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Abstract 

A Comparison of Transcription Techniques for the 

Optimal Control of the International Space Station 

by 

Jonah Reeger 

The numerical solution of Optimal Control Problems has received much attention 

over the past few decades. In particular, direct transcription methods have been 

studied because of their convergence properties for even relatively poor guesses at 

the solution. This thesis explores two of these techniques-Legendre-Gauss-Lobatto 

(LGL) Pseudospectral (PS) Collocation and Multiple Shooting (MS), and draws dis-

tinct comparisons between the two, allowing the reader to decide which would be 

better applied to a particular application. Specifically, comparisons will be made on 

accuracy, computation time, adjoint estimation, and storage requirements. It will be 

shown that the most distinct advantage for LGL PS collocation and MS methods 

will lie in computation time and storage requirements, respectively, using a nonlinear 

interior-point method described in this thesis. 
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Chapter 1 

Introduction 

A relatively young topic in applied mathematics, particularly in the area of numerical 

optimization, is the direct numerical solution of Optimal Control Problems (OCP) 

governed by ordinary differential equations. This field of study is rich in application, 

and one of these applications appearing in the aerospace industry is explored in the 

numerical study of this thesis. The wealth of applications has led to many contribu-

tions in this field even over the past couple of decades, to include the development of 

efficient transcription techniques that convert a continuous OCP into a problem that 

can be handled by the various nonlinear programming techniques that are available. 

Of the many transcription techniques, two have been studied in the research of this 

thesis; the first because of its use in the particular aerospace application that was 

studied, and the second as an alternative to the first. 

This research was prompted by the need to generate solutions to a particular 

1 
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optimal control problem, dubbed the Zero Propellant Maneuver (ZPM), quickly, with 

limited memory, and accurately. The ZPM is a concept that substitutes reaction 

control systems, like thruster firing, with momentum storage devices, i.e. Control 

Moment Gyroscopes (CMGs), to control the attitude of a spacecraft without the use 

of expensive propellant [6, Section 1.1], The attitude control performed by the ZPM 

is completed by exchanging the angular momentum created by rotating the CMGs 

and the momentum introduced by external disturbance torques, like aerodynamic 

torque and gravity gradient torque [6, Section 1.1], This concept can be stated as 

an OCP, formulated in general in Chapter 2, which transitions a spacecraft from an 

initial orientation to a final orientation in a fixed amount of time without exceeding 

a constraint on the CMG momentum. The OCP is governed by a set of equations of 

motion that describe the change of attitude, rate, and CMG momentum in time, and 

it seeks to achieve the optimal value of some predetermined objective. 

The ZPM was defined and successfully tested as a method of control for the 

International Space Station (ISS) (see, for example, [3]). However, the ZPM can be 

applied to any spacecraft equipped with CMGs and an appropriate controller. 

1.1 Existing Work 

The solution of optimal control problems has been the subject of a significant amount 

of study since the Seventeenth Century when Newton applied the calculus of varia-

tions to the Brachistochrone problem [9, Page 405]. The general numerical methods 



3 

that have been applied to generate optimal controls of dynamic systems were catego-

rized and described by Betts in the 1990s [5]. Betts describes the two most general 

approaches to solving these problems as indirect-the application of calculus of varia-

tions to find the necessary conditions of an optimal control and the numerical solution 

of the resulting two point boundary value problem (TPBVP), and direct-application 

of a discretization technique to the states and controls or controls alone and the 

solution of the resulting nonlinear program (NLP). In particular, Betts introduces 

collocation and multiple shooting as methods for solving both the TPBVP of the 

indirect approach and the NLP of the direct approach [5, Section VI]. This thesis 

takes the direct approach to solve optimal control problems of a general form through 

two particular techniques. These are Legendre-Gauss-Lobatto (LGL) Pseudospectral 

(PS) collocation and multiple shooting (MS). 

LGL PS collocation essentially approximates the states and controls of the problem 

using global basis functions that can be differentiated exactly to approximate the 

time derivative. However, these global basis functions introduce an explicit global 

dependence between the states and controls across the entire interval of interest. 

This is not necessarily a problem when adequate memory is available, but poses a 

problem when memory is limited since the optimization often requires storage of 

large, dense matrices. The advantageous properties of PS collocation are highlighted 

by many. Particularly, LGL PS collocation has been studied extensively by Fahroo 

and Ross in [14, 15, 16, 47] who highlighted the connection between the costates 



4 

of the indirect problem and the multipliers of the direct problem and developed a 

transcription package known as DIDO [15]. Gong, et al., [21] provide results on the 

convergence of the solution of the discretized OCP using LGL PS collocation to a 

solution of the original OCP. 

Likewise, MS transcription parameterizes only the controls of the problem using 

local basis functions, splits the entire interval of interest into several subintervals, and 

solves a series of initial value problems while introducing some matching conditions 

between consecutive subintervals. The introduction of this local basis instead of a 

global basis leads to only an implicit dependence between the states and controls 

across the entire interval of interest. This translates into storage of large, sparse 

matrices that often require an order of magnitude less in storage space over those 

stored for PS collocation. Morrison, et. al, are credited with some of the earliest 

application of MS to OCPs as an alternative to Finite Differencing and single shooting 

[39]. Bock and Plitt [8] introduced a recursive quadratic programming technique, 

tailored to MS transcription, for solving optimal control problems. MS transcription 

has also been shown to share many of the desirable properties that LGL PS collocation 

exhibits. For instance, Grimm and Markl [24] showed the consistencies between 

the costates of the continuous problem and the multipliers of the discrete problem 

discretized by MS transcription. 

This thesis will make some distinct comparisons between these two transcription 

techniques, that, until now, have almost always appeared only as alternatives to 



one another without direct comparison. These comparisons will be made generally 

on the ability to approximate the adjoints of the continuous problem, the storage 

requirements to compute an optimal solution to the OCP using an Interior Point 

method, and the computation time to evaluate the constraint functions of the resulting 

nonlinear programs (NLPs). Further, the total computation time and a measure of 

accuracy will be compared for a particular example. This example is a ZPM taken 

from Bhatt [6], 

The ZPM has been developed and modified over the past ten years by several 

individuals. First, McCants [37] showed the validity of solving an unconstrained opti-

mal control problem governed by the attitude dynamics of the ZPM. Next, Pietz [42] 

employed DIDO [15] to solve a constrained optimal control problem that decreased 

the momentum state of the CMGs from a nonzero value to a zero value without 

exceeding a constraint on the norm of the momentum; this essentially was the first 

type of ZPM. Pietz further highlighted the consistencies between the costates of the 

continuous problem and the multipliers of the nonlinear program. Following Pietz, 

Bhatt [6] successfully developed maneuvers for a 90-degree reorientation of the ISS 

that were implemented and verified during an actual flight test in November 2006. 

Finally, in an effort to make available trajectories applicable to perturbed initial con-

ditions and uncertainties in the dynamic model of the ISS, Roady [46] applied the 

idea of Neighboring Optimal Control (NOC), a one-step Newton-type correction to an 

existing trajectory, to the ZPM and drew a comparison to a Linear Model Predictive 
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Control (LMPC) algorithm. 

1.2 Organization of the Thesis 

Following this introductory chapter, this thesis proceeds in the following order. 

Chapter 2 presents the general optimal control problem formulation of this thesis 

along with the optimality conditions for both the indirect approach and the direct 

approach to solving the problem. 

Chapter 3 describes an interior-point method for nonlinear programs that com-

bines aspects of the interior-point methods given by Waltz, et al., [56] and Wachter 

and Biegler [55]. This chapter first provides some of the theoretical development of 

interior point methods, and then explains step-size calculations and an attempt at 

increasing the robustness of the algorithm through a feasibility restoration. 

Chapter 4 introduces Pseudospectral Collocation in general, and also describes the 

particular PS formulation that is used in the development of the results of this thesis; 

that is, Legendre-Gauss-Lobatto Pseudospectral Collocation. Then, the consistency 

of the direct approach is discussed relative to the indirect approach, so that the 

adjoint estimates for the LGL PS method can be developed. A singularity result that 

prohibits the use of LGL PS methods for certain problems is also given, and, finally, 

the structure of the linear system of equations that must be solved throughout the 

optimization procedure is given. 

Chapter 5 parallels the development in Chapter 4, but for the Multiple Shooting 
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method. The general problem formulation is given, followed by the derivative com-

putations that are required for this method. Three control parameterizations that 

have been tried in the development of the results of this thesis are also presented. 

