when

choosing an expression that operates over atomic values. This limitation in being able

to standardize the search space at an arbitrary point during synthesis severely limits
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the types of relaxations we can apply. This increase in complexity also prevents an

RL-based search such as [38], since assumptions such as fixed-size action space are

not guaranteed.

Another distinction is that our approach leverages multiple (neural) function classes

to build our relaxations. Prior efforts in differentiable model architecture search, such

as neural architecture search, use a single parameterized function class as the learning

model for which an optimal solution represents the optimal architecture structure

[36, 37, 40].
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Chapter 3

Problem Statement: Programmatic Sequence

Classification

3.1 Definitions

In this work, we formulate the problem of program learning as a two-pronged opti-

mization problem. More specifically, in our domain-specific language (DSL), we view

a program as a pair (↵, ✓), where ↵ is a discrete (program) architecture and ✓ is a

vector of real-valued parameters. The program architecture represents the syntax of

the program itself: expressions in our domain-specific language are composed, and

along with their corresponding parameters, a fully instantiated program is formed.

The architecture, which we denote as ↵, is generated using a context-free grammar.

The usage of a context-free grammar is a standard practice in the program synthesis

literature with respect to the definition of domain-specific programming languages

[41]. The context-free grammar consists of a set of rules X ! �1 . . . �k, where X is

a nonterminal and �1, . . . , �k are either nonterminals or terminals. A nonterminal

stands for a missing subexpression; a terminal is a symbol that can actually appear in

a program’s code. At a given point during synthesis, a nonterminal that exists in a

production can be expanded, or replaced, by any rule that replaces the nonterminal

(on the left-hand side of a rule) with a sequence of terminal and nonterminal symbols

(that appear on the right-hand side of a rule.) The grammar starts with an initial

nonterminal, then iteratively applies the rules to produce a series of partial architectures:
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sentences made from one or more nonterminals and zero or more terminals. The

process continues until there are no nonterminals left. These finalized programs can

then be executed with respect to inputs to produce the set of corresponding outputs.

We refer to such fully parameterized program architectures as complete architectures.

The semantics of the architecture ↵ is given by a function [[↵]](x, ✓), defined by rules

that are fixed for the DSL. We require this function to be differentiable in ✓.

Under this definition of the program learning problem, we aim to find an ((↵, ✓))

that will perform optimally on some learning-based objective (often framed in terms

of a loss function.) Moreso, however, we aim for these learned programs to be simple,

that is, for learned programs to not exceed a level of complexity that prevents them

from being human-interpretable. In order to account for this simplicity, we define a

structural cost for program architectures: Let each rule r in the DSL grammar have a

non-negative real cost s(r). The structural cost of ↵ is s(↵) =
P

r2R(↵) s(r), where

R(↵) is the multiset of rules used to create ↵. By introducing this structural cost

function, we allow for a user to define their own standards of complexity, and we

impose this simplicity on the program learner as an additional factor that learned

programs must be optimized with respect to.

Now, to formally define our learning problem, we assume an unknown distribution

D(x, y) over inputs x and labels y, and consider the prediction error function ⇣(↵, ✓) =

E(x,y)⇠D[1([[↵]](x, ✓) 6= y)], where 1 is the indicator function. Our goal is to find an

architecturally simple program with low prediction error, i.e., to solve the optimization

problem:

(↵⇤, ✓⇤) = argmin
(↵,✓)

(s(↵) + ⇣(↵, ✓)). (3.1)
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↵ ::= x | c | �(↵1, . . . ,↵k) | �✓(↵1, . . . ,↵k) | if ↵1 then ↵2 else ↵3 | selS x

map (�x1.↵1) x | fold (�x1.↵1) c x | mapprefix (�x1.↵1) x

Figure 3.1 : Grammar of DSL for sequence classification. Here, x, c, �, and

�✓ represent inputs, constants, basic algebraic operations, and parameterized

library functions, respectively. selS returns a vector consisting of a subset S of

the dimensions of an input x.

3.2 Program Learning for Sequence Classification.

Although the paradigm of program learning we introduce is broadly applicable across

machine learning domains, we specifically study it in the sequence classification context,

using the canonical definiton of one-to-many or many-to-many sequence classification

for machine learning, as specified in [42]. In figure 3.1, we present our context-free

domain-specific language for programmatic sequence classification in the standard

Backus-Naur form [43].. Like many others DSLs for program synthesis [17, 19, 28], our

DSL is purely functional. Our usage of a functional language allows for the end-to-end

differentiability of programs, due to the fact that the composition of differentiable

functions remains differentiable (provided that every function defined in our DSL is

also differentiable). Programs in this DSL operate over two data types: real vectors

and sequences of real vectors. We assume a simple type system that makes sure that

these types are used consistently. We now elaborate on each function specified in our

language and reason about the differentiability of each:

• Map. The Map function is a higher-order function that follows its standard

semantics in functional languages, as outlined in [28]. Map is, by definition,
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differentiable if the function passed as input to Map is differentiable as well.

