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ABSTRACT 

Many current algorithms for nonlinear constrained optimization problems 

determine a search direction by solving a quadratic programming subproblem. 

The global convergence properties are addressed by using a line search technique 

and a merit function to modify the length of the step obtain~d from the 

quadratic program. 

In unconstrained optimization, trust region strategies have been very 

successful. In this thesis we present a new approach for equality constrained 

optimization problems ba.sed on a trust region strategy. The direction selected 

is not necessarily the solution of the standard quadratic programming 

subproblem. 
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CHAPTER 1 

Introduction 

By the general nonlinear programming problem we mean the constrained 

optimization problem 

minimize f (x) 
• 

avbject to g;(x) = O, i=l,2, ... ,m (1.1) 

h;(x)2::0, i=l,2, ... ,p 

where f, II;, h; are smooth nonlinear functions defined from JR" into JR. We 

will refer to problem (1.1) as problem (NLP). 

To aimplity the study of the problem, it is common practice to consider the 

cues when only equality or inequality constraint., are involved. We will refer to 

the equality con.strained problem 

mm,m,ze f(x) 
• 

avbject to ll;(x) = 0 i = 1,2, ... , m, 
(1.2) 

as problem (EQ), and we will refer to the inequality constrained problem 

m,mm,ze f (z) 
• 

subject to h;(x) 2:: 0 i=l,2, ... ,P, 
(1.3) 

as problem (INEQ). 
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For our research we will consider problem (EQ). We will denote by g(x) 

the vector whose components are g;(x ), i = 1, 2, ... , m. The Lagrangian 

function associated with problem (EQ) i.s the function 

l(x,)..) = f(x) + )..Tg(x) (1.4) 

where A= ( A1,A2, ... , Am )r are the Lagrange multipliers. The augmented 

Lagrangian function associated with problem (EQ) is the function 

L(z,)..,C) = f(x)+)..Tg(z)+½Cg(z)Tg(z) (1.5) 

where C 2:'. 0. 

It is assumed that the problem functions are at least twice continuously 

differentiable, that a solution x. exist., and that 'ii'g;(z.) are linearly 

independent. A necessary condition for z. to be a solution to problem (EQ) is 

that there exist., )...eJRm such that (z.,)...) i.s a solution of the nonlinear system 

'ii'.l(z,)..) = O 

g(z)=O. 
(1.6) 

One of the more successful methods for solving problem (NLP) is the 

successive quadratic programming (SQP) algorithm. The local convergence 

properties for SQP have been fairly well established. The area of global 

convergence is currently receiving much attention. The global convergence 

properties have been addressed via merit functions and line searches. However it 

is not at all clear what a proper choice for the merit function should be. 

Although many functions have been suggested, they usually suffer from either 
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the fact that they involve unknown parameters with no clear way of choosing 

them; or there is no connection between the merit function and the way the step 

is computed. 

Trust region approaches have proven to be very successful in unconstrained 

optimization, and compare quite favorably with existing line search techniques. 

The purpose of this research is to develop an effective trust region algorithm for 

solving problem (EQ). Our idea is based on the global convergence theory 

developed for trust region methods for the unconstrained problem. 

At each iteration, the subproblem we solve yields a direction that is not 

necessarily the solution of the standard quadratic programming problem. 

Moreover, we will show that there is a relationship between our subproblem and 

various penalty function methods. 

CHAPTER 2 

Constrained Optimization Methods 

Historically the first methods developed were the penalty function methods 

described in Section 2.1. Although they are simple and robust, these methods 

have severe computational disadvantages. These factors led to the development 

of the multiplier methods of Section 2.2. The latter methods were an 

improvement over the penalty function methods from a computational point of 

view, but they still were not very efficient. Because we will utilize several 

concep_ts from these methods, they will be described in some detail. 

The successive quadratic programming approach of Section 2.3 has proved 

to be considerably more efficient, and software implementing this approach is 

starting to become available. Global convergence is guaranteed to some extent 

by using line search techniques, however, this approach has some shortcomings. 

Trust region approaches have been proposed for the case of linear constraints, 

but very little has been done for the nonlinear case. 

4 
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2.1. Penalty Function Methoda. 

The pene.lty function methods attempt to transform the constrained 

optimiwion problem into an unconstrained optimization problem by adding to 

the objective function a term that penalizes constraint violations. The first 

penalty function 

P(z,C} = /(z) + ½c g(zf g(z) C 2:0, (2.1.1} 

was probably proposed by Courant [1943) for problem (EQ). It can be shown 

under mild assumptions that if z(C) is a minimizer of P(z,C) for fixed C, then 

lim z(C) = z., 
C-oo 

where z. is a solution to problem (EQ). Based on this fact, the Penalty 

Function Method can be stated as follows 

ALGORITHM 2.1.1. Penalty Function Method. 

1) Let z0 be given, determine C0 2: 0 

2) For t ,_ 0, 1, 2, · · · until convergence do 

2.1) fuid Zt+l such that P(zt+1,q,) = min P(z,Ci} 
• 

2.2) determine Ci+1 > Ci 

Although Courant [1943) proposed the penalty function method, it was 

developed and popularized mainly by Fiacco and McCormick [1968]. Many 

others have also contributed to the subject. 

r···· 
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The main convergence result for the penalty function method is due to 

Polyak (1971]. This result establishes that for C sufficiently large, the penalty 

function (2.1.1) has a locally unique minimizer x( C). Furthermore, there exists a 

constant M > 0 such that 

and 

llx(C)-z,11 < M 
- C 

.IICg(z(C))->-,11 < M - C' 

where x, is the solution to problem (EQ) and >. • is its associated multiplier. 

The algorithm is easy to program and the theory is quite attractive. 

However, in practice, a straightforward implementation gives rise to serious 

numerical difficulties. As C-+ oo, the Hessian matrix '72P(z,C} becomes 

increasingly ill-conditioned. Consequently the step Xt+i -xk becomes increasingly 

badly determined. Thus it is only possible to obtain low accuracy. Also, it is not 

at all clear how to choose the penalty constant. 

It is important to point out that the penalty function method is not really 

an iterative procedure, i.e., Zt+l does not depend on xk, unless the choice of 

Ck+l depends on Zt, The penalty constant C actually plays a role analogous to 

the mesh spacing in the solution of differential equations by finite differences. 

Specifically, by choosing a large initial penalty constant, we can get arbitrarily 

good accuracy. Then one might ask, why should we minimize P(z,C) for 

various values of C, since we only need to minimize P(x,C) for the largest value 
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of C we are interested in? The answer to this question is that it is not clear 

what that optimal value of C should be and the numerical conditioning of the 

problem enters in as it does in finite differences. 

We have established that the penalty function method does not fall into the 

framework of a standard iterative procedure, therefore the question of local 

convergence has no meaning. A good initial estimate of x, is not helpful. If the 

initial estimate for C is small, the minimization problem will mainly deal with 

the objective function I and not with satisfying the constraints. Therefore, x1 is 

usually far away from x,. In addition, from a theoretical point of view, we can 

obtain convergence of any order because each iterate depends only on the 

penalty constant and we are free to choose the penalty constant. However, this 

claim would be impossible to demonstrate using finite precision arithmetic. As 

we mentioned before, the numerical conditioning of the Hessian matrix 

v';~P(x,C) becomes arbitrarily bad for large C. 

The penalty function method can be extended from problem (EQ) to 

problem (NLP). Each inequality constraint h;(x)?: 0, i = 1, 2, ... , p is replaced 

with the equivalent equality constraint 

min (0,h;(x)) = 0. (2.1.2) 

Notice that (2.1.2) is not differentiable. However, [ min (0, h;(x) )]2 is 

reasonably smooth, so the analysis carries over for the general problem (NLP). 

8 

At this point, a natural question to ask is whether constrained optimization 

problems can be solved by performing a single unconstrained optimization. This 

is possible if we have a real function with the property that the solution x, to 

the constrained problem is a local minimizer for this function. Functions with 

this property are called exact penalty functions. 

For problem (INEQ), Zangwill [1967] considered the following penalty 

function 

P(x,C) f(x)- CE min(0,h;(x)), (2.1.3) 
i=l 

and proved that P(x,C) was an exact penalty function for convex problems. 

Later on, Pietrzykowski [1969] extended Zangwill's result to nonconvex 

problems. 

One of the main disadvantages of the exact penalty function method of 

Zangwill and Pietrzykowski is that (2.1.3) is not differentiable at the solution x,. 

Consequently, efficient unconstrained optimization techniques that involve 

derivative information can not be used directly. Another disadvantage is that 

although the optimal value C, exists, in practice it can only be computed after 

solving the problem itself, because it depends on f (x,). 

Fletcher [1970] considered the following penalty function for problem (EQ): 

P(x,C) = f(x) + >.(x,c)T g(x) (2.1.4) 
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where 

>.(x,C) = ('vg(xf'vg(x)t1(g(x)- C'vg(x)T'vf(x)) 

and proved that Cor C sufficiently large, x. is a local minimizer of P(x,C). 

& before, the problem of finding C so that a single unconstrained 

optimiiation will yield x. still remains. Another drawback of Fletcher's method 

ia the (act that P(x,C) has first order terms, therefore its gradient will involve 

aecond order terms and its Hessian will involve third order terms. 

More recently, exact penalty (unctions have become of interest again, but 

with some slight differences. Consider a function P : JR•+ m -+ JR that has the 

property that one oC its local minimizers, say (x.,>-.), is such that x. is a 

solution to problem (EQ) with associated multiplier >- •. This function is called 

an exact extended penalty function for problem (EQ). 

The obvious choices for extended penalty functions are the Lagrangian 

function 

l(x,>.) = J(x)+>.Tg(x), 

or the augmented Lagrangian function 

L(z,>.,C) = J(x) + >,T g(x) + ½Cg(xf g(x). 

Both functions have stationary points (with respect to the variables x and >.) 

which correspond t.o local solutions (and their associated multipliers of problem 

(EQ)). These stationary points are not local minimizers since both functions are 

r 
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linear in >., so that their Hessian matrices are not positive definite for any (x ,>.). 

DiPillo and Grippo [1079], and independently Boggs and Tolle [1980], and 

Boggs, Tolle and Wang [1082] consider the functional 

C T D P(x,>.,C,D) = l(x,>.) + 2 g(x) g(x) + 2 <v,l(x,>.)7 Q(x)'v,l(x,>-) (2.1.5) 

where C and D are scalars and Q(x) is a weighting matrix function. This 

penalty function takes the augmented Lagrangian and adds a term that is 

quadratic in >.. DiPillo and Grippo [1979] give general conditions which 

guarantee that P is an exact extended penalty function. 

The penalty function method based on (2.1.5) does not take care of all of 

the drawbacks of previous penalty function methods. As before, it is not clear 

how the penalty constants should be chosen. Like Fletcher's method, the_ 

function involves first order terms, which means that its gradient will involve 

second order terms and its Hessian will involve third order terms. In addition, 

the dimension of the optimization problem is extended from n to n+m. 

2.2. Multiplier Methods. 

One of the major difficulties in the penalty function methods is that of ill­

conditioning as the constants become large. Therefore it would be useful to 

derive methods for which the parameters need only to assume moderate values. 

These concerns lead us to the multiplier method. It consists of updating 

the Lagrange multipliers >-; at each iteration and sometimes the penalty 



constant as well. The iteration can be stated as follows: 

ALGORITHM 2.2.1. The Multiplier Method. 

1) Let x0 be given, determine >..0, C0 > 0 

2) For k = 0, l, 2, · · · until convergence do 

2.1) find xk+I such that L(xk+1,>..k,Ck) = minL(x,>.k,Ck) 

2.2) determine ck +1 = IT{ Xt,A k , ck) 

>..k+1 = U(xt,>..k,Ck) 

% 
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where IT : JRn+m+l-+JR is said to be the penalty constant update formula and 

U : IR.n+m+l-+IR. is one of the following multiplier update formulas: 

Uyp(x,>..,C) 

Up(x,>..,C) 

Uo(x,>..,C) 

U,(x,>..,C) 

where 

>.. + Cg(x) 

-[g(x f g(x )]-1'vg(x f'i7 f (x) 

A+ ['vg(xf B-1'vg(x)J-1g(x) 

= ['vg(x)T B-1'vg(x)J-1[g(x)- 'i7g(x)TB-1('i7/(x)+C'i7g(x)g(x))], 

B 'i7;,L(x,>..,C), 

or more generally 

UauF(x,>..,C) = >.. + ['vg(x)TD'i7g(x) + AJ-1[g(x)- 'i7g(xf D'i7,L(x,>..,C)], 

where A and D are m X m and n X n matrices respectively, which may depend 

on x, >.., and C. 