Again, consistency of the direct problem relative to the indirect problem is given so 

that estimates of the adjoints can be cited. Finally, the structure of the linear system 

of equations is given. 

Chapter 6 highlights some of the merits of the two transcription techniques on 

some examples that can be found in the literature. These examples illustrate the 

effects of smoothness on obtaining an accurate numerical solution. 

Chapter 7 presents a numerical example that has practical implications. This 

chapter explores the 90-degree Zero-Propellant-Maneuver given by Bhatt [6], and 

highlights the performance of the optimization algorithm of Chapter 3 relative to the 

two transcription techniques given in Chapters 4 and 5 in a few areas. Some general 

conclusions are made both relative to this optimization algorithm and excluding the 

algorithm in terms of computation time and a specific measure of accuracy. 

Finally, Chapter 8 presents some concluding remarks about the content of this 

thesis. 

1.3 Notat ion 

First, throughout this thesis e will represent a vector of Is of appropriate size, whereas 

the notation exp(-) represents the exponential function with the argument as its ex-
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ponent and e itself will be a function specified in the next chapter. Second, bold-face 

variables represent transcribed, or discretized, variables. Finally, due to discrepan-

cies between the definitions in the works referenced by this thesis, three important 

notations denoting the partial derivatives of scalar and vector valued functions with 

respect to a vector of variables need to be defined. Consider x e Mn and define the 

function /(x) : Rn R, then the gradient, Vx /(x) : R™ -> Rn, is the vector 

V s / (x) = 
d X l f ( X ) dx2 

where xf, i = 1 , . . . , n is the ith element of x, and the Hessian, V2
xxf{x) : 

is the matrix 

pn , B m x n 

v L / ( ^ ) = 

&A*) dx2dxi f 

dxxdxJ^X) dx2
2f(X) 

dxndx 1 f ( X ) 

a2 

dxndx2 f{X) 

Now redefine f(x) : 

d x ! d x n ^ X ) dx2dxnf(X) " ' dx2 

l, then the Jacobian Dxf(x) : is the matrix 

Dxf(x) = dx -M*) 

9 h{x) ... £-nMx) 

d x j 2 { x ) ••• a f c / 2 ( a r ) 

dx2 

a 

gxifm(x) aX2fm(x) ••• 

where fi(x), i = 1 , . . . , m, is the zth row of f(x). 



Chapter 2 

The Optimal Control Problem 

2.1 General Form of the Optimal Control Problem 

This thesis considers optimal control problems with state and control variables 

x : R (->• Rn and u : 

respectively. Given functions 

I : Rn x Rm x R H-> R, (integral objective) 

e : R " x l i - > l ) (final time objective) 

/ : Rn x Rm x R i-> Rn, (dynamics) 

g : Rn X R H R"9, (state/control constraints) 

® : 1 " X R H Rn°, and (initial conditions) 

b: r x l n l " ' , (final conditions) 
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which are all assumed to be twice continuously differentiate with respect to x, u, 

and t, the general form of the optimal control problem under consideration is 

ftf 
min / l(x(t),u(t),t)dt + e(x(tf),tf) (2.1a) 

J t0 

s.t. 

x{t)=f(x(t),u(t),t), te[t0,tf] (2.1b) 

a(x(to),to) = 0 (2.1c) 

b(x(tf),tf) = 0 (2. Id) 

g(x(t),u(t),t) < 0, te[t0,tf]. (2.1e) 

The OCP seeks states x e Whco{[t0, tf], Rn) and controls u e L°°([t0l tf], Rm) that 

are local solutions of (2.1) [19, Section 2], 

In the literature there are two main approaches to solving problems of various 

forms similar to (2.1). Some of the earliest approaches involved the development 

of optimality conditions by employing calculus of variations. This is often known 

as the indirect approach. Perhaps the most recognized theory resulting from this 

approach is that due to Pontryagin, et al. [44]. The optimality conditions lead a 

two point boundary value problem (TPBVP). This TPBVP is often too difficult, 

or impossible, to solve analytically. Instead, these TPBVP are usually solved using 

various numerical techniques. See for example the article by von Stryk and Bulirsch 

[52]. 

The other popular approach to solving problems similar to (2.1), often dubbed 
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the direct approach, consists of discretizing the dynamics and the objective function. 

Discretization of the optimal control problem (2.1) leads to a nonlinear program 

for the discretized states and controls. This thesis studies two direct approaches, a 

pseudospectral discretization (see Chapter 4) and a multiple shooting discretization 

(see Chapter 5) of (2.1). 

2.2 Optimality Conditions 

Solution of a problem of type (2.1) requires satisfaction of a set of optimality condi-

tions that are often derived through various applications of Pontryagin's Minimum 

Principle. 

First order necessary conditions for similar problems are presented in many re-

sources. For instance, if the constraint on the states at time to is fixed in the sense 

that 

a(x(t0), t0) = x(t0) - x0 

for some vector x0 GR™, then Hartl, Sethi, and Vickson [27] provide various formal 

and informal theorems outlining these necessary conditions. The necessary conditions 

presented here are those given by Gollman, Kern, and Maurer [19], which are adapted 

from a similar formulation to (2.1). Note also, for the purposes of this thesis all of 

the constraints g(x(t),u(t),t) are considered to be explicitly dependent on u(t) for 

the development of the adjoint estimates presented in chapters 3 and 4. 
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Let 

G*(.t) = {j : 9j(x*(t),u*(t),t) = 0} 

denote the set of active inequality constraints at a locally optimal state and control 

pair (x*,u*). The following regularity assumptions must be satisfied at (x*,u*) 

rank 

and 

rank 
du 

Dxa(x*(t0),t) 

Dxb(x*(tf), t) 

gj(x*(t),u*(t),t)) 

na + nb (2.2) 

jes*(t) = mt)\. (2.3) 

Define the Hamiltonian 

H(x{t),u(t),\(t),p.(t),t) = l(x(t),u(t),t) + X(t)Tf(x(t),u(t),t) 

+fl(t)Tg(x(t),u(t),t) 

and the control region 

Q(x(t), t) = {ueRm : g(x{t),u, t) < 0}. 

Theorem 2.2.1 Let {x*,u*} be a locally optimal pair for problem (2.1). Assume 

that the regularity conditions (2.2) and (2.3) are satisfied. Then there exist a costate 

(adjoint) function X* £ Whoc([t0,tf},Rn), a multiplier function fi* G L°°([a, b], K^), 

and multipliers Dq e M"a and vj G M.nb, such that the following conditions hold for all 

t £ {t0,tf}: 

• (i) adjoint differential equation: 

A*(t)T = -VxH(x*(t), u*(t), A*(t), F(t), t) (2.4a) 
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• (ii) transversality conditions: 

\*(t0)T = -(iy*0)TDxa(x*(t0),t0) (2.4b) 

y(tf)T = (v})TDxb(x*(tf),tf) + Vxe(x*(tf),tf) (2.4c) 

• (in) minimum condition for the Hamiltonian function 

0 = VuH{x*(t), u*{t), A*(t), p{t), t) (2.4d) 

• (iv) multiplier condition and complementarity 

jT{t) > 0 andp,*i(t)gi(x*(t),u*(t),t) = 0, i = l,...,ng. (2.4e) 

One can even show that the Pontryagin minimum principle 

H(x*(t),u*(t),X*(t),p.*(t),t) < H(x*(t),u,\*(t),p.*(t),t), Vu e tt(x*(t),t) 

is valid. These conditions describe the TPBVP that must be solved to find a local 

minimum of the objective functional with respect to the dynamic, path and boundary 

constraints. 

2.3 Direct Solution of Optimal Control Problems 

Given a transcription technique, two of which will be further explained in the com-

ing chapters, the optimal control problem (2.1) can be transformed into a nonlinear 
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program (NLP) of the form 

min J(y) (2.5a) 

s.t. 

F( y) = 0 (2.5b) 

G(y) < 0, (2.5c) 

where y E R"Y, J : R"Y R, F : RNY T-> RN^, and G : RNY H-> Rno. This is the 

general form for the nonlinear programs that will appear throughout this thesis. The 

Lagrangian associated with (2.5) is given by 

£(y, A, n) = J(y) + A r F(y) + /xTG(y). 

The first order necessary optimality conditions for (2.5) are given as follows (see 

Nocedal and Wright [40]). 