• Fold. The Fold function, like Map, is also a higher-order function that follows

the semantics outlined in [28]. Note that our provided Fold function does not

take an accumulator Atom as input; for ease of interpretability, we initialize

the accumulator in Fold to the zero vector at the beginning of execution on an

input. Like Map, Fold is differentiable if and only if the function that is passed

to it as input is differentiable as well.

• MapPrefixes. The MapPrefixes function combines the Map function with the

a function that converts an ordered list to a list of ordered subsets of that list.

This prefixing function alone is not differentiable; thus, we introduce MapPrefixes

as a differentiable approximation of the original Prefix function composed with

Map. In MapPrefixes, we apply the function passed as argument to the subset

with a single element, then again to the subset with two elements, and so on, in

a recurrent fashion.

• IfThenElse (ITE). The IfThenElse function defined in our language follows the

traditional semantics of the if-then-else programming construct. This construct

is not inherently differentiable, and so we introduce a smoothed approximation

of conditional logic. When we compute a value in our "If" statement, that value

is then smoothed and bounded within [0, 1] by the sigmoid function �. The

result of our If-Then-Else is then a linear combination of the values computed in

the "Then" and "Else" clauses based on our bounded and smoothed "If" value.
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map(if DistA�ne [.0217];�.2785(x)

then AccA�ne [�.0007,.0055,.0051,�.0025];3.7426(x) else DistA�ne [�.2143];1.822)(x)

Figure 3.2 : Synthesized program classifying a “sniff” action between two mice

in the CRIM13 dataset.

More specifically, we define this function as:

[[if ↵1 > 0 then ↵2 else ↵3]](x, (✓1, ✓2, ✓3))

= �(� · [[↵1]](x, ✓1)) · [[↵2]](x, ✓2) + (1� �(� · [[↵1]](x, ✓1))) · [[↵3]](x, ✓3).

(3.2)

Here, � is the sigmoid function and � is a temperature hyperparameter. As

� ! 0, this approximation approaches the usual if-then-else construct.

• Remaining functions. Programs use a set of fixed algebraic operations � as

well as a “library” of differentiable, parameterized functions �✓. Because we are

motivated by interpretability, the library used in our current implementation

only contains affine transformations. In principle, it could be extended to include

other kinds of functions as well.

In order to indeed demonstrate that our DSL can produce interpretable programs,

figures 3.2 and 3.3 show two programs synthesized by our learning procedure using

our DSL with libraries of domain-specific affine transformations. Both programs offer

an interpretation in their respecitve domains, while offering respectable performance

against an RNN baseline. We provide interpretations for each program as follows: In

figure 3.2, DistA�ne and AccA�ne are functions that first select the parts of the
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map(multiply(

add(O↵enseA�ne(x ),BallA�ne(x )),add(O↵enseA�ne(x ),BallA�ne(x )))

Figure 3.3 : Synthesized program classifying the ballhandler for basketball.

input that represent distance and acceleration measurements, respectively, and then

apply affine transformations to the resulting vectors. In the parameters (subscripts) of

these functions, the brackets contain the weight vectors for the affine transformation,

and the succeeding values are the biases. The program achieves an accuracy of 0.87

(vs. 0.89 for RNN baseline) and can be interpreted as follows: if the distance between

two mice is small, they are doing a “sniff” (large bias in else clause). Otherwise, they

are doing a “sniff” if the difference between their accelerations is small.

In 3.3, OffenseAffine() and BallAffine() are parameterized affine transformations

over the XY-coordinates of the offensive players and the ball (see the appendix for full

parameters). multiply and add are computed element-wise. The program structure

can be interpreted as computing the Euclidean norm/distance between the offensive

players and the ball and suggests that this quantity can be important for determining

the ballhandler. On a set of learned parameters (not shown), this program achieves

an accuracy of 0.905 (vs. 0.945 for an RNN baseline).
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Chapter 4

Accelerated Program Learning with Near

In order to synthesize complex programs such as those given in figures 3.2 and 3.3

in an efficient manner, we propose an accelerated method of differentiable program

search.

Existing methods of search through a given program space that are compatible

with the differentiable program learning problem rely on simple yet often-effective

techniques for finding performant and parsimonious programs. Top-Down Enumeration

relies on synthesizing programs in increasing order of complexity, evaluating each

in order to find a minimally complex program that satisfies a desired threshold of

performance [9]. However, if the solution program is nontrivially complex, exhaustive

top-down enumeration will scale poorly, requiring every less-complex program to be

synthesized and evaluated in order before reaching the solution. Another commonly

used top-down synthesis method, Monte-Carlo search, involves sampling expressions

based on randomly rolling-out, or expanding, a partial program architecture until

a fully complete program is reached. This program is done an arbitrary number of

times, and the performances of those rolled-out programs are used in combination to

evaluate the partial program in question. In cases where rolling-out and evaluating

partial programs is expensive, or when a partial program may have a large number of

possible complete descendants, Monte-Carlo search becomes inefficient.

In contrast to the previously described methods, there also exist a class of bottom-

up synthesis methods that start with a number of fully synthesized programs, and



22

iteratively perturbs and modifies these initial programs until a large swath of the

program search space has been explored. One of the most effective and popular bottom-

up methods involves genetic algorithms, which select top-performing programs from an

initial population, cross-over, and mutate these programs to produce new generations

of diverse programs. Genetic algorithms have been used in prior differentiable program

synthesis work [28]; however, these methods rely on a diverse initial population of

programs, which is challenging to guarantee when the defined program space scales in

size and complexity.

