
alia

PHYSICAL REVIEW A JULY 1999VOLUME 60, NUMBER 1
Optical detection of a Bardeen-Cooper-Schrieffer phase transition in a trapped gas
of fermionic atoms
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A theoretical treatment of light scattering from a degenerate Fermi gas of trapped ultracold6Li atoms is
presented. We find that the scattered light contains information that directly reflects the quantum pair correla-
tion due to the formation of atomic Cooper pairs resulting from a Bardeen-Cooper-Schrieffer phase transition
to a superfluid state. Evidence for pairing should be observable in both the space and time domains.
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The realization of Bose-Einstein condensation~BEC! in
trapped atomic gases@1# has generated interest in the atom
physics, quantum optics, and condensed-matter physics c
munities. Although the experimental realization of a deg
erate atomic Fermi gas has not yet been demonstrated, i
est in this subject is also increasing@2–6#, and efforts to trap
and cool 6Li and 40K gases into the quantum degenera
regime are underway in several laboratories. Of course,
behavior of a degenerate Fermi gas is remarkably diffe
from that of a degenerate Bose gas. As in the Barde
Cooper-Schrieffer~BCS! theory of superconductivity in met
als, it has been predicted that a degenerate Fermi gas
undergo a BCS phase transition if the interatomic inter
tions in the gas are attractive@7#. In this phenomenon, the
Fermi gas is cooled to near absolute zero, so that all
levels up to the Fermi energy are filled. Attractive intera
tions can then cause atoms in the vicinity of the Fermi le
to form Cooper pairs, with each pair composed of two qu
tum correlated atoms behaving as a composite Bose par
In the BCS theory, these bosons automatically undergo B
and form an atomic superfluid, with the quantum pair cor
lation of the Cooper pairs characterizing the superfluid pr
erties of the gas. In this paper, we address the questio
how to detect this superfluid state once the transition
occured.

A promising experimental system consists of a degene
gas with atoms in an incoherent mixture of two internal h
perfine states. Such a mixture allows Cooper pairing via
s-wave interaction, and leads to practically attainable BC
transition temperatures when the scattering lengtha is large
and negative. This occurs naturally for6Li @8#, or can be
obtained in the vicinity of a Feshbach resonance for ot
atoms@9#. We consider here a trapped6Li gas in an incoher-
ent mixture of ground statesu1&5uMs51/2, MI51& and
u2&5uMs51/2, MI50& @2#.

The key to observing the superfluid state is to determ
the existence of pair correlations. To achieve this goal,
propose to use off-resonance light scattering and Fou
imaging techniques. A laser beam with amplitudeEL , fre-
quencyvL , and wave-vectork propagating along thez di-
rection is used to illuminate the gas. We take the light to
linearly polarized and tuned near resonance between theS.
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ground state and 2P. excited state. To avoid incoherent hea
ing of the gas due to spontaneous emission, the magnitud
the laser detuning,d5vL2v0, is assumed to be large com
pared to the transition linewidthg. In vector quantum-field
theory@10–12#, the atoms in the light field can be describe
by a four-component atomic fieldC(r )5c1u1&1c2u2&
1ce1ue1&1ce2ue2& with c6 denoting atoms in the
ground-state hyperfine levelsu6&, and ce6 in the corre-
sponding excited-state hyperfine levels. For larged, the
excited-state components can be adiabatically elimina
yielding a total atomic polarization operator with positiv
frequency part@10#

P(1)~r ,t !52`
`•E(1)

\d
r̂~r ,t !e2 ivLt, ~1!

where r̂(r ,t)5c1
† (r ,t)c1(r ,t)1c2

† (r ,t)c2(r ,t) is the to-
tal atomic density operator in the ground state,` is the ma-
trix element of the atomic dipole moment, andr is a location
in the gas. Light propagation is determined by the atom
polarization operator~1! and the wave equation

¹2E(1)2
1

c2

]2E(1)

]t2
5m0

]2P(1)

]t2
. ~2!