Recall the Mangasarian Fromovitz Constraint Qualification (MFCQ) [36]. Let 

A(y) = (ilG'j(y) = 0} be the active set at y. The MFCQ holds at y if there exists 

d e R" such that 

VGt(y)Td <0, i e A(y*) 

VF,(y) rd = 0, i = l , . . . , n F 

and if VFI(y) , . . . , VF„ f(y*) are linearly independent. 

Theorem 2.3.1 Suppose that y* is a local solution of (2.5) and that the functions 

J, F, and G are continuously differentiable. If the MFCQ holds at y*, then there are 
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multipliers A* and fi*, such that 

V y £( y*,A*)AO = 0 (2.6a) 

F( y*) = 0 (2.6b) 

G(y*) < 0 (2.6c) 

H*> 0 (2.6d) 

(»nTG(r) =o (2.6e) 

These necessary conditions are often referred to as the Karush-Kuhn-Tucker (KKT) 

conditions. 

Numerical techniques for solving nonlinear programs are employed. This thesis 

will adopt an interior-point/barrier algorithm to solve the NLPs that arise from the 

discretization of optimal control problems. 



Chapter 3 

The Optimization Algorithm 

3.1 Introduction 

In order to compare, and truly understand, the two transcription techniques studied 

in this thesis, and to take advantage of some of the properties of the two techniques, 

an optimization algorithm was implemented in the MATLAB environment. This al-

gorithm combines several aspects of the interior-point algorithms described by Waltz, 

et al., [56] and Wachter and Biegler [55]. The interior-point algorithms described in 

these papers are not the only methods available to solve nonlinear programs like (2.5). 

For instance, active-set methods or any sequential quadratic programming solver, like 

those described in Nocedal and Wright [40], could also be employed. Interior-point 

methods were chosen because of the favorable convergence properties, compared to 

active-set methods, they exhibited when experimenting with the optimization algo-

16 
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rithms available with MATLABs fmincon to solve ZPM OCPs. The development 

of this algorithm also stands as a step toward creating an optimization algorithm 

efficient and compact enough to be fieldable for ISS applications. 

3.2 Interior Point Methods for 

Nonlinear Programs 

According to Nocedal and Wright, [40, Chapter 19], to solve the nonlinear program 

(2.5) with inequality constraint G(y) < 0, a vector of nonnegative slack variables 

z e MnG can be introduced and the problem can then be transformed to 

min J(y) (3.1) 
y,z 

s-t. F(y) = 0 

G{ y) + z = 0 

z > 0. 

This transformation still requires the handling of the inequality z > 0, which is 

often done by adding a barrier term to the objective J{y). For instance, to handle 

the inequality, the term — l n ( z i ) i n the following nonlinear program serves as 

a way of penalizing slack variables that become too small because of the natural 
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logarithm's asymptotic behavior near zero [40, Section 19.1]: 

na 
min J ( y ) - r / y ; i n ( z i ) (3.2) 

i=1 

s.t. F( y) = 0 

G(y) + z = 0. 

The parameter rj is known as the barrier parameter, and as 77 —> 0 the solution to 

(3.2) approaches the solution of (2.5). 

Derivation of the first-order necessary conditions for the problem (3.2) for a fixed 

barrier parameter leads to the system of equations 

Vy£(y,z,A,/x) = 0 (3.3) 

- r j Z ' l e + n = 0 

F(y) = 0 

G(y) + z = 0 

and Lagrangian 

ng 
C(y, z, A, //) = J(y) - V Y , ln(z,fc) + F(y)TX + [G(y) + z]T fx. 

i=1 

An iterative Newton type approach can be taken to satisfy (3.3) by linearizing these 

constraints around the current iterate. Throughout this chapter, define the current 

iteration of the algorithm to be k, the primal variables at the current iteration to be 

yk and zk, and the dual variables at the current iteration to be Xk and Also, let 

the superscript A; on a function denote the function evaluated at the current iterate. 
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e resulting KKT system for the interior point problem is 

V2
yyCk 0 (DyFk)T {DyGk)T Syk VyCk 

0 Mk(Zk)-1 0 I 8zk -r]k(Zky1e + n 

DyFk 0 0 0 5Xk pk 

DyGk 1 0 0 5nk Q k + Z k 

where Zk = diag(zfc) and Mk = diag((J,k)- In the way of Nocedal and Wright [40, 

Section 19.3] this system of equations can be reduced using the fourth and second 

equations to eliminate Szk and S/j,k, respectively. Notice that 

5zk = - (DyGk5yk + Gk + zk) 

and 

5nk = - (Mk{Zk)~15zk - r1
k{Zk)~1e + nk) . 

Substituting these results into the first equation, the reduced KKT system has the 

matrix 

DyFk 

(3.4) 
Vyy£fc + (DyGk)T Mk(Zk)~1 DyGk (DyFkf 

0 

on the left hand side-also known as the KKT matrix, and right hand side 

Vy£fe + (DyGk)T(Zk)~1 [MkGk + 7]ke] 

pk 

Once this system is solved for Sy and c)A and the values of Sz and S/j, have been 

(3.5) 
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computed, the next iterate can be defined by 

yk+1=yk + akSyk (3.6a) 

zk+1 = zk + ak8zk (3.6b) 

Afc+i = + ak5xk ^ ^ 

Hk+1 = nh + ak
d8fxk (3.6d) 

for some step sizes a k and a^. 

For a fixed barrier parameter, the iteration to solve (3.2) is continued until a set 

of termination criteria are met. Several different criteria have been tried, including 

those from Wachter and Biegler [55, Section 2.1], but, for consistency with some of 

the parameter choices, the algorithm terminates based on the criteria of Waltz, et al., 

[56, Section 3.5]. Define (G k)+ to be (G k)+ = max{0, Gk} for each row i = 1,... ,nG 

of Gk. Then the termination criteria for the barrier problem are 

||Vy Jk + (DyFk)TXk + (DyGk)V|U < max{l, || Vy J ^ U j e f , (3.7a) 

| | Z V - Vke\\oo < max{l, ||VyJfc|U}e°pt, and (3.7b) 

|| [ (Ffc)T + z k ) T f n ^ < m a x { 1 ) || [ ( j p 0 ) r ((GO)+)T ]r||oc}6;eas, 

(3.7c) 

where e°pt = max{9r]k,eopt — i)k} and e^eas = rnax{(9//fc. f feas} for parameter 0 and 

predefined tolerances eopt and efeas (currently, 9 = 1 and eopt = efeas = 10~6). 

Once the termination criteria (3.7) are met, the barrier parameter is decreased 

by the following procedure taken from Waltz, et al., [56, Section 3.5]. First, rf is 
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initialized to be 0.1. Then, assuming that the current barrier problem was solved at 

iteration k, the barrier parameter is decreased by r]k+1 = max{7/min, 77*/100} if the 

barrier problem was solved in fewer than three iterations and r/k+1 = m a x { ? 7 m i n , rjk/5} 

otherwise. The minimum barrier parameter r/min = min{eopt, efeas}/100 is chosen so 

that the barrier parameter does not decrease too much relative to the predefined 

tolerances eopt and efeas [56, Section 3.5]. 

Further, once a barrier problem is solved to meet (3.7), the termination criteria 

of the optimization algorithm are checked. These termination criteria are 

||VyJfc + (DyFk)TXk + (DyGk)TvkIU < max{l, ||'VyJfc||oo}E°PT, (3.8a) 

HZVlloo < max{l, ||VyJfc||00}eopt, and (3.8b) 

ll[ (F k ) T ((<Gk)+)T nicc < max{l, ||[ ( F o y ((G°)+)T ]T | |oo}e f eas , 

(3.8c) 

[56, Section 3.5]. 

3.3 Step Size Selection 

3.3.1 Fraction to the Boundary Rule 

To guarantee the nonnegativity of zk+1 and the step sizes ak and ak
d are chosen 

such that the length of the step does not allow the iterate to violate these constraints. 

This is done by enforcing a fraction to the boundary rule ([40, Section 19.2],[55, 
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Section 2.4], [56, Section 2]), defined by 

ak = max{ct e (0,1] : zk + a5zk > (1 - rk)zk} 

ak
d = max{a G (0,1] : fik + aSrf > (1 - T*)/**}, 

where r k G (0,1] is typically a parameter close to 1. In the implementation of this 

thesis, Tk = max{0.99,1 — 77fc} so that rk —> 1 as rf —> 0 allowing zfc and to move 

closer to the boundary. This heuristic is implemented by Wachter and Biegler in their 

filter interior point code [55], 

3.3.2 An l\ Merit Function and the Penalty Parameter 

After the fraction to the boundary rule is enforced, the step size is bisected using a 

backtracking line search starting from a k and The backtracking line search can 

be completed in many ways. For instance, Wachter and Biegler [55] propose a filter 

line-search that only takes steps that are acceptable to some pre-defined filter. 