In this section, we propose a novel method of program learning that exploits the

differentiability of program architectures during search by using neural relaxations

in partial programs. We first describe the program learning search problem in the

context of graph search, and then propose our method as a neural heuristic function

that accelerates the program search process. We reason that our proposed heuristic

is approximately admissible, and provide theoretical bounds on the optimality of an

approximately admissible heuristic. We describe two informed graph search algorithms

that utilize the heuristic to improve the efficiency of the overall program search process.

4.1 Program Learning as Graph Search

We first formulate our program learning problem as a form of graph search. Like

many other efforts on program synthesis [17, 44, 28], The search derives program

architectures in a top-down fashion: it begins with the empty architecture, generates

a series of partial architectures following the DSL grammar, and terminates when a

complete architecture is derived.

In more detail, we imagine a graph G in which:

• The node set consists of all partial and complete architectures permissible in
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the DSL.

• The source node u0 is the empty architecture. Each complete architecture ↵ is a

goal node.

• Edges are directed and capture single-step applications of rules of the DSL.

Edges can be divided into: (i) internal edges (u, u0) between partial architectures

u and u0, and (ii) goal edges (u,↵) between partial architecture u and complete

architecture ↵. An internal edge (u, u0) exists if one can obtain u0 by substituting

a nonterminal in u following a rule of the DSL. A goal edge (u,↵) exists if we

can complete u into ↵ by applying a rule of the DSL.

• The cost of an internal edge (u, u0) is given by the structural cost s(r), where

r is the rule used to construct u0 from u. The cost of a goal edge (u,↵) is

s(r) + ⇣(↵, ✓⇤), where ✓⇤ = argmin
✓
⇣(↵, ✓) and r is the rule used to construct ↵

from u.

A path in the graph G is defined as usual, as a sequence of nodes u1, . . . , uk such

that there is an edge (ui, ui+1) for each i 2 {1, . . . , k � 1}. The cost of a path is the

sum of the costs of these edges. Our goal is to discover a least-cost path from the

source u0 to some goal node ↵⇤. Given that path costs represent both the structural

and objective costs of a learned program, by this graph’s construction, ↵⇤ is an optimal

solution to our learning problem in Eq. (3.1).

4.2 Neural Relaxations as Admissible Heuristics

The main challenge in our search problem lies mainly in that partial programs and

the intermediate nodes that represent them cannot be evaluated with respect to
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r0.45

Figure 4.1 : An example of program learning formulated as graph search. Structural

costs are in red, heuristic values are in black, and prediction errors ⇣ are in blue. O

refers to a nonterminal in a partial architecture, and the path to a goal node returned

by A*-Near search is in teal.
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performance. That is, the rich information that our goal edges contain is only

accessible when a path has been explored until the end, making uninformed searches in

this program space intractable. A heuristic function h(u) that can predict the value of

choices made at nodes u encountered early in the search can help with this difficulty. If

such a heuristic is admissible — i.e., underestimates the cost-to-go along the eventual

minimum-cost path through a certain node — it enables the use of informed search

strategies such as A⇤ and branch-and-bound while guaranteeing the optimality of the

minimum-cost path found. Our Near approach (abbreviation for Neural Admissible

Relaxation) uses neural relaxations of program space to construct a heuristic that is

approximately admissible, or some ✏-close to being admissible.

Let a completion of a partial architecture u be a (complete) architecture u[↵1, . . . ,↵k]

obtained by replacing the nonterminals in u by correctly typed architectures ↵i. Let

✓u be the parameters of u and ✓ be parameters of the ↵i-s. The cost-to-go at u is

given by:

J(u) = min
↵1,...,↵k,✓u,✓

((s(u[↵1, . . . ,↵k]� s(u)) + ⇣(u[↵1, . . . ,↵k], (✓u, ✓)) (4.1)

where the previously defined structural cost s(u) is the sum of the costs of the

grammatical rules used to construct u.

To compute a heuristic cost h(u) for a partial architecture u encountered during

search, we substitute the nonterminals in u with neural networks parameterized by

!. These networks are type-correct — for example, if a nonterminal is supposed to

generate subexpressions whose inputs are sequences, then the neural network used in

its place is recurrent. We show an example of Near used in a program learning-graph

search formulation in Figure 4.1.

We view the neurosymbolic programs resulting from this substitution as tuples

(u, (✓u,!)). We define a semantics for such programs by extending our DSL’s semantics,
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and lift the function ⇣ to assign costs ⇣(u, (✓u,!)) to such programs. The heuristic

cost for u is now given by:

h(u) = min
w,✓

⇣(u, (✓u,!)). (4.2)

As ⇣(u, (✓u,!)) is now end-to-end differentiable in ! and ✓u, we can compute h(u)

using gradient-based optimization techniques, such as gradient descent, as we would

with complete program architectures during evaluation.

✏-Admissibility. It is well-known that in principle, neural networks are universal

function approximators, when provided sufficient parameterization [45]. The neural-

network based relaxation we use as our heuristic should then, in principle, be able to

replicate the behavior of any architecture that would eventually replace such a network.

