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Abstract

Despite interest in structured peer-to-peer overlays laeid $calability to mil-
lions of nodes, few, if any, overlays operate at that scaleés paper considers the
distributed hash table extensions supported by moderroBéfit clients, which
implement a Kademlia-style structured overlay network agmillions of BitTor-
rent users. As there are two disjoint Kademlia-based DHTiss# we collected
two weeks of traces from each DHT. We examine churn, realityakitency, and
liveness of nodes in these overlays, and identify a variepyablems, such as me-
dian lookup times of over a minute. We show that Kademliasiah of iterative
routing and its lack of a preferential refresh of its locaigidorhood cause cor-
rectness problems and poor performance. We also identii{eimentation bugs,
design issues, and security concerns that limit the effectiss of these DHTs and
we offer possible solutions for their improvement.

1 Introduction

Overlay or peer-to-peer (p2p) networking technologiesehaeen widely studied as
mechanisms to support wide-scale, fault-tolerant, disted storage and communica-
tion systems. By implementing a distributed hash table (Patistraction, a wide va-
riety of applications can be easily adapted to using thelayeetwork. Unfortunately,
relatively little is known about such DHTSs’ real-world befar with large numbers of
users and real workloads.

While Kazaa does operate at this scale, and its user behzagobeen well stud-
ied [20, 29], Kazaa does not use a “structured overlay,” atlitigmic routing structure
common to many p2p systems. Such structured overlays haegajly only been eval-
uated in limited deployments or on PlanetLab [8], which doasnecessarily represent
what might be observed elsewhere [23].

BitTorrent is a p2p system allowing large numbers of usehare the burden of
downloading very large files. The most notable feature of@itent is its use of tit-
for-tat trading to incentivize users to give each other biglandwidth service [9]. The
BitTorrent protocol uses @entral trackeras a rendezvous point So that nodes interesed
in the same file can find each other. As such, classic BitToaisp lacks a structured
overlay. However, the most popular BitTorrent clients sup distributed tracker



serving the same purpose as the central tracker, but implechevith a variant of the
Kademlia [31] DHT. At the present time, there are two Kadamlerlays in use: one
by Azureus clientsand one by many other clients including Mainfrand BitComet.
Each of these overlay networks include a million live nodasyviding an excellent
opportunity for data collection and analysis of a real, dgptl DHT on the Internet.

2 Redated Work

P2p systems have been extensively studied in the literalRigson and Moors [42]
wrote an extensive survey with 363 citations. We limit ousagission to work most
relevant to the DHTs used in BitTorrent.

Saroiu et al. [44] characterized the Gnutella and Napst&tesys, measuring bot-
tleneck bandwidth and node lifetimes, and finding signifi¢eeterogeneity across the
nodes.

Gummadi et al. [19] studied several routing geometries tedeffectiveness of
proximity neighbor/route selection on performance witht@p4,000 nodes. They did
not assess the impact of dead nodes and the resultant tisnednich we will show has
a significant impact on performance.

Li et al. [28] compared 5 DHTs and their parameter choicesrykating each sys-
tem and parameter vector on a 1024 node network. We will stoawgdoor parameter
selection has impacted the performance of BitTorrent's BHT

Rhea et al. [39] also considered performance issues imgjute use iterative rout-
ing, delay aware routing, and multiple gateways, with an leasgs on improving the
performance of OpenDHT [41] on 300 PlanetLab [8] nodes.

Liang et al. [29] characterized the design of the two-lewastiFrack overlay, used
by Kazaa, Grokster and iMesh. This overlay had 3 millionvactisers.

Skype also operates at this scale, but it encrypts all trafimplicating its anal-
ysis [18]. Skype is believed to use a two-tiered overlay whité top tier fully con-
nected [3].

Two other file-sharing systems use Kademlia. The now-defdomernet used the
DHT for searching. eMule’s Kad netwotkalso based on Kademlia, uses the DHT
for keyword searching and is estimated to have 4 million sod€ad would also be
suitable for analysis.

3 BitTorrent Background

BitTorrent was designed to incentivize a large collectibngers, all wishing to down-
load a single large file, to share their respective upstreamdwidths. Pouwelse et al. [36]
present measurements of the millions of users who regutaidie files with BitTorrent,
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as does Legout et al. [26]. Izal et al. [24] measures the &ffatess of BitTorrent in
a flash crowd. Qiu et al. [37] and Piccolo et al. [35] presertifmodels of BitTor-
rent’'s behavior. Guo et al. [22] models and measures Bigfaridentifying limitations
caused by exponentially declining popularity. Bharamba .42] simulates BitTorrent
and show hows to improve its fairness in a heterogeneoussmaent.

Of course, users may have an incentive to freeload on theraysts was observed
in Gnutella [1]. BitTorrent addresses this through a tittat system, where a node will
preferentially spend its upstream bandwidth on peers wiiih it good downstream
bandwidth [9]. While freeloading is still be possible, thenhload speed improves
noticeably if a node acts as intended. (Incentives issugRmsystems are widely
studied [11, 14, 15, 17, 25, 32] but are not the main thrustisfiiaper.)

Otherwise, classic BitTorrent is fairly straightforwarA. file to be shared is de-
scribed by aorrent, typically distributed through web servers. A torrent fitntains
metadata, including cryptographic hashes, allowing tkaltiag file to be validated; a
torrent also contains a pointer tacantral tracker whose sole purpose is to introduce
nodes to their peers. Clients announce themselves to tetrance every 30 minutes.
The client only queries the tracker for the identities of mpmers if its current peers are
insufficient. As a result, a tracker, despite running on glsimachine, can handle a
very large number of concurrent nodes.

The set of peers working to download a particular torrenaied aswarm Once
a node has completely downloaded the file but has not yehlefswarm, it becomes a
seed sharing its bandwidth among all requesters. One or moirsg@odes are also
typically set up by a document’s publisher to get thingstethr

The tit-for-tat exchanges are based on 64KB-1024fd&es Peers will exchange
information with each other about which pieces they havest\BitTorrent clients im-
plement a “rarest-piece first” policy that encourages beoddstribution of rare pieces,
making all pieces more uniformly available [27]. More recasearch has shown free
riding is practical [30] and that a peer can optimize its parfance by carefully allo-
cating its upload bandwidth [34].