This algorithm considers the merit function proposed by Waltz, et al., [56]. This 

merit function is defined by 

N 

<puk{ yk, zk) = Jk- nkS^zk + ^IIF^IIj + i / i G i a 
i= 1 

with the strictly positive penalty parameter uk. This penalty parameter is chosen to 

coincide with the parameter in Waltz, et al. [56, Section 3.1]. Without explanation 
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the choice of uk is the following. Begin by letting 

C{y\zk) = 
pk 

Gk + zk 

and compute the trial penalty parameter vtriai by 

^trial 
VyJkSyk - r)k{ZkyHzk + f [(5yk)TV2

yy£k5yk + (8zk)T{Zk)~lMk5: 
(1 -p)\\ck\\ 

The parameter a is chosen so that if the curvature of the Lagrangian with respect to 

y and z is not negative, then it is not considered in the computation of the penalty 

paramter, and p is chosen so that the reduction in the merit function is sufficient. 

The computation of a is as described below: 

1, if (Syk)TV2 Ck8yk + (Szk)T(Zky1Mk8zfc; 
a = 

0, otherwise. 

uk+1
 = 

Finally, choose uk+1 by 

uk, if uk > vtriai; 

v'trial + 1) otherwise. 

(Initially, = 1 in this algorithm.) The barrier function cf)vk has a directional 

derivative defined by 

£>(<Myfc, zfc); 8yk, Szk) = DyJkSyk - 71
k(Zk)~15zk - iyk\\Fk\\1 - uk\\G% 

in the direction of Syk and Szk; this is a result that can be found in, for instance, 

Nocedal and Wright [40, Section 18.3]. Their results suggest that under certain 

conditions this direction will be a descent direction, and the choice of uk here attempts 

to satisfy those conditions. 



3.3.3 Step Acceptance and the Second-Order Correction 

With the merit function fully defined, the backtracking line search is completed by 

bisecting a k and until the Armijo condition, defined by 

<Myfc + akSyk, zk + ak5zk) < <Myfc, + cakV(Myfc, zfc); 5yfc, <5zfc), 

is satisfied for some constant c (c = 10~4 in this implementation). This Armijo 

condition suggests a sufficient decrease in the merit function before a step is acceptable 

(see, for example, Nocedal and Wright [40, Section 3.1]). 

Line search algorithms that employ merit functions like (p„k(yk,zh) suffer from a 

phenomenon where certain steps computed by solving the KKT system lead to larger 

values of the merit function and constraints, but would otherwise lead to quadratic 

convergence of the algorithm if accepted by the merit function [40, Section 15.5]. 

This rejection of steps is known as the Maratos effect. To overcome this obvious 

shortcoming of line search methods, a second-order correction can be computed and 

combined with the original step. At the first iteration of the line search procedure, 

the algorithm described here employs a second order correction when 

"G NG 

J(yk + ak8yk) -r]kJ2 H^ + <4Szk) < Jk - ^ ] T ln(z?) 
i=l i=1 

and 

<Myfc + apSyk> + ^kSzk) > 4>uk(yk, zk) + cak
pV{Myfc, zfe); Syk, Szk), 

an idea proposed and implemented by Waltz, et al., [56, Section 3.2], The second-

order correction step, Syk
oc and Szk

oc, is computed by modifying the vector of the 
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right hand side (3.5) to be 

VY Jk + (DyFk)T(Xk + ak8Xk) + akV2
yy£k8yk + (DyGk)T(Zk)~1(MkGk + V

ke) 

F(yk + ak8yk) 

and solving the system with the original KTT matrix (3.4) on the left hand side. 

With Syk
oc and 8Xk

oc, 8zk
oc and Sfj,koc can then be computed by 

8zk
oc = ~(DyGk8yk

oc + G(yk + akSyk) + (zk + akSzk)) and 

8fu,koc = + ((Zk)-1Mk)(DyGk6yZx + G{yk + <,£6^)) 

+'qk(Zk)~1 — (fj,k + a>j5nk). 

Again, the fraction to the boundary rule is applied by 

<soc = max{a G (0,1] : zk + a{ak8zk + 8zk
oc) > (1 - rk)zk} 

<soc = max{a G (0,1] : / / + a(ak8fik + 8p,kJ > (1 - rk)fxk}, 

and the second order correction is accepted if 

<Myfc + ak
p>soc(a

kSyk + 8yk
oc), zk + < s o » f c + 8zkJ) 

< fa(yk, zfc) + cakV(fa(yk, zk); Syk, 8zk), 

and the line search is discontinued so that 

= yk + <soc(«^y f c + Sytc), (3.9a) 

zk+1 = zk 
+ + Szk

oc), (3.9b) 

Afc+1 = xk 
+ aXsoc(ak5Xk + 8Xk

oc), and (3.9c) 

n k + 1 
= »k (3.9d) 
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Otherwise, the second order correction is rejected and a k and are bisected with 

the regular line search procedure, where the iterates are updated by (3.6). 

3.3.4 Dealing With Small Steps 

The backtracking line search sometimes continues until the length of the step is too 

small to make any meaningful progress toward the solution. That is, when 

m&x{akSyk} < ey 

(ey = 10~12 in this implementation). In such a case, the optimization tries to find a 

yk that satisfies the constraints better. As a safeguard, the current implementation 

enters the feasibility restoration when 

< and ( .F k)T ((Gkyy > \/efeas. 

Otherwise, if 

max{ap5yfc} < ey and ( .F k)T {{Gkyy < -̂ /gfeas 

the optimization terminates and a new guess for yk should be given to restart the 

optimization. 

3.4 Feasibility Restoration 

The feasibility restoration algorithm seeks a point y such that the constraint error 

defined by 

max{||F(y)||00,||(G'(y))+||00} 
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is decreased by some proportion (this proportion is half in this algorithm). Nonlinear 

programs of the form 

mm WFWW, + ||(G(y))+||1 (3.10) 
y 

have been considered, but the discontinuity in the derivatives of such an objective 

could create obvious problems. Instead, a smooth reformulation of the problem, 

suggested by Nocedal and Wright [40, Section 17.2] and Wacther and Biegler [55, 

Section 3.3], is employed. Consider the problem 

J. NF NO 

min | | |M f l(y - y* )^ + p V (P i + n,) + p V (t,) (3.11) 
i=1 i=1 

s.t. F ( y ) - p + n = 0 

G{y) < t 

p, n, t > 0. 

Clearly p 6 M"F, n G M"F, and t G RnG. This reformulation has the same goal as 

(3.10), with the added goal of finding feasible points close to some reference value 

y r G Rny, which is currently considered to be the iterate of the regular interior point 

algorithm when the feasibility restoration is called. Mr G KTiy yriy is a scaling matrix 

defined as in [55, Section 3.3] by Wachter and Biegler to be 

MR = diag(min{l, l / | y ^ } , . . . , min{l, l / | y£ | } ) . (3.12) 

The parameters p and £ are chosen to weight the components of the objective ap-

propriately for a desired outcome of the feasibility restoration. These parameters 
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are exactly those given by Wachter and Biegler [55, Section 3.3], where p = 1000 

and £ = y^rf; here rf is the current barrier parameter of the original optimization 

algorithm. 

