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Abstract

Despite interest in structured peer-to-peer overlays and their scalability to mil-
lions of nodes, few, if any, overlays operate at that scale. This paper considers the
distributed hash table extensions supported by modern BitTorrent clients, which
implement a Kademlia-style structured overlay network among millions of BitTor-
rent users. As there are two disjoint Kademlia-based DHTs inuse, we collected
two weeks of traces from each DHT. We examine churn, reachability, latency, and
liveness of nodes in these overlays, and identify a variety of problems, such as me-
dian lookup times of over a minute. We show that Kademlia’s choice of iterative
routing and its lack of a preferential refresh of its local neighborhood cause cor-
rectness problems and poor performance. We also identify implementation bugs,
design issues, and security concerns that limit the effectiveness of these DHTs and
we offer possible solutions for their improvement.

1 Introduction

Overlay or peer-to-peer (p2p) networking technologies have been widely studied as
mechanisms to support wide-scale, fault-tolerant, distributed storage and communica-
tion systems. By implementing a distributed hash table (DHT) abstraction, a wide va-
riety of applications can be easily adapted to using the overlay network. Unfortunately,
relatively little is known about such DHTs’ real-world behavior with large numbers of
users and real workloads.

While Kazaa does operate at this scale, and its user behaviorhas been well stud-
ied [20, 29], Kazaa does not use a “structured overlay,” a logarithmic routing structure
common to many p2p systems. Such structured overlays have generally only been eval-
uated in limited deployments or on PlanetLab [8], which doesnot necessarily represent
what might be observed elsewhere [23].

BitTorrent is a p2p system allowing large numbers of users toshare the burden of
downloading very large files. The most notable feature of BitTorrent is its use of tit-
for-tat trading to incentivize users to give each other higher bandwidth service [9]. The
BitTorrent protocol uses acentral trackeras a rendezvous point So that nodes interesed
in the same file can find each other. As such, classic BitTorrent also lacks a structured
overlay. However, the most popular BitTorrent clients support a distributed tracker,
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serving the same purpose as the central tracker, but implemented with a variant of the
Kademlia [31] DHT. At the present time, there are two Kademlia overlays in use: one
by Azureus clients1 and one by many other clients including Mainline2 and BitComet3.
Each of these overlay networks include a million live nodes,providing an excellent
opportunity for data collection and analysis of a real, deployed DHT on the Internet.

2 Related Work

P2p systems have been extensively studied in the literature. Risson and Moors [42]
wrote an extensive survey with 363 citations. We limit our discussion to work most
relevant to the DHTs used in BitTorrent.

Saroiu et al. [44] characterized the Gnutella and Napster systems, measuring bot-
tleneck bandwidth and node lifetimes, and finding significant heterogeneity across the
nodes.

Gummadi et al. [19] studied several routing geometries and the effectiveness of
proximity neighbor/route selection on performance with upto 64,000 nodes. They did
not assess the impact of dead nodes and the resultant timeouts, which we will show has
a significant impact on performance.

Li et al. [28] compared 5 DHTs and their parameter choices by simulating each sys-
tem and parameter vector on a 1024 node network. We will show how poor parameter
selection has impacted the performance of BitTorrent’s DHTs.

Rhea et al. [39] also considered performance issues including the use iterative rout-
ing, delay aware routing, and multiple gateways, with an emphasis on improving the
performance of OpenDHT [41] on 300 PlanetLab [8] nodes.

Liang et al. [29] characterized the design of the two-level FastTrack overlay, used
by Kazaa, Grokster and iMesh. This overlay had 3 million active users.

Skype also operates at this scale, but it encrypts all traffic, complicating its anal-
ysis [18]. Skype is believed to use a two-tiered overlay withthe top tier fully con-
nected [3].

Two other file-sharing systems use Kademlia. The now-defunct Overnet4 used the
DHT for searching. eMule’s Kad network5, also based on Kademlia, uses the DHT
for keyword searching and is estimated to have 4 million nodes. Kad would also be
suitable for analysis.

3 BitTorrent Background

BitTorrent was designed to incentivize a large collection of users, all wishing to down-
load a single large file, to share their respective upstream bandwidths. Pouwelse et al. [36]
present measurements of the millions of users who regularlytrade files with BitTorrent,

1http://azureus.sourceforge.net
2http://www.bittorrent.com
3http://www.bitcomet.com
4Overnet’s web pages can now only be found on the Internet Archive. http://web.archive.org/

web/20060418040925/http://www.edonkey2000.com/documentation/how on.html
5http://en.wikipedia.org/wiki/Kad Network
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as does Legout et al. [26]. Izal et al. [24] measures the effectiveness of BitTorrent in
a flash crowd. Qiu et al. [37] and Piccolo et al. [35] present fluid models of BitTor-
rent’s behavior. Guo et al. [22] models and measures BitTorrent, identifying limitations
caused by exponentially declining popularity. Bharambe etal. [2] simulates BitTorrent
and show hows to improve its fairness in a heterogeneous environment.

Of course, users may have an incentive to freeload on the system, as was observed
in Gnutella [1]. BitTorrent addresses this through a tit-for-tat system, where a node will
preferentially spend its upstream bandwidth on peers whichgive it good downstream
bandwidth [9]. While freeloading is still be possible, the download speed improves
noticeably if a node acts as intended. (Incentives issues inp2p systems are widely
studied [11, 14, 15, 17, 25, 32] but are not the main thrust of this paper.)

Otherwise, classic BitTorrent is fairly straightforward.A file to be shared is de-
scribed by atorrent, typically distributed through web servers. A torrent file contains
metadata, including cryptographic hashes, allowing the resulting file to be validated; a
torrent also contains a pointer to acentral tracker, whose sole purpose is to introduce
nodes to their peers. Clients announce themselves to the tracker once every 30 minutes.
The client only queries the tracker for the identities of newpeers if its current peers are
insufficient. As a result, a tracker, despite running on a single machine, can handle a
very large number of concurrent nodes.

The set of peers working to download a particular torrent is called aswarm. Once
a node has completely downloaded the file but has not yet left the swarm, it becomes a
seed, sharing its bandwidth among all requesters. One or more seeding nodes are also
typically set up by a document’s publisher to get things started.