12 

The multiplier method using Uyp was proposed independently by Hestenes 

[lll69] and Powell [1969]. Haarhoff and Buys [1970] proposed the multiplier 

method using the update formula Up, Formula U8 was first used by 

Buys [1972]. Formulas U, and UauF with A = 0 are special cases of a general 

theory developed by Tapia [lll69], [1974a], [1974b], [1977] for transforming a 

constrained problem into an unconstrained problem of the same dimension. 

Bertsekas [1976] generalized Polyak's result to include the multiplier 

method using Uyp, The rate of convergence of the multiplier method with a 

fixed penalty constant can be shown to be q-linear in x and in >... Additional 

results show that it is possible to choose {Ck} so that Ck -+ oo and the 

multiplier method with penalty constants { Ck} is convergent in x and >... 

Moreover, the convergence is q-superlinear in ).. if and only if Ck-+ oo. 

Tapia [1977] presents a complete analysis of the multiplier method. 

Extensive computational experience with the multiplier method was 

reported by Miele and his coworkers, [1971a], [1971b], [1972a], [lll72b]. 

2.3. The SQP Method and Equivalent Formulations. 

To guarantee convergence of the penalty function method, the penalty 

constant must go to infinity and the problem becomes increasingly ill­

conditioned. To guarantee fast convergence for the multiplier method, again the 

penalty constant must go to infinity and the problem becomes increasingly ill­

conditioned. To address these problems, an algorithm which would give fast 
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convergence without becoming ill-conditioned is needed. In this section we 

present one such algorithm. 

From a historical point of view, three different philosophies for extending 

quasi-Newton methods from unconstrained optimization to constrained 

optimization have been explored. These philosophies consist of the extended 

problem approach, the diagonalized multiplier method, and the successive 

quadratic programming (SQP) approach. Tapia [Hl78] showed that these three 

approaches were equivalent for problem (EQ). 

Following Tapia [1977], (lll78], by the extended problem we mean the 

problem of finding a stationary point of the augmented Lagrangian function 

L(.:r,>..,C) given by (1.5), i.e., solving the nonlinear system 

'vL(x,>..,C) = O, ( C 2: 0) (2.3.1) 

where 

l 'v ,.L(x ,>..,C)J [ 'v / (x )+ 'vg(x )(>.. + C g(x) )) 
'vL(z,>.,C) = = 

'v>.L(z,>..,C) g(z) 

Notice that we are allowing C = 0, so the augmented Lagrangian includes the 

Lagrangian function as a special case. 

From a theoretical point of view, the extended problem plays a very 

important role and has been in the background of the derivation of many 

algorithms. This formulation is widely used for the convergence analysis of its 

equivalent methods. 

r~· - --
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Consider applying Newton's method to solve the nonlinear system (2.3.1). 

The iteration is given by 

[
Xk+l) [x•j [ B, 
>-,+1 = >., - 'vg(x,)T 

v'g(x, )l-l [ 'v ,L (x1; ,>.., ,C)l 
0 g(x,) 

. (2.3.2) 

where B1; = 'v;,L(x1;,>.1;,C). We will refer to the procedure based on iteration 

(2.3.2) as Newton's method for the extended problem. Fletcher [l981] refers to 

this method as the Solver Method. Q-quadratic convergence in (x,>.) can be 

proved under the standard assumptions for convergence of Newton's method, 

see Tapia [Hl77]. 

The straightforward quasi-Newton method applied to problem (2.3.2) would 

consist of approximating the entire Hessian matrix 'v L (x,>..,C). However, it 

seems inefficient to approximate first order information that has already been 

calculated, or even worse, to approximate the zero component of 'vL(z,>..,C). 

Therefore we approximate only the component of 'vL(z,>..,C) that contains 

second order information. Tapia [1977] refers to this method as a structured 

quasi-Newton method for the extended problem, and the iteration is given by 

(2.3.2) using an approximation to 'v;,L(x1;,>..1;,C) as B1;. Q-superlinear 

convergence in (.:r,>.) can be demonstrated using Broyden, PSB, DFP and BFGS 

update formulas, see Tapia [1977]. 

At each iteration, the multiplier method described in Section 2.2 goes 

through a complete minimization step for x and only one update for )., although 
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we are solving for both the minimizer x, and its associated multiplier A•· It 

would then make sense to update the estimate of the multiplier after each 

update of the estimate of the minimizer. This procedure is referred to as the 

diagonalized multiplier method, and is given by 

ALGORITHM 2.3.1. The Diagonalized Multiplier Method. 

1) Let x 0 be given, determine Ao, C ~ 0 

2) For k = O, 1, 2, · · · until convergence do 

2.1) calculate At+I = U(x.,A.,C) 

2.2) calculate xk+I = x. - Bt1'v ,L (x. ,At+1,C) 

where U is one of the multiplier update formulas given in Section 2.2. If 

Bt = 'v;,L(xi,>...,C) we have the diagonalized Newton multiplier method. The 

diagonalized secant multiplier methods result Crom choosing Bk to be a secant 

update formula. 

Tapia (1977] showed that the diagonalized Newton multiplier method using 

U, is equivalent to Newton's method on the extended problem. Moreover, a 

diagonalized secant multiplier method using u. is equivalent to a structured 

secant method for the extended problem. 

Let us now consider the following quadratic programming problem 

minimize q(s) = 'vF(xf s + !.sTBs 
• 2 (2.3.3) 

subject to g(x)+'vg(xfs =0, 

where B is the Hessian of the augmented Lagrangian L(x,A,C) or an 

r 
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approximation to it, and 

F(x) = J(x) + ½ C g(x)T g(x), (C ~O). 

By a successive quadratic programming (SQP) method for problem (EQ), we 

mean the iterative procedure 

ALGORITHM 2.3.2. The Successive Quadratic Programming Method. 

1) Let x0 be given, determine Ao, C ~ 0 

2) For k = O, 1, 2, · · · until convergence do 

2.1) find a solution St, AQP to problem (2.3.3) 

2.2) Xt+l 

2.3) A•+l 

x, + s. 
AQP. 

The successive quadratic programming method for general problems using 

the exact Hessian in the quadratic term was presented by Wilson (1963]. Quasi­

Newton approximations to the Hessian were introduced by Garcia-Palomares 

and Mangasarian (1976]. The quasi-Newton SQP method was refined by 

Han [1976] and other refinements were later added by Powell (1977a], (1977b]. 

Most previous versions use C = 0 (hence F in (2.3.3) reduces to J ). 

The three philosophies described in this section are equivalent. Specifically, 

Tapia (1977] showed that for problem (EQ), the extended problem with L, the 

diagonalized multiplier method using U,, . and the successive quadratic 

programming method generate identical (x ,>..) iterates. 

----------- ------------
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Of these three equivalent formulations, the SQP philosophy is the most 

visible and popular. The main reason for its popularity is that it allows inclusion 

of inequality constraints in a straightforward manner. To do so, one merely 

carries them along as linearized inequalities in the quadratic program. Another 

reason for its popularity is that the SQP approach allows use of existing 

quadratic programming modules in its implementation. 

Although the local convergence theory has been fairly well established, the 

iaue of global convergence has not at all been determined. Numerous authors 

have addressed the global convergence properties via merit functions and line 

searches. Specifically, given a merit function 4>{z,>.,C), and a search directions 

obtained as the solution of the quadratic programming problem {2.3.3), a step 

QI (O<Q:Sl) that gives sufficient decrease in 4>(z,>.,C) is taken. For fast local 

· convergence the choice Q = 1 is dictated by the theory. However, if z is far 

from the solution, this choice will not in general guarantee convergence, see 

Maratos (1078). 

The merit function plays an important role in determining the length of the 

step, and in determining whether the step chosen yields an improvement 

towards the solution from the current point. In the unconstrained case, a merit 

function is readily available, namely the function itself. For the constrained 

problem the choice of a merit function is not at all clear. There is no natural 

descent function available because of the conflicts between the desire to decrease 

the objective function and the desire to satisfy the constraints. Many 

18 

suggestions for 4> can be found in the literature. In particular when dealing with 

problem (EQ), Han [Hl77], Powell [lll77a] and Fletcher [lll81] consider the 11 

penalty function 

m 
4>(z,>.,C) f(z) + E lgi(z)I (2.3.4) 

i=l 

Bartholomew-Biggs [Hl80] considers the standard penalty function 

4>{z,>.,C) = f(z) + ½ C g(zf g(z), (2.3.5) 

Tapia [Hl77] considers the square of the 2-norm of the gradient of the 

Lagrangian and the constraint error 

4>{z,>.) = II v'/{z) + v'g(z)>-11:r + II g(z) Iii, (2.3.6) 

and Schittkowski [1081], [Hl82], and Gill, Murray, Saunders and Wright [1983) 

consider the augmented Lagrangian 

4>{z,>.,C) = f(z)+>.Tg(z)+½Cg(zfg(z). (2.3.7) 

Finally there is the penalty function of DiPillo and Grippo [1979] and Boggs, 

Tolle and Wang [Hl80] 

4>(z,>.,C,D) = f(z)+>.T g(z)+½Cg(zf g(z)+½Dv',l(z,>.fv",l(z,>.). (2.3.8) 

These merit functions can all be extended to problems with inequality 

constraints in one of the standard ways. 

A main problem with these merit functions is that there are no theoretical 

results that establish a connection between the descent function and the step 
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generated by the SQP method. Moreover, many of these merit functions involve 

unknown constants or parameters which affect the descent properties, and there 

is no clear way of choosing them. 

In unconstrained optimization, trust region strategies have been ·very 

successful. Several authors including Sorensen (1982b] and Gay (1983] have 

extended the trust region approach to linearly constrained optimization 

problems. From a theoretical point of view, extending a trust region approach 

from unconstrained to linearly constrained problems is somewhat 

straightforward, one merely focuses on the subspace of interest. The choice of 

merit function in the case of linear constraints is also quite natural, one uses the 

objective function restricted to the subspace of interest. From a practical point 

of view, these extensions still require numerical experimentation. 

For nonlinear constraints the extension is not at all clear. The main 

attempt in generalizing the trust region approach to nonlinear equality 

constraints has been Vardi [1980]. He considers adding a constraint on the size 

of the step to problem (2.3.3), i.e., the step is given by the solution to problem 

mm1m1ze 'v,L(x,>.,Cf s + 1-sTBs 
2 

subject to g(x)+'vg(x)Ts =0 

lls ll2 ~ ~, 
(2.3.9) 

where ~ is a positive number. Immediately one problem arises, the set of steps 

that both satisfy the linearized constraints and are inside the trust region may 

be empty. To overcome this problem, Vardi considers modifying the linearized 

r 
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constraints to 

ag(x) + 'vg(x)Ts = 0, 

where 0 <a~ 1 depends on the radius ~- The choice of a is very important 

because it determines how feasible and how optimal in f the step will be. 

However, there seems to be no natural choice for a given by this approach, and 

the way in which the parameter is determined is not at all clear. 
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CHAPTER 3 

The Model Truat Region Approach For Unconstrained Optimization 

The basic idea behind trust region methods is to estimate a region in which 

a local model of the problem can be trusted to adequately represent the 

problem. Given this estimate, one takes the step that optimizes the model in 

this region. The step is then accepted or rejected, and the trust region is 

updated depending on the performance of the model in the region. The idea of 

defining a region of trust for the search direction was first suggested by 

Levenberg [1944] and Marquardt [1963] for nonlinear least-squares problems. 

The application of the technique to the general unconstrained optimization 

problem was suggested by Goldfeld, Quandt and Trotter [1966]. A detailed 

introduction t.o the trust region approach can be found in Chapter 6 of Dennis 

and Schnabel [1083]. 

The preliminary implementation of our approach will be based on one 

specific trust region algorithm, which we describe in this chapter. A step 

selection strategy is discussed in Section 3.1, and a trust region updating 

strategy is the topic of Section 3.2. Our presentation will follow Dennis and 

Schnabel (1083]. The motivation for our trust region approach for the 
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constrained problem is based on the global convergence theory developed for 

trust region methods for the unconstrained problem. We will briefly summarize 

these convergence results in Section 3.3. 