3.1 Extensions

As BitTorrent usage has expanded, a number of extensiorstie®n added to classic
BitTorrent, with different clients supporting differenttensions. The Message Stream
Encryption / Protocol Encryption extension, for examplegrgpts all data exchanges
in the swarm and may defeat some traffic shaping devices. Tdw ralevant ex-
tensions to our study both concern peer discovery: the KaddédTs and the Peer
Exchange Protocol (PEX). PEX is a gossip protocol; peerssiwarm exchange their
peer lists, accelerating peer discovery and reducing érdolad. Fry and Reiter [16]
have shown that a variant of PEX using random walks to discoges peers can be
just as effective as using a tracker. The DHT extensiongscepdr supplement the cen-
tral tracker, providing for node discovery and avoiding $imegle-point-of-failure of a
central tracker.

BitTorrent clients implement two mutually incompatible D8l The Mainline
DHT (hereafter, MDHT) is implemented by Mainline BitTortemtorrent, BitLord
and BitComet. The Azureus DHT (hereafter, ADHT) is impleteeionly by Azureus.



Both DHTs are based on Kademlia, but have non-trivial differes. Because the
ADHT and MDHT are disjoint, and many users still use oldeemnts that have no

DHT support, completely distributed tracking would createariety of interoperabil-

ity problems. Unsurprisingly, virtually all torrents dedia centralized tracker, allowing
the DHT to operate as a backup to the central tracker, ratiaer depending on it for

correctness.

4 Kademlia Background

Kademlia implements a tree-based routing topology basednaran XOR distance
metric where the XOR of two nodelDs is used as the distancedsst them. Kademlia
is based around a prefix-based routing table, similar torf?§&8], with logarithmic
lookup performance, but without any locality-based rogiptimizations. A Kademlia
routing table is parameterized by two numbelt, the width (i.e.w bits), andb, the
bucket size.

For a node with a 160 bit i, the routing table has 160 layers starting at O.
Layerl contains 2 — 1 buckets with nodes whose IDs mat€lon the firstl - w bits,
and differ fromX on the nexw bits. Each bucket contains uplianost-recently-seen
nodes. This description roughly covers Kademlia as it isliémgnted in Azureus and
Mainline.

The full Kademlia design incorporates additional routingkets that serve a pur-
pose comparable to Pastry’s leafset: identifying everyenoebrby. A Kademlia node
selects the longest prefix of its nodelD such that the numbeiodes sharing any
longer prefix is less thah, and then trackall nodes having that prefix. For correct-
ness, a hosnust never overestimatiee number of nodes sharing any longer prefix by
counting dead nodes as alive, a task made more difficult imamoznment with churn.
To the best of our knowledgéhis additional routing table is not implemented by any
BitTorrent client meaning that BitTorrent clients may not always be able td fire
node whose nodelD is closest to a given lookupID (See alstid®es.1).

New nodes for addition to the routing table are discovergubapnistically from
incoming DHT queries and in replies to outgoing lookups. Avmede replaces the
oldest node in the appropriate routing bucket if the old noaenot been seen alive in
15 minutes and does not reply to an active ping. To preveldrstas, Kademlia will
route to a random ID in any bucket that has been quiescenbfaridutes.

When routing to a lookuplD, Kademlia uses iterative routimgere a host contacts
peers with progressively smaller XOR distances to the lpdRin turn (see Figure 1).
This contrasts with Pastry’s recursive routing, where dams$t forwards the message
along the chain to the destination (see Figure 2). Iteratuting can be performed
concurrently, with multiple outstanding requests to daseelatency and reduce the
impact of timeouts.

4.1 Implementation details

Mainline and Azureus have fairly faithful implementationsKademlia, except for
ommitting the extended routing table. As with the centedizracker, a host queries
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the DHT every 30 minutes if it requires more peers for a swarm.

4.1.1 Mainlineimplementation

We studied version 4.20.9 of Mainline BitTorrent, which igem source and imple-
mented in Python. Mainline, BitComet, and several othefd@itent clients all use the
same MDHT. MDHT implements Kademlia with a width of@~—= 1, andb = 8 nodes
in each bucket; keys are replicated on the three nodes witelBmearest the key with
a 30-minute timeout, after which the key must be reinsertedsboriginal publisher.
There is no other migration of keys, so if all the nodes hajdirkey fail, the key will
be lost.

Experimentally, we would like to make queries to random bde but MDHT
does not already make suitable queries that we can institurtrestead, we modified
our client to perform a lookup on a random ID every 10 minuésounting, in total,
for 10% of all lookups our clients perform. An unmodified di¢hat joined 3 swarms
would generate a similar level of traffic.

If a torrent file defines a central tracker, Mainline wikveruse the MDHT for
tracking. Unsurprisingly, very little traffic in MDHT appesato originate from Main-
line clients. If a torrent uses the distributed trackerpitt@ins a subset of DHT peers,
allowing Mainline to bootstrap itself into the DHT. Most dfé clients that we have
seen in MDHT appear to be BitComet (see Section 4.1.3, below)

4.1.2 Azureusimplementation

We studied version 2.5.0.0 of Azureus which is open sourddraplemented in Java.
ADHT implements Kademlia with a width of 18y = 4, andb = 20 nodes in each
bucket; keys are replicated on the 20 nodes with nodelD setre key. When doing
lookups, Azureus uses 5-way concurrency. Unlike MDHT, ADlpartially stateful;
while keys must be refreshed every 8 hours, keys are alsaggd and migrated to
new hosts in response to node churn. Azureus will first usecémtral tracker, as
specified in the torrent, and will only use the ADHT if the tac is unreachable.
Azureus supports PEX and a variety of other extensions.

Where Mainline refreshes quiescent buckets every 15 nmendteureus starts a
refresh cycle 30 minutes after the prior one finishes andopmi$ random lookups
every 5 minutes when not refreshing buckets. To initiallp$teap itself into ADHT,
Azureus uses its regular swarming peers, which may be mbrestdhan Mainline’s
use of the the torrent file to list bootstrapping peers.

4.1.3 Other implementations

BitComet versions newer than version .53 appear to use titeatieed tracker in par-
allel with the MDHT. BitLord only supports the PEX extenstowith other BitLord
nodes and recent versions appears to support Mtdfrent supports PEX, MDHT,
and several other extensions.