However, in practice, the neural networks that we use may only form an approximate

relaxation of the space of completions and parameters of architectures, due to time

and resource constraints. Further, the training of these networks are not guaranteed

to reach global optima. To account for these errors, we consider an approximate

notion of admissibility and reason about our graph search problem through this lens.

Many such notions have been considered in the past [46, 47, 48]; here, we follow a

definition used by Harris [46]. For a fixed constant ✏ > 0, let an ✏-admissible heuristic

be a function h⇤(u) over architectures such that h⇤(u)  J(u) + ✏ for all u. Now

consider any completion u[↵1, . . . ,↵k] of an architecture u. As neural networks with

adequate capacity are universal function approximators, there exist parameters !⇤ for

our neurosymbolic program such that for all u,↵1, . . . ,↵k, ✓u, and ✓:

⇣(u, (✓u,!
⇤))  ⇣(u[↵1, . . . ,↵k], (✓u, ✓)) + ✏. (4.3)

Because edges in our search graph have non-negative costs, s(u)  s(u[↵1, . . . ,↵k]),
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implying:

h(u)  min
↵1,...,↵k,✓u,✓

⇣(u[↵1, . . . ,↵k], (✓u, ✓)) + ✏

 min
↵1,...,↵k,✓u,✓

⇣(u[↵1, . . . ,↵k], (✓u, ✓)) + (s(u[↵1, . . . ,↵k])� s(u)) + ✏ = J(u) + ✏.

(4.4)

In other words, h(u) is ✏-admissible.

Empirical Considerations. We have formulated our learning problem in terms

of the true prediction error ⇣(↵, ✓). In practice, we must use statistical estimates

of this error. Following standard practice, we use an empirical validation error

to choose architectures, and an empirical training error is used to choose module

parameters. This means that in practice, the cost of a goal edge (u,↵) in our graph is

⇣val(↵, argmin
✓
⇣ train(↵, ✓)).

One complication here is that our neural heuristics encode both the completions

of an architecture and the parameters of these completions. Training a heuristic on

either the training loss or the validation loss will introduce an additional error. Using

standard generalization bounds, we can argue that for adequately large training and

validation sets, this error is bounded (with probability arbitrarily close to 1) in either

case, and that our heuristic is ✏-admissible with high probability in spite of this error.

4.3 Integrating Near with Graph Search Algorithms

The Near approach can be used in conjunction with any heuristic search algorithm [49]

over architectures. Specifically, we have integrated Near with two classic graph search

algorithms: A⇤ [47] and an iteratively deepened depth-first search with branch-and-

bound pruning (Ids-bb). Both algorithms maintain a search frontier by computing

an f -score for each node: f(u) = g(u) + h(u), where g(u) is the incurred path cost

from the source node u0 to the current node u, and h(u) is a heuristic estimate of the
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Algorithm 1: A* Search
Input: Graph G with source u0

S := {u0}; f(u0) := 1;

while S 6= ; do
v := argminu2S f(u);

S := S \ {v};

if v is a goal node then

return v, fv;

else

foreach child u of v do
Compute g(u), h(u), f(u);

S := S [ {u}

Figure 4.2 : The A* search algorithm.

cost-to-go from node u. Additionally, Ids-bb prunes nodes from the frontier that have

a higher f -score than the minimum path cost to a goal node found so far.

In Algorithm 1, we provide the pseudocode for the A* algorithm. This A* algorithm

follows the standard formulation of A* search [47], where a priority queue is maintained

as a frontier to select the next node for exploration during search. In Algorithm 2,

we provide the pseudocode for the Ids-bb algorithm. This algorithm is a Heuristic-

Guided Depth-First Search with three key characteristics: (1) the search depth is

iteratively increased; (2) the search is ordered using a function f(u) as in A⇤, and (3)

Branch-and-Bound is used to prune unprofitable parts of the search space. We find

that the use of iterative deepening in the program learning setting is useful in that it

prioritizes searching shallower and less parsimonious programs early on in the search

process.

✏-Optimality. An important property of a search algorithm is optimality: when

multiple solutions (paths to complete programs) exist, the algorithm will find an

optimal solution (the complete program with the lowest path cost). Both A⇤ and



29

Ids-bb are optimal given admissible heuristics. An argument by Harris [46] shows that

under heuristics that are ✏-admissible, such as in the case of Near, the algorithms

return solutions that at most an additive constant ✏ away from the optimal solution.

Let C⇤ denote the optimal path cost in our graph G, and let h(u) be an ✏-admissible

heuristic (Eq. (4.4)). Suppose Ids-bb or A⇤ returns a goal node ↵G that does not

have the optimal path cost C⇤. Then there must exist a node uO on the frontier that

lies along the optimal path and has yet to be expanded. This lets us establish an

upper bound on the path cost of ↵G:

g(↵G) = f(↵G)  f(uO) = g(uO) + h(uO)  g(uO) + J(uO) + ✏  C⇤ + ✏. (4.5)

This line of reasoning can also be extended to the Branch-and-Bound component of

the Near-guided Ids-bb algorithm. Consider encountering a goal node during search

that sets the branch-and-bound upper threshold to be a cost C. In the remainder

of search, some node up with an f -cost greater than C is pruned, and the optimal

path from up to a goal node will not be searched. Assuming the heuristic function h

is ✏-admissible, we can set a lower bound on the optimal path cost from up, f(u⇤
p
), to

be C � ✏ by the following:

f(u⇤
p
) = g(up) + J(up) � f(up) = g(up) + h(up) + ✏ > C = g(up) + h(up) > C � ✏

(4.6)
Thus, the Ids-bb algorithm will find goal paths are at worst an additive factor of

✏ more than any pruned goal path.