The problem (3.11) is solved in the same manner as (2.5) using an interior-point 

approach with the same type of line-search. If the Lagrangian at the current iterate 

is defined as 

C nF "G 

%=\ i=i 
np tiq 

- t ] ( ln(Pi) + l n ( n 0 ) (ln(ti) + ln(zj)) 
i=1 i=l 

+A r (F(y) - p + n) + ^T(G(y) - t + z), (3.13) 

the KKT conditions in this case are 

V y £(y ,p ,n , z , n) = 0, (3.14a) 

PA" - V e = 0, (3.14b) 

NA+ - RTE = 0, (3.14c) 

TM~ -R]E = 0, (3.14d) 

ZM - R]E = 0, (3.14e) 

F(y) — p + n = 0, and (3.14f) 

G ( y ) - t + z = 0, (3.14g) 

where P = diag(p), N = diag{n}, T = diag(t), Z = diagjz}, A~ = diag{(pe- A)}, 

A+ = diag{(pe + A)}, M~ = diag{(pe - £t)}, and M = diag{/u}. Linearizing these 
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equations around the current iterate and, again, making some eliminations, the KKT 

system for the feasibility restoration has the KKT matrix 

V2
yyCk + (DyGk)TWkDyGk (DyFk)T 

DyFk —Pk((A~)k)~1 — Nk((A+)ky1 

the right hand side 

VyCk + (DyGk)TWk{j]k{Mk)-1e - r]k((M~)k)~1e + G) 
) 

Fk - pk + nfc + (rjke - (A+)fciVfc)((A+)fc)-1 - (r]ke- (A-)kPk)((A~)k)-1 

and is solving for Syk and SXk, where Wk = (M~)kMk{MkTk + (M~)kZky1 is a 

diagonal matrix. The KKT matrix of the feasibility restoration has essentially the 

same structure as that of the original nonlinear program, allowing the use of the same 

factorization techniques for both matrices in many cases. When the KKT system is 

solved for 6yk and Sph, Snk, Stk, Szk, and S/j,k can be computed by the following 

relationships: 

Spk = (A~)-\v
ke- Pk{pe- Xk - 8Xk)) 

5nk = (A+)~1(r1
ke - Nk{pe + Xk + SXk)) 

5fxk = (MkTk + (M~)kZk)~1 (r/kpe — 2r]k^k + (pMk - (Mkf){Gk + DyGk8yk)) 

Stk = {M-yl{r)ke - Tk(pe- // - Sfxk)) 

Szk = M~x{j]ke- Zk{tJLk + 5fik)). 

The step length a k is computed initially so that it satifies 

ak = max{a e (0,1] : pk + a5pk > (1 - r ) p k , n k + a<5nk > (1 - r)nk, 

tk + a5tk > (1 - r)yfc, zk + abzk > (1 - r)zk} 
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and a d is computed as before. The backtracking line search continues in the same 

manner as the original NLP, with the merit function and penalty parameter defined 

analogously to the previous section, only excluding the second order correction. The 

iterates are then updated by 

yk+l =yk + ock
p5yk 

pfc+1 = pfc + akspk 

nk+1 = nk + a k 6 n k 

tk+1 = tk + a k 6 t k 

zk+1 = zk + a k 5 z k 

Xk+1 = Afe + a k g x k 

Hk+1 = nk + ak
d6fik. 

Once the error in the constraints has been reduced sufficiently, the feasibility restora-

tion returns the current iterate yk to the original optimization. 

3.5 Initialization of Primal and Dual Variables 

At the beginning of the optimization algorithm, a guess at the primal variables y° 

must be given. The slack variables are initialized as z° = max{10~5, G(y0)} to avoid 

singularities in the matrix Z~x. Also, A0 = 0 and fx0 = e. 

In the feasibility restoration, A0 = 0, = e and y° is chosen to be the current 

iterate of the original algorithm. The variables p°, n°, t°, and z° are chosen to satisfy 
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(3.14b-g) at y°, and if the feasibility restoration computes a stepsize that is too small 

at step k, a feasibility restoration is attempted by satisfying (3.14b-g) at yk. 

When the feasibility restoration started at yk is completed and the value yfc+1 

is returned to the original optimization algorithm, zfc+1 = max{10~5, —G(yfc+1)}, 

Afc+1 = 0, and / j k + 1 = e. If a quasi-Newton update is used for Vyy£fc+1, then it is 

reinitialized along with uk+1 = 1 and r f + 1 = 0.1 as if the original algorithm were 

being restarted. 



Chapter 4 

Direct Transcription using 

Pseudospectral Collocation 

4.1 Introduction 

Collocation methods for the solution of the optimal control problem (2.1) approxi-

mate the states and control by (piecewise) polynomials and require that the dynamics 

and constraints in (2.1) with states and controls replaced by their (piecewise) polyno-

mial approximations hold at specified points, the so-called collocation points, in the 

interval [t0, tf\-

Many collocation methods exists for optimal control problems. Reddien [45] used 

collocation at Gauss points. Reddien established best possible convergence rates for 

the Gauss PS method applied to unconstrained optimal control problems. Gauss PS 

32 
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method also applied to nonlinear OCPs by Benson [4]. Stryk and Bulirsch [52], von 

Stryk [54], and Kameswaran and Biegler [30] use collocation at Radau points. 

This thesis considers Legendre-Gauss-Lobatto (LGL) Pseudospectral (PS) meth-

ods. Here states and controls are approximated by polynomials of degree N and the 

collocation points are the roots of the derivatives of the NTH order Legendre Polyno-

mial and the two boundary points. LGL PS collocation is described in [14, 15, 21, 31, 

48], and was chosen because of its exclusive use in solving ZPM OCPs of Chapter 7 

through an implementation in the software DIDO [15]. The Master's thesis of Bhatt 

[6] and the paper by Bedrossian and Bhatt [3] applied an LGL PS method to the 

ZPM. The computed control was successfully implemented and flight tested. See the 

Master's thesis of Bhatt [6]. 

This chapter will review some of the properties of the LGL PS collocation method. 

4.2 Problem Formulation 

The description of the Pseudospectral Collocation method appearing in this thesis will 

proceed in the same way as Pietz [42, Chapter 3]. Pseudospectral Collocation methods 

approximate the states and controls by polynomials defined by a given global basis 

function ipi(t). That is, x(t) « xN(t) = s ^ ( t ) and u(t) « uN(t) = 

Often, the chosen basis is the Lagrange basis 

" ( t - t j ) m = n 
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This basis has the useful property 

{ 1 , if i = j ] 

0, if i ^ j , 

so that x N ( t i ) = Sj and u N ( t i ) = q^ Further, the time derivative of the states can 

be approximated by x(t) « xN(t) = Integral objective functions in the 

optimal control problem are approximated by 

ftf rtf N N 

/ l ( x ( t ) , u ( t ) , t ) d t f n t p i ( t ) l ( s j , q j , t j ) d t = y ^ W j l ( S j , q t , t j ) , 

Jto i=0 i=0 

where 
rtf 

Wi= / i p i ( t ) d t , i = 0 , . . . , N . 
J to 

Once the nodes U are chosen the optimal control problem (2.1) can be transcribed, 

resulting in a nonlinear program in the optimization variables s0, Si , . . . , Sn GR" and 

q 0 ,q i , . .. , q./v £ The PS transcription of the optimal control problem (2.1) is 

given by 
N 

m i n ^ [ w j l ( s j , t z ) ] + e ( s N , t N ) 

s.t 

i = 0 

N 

j=0 

a { s 0 , t 0 ) = 0 

b ( s N , t N ) = 0 

g{si,qi,ti) <0,i = 0,...,N, 

where = ?pj(ti). 
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4.3 Legendre-Gauss-Lobatto (LGL) 

Pseudospectral Collocation 

This thesis will consider a particular form of pseudospectral collocation where the 

collocation points £j, i = 0,... ,N are defined as the zeros of the derivative of the 

iVth-order Legendre polynomial 

1 dN 

with the extra conditions that t0 = — 1 and t^ = 1 [42, Section 3.1]. For more 

information on Legendre polynomials see, e.g., Hesthaven, Gottlieb, and Gottlieb 

[28]. LGL PS collocation is only one of the many available PS discretizations and it 

is currently implemented in the software DIDO [15], which has been used exclusively 

in the solution of ZPM OCPs. 