None of these clients are open source, but they do intertgpemarectly with



MDHT. As such, we assume they implement MDHT in a similar fasho the Main-
line client.

5 Design issues

We now consider general design issues that affect the peaioce of both MDHT and
ADHT.

5.1 Identifyingreplica peers

In a DHT, itis useful for a node to be able to identify whetttés ior is not responsible
for a given key, particularly when supporting migration aaplication. For efficiency,
a node should not have to contact any other node to detertsinesponsibilities.

In Pastry, every node explicitly tracks (and regularly @inigs nearest neighbors,
forming aleafset So long as the replication factor is smaller than half tize sif the
leafset, every node can determine when a replica peer Had,feéquiring the migra-
tion of data. Kademlia similarly stores keys on theearest nodes in XOR distance
to the key. MDHT and ADHT implement Kademlia without its extked routing table
(see Section 4), resulting in no easy way to unambiguoudsraféne which peers are
responsible for a key, complicating any replication or ratgm strategy.

Instead, they use Kademlia’s iterative lookup algorithrfind the nearest node to
an ID using a priority queue ordered by distance to the keye qieue is initialized
from the routing table where the search begins. The neawdstin the queue is queried
for thek closest nodes it knows to the key. The lookup terminates wiloemew nodes
are found closer to the key. This algorithm can be extendéddahen nearest nodes
to the key by modifying the termination condition so that thekup terminates only
after then nearest nodes in the priority queue have all been contanttd@additional
nearby nodes have been discovered.

The lookup has been proven correct, with the extended Kadeawmliting table,
whenk =n=b[31]. The correctness of lookup is unproven for Mainline &zdreus,
without the extended routing table. Furthermore, as thebmsraf dead nodes in the
routing table increasek,is effectively less than or b, and the lookup might then miss
live nodes near the key. Such failures manifest themselbhesnwe try to estimate the
size of the DHT (see Section 7.9) and can be seen in ADHT satia@r and replication
system. MDHT does not perform migration at all.

5.2 Opportunism in Kademlia

Many distributed systems, including Kademlia, opportticély piggyback mainte-
nance traffic onto application traffic, saving the cost ofssate traffic devoted solely
to maintenance. Kademlia uses the senders of incomingeguas an opportunis-
tic source of new nodes for refreshing routing tables. Wheilable, Kademlia uses
RPC timeout failures on outgoing messages in lieu of exylioig messages for check-
ing node liveness and keeping the routing table fresh. Wufately, iterative routing
curtails both opportunities.



Consider: the top layer of a host’s routing table can potdigtcontain a reference
to any node in the overlay. Lower layers in a host's routiriglgehave a prefix in
common with the host's nodelD. As such, an outgoing queryremadom nodelD will
be unlikely to ever satisfy the prefix match for lower layéffbe probability that such a
random lookup will use a bucket in layiein the local routing table is/2"!, decreasing
exponentially as we get to lower layers.

A similar issue exists in learning new nodes, biasing nodealiery toward the
highest and lowest levels of the routing table while staguire middle. With iterative
routing, the ID of the sender of a message is independenteokély being looked
up. Since the senders’ IDs are uniformly spread over the hbdgpace, they will
be unlikely to be eligible for all but the highest layers o tlouting table. Likewise,
newly joining nodes look for their own nodelD first, populdbeir routing table as
they search. As a side effect, they announce themselvesitddture neighbors, and
populate the lower levels of their neighbors’ routing tablo equivalent opportunistic
method exists to populate the middle layers.

Minor modifications to Kademlia could address these corxdfor example, iter-
ative routing could be enhanced with a feedback mechanismenever a node contacts
a dead peer during a lookup it informs the supplier of that pé¢he apparent death.
Another fix would be for nodes interested in the death of a peepoperate by gos-
siping information about that peer [46]. Furthermore dtie lookup requests could
include some or all of the live nodes discovered earlier withe same lookup. (Such
extensions, however, might allow for security attacks; dicitais node could return a
list of other malicious nodes, polluting the victim nodedsiting table [6].)

Another alternative would be for Kademlia to adopt a remgrsouting strategy,
rather than its iterative strategy. Each node along thedpgtath would then have
an opportunity to discover dead nodes in its routing tablee ®dds of a node being
queried at any level of its routing table would be uniformtise opportunistic refresh-
ing would have a similar effect across the entire routinggtab

In Kademlia, opportunistic routing table refreshes depamB®HT application traf-
fic to piggyback on. In the current DHT, there is little DHT &ipption traffic to piggy-
back upon, only 2 messages per swarm per hour compared tosaredanaintenance
traffic of about one message per minute. Unless additiomslare found for the DHTS,
explicit refresh traffic will continue to be necessary tovanet stale routing tables.

6 Evaluation Goals

There are many more questions we could study and analyzentbamave space to
present here. This section summarizes the research we tthpsdorm.

Dothe DHTswork correctly? No. Mainline BitTorrent dead-ends its lookups 20%
of the time and Azureus nodes reject half of the key storergite. (See Sections 7.1
and 7.10.)

What isthe DHT lookup performance? Both implementations are extremely slow,
with median lookup times around a minute. (See Section 7.2.)



Why do lookups take over a minute? Lookups are slow because the client must
wait for RPCs to timeout while contacting dead nodes. (Seti@e7.3.) Dead nodes
are commonly encountered in the area closest to the destiriagy.

What if thetimeoutswereeliminated? Lookup times would still be slow (typically
5-15 seconds). 10% of MDHT messages, for example, have roiptimes (RTT) of
over 5 seconds. (See Section 7.5.)

Why aretherouting tablesfull of dead nodes? Kademlia’s use of iterative routing
limits the ability for a node to opportunistically discovderad nodes in its routing table.
(See Section 7.3.)

Do all nodes have the same observed RTT? Many nodes has sub-second RTTs
with low variance, while most have much higher RTTs with ocalily higher variance
as well. (See Section 7.5.)

What if we used adaptive timeouts as suggested in Bamboo? Bamboo proposed
using adaptive timeouts for a DHT using recursive routing. &¥aluate their effective-
ness in Section 7.6.