4.4 Implementation details on Near algorithms

In our implementations of A⇤-Near and Ids-bb-Near, we allow for a number of

hyperparameters to be used that can additionally speed up our search. To improve
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efficiency, we allow for the frontier in these searches to be bounded by a constant

size. In doing so, we sacrifice the completeness guarantees discussed in the main

text in exchange for additional efficiency. We also allow for a scalar performance

multiplier, which is a number greater than zero, that is applied to each node in the

frontier when a goal node is found. The nodes on the frontier must have a lower cost

than the goal node after this performance multiplier is applied; otherwise, they are

pruned from the frontier in the case of branch-and-bound. When considering non-goal

nodes, this multiplier is not applied. We introduce an additional parameter that

decreases this performance multiplier as nodes get farther from the root; i.e become

more complete programs. We also decrease the number of units given to a neural

network within a neural program approximation as nodes get further from the root,

with the intuition that neural program induction done in a more complete program

will likely have less complex behavior to induce. We also allow for the branching factor

of all nodes in the tree to be bounded to a user-specified width in order to bound

the combinatorial explosion of program space. This constraint comes at the expected

sacrifice of completeness in our program search, given that potentially optimal paths

are arbitrarily not considered.

In our experiments, we show that using these approximative hyperparameters

allows for an acclerated search while maintaining strong empirical results with our

Near-guided search algorithms. In chapter 5, we present the hyperparameter choices

made for each experimental domain.
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Algorithm 2: Iterative Deepening Depth-First-Search
Input: Initial depth dinitial , Max depth dmax

Initialize frontier to a priority-queue with root node root ;

Initialize nextfrontier to an empty priority-queue;

(froot, fmin, diter) = (1,1, dinitial);

current = None;

while frontier is not empty do

if current is None then

pop node with lowest f from frontier and assign to current ;

if current is a leaf node then

fmin := min(fcurrent , fmin);

current := None;

else

if dcurrent > diter then

current := None;

else

Set current to child with lowest f ;

if dcurrent  dmax then

Evaluate and add all children of current to frontier ;

if frontier is empty then

frontier := nextfrontier ;

diter := diter + 1;

return fmin;

Figure 4.3 : The Iterative Deepening Depth-First-Search Algorithm
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Chapter 5

Experimental Design and Results

In order to show the effectiveness of Near-guided search for program learning, we

instantiate the programmatic sequence classification problem in three separate domains,

and use these domains as the test beds for our experiments. We start by providing

details for each experimental domain. We then discuss experimental results that show

that Near-guided search strategies can perform comparably to deep learning models

trained on the same task. We also show that Near-guided methods are both more

performant and efficient that existing state-of-the-art methods for program learning.

5.1 Datasets for Sequence Classification

For all datasets presented below, we augment the base DSL in Figure 3.1 with domain-

specific library functions that include 1) learned affine transformations over a subset of

the original set of features provided, and 2) sliding window feature-averaging functions.

5.1.1 CRIM13.

The CRIM13 dataset The CRIM13 dataset studies the social behavior of a pair of

mice annotated each frame by behavior experts [50] at 25Hz. The interaction between

a resident mouse and an intruder mouse, which is introduced to the cage of the

resident, is recorded. Each mice is tracked by one keypoint and a 19 dimensional

feature vector based on this tracking data is provided at each frame. The feature

vector consists of features such as velocity, acceleration, distance between mice, angle
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and angle changes. Our task in this domain is sequence classification: we classify each

frame with a behavior label from CRIM13. Every frame is labelled with one of 12

actions, or “other". The “other" class corresponds to cases where no action of interest

is occurring. Here, we focus on two binary classification tasks: other vs. rest, and sniff

vs. rest. The first task, other vs. rest, corresponds to labeling whether there is an

action of interest in the frame. The second task, sniff vs. rest, corresponds to whether

the resident mouse is sniffing any part of the intruder mouse. These two tasks are

chosen such that the RNN baseline has reasonable performance only using the tracked

keypoint features of the mice. We split the train set in [50] at the video level into our

train and validation set, and we present test set results on the same set as [50]. Each

video is split into sequences of 100 frames. There are 12404 training trajectories, 3077

validation trajectories, and 2953 test trajectories.

Training details of CRIM13 baselines. All CRIM13 baselines training uses

the Adam [51] optimizer and cross-entropy loss. In the loss for sniff vs. rest, the sniff

class is weighted by 1.5. Each synthesis baseline was run on an Intel 2.2-GHz Xeon

CPU with 4 cores, equipped with an NVIDIA Tesla P100 GPU with 3584 CUDA

cores.