It is important to note that the roots of the derivatives of the Legendre polynomial 

of order N lie in the interval (—1.1), so that, along with the nodes tQ and tN, the 

collocation nodes lie generically in the interval [—1,1], To apply LGL PS collocation 

on an interval [t0, tf], a change of variable r : [to,tf] —» [—1,1] by r = {t — t f ) +1 

must be applied to scale the time interval appropriately. This leads to a scaling of 

the differential equations due to 

dx dx dt 2 dx 
dr dt dr tf — to dt 

and a scaling of the integral objective function. 
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The differentiation matrix for Legendre-Gauss-Lobatto collocation is defined by 

PN{U) 1 • / •. 
PNit^U-tj' 

-N(N+1) 

= 

i = j = 0; 

0, otherwise, 

while the quadrature weights are 

[14, Section III]. Applying Legendre-Gauss-Lobatto Collocation to the optimal control 

problem, the problem (2.1) is transformed into a nonlinear program in the variables 

r i T 

y T T T T 
s0 Qo ' ' ' SN 

G Rnf (4.1) 

that can be written in the form of (2.5). The functions of (2.5) are defined as, 

N 

j( y) := £ 
i=0 

tf - t0 
Wil(Si, q is e(SJV, tpf) (4.2a) 

ny) := 

t f - t o /(so, Qo, ô) _ Doj-s 

G(y):= 

2 7(SJV, QTV, ~ 2^7=0 DjVjSj 

a(s0,t0) 

b(sN,tN) 

g(s0,qo,t0) 

g(sN,q_N,tN) 

and (4.2b) 

(4.2c) 
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where ny = (N + 1 )(n + m), nF = (N + 1 )n + na + nh and no = (N + 1 )ng. Further, 

(4.2) has equality constraint multipliers 

A = \T ... \T i,T i,T 
0 AiV u0 UN 

(4.3) 

and inequality constraint multipliers 

T T Mo ' ' ' t^N (4.4) 

where A, € Mn and ^ e M"9 for i = 0 , . . . , N, u0 e Mn°, and vN e Rnb, corresponding 

to the rows of (4.2b) and (4.2c). 

It should be noted that in LGL PS collocation the state is approximated by a 

polynomial of degree N, but that the dynamics (2.1b) alone are enforced at the N +1 

collocation points. Additional constraints on the states are enforced by the boundary 

conditions (2.1c), (2.Id). For a given control uN this leads to an over-determined 

system for the discrete states. 

4.4 Well-posedness and Convergence of the LGL 

PS Collocation 

After the optimal control problem (2.1) has been discretized using LGL PS collocation 

several important questions arise: 

1) Does the discretized optimal control problem have a solution (for sufficiently 

large N), provided that the original optimal control problem (2.1) has a solution 
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2) If xN(t) = a n d uN{t) = oQ^'iW solve the discretized opti-

mal control problem, does the sequence {xN,uN} converge to a solution of the 

original optimal control problem (2.1)? 

Answers to these questions are given by Gong, et al., [21], The answer to the 

first problem is negative. A simple example given by Gong, et al., [21, Section 3] 

illustrates the absence of a feasible solution for even some linear systems. The lack of 

feasibility is related to the fact that in LGL PS collocation the state is approximated 

by a polynomial of degree N, but that the dynamics (2.1b) alone are enforced at the 

N + 1 collocation points. Since additional constraints on the states are enforced by 

the boundary conditions (2.1c), (2.Id) this leads to an over-determined system for 

the discrete states for a given control uN. 

To remedy this situation, Gong, et al., [21] propose to relax the problem. Suppose 

that a solution (x*, u*) of the original optimal control problem (2.1) exists with x* e 

Wnd,°°{\to, t f ] , Mn), nd > 2. The relaxation to the discretized optimal control problem 
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is given by 

N 

mm 
i=0 

tf ~ t0 wil(si,qi,tt) + e(sAT, tN) (4.5a) 

s.t. 

~/(so, Qo, to) — DojSj 

tf—tp /(sN, qN, tN) - Y,f= o DjvjS 

a(s0, t,0) 

6(sat, tjv) 

< {N - 1)2-"" (4.5b) 

5f(s0,q0,t0) 

< (N — l)2~nde. (4.5c) 

g{SN, QiV; t p f ) 

Using polynomial approximation properties of functions in Wnd,oo([i0, t f ] , Rn), Gong, 

et al., [21] show that the relaxed problem (4.5) has a solution for sufficiently large 

N. The relaxation is used theoretically, but it does not seem to be used in actual 

numerical computations. 

Let 

N 

i=0 

<(t) = E o T ^ i W 
i = 0 

denote the solution of the relaxed (4.5) discretized optimal control problem (for suf-

ficiently large N). 
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The following convergence result is proven by Gong, et al., [21, Thm. 2], 

Theorem 4.4.1 Let xf (t) = < (<) = E t o be a 9lobal min' 

imizer of the relaxed problem (4.5). If the sequence { ( s h a s a uniform 

accumulation point (sg°, x°°, w°°) such that t i—> x°°(t), t i—> u°°(t) are continuous on 

[to,tf] then u°° is an optimal control of (2.1) and x°°(t) = + f* x°°(r)dT is the 

corresponding state. 

The previous theorem applies to global minimizers of the relaxed problem (4.5). 

It does not make any statement about convergence of the adjoint variables, which 

will be examined next, and it provides no information about convergence rates. 

4.5 Adjoint Estimation Properties for 

Pseudospectral Collocation 

Let s 0 , . . . , Syv, qo, • • •, q̂ v be a solution of the discretized optimal control problem 

(assuming it exists) and let X0,... ,XN, fj,0,..., fj,N, v0 ,i/N be the corresponding La-

grange multipliers. Furthermore set 

N N 
„N / (t) = ^ uN(t) = J2 (t) 

i=0 i=0 
N N 

xN(t) = nN(t) = 
1 = 0 1 = 0 

How are the discrete adjoint variables related to the adjoint variables that arise in 

the first order optimality conditions stated in Theorem 2.2.1? 
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This question is examined by Fahroo, Ross, et al., in [14], [47], [21]. Suppose the 

first order optimality conditions (2.4) are discretized using LGL PS collocation. That 

is, replace x, u, A, fi in (2.4) by 

N N 

i = 0 i = 0 

N N 

AN(t) = nN(t) = 
i = 0 i—0 

and enforce (2.4a,d,e) at the collocation points. This leads to 

t f —t0 t f — t0 ~T 
-VS/(SI, q*, U) + —A; D8/(Si, q*, U 

2 
N 

+ ^T>ij\T
j +jjt[Dag{si,q,uti), i = 0 , . . . , N, (4.6a) 

j=o 

A0 = - u0 Dxa(x0,t0), (4.6b) 

Xjf =vjDxb(sN, tN) + Vxe(sw , tN), (4.6c) 

0 = 'f 2 ^°Vq/(st, q,, ti) + t f < 0 A ^ q / ( s „ q t, U) 

+ Ar^q.9(Si,qi,ti), i = 0,...,N (4.6d) 

and 

> 0, iljg(sl,qi,ti), i = 0, ...,N. (4.6e) 

Now consider the discretization (4.2). The Lagrangian corresponding to the dis-
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cretized optimal control problem (4.2) is given by 

N 

i=0 
tf — to , , Wi—-—l{Si,qi,ti) e(sjv, i/v) 

N 

E 
vT tf - to N 

i = 0 

.T„/„ . \ , . ,T 

f(su q,, ti) - DijSj ) + fifg^Si, q 
j=0 

+ u0 a(s0, i0) + vNb(sN, tN), 

where A; G Rn for % = 0 , . . . , N, ^ G for i = 0 , . . . , AT , and i/0 G Rn° and 

î at G M"6 are the multipliers. 

Recalling the KKT conditions, the control optimality conditions for i = 0 , . . . , N 

are 

v q M y ) = u>itf o + DqJ(si,cil,U) + njDq<.g(si,qi,ti) = 0. 

Dividing by Wi gives 

0 = t f „ t oVq i /(s t ,q, ,£ t 
1 t f ^-XjDqJis,, ti) + —nfD^giSi, q,, 

VJi 2 ^ ™ " Wl 2 

Similarly applying these first order necessary conditions, the state optimality condi-

tions result in three cases. First, for i = 1 , . . . , N — 1, 

0 = tf o t0^sJ(st, q*, U) + —tf toX[DSif (si, ql; Wi 2 
JV 

+ ql; U). 
1 3=0 1 

(4.7a) 

For i = 0, 

0 = 
N 

t f t0 VSo/(s0, q0, to) + 2
 t Q A^ S o / ( s 0 , q0, to) - ^ JZ 

1 , , 1 
Wo 2 u;0 i=o 

-/x0 Dso5r(so, qo, to) H f 0 A>oa(so, U)] 
wQ WO 

(4.7b) 
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and. for i = N, 

0 = tf
 n

 t0 ^SNl(sN,ciN,tN) + —tf \T
NDSNf{sN,qN,tN) Z Wn z 

1 N 1 1 
J ] DjivAf H HxDSNg(sN, qN, tN) H VSNe(sN, tN) wN ^ J wN wN j=o 

+ ^-u^DSNb{sN,tN). (4.7c) 
Wn 

By the definition of the elements of the differentiation matrix for LGL PS collo-

cation the following, shown by Fahroo and Ross [14, Section IV], are true: wiDij = 