How effectiveisrouting table maintenance? Azureus and Mainline are effective at
finding nodes with an average of 10 and 4 hour uptime respgtand the high layers
of their routing tables are 80-90% live. (See Section 7.4.)

Does the network have connectivity artifacts? Both ADHT and MDHT observe
one-way connectivity where 12% and 6% of nodes, respegtisehd us messages but
never reply once to our own messages. (See Section 7.11.)

What about bugs in the implementations?  Azureus and Mainline both contain
bugs that impact their performance. (See Section 7.1.)

What isthe difference between MDHT and the Kademliadesign? Mainline does
not ‘backtrack’ if it encounters dead nodes and thus sonetidoes not return the
correct replication set. (See Sections 7.1 and 7.9.)

What are the differences between ADHT and the Kademlia design?  Azureus

contains a bug where it takes an hour to eject dead nodes Sg¢ien 7.4.) Further-
more, Azureus nodes will reject a key if they conclude theyrast in the replication
set. This conclusion is incorrectly reached about half eftime. (See Section 7.10.)

7 Measurements

To effectively measure MDHT and ADHT, we modified existingiklame and Azureus
clients to participate normally in the DHT, logging the eisetihey observed. A single
client will not see enough data to constitute a represemtatmple of DHT behav-
ior. Instead of using many machines and running one cliergamh, we ran multiple
independent instances of Mainline and Azureus on a singlé drad effectively per-
formed aSybil attack{13] giving us the same information without needing addi&ib



hardware. We collected about 16 days of measurements witloifGurrent Mainline
clients and about 23 days of measurements with 11 conculvaneus clients. For
measuring routing table maintenance for Mainline, we udked@7aclients. For our
other measurements, we use data from 11 clients.

7.1 Implementation bugs and changes

MDHT, as implemented by Mainline BitTorrent, has severaiaus bugs. The most
serious is a routing table maintenance bug. When a contaciel fails to reply, the
original Mainline blames an innocent node for the failureawthe contacted node is
not in the routing table. As a result, under normal opera&% of the nodes ejected
from the routing table are not actually at fault. For our ekpents, we repaired this
bug, allowing us to better measure MDHT. When we do not refer specific version
in our experimental results, we are referring to Bixed Mainlineimplementation, as
opposed to th®riginal Mainline. (We don’t know if this bug is present in BitComet
or other MDHT clients.)

A second serious bug occurs during a lookup, used to idethi&fpodes responsible
for storing a key, among other things. Mainline performsati#e routing with 8-way
concurrency, maintaining a priority queue of the 8 closestas which have yet been
discovered. The lookup terminates when the 8 closest nalestieen contact or timed
out. If, as often the case, some of these nodes are dead jivaddes not backtrack to
find the closest $ive nodes; instead, the lookup terminates early. In our experis;
we observed a dead-end condition, whalte8 nodes are dead, on 20% of all randomly
chosen queries. (Again, we don't know if other MDHT clienttgges this bug.)

Finally, Kademlia specifies random queries, within eactescgnt routing table
bucket, to freshen the routing table. Mainline’s implenagion is incorrect; it consid-
ers a bucket active if a node has been adate@movedwithin 15 minutes. Kademlia
normally requires thagverynode in every bucket be pinged every 15 minutes. As a
result, we would expect MDHT routing tables to have moreestaides.

Azureus has a bug where it treats a remote node that regglamtacts it as alive
even though it is unreachable. The routing table ping/m@ptent/refresh state ma-
chine likewise appears to be too optimistic about nodeitiesls; unless a node in the
routing table is found to be dead in the course of a routingpoor a regular refresh
operation, Azureus will only explicitly ping it to verifydieness under uncommon con-
ditions. This issue can be observed in our measurementsiofdmy it takes for dead
nodes to be removed from the routing table (see Section 7.4).

7.2 Lookup performance

Our first set of measurements concerns lookup performanceDstiT and MDHT.
We performed 45k random lookups in ADHT and 26k random logkinpMDHT. A
random lookup picks a key, at random, and locateskthearest nodes to the key. In
Figure 3, we show the CDF of the number of hops taken for easkulp. ADHT
has a median of 26 hops and MDHT has a median of about 33 hopblTA®more
tightly clustered because it uses a branching width of 16ast dop matches at least
4 additional prefix bits. MDHT's branching width of 2 only gaatees one additional

10
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Figure 3: Hopcount CDF for random queries for MDHT and ADHT.

bit each hop. (In Section 7.9, we estimate similar numbersoks in each DHT, so
population size differences do not figure into these graphs.

Figure 4 shows the lookup latency on random queries. Thepednce is poor,
with a median lookup latency exceeding a minute for both Nitaénand Azureus, as
a result of RPC timeouts contacting dead nodes. For botkemsgst20% of the nodes
contacted in a single lookup are dead on 95% of the lookuprallyabout 40% of
the nodes encountered are dead. Each dead node consumes omeent request slot
for a 20 second timeout. Every 8 dead nodes encountered oraanlidd query will
consume all the available slots resulting in a 20 second/d@lais effect can be seen
in the slope changes of the Mainline curve at 40, 60, and 80rskc Azureus uses
the same timeout, but allows fewer concurrent requestscitljrleading to the longer
lookup latencies observed.

We wished to understand the potential lookup performandbeese DHTSs if the
RPC timeout problem were eliminated, perhaps through shtimieouts, more lookup
concurrency, or fresher routing state. By estimating anificially subtracting the
timeouts, the resulting lookup times would improve to a raadif 5 and 15 seconds
for MDHT and ADHT, respectively. (See also Section 7.5.)

7.3 Location and causes of dead nodes

When a node performs an iterative DHT lookup, it maintainsiaug of nodes as the
search progresses(see Section 5.1). When that searcmésrsoaidead node, we track
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Figure 6: The stages in a node’s lifespan.

Bucket refr. Churn| Discovery Uptime Prezombie Zombi

per node/day  per node/day (min) (min) (min) (min)

Fixed Mainline 1373 493 56.89  258.69 12.73 3.4
Original Mainline 797 1110 8.90 79.82 8.08 1.61
Azureus 1662 1657 21.32  665.10 76.80 58.5

Table 1: Explicit bucket refreshes, node discovery, chand average node lifetimes
for each DHT.

how many prefix bits it shares with the lookup key. Figure 5Sveha histogram of

the dead nodes based upon the number of shared prefix bitsat&ee that 75% of
all dead nodes encountered in an ADHT lookup occur when theacted node shares
15-18 hits of prefix, which corresponds to identifying thedas in the replica set for
the key.