5.1.2 Fly-vs.-Fly.

The Fly-vs.-Fly dataset [52] tracks a pair of flies and their actions as they interact

in different contexts. Each timestep is represented by a 53-dimensional feature

vector including 17 features outlining the fly’s position and orientation along with

36 position-invariant features, such as linear and angular velocities. Our task in this

domain is that of bout-level classification, where we are tasked to classify a given

trajectory of timesteps to a corresponding single action taking place. Of the three
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datasets within Fly-vs.-Fly, we use the Aggression and Boy-meets-Boy datasets and

classify trajectories over the 7 labeled actions displaying aggressive, threatening, and

nonthreatening behaviors in these two datasets. We omit the use of the Courtship

dataset for our classification task, primarily due to the heavily skewed trajectories

in this dataset that vary highly in length and action type from the Aggression and

Boy-meets-Boy datasets. Full details on these datasets, as well as where to download

them, can be found in [52]. To ensure a desired balance in our training set, we limit

the length of trajectories to 300 timesteps, and break up trajectories that exceed this

length into separate trajectories with the same action label for data augmentation.

Our training dataset has 5339 trajectories, our validation set has 594 trajectories,

and our test set has 1048 trajectories. The average length of a trajectory is 42.06

timesteps.

Training details of Fly-v.-Fly baselines. For all of our program synthesis

baselines , we used the Adam [51] optimizer and cross-entropy loss. Each synthesis

baseline was run on an Intel 4.9-GHz i7 CPU with 8 cores, equipped with an NVIDIA

RTX 2070 GPU w/ 2304 CUDA cores.

5.1.3 Basketball.

We use a subset of the basketball dataset from [53] that tracks the movements of

professional basketball players. Each trajectory is of length 25 and contains the

xy-positions of 5 offensive players, 5 defensive players, and the ball (22 features per

frame). We aim to learn programs that can predict which offensive player has the ball

(the "ballhandler") or whether the ball is being passed. The basketball data tracks

player positions (xy-coordinates on court) from real professional games. We used the

processed version from [53], which includes trajectories over 8 seconds (3 Hz in our
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case of sequence length 25) centered on the left half-court. Among the offensive and

defensive teams, players are ordered based on their relative positions. Labels for the

ballhandler were extracted with a labeling function written by a domain expert. In

total, we have 18,000 trajectories for training, 2801 for validation, and 2693 for test.

See Table 5.3 for full details of this dataset.

Training details of Basketball baselines. All Basketball experiments use

Adam [51] and optimize cross-entropy loss. Each synthesis baseline was run on an

Intel 3.6-GHz i7-7700 CPU with 4 cores, equipped with an NVIDIA GTX 1080 Ti

GPU with 3584 CUDA cores.

Details discussed in this section regarding each dataset are presented in table 5.3.

5.2 Overview of Baseline Program Learning Strategies

We compare our Near-guided graph search algorithms, A*-Near and Ids-bb-Near,

with three baseline program learning strategies: 1) top-down enumeration, 2) Monte-

Carlo sampling, and 3) a genetic algorithm. We also compare the performance of

these program learning algorithms with an RNN baseline (1-layer LSTM).

Top-down enumeration. We synthesize and evaluate complete programs in

order of increasing complexity measured using the structural cost s(↵). This strategy

is widely employed in program learning contexts [28, 9, 10] and is provably complete.

Since our graph G grows infinitely, our implementation is akin to breadth-first search

up to a specified depth.

Monte-Carlo (MC) sampling. Starting from the source node u0, we sample

complete programs by sampling rules (edges) with probabilities proportional their

structural costs s(r). The next node in the path has the best average performance of

samples that descend from that node. We repeat the procedure until we reach a goal
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node and return the best program found among all samples.

Genetic algorithm. We follow the formulation in Valkov et al. [28]. In our

genetic algorithm, crossover, selection, and mutation operations evolve a population of

programs over a number of generations until a predetermined number of programs have

been trained. The crossover and mutation operations only occur when the resulting

program is guaranteed to be type-safe.

In tables 5.4, 5.5, 5.6, 5.7, and 5.8, we present the hyperparameters used in our

implementation for all baselines.

For all baseline algorithms, as well as A*-Near and Ids-bb-Near, model pa-

rameters (✓) were learned with the training set, whereas program architectures (↵)

were evaluated using the performance on the validation set. Additionally, all baselines

(including Near algorithms) used F1-score [54] error as the evaluation objective

⇣ by which programs were chosen. To account for class imbalances, F1-scoring is

commonly used as an evaluation metric in behavioral classification domains, such as

those considered in our work [52, 50].

5.3 Experimental Results

5.3.1 Performance of learned programs.

Table 5.1 shows the performance results on the test sets of our program learning

algorithms, averaged over 3 seeds. We also provide the standard deviations of our

3 seeds in 5.2 for further detail. The same structural cost function s(↵) is used for

all algorithms, but varies across domains. We find that the Near-guided search

algorithms consistently outperform other baselines in F1-score while accuracy is
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Figure 5.1 : CRIM13-sniff minimum path costs found over time. This plot shows

the median minimum path cost to a goal node found at a given time, across 3 trials

(for trials that terminate first, we extend the plots so the median remains monotonic).