The tit-for-tat exchanges are based on 64KB-1024KBpieces. Peers will exchange
information with each other about which pieces they have. Most BitTorrent clients im-
plement a “rarest-piece first” policy that encourages broader distribution of rare pieces,
making all pieces more uniformly available [27]. More recent research has shown free
riding is practical [30] and that a peer can optimize its performance by carefully allo-
cating its upload bandwidth [34].

3.1 Extensions

As BitTorrent usage has expanded, a number of extensions have been added to classic
BitTorrent, with different clients supporting different extensions. The Message Stream
Encryption / Protocol Encryption extension, for example, encrypts all data exchanges
in the swarm and may defeat some traffic shaping devices. The most relevant ex-
tensions to our study both concern peer discovery: the Kademlia DHTs and the Peer
Exchange Protocol (PEX). PEX is a gossip protocol; peers in aswarm exchange their
peer lists, accelerating peer discovery and reducing tracker load. Fry and Reiter [16]
have shown that a variant of PEX using random walks to discover new peers can be
just as effective as using a tracker. The DHT extensions replace or supplement the cen-
tral tracker, providing for node discovery and avoiding thesingle-point-of-failure of a
central tracker.

BitTorrent clients implement two mutually incompatible DHTs. The Mainline
DHT (hereafter, MDHT) is implemented by Mainline BitTorrent, µtorrent, BitLord
and BitComet. The Azureus DHT (hereafter, ADHT) is implemented only by Azureus.
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Both DHTs are based on Kademlia, but have non-trivial differences. Because the
ADHT and MDHT are disjoint, and many users still use older clients that have no
DHT support, completely distributed tracking would createa variety of interoperabil-
ity problems. Unsurprisingly, virtually all torrents define a centralized tracker, allowing
the DHT to operate as a backup to the central tracker, rather than depending on it for
correctness.

4 Kademlia Background

Kademlia implements a tree-based routing topology based around an XOR distance
metric where the XOR of two nodeIDs is used as the distance between them. Kademlia
is based around a prefix-based routing table, similar to Pastry [43], with logarithmic
lookup performance, but without any locality-based routing optimizations. A Kademlia
routing table is parameterized by two numbers, 2w, the width (i.e.,w bits), andb, the
bucket size.

For a node with a 160 bit idX, the routing table has 160/w layers starting at 0.
Layer l contains 2w−1 buckets with nodes whose IDs matchX on the firstl ·w bits,
and differ fromX on the nextw bits. Each bucket contains up tob most-recently-seen
nodes. This description roughly covers Kademlia as it is implemented in Azureus and
Mainline.

The full Kademlia design incorporates additional routing buckets that serve a pur-
pose comparable to Pastry’s leafset: identifying every node nearby. A Kademlia node
selects the longest prefix of its nodeID such that the number of nodes sharing any
longer prefix is less thanb, and then tracksall nodes having that prefix. For correct-
ness, a hostmust never overestimatethe number of nodes sharing any longer prefix by
counting dead nodes as alive, a task made more difficult in an environment with churn.
To the best of our knowledge,this additional routing table is not implemented by any
BitTorrent client, meaning that BitTorrent clients may not always be able to find the
node whose nodeID is closest to a given lookupID (See also, Section 5.1).

New nodes for addition to the routing table are discovered opportunistically from
incoming DHT queries and in replies to outgoing lookups. A new node replaces the
oldest node in the appropriate routing bucket if the old nodehas not been seen alive in
15 minutes and does not reply to an active ping. To prevent staleness, Kademlia will
route to a random ID in any bucket that has been quiescent for 15 minutes.

When routing to a lookupID, Kademlia uses iterative routing, where a host contacts
peers with progressively smaller XOR distances to the lookupID in turn (see Figure 1).
This contrasts with Pastry’s recursive routing, where eachhost forwards the message
along the chain to the destination (see Figure 2). Iterativerouting can be performed
concurrently, with multiple outstanding requests to decrease latency and reduce the
impact of timeouts.

4.1 Implementation details

Mainline and Azureus have fairly faithful implementationsof Kademlia, except for
ommitting the extended routing table. As with the centralized tracker, a host queries
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Figure 1: Iterative routing

Figure 2: Recursive routing
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the DHT every 30 minutes if it requires more peers for a swarm.

4.1.1 Mainline implementation

We studied version 4.20.9 of Mainline BitTorrent, which is open source and imple-
mented in Python. Mainline, BitComet, and several other BitTorrent clients all use the
same MDHT. MDHT implements Kademlia with a width of 2,w = 1, andb = 8 nodes
in each bucket; keys are replicated on the three nodes with nodeID nearest the key with
a 30-minute timeout, after which the key must be reinserted by its original publisher.
There is no other migration of keys, so if all the nodes holding a key fail, the key will
be lost.

Experimentally, we would like to make queries to random nodeIDs, but MDHT
does not already make suitable queries that we can instrument. Instead, we modified
our client to perform a lookup on a random ID every 10 minutes,accounting, in total,
for 10% of all lookups our clients perform. An unmodified client that joined 3 swarms
would generate a similar level of traffic.

If a torrent file defines a central tracker, Mainline willneveruse the MDHT for
tracking. Unsurprisingly, very little traffic in MDHT appears to originate from Main-
line clients. If a torrent uses the distributed tracker, it contains a subset of DHT peers,
allowing Mainline to bootstrap itself into the DHT. Most of the clients that we have
seen in MDHT appear to be BitComet (see Section 4.1.3, below).

4.1.2 Azureus implementation

We studied version 2.5.0.0 of Azureus which is open source and implemented in Java.
ADHT implements Kademlia with a width of 16,w = 4, andb = 20 nodes in each
bucket; keys are replicated on the 20 nodes with nodeID nearest the key. When doing
lookups, Azureus uses 5-way concurrency. Unlike MDHT, ADHTis partially stateful;
while keys must be refreshed every 8 hours, keys are also replicated and migrated to
new hosts in response to node churn. Azureus will first use thecentral tracker, as
specified in the torrent, and will only use the ADHT if the tracker is unreachable.
Azureus supports PEX and a variety of other extensions.

Where Mainline refreshes quiescent buckets every 15 minutes, Azureus starts a
refresh cycle 30 minutes after the prior one finishes and performs random lookups
every 5 minutes when not refreshing buckets. To initially boostrap itself into ADHT,
Azureus uses its regular swarming peers, which may be more robust than Mainline’s
use of the the torrent file to list bootstrapping peers.