This spike has two causes: First, the lowest levels of thémguable have more
dead nodes; second, Azureus must contact and confirm tinetiseill nodes that are
close enough to possibly be in the replica set. Mainline sdm¢show a similar spike,
most likely because it has a smaller replication factor anelsdhot backtrack when
encountering dead nodes at the end of a search. Instead,f20%dine searches fail
without finding the replica set.

To better understand the Azureus spike, we examined rotlvig liveness, layer
by layer. For ADHT, the chance of a node in the routing tabiedpalive drops from
70% for the first 3 layers to 20% thereafter. For MDHT, the flistevels of the routing
table average an 85% chance of being alive. By layer 18, figlto under 35%.

Clearly, both the MDHT and ADHT implementations have traikkeping the
lower-levels of the routing table populated with live nod&ssensible solution would
be to add more aggressive pinging on the extended routing taat neither MDHT
nor ADHT implement. (See Section 4.)

7.4 Routing table maintenance

Any DHT design must deal with nodes that have limited lifetgand unreliable behav-
ior. In this section, we discuss how effective Azureus andnlifze are at discovering
new nodes and ejecting dead nodes.

The lifespan of a node can be split into five events:

Join When a node first joins the system.
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Seen When a node is first seen alive by us.
Last Alive When a node was last seen alive by us.
First Dead When a node was first found dead by us.

Removed When a node fails a few times and is removed from the table.

We refer to the four durations between these five events adititevery time,
uptime, prezombie time, and zombie time (see Figure 6). Bledé-report their join
times, so clock skew will create some error in the discoviengt

Some nodes die very young and we are unable to ever sucdgssfotact them.
We separately classify these infant mortality events: 13%h® nodes in ADHT and
57% of the nodes in MDHT suffer infant mortality and are natlirded in the subse-
quent figures.

We track nodes using our routing tables and Kademlia’s nbnorde detection and
elimination algorithms. Our measurements are based onsrtbdeare selected to be
within our routing table. Neither Azureus nor Mainline sgtenodes for inclusion in
the routing table based on any criteria beyond its nodelDraadhabilit?. Typically,
Mainline’s routing table has about 150 nodes and the Aziséas about 1000 nodes.

In Table 1 we show the average discovery time, uptime, anaitb 6f nodes in
the Azureus and two Mainline clients routing tables. Thdedénce between Fixed
Mainline and Original Mainline is striking, with over twidde churn rate and a third
of the expected uptime. Our bug repairs significantly impbMainline DHT's ability
to retain good nodes. The retention of more good nodes weskkh the need to find
replacements for them, leading to the much longer node disgdime. Counterintu-
itively, fixing the bug also increases overhead. The highrchnate refreshes routing
buckets without requiring explicit refreshes. The decedaschurn rate of about 600
nodes per measurement node per day is compensated for bgraasa of 600 stale
buckets instances for which Mainline performs a full lookup

The uptime numbers we report exceed the 1-hour sessioniaunaported by
Saroiu et al. [44] or the 2.4 minute session length reporieGbmmadi et al. [20].
This may be indicative of the stable nature of BitTorrengiets, which commonly run
for hours to download large files.

7.5 Internet RTT measurements

In this section, we identify the cause of why median lookugfqgrenance would still
be 5-15 seconds, even if timeouts were eliminated (disdusadier in Section 7.2).
We examine the effective RTT experienced by MDHT nodes atimig their peers
through outgoing lookup and ping messages. Ping messagaeairto nodes in the
local routing table. Lookup messages occur during randaykups and are sent to
each node in the path.

In Figure 7 we show the complimentary CDF of the observedha&eRTTs for over
a million lookup and ping messages done by both Fixed andi@lig/ainline. The

6Azureus has a BitTorrent extension to favor local nodeshersame subnet, for high-speed sharing, but
this has no impact on its Kademlia routing table.
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Figure 7: Complementary CDF of the probability that the obsé RTT exceeds a
threshold.

poorer quality of nodes in Original Mainline’s routing talidan be seen by comparing
its ping RTT to Fixed Mainline. The MDHT lookup RTTs (i.e., R for each node
encountered during iterative lookups) are comparablegéiked Mainline ping RTTSs.
learned from other nodes on the network and sample remategdables, demonstrat-
ing that Fixed Mainline’s routing table has a comparabléritistion to other routing
tables in the DHT.

The average MDHT response time for lookup messages wasdofdewith 10%
of hosts taking over 3.8 seconds to reply and 5% of hostsdakiexcess of 8 seconds
to reply. Overall, 59% of lookup messages received a reply.

Most of the RTT variation is from transient effects. This denseen in Figure 8 as
the difference between the minimum and average lookup Rdieddes that replied
to at least 10 lookup messages. Even though most nodes have@mye RTT of over
a second, only 5% of nodes have a minimum observed RTT exwpadiecond.

Not all of the nodes have the same RTT distribution. Of th&/&istinct nodes that
replied to our lookup messages, we examine the mgarr) and standard deviation
(orTT) Of the RTT for the 19k nodes for which we had at least 30 replidese popular
nodes account for 2.1M or 20% of outgoing lookup messageawiehuch more likely
to reply, with a 78.2% reply rate.

In Figure 9 we scatterplqizrt versusogrrt for a random subset of the 19k nodes
described above. Nodes with an average RTT under a secoadrador 42% of the
peers in tight cluster of ‘fast’ nodes with a half second agerRTT and a standard
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replied to at least 10 MDHT lookup messages

deviation of .8 seconds. The remaining ‘slow’ nodes showlascond average RTT
and a standard deviation of 2.8 seconds.

Overall, we observed a median RTT of 1.5 seconds, significambre than the
100ms median Gnutella latency measured by Saroiu et.gl. [@Bectly comparing
our measurements with the King dataset [21] is difficult, @%4f our measurements
exceeded their 1 second timeout limit. We conjecture thatdkency we observe is
because BitTorrent's tit-for-tat trading strategy en@mas hosts to consume their up-
load bandwidth causing queuing delay and congestion. Eurtbre, when a BitTor-
rent client is sharing files, bulk traffic must compete witlokap requests. Upload
throughput could also be throttled by asymmetric links affit shaping devices. Per-
haps future BitTorrent clients could implement technigliles TCP-Nice [47] to give
preference to interactive traffic.