3.1. A Trust Region Step 

Suppose that we have a current point Xe and some estimate of the 

maximum length of a step, ti.. that we are likely to take from Xe. The optimal 

step strategy, proposed by Hebden [1073], takes the solution s, of problem 

mm1m1ze q.(s) = '1/(x.fs + .!...sTBcs 
• 2 (3.1.1) 

subiect to II s 11 2 :S ti.. 

where Be is the Hessian of the function at Xe or some approximation to it. It 

then tries the step to obtain a new point X+ = xc + s,. Discussions and 

modifications of this strategy have been presented by More [1977], Gay [1981], 

Sorensen (1982a], More and Sorensen [1083], and Schultz, Schnabel and Byrd 

[1985]. 

If Be is positive definite and II B.-hv/(x.) 11 :Sti.c, then s,=-B.-1'1/(x.) 

is the solution to problem (3.1.1). Otherwise the solution to problem (3.1.1) is 

the solution of 

(Be +µI)s, = -'1/(xc), (3.1.2) 

with B,+µl positive semidefinite, µ?:O, and µ(ti.,-ils,11) =0. If B, is 

positive definite, then so is B,+µl, and s,=-(B,+µJJ- 19/(x,), whereµ is 
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uniquely determined by the solution of 11s,II =Ac. If Be has negative or zero 

eigenvalues, s, is still a solution of (3.1.2). If in addition, "vf(xc) is orthogonal 

to the null space of (Bc-A1I) and ll(Bc-'X.1I)+'i7/(xc)II <Ac, where the 

superscript + denotes the pseudoinverse and 'X. 1 is the most negative eigenvalue 

of Be, then s, is the particular solution of (3.1.2) given by 

s,=-(Bc +µI)+'i7J(xc)+rcvc where Ve is the eigenvector of Be corresponding 

to >..
1
,'and Tc is chosen so that lls,11 =Ac· This latter case is labeled by More 

and Sorensen (1983] as the "hard case". 

Lets(µ)= -(B + µIt 1"vf(xc)· To computeµ> 0 so that lls(µ)II =Ac, 

we find a solution to the scalar equation 

qi(µ) = II s(µ) II - Ac = 0 . (3.1.3) 

This is done iteratively by forming a local model for problem (3.1.3), and finding 

a zero of this model. The one dimensional version of (3.1.3) suggests we use a 

local model of the form 

-°'--Ac me(µ) = P+µ 
(3.1.4) 

with free parameters a and p. It is reasonable to choose a and P to satisfy the 

two conditions: 

m,(µ) = p:µ -Ac = qi(µ) = II s(µ) 112-A, 

and (3.1.5) 

m/(µ) = __ a_ = qi'(µ) = _ s(µ)T(Bc +µIt
1
s(µ) 

(P+µ) 2 II s(µ) 112 

This gives: 

a 

p = 

(qi(µ)+ Ac )2 
qi'(µ) 

(qi(µ)+ Ac )2 
qi'(µ) 
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(3.1.6) 

-µ. 

Now that we have our model, we updateµ by asking it to satisfy m(µ) = O, i.e. 

µ = :. - p. Therefore the correction 
C 

µ+ = µ - [ II s(µ) 11] [.ii.cl.] 
Ac </>'(µ) 

(3.1.7) 

determines the iteration for solving qi(µ) = O. 

It is necessary to safeguard µ in order to transform (3.1.7) into a useful 

computational algorithm. For details of various schemes, see Hebden [l073], 

More [1977], Gay [l081] and Fletcher [1080]. The hard case must also be 

identified and a solution computed. A complete and detailed discussion can be 

found in Gay [1981], and More and Sorensen [1983]. 

3.2. Accepting the Step and Updating the Trust Region. 

Once we have calculated a step Be, we need to decide whether the point 

x+ = x, + s, is satisfactory as the next iterate. If X+ is not acceptable, we 

reduce the size of the trust region and minimize the same quadratic model over 

the smaller region. When an acceptable X+ is found, we must then decide 

whether the trust region should be increased, decreased or kept the same for the 
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next step. 

The condition for accepting x+ is quite simple, we require sufficient 

decrease in the function, i.e., 

/(x+l :S /(x,)+a'\7 f(x,)T(x+-x,) (3.2.1) 

where a is a. constant in (0,½ ). IC x+ does not satisfy (3.2.1), we reduce the trust 

region and return to finding a. smaller trust region step. 

Now assume we have X+ that satisfies (3.2.1) and that A, was not halved 

in the process of finding s,. IC s, is not the Newton step, then before we settle 

for z+, we first ask whether we should try a. larger step from x,, using the 

current model. This may be useful if the trust region has become small in 

previous iterations or started small, since it may a.void extra evaluations of the 

gradient and the Hessian by allowing the trust region to grow more rapidly. In 

order to make this decision, we compare the actual reduction 

A/ = f (x+) - f (x,) (3.2.2} 

to the predicted reduction 

A/1,.; = q,(x+-x,). (3.2.3) 

If ihe agreement is very good, i.e., 

I A/,,,; - A/ I :s /3 I A/ I 
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where fi=O.l is a typical value, or the actual reduction in/ is very large, i.e., 

/(x+l :S f(x,) + '\7/(x,)rs,, 

we increase the radius of the trust region. In both these cases, we save X+ and 

/(x+J, but instead of moving directly to x+, we double A,, and compute a new 

s, using our current model with the larger trust region. This technique is 

sometimes referred to as internal doubling, and in practice can save a significant 

number of derivative evaluations. 

Now suppose that we have decided to accept x+ as our next iterate. We 

then need to update A,. The decision is based on whether our current quadratic 

model is predicting the function well. If the quadratic model predicted the 

actual decrease in the function sufficiently well, i.e., 

A/ :S CT2 A/ pred , 

then we increase the trust region for the next iteration. If the model greatly 

overestimated the decrease in the function, i.e., 

A/ > o,Af pred , 

where O<o1 <o2 < 1, then we decrease the trust region. Otherwise we leave it 

the same. Dennis and Schnabel [HJ83] suggest using o 1 =0.25 and o2 =0.75. 

To modify the trust region radius, we follow the policy of decreasing with 

respect to the length of the step s, calculated, and increasing with respect to the 

previous trust region radius. Specifically, to reduce the trust region we choose 

Ae [ T1 II s, 11, r2 II s, II], where O < r 1 < r2 < 1. To increase the trust region, we 
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region, we choose ti.= r3 ti.c. Typical values suggested for the constants are 

T1 = 0.1, T2 = 0.5, and T3 = 2. 

3.3. Convergence Results 

Powerful convergence results for trust region approaches have been 

developed. Powell [1970], [1975] and Thomas [1975] discuss the convergence 

properties of a class of algorithms. Sorensen [1982a] proves strong convergence 

properties for a specific trust region algorithm which uses second order 

information. Related results can be found in Fletcher [1980] and More and 

Sorensen [Hl83]. Schultz, Schnabel and Byrd [1985] give general conditions 

under which a family of trust region algorithms are globally convergent. 

Our discussion summarizes the Schultz, Schnabel and Byrd [1985] results. 

They give general conditions which the computed step must satisfy. These 

conditions are as follows. 

(1) The step must give sufficient decrease of the quadratic model. 

(2) If the Hessian is indefinite, the step should give as good a decrease of the 

quadratic model as a direction of sufficient negative curvature. 

(3) If B is positive definite and the Newton step lies inside the trust region, 

then the Newton step is chosen. 

Conditions (1), (2), and (3) are a generalization of the properties of the 

optimal step that are assumed by Fletcher [1980]. Conditions (1) and (2) can be 

shown to be a strict relaxation of More and Sorensen's condition that the step 
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calculated give a predicted decrease at least some fixed fraction of the optimal 

decrease in the quadratic model. 

Given these conditions, Schultz, Schnabel and Byrd [1985) prove the 

following convergence results under standard assumptions. 

(I) If the steps sk satisfy Condition (1) for all k, then 9 f (xk) -+ 0. 

(II) If sk satisfies Conditions (1) and (3), Bk = 9 2 f (xk) for all k, and the 

sequence {x.} has a limit point x., with 9 2 J (x,) positive definite, then 

{ xk} converges q-quadratically. 

(III) If sk satisfies Conditions (1) and (2), Bk = 9 2 J (x.) for all k, and xk -+ x., 

then 9 2 f (x,) is positive semidefinite. 

The first order results extend those of Powell [1970] and Thomas [1975], 

and are a generalization of Powell [1975]. The rest are a generalization of 

Sorensen [1982a]. 



CHAPTER 4 

A Trust Region Approach for Conatrained Optimization 

Trust region approaches for unconstrained optimization have proven to be 

very successful both theoretically and practically. These approaches compare 

quite favorably with existing line search techniques. In particular, the theoretical 

results are most satisfactory and have motivated considerable experimental code. 

In this chapter we develop a trust region approach for the general nonlinear 

equality constrained optimization problem. Section 4.1 motivates our approach 

and defines a trust region step for problem (EQ). The choice of merit function 

for deciding when to accept a step and how to update the trust region are the 

topics or Section 4.2. 

•.1. A Coaatr&ioed Truat Region Step. 

One of the more successful methods for solving problem (EQ) is the 

successive quadratic programming (SQP) approach described in Section 2.3. At 

each iteration, the step is calculated as the solution of the quadratic 

programming problem 
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minimize qqp(s) = 'v / (x)T a + ½s TB a 

aubiectto g(x)+'vg(xfa =0, 

where AEIR m, and B is 'v ;, l ( x ,A) or some approximation to it. 
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(4.1.1) 

The most natural way to introduce the trust region idea is to add a 

constraint which restricts the size of the step in problem (QP), see Vardi [1880]. 

However, this approach may lead to inconsistent constraints, and it is not clear 

how to overcome this difficulty. Instead of adding the trust region constraint to 

the standard (QP) problem, we consider adding it to a somewhat different 

problem. 

Suppose we want to solve g (x) = 0 using a standard trust region method. 

We have a current point Xe and a bound Lle on the length of the step we are 

willing to take from Xe. At each iteration the step is calculated by solving : 

1 T 2 
minimize 2 11 g(xe) + 'vg(xe) B 112 

(4.1.2) 
subject to II 8 ll2 ~ Lle · 

We use 11 g(xe) + 'vg (xe )TB I I; instead of a full Newton quadratic model of 

11 g (xe) 11 ~. where by a full Newton quadratic model we mean 

g(xef g(xe) + 2'vg(xef s + aT('vg(xe)'vg(xe)T + 'v2g(xe)g(xe))s. 

The two expressions differ only in the term 'v 2g(xe) g(xe ), included by the 

Newton model in the Hessian matrix 'vg(xe)'vg(xef + 'v2g(xe)g(xe), but 

omitted in II g(xe)+'vg(xef a II;. Since we are solving the problem g(x)=0, 

we have that at the solution x., the term 'v2g(x,)g(x,)=0. Therefore using 
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II g(xc)+v'g(xc)Ts 11~ we will have the same convergence properties as we 

would using the Newton model, and we avoid using second order information 

of g. 

If the algorithm simply took the steepest descent step for the model, i.e. the 

Cauchy step s CP, then under reasonable assumptions, first order convergence 

can be demonstrated. To formalize this result, we apply the theory of Schultz, 

Schnabel and Byrd [1985] to the problem of minimizing F(x) = ½g(xf g(x). 

Before stating the theorem, we make the following definitions. Let the step at 

each iteration k be sk = xk+l - xk, and 

predk(s) = -v'F(xtf s - ½s T Bks, 

where v'F(xt) = v'g(x,)g(xt), Bk= v'g(xt)v'g(xt)T, and k = 0,1,2, · · ·. 

The theorem can now be stated as follows. 

THEOREM 4.1.1. Let g : JR n -. ]Rm be twice continuously differentiable, 

F(x) as de.fined above, and the Hessian of F(x) bounded on the whole space. 