4.1.3 Other implementations

BitComet versions newer than version .53 appear to use the centralized tracker in par-
allel with the MDHT. BitLord only supports the PEX extensions with other BitLord
nodes and recent versions appears to support MDHT.µtorrent supports PEX, MDHT,
and several other extensions.

None of these clients are open source, but they do interoperate correctly with
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MDHT. As such, we assume they implement MDHT in a similar fashion to the Main-
line client.

5 Design issues

We now consider general design issues that affect the performance of both MDHT and
ADHT.

5.1 Identifying replica peers

In a DHT, it is useful for a node to be able to identify whether it is or is not responsible
for a given key, particularly when supporting migration andreplication. For efficiency,
a node should not have to contact any other node to determine its responsibilities.

In Pastry, every node explicitly tracks (and regularly pings) its nearest neighbors,
forming aleafset. So long as the replication factor is smaller than half the size of the
leafset, every node can determine when a replica peer has failed, requiring the migra-
tion of data. Kademlia similarly stores keys on then nearest nodes in XOR distance
to the key. MDHT and ADHT implement Kademlia without its extended routing table
(see Section 4), resulting in no easy way to unambiguously determine which peers are
responsible for a key, complicating any replication or migration strategy.

Instead, they use Kademlia’s iterative lookup algorithm tofind the nearest node to
an ID using a priority queue ordered by distance to the key. The queue is initialized
from the routing table where the search begins. The nearest node in the queue is queried
for thek closest nodes it knows to the key. The lookup terminates whenno new nodes
are found closer to the key. This algorithm can be extended tofind then nearest nodes
to the key by modifying the termination condition so that thelookup terminates only
after then nearest nodes in the priority queue have all been contacted and no additional
nearby nodes have been discovered.

The lookup has been proven correct, with the extended Kademlia routing table,
whenk = n= b [31]. The correctness of lookup is unproven for Mainline andAzureus,
without the extended routing table. Furthermore, as the number of dead nodes in the
routing table increases,k is effectively less thann or b, and the lookup might then miss
live nodes near the key. Such failures manifest themselves when we try to estimate the
size of the DHT (see Section 7.9) and can be seen in ADHT’s migration and replication
system. MDHT does not perform migration at all.

5.2 Opportunism in Kademlia

Many distributed systems, including Kademlia, opportunistically piggyback mainte-
nance traffic onto application traffic, saving the cost of separate traffic devoted solely
to maintenance. Kademlia uses the senders of incoming queries as an opportunis-
tic source of new nodes for refreshing routing tables. When available, Kademlia uses
RPC timeout failures on outgoing messages in lieu of explicit pingmessages for check-
ing node liveness and keeping the routing table fresh. Unfortunately, iterative routing
curtails both opportunities.
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Consider: the top layer of a host’s routing table can potentially contain a reference
to any node in the overlay. Lower layers in a host’s routing table have a prefix in
common with the host’s nodeID. As such, an outgoing query to arandom nodeID will
be unlikely to ever satisfy the prefix match for lower layers.The probability that such a
random lookup will use a bucket in layerl in the local routing table is 1/2w·l , decreasing
exponentially as we get to lower layers.

A similar issue exists in learning new nodes, biasing node discovery toward the
highest and lowest levels of the routing table while starving the middle. With iterative
routing, the ID of the sender of a message is independent of the key being looked
up. Since the senders’ IDs are uniformly spread over the nodeID space, they will
be unlikely to be eligible for all but the highest layers of the routing table. Likewise,
newly joining nodes look for their own nodeID first, populatetheir routing table as
they search. As a side effect, they announce themselves to their future neighbors, and
populate the lower levels of their neighbors’ routing tables. No equivalent opportunistic
method exists to populate the middle layers.

Minor modifications to Kademlia could address these concerns. For example, iter-
ative routing could be enhanced with a feedback mechanism; whenever a node contacts
a dead peer during a lookup it informs the supplier of that peer of the apparent death.
Another fix would be for nodes interested in the death of a peerto cooperate by gos-
siping information about that peer [46]. Furthermore, iterative lookup requests could
include some or all of the live nodes discovered earlier within the same lookup. (Such
extensions, however, might allow for security attacks; a malicious node could return a
list of other malicious nodes, polluting the victim node’s routing table [6].)

Another alternative would be for Kademlia to adopt a recursive routing strategy,
rather than its iterative strategy. Each node along the lookup path would then have
an opportunity to discover dead nodes in its routing table. The odds of a node being
queried at any level of its routing table would be uniform, sothe opportunistic refresh-
ing would have a similar effect across the entire routing table.

In Kademlia, opportunistic routing table refreshes dependon DHT application traf-
fic to piggyback on. In the current DHT, there is little DHT application traffic to piggy-
back upon, only 2 messages per swarm per hour compared to a measured maintenance
traffic of about one message per minute. Unless additional uses are found for the DHTs,
explicit refresh traffic will continue to be necessary to prevent stale routing tables.

6 Evaluation Goals

There are many more questions we could study and analyze thanwe have space to
present here. This section summarizes the research we choseto perform.

Do the DHTs work correctly? No. Mainline BitTorrent dead-ends its lookups 20%
of the time and Azureus nodes reject half of the key store attempts. (See Sections 7.1
and 7.10.)

What is the DHT lookup performance? Both implementations are extremely slow,
with median lookup times around a minute. (See Section 7.2.)

8



Why do lookups take over a minute? Lookups are slow because the client must
wait for RPCs to timeout while contacting dead nodes. (See Section 7.3.) Dead nodes
are commonly encountered in the area closest to the destination key.

What if the timeouts were eliminated? Lookup times would still be slow (typically
5-15 seconds). 10% of MDHT messages, for example, have round-trip times (RTT) of
over 5 seconds. (See Section 7.5.)

Why are the routing tables full of dead nodes? Kademlia’s use of iterative routing
limits the ability for a node to opportunistically discoverdead nodes in its routing table.
(See Section 7.3.)

Do all nodes have the same observed RTT? Many nodes has sub-second RTTs
with low variance, while most have much higher RTTs with noticably higher variance
as well. (See Section 7.5.)

What if we used adaptive timeouts as suggested in Bamboo? Bamboo proposed
using adaptive timeouts for a DHT using recursive routing. We evaluate their effective-
ness in Section 7.6.