A*-Near (blue) and Ids-bb-Near (green) will often find a goal node with a smaller

path cost, or find one of similar performance but much faster.
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Figure 5.2 : Fly-vs.-Fly minimum path costs found over time.
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Figure 5.3 : Bball-ballhandler minimum path costs found over time.
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Figure 5.4 : CRIM13-sniff penalty variation.

Figure 5.5 : Bball-ballhandler penalty variation.

Figure 5.6 : As we increase � in Eq. (5.1), we ob-

serve that A*-Near will learn programs with decreasing

program depth and also decreasing F1-score. This high-

lights that we can use � to control the trade-off between

structural cost and performance.
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CRIM13-sniff CRIM13-other Fly-vs.-Fly Bball-ballhandler

Acc. F1 Dep. Acc. F1 Dep. Acc. F1 Dep. Acc. F1 Dep.

Enum. .851 .221 3 .707 .762 2 .819 .863 2 .844 .857 6.3

MC .843 .281 7 .630 .715 1 .833 .852 4 .841 .853 6

Genetic .829 .181 1.7 .727 .768 3 .850 .868 6 .843 .853 6.7

Ids-bb-Near .831 .452 7.5 .704 .760 8.7 .876 .892 4 .889 .903 8

A*-Near .826 .448 7.7 .723 .770 7.7 .872 .885 4 .906 .918 8

RNN .889 .481 - .756 .785 - .963 .964 - .945 .950 -

Table 5.1 : Mean accuracy, F1-score, and program depth of learned programs

(3 trials). Programs found using our Near algorithms consistently achieve better

F1-score than baselines and match more closely to the RNN’s performance. Our

algorithms are also able to search and find programs of much greater depth than the

baselines. Experiment hyperparameters are included in the appendix.

comparable (note that our ⇣ does not include accuracy). Furthermore, Near-guided

search algorithms are capable are finding deeper and more complex programs that

can offer non-trivial interpretations, such as the ones shown in Figures 3.2 and 3.3.

Lastly, we verify that our learned programs are comparable with highly expressive

RNNs, and see that there is at most a 10% drop in F1-score when using Near-guided

search algorithms with our DSL.



42

CRIM13-sniff CRIM13-other Fly-vs.-Fly Bball-ballhandler

Acc. F1 Dep. Acc. F1 Dep. Acc. F1 Dep. Acc. F1 Dep.

Enum. .024 .105 1 .036 .011 1 .013 .012 0 .009 .009 0.6

MC .013 .127 1.7 .088 .031 0.6 .028 .018 2 .012 .012 0.6

Genetic .003 .015 0.6 .005 .004 1.7 .028 .030 1 .016 .019 0.6

IDDFS-Near .024 .022 0.6 .024 .016 0.6 .023 .016 0 .006 .006 0

A*-Near .009 .068 1 .012 .002 1.5 .003 .004 0 .034 .034 0

RNN .008 .019 - .005 .002 - .006 .005 - .001 .001 -

Table 5.2 : Standard Deviations of accuracy, F1-score, and program depth of

learned programs (3 trials).

5.3.2 Efficiency of Near-guided graph search.

Figures 5.3, 5.2, and 5.1 track the progress of each program learning algorithm during

search by following the median best path cost (Eq. (3.1)) at a given time across 3

independent trials. For times where only 2 trials are active (i.e. one trial had already

terminated), we report the average. Algorithms for each domain were run on the same

machine to ensure consistency, and each non-Near baseline was set up such to have

at least as much time as our Near-guided algorithms for their search procedures (see

Appendix). We observe that Near-guided search algorithms are able to find low-cost

solutions more efficiently than existing baselines, while maintaining an overall shorter

running time.
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feature dim label dim max seq len # train # valid # test

CRIM13-sniff 19 2 100 12404 3007 2953

CRIM13-other 19 2 100 12404 3007 2953

Fly-vs.-Fly 53 7 300 5339 594 1048

Bball-ballhandler 22 6 25 18000 2801 2893

Table 5.3 : Dataset details.

5.3.3 Cost-performance trade-off.

We can also consider a modification of our objective in Eq. (3.1) that allows us to use

a hyperparameter � to control the trade-off between structural cost and performance:

(↵⇤, ✓⇤) = argmin
(↵,✓)

(� · s(↵) + ⇣(↵, ✓)). (5.1)

To visualize this trade-off, we run A*-Near with the modified objective Eq. (5.1)

for various values of �. Note that � = 1 is equivalent to our experiments in Table

5.1. Figure 5.6 shows that for the Basketball and CRIM13 datasets, as we increase �,

which puts more weight on the structural cost, the resulting programs found by A*-

Near search have decreasing F1-scores but are also more shallow. This confirms our

expectations that we can control the trade-off between structural cost and performance,

which allows users of Near-guided search algorithms to adjust to their preferences.