Let {x.}, XtEIRn, k=0,1,2, ... , be a sequence of points generated by 

applying a standard trust region algorithm to the problem of minimizing 

F(x ), with starting point x0elRn. If at each iteration the step sk satisfies 

pred, ( sk) 2'.: pred, ( s CP) 

and Bk is uniformly bounded in k, then v' F(xk) converges to 0. 
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Proof. By assumption, the steps sk are chosen to give as much descent as the 

Cauchy step s 0P, i.e. pred,(s,) 2'.: pred.(s 0P). So by Lemma 4.1 in Schultz, 

Schnabel and Byrd [1985], we can conclude that 

{ 
llv'g(x.)g(x.)11 } 

pred,(s,) 2'.: ½ II v'g(x, )g (x,) II min A, II v' g (x, )v' g(xk f II · 

Given this result, the proof of the theorem is the same as part I of Theorem 2.2 

in Schultz, Schnabel and Byrd [1985]. D 

The following corollary is an immediate consequence of Theorem 4.1.1. 

COROLLARY 4.1.2. Any limit point x, of {xd such that v'g(x,) has full 

rank, is a feasible point of the constraints g. 

Proof. The proof is straightforward by observing that v'F(x,) = v'g(x,)g(x,). 

D 

Theorem 4.1.1 motivates our trust region approach for constrained 

optimization. We will base our algorithm on choosing steps that satisfy the 

condition 

llg(xc)+v'g(xc)Ts ll2 ~ llg(xc)+v'g(xcfsCP 112- (4.1.3) 

This means that the step must be at least as linear feasible as the Cauchy step 
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,eP for minimizing ½g(xf g(x). We will refer to Theorem 4.1.1 as the 

fWldamentaJ theorem for our trust region strategy. 

. Define the set Sep as 

Sep = { , : II , II 2 S a, and 

II g(x,)+'vg(x,)r, 112 S II g(x,)+'vg(x,f ,eP 112 }(~.1.4) 

That is, Sep is the set of steps from x, that are inside the trust region and give 

at least as much descent on the 2-norm of the residuals of the linearized 

constraints as the Cauchy step, (see Figure 4.1). By choosing any point in Sep 

at each iteration, we will generate a sequence {x;} which under reasonable 

amumptions, should converge to a feasible point. We take advantage of this 

freedom by choosing at each iteration a step , which minimizes some quadratic 

model of the objective function / over Sep· The step is calculated by solving 

the problem 

mm1m1ze q,(s) , 
subject to JJ, JJ 2 Sa, 

11 g(x,) + 'vg(x,f, 112 :'.Se,, 

{ 4.1.5) 

where q, (,) is a quadratic approximation to the function f and 

0, = II g(x,) + 'vg(x,f sep 112· 
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FIGURE 4.1 A Constrained Trust Region Step 
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In order to analyze our approach and study its relationship to other 

methods, we consider the problem 

mm,m,ze q(s) = aTs + l.sTBs 
• 2 

subject to 11 s 112 ~ A (4.1.6) 

II g(x) + v'g(xf s 112 :'.S 0, 

where aelR" and BelR" x II is symmetric and nonsingular. We will refer to 

problem (4.1.6) as problem (QFQC). Problem (QFQC) is the basis of our trust 

region approach to equality constrained minimization. Its solution is given by 

the following lemma. 

LEMMA 4.1.3 Ifs, solves problem {QFQC}, then s, is a solution to an 

equation of the I orm 

(B +µI+ 'l]v'g(x)v'g(xf )s, -(a +v'g(x)'IJg(x)) 

with µ,'IJ ~o, II s, II 2 ~ A, µ(A- Jls, JJ2) = 0, 

11 g (x) + v'g (xl s, 112 :'.S 0, and 'IJ (0- 11 g(x) + v'g(x f s, 112) = 0. 

Proof. Let us apply the method of Lagrange to the equivalent problem 

minimize q(s) = a Ts+ l.sTBs 
2 

subject to II s JI;~ A2 

11 g ( X) + v' g ( X) Ts I I ; :'.S 0 2 . 

(4.1.7) 

By the first order necessary conditions of constrained optimization, s, solves 

problem (4.1.7), and therefore problem (QFQC), only if 

a+ B s, + µs, + 'l]v'g(x)g(x) + 'l]v'g(x)v'g(xf s, = 0 

11 s, 11; ~ A2 

II g(x) + v'g(x)Ts, II; ~ 0 2 

µ(A 2 
- II s, 11;) = 0 

'IJ(02 - II g(x)+ v'g(xfs, II;)= O, 
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where µ and 'IJ are the Lagrange multipliers associated with the constraints 

1Jsll;~A2 and JJg(x)+v'g(x)Tsll;:Se2 respectively. The proof of the 

lemma then follows from these conditions. D 

By defining a and B in various ways we can show how the solution to 

problem (QFQC) is related to existing theory. The following theorem shows 

that if the quadratic model q(s) is the Taylor expansion of f, and the trust 

region constraint is not binding, then our step is a structured Newton step on 

the standard penalty function (2.1.1) with penalty constant 'I], It is important to 

note that 'I] is not a free parameter, but is determined by the solution to 

problem (QFQC). The adjective structure is used in the same sense as in 

Section 2.3. In this case we don't use the complete Hessian matrix, but only the 

part that does not vanish at the solution. 



THEoREM 4.1.4 Let a= 'vf (x) and B = 'i72f (x). If 'v2f (x) is 

nonaingalar and A is Buch that the conBtraint 11 8 11 2 ~ A ill not binding, 

tlaen the ,olution '• of problem (QFQC) is a Btructured Newton atep for the 

,tandard penalt11 function 

P(x) = f(x) + ½11g(xf g(x). 

Moreover, if 'i72 f (x) is positive definite, a, is a descent direction for P(x ), 

independent of whether the conBtraint 11 B 11 2 ~ A is binding. 
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Proof It 'i72 
/ (x) is nonsingular and the constraint 11 s 11 2 ~ ~ is not binding, 

the 80lution or problem (QFQC) with a = 'v f (x) and B = 'i72 f (x) is given by 

s, = -('i72f(x) + 11'vg(x)'vg(x)Tt1 ('vf(x) + 'vg(x)11g(x)). 

The Newton step sN for minimizing P(x) is · 

'v;sP(x)sN = -'vsP(x), 

where 

'vP(x) = 'vf(x) + 'vg(x)11g(x) 

and 

'i72P(x) = 'i72f(x) + 11('vg(x)T'vg(x) + 'i72g(x)g(x)). 

At the solution x., 'i72g(x.)g(x.) = 0, therefore a structured Newton step sN 
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for minimizing P(x) is given by 

('i72f(x) + 11'vg(x)'vg(x)T )sfl -('v f (x) + 'vg(x)11'vg(x)). 

Since 'i7 2 f(x) is nonsingular, &fl= s,. 

To prove that s, is a descent direction for P, it is sufficient to show that 

'vP(xf s, < 0. Noting thatµ and 1/ are nonnegative, and 'i72/(x) is positive 

definite, we have 

'vP(xf s. = - 'i7P(x)T('i7 2/(x)+µI +11'vg(x)'vg(xft1'vP(x) < 0. 

This completes the proof of the theorem. D 

Now we show that if q ( s) is the Taylor expansion of the Lagrangian 

function, then the step that solves problem (QFQC) is a structured Newton step 

on the augmented Lagrangian function 

L(x,>..,11) = f (x) + >..T g(x) + ½11g(x)T g(x). 

Again, we note that the penalty constant is determined by the solution to 

problem (QFQC). 



THEOREM 4.1.5 Let a= 'v,l(x,>.) and B = 'v;,l(x,>.). lf'v;,l(x,>.) is 

nonsingular and A is such that the constraint 11 s 11 2 '.S A is not binding, 

then the solution s, of problem (QFQC} is a structured Newton step for the 

augmented Lagrangian. Moreover, if "v;,l(x,>.) is positive definite, thens. 

is a descent direction for L (x ,>.,11), independent of whether the constraint 

11 s 11 2 '.S A is binding. 
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Proof. The proof is analogous to the proof of Theorem (4.1.4). The Newton 

step sN for minimizing L(x,>.,11) is 

'v ;,L (x ,>.,11) SN -'v,L(x,>.,11), 

where 

'v,.L(x,>.,11) = 'v,l(x,>.) + 'vg(x)11g(x) 

and 

'v;,L(x,>-..,11) = 'v;,l(x,>.) + 11('vg(x)'vg(xjT + 'v2g(x)g(x)). 

At the solution x., g(x.)=0, so a structured Newton step for minimizing 

L(x,>.,11) is 

("v;,.l(x,>-..) + 11"\lg(x)'vg(x)T )sN = -("v,l(x,>.) + 'vg(x)11"vg(x)). 

The Hessian "v;,l(x,>.) is nonsingular, therefore sN = s •. 

We now show that s. is a descent direction for L. Noting that µ and 11 are 
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nonnegative, and 'v;,l(x,>.) is positive definite, we have 

v' z L (x ,>.,11)T s, - v',. L (x ,>.,11f ('v z l(x ,>.)+µI + 11'v g (x )'v g (x f J-1'v' • L (x ,>.,11) 

< 0. 

This completes our proof. D 

We have shown how our approach relates to the standard penalty function 

and the augmented Lagrangian. It is also possible to relate the solution to 

problem (QFQC) to sQP• the solution of problem (QP). From Section 2.3 we 

have that 

SQP = -B-1 ('vf(x)+'vg(x)>.), 

where 

). = ('vg(x)TB-1'vg(x)J-1 (g(x)-'vg(x)TB-1'vf(x)). 

The following theorem shows that one should not expect the solutions of 

problems (QFQC) and (QP) to be the same. It is reasonable to compare 

solutions of the two problems only in the case that the trust region constraint in 

problem (QFQC) is not binding. This is geometrically obvious in Figure 4.1. 

THEOREM 4.1.6 Let a = 'v z l(x ,>..) and A be such that the constraint 

11 s 11 2 '.S A is not binding. Then the solution of problem (QFQC} is the 

solution to problem (QP) if and only if the unconstrained minimizer of the 

quadratic, q(s ), satisfies linearized constraints, or the Cauchy point sCP satisfies 

linearized constraints. 
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Proof. Let &• be a solution of problem (QFQC) First we will assume that 

'QP = '• and show that either the unconstrained minimizer of q ( s) or the 

Cauchy step & CP satisfies linearized constraints. 

Since 'QP solves problem (QP), it satisfies linearized constraints, i.e., 

g(x) + 'vg(xf sQP = 0. 

Given that,. = 'QP• we have 

g(x) + 'vg(xf '• = 0. 

If the Cauchy step satisfies linearized constraints, then 0 = 0, and problems 

(QP) and (QFQC) are equivalent. 

Now let us consider 0 > 0. Since 0 > 0 the constraint 

llg(x)+'vg(x)r,112 :'.S 0, 

is not binding and the multiplier 1/ associated with this constraint is 0. Since 

11 s 11 2 :'.S a, is assumed not to be a binding constraint, the solution to problems 

(QP) and (QFQC) is given by 

Bs. = -'vzl(x,>.), 

which gives the unconstrained minimizer of q(s). 

Next we must show that if the unconstrained minimizer or q ( s} satisfies 

linearized constraints, then 'QP = '•· The result follows from the fact that in 

this case both problems become the same unconstrained minimization problem.O 
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As we progress through the iterations or our algorithm, we should expect to 

have a become large and 0 -. 0. Clearly, for a sufficiently large, we will have 

µ = 0. Also, from Theorem 4.1.5, we are led to conjecture that ,, _, oo as 0-. 0. 

Hence, we are interested in the behavior of the solution of problem (QFQC) as 

,, _, oo and µ-. 0. The following theorem gives us this behavior, which can be 

viewed as a form of consistency. Namely, while the solution of problem (QP) 

and problem ( QFQC) are in general never the same; as ,,-. oo and µ-. 0 the 

solution of problem (QFQC) approaches the solution of problem (QP). Thus we 

should expect our algorithm to eventually generate ;iteps which are arbitrarily 

close to the SQP step. In practice we have found this to be the case. These 

comments are the subject of the following theorem. 