The solution to Eq.~2! can be expressed as

E(1)~R,t !5ES
(1)~R,t !e2 ivLt1EL

(1)eikz2 ivLt, ~3!

whereES
(1)(R,t) is the scattered field at positionR. For R

[uRu@ur u, the scattered field has the form@10,12#,

ES
(1)~R,t !5k2

eikR

R E d3re2 ikR̂•r

3@P(1)~r ,t !2R̂•P(1)~r ,t !R̂#, ~4!

where the directional unit vectorR̂5R/R. From Eqs.~1! and
~4!, we see that the scattered field depends on the den
operator of the gas, so that the averaged spectral intensi
the scattered field received by a photodetector contains
second-order correlation of the atomic field operators@14#,
504 ©1999 The American Physical Society
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^r̂~r ,t !r̂~r 8,t8!&'^r̂~r ,t !&^r̂~r 8,t8!&1G~r ,r 8,t,t8!,
~5!

where ^•••& denotes the quantum-mechanical expectat
value. The first term in Eq.~5!, which depends on the tota
averaged density, describes the contribution to the scatt
field by the normal ground-state component. The sec
term,

G~r ,r 8,t,t8![22^c2~r ,t !c1~r 8,t8!&^c2
† ~r ,t !c1

† ~r 8,t8!&,
~6!

gives the quantum pair correlation function arising from t
formation of Cooper pairs in the superfluid state.

The contribution of the laser fieldEL in Eq. ~3! can be
removed by imaging the cloud with a dark ground techniq
as discussed in Refs.@13#. If a plane located a distancez0
from the atoms is observed in this way, the spectral a
spatial intensity distribution measured on the detector will
@14#

I ~R' ,n!5E
2`

`

dteint
1

2TE2T

T

dt^ES
(2)~R0 ,t !

3ES
(1)~R0 ,t1t!&, ~7!

where 2T is the time interval used for detection, andR0
[(R' ,z0) is a point in the image plane. Equation~4!, along
with relations~1! and~5!, gives the spatial-temporal correla
tion function of the light field,

^ES
(2)~R0 ,t !•ES

(1)~R0 ,t1t!&

5
9I Lg2

16~kz0d!2
@ I 1~R' ,t,t!1I 2~R' ,t,t!#e2 ivLt, ~8!

where I L5EL
(2)

•EL
(1) is the intensity of the incident light

The functionsI 1 and I 2 are defined as

I 1~R' ,t,t!5E E d2r'd2r'8 e2 ikR'•(r'2r'8 )/z0

3^r̂~r' ,t !&^r̂~r'8 ,t1t!&, ~9!

and

I 2~R' ,t,t!5E d2je2 ikR'•j/z0E d2r'G~r' ,r'2j,t,t1t!,

~10!

where the relative distance between atoms is denotedj
5r'2r'8 . The functionI 1 describes the signal from the no
mal component of the gas andI 2 describes the signal from
the Cooper pairs. In general,I 2 is much weaker thanI 1 since
the averaged density of atoms in the normal component is
larger than that of the pairs.

The averaged density and the quantum pair-correla
function can be found using vector quantum-field theo
@10#. In the off-resonant light field, the degenerate Fermi g
is described by the coupled quantum-field equations,
n
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d
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i\
]c1

]t
5~H02m11VL2 i\G/2!c12D~r !c2

† ,

i\
]c2

†

]t
52~H02m21VL1 i\G/2!c2

† 2D~r !c1 ,

~11!

whereH052(\2/2m)¹21 1
2 mv2r 2 is the free Hamiltonian

of the trapped Fermi gas,VL5\V2/4d is the light-induced
potential,G5gV2/4d2 is the rate for spontaneous emissio
m6 are the chemical potentials of the two internal states,
D(r )5(4puau\2/m)^c2(r )c1(r )& is the BCS energy-gap
function @2#. The Rabi frequency of the light field isV
[u`•EL /\u. For simplicity we consider the casem15m2

with equal numbers of atoms in each spin state, and in
duce the renormalized chemical potentialm5m12VL . Fur-
ther, a large laser detuning and a weak intensity allowG
!m,D so that destruction of Cooper pairs by spontane
emission and interactions involving excited-state atoms@10#
can be neglected. Employing an approach similar to t
adopted in BCS theory, we approximate the solutions of E
~11! by

c6~r ,t !5(
n

@un~r !b̂n6e2 iEnt/\6vn~r !b̂n7
† eiEnt/\#,

~12!

where b̂n6 are generalized Bogoliubov quasiparticle ope
tors andEn is the excitation energy for the mode indexed
n. The superfluid state of the degenerate Fermi gas is c
acterized by the BCS ground stateuFBCS& with the property
b̂n6uFBCS&50. From Eqs.~11! with the dissipative terms
ignored, the transformation coefficients$un ,vn% satisfy the
celebrated Bogoliubov equations,

~H02m!un~r !1D~r !vn~r !5Enun~r !,

2~H02m!vn~r !1D~r !un~r !5Envn~r !. ~13!