7.6 Timeout strategies

While more live routing tables and routes with fewer hopsreattuce the odds of wait-
ing on a dead node, and greater concurrency can sometimeshigdatency, another
important tactic is to reduce the timeouts. Timeouts chdsesed on the expected
round-trip time can significantly reduce the latency focdigering dead nodes [5, 40].
The RTT can either be directly measured or estimated usihgonk positioning al-
gorithms like GNP [33] or Vivaldi [12]. Azureus already impmrates Vivaldi, but
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Figure 9: Scatter plot of RTT standard deviation and RTT ageifor 19k nodes from
MDHT.

does not presently use it for this purpose. We further ingatt the effect of different
timeout strategies by using response times for MDHT lookessages.

Table 2 compares the effectiveness several timeout steateguld have on the
2.1M outgoing messages sent to the 19k nodes who replietetasat30 lookup MDHT
lookup messages. The table shows the formula for compuimtirneout, the average
timeout calculated by the formula, the average response, timd the number false
positives compared to the the baseline stratédy.e., live nodes that failed to reply
before a more aggressive timeout caught them). For RPCdathat time out, they
are considered in the response time column as if they hadomuthé duration of the
timeout (i.e., timeouts bound the response time but carcetigher failure rates). The
baseline strategi has a response time, including errors, of 5.52 seconds aailligef
rate of 21.8%. Strateg€ was proposed by Bamboo [40] and inspired by TCP/IP,
demonstrating the superiority of dynamic timeouts as it lel§ of the false positive
rate of B while having a similar timeout duration and response timgat&gyD is a
more aggressive variation on Bamboo’s strategy, havingvarage response time of
1.22 seconds, but false positives on 9% of live nodes. Thipaitis the strength of
Bamboo’s dynamic timeout mechanism.

Deploying these dynamic timeout strategies requires thafXHT use recursive
routing, or if iterative routing is used, nodes must track RI'Ts of nodes in their
routing table to compute the necessary timeouts.
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Timeout Average Response False
Formula Timeout Time Positiveg
A |20 20 5.52 -
B | 10 10 3.10 2.8%
C | UrTT+4 -0OrTT | 8.8 3.03 1.4%
D | UIRTT+ ORTT 3.1 1.22 9%

Table 2: Comparing timeout strategiés represents the default Kademlia strateGy.
represents Bamboo's adaptive strategy, whegser and ortT represent average and
standard deviation RTTs for the peer. All times are in sesond

7.7 Spying on swarm sizes

Our measurement nodes participated normally in the DHToprs, storing keys and
responding to fetch requests. For the swarms where we waiagkeys and acting
as a tracker, we were able to monitor swarm membership andatstthe number
of nodes in the tracked swarms. Our main ADHT dataset indUdé&h and store
requests. Due to an oversight, our main MDHT dataset did emrd those requests.
In order to estimate the MDHT swarm sizes, we collected a né»HW dataset over
a 2 day period using 100 measurement nodes. In Figure 10,ova @CDF showing
the fraction of swarms with at least a given number of nodekesg sizes are an
underestimatef the true swarm size, because they only count visible natite that
DHT. Azureus and Mainline clients, for example, are contgativith each other for
the core tit-for-tat trading protocol, but are incompatibk the DHT layer. Likewise,
older clients or clients with firewall issues might not coatte the DHT at all, despite
participating in the core BitTorrent trading protocol.

ADHT swarms are much smaller than MDHT swarms because, ideFault con-
figuration, Azureus does not use the DHT for all torrentsCBinet uses the tracker in
parallel with the DHT, and contributes the majority of the MD curve. We counted
3952 distinct swarms in our ADHT dataset and 386419 swarrsitMDHT dataset.
Also, the distribution of swarm sizes follows a classic povesv distribution (i.e., the
log-log plot is a straight line).

7.8 Flash crowds

Unlike MDHT, ADHT has provisions for handling nodes that arerloaded with re-
quests or with stored data. ADHT will store values for a keytalternate locations
when the read rate exceeds 30 reads per minute or when tlemtoade hits a global
capacity limit of 64k keys or 4MB of storage. It also limitsyaone key to at most 4kB
of storage or no more than 512 values, corresponding to arswéh 512 members.
Both types of migrations are rare. Approximately 2% of tmeetj one of our ADHT
nodes was responsible for storing exactly one capacitit-dilggered migrated key.
Figure 11 plots the CDF of the inbound message rate bucketedisecond peri-
ods. The busiest 5 second period we observed is only foustomsier than the median
5 second period. This is unsurprising, as BitTorrent ctieare normally unsynchro-
nized in their interactions with a tracker (whether centradlistributed) and have a 30
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minute refresh cycle. The 99.5th percentile busiest pehiatiwe observed has fewer
than 4 applications messages per second plus 8 maintenassages per second.

Both ADHT and MDHT consume very little CPU, storage, or baiditvin their
common usage. ADHT would need a swarm larger than 5000 noaViOHT
larger than 360 nodes before the DHT application traffic WaKceed 12 messages
per minute. Figure 10 shows swarms this large, at least thadlaservable from the
DHT, are very rare.

Worst case When an ADHT or MDHT peer initially joins a swarm, it first findse
replica set. To determine that the lookup is complete andosec node to the lookup
ID exists, the peer must send a find-neatastessage to each node of a replica set and
will receive a reply consisting of 3& bytes of contact information (ID,IP address,port).
If 100k people joined a swarm within five minutes, MDHT and ADMould receive
300 find-nearesk-messages per second consuming 500kb/s and 1.25Mb/s sending
tact information on 8 nodes and 20 nodes for MDHT and ADHT eetigely in each
reply. This may exceed the upload capacity of many asymmiatiis and does not
account for replies to DHT fetch requests as swarm membeisflr other swarm
members.

If ADHT and MDHT nodes implemented the extended routing eéalthen any
member of the replica set for a keyutomaticallyknows the other members of the
replica seandknows that the find-nearekttookup is complete and can indicate so in
its reply. Overall bandwidth consumption for this worsseaxample would drop to
64kb/s for both ADHT and MDHT because only one member of tipdica set needs
to be contacted.