THEOREM 4.1.7 Let a = 'v,l(x,>.), and B be positive definite. If s(µ,TJ) 

denotes the solution to problem {QFQC), then 

lim s(µ,TJ) = sQP· 
(µ,~)-(0,oo) 

Proof. To prove this theorem we obtain (B+µl+TJ'vg(x)'vg(xfJ- 1. By the 

Sherman-Morrison-Woodbury formula (see page 50 of Ortega and Rheinholdt 

[1970]) we have 

(B+µl+11'vg(x )'vg(x f J-1 (B +µIJ-1 - TJ(B +µft1'vg(x) 

[l+TJ'vg(x )T(B + µJJ- 1'vg(x W1'vg(x f (B + µIJ- 1
. 
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Therefore, 

s (µ,11) = -((B + µ/)+1/'v g (x )'i7 g (x )Tt1('i7 z l (x ,>- )+v' g (x )11g (x)) 

= -(B + µIt 1{I-'i7g(x) [.!.l+v'g(x )T (B + µJt 1v'g(x)J-1v'g(x )T(B + µJt 1
} ,, 

('vxl(x,>-) + 'vg(x)11g(x)) 

-(B + µIt 1{v' z l(x ,>-)+v'g(x) [.!.l+'vg(x )T (B + µIt 1'i7g(x )J-1 ,, 
(g(x)-'vg(x)T(B +µIt1v',l(x,>-))} 

Taking limits as 11-+oo and µ-+O we have 

Jim s(µ,11) = -B-1(v',l(x,>-)+'i7g(x)['i7g(x)T B-1v'g(x)J-1 

(µ,'1)--+(0,oo) 

( g(x)-v'g(xf B-1v',l(x,>-))). 

It is straightforward to see that by substituting 'i7J(x)+'i7g(x)>- for v',l(x,)..) 

we obtain sQP· D 

(.2. A Merit Function. 

In section (4.1), we established the relationship between the step s, and 

some of the different penalty functions of chapter 2. We also proved that a 

penalty constant is given to us by the QFQC problem itself. It is natural then 

to use this relationship to determine whether or not the step calculated gives a 

new iterate that is an improvement over the old iterate. 

Recall Theorems (4.1.4) and (4.1.5). If we minimize a quadratic 

approximation of the objective function f in problem (QFQC), the solutions, is 

a structured Newton step for the standard penalty function (2.1.1) with penalty 
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constant C = 1/· If instead, we minimize a quadratic approximation to the 

Lagrangian function, the solution s, is a structured Newton step for the 

augmented Lagrangian with penalty constant C = 1/· Moreover, if the Hessians 

in the quadratic approximations are positive definite, then the solutions define 

descent directions for the penalty function and the augmented Lagrangian 

respectively. 

Furthermore, we observe that when ).. =0, L(x,>-,11) reduces to P(x,11). 

Therefore a natural choice for the merit function is the augmented Lagrangian 

L(x,A,1/) = f (x) + >,.T g(x) + ½11g(xf g(x), (4.2.1) 

where 1/ 2'.: 0 is the penalty constant and is given by the solution s, of problem 

(QFQC). The multiplier ).. will be chosen accordingly with the quadratic 

function we choose to minimize in problem (QFQC). 

To decide whether to accept a step or not, and in updating the radius of 

the trust region, we make use of the augmented Lagrangian in the same way 

that the objective function f is used in the unconstrained case. A step is 

accepted if it gives enough descent on the augmented Lagrangian. To update the 

radius of the trust region, we look at the agreement between a model of the 

augmented Lagrangian and the augmented Lagrangian. 

However, there is a special case we should pause to consider. Suppose that 

the Cauchy step sCP for problem (4.1.4) satisfies linearized constraints. Notice 

that this case includes the case when Xe is feasible, but not optimal, because 



then ,cP = 0 and g(x,) = 0. Problem (QFQC) is then equivalent to 

mm1m1ze q,(,) 

subject to llg(x,) + v'g(x,f s II; 
lls ll2 $ .:l, · 

0 
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(4.2.2) 

Let s. be the solution of (4.2.2). This implies that s. satisfies linearized 

constraints, i.e. g (x,) + v' g (x, f s. = O. Furthermore, the gradient of the 

constraint 1111 ( x,) + v' g ( x, f B I I ; = 0 at the solution s, is zero. This fact leads 

t.o numerical difficulties. To overcome these difficulties, we consider solving an 

equivalent problem 

mm1m1ze q,(s) 

subject to g(x,) + v'g(x,f B 

llsi12 $ a •. 
0 (4.2.3) 

A solution of problem (4.2.3) will be a solutio;D of problem (4.2.2), but there will 

not be a value for the penalty constant 1/ to be used in the merit function. We 

propose the following scheme for determining a value for 17. 

Consider the problem of minimizing the augmented Lagrangian function 

L (x ,A,fl), with respect to the variable x and for some fixed value of >.. and 1/, 

using a trust region approach. At each iteration the step is calculated as a 

solution t.o the problem 

minimize v', L (x, ,>..,11JT s + ½s TH, s 

subject to lls 112 $ .:l, 
(4.2.4) 

where H, = B, +flv'g(x)v'g(xf is the approximation to the Hessian of the 
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augmented Lagrangian and B, is the same as in problem (QFQC). 

As we mentioned in Section 3.3, to obtain convergence the step should give 

as much descent as the Cauchy step. For now, let us assume that a, in problem 

(4.2.4) is large enough so that the Cauchy point is inside the trust region. Let 

sCP be the Cauchy step for problem (4.2.4), i.e., 

sCP 
v', L (x, ,>.,r1f v', L (x, ,>-,11) 

T v',L(x.,>.,11). 
v',L(x.,>-,11) H, v',L(x.,>-,11) 

(4.2.5) 

The prediction for the value of the model objective function at the Cauchy 

point is then given by 

1 IIV,L(x,,>-,11)111 
T-CP l -CPT H -CP - -- ) 

v' x L (x, ,>-,11) s + 2s c B - 2 v' • L (x, ,>-,11f H, v' L (x. ,>-,11 ( 4.2.6) 

To obtain convergence, we require that the step s that solves problem (4.2.3) 

give as much descent as the Cauchy step scp for problem (4.2.4), i.e., 

I Iv' x L (x, ,>-,11) I Ii 
2 v',L(x.,>.,11fH,V,L(x.,>-,11) 2'. v',L(x,,>-,11fs + ½sTH,s.(4.2.7) 

Therefore we will choose 11 > 0 for which (4.2.7) holds. If there does not exist a 

positive value of 11 for which (4.2.7) is satisfied, then the step s is not accepted, 

and the radius of the trust region is reduced. 

The value of 11 for which (4.2.7) holds does not necessarily exist and is not 

in general unique. We can expect to have real intervals for which any value in 

the interval satisfies· (4.2.7). The question now is which value to choose for-,/. 

We consider an optimistic strategy. If there is a value for 1/ that satisfies (4.2.7) 
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and allows a very good prediction of L such that the trust region can be 

increased, we choose this value for 11· If this value does not exist, we find a value 

for 11 for which the trust region will remain the same. If this value of 11 does not 

satisfy (4.2.7), we choose a value for 11 which will permit us to accept the st·ep. It 

is possible that the values of 11 for which (4.2.7) holds do not allow us to accept 

the step. In this case, we reject the step, reduce the trust region and calculate a 

shorter step using our current model. 

Now assume that the radius .t.. in problem (4.2.4) is so small that the 

Cauchy point lies outside the trust region. In this case the Cauchy step s°P is 

given by 

s°P 

and the Cauchy prediction is 

.t.c v',L(x.,A,11) 

ll'v,L(x.,A,11)112' 

-~.'v,L(x.,A,11) + .!._t. v',L(x.,A,11)THcv',L(xc,A,11) 
2 C II v' ,L(xc ,A,11) II f 

(4.2.8) 

(4.2.9) 

In this case, the Cauchy step s°P is not the step that minimizes the quadratic 

model in the steepest descent direction, it is the step along the steepest descent 

direction that has length ~.. Therefore the value of the quadratic function in 

(4.2.4) which we obtain with (4.2.8) is greater or equal to the value we obtain 

I 
! 

with (4.2.5). Hence 

-.t..v',L(x.,A,1I) + 1 'v,L(x.,A,11fH.'v,L(x.,A,11) 
2 Jlv',L(x.,A,11)11? 

> _ 1 llv',L(x.,A,11)11:i' 
2 v',L(x.,A,11fH v' L(x A 11). 

Combining (4.2.7) and (4.2.10), we have 

1 v',L(x.,A,11f He v',L(x.,A,11) 
-.t. v' L(x A 11) + 

c z c• ' 2 llv',L(x.,A,11)11? 

C Z C 1 , 

?: L(x.,A,11)Ts + ½sTH.s. 
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(4.2.10) 

(4.2.11) 

To determine 11 we then proceed in the same way as before using (4.2.11) instead 

of (4.2.7). 

Our numerical results indicate that this idea gives good results, although at 

the writing of this thesis we Jack theoretical justification. 
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CHAPTER 5 

A Constrained Trust Region Algorithm 

The ideas of Chapter 4 are put together in this chapter to construct a trust 

region algorithm to find a local solution of the nonlinear equality constrained 

optimization problem. In Section 5.1 we discuss a way of approximating a 

solution to the constrained trust region problem (QFQC) using an optimal step 

strategy. In addition we suggest a dogleg approach and define two different 

dogleg curves. In Section 5.2 we present the scheme for accepting a step and 

updating the trust region. Section 5.3 contains the statement of the complete 

trust region algorithm. Numerical results are presented in Section 5.4. 

i.1. Computing a Constrained Trust Region Step. 

The first approach we will follow for approximating a solution a. to 

problem (QFQC) i.s based on the idea for computing a locally con.strained 

optimal step in the unconstrained case described in Section 3.1. 
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r--

Recall problem (QFQC) 

minimize aT a + !.sT B s 
2 

subject to II s 11 2 ~ A 

II g(z) + 'v'g(z)Ts 11 2 ~ 0. 
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If lls';/PII ~A, then we take s=s<JP. Now assume lls<JPII >A. First we 

must determine which constraints of problem (QFQC) are binding. This is done 

by considering the three different possibilities: only the A trust region is 

binding, only the 0 feasibility constraint i.s binding, both the constraints are 

binding. 

To determine if only the constraint 11 s II ~ A is binding, we find the 

solution St::. to the unconstrained trust region problem, 

mm,m,ze a Ts + !.s TB s 
2 

subject to 11 s 11 2 ~ A, 
(5.1.1) 

using the techniques already available for approximating s 1::., see Gay [1981), and 

More and Sorensen [1983j. If the solution st::. is such that 

llg(z)+'v'g(zfs1::.ll 2 ~ 0, {5.1.2) 

then we know that the feasibility constraint is not binding at the solution, and 

St::. is the solution to problem (QFQC). 

Now let us assume that inequality {5.1.2) does not hold, i.e., the constraint 



,............. __ , .. 
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II g(x)+"vg(x)Ts ll 2 S0 is binding at the solution. To determine if only this 

constraint is binding, we consider the problem 

minimize a Ts + .!.s TB s 
• 2 

subject to 11 g(x) + "vg(x)Ts 11 2 S 0. 
. (5.1.3) 

To calculate an approximate solution s0 of problem (5.1.3), we proceed as in the 

unconstrained case and construct an algorithm to find an approximate solution 1/ 

to the scalar equation 

4'(11) = llu(x) + "vg(xf s(11)ll2-0 0, 

where s(11) = -(B+11"vg(x)"vg(x)Tt1(a+11"vg(x)g(x)). The local model 

suggested by the problem is 

m(11) a+ l311 _ e, 
- ; + €1J 

which can be simplified by dividing numerator and denominator by; to obtain 

a+ /311 m(11) = -- - 0 , 
1 + E1J 

& ?, € 
where a=..,,..., fl=...-, and E= ...-. The model m(11) has three free parameters, a, 

'Y 'Y 'Y 

/3, and 'Y, and we choose them to satisfy the three interpolatory conditions 

a+fJ11 _ e = 4'(11) m(11) -
1 + Efl 

m'(11) /3-ae 
= (1 + E1/)2 = q,'(11) 

~ m'(11) = q,"(71)' m
11

(1/) = - l + 1/E 

,-·---

where 

4'(11) = II g(x) + "vg(xf s(11)ll2 - 0, 

q,'(11) s1
( 11)T"v g(x )("v g (x )Ts( 11)+g(x )) 

II g(x) + "vg(x)Ts(11)ll2 
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qi" ( 1/) s"( 11f "v g (x )(g(x )+"v g (x jT s(11)) + s'( 11)"v g(x )"v g (x )Ts'( 11)-q,'( 11)</i'( 11) 
II g(x) + "vg(x)Ts(11)ll2 

and 

s1(11) = -(B + 71"vg(x)"vg(x)T)-1"vg(x)("vg(x)Ts(11) + g(x)) 

s11 (11) = -2(B + 71"vg(x)"vg(x)Tt1"vg(x)"vg(x)Ts 1(11). 