—WJDJI, when i ± j, Bu = 0 for i = 2 , . . . , N - 1, 2DNN = and 2D00 = 

Using these relations, (4.7a-c) can be rewritten as follows: 

2 Wi 2 
N 1 1 

+ V D 0 — \ J + — AtfDSi0(si,qi,*i) (4.8a) 
' WN WR 

j=0 ' 3 

for i = 1,..., N - 1, 

N 

0 = ^ ^ £ V S o / ( s o , q o , t o ) + — ^ ^ A ^ D S o / ( s 0 , q o , t o ) + V D 0 i — A T 
) in^ / f * in-

3=0 
2 • Wq 2 • 3 

1 , , 1 / 1 tAoDSQg(s0, q0, to) H —Aq + i/q-DSoa(s0, U) ) (4.8b) 
W 0 WQ \ W 0 

for i = 0, and 

tf^t0y7 ] ( „ J \ | 1 tf~t0^T 0 = — - — V S N l ( s N , q^v, tN) -I —XNDSNf(sN,qN,tN) Z W]y z 
1 V— 1 — y^ H fj^DSNg(sN, qN, tN) 
>N W N 

— (—— A^ + VSjve(s7v, tN) + v^Ds b(sN, tN) J (4.8c) 
>N V W N J 
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for i = N. Comparison of the KKT conditions (4.8) to (4.6) shows that the re-

lationships Ai = '(/,',A, and /Lt( = tf,2
t°,wljll hold provided that the so-called closure 

conditions 

—Ag + i/Q DSoa(s0, t0) = 0 
w0 

— XN - VSNe(sN,tN) - u^DSNb(sN,tN) = 0 wN 

hold. For more details see Ross and Fahroo [47] and Gong, et al., [21]. It should be 

noted that the closure conditions are not automatically satisfied. See the example in 

Section 5 of Gong, et al., [21]. 

4.6 Singularity of the LGL PS K K T Matrix 

One often overlooked shortcoming of Pseudospectral Collocation is the potential sin-

gularity of the KKT matrix for a class of optimal control problems. Consider now 
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optimal control problems of the form 

rtf 

min / \l(x(t),u(t),t) + L(x(t),u(t),t)Tx(t)] dt 
x(t),x(t),u(t) JTO 

+ '(•'•(/./). t f ) + E(x(tf), t f ) T x ( t f ) (4.9a) 

s.t. 

±{t) = f(x(t),u(t),t), t e [to, t f ] (4.9b) 

£(t) = f(x(t), u(t),t), te[t0,tf] (4.9c) 

a(x(t0),t0) =0 (4.9d) 

b(x(tf),tf)= 0 (4.9e) 

g(x{t),u{t),t)<0, te[t0,tf} (4.9f) 

with i e r , L : r x r x R ^ and fi : r x P x I ^ IT. This class 

of problems defines a particular form of (2.1), where some of the state variables, x, 

do not appear in the right hand sides of (4.9b,c), the constraints (4.9d-f), and only 

appear linearly in the objective (4.9a). Problems with the structure (4.9) arise for 

example when the optimal control problem (2.1) in Bolza form is converted into an 

optimal control problem in Mayer form. 
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When transcribed by LGL PS collocation, the Lagrangian is 

N { t - t 0 \ 
£(•) = ( Wi 1 2 ^ + L(SU qi' J + e(SN> tiV) + E(SNI tN)T$N 

i=0 ^ ' 
/ 

t=0 

vT
Nb{sN,tN). 

X 
D s - t f~ to P(s- a £ 

Let 

F = 

t-LY2'f°(so, Qo, to) — E / l o ^ojSj 

L/°(so, Qo, to) _ E f lo 

f N > qjv> tjv) ~ E7=O DNJS 

t f - t o f N , In, tN) - Y^j=o ^NjSj 

then the KKT matrix for this particular class of problems has the form 

VL£ 0 VqS£ DSFT DsaT DsbT 

0 0 D 0 0 

0 Vqq£ D q F r 0 

DSF - D DqF 

D«a 0 0 

0 

0 

0 

0 0 

0 0 

Dsb 0 0 0 0 0 

At first, it is not so clear why this matrix could be singular; however, B. Fornberg [17, 

Section 4.4] states that the matrix D for LGL PS collocation, and for all nonperiodic 

PS approximations, has only zero eigenvalues. This is a result of differentiating 
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the polynomials that approximate the states and controls a finite number of times 

[17, Section 4.4] and is substantiated by Gong, et al. [22, Section III]. This poses 

a problem when considering this class of problems, since the KKT matrix is always 

singular, particularly when transforming an OCP in Bolza form to a problem in Mayer 

form. 

4.7 Structure and Sparsity of the KKT Systems 

In order to solve the nonlinear program resulting from the transcription of (2.1) by 

LGL Pseudospectral collocation a variety of methods can be employed. Often these 

methods require the factorization of a matrix known as the KKT matrix. Essentially 

this matrix is the linearization of the KKT conditions with respect to the optimization 

variables, y, and the multipliers, A and fx. Visually, in its simplest form the KKT 

matrix looks like 

V* £(y) + ( D y G k ) T M k ( Z k ) ~ 1 D y G k DyF( y f 

DyF(y) 

when the variables are considered in the order given by y7 A' , with y defined 

in (4.1) and A defined in (4.3). However, if the variables are considered in the order 

f.T T nT \T T T \T s0 MO A0 S1 Ql A1 T T \T sN q^ Ajy v N 
(4.11) 

this matrix has the structure shown in figure 4.1 for LGL Pseudospectral collocation. 

It is important to note that only half of this matrix must be stored at any time since 



it is symmetric. Also, this ordering of variables was chosen to correspond to that of 

the MS KKT matrix shown in the next chapter. Other orderings could be used, but 

after considering a few of the permutations given in MATLAB, none of these have 

a significant advantage over this predefined ordering. This comparison is shown in 

figure 4.3. 

When factored into lower- and upper- triangular matrices by Gaussian elimina-

tion with pivoting, these matrices are dense for LGL PS collocation, and require a 

significant amount of storage space even compared to the storage of the KKT matrix 

itself. An example of this can be seen in figure 4.2, where the decomposed matrices 

correspond to the matrix in figure 4.1. 

Figure 4.1: Sparsity pattern for LGL PS KKT matrix with N = 20, n = na = rib = 10, 

and m = 3 



49 

Figure 4.2: Lower triangular matrix (left) and upper triangular matrix (right) for 

factorization of LGL PS KKT matrix 
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Number of Nonzero Elements (106) 

Figure 4.3: Comparison of different orderings of the PS KKT matrix. Chosen refers to 

the ordering given in (4.11), SYMAMD refers to MATLAB's symmetric approximate 

minimum degree permutation, COLAMD refers to MATLAB's column approximate 

minimum degree permutation, AMD refers to MATLAB's approximate minimum 

degree permutation, and SYMRCM refers to MATLAB's reverse Cuthill-McKee per-

mutation. 



Chapter 5 

Direct Transcription using 

Multiple Shooting 

5.1 Introduction 

Shooting methods have originally been used for the solution of two-point boundary 

value problems (TPBVPs). Single shooting methods solve the initial value problem 

(IVP) corresponding to the TPBVP and adjust the initial data in such a way that 

the IVP solution satisfies the TPBVP. Due to instabilities of the IVP solution over 

longer time intervals, the TPBVP is broken up into a system of coupled TPBVP over 

smaller time subintervals. This leads to the Multiple Shooting (MS) method. MS 

methods for the solution of TPBVPs are described in [1, 2, 13, 51]. 

MS methods are also intensively used for transcribing optimal control problems 

51 
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into nonlinear programs. See, e.g., [8, 32, 34, 33, 52]). One area that has used MS 

methods extensively is dynamic process optimization (see, e.g., [7, 32, 34], 

5.2 Problem Formulation 

Consider again the problem (2.1). This thesis considers a development of multiple 

shooting similar to that of Bock and Plitt [8]. 

First the controls u are approximated by piecewise polynomials. See Section 5.4. 