How effective is routing table maintenance? Azureus and Mainline are effective at
finding nodes with an average of 10 and 4 hour uptime respectively, and the high layers
of their routing tables are 80-90% live. (See Section 7.4.)

Does the network have connectivity artifacts? Both ADHT and MDHT observe
one-way connectivity where 12% and 6% of nodes, respectively, send us messages but
never reply once to our own messages. (See Section 7.11.)

What about bugs in the implementations? Azureus and Mainline both contain
bugs that impact their performance. (See Section 7.1.)

What is the difference between MDHT and the Kademlia design? Mainline does
not ‘backtrack’ if it encounters dead nodes and thus sometimes does not return the
correct replication set. (See Sections 7.1 and 7.9.)

What are the differences between ADHT and the Kademlia design? Azureus
contains a bug where it takes an hour to eject dead nodes. (SeeSection 7.4.) Further-
more, Azureus nodes will reject a key if they conclude they are not in the replication
set. This conclusion is incorrectly reached about half of the time. (See Section 7.10.)

7 Measurements

To effectively measure MDHT and ADHT, we modified existing Mainline and Azureus
clients to participate normally in the DHT, logging the events they observed. A single
client will not see enough data to constitute a representative sample of DHT behav-
ior. Instead of using many machines and running one client oneach, we ran multiple
independent instances of Mainline and Azureus on a single host and effectively per-
formed aSybil attack[13] giving us the same information without needing additional
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hardware. We collected about 16 days of measurements with 77concurrent Mainline
clients and about 23 days of measurements with 11 concurrentAzureus clients. For
measuring routing table maintenance for Mainline, we used all 77 clients. For our
other measurements, we use data from 11 clients.

7.1 Implementation bugs and changes

MDHT, as implemented by Mainline BitTorrent, has several curious bugs. The most
serious is a routing table maintenance bug. When a contactednode fails to reply, the
original Mainline blames an innocent node for the failure when the contacted node is
not in the routing table. As a result, under normal operation, 85% of the nodes ejected
from the routing table are not actually at fault. For our experiments, we repaired this
bug, allowing us to better measure MDHT. When we do not refer to a specific version
in our experimental results, we are referring to ourFixed Mainlineimplementation, as
opposed to theOriginal Mainline. (We don’t know if this bug is present in BitComet
or other MDHT clients.)

A second serious bug occurs during a lookup, used to identifythe nodes responsible
for storing a key, among other things. Mainline performs iterative routing with 8-way
concurrency, maintaining a priority queue of the 8 closest nodes which have yet been
discovered. The lookup terminates when the 8 closest nodes have been contact or timed
out. If, as often the case, some of these nodes are dead, Mainline does not backtrack to
find the closest 8live nodes; instead, the lookup terminates early. In our experiments,
we observed a dead-end condition, whereall 8 nodes are dead, on 20% of all randomly
chosen queries. (Again, we don’t know if other MDHT clients shares this bug.)

Finally, Kademlia specifies random queries, within each quiescent routing table
bucket, to freshen the routing table. Mainline’s implementation is incorrect; it consid-
ers a bucket active if a node has been addedor removedwithin 15 minutes. Kademlia
normally requires thateverynode in every bucket be pinged every 15 minutes. As a
result, we would expect MDHT routing tables to have more stale nodes.

Azureus has a bug where it treats a remote node that regularlycontacts it as alive
even though it is unreachable. The routing table ping/replacement/refresh state ma-
chine likewise appears to be too optimistic about node liveliness; unless a node in the
routing table is found to be dead in the course of a routing lookup or a regular refresh
operation, Azureus will only explicitly ping it to verify liveness under uncommon con-
ditions. This issue can be observed in our measurements of how long it takes for dead
nodes to be removed from the routing table (see Section 7.4).

7.2 Lookup performance

Our first set of measurements concerns lookup performance onADHT and MDHT.
We performed 45k random lookups in ADHT and 26k random lookups in MDHT. A
random lookup picks a key, at random, and locates thek nearest nodes to the key. In
Figure 3, we show the CDF of the number of hops taken for each lookup. ADHT
has a median of 26 hops and MDHT has a median of about 33 hops. ADHT is more
tightly clustered because it uses a branching width of 16 so each hop matches at least
4 additional prefix bits. MDHT’s branching width of 2 only guarantees one additional
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Figure 3: Hopcount CDF for random queries for MDHT and ADHT.

bit each hop. (In Section 7.9, we estimate similar numbers ofnodes in each DHT, so
population size differences do not figure into these graphs.)

Figure 4 shows the lookup latency on random queries. The performance is poor,
with a median lookup latency exceeding a minute for both Mainline and Azureus, as
a result of RPC timeouts contacting dead nodes. For both systems, 20% of the nodes
contacted in a single lookup are dead on 95% of the lookups. Overall, about 40% of
the nodes encountered are dead. Each dead node consumes one concurrent request slot
for a 20 second timeout. Every 8 dead nodes encountered on an Mainline query will
consume all the available slots resulting in a 20 second delay. This effect can be seen
in the slope changes of the Mainline curve at 40, 60, and 80 seconds. Azureus uses
the same timeout, but allows fewer concurrent requests, directly leading to the longer
lookup latencies observed.

We wished to understand the potential lookup performance ofthese DHTs if the
RPC timeout problem were eliminated, perhaps through shorter timeouts, more lookup
concurrency, or fresher routing state. By estimating and artificially subtracting the
timeouts, the resulting lookup times would improve to a median of 5 and 15 seconds
for MDHT and ADHT, respectively. (See also Section 7.5.)

7.3 Location and causes of dead nodes

When a node performs an iterative DHT lookup, it maintains a queue of nodes as the
search progresses(see Section 5.1). When that search encounters a dead node, we track
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Figure 6: The stages in a node’s lifespan.

Bucket refr. Churn Discovery Uptime Prezombie Zombie
per node/day per node/day (min) (min) (min) (min)

Fixed Mainline 1373 493 56.89 258.69 12.73 3.43
Original Mainline 797 1110 8.90 79.82 8.08 1.61
Azureus 1662 1657 21.32 665.10 76.80 58.51

Table 1: Explicit bucket refreshes, node discovery, churn,and average node lifetimes
for each DHT.

how many prefix bits it shares with the lookup key. Figure 5 shows a histogram of
the dead nodes based upon the number of shared prefix bits. We can see that 75% of
all dead nodes encountered in an ADHT lookup occur when the contacted node shares
15-18 bits of prefix, which corresponds to identifying the nodes in the replica set for
the key.