Notice that m"(11) completely determines€, so that 

P"i.!u 
114'"(11) + 2q,'(11) 

Then m(71) and m'(11) give 

a = 4'(11) + e - ¢/(11)(1 + e11)11 

and 

/3 = '1'1(1J)(l+E1J) + (q,(71)+8)71. 

We choose 1/, to satisfy m(11)=0, i.e., 

0-a 
1/ = --/J-0E 

(5.1.4) 

(5.1.5) 

(5.1.6) 

Substituting (5.1.4), (5.1.5) and (5.1.6) into the above gives the following 
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iteration for calculating f/ 

f/+ 
- 2ip(fJ) <l>'(fJ) 

f/ 2<P1(1J)2-<P(1J)<P"(11) 
(5.1.7) 

A3 in the unconstrained case, to transform (5.1.7) into a useful computational 

algorithm, the iteration must be properly safeguarded. The implementation we 

have at this time safeguards the iteration in a naive and ad hoc way. Our 

present research is concerned with this issue, and we hope to be able to come up 

with a more sophisticated safeguarding scheme. 

So far, we have calculated a solution s4 of problem {QFQC) without the 

constraint llg(z)+'vg(zfsll 2 ~0 (problem (5.1.1)). If s 4 satisfies the 0 

feasibility constraint, then s,=s4 • If s 4 does not satisfy the 0 constraint, then 

we know that it is binding at the solution s., and proceed to calculate a solution 

, 8 ot problem (QFQC) without the constraint 11 s 11 2 ::S .6. (problem (5.1.3)). If 

11 •e 11 2 ::S .6., thens, =s4 . 

Now let ua assume that 11 se 11 >.6., and that II g(z)+'vg(zf s 4 112>8. 

We then know that both the constraints are binding at the solution of problem 

(QFQC). The basic idea remains the same, to construct an algorithm for finding 

approximate 30lutions µ and f/ to the scalar equations 

4>1(µ,f/) = II s(µ,fJ) ll2 - A - 0 

4>2(µ,11) = llg(z)+'vg(zfs(µ,f/)112-8 = 0, 
(5.1.8) 

where a(µ,fJ)=-(B +µI+ f]'vg(z )'vg(z ft1 (a+ 1/'v g(z )g(z )). The two local 

~~--·---·-
! 
I 
! 
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models we consider are 

a+/3-TJ -A m1(µ,1J) = 
,+µ+ff/ 

(5.1.9) 

a+'i311 +{-0 mz(µ,11) = 
1+ µ +f1/ 

The model m 1(µ,1J) in (5.1.9) can be somewhat simplified by using the fact that 

lim s(µ,TJ)=sQP, see Theorem (4.1.7). We apply this result to obtain 
(µ,~}-(0,oo) 

lim m1(µ,1J) = ./!.. = 11.sQP ll2, 
(µ,11)~(0,00) f 

where 11 sQP 11 2 is kriown, since we started by solving for sQP to see if it lay 

inside the trust region. Thus we can rewrite m 1(µ,f/) as 

a+f.f!..TJ 
( ) f A a+fl11 A 

mi µ,f/ = 1+µ+ff/ - = ,+µ+ff/ - ' 

where I = II s QP II 2• Our model is then given by 

a+fl11 m1(µ,1J) = _....;___._ - A 
,+µ+ff/ 

( a+'i311 
m2 µ,TJ) = ----'--'-- + { - 0 

,+µ +ff/ 

(5.1.10) 

The model (5.1.10) has six free parameters a, 1 , f, a, P, and {, which we choose 

to satisfy the conditions 

m 1(µ,11) a+fl11 -A 
1+µ+ ff/ 

<P1(µ,1J) 



where 

miµ,11) a+P11 + e- e = <1>2(µ,11) 
,..,,+µ+t1/ 

a 
am1(µ,11) = a+ lt17 a 

µ b+ µ+t11)2 
= 8 <1>1(µ,11) 

µ 

a am1(µ,11) = ("/+µ)lt-Ctf 8 
'1 ("l+µ+t11)2 

= 8 <1>1(µ,11) 
'1 

a - -
am2(µ,11) = - a+ /311 8 

µ b+ µ +t11)2 = 8 <1>2(µ,11) 
µ 

a ( -am2(µ,11) =,..,,+µ)/3-at 8 
'1 ("l+µ+t11)2 

= 8 <1>2(µ,11) 
'1 

</>1(µ,11) 

</>2(µ,11) 

= II s(µ,11) II 2 - A 

= 11 g(x) + 'vg(x)T s(µ,11) 11 2 - e 

a 
a<t>1(µ,11) = 

µ 

a 
a<t>1(µ,11) = 

'1 

a 
a<t>2(µ,11) = 

µ 

a 
a<t>2(µ,11) = 

'1 

[ 
o T 

a;s(µ,11)) s(µ,11) 

11 s(µ,11) 112 

[ ¾-s(µ,11)) T s(µ,11) 

11 s(µ,11) 112 

( ts(µ,11)] T 'vg(x)'vg(x)T s(µ,11) + [ fs(µ,11)) T 'vg(x)g(x) 

II g(x) + 'vg(x)T s(µ,11) 112 

( 8 T (8 )T a;s(µ,11)) 'vg(x)'vg(x)Ts(µ,11) + a;s(µ,11) 'vg(x)g(x) 

II g(x) + 'vg(xf s(µ,11) 112 

r 
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We choose µ and 11 to satisfy m1(µ,17)=0 = m2(µ,11), i.e., we solve the 2X2 

linear system 

[ 
A At-IE l [µ) l A"/-a ) 

e-e et-/3-et 11 = a+e,..,,-e,..,, · 
(5.1.11) 

The system (5.1.11) determines the iteration for solving (5.1.8). 

To transform (5.1.11) into a useful computational algorithm, we must 

safeguard µ and 11· As we mentioned before, we are not satisfied with our 

present strategy and this is one of the topics of our present research. 

We have discussed the cases we consider in order to find an approximate 

solution to problem (QFQC). The following algorithm summarizes these cases 

and defines a typical iteration. Remember that we take the SQP step if it is in 

the trust region. 

ALGORITHM 5.1.1. Find an Approximate Solution of Problem (QFQC). 

1) Determine an approximate solution sA to problem (5.1.1). 

2) If llg(x)+'vg(x)TsAll 2 :S0 then s=sA; exit. 

3) Determine an approximate solution se to problem (5.1.3). 

4) If II Be 11 2 :S A then s=se; exit. 

5) Determine an approximate solutions, to problem (QFQC); s = s,. 

A second approach for approximating a solution s, of problem (QFQC) is 

based on the dogleg methods suggested for the unconstrained problem. A 
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complete description of this · approach can be found in Dennis and 

Schnabel (rn83J. 

Before we describe our dogleg method, let us recall some of the steps and 

points we have defined. The Cauchy step for our model problem of II 9 ( :i;) II; 

(problem (4.1.2)) is denoted by s CP, and we will refer to the corresponding 

Cauchy point as CP. The solution of problem (QP) is denoted by s<JP, and we 

define :i;<JP =z. +s<JP. We assume that we have already computed sQP and 

that 11,QP ll2 > a •. 

We have considered two dogleg curves. The first one is a piecewise linear 

function connecting the Cauchy point, CP, to the direction , QP, as indicated in 

Figure 5.1. We now choose our next iterate :i;+ to be the point along this 

polygonal a.re such that II z+-:i;• 11 2=a •. This particular dogleg is analogous 

to the dogleg introduced by Powell [rn70a] for the unconstrained case. The 

Cauchy point that minimizes llg(x.)+'lvg(x.)T, 11 2 within the trust region is 

wied instead of the Cauchy point that minimizes the quadratic model of the 

objective function, and the SQP direction acts as the Newton direction. 

The second dogleg curve we propose introduces a third direction. From the 

Cauchy point CP, we determine the step s <fp in the steepest descent direction 

that minimizes the quadratic model of/ within the region s 0P (4.1.4). The step 

, <fp gives a second Cauchy point which we will denote by CP, see Figure 5.2. 

' 
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FIGURE 5.1 Dogleg Step I 
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FIGURE 5.2 Dogleg Step II 
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We then define the dogleg curve as the piecewise linear function connecting x,, 

CP, CP, and the SQP point xQP as indicated in Figure 5.2., and choose X+ as 

the point on this polygonal arc that satisfies II x+-x, 11 2 =~,. Observe that 

this dogleg curve reduces to the dogleg curve for the unconstrained case when 

no constraints are present. 

Certainly other definitions for a dogleg curve are possible. However, we will 

not discuss more possibilities until we learn more about these particular ones 

from our numerical results. 

5.2. Accepting a Step and Updating the Trust Region 

AJS we mentioned in Section 4.2, we will use the augmented Lagrangian in 

the same way as the objective function is used in the unconstrained case, to 

decide when to accept a step and how to update the trust region. However, 

since in some cases the choice of the penalty constant is not unique, we will 

incorporate the optimistic strategy described in Section 4.2. 

The condition for accepting a step is the same one developed for the 

unconstrained case in Section 3.2. Let x, be the current iterate, s, the step 

calculated, X+=x, +s,, and~, the current trust region radius. We accept x+ 

as the next iterate if 

L(x+,:>,+,11+) :S L(x,,A+,11+) + a'v',L(x,,A+,1/+)Ts,, (5.2.1) 

where A+ and 1/+ are the multiplier and penalty constant associated with the 

step s,, and a is a positive constant in (O,½ ). Our implementation uses 
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0t.-:= lo-4. U z+ does not satisfy (5.2.1), we reduce the trust region by a factor 

between "iii and ½, and return to compute a shorter step. 

Once wt have a new iterate Z+ that satisfies (5.2.1), we decide whether or 

not to try a larger step from z,. For this, we compare the actual reduction 

AL = L(z+,:>,+,'1+)- L(z,,A+,'1+), (5.2.2) 

to the predicted reduction 

AL,,,;. = q,(z+-z,,A+,'1+), (5.2.3) 

where q,(z+-z,,A+,'1+) is the model of the augmented Lagrangian defined by 

q,(z+-z,,A+,'1+) = 'vsL(z,,A+,'1+)T(z+-z•) + ½(z+-z,f H,(z+-z,), 

where H,=B,+71'vg(z)'vg(zf, and B,='v;sl(z,,A,) or some approximation 

to it. If the agreement is so good that 

I AL,,.;. - AL I ~ /3 I AL I , 

where we choose /3=0.l, or the actual reduction in L is very large, i.e., 

L(z+,A+,'1+) ~ L(z,,A+,'1+) + 'i7sL(z.,A+,'1+f s, , 

(5.2.4) 

(5.2.5) 

then we increase the radius of the trust region and compute a new z+ using the 

current model. In both these cases we save s,, so if the new s, does not satisfy 

(S.2.1), we drop back to the last step accepted. 

Now suppose that we have decided to accept s, as our step, so z+ is now 

our next iterate. Following the same procedure as in the unconstrained case, we 

,-
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need to update A,. Again the decision is based on whether the quadratic model 

of L is predicting the actual decrease in the merit function well. Let 

O<o-1<0-2<1 and O<r1<r2<l<r3 be specified constants. If 

AL ~ 0-2 ALpred , (5.2.6) 

then we believe that the model has predicted the merit function sufficiently well, 

so we increase the trust region. We will follow the principal of increasing the 

trust radius in terms of the previous trust radius, so that A+= r3A,. Our 

implementation uses the values o-2=0.75 and r3=2. On the other hand, if 

AL > 0-1 ALpred , (5.2.7) 

then we believe that the model greatly overestimated the decrease in the merit 

function, therefore we decrease the trust region. The radius of the trust region is 

decreased in terms of the length of the step, hence A+ E [ ril Is II 2, r2 I Is 11 2 ]. Our 

implementation uses r 1 = :
0 

and r2= ½- If neither inequality (5.2.6) or (5.2.7) 

holds, we leave the trust region the same, i.e., A+= A,. 