7.9 Estimating DHT size

We wish to estimate the size of the node population in MDHT ABAHT. Our size
estimator, based on measuring nodelD densities, also nzagesd test of the cor-
rectness of Kademlia’s find-thenearest primitive. For randomly chosen nodelDs,
the nodelD density can be expected to have a Poisson disrbwith the inter-node
distance exponentially distributed. Recall that an exptinkdistribution with rate\
has a cumulative density function (CDF) of-le ™ and has mean=A. If the mea-
sured inter-node distances are anomalous relative to igtisoaition, then the lookup
algorithm is returning incorrect answers.

To estimate the density at any given lookup key, we route,teeitording then
closest nodes and their XOR distances. The differencestandies between the first
and second closest node, the second and third closest matleg dorth form separate
estimates of nodelD density. More formally, letbe a lookup key andl; be theith
nearest node on a route lookup far One sample of adjacent-node spacing in terms
of the fraction of the ID space coveredis = ('\hﬁﬁi&('\l@u and the estimated size
corresponding to that sampleSs= 1/D;.

If the number of nodes in the system3sand the lookup returned only correct
answers then all of thB; will be an exponential distribution with meari$andA = S.
However, if the lookup failed and there were missing nodéséenN; andN;, 1, then
the distributionD; will be anomolously large. It would be a mixture of exponahti
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Received Sent Sentandreceived Sentand received

requests from requeststo  request to&from and overlapping
Azureus 8.5M 9.3M 2.3M 404k
Fixed Mainline 15.5M 5.4M 1.3M 250k

Table 3: The breakdown of distinct hosts that we contact hatidontact us.

distributions with means/55,2/S,3/S, and so forth.

In Figure 12 we plot CCDFs dd; andD;7 over 478k ADHT samples. The intern-
ode distance distributiond;’s overlap nearly completely, showing that the returned
ith nearest neighbor is just as likely to be correct for sima# largd. This distribu-
tion closely matches an exponential distribution wite- 1100k and demonstrates the
strength of Azureus in properly finding the nodes closesgiven ID as well as allows
us to estimate that ADHT has about 1.1M live nodes.

In contrast, Figure 13 plotd;,D4 andD7 for 26k MDHT samples. We observe a
different distribution and an anomalously large internspiacing foiD4, D7, indicating
missing nodes between the 4th and 5th nearest neighbor anddyethe 7th and 8th
nearest neighbor. This demonstrates that Mainline, uAlikgeus, is not returning the
correct answers to find-nearest-8 queries. We are unsinis istcaused by the smaller
bucket size of MDHT or the backtracking bug in Mainline (seet®n 7.1).

The lookup failures in MDHT make it more difficult to estimatee number of
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nodes. We filter the noise out 8f; by keeping the 5k smallest samplesha which
closely match an exponential distribution and estimate130 by curve fitting. We
thus estimate MDHT to have 1.3M live or recently dead nodes.

7.10 Migrated and stored keys

Recall that MDHT does not do any kind of data migration, wiABHT does. Our
ADHT dataset includes 1074k direct stores and 301k mignati&ach store typically
is of only one key while each migration may include multipbyk. Key migration des-
tinations are selected based on the local routing tabletenddstination node likewise
validates the migration based on its local routing tableaAasult of the large number
of dead nodes the lowest layers of most routing tables, tigéslcunderestimates the
amount of ID space for which a given node is responsible. Véeted that about half
of directly stored keys are rejected and 26.5% of migrated kee rejected.

Not all rejected keys are rejected in error. ADHT has a millmodes and 20-
way replication, so a key should share approximately(b¢f /20) ~ 15 bits with the
nodelD it is stored on. We conservatively identify a coriyeotjected key if the key
does not share at least 8 prefix bits with the nodelD it is betoged on. From this
heuristic, at least 5% of stored and migrated keys are tegtgly rejected, begging the

7An accurate count of only live nodes is difficult to determbezause Mainline does not backtrack and
remove dead nodes from its result set.
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question of why at least 5% of key store requests are senétaithng host.

Azureus clearly needs a more accurate predictor of whethigea node is respon-
sible for a given key. Chen and Liu propose techniques fooreirig routing consis-
tency that may help [7]. As described in Section 7.8, an immgletation of Kadem-
lia's extended routing table would allow a node to implemanhore accurate key
rejection metric. Likewise, routing lookups have very gamduracy in Azureus (see
Section 7.9), so lookups could also be used to determinertipeprelica set.

7.11 Connectivity artifacts

Many nodes in the Internet are behind NAT or firewalls, pdgsibeating symptoms of
poor or broken network connectivity. Some studies havenaddd NAT prevalance by
the network behavior of malware, with between 7% and 60% afminfected hosts
behind a NAT [38, 4]. And, of course, the Internet itself does$ always guarantee
connectivity between any two nodes.

Our test looks for hosts that contact us multiple times, yetane unable to reach
them, even after many attempts. This persistent unreddiyabay be the result of
NATs or firewalls.

We define a host as-unreachable if we fail to receive even one reply aket-
tempts to contact it. We define a hostjaseen if we observe at leagtookup requests
from it.

Table 3 summarizes the breakdown of nodes that we sent aeiyeddookup re-
quests to and from. To compute tkeinreachability of various hosts from our exper-
imental data, we need to find hosts that we have attemptedniaatoand that have
sent requests to us at around the same time. We found 400k Ataid&s and 250k
MDHT nodes where the time interval that we attempted to airiteem and the inter-
val they contacted us is nontrivially overlapping, i.eg\tltontain at least one contact
attempt and at least one message reception. We restrieleesgo those nodes and to
messages in the overlapping time interval.

In Figure 14 we plot the fraction df-unreachable hosts over the total number
j-seen nodes that were either reachable, or had at keatsempts to contact them.
Approximately 15% of ADHT nodes and 8% of MDHT nodes that weeen alive
at leastj = 15 times were 6-unreachable and are probably unable to icogpning
connections.