This spike has two causes: First, the lowest levels of the routing table have more
dead nodes; second, Azureus must contact and confirm the liveness ofall nodes that are
close enough to possibly be in the replica set. Mainline doesnot show a similar spike,
most likely because it has a smaller replication factor and does not backtrack when
encountering dead nodes at the end of a search. Instead, 20% of Mainline searches fail
without finding the replica set.

To better understand the Azureus spike, we examined routingtable liveness, layer
by layer. For ADHT, the chance of a node in the routing table being alive drops from
70% for the first 3 layers to 20% thereafter. For MDHT, the first15 levels of the routing
table average an 85% chance of being alive. By layer 18, it drops to under 35%.

Clearly, both the MDHT and ADHT implementations have trouble keeping the
lower-levels of the routing table populated with live nodes. A sensible solution would
be to add more aggressive pinging on the extended routing table that neither MDHT
nor ADHT implement. (See Section 4.)

7.4 Routing table maintenance

Any DHT design must deal with nodes that have limited lifetimes and unreliable behav-
ior. In this section, we discuss how effective Azureus and Mainline are at discovering
new nodes and ejecting dead nodes.

The lifespan of a node can be split into five events:

Join When a node first joins the system.
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Seen When a node is first seen alive by us.

Last Alive When a node was last seen alive by us.

First Dead When a node was first found dead by us.

Removed When a node fails a few times and is removed from the table.

We refer to the four durations between these five events as thediscovery time,
uptime, prezombie time, and zombie time (see Figure 6). Nodes self-report their join
times, so clock skew will create some error in the discovery time.

Some nodes die very young and we are unable to ever successfully contact them.
We separately classify these infant mortality events: 13% of the nodes in ADHT and
57% of the nodes in MDHT suffer infant mortality and are not included in the subse-
quent figures.

We track nodes using our routing tables and Kademlia’s normal node detection and
elimination algorithms. Our measurements are based on nodes that are selected to be
within our routing table. Neither Azureus nor Mainline selects nodes for inclusion in
the routing table based on any criteria beyond its nodeID andreachability6. Typically,
Mainline’s routing table has about 150 nodes and the Azureus’s has about 1000 nodes.

In Table 1 we show the average discovery time, uptime, and so forth of nodes in
the Azureus and two Mainline clients routing tables. The difference between Fixed
Mainline and Original Mainline is striking, with over twicethe churn rate and a third
of the expected uptime. Our bug repairs significantly improved Mainline DHT’s ability
to retain good nodes. The retention of more good nodes would lessen the need to find
replacements for them, leading to the much longer node discovery time. Counterintu-
itively, fixing the bug also increases overhead. The high churn rate refreshes routing
buckets without requiring explicit refreshes. The decrease in churn rate of about 600
nodes per measurement node per day is compensated for by an increase of 600 stale
buckets instances for which Mainline performs a full lookup.

The uptime numbers we report exceed the 1-hour session duration reported by
Saroiu et al. [44] or the 2.4 minute session length reported by Gummadi et al. [20].
This may be indicative of the stable nature of BitTorrent clients, which commonly run
for hours to download large files.

7.5 Internet RTT measurements

In this section, we identify the cause of why median lookup performance would still
be 5-15 seconds, even if timeouts were eliminated (discussed earlier in Section 7.2).
We examine the effective RTT experienced by MDHT nodes contacting their peers
through outgoing lookup and ping messages. Ping messages are sent to nodes in the
local routing table. Lookup messages occur during random lookups and are sent to
each node in the path.

In Figure 7 we show the complimentary CDF of the observed Internet RTTs for over
a million lookup and ping messages done by both Fixed and Original Mainline. The

6Azureus has a BitTorrent extension to favor local nodes, on the same subnet, for high-speed sharing, but
this has no impact on its Kademlia routing table.

14



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10

F
ra

ct
io

n 
of

 n
od

es

RTT (seconds)

Original Mainline, Ping RTT
Fixed Mainline, Ping RTT

MDHT Lookup RTT

Figure 7: Complementary CDF of the probability that the observed RTT exceeds a
threshold.

poorer quality of nodes in Original Mainline’s routing table can be seen by comparing
its ping RTT to Fixed Mainline. The MDHT lookup RTTs (i.e., RTTs for each node
encountered during iterative lookups) are comparable to the Fixed Mainline ping RTTs.
learned from other nodes on the network and sample remote routing tables, demonstrat-
ing that Fixed Mainline’s routing table has a comparable distribution to other routing
tables in the DHT.

The average MDHT response time for lookup messages was 1.6 seconds with 10%
of hosts taking over 3.8 seconds to reply and 5% of hosts taking in excess of 8 seconds
to reply. Overall, 59% of lookup messages received a reply.

Most of the RTT variation is from transient effects. This canbe seen in Figure 8 as
the difference between the minimum and average lookup RTTs for nodes that replied
to at least 10 lookup messages. Even though most nodes have anaverage RTT of over
a second, only 5% of nodes have a minimum observed RTT exceeding a second.

Not all of the nodes have the same RTT distribution. Of the 2.5M distinct nodes that
replied to our lookup messages, we examine the mean (µRTT) and standard deviation
(σRTT) of the RTT for the 19k nodes for which we had at least 30 replies. These popular
nodes account for 2.1M or 20% of outgoing lookup messages andare much more likely
to reply, with a 78.2% reply rate.

In Figure 9 we scatterplotµRTT versusσRTT for a random subset of the 19k nodes
described above. Nodes with an average RTT under a second account for 42% of the
peers in tight cluster of ‘fast’ nodes with a half second average RTT and a standard
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Figure 8: Complimentary CDF of Minimum and Average RTT for each host that
replied to at least 10 MDHT lookup messages

deviation of .8 seconds. The remaining ‘slow’ nodes show a 2.1 second average RTT
and a standard deviation of 2.8 seconds.

Overall, we observed a median RTT of 1.5 seconds, significantly more than the
100ms median Gnutella latency measured by Saroiu et.al. [45]. Directly comparing
our measurements with the King dataset [21] is difficult, as 40% of our measurements
exceeded their 1 second timeout limit. We conjecture that the latency we observe is
because BitTorrent’s tit-for-tat trading strategy encourages hosts to consume their up-
load bandwidth causing queuing delay and congestion. Furthermore, when a BitTor-
rent client is sharing files, bulk traffic must compete with lookup requests. Upload
throughput could also be throttled by asymmetric links or traffic shaping devices. Per-
haps future BitTorrent clients could implement techniqueslike TCP-Nice [47] to give
preference to interactive traffic.