When the step s, satisfies linearized constraints, it may be possible to have 

a choice of values for the penalty constant. Let N, be the set of possible values, 

specifically 

N, = { 77: 
1 ll'v,L(x,,A+,11+)114 

2 'i7,L(z,,A+,1/+)TH,'i7,L(x,,A+,'1+) 
(5.2.8) 

~ 'i7,L(x,,A+,1/+fs, + ½s{H,s,} 
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or 

N, = { 1/: 
1 llv'zL(x.,>.+,1/+)114 

-A, v' zL(x, ,>-+,1/+) + 2 v' zL (x, ,>-+,1/+) T He 'v zL (xc ,>-+,11+) (5.2.9) 

> v' :sL (xc ,A+,1/+l Be + ½s{Hc Be}• 

If the set Ne is empty, we reject the step, decrease the trust region and 

return to calculating a shorter step from Xe. 

Let us now assume that the set Ne is nonempty. Following our optimistic 

strategy, we find values for the penalty constant that will allow us to do internal 

doubling. Specifically, we determine the set 

Ndbl = { 1/: I ALpred - AL I '.:: .Bl AL I or AL '.:: C12~Lpred} . (5.2.10) 

If NcnNdbt ~ 0, we choose 1/+EN.nNm, and go on to double the trust region 

and compute a new x+ using the current model. 

If NcnNdbt =0, internal doubling is not done. Instead we find the values 

of 1/ that will allow our model to predict the merit function sufficiently well. Let 

Nine { 1/ : AL < a2ALpred} - (5.2.11) 

AB before, if Ne nNinc -:;i, 0, we choose 1/+ E Ne nN;nc, accept the step and 

increase the trust radius for the next iteration. 

If the sets Ne and Nine do not intersect, we determine if there is a value for 

1/ that will allow us to accept the step and leave the trust region the same. For 
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this we find the values of the penalty constant that are in the set 

N,me = { 1/ : c,t ALpred < AL < a2ALp,ed} . (5.2.12) 

We choose 1/+ENcnN,m., accept the step, and let the next trust region radius 

be the same as the current one. If such r, does not exist, we will choose an 1/ for 

which the step is accepted. Therefore, we determine the set 

Ndec = { 1/: L(x+,>-+,1/+) < L(xc,>-+,11+) + av' zL(xc,>-+,11+? Sc} , (5.2.13) 

and choose 1/+ENcnNd,c· If the two sets Ne and Nd,c do not intersect, we 

reject the step, decrease the trust region and return to compute a shorter step. 

To complete our algorithm for accepting a step and updating the trust 

region, we need to specify the choice for the multiplier >-+ to be used in the 

merit function. If the step sc calculated by our method satisfies linearized 

constraints, then the step Be is the solution sQP to problem (QP) or probably is 

very close to it. For BQP we have an associated multiplier >,QP_ We choose 

>-+ = >. QP, because this is the only multiplier given by the update formulas of 

Section 2.2 that satisfies linearized constraints, see Tapia [1977], [1978]. If the 

step Be does not satisfy linearized constraints, then Sc= s, is very likely not 

close to s QP. In this case we will use >-+ = O, and the merit function becomes the 

standard penalty function (2.1.1) with C = 1/· 

We have now discussed all the ingredients of our scheme for accepting a 
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step and updating the trust region. The following algorithm summarizes our 

ideair. 

ALGORITHM 5.2.1. Accepting a Step and Updating the Trust Region. 

Let O < a 1 < u2 < 1 and O < T 1 < r2 < 1 < r3 be specified constants. 

1) if g(z, )+ ~g(zc )T Be =0 then 

1.1) set>-+= >,QP 

1.2) determine Ne as in (5.2.8) or (5.2.9) 

else 

1.3) set >-+ = 0 

1.4)Nc = {1/c} 

2) if N, =0 then 

2.1) choose AcE[riJJac II, r2Jlac II) 

2.2) compute a new a, 

3) Determine N.,, as defined in (5.2.1) 

4) if N,nN,,c = 0 then 

4.1) choo.,e Ac E(ri!Ja, II, r2Jla, JJ) 

4.2) compute a new 6c. 

5) Accept Z+=z, +a,, choose T/+ENcnN,,c· 

6} Determine N;"" as defined in (5.2.11) 

7) IF NC nN;,.c ,', 0 then 

7.1) choose 1/+ENcnN,nc 

7 .2) A+ E (A,, TaAc] 

7.3) exit. 

8) Determine N,me as defined in (5.2.12) 

9) if NcnN,m, ,', 0 then 

else 

9.1) choose 1/+ENcnN,m,, 

9.2) A+= Ac, 

9.3) choose A+ E [ T1 JI Be II, T2 II 8 c II]. 

6.3. The SQPQC Algorithm 
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Before the statement of the algorithm, we will point out the guiding 

principals of our method. A full SQP step should be taken whenever 

JI a QP 11 2 '.:S A in order to maintain fast local convergence. When a full SQP 

step cannot be taken, the step should be determined by the solution of problem 

(QFQC). The augmented Lagrangian function should be used to determine the 

acceptability of the step, and also to update the trust region, as described in 

Section 5.2. The penalty constant to be used in the augmented Lagrangian 

should be determined from the model subproblem or from the optimistic scheme 

we developed in Section 5.2. 
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For the preliminary implementation of the algorithm, we use seco~d order 

information. At each iteration k, problem (QP) is defined to be 

minimize 'ilf(xtf s + .!.sT'il;,l(xt,At)s 
• 2 

subject to g(xt) + 'ilg(xtl s = 0, 

and problem (QFQC) is defined as 

mm,m,ze 'i1 f (xt )T + .!.s T'i12 Bt s 
• 2 

subject to 11 s 11 2 :S At 

II g(xt) + 'ilg(xt)T 8 112 :s et . 

We will use Bt ='il;,l(xt,At) if 0t =0, and Bt ='i12f(xt) otherwise. This will 

allow us to choose a step as close as possible to the SQP step if linearized 

constraints are satisfied. 

The choice of multiplier used in the Hessian matrix 'il;,l(xt,At) depends on 

the previous step taken. IC Bt-l satisfies linearized constraints, we choose At to 

be the multiplier associated with the SQP step, i.e., At = A QP. As before, this 

choice is motivated by the fact that A QP is the only multiplier that allows 

linearized constraints to be satisfied. IC the previous step Bt-l does not satisfy 

linearized constraints, we choose the multiplier to be a particular case of the 

multiplier update formula UauF, namely 

At = ('i1g(xt]T'i1g(xk))-1(g(xk)- 'ilg(xk)T'ilf(xtJ). 

In practice, this particular formula has proven to be very successful, see Miele 

[1972a], [1972b]. The estimate for the initial multiplier Ao, is also chosen in this 

r 
t 
' 

68 

way. 

Finally, the initial radius of the trust region Ao is chosen to be a percentage 

of the length of the Cauchy step for problem (4.1.2). This choice follows the 

strategy suggested by Powell [1970] for the unconstrained case. 

We now give a general statement of our algorithm for solving equality 

constrained minimization problems. 

ALGORITHM 5.3.1 The SQPQC Method. 

1) Let x0 eRn, determine Ao, A0• 

2) for k = O, 1, 2, · · · until convergence do 

2.1) Compute 'il/(xt), 'i12/(xk), 'ilg(xk), 'il;,l(xk,Ak)-

2.2) Compute the solution sQP (and A QP) to problem (QP). 

2.3) IC II sQP II :S ~k then 

8k = sQP 
' 

go to 2.5). 

2.4) Determine an approximate solution sk to problem (QFQC) 

by Algorithm (5.1.1). 

2.5) X+ = xk + sk 

2.6) Decide whether X+ is acceptable, and calculate a new value 

of At by Algorithm (5.2.1) 



2.7) If Z+ is not acceptable then go to 2.4); 

otherwise Zt+l = Z+ and At+!= At· 

5.-i. Numerical Results 
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In order to study the effectiveness of our approach Crom arbitrary starting 

points, we produced a preliminary implementation of algorithm SQPQC. 

Although research is still being done to make this algorithm more efficient, we 

wa.nt.ed to obtain a feel for the robustness of the approach. For this we 

compared our method SQPQC with two SQP approaches: VF02AD by Powell 

(1977a], which is available in the Harwell Subroutine Library, and NPSOL by 

Gill, Murray, Saunders and Wright (1983]. All tests were performed in double 

precision on a VAX 11 /780. 

We now list a subset of our test problems and the results obtained. Most 

of these problems are referenced and can be found in Hock and Schittkowski 

[l~l). The number in parenthesis denotes the number given to this problem in 

Hock and Schittkowski, n is the number of variables in the problem, and m is 

the number of equality constraints. 

The result.s from this subset of test problems are reported in tables 

following the statement. of each problem. The starting point z0 precedes each 

table. The column labeled CoNV indicates whether or not convergence was 

obtained, and the column labeled No. ITER indicates the number of iterations 

the algorithm took to converge. This number does not give meaningful 

r--···--
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comparisons for many reasons, including the fact that the algorithm is only in a 

preliminary stage. We have, however, included it for completeness. The column 

labeled xF indicates to which solution the method converged. Comments are 

included in some cases to provide more information about the particular case. 

At the end of this section, we summarize the convergence results in 

Table 1. The number in parentheses in the CONY column indicates the number 

of iterations the algorithm took to converge. 
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PROBLEM 1 (60) - n = 3, m = 1 

Xo ( 10, 10, 10) 

/(x) = (x1 -1)2 +(x1 -x2 )2+(x2 -x3 )4 
METHOD CONY NO.ITER XF 

91(x) = x 1(1+x;)+x!-4-3V2 
VF02AD y 17 x•,I 
NPSOL y 21 x•,I 
SQPQC y 23 x.,1 

x.,1 ~ ( 1.1048, 1.1966, 1.5352) f (x.,1) ~ 3.2568 X 10-2 

Xo = (2, 2, 2) Xo ( 11, 12, 15) 

METHOD CONY NO.ITER XF 
METHOD CONY NO.ITER XF 

VF02AD y 7 x•,l 
NPSOL y 8 x.,1 
SQPQC y 12 x•,I 

VF02AD y 19 x•,I 
NPSOL y 26 x.,1 
SQPQC y 24 X•,I 

Xo = (2.7, 2.9, 3.8) 
Xo=(l,2,3) 

METHOD CONY NO.ITER XF 
METHOD CONY NO.ITER XF 

VF02AD y 10 x.,1 
NPSOL y 13 X•,I 
SQPQC y 19 X•,I 

VF02AD y 10 x•,I 
NPSOL y 13 x_.,l 
SQPQC y 17 x•,I 

Xo = (27, 29, 38) Xo (1.5, 1.5, 1.5) 

METHOD CONY NO.ITER XF 
METHOD CONY NO.ITER XF 

VF02AD y 36 x.,1 
NPSOL y 26 x.,1 
SQPQC y 27 x•,I 

VF02AD y 6 x•,I 
NPSOL y 8 x•,I 
SQPQC y 15 x.,1 



------~--------·--· ----
PllOBLEM 2 (77) - n = 5, m = 2 

/(z) = (z1 -1)2 + (z 1 -xd + (.:r2-xal2 + (.:r4 -1)4 + (.:rs-1)6 

l1(x) = x~x4 + sin(x4 - x5) - 2./2 
12(.:r) = X2 + x!x; - 8 - v'2 
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z., 1 ::;.:;:: ( 1.1661, 1.1821, 1.3802, 1.5060, 0.6109) f(x.,iJ ~ 2.4150 X 10-l 

x.,2 ;::::; (-1.0287, -1.1017, 1.3545, 1.7603, 0.4531) f (x.,2) ;:;;; 4,6025 

z.,3 ;::::; ( 1.0889, 1.1777, -1.2814, 1.7477, 0.8lH0) /(x.,3) ;::::; 5.5333 

z •.• ~ (--0.9896, --0.9142, -1.3028, 1.8932, 0.4975) J(x.,4) ~ 9.9087 

Xo == (2, 2, 2, 2, 2) 

METHOD CONY NO.ITER XF 

VF02AD y 15 x,,1 
NPSOL y 16 x,,1 
SQPQC y 12 x,,1 

Xo - ( 1, 1, 1, 1, 1) 

METHOD CONY NO.ITER XF 

VF02AD y 13 x,,1 
NPSOL y 13 x,,1 
SQPQC y 12 x,,1 

Xo - ( 10, 10, 10, 10, 10) 