The total averaged density can be expressed as^r̂(r ,t)&
[^FBCSuc1

† c
1

1c2
† c

2
uFBCS&52(nuvn(r )u2 and the

quantum pair function is

G~r ,r 8,t,t8!52(
nm

un~r !vn~r 8!um~r 8!vm~r !

3e2 i (En1Em)(t2t8)/\. ~14!

The average density and pair function can be calcula
by self-consistently solving Eqs.~13!. In the normal degen-
erate ground state, energy levels below the Fermi levelEF
are occupied, while those above are empty. The effec
interatomic interactions is to cause scattering between ne
energy levels, and creates an energy shell nearEF where
normally unoccupied states acquire an amplitude to be oc
pied, and states belowEF have some amplitude to be uno
cupied. The stronger the interatomic interaction is, the wi
the energy shell and the more atoms are available to f
Cooper pairs. Physically, the coefficientsun and vn in Eqs.
~13! determine the amplitudes for atoms to be scattered
the pair states. To evaluate these amplitudes, we expand
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coefficients asun5(qunqfq andvn5(qvnqfq , in terms of
the eigenstatesfq of the single-atom HamiltonianH0. In
principle, the sum overq in the coefficients should exten
from zero to infinity. However, in the BCS theory@2,3#, Eq.
~13! is derived using the Born approximation, by replaci
the nonlocal interatomic interactionV(r ) by a local contact
potentialV(r )54p\2ad(r )/m. However, the Born approxi
mation is only valid for low-energy scattering, and the ina
curacy of the approximation in the high-energy regime
known to cause an ultraviolet~UV! divergence. In the cas
of superconductivity, the UV divergence is naturally r
moved by considering the fact that the phonon-exchan
induced interaction between electrons must cut off at
Debye frequency. However, in the case of an atomic g
avoiding the UV divergence requires a more exact the
accounting for the real shape ofV(r ). Two approaches to
this problem have recently been proposed. One is to re
malize the interaction potential in terms of the Lippma
Schwinger equation@2#, and this is the approach we hav
taken here, and the other is to employ a more sophistic
pseudopotential approximation@3#. For the Born approxima-
tion to be valid, the cutoff momentum\kc must satisfykc
,uau21. The other momentum scale present is the Fe
momentum\kF5(2mEF)1/2, which for 6Li under reason-
able experimental conditions is comparable touau21. As a
check on the renormalization procedure, we find that val
obtained for bothG andD(0) are hardly affected by chang
ing kc from uau21 to u2au21.

To be concrete, we assume thatN523105 6Li atoms in
each spin state are confined in a magnetic trap with an o
lation frequencyv52p3150 Hz. With these values,EF
'100\v'740 nK, and the peak value of the energy gap
D(0)'5\v536 nK. For a degenerate Fermi gas in a h
monic trap, the characteristic size of the average densit
given by the Fermi radiusr F5(2EF /mv2)1/2'48 mm,
while the length scale of the pair-correlation functionG is
r c;kF

21'0.23mm. The numerical result for the correlatio

FIG. 1. The normalized spatial distributions of the equal-tim
quantum pair-correlation function, with the distancej between at-
oms scaled by the Fermi wave numberkF . The dashed curve is th
correlation due to Cooper pairs with center of mass located at
trap center and the solid curve is the average contribution of
Cooper pairs. The inset shows the spatial dependence of the e
gap, normalized to the center of the trap and with position scale
the Fermi radiusr F .
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function is shown in Fig. 1, along with the spatial variatio
of the energy gap.

In studies of a homogeneous gas, the correlation lengt
zero temperature is conventionally expressed in terms of
coherence lengthjc52kF

21EF /D(0), which determines the
region over which the pair function extends@6#. Within this
region, however, the pair function oscillates on the sho
length scaler c . The numerical results for the trapped gas
Fig. 1 similarly show that the pair function varies substa
tially across the distancekF

21 , while the tail of the function
does indeed extend to approximatelyjc .

It is the short-length-scale variations that allow the p
function to be optically detected. If a plane atz052 cm is
imaged with unit magnification and with a transition wav
length l5670 nm, the image size will bez0 /krF
;0.09 mm for the normal component andz0 /krc;1.9 cm
for the pair component, differing by a factor of 2EF /\v.
The calculated images for a gas below and above the cri
temperature for the BCS phase transition are shown in F
2~a! and 2~b!, respectively. It is seen that when the transiti
occurs, a spatially broadened image appears. The phy
situation is depicted in Fig. 3, where the small-scale struct
induced by pairing causes light to scatter at a larger an
than that scattered by the cloud as a whole.