7.6 Timeout strategies

While more live routing tables and routes with fewer hops canreduce the odds of wait-
ing on a dead node, and greater concurrency can sometimes hide this latency, another
important tactic is to reduce the timeouts. Timeouts chosenbased on the expected
round-trip time can significantly reduce the latency for discovering dead nodes [5, 40].
The RTT can either be directly measured or estimated using network positioning al-
gorithms like GNP [33] or Vivaldi [12]. Azureus already incorporates Vivaldi, but
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Figure 9: Scatter plot of RTT standard deviation and RTT average for 19k nodes from
MDHT.

does not presently use it for this purpose. We further investigate the effect of different
timeout strategies by using response times for MDHT lookup messages.

Table 2 compares the effectiveness several timeout strategies would have on the
2.1M outgoing messages sent to the 19k nodes who replied to atleast 30 lookup MDHT
lookup messages. The table shows the formula for computing the timeout, the average
timeout calculated by the formula, the average response time, and the number false
positives compared to the the baseline strategyA (i.e., live nodes that failed to reply
before a more aggressive timeout caught them). For RPCs thatfail or time out, they
are considered in the response time column as if they had run for the duration of the
timeout (i.e., timeouts bound the response time but can induce higher failure rates). The
baseline strategyA has a response time, including errors, of 5.52 seconds and a failure
rate of 21.8%. StrategyC was proposed by Bamboo [40] and inspired by TCP/IP,
demonstrating the superiority of dynamic timeouts as it hashalf of the false positive
rate ofB while having a similar timeout duration and response time. StrategyD is a
more aggressive variation on Bamboo’s strategy, having an average response time of
1.22 seconds, but false positives on 9% of live nodes. This supports the strength of
Bamboo’s dynamic timeout mechanism.

Deploying these dynamic timeout strategies requires that the DHT use recursive
routing, or if iterative routing is used, nodes must track the RTTs of nodes in their
routing table to compute the necessary timeouts.
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Timeout Average Response False
Formula Timeout Time Positives

A 20 20 5.52 -
B 10 10 3.10 2.8%
C µRTT+4 ·σRTT 8.8 3.03 1.4%
D µRTT+ σRTT 3.1 1.22 9%

Table 2: Comparing timeout strategies.A represents the default Kademlia strategy.C
represents Bamboo’s adaptive strategy, whereµRTT andσRTT represent average and
standard deviation RTTs for the peer. All times are in seconds.

7.7 Spying on swarm sizes

Our measurement nodes participated normally in the DHT protocols, storing keys and
responding to fetch requests. For the swarms where we were storing keys and acting
as a tracker, we were able to monitor swarm membership and estimate the number
of nodes in the tracked swarms. Our main ADHT dataset included fetch and store
requests. Due to an oversight, our main MDHT dataset did not record those requests.
In order to estimate the MDHT swarm sizes, we collected a new MDHT dataset over
a 2 day period using 100 measurement nodes. In Figure 10, we plot a CCDF showing
the fraction of swarms with at least a given number of nodes. These sizes are an
underestimateof the true swarm size, because they only count visible nodeswithin that
DHT. Azureus and Mainline clients, for example, are compatible with each other for
the core tit-for-tat trading protocol, but are incompatible at the DHT layer. Likewise,
older clients or clients with firewall issues might not connect to the DHT at all, despite
participating in the core BitTorrent trading protocol.

ADHT swarms are much smaller than MDHT swarms because, in thedefault con-
figuration, Azureus does not use the DHT for all torrents. BitComet uses the tracker in
parallel with the DHT, and contributes the majority of the MDHT curve. We counted
3952 distinct swarms in our ADHT dataset and 386419 swarms inour MDHT dataset.
Also, the distribution of swarm sizes follows a classic power-law distribution (i.e., the
log-log plot is a straight line).

7.8 Flash crowds

Unlike MDHT, ADHT has provisions for handling nodes that areoverloaded with re-
quests or with stored data. ADHT will store values for a key in10 alternate locations
when the read rate exceeds 30 reads per minute or when the current node hits a global
capacity limit of 64k keys or 4MB of storage. It also limits any one key to at most 4kB
of storage or no more than 512 values, corresponding to a swarm with 512 members.
Both types of migrations are rare. Approximately 2% of the time, one of our ADHT
nodes was responsible for storing exactly one capacity-limit triggered migrated key.

Figure 11 plots the CDF of the inbound message rate bucketed into 5 second peri-
ods. The busiest 5 second period we observed is only four times busier than the median
5 second period. This is unsurprising, as BitTorrent clients are normally unsynchro-
nized in their interactions with a tracker (whether centralor distributed) and have a 30
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minute refresh cycle. The 99.5th percentile busiest periodthat we observed has fewer
than 4 applications messages per second plus 8 maintenance messages per second.

Both ADHT and MDHT consume very little CPU, storage, or bandwidth in their
common usage. ADHT would need a swarm larger than 5000 nodes and MDHT
larger than 360 nodes before the DHT application traffic would exceed 12 messages
per minute. Figure 10 shows swarms this large, at least that are observable from the
DHT, are very rare.

Worst case When an ADHT or MDHT peer initially joins a swarm, it first findsthe
replica set. To determine that the lookup is complete and no closer node to the lookup
ID exists, the peer must send a find-nearest-k message to each node of a replica set and
will receive a reply consisting of 30·kbytes of contact information (ID,IP address,port).
If 100k people joined a swarm within five minutes, MDHT and ADHT would receive
300 find-nearest-kmessages per second consuming 500kb/s and 1.25Mb/s sendingcon-
tact information on 8 nodes and 20 nodes for MDHT and ADHT respectively in each
reply. This may exceed the upload capacity of many asymmetric links and does not
account for replies to DHT fetch requests as swarm members look for other swarm
members.

If ADHT and MDHT nodes implemented the extended routing table, then any
member of the replica set for a keyautomaticallyknows the other members of the
replica setandknows that the find-nearest-k lookup is complete and can indicate so in
its reply. Overall bandwidth consumption for this worst-case example would drop to
64kb/s for both ADHT and MDHT because only one member of the replica set needs
to be contacted.