METHOD CONY No.ITER XF COMMENTS 

VF02AD N • • line search fails at iter. 1 
NPSOL N • • overflow in line search iter. 1 
SQPQC y 21 x,,1 

,~~-· ... --·--·· 
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Xo = (-3,-3,-3,9,0) 

METHOD CONY NO.ITER XF COMMENTS 

VF02AD y 21 x,,2 x,,2 is a saddle point 
NPSOL N * * overflow in line search iter. 1 
SQPQC y 21 x,,2 x,,2 is a saddle point 

Xo = (-1,8,3,3,0) 

METHOD CONY NO.ITER XF COMMENTS 

VF02AD y 18 x,,2 x,,2 is a saddle point 
NPSOL y 17 x,,2 
SQPQC y 17 x,,2 

Xo = ( 4, 3, 7, -5, -3) 

METHOD CONY NO.ITER XF COMMENTS 

VF02AD N • * inconsistent constraints at iter. 18 
NPSOL N * • overflow in line search iter. 1 
SQPQC y 21 x,,2 x,,2 is a saddle point 

Xo = (-1, 3, --0.5, -2, -3) 

METHOD CONY No.ITER XF COMMENTS 

VF02AD N * • inconsistent constraints at iter. 12 
NPSOL y 75 x,,4 
SQPQC y 18 x,,4 
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Xo ( 12, 13, 14, 15, 7) 

METHOD CONY NO.ITER Xy COMMENTS 

VF02AD y 50 x.,1 
NPSOL N * * overflow in line search at iter, 1 
SQPQC y 22 x.,1 

Xo = ( -2, -2, -2, -2, -2) 

METHOD CONY NO.ITER Xy COMMENTS 

VF02AD .y 39 x•,3 
NPSOL N * * overflow in update routine at iter. 2 
SQPQC N * * failure due to safeguarding step 
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PROBLEM 3 (79) - n = 5, m = 3 

f(x) = (x1 -1)2 + (x1 - x2)2 + (x2 - x3)2 + (x4 -1)4 + (x5 -1)4 

g1(x) = x2 +x;+x!-2-3v'2 

g2(x) = X2 + x; + x4 - 2 - 2v'2 

g3(x) = X1X5 - 2 

x.-,1 ~ 

x,,,2 ~ 

x.,a ~ 

( 1.1911, 1.3626, 1.4728, 1.6350, 1.6790) 

(-0.7661, 2.6667, -0.4681, -1.6191, -2.6103) 

(-~.7022, -2.9899, 0.1719, 3.8479, -0.7401) 

Xo = ( 2, 2, 2, 2, 2) 

METHOD CONY NO.ITER Xy 

VF02AD y 9 x.,1 
NPSOL y 12 x.,1 
SQPQC y 4 x.,1 

Xo = ( 1, 1, 1, 1, 1) 

METHOD CONY NO.ITER Xy 

VF02AD y 8 x.,1 
NPSOL y 10 x.,1 
SQPQC y 4 x•,l 

Xo = ( 10, 10, 10, 10, 10) 

METHOD CONY NO.ITER Xy 

VF02AD y 18 x.,1 
NPSOL y 22 x•,I 
SQPQC y 14 x•,l 

/(x.,i) ::::::: 7.8776 X 10-2 

/(x,, 2 ) :=:::: 27.4520 

/(x*3) :=:::: 649.5049 
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Xo "" ( -2, -2, -2, -2, -2) 

METHOD CONV NO.ITER XF COMMENTS 

VFO'lAD y 16 z,,2 each method converged to 
NPSOL y 20 z,,a a different solution 
SQPQC y 11 z,,1 

Xo = ( -1, 3, --0.5, -2, -3) 

METHOD CONV NO.ITER XF 

VFO'lAD y 10 z,,1 

NPSOL y 8 z,,1 

SQPQC y 4 z,,1 

Xo = (-1, 2, 1, -2, -2) 

METHOD CONV NO.ITER XF COMMENTS 

VFO'lAD y 16 z,,2 
NPSOL y 21 z,,1 different solution than the rest 
SQPQC y 5 z,,2 

PROBLEM 4 (n) - n = 5, m = 3 

f(z) = Z1Z2Z3Z4Z5 

g1(z) 

g2(z) 

ga(z) 

2 2 2 2 2 
XI + Z2 + Z3 + z 4 + Z5 - 10 

Z2X3 - 5x4x5 
3 2 

X1 + X3 + 1 
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X, ,I ~ ( -1. 7171, l.5Q57, 1.8272, --0.7636, --0. 7636) 

z,,2 :::::: (--0.6QQ0, --0.86QQ, -2.78QQ, --0.6Q67, --0.6Q67) 

J(x,,i) ~ -2.QIQ7 

f(x,,2) ~ -8.235Qx10·1 

Xo = ( -1, 1.5, 2, -1, -2) 

METHOD CoNV NO.ITER XF 

VF02AD y 10 z,,1 

NPSOL y g z,,1 

SQPQC y 5 x,,1 

Xo = (-10, 10, 10,-10,-10) 

METHOD CoNV NO.ITER XF COMMENTS 

VF02AD y 21 z,,1 

NPSOL y 86 z,,2 different solution than others 
SQPQC y g x,,1 

Xo = ( -1, 2, 1, -2, -2) 

METHOD CoNV NO.ITER XF 

VF02AD y g z,,1 
NPSOL y 12 z,,1 

SQPQC y 6 z,,1 



--
Xo = (-1, -1, -1, -1, -1) 

METHOD CONY No.ITER 

VF02AD y 9 

NPSOL y 11 

SQPQC y 5 

Xo = (-2, 2, 2, 2, 2) 

METHOD CONY No.ITER 

VF02AD y 7 

NPSOL y 17 

SQPQC y 5 

XF 

x.,2 

x.,2 

x.,2 

XF 

x.,1 

x.,1 

z.,1 
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PROBLEM 7 (Boggs and Tolle [1981]) - n = 2, m = 2 

f(x) = -XI 

3 
X2 - XI 

2 
g1(x) 

g2(x) - XI - X2 

X•,I = (1.0, 1.0) 

Xo = (2, 2) 

METHOD CONY 

VF02AD y 

NPSOL y 

SQPQC y 

Xo = (20, 20) 

METHOD CONY 

VF02AD y 

NPSOL y 

SQPQC y 

Xo = (50, 50) 

METHOD CONY 

VF02AD y 

NPSOL y 

SQPQC y 

J(x.,1) -1.0 

No.ITER XF 

7 z.,1 
8 z.,1 
8 z•,I 

NO.ITER XF 

13 z.,1 
15 x.,1 
13 z•,I 

NO.ITER XF 

16 z•,I 
18 z.,1 
14 z•,I 
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PROBLEM 8 (Va.rdi [19801} - n = 3, m = 1 

/(x) = (x 1 -x2 )
2 +(x2 -x3 )

4 

91(x) = x1+x 1x;+;i;!-3 

x., 1 = ( 1.0, 1.0, 1.0) /(x., 1) = 0.0 

Xo = ( 2.4, 0.5, 0.0) 

METHOD CONY No.ITER Xr COMMENTS 

VF0'2AD y 16 x •. 1 Low accuracy obtained 

NPSOL y 50 x.,1 because the Hessian is 

SQPQC y 50 x •. 1 singular at x. 

Xo - (10, -10, 10) 

METHOD CONY NO.ITER Xr COMMENTS 

VF0'2AD y 26 x•,I Low accuracy obtained 

NPSOL y 50 x.,1 
SQPQC y 50 x.,1 
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The Hessian of the Lagrangian v>;,l(x.,>-.) is singular. VF02AD stops 

because it requires lower accuracy than the other two subroutines. NPSOL and 

SQPQC stop because the maximum number of iterations permitted is 50. 

r~ --

PROBLEM 

1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 

7 
7 
7 

8 
8 
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STARTING POINT CONY ( No. ITER ) 
VF02AD NPSOL SQPQC 

(2, 2, 2) y (7) y (8) Y (12) 
(2.7, 2.9, 3.8) y (10) Y (13) y (19) 
(27, 29, 38) Y (36) Y (27) Y (27) 
(10, 10, 10) Y (17) Y (21) Y (23) 
(11, 12, 15) y (19) Y (26) Y (24) 
(1, 2, 3) Y (10) Y (13) Y (17) 
(1.5, 1.5, 1.5) y (6) y (8) Y (15) 

(2, 2, 2, 2, 2) Y (15) Y (16) Y (12) 
(1, 1, 1, 1, 1) Y (13) Y (13) Y (12) 
(10, 10, 10, 10, 10) N (*) N (*) Y (21) 
(-3, -3, 3, 9, 0) Y (21) N (*) Y (21) 
(-1, 8, 3, 3, 0) Y (18) Y (17) Y (17) 
(4, 3, 7, -5, -3) N (•) N (•) Y (21) 
(-1, 3, -0.5, -2, -3) N (*) Y (75) Y (18) 
(12, 13, 14, 15, 7) Y (50) N (*) Y (21) 
(-2, -2, -2, -2, -2) Y (39) N (*) N (*) 

(2, 2, 2, 2, 2) y (9) Y (12) y (4) 
(1, 1, 1, 1, 1) y (8) y (10) y (4) 
(10, 10, 10, 10, 10) Y (18) Y (22) Y (14) 
(-2, -2, -2, -2, -2) Y (18) Y (20) y (11) 
(-1, 3, -0.5, -2, -3) Y (10) y (8) y (4) 
(-1, 2, 1, -2, -2) Y (16) Y (21) y (5) 

(-1, 1.5, 2, -1, -2) y (10) y (9) y (5) 
(-10, 10, 10, -10, -10) Y (21) Y (86) y (9) 
(-1, 2, 1, -2, -2) y (9) Y (12) y (6) 
(-1, -1, -1, -1, -1) y (9) y (11) y (5) 
(-2, 2, 2, 2, 2) y (7) Y (17) y (5) 

(2, 2) y (7) y (8) y (8) 
(20, 20) Y (13) Y (15) Y (13) 
(50, 50) Y (16) Y (18) Y (14) 

(2.4, 0.5, 0.0) Y (16) Y (50) Y (50) 
(20, 20) Y {26) Y (50) Y (50) 

TABLE 1 



CHAPTER 6 

Concluding Remarks 

We have presented a framework for a trust region approach for solving 

equality constrained optimization problems. At each iteration the subproblem 

we solve is not in general the successive quadratic programming (SQP) 

subproblem. We have motivated the conjecture that asymptotically our step is 

the same as the step produced by solving the SQP subproblem. 

The theoretical results presented in this thesis, although preliminary, have 

established important links between the step selection process and several widely 

used merit functions. We have shown that the step we obtain is a descent 

direction on either the standard penalty function or the augmented Lagrangian 

function, where each penalty constant is provided by the solution of the 

associated subproblem. 

The augmented Lagrangian was suggested as the choice for the merit 

function. A strategy for choosing the penalty constant when it is not given by 

the solution to the subproblem was discussed. This choice is not arbitrary, it is 

the choice dictated by minimizing the augmented Lagrangian function. An 

updating scheme for the trust region was included. 
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We have produced a preliminary implementation of our approach. This 

implementation, although not polished, has produced good numerical results. 

These numerical results support the robustness of the algorithm, and have lead 

us to believe that our approach is worthy of continued research. 

There are many questions left unanswered at the writing of this thesis. 

Considerable theoretical and numerical investigations must be performed before 

we make any conclusions about the global behavior of the algorithm. 

The implementation of the algorithm must be refined. In particular, an 

efficient safeguarding routine for the optimal step is needed. This will require a 

closer look at problem (QFQC) and the characteristics of its solution. 

We proposed a dogleg approach for approximating the solution of problem 

(QFQC). Two different dogleg curves were defined. Their definitions involve the 

Cauchy step for the 2-norm of the linearized constraints, the Cauchy step for 

the quadratic model of the objective function (not necessarily from the current 

point), as well as the SQP step. Numerical testing remains to be done for our 

dogleg approach. 

For the SQP approach as well as for our SQPQC approach, an 

approximation to the Hessian of the Lagrangian function must be used for an 

efficient algorithm. Currently, this is the topic of much research, e.g. Tapia 

(l\l84], but the problem has not yet been solved. This a certainly an important 

missing piece in the development of our global trust region algorithm. 
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