The normal signal is produced by coherent scattering
is, therefore, proportional to (2N)2, as can be verified by

e
ll
rgy
y

FIG. 2. The spatial image measured a distancez0 from the at-
oms, with ~a! the trapped Fermi gas in the normal degener
ground state and~b! in the superfluid state after the BCS pha
transition. In both images, the central peak is clipped and actu
extends by a factor of;106 above the axes shown. The radial si
of the normal component is approximatelyz0 /krF , while the pair
component is larger, extending toz0 /krc .

FIG. 3. Schematic of the imaging technique. The white a
represents the incident probe laser, the dark gray represents the
coherently scattered by the cloud, and the light gray represents
light scattered by Cooper pairs. The small length scale of the
structure scatters light at a relatively large angle, so by measu
the intensity in the far field, the components can be distinguish
Dark ground imaging techniques can be used to eliminate the
tribution of the probe laser itself@12#.
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reference to Eq.~9!. The pair signal, however, arises fro
inelastic scattering and is found using Eq.~10! to be propor-
tional to the number of pairsNp . This number is determined
by the number of atoms in an energy shell of widthD cen-
tered onEF , so Np'3ND/EF . For the parameters give
above,Np'33104 and the ratio of the peak signal intens
ties is I 2(0)/I 1(0)'231027. Although it is difficult to ex-
perimentally measure a signal with such a large dyna
range, the pair signal can be revealed by using a ne
opaque spatial filter to attenuate the normal signal. If
diameter of the filter is chosen to be approximately equa
the spatial dimension of the normal signal image, it will a
fect only the central region of the pair signal, and both co
tributions can be observed with the same intensity scale

Finally, we calculate the spectrum of the scattered lig
For the normal degenerate ground state, a single spectra
is obtained at the frequency of the incident laser. For
superfluid state, the spectrum exhibits a double-peaked s
ture as shown in Fig. 4. The coherent peak is from scatte
by the normal component. The frequency shift of the si
band is approximately twice the gap energy, indicating t
the sideband arises from the formation of two quasipartic
The long oscillating tail of the sideband is due to modula
broadening from the center-of-mass motion of atoms at
trap frequency. Hence, the presence of the shifted peak
vides another effective method to detect the BCS phase t
sition and can be used to directly determine the gap ene

The theory presented here was simplified by the neg
of spontaneous emission, permitting, for example, the
sumption thatD remains constant during probing. Howeve
the pair signal depends on breaking pairs by inelastic s
tering. The theory is, therefore, valid only in the weak-sign
limit, where G!T21. Larger signals could be obtained e
perimentally by allowingG;T21, but quantitative interpre-
tation would then be more difficult.
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In conclusion, we have studied off-resonance light sc
tering by a trapped degenerate Fermi gas. The results s
that both spatial imaging and the scattered light spectr
give clear signatures for a BCS phase transition to a gase
superfluid state.
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FIG. 4. The normalized scattered light spectrum of the scatte
field. The frequency shiftDn is scaled by the trap frequencyv. For
the solid curve, the gap energyD'5 \v536 nK, and for the dot-
ted curve,D572 nK. A spatial filter with a transmission of;1024

is used to reduce the strong signal from the normal componen
the same level as that from the pair component. A small sponta
ous scattering rate is assumed to give a width to the elastic pe
.
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Hulet, R. Côté, and A. Dalgarno, Phys. Rev. A55, R3299
~1997!.

@9# E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev
47, 4114~1993!.

@10# Weiping Zhang, Phys. Lett. A176, 225 ~1993!; Weiping
Zhang, D. F. Walls, and Barry Sanders, Phys. Rev. Lett.72, 60
~1994!.

@11# G. Lenz, P. Meystre, and E. M. Wright, Phys. Rev. Lett.71,
3271 ~1993!.

@12# J. Javanainen, Phys. Rev. Lett.75, 1927~1995!; H. D. Politzer,
Phys. Lett. A209, 160 ~1995!.

@13# M. Born and E. Wolf,Principles of Optics, 6th ed.~Pergamon
Press, Oxford, 1980!; M. R. Andrews, M.-O. Mewes, N. J. van
Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Scien
273, 84 ~1996!.

@14# B. Saleh, Photoelectron Statistics~Springer-Verlag, Berlin,
1978!.