7.9 Estimating DHT size

We wish to estimate the size of the node population in MDHT andADHT. Our size
estimator, based on measuring nodeID densities, also makesa good test of the cor-
rectness of Kademlia’s find-the-n-nearest primitive. For randomly chosen nodeIDs,
the nodeID density can be expected to have a Poisson distribution with the inter-node
distance exponentially distributed. Recall that an exponential distribution with rateλ
has a cumulative density function (CDF) of 1−e−λx and has mean=1/λ. If the mea-
sured inter-node distances are anomalous relative to this distribution, then the lookup
algorithm is returning incorrect answers.

To estimate the density at any given lookup key, we route to it, recording then
closest nodes and their XOR distances. The differences in distances between the first
and second closest node, the second and third closest node, and so forth form separate
estimates of nodeID density. More formally, letL be a lookup key andNi be theith
nearest node on a route lookup forL. One sample of adjacent-node spacing in terms
of the fraction of the ID space covered isDi =

(Ni+1⊕L)−(Ni⊕L)

2160 , and the estimated size
corresponding to that sample isSi = 1/Di .

If the number of nodes in the system isS, and the lookup returned only correct
answers then all of theDi will be an exponential distribution with mean 1/Sandλ = S.
However, if the lookup failed and there were missing nodes betweenNi andNi+1, then
the distributionDi will be anomolously large. It would be a mixture of exponential
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and an exponential distribution.

Received Sent Sent and received Sent and received
requests from requests to request to&from and overlapping

Azureus 8.5M 9.3M 2.3M 404k
Fixed Mainline 15.5M 5.4M 1.3M 250k

Table 3: The breakdown of distinct hosts that we contact and that contact us.

distributions with means 1/S,2/S,3/S, and so forth.
In Figure 12 we plot CCDFs ofD1 andD17 over 478k ADHT samples. The intern-

ode distance distributionsDi ’s overlap nearly completely, showing that the returned
ith nearest neighbor is just as likely to be correct for smalli as largei. This distribu-
tion closely matches an exponential distribution withλ = 1100k and demonstrates the
strength of Azureus in properly finding the nodes closest to agiven ID as well as allows
us to estimate that ADHT has about 1.1M live nodes.

In contrast, Figure 13 plotsD1,D4 andD7 for 26k MDHT samples. We observe a
different distribution and an anomalously large internodespacing forD4,D7, indicating
missing nodes between the 4th and 5th nearest neighbor and between the 7th and 8th
nearest neighbor. This demonstrates that Mainline, unlikeAzureus, is not returning the
correct answers to find-nearest-8 queries. We are unsure if this is caused by the smaller
bucket size of MDHT or the backtracking bug in Mainline (see Section 7.1).

The lookup failures in MDHT make it more difficult to estimatethe number of
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nodes. We filter the noise out ofD1 by keeping the 5k smallest samples inD1 which
closely match an exponential distribution and estimateλ = 1300k by curve fitting. We
thus estimate MDHT to have 1.3M live or recently dead nodes.7

7.10 Migrated and stored keys

Recall that MDHT does not do any kind of data migration, whileADHT does. Our
ADHT dataset includes 1074k direct stores and 301k migrations. Each store typically
is of only one key while each migration may include multiple keys. Key migration des-
tinations are selected based on the local routing table and the destination node likewise
validates the migration based on its local routing table. Asa result of the large number
of dead nodes the lowest layers of most routing tables, this check underestimates the
amount of ID space for which a given node is responsible. We observed that about half
of directly stored keys are rejected and 26.5% of migrated keys are rejected.

Not all rejected keys are rejected in error. ADHT has a million nodes and 20-
way replication, so a key should share approximately log2(106/20) ≈ 15 bits with the
nodeID it is stored on. We conservatively identify a correctly rejected key if the key
does not share at least 8 prefix bits with the nodeID it is beingstored on. From this
heuristic, at least 5% of stored and migrated keys are legitimately rejected, begging the

7An accurate count of only live nodes is difficult to determinebecause Mainline does not backtrack and
remove dead nodes from its result set.
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question of why at least 5% of key store requests are sent to the wrong host.
Azureus clearly needs a more accurate predictor of whether agiven node is respon-

sible for a given key. Chen and Liu propose techniques for enforcing routing consis-
tency that may help [7]. As described in Section 7.8, an implementation of Kadem-
lia’s extended routing table would allow a node to implementa more accurate key
rejection metric. Likewise, routing lookups have very goodaccuracy in Azureus (see
Section 7.9), so lookups could also be used to determine the proper relica set.

7.11 Connectivity artifacts

Many nodes in the Internet are behind NAT or firewalls, possibly creating symptoms of
poor or broken network connectivity. Some studies have estimated NAT prevalance by
the network behavior of malware, with between 7% and 60% of worm infected hosts
behind a NAT [38, 4]. And, of course, the Internet itself doesnot always guarantee
connectivity between any two nodes.

Our test looks for hosts that contact us multiple times, yet we are unable to reach
them, even after many attempts. This persistent unreachability may be the result of
NATs or firewalls.

We define a host ask-unreachable if we fail to receive even one reply afterk at-
tempts to contact it. We define a host asj-seen if we observe at leastj lookup requests
from it.

Table 3 summarizes the breakdown of nodes that we sent and received lookup re-
quests to and from. To compute thek-unreachability of various hosts from our exper-
imental data, we need to find hosts that we have attempted to contact and that have
sent requests to us at around the same time. We found 400k ADHTnodes and 250k
MDHT nodes where the time interval that we attempted to contact them and the inter-
val they contacted us is nontrivially overlapping, i.e., they contain at least one contact
attempt and at least one message reception. We restrict ourselves to those nodes and to
messages in the overlapping time interval.

In Figure 14 we plot the fraction ofk-unreachable hosts over the total number
j-seen nodes that were either reachable, or had at leastk attempts to contact them.
Approximately 15% of ADHT nodes and 8% of MDHT nodes that wereseen alive
at leastj = 15 times were 6-unreachable and are probably unable to accept incoming
connections.

Interestingly, the number of times a node is seen has virtually no correlation to the
unreachability of nodes in MDHT. This likely because nodes that are contacted many
times are likely to be in the routing table and Mainline always does a round-trip ping
to verify reachability before adding a node to its routing table. There is only a minor
correlation between the unreachability of nodes in ADHT andthe number of times a
node is seen. This implies that merelyseeinga node says little about whether it is
reachable.