Interestingly, the number of times a node is seen has viytnalcorrelation to the
unreachability of nodes in MDHT. This likely because nodet fare contacted many
times are likely to be in the routing table and Mainline alwapes a round-trip ping
to verify reachability before adding a node to its routingléa There is only a minor
correlation between the unreachability of nodes in ADHT #r&inumber of times a
node is seen. This implies that meralgeinga node says little about whether it is
reachable.

While our results are not conclusive, our data suggest t«it5P6 of BitTorrent
users have significantly degraded Internet connectiokedylresulting from firewalls
or NATs.
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7.12 Communicationslocality

In general, DHT nodes tend to exchange most of their traffib wismall set of other
DHT nodes. For Mainline, just 1.1% of a node’s peers were aeleiast 15 messages,
and they account for a full third of the outgoing traffic. Thé% of peers that sent
at least 15 messages account for 60% of the incoming traffiaréus is similar, with
1.6% of hosts receiving 15 messages responsible for 37%eadutgoing traffic and
the 4.7% of hosts sending at least 15 messages respongitié%oof the incoming
traffic.

More interestingly, for Azureus, 54% of messages sent werkte nodes that never
replied once. For Mainline, 41% of messages were sent togtbdénever replied. For
both clients, only 1% of the hosts that were never once séem ale responsible for
28% of the messages sent to hosts that were never seen alive.

Unfortunately, it would be non-trivial to cut flakey nodesnmoletely out of the
DHT. If either Azureus or Mainline were to permanantly stgptacting a node after it
failed to reply 15 times, only 10% of the contacts to dead sadeuld be eliminated.
Further, that same filter would cause false positives onHvgts that accounting for
2.5% of MDHT traffic and 8% of ADHT traffic.
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7.13 BitTorrent client distribution

The distribution of BitTorrent client types can give us \athle information including
the market share for each client program as well as how fretuesers update their
client software. If we want to roll out changes to any of the Dptotocols, this tells
us about the size of our legacy issue. Helpfully, BitTorrelignts encode their client
name and version number in their peer ID.

In Figure 15 we determine how often users update their dibytcombining ver-
sion numbers with release dates. We find that half of usersuargng software less
than three months old. Unfortunately, a third of Azureugsisen software more than
6 months old despite an auto-update mechanism. Furtheyadooat 5% of BitComet
users are running code over 18 months old. Clearly, no updatde expected to be
universally adopted in a short timeframe.

Table 4 shows the client distributions for nodes in the MDEITd an overall client
distribution taken from directly joining the swarms for 1l@@ge torrents. These data
show that BitComet and Azureus together commaydl & the market share for Bit-
Torrent clients.

8 Conclusions

This study considered two large-scale DHTs with millionsofies, used to help Bit-
Torrent clients discover their peers. Although the perfamnoe issues we observed
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Client name| Percent of hosts Percent of hosts
overall in MDHT

Sample count 31043 25353
Mainline 2.8% 2.8%
ptorrent 4.0% 7.3%
BitLord 15.0% 0.3%
Azureus 25.3% n/a
BitComet 50.5% 88.8%
Other 2.5% 0.7%

Table 4: Popularity of different BitTorrent clients.

may only add a small overhead to hours-long BitTorrent doads, they are still il-
lustrative of the design and implementation challengesddxy large scale structured
overlay networks in the real world. We found a number of peotd inherent in the
Kademlia-based overlays resulting from incorrect implatagon of the Kademlia de-
sign, including a poor choice of DHT parameters and inheretwork issues. Because
the DHT largely serves as a backup for centralized trackedslzere are two incom-
patible implementations, it is generally under-utilizedsening the need for backward
compatibility in future redesigns.

While some incremental changes could improve existing Did& (such as in-
creasing the number of concurrent lookups in Azureus'siileg routing), many of
the problems we observe cannot be fixed while retaining ctibifiiy. We therefore
recommend an incompatible jump to a new DHT. While such a jwopld make it
attractive to go with a completely different DHT design, ibuld be perfectly accept-
able for the new DHT to still use Kademlia but with many of thegent problems
addressed.

While it should be straightforward to repair many of the penhs we discovered,
security attacks are much more difficult to address. We sit$pat a central authority
for nodelD assignment would not be politically feasibled dNATs complicate any use
of hashed IP addresses. As such, nodelD assignment rennaimpartant open prob-
lem in p2p systems and would represent a open avenue of atjaakst the BitTorrent
DHTs. Likewise, the BitTorrent DHTs are wide open to a varief other security
attacks. Addressing these security issues is future withgugh the relatively small
amount of data stored in the DHT suggest that technique€iitalie et. al.’s churning
approach might be applicable [10].

Regardless, the limited use of DHTSs as a backup peer disgavechanism limits
the damage that may be caused even by the most catastraplksagainst the DHT.
Once a BitTorrent peer discovers at least one legitimate ipelne swarm, whether
from a central tracker or from the DHT, it may discover otheers through peer gossip
(PEX). As such, the Kademlia DHT, even without aggressivaissy mechanisms,
appears to be a good fit for the needs of BitTorrent peer desgov

Our measurements clearly show that concurrent iterativeng can only deal with
a limited number of dead nodes before incurring timeouts. réluce these time-
outs, nodes should preferentially refresh the routingesmtrorresponding to their local
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neighborhood and implement Kademlia’s extended routiblgtarhis will address the

lower reliability of the lower levels of the routing, avoidj the surge in timeouts when
finding all of the elements in a replica set, and providingogresupport for key migra-

tion and replication. Improving Kademlia’'s iterative rog to give feedback on dead
nodes, discovered later, to nodes earlier in the path vt alcrease opportunities to
discover dead nodes. Opportunities for discovering livdesomay be increased by
giving hints to later nodes on a search with nodes discovemdikr on the search path.

We have also identified a high variance in network RTTs, sstjggthe benefits of
using a dynamic timeout system, as in Bamboo, rather thasi#tie timeout currently
in use.

BitTorrent’s many implementations clearly benefit from imgpthe distributed tracker,
running on a Kademlia DHT. This structure provides robussnehen the central
tracker is overloaded or otherwise unavailable. It alsathagotential to eliminate the
need for central trackers, entirely, improving the speettt which a BitTorrent client
can find the nodes in a swarm and thus improving the startupdsptlarge down-
loads. Of course, DHTs have security concerns that are netifay central trackers,
and future work to address these concerns should have armtiiptn on BitTorrent
and many other distributed systems.
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