Unlike the other two experimental domains, the most performant programs learned in

Fly-vs.-Fly were relatively shallow, so we omitted this domain as the trade-off showed

little change in program depth.
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max depth init. # units min # units max # children penalty �

CRIM13-sniff 10 15 6 4 0.01 1.0

CRIM13-other 10 15 6 4 0.01 1.0

Fly-vs.-Fly 6 25 10 6 0.01 1.0

Bball-ballhandler 8 16 4 8 0.01 1.0

Table 5.4 : Hyperparameters for constructing graph G.

# LSTM units # epochs learning rate batch size

CRIM13-sniff 100 50 0.001 50

CRIM13-other 100 50 0.001 50

Fly-vs.-Fly 80 40 0.00025 30

Bball-ballhandler 64 15 0.01 50

Table 5.5 : Training hyperparameters for RNN baseline.
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# neural epochs # symbolic epochs learning rate batch size

CRIM13-sniff 6 15 0.001 50

CRIM13-other 6 15 0.001 50

Fly-vs.-Fly 6 25 0.00025 30

Bball-ballhandler 4 6 0.02 50

Table 5.6 : Training hyperparameters for all program learning algorithms. The

# neural epochs hyperparameter refers only to the number of epochs that neural

program approximations were trained in Near strategies.
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A⇤-Near Ids-bb-Near

frontier

size

frontier

size

init. depth depth bias perf. mult.

CRIM13-sniff 8 8 5 0.95 0.975

CRIM13-other 8 8 5 1.3* 0.975

Fly-vs.Fly 10 10 4 0.9 0.95

Bball-ballhander 400 30 3 1.0 1.0

Table 5.7 : Additional hyperparameters for A⇤-Near and Ids-bb-Near. The depth

bias value for CRIM13-other used a slightly different implementation (see codebase

for details.)
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MC Enum. Genetic

#

samps

max

#

prog.

popu.

size

select.

size

#

gens

total

#

evals

mut.

prob.

enum.

depth

CRIM13-sniff 50 300 15 8 20 100 0.1 5

CRIM13-other 50 300 15 8 20 100 0.1 5

Fly-vs.Fly 25 100 20 10 10 10 0.1 6

Bball-ballhander 150 1200 100 50 10 1000 0.01 7

Table 5.8 : Additional hyperparameters for other program learning baselines
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Chapter 6

Conclusions

6.1 Discussion and Future Work

In this thesis, the paradigm of program learning was presented as a burgeoning new

approach to creating more robust, interpretable solutions to machine learning problems

than those of state-of-the-art black-box learning models. Despite the great promise

of program learning, we identified a number of issues with the approach, such as its

inefficiency at scale and the lack of optimized learning strategies available for programs

in prior domain-specific languages. In order to address these issues, we presented a

novel graph search approach to learning differentiable programs. We explained how in

this problem formulation, as well as other common formulations of program learning

problems, existing top-down and bottom-up methods become highly inefficient as the

program space scales in size and complexity.

In order to create a more efficient method of program search through our defined

space of programs, we leverage a novel construction of an admissible heuristic using

neural relaxations to efficiently search over program architectures within this graph

space. This heuristic exploits the differentiability of the programs within our space, and

allows for freely parameterized neural networks to approximate the behavior of program

architectures in an underestimating fashion, making this heuristic (approximately)

admissible. We discuss the guarantees that can be made with such an approximately

admissible heuristic, and we outline how this heuristic, Near, can be leveraged in
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well-known informed search algorithms, primarily A* and Iterative-Deepening Depth-

First-Search with Branch-and-Bound. Our experiments showed that programs learned

using our Near-guided algorithms can have competitive performance with respect

to deep neural models, and that our search-based learning procedure substantially

outperforms conventional program learning approaches in both performance and

efficiency.

There are many directions for future work. One direction is to extend the ap-

proach to richer DSLs and neural heuristic architectures, for example, those suited to

reinforcement learning [10] and generative modeling [55]. The meta-approach of using

neural relaxations to approximate program behavior allows for a flexibility of usage

that can be exploited across a variety of problem domains within machine learning.

Another is to combine Near with classical program synthesis methods based on

symbolic reasoning. A third is to more tightly integrate with real-world applications to

evaluate the interpretability of learned programs. This closer integration with specific

domains will likely require both domain expertise as well as a technical understanding

of how to express domain knowledge in the form of a differentiable function that is

usable by our learning approach.

6.2 Program Learning’s Broader Impact

As discussed in Section 1, interpretability is a key motivator for research on program

learning. Programmatic models can be better than neural models at explaining causal

relationships in data and exposing underlying biases that may have been learned

without explicit direction, while offering greater expressiveness and performance than

shallower models (e.g., linear or logistic classifiers). For this reason, progress on

program learning can allow for more widespread use of machine learning in fields, such



50

as healthcare and the natural sciences, where safety and accountability to humans are

critical.

Program learning efforts such as ours also allow for incorporation of inductive

bias, which can highly influence the semantic meaning of learned programs depending

on the functions provided by the user. In fields such as autonomous driving, rules

and regulations that are otherwise challenging for purely neural models to learn can

be easily encoded by users into program learning solutions. However, this bias can

just as easily be exploited by users who desire specific outcomes from interpretable

programmatic solutions. Ultimately, users of program learning methods must ensure

that any incorporated inductive bias will not lead to unfair or misleading programs.
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