While our results are not conclusive, our data suggest that 10-15% of BitTorrent
users have significantly degraded Internet connections, likely resulting from firewalls
or NATs.
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Figure 14: Unreachability ratio for Azureus and Mainline asa function of the host
unreachability threshold (k) and times seen (j).

7.12 Communications locality

In general, DHT nodes tend to exchange most of their traffic with a small set of other
DHT nodes. For Mainline, just 1.1% of a node’s peers were sentat least 15 messages,
and they account for a full third of the outgoing traffic. The 7.6% of peers that sent
at least 15 messages account for 60% of the incoming traffic. Azureus is similar, with
1.6% of hosts receiving 15 messages responsible for 37% of the outgoing traffic and
the 4.7% of hosts sending at least 15 messages responsible for 56% of the incoming
traffic.

More interestingly, for Azureus, 54% of messages sent were sent to nodes that never
replied once. For Mainline, 41% of messages were sent to nodes that never replied. For
both clients, only 1% of the hosts that were never once seen alive are responsible for
28% of the messages sent to hosts that were never seen alive.

Unfortunately, it would be non-trivial to cut flakey nodes completely out of the
DHT. If either Azureus or Mainline were to permanantly stop contacting a node after it
failed to reply 15 times, only 10% of the contacts to dead nodes would be eliminated.
Further, that same filter would cause false positives on livehosts that accounting for
2.5% of MDHT traffic and 8% of ADHT traffic.
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Figure 15: Client release ages for Azureus and BitComet.

7.13 BitTorrent client distribution

The distribution of BitTorrent client types can give us valuable information including
the market share for each client program as well as how frequently users update their
client software. If we want to roll out changes to any of the DHT protocols, this tells
us about the size of our legacy issue. Helpfully, BitTorrentclients encode their client
name and version number in their peer ID.

In Figure 15 we determine how often users update their clients by combining ver-
sion numbers with release dates. We find that half of users arerunning software less
than three months old. Unfortunately, a third of Azureus users run software more than
6 months old despite an auto-update mechanism. Furthermore, about 5% of BitComet
users are running code over 18 months old. Clearly, no updatecan be expected to be
universally adopted in a short timeframe.

Table 4 shows the client distributions for nodes in the MDHT,and an overall client
distribution taken from directly joining the swarms for 100large torrents. These data
show that BitComet and Azureus together command 3/4 of the market share for Bit-
Torrent clients.

8 Conclusions

This study considered two large-scale DHTs with millions ofnodes, used to help Bit-
Torrent clients discover their peers. Although the performance issues we observed

25



Client name Percent of hosts Percent of hosts
overall in MDHT

Sample count 31043 25353
Mainline 2.8% 2.8%
µtorrent 4.0% 7.3%
BitLord 15.0% 0.3%
Azureus 25.3% n/a

BitComet 50.5% 88.8%
Other 2.5% 0.7%

Table 4: Popularity of different BitTorrent clients.

may only add a small overhead to hours-long BitTorrent downloads, they are still il-
lustrative of the design and implementation challenges faced by large scale structured
overlay networks in the real world. We found a number of problems inherent in the
Kademlia-based overlays resulting from incorrect implementation of the Kademlia de-
sign, including a poor choice of DHT parameters and inherentnetwork issues. Because
the DHT largely serves as a backup for centralized trackers and there are two incom-
patible implementations, it is generally under-utilized,lessening the need for backward
compatibility in future redesigns.

While some incremental changes could improve existing DHT use (such as in-
creasing the number of concurrent lookups in Azureus’s iterative routing), many of
the problems we observe cannot be fixed while retaining compatibility. We therefore
recommend an incompatible jump to a new DHT. While such a jumpwould make it
attractive to go with a completely different DHT design, it would be perfectly accept-
able for the new DHT to still use Kademlia but with many of the present problems
addressed.

While it should be straightforward to repair many of the problems we discovered,
security attacks are much more difficult to address. We suspect that a central authority
for nodeID assignment would not be politically feasible, and NATs complicate any use
of hashed IP addresses. As such, nodeID assignment remains an important open prob-
lem in p2p systems and would represent a open avenue of attackagainst the BitTorrent
DHTs. Likewise, the BitTorrent DHTs are wide open to a variety of other security
attacks. Addressing these security issues is future work, although the relatively small
amount of data stored in the DHT suggest that techniques likeCondie et. al.’s churning
approach might be applicable [10].

Regardless, the limited use of DHTs as a backup peer discovery mechanism limits
the damage that may be caused even by the most catastrophic attacks against the DHT.
Once a BitTorrent peer discovers at least one legitimate peer in the swarm, whether
from a central tracker or from the DHT, it may discover other peers through peer gossip
(PEX). As such, the Kademlia DHT, even without aggressive security mechanisms,
appears to be a good fit for the needs of BitTorrent peer discovery.

Our measurements clearly show that concurrent iterative routing can only deal with
a limited number of dead nodes before incurring timeouts. Toreduce these time-
outs, nodes should preferentially refresh the routing entries corresponding to their local

26



neighborhood and implement Kademlia’s extended routing table. This will address the
lower reliability of the lower levels of the routing, avoiding the surge in timeouts when
finding all of the elements in a replica set, and providing proper support for key migra-
tion and replication. Improving Kademlia’s iterative routing to give feedback on dead
nodes, discovered later, to nodes earlier in the path will also increase opportunities to
discover dead nodes. Opportunities for discovering live nodes may be increased by
giving hints to later nodes on a search with nodes discoveredearlier on the search path.

We have also identified a high variance in network RTTs, suggesting the benefits of
using a dynamic timeout system, as in Bamboo, rather than thestatic timeout currently
in use.

BitTorrent’s many implementations clearly benefit from having the distributed tracker,
running on a Kademlia DHT. This structure provides robustness when the central
tracker is overloaded or otherwise unavailable. It also hasthe potential to eliminate the
need for central trackers, entirely, improving the speed with which a BitTorrent client
can find the nodes in a swarm and thus improving the startup speed of large down-
loads. Of course, DHTs have security concerns that are not faced by central trackers,
and future work to address these concerns should have an impact both on BitTorrent
and many other distributed systems.
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