This approximation parameterizes the controls u by q 6 Rk. After replacing the 

controls u by the parameterization q, (2.1) can be written as follows (to simplify the 

notation, l(x(t),u(q,t),t) is written as l(x(t),q_,t)): 

rtf 
min / l(x(t),q,t)dt + e(x(tf),tf) (5.1a) 

J t0 

s.t. 

x(t)=f(x{t), q,t), te[t0,tf] (5.1b) 

a{x(t0),tQ) = 0 (5.1c) 

b(x(tf),tf) = 0 (5.Id) 

g{x(t),q,t) < 0, te[t0,tf]. (5.1e) 

The interval [to,t,f] is subdivided into subintervals 

t0 < ti < ... < tN-1 < tjv = t f , 

and at each point ti, i = 0 , . . . , N, auxiliary states Sj G Rn are introduced. On each 
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subinterval, then, the initial value problem 

x(t) = f(x(t),<i,t), te[U,tl+1] (5.2a) 

x{ti) = s, (5.2b) 

must be considered. Assuming that (5.2) has a unique solution £j(t;Sj,q), the con-

straints (5.1b-d) have the solution 

x(t)=xi(t; Si,q), te[ti,ti+1], i = 0,...,N-l 

if and only if the auxiliary states Si E M.n, i = 0,..., N satisfy 

Xi(ti+i;Si,q) = Si+i, i = 0, ...,N- 1, (5.3a) 

o(s0, to) = 0, (5.3b) 

b(sN, t f ) = 0. (5.3c) 

The integral term of the objective can be separated into 

2 2 / l(x(t] Si, q), q, t)dt. 
1=0 

Each integral l(x(t; si, q), q, t)dt can be computed by solving the auxiliary scalar 

IVP 

L{t) = /(x(t; Sj, q), q, t), t e [ t i , t i + 1 ] (5.4a) 

L(U) = 0. (5.4b) 

If Li solves (5.4), then 

rU+i 
/ l(x(t; Si, q), q, t)dt = Lj(tl+i). 

Jti 
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Since the right hand side in (5.4) depends on the solution x{t\ Sj, q) of (5.2), the I VPs 

(5.2), (5.4) are solved as one system of IVPs. 

If (5.3) is satisfied, then the final time term in the objective reads 

e(x(tf),tf) = e(sN,tN). 

Finally, the path constraints (5.1e) are enforced at the subinterval endpoints only. 

That is, (5.1e) is replaced by 

g(x(U),q,tt) <0, i = 0,...,N. (5.5) 

Thus, the optimal control problem (5.1), with (5.1e) replaced by (5.5), can be 

equivalently written as 

N-1 

min J^L i(a:( i i + i ;s i ,q) ,q,<) + e(sjV,<jv) (5.6a) 
i = 0 

s.t. 

s,:+1 - x,:(ti+1;Si,q) = 0, i = 0 , . . . , N - 1, (5.6b) 

a(so ,£o)=0 (5.6c) 

b(sN,tN) = 0 (5.6d) 

g(Si, q,U)<0, i = 0,..., N. (5.6e) 

The problem (5.6) is a nonlinear programming problem in the variables 

T 

G R n y y = N 
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that can, again, be written in the form of (2.5). The functions of (2.5) are now defined 

by 

N-1 

J(y) •= £ L l ( x ( ^ + 1 ; s l , q ) , q , t ) + e(sAr,tAr) (5.7a) 
i=0 

F( y) : = 

C(y) := 

Si - x0(ti;s0 ,q) 

s2 - Xi(t2;si,q) 

sN — %N-l(tN] Sjv-1, q) 

a(s0,t0) 

b(Syv, tpf) 

g{ s0,q, to) 

^(Siv,q, tN) 

, and (5.7b) 

(5.7c) 

where ny = (N + 1 )n + /c, % = A?n + na + rib and no = {N + 1 )ng. Further, (5.7) 

has equality constraint multipliers 

V Ao 
\T T 

N 
(5.8) 

and inequality constraint multipliers 

T T Mo ' ' ' A% (5.9) 

where A* G Mn, i = 0 , . . . , N - 1, and ^ G M™9, i = 0 , . . . , N, i/„ G Mn°, and 

un G M™6, corresponding to the rows of (5.7b) and (5.7c). However, while (5.6) is a 
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finite dimensional NLP, the evaluation of the constraints (5.6b) require the solution 

of a system of ODEs (5.2) and (5.4). 

5.3 Derivative Computations 

5.3.1 First Order Derivatives 

The Jacobians of the constraints (5.6b) and gradient of the sum in the objective (5.6a) 

require the computation of derivatives of the solution of initial value problems with 

respect to initial values and parameters. 

The following results can be found in [26, Sec. 1.14] (Theorems 14.1 and 14.3) 

Theorem 5.3.1 Let Xj(-;Sj,q) be the solution of 

x(t) = f(x{t),d,t), te{U,tl+1] (5.10a) 

x(U) = Sj (5.10b) 

and let O C Rn x Wk x R be an open set such that (xj(i; Sj, q), q, t) G O for all 

t G [ti, ti+1], 

(a) If the partial derivatives Dxf and D^f exist and are continuous in O, then 

the partial derivative 

Qi(') = DqXiC-JSi.q) 
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exists, is continuous, and satisfies the differential equations 

Q(t) = Dxf(t, Xi(t; Si, q), q )Q( t ) + D q / ( t , x^t, su q), q), t G t i+i] (5.11a) 

Q(ti) = 0. (5.11b) 

(b) If the partial derivative Dxf exists and is continuous in O, then the solution 

Xi(-]Si,q) is differentiate with respect to st and the derivative 

Si{-) = DsXi(-;Si,q) 

satisfies the differential equations 

S(t) = Dxf(t, Xi{t-, Si, q), q ) S ( t ) , t G [t%, t i+1] (5.12a) 

S{U) = I. (5.12b) 

If an ODE solver with adaptive time stepping is used to solve (5.10), then (5.10), 

(5.11), and (5.12) have to be solved simultaneously, i.e., 

x(t)=f(x(t),q,t) (5.13a) 

L(t) = l(x(t),q,t) (5.13b) 

Q(t) = Dxf(x(t), q, t)Q{t) + DJ(x(t), q, t) (5.13c) 

S(t) = Dxf(x(t),q,t)S(t) (5.13d) 

Ls(t) = Dxl(x(t),q,t)S(t) (5.13e) 

Ln{t) = Dxl(x(t), q, t)Q(t) + i y (x(t), q, t) (5.13f) 
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x{ti) — Si, (5.13g) 

z(ti) = 0, (5.13h) 

Q(U) = o, (5.13i) 

S(u) = / , (5.13J) 

LS{U)= 0, (5.13k) 

Lq{t>i) = 0. (5.131) 

must be solved on each subinterval £ G [tt, tl+1], i = 0 , . . . , N — 1, which is a system 

of 2n + nk + k + n2 + 1 ODEs in the unknowns £ i-> x(t) G R™, £ i—• L(£) G R, 

£ i-> Q(£) G Mnxfc, £ ̂  S(£) G R n x n , £ i-». Ls(£) G R l x n , and £ ̂  Lq(£) G R lxfc. See, 

e.g., [10, 35]. 

Under the assumptions of Theorem 5.3.1 the derivatives of the functions J, F, G 

defined in (5.7) can be computed. For example, the Jacobian of the equality con-

straints are given by 

DF{ y) = 

-So(*i) 1 0 

0 - S I ( * 2 ) I 

0 

0 

0 

0 

0 

-Qo{ti) 

-Qifa) 

DSoa 

-SN-I^N) I — QN-I^N) 

0 0 0 

0 DSNb 0 
(5.14) 
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5.3.2 Second Order Derivatives 

The second order derivatives of the constraints 

x{ti+1; Sj, q) - Si+i =0 , i = 0 , . . . , N - 1, 

which are needed for the computation of Vyy£. can be computed exactly, in a manner 

similar to the computation of the first order derivatives. However, this significantly 

increases the number of differential equations that must be numerically integrated 

on each MS subinterval. Instead, quasi-Newton updates are used to approximate the 

Hessian. 

Further, if it is assumed that the control is parameterized on a single subinterval by 

qi, i = 0 , . . . , N so that it does not appear in the definition of the parameterization on 

any other subinterval, then considering the Lagrangian of the problem (5.6), defined 

by 

N-1 N-1 
£ = ^ Lj(x(ti+1; 8j, qj), q̂ , t) + e(sjy, tN) + \[(si+i - Xj(ti+1; s^ q )̂) 

1=0 i=0 
N 

+ + "0^0, to) + vJrb(sN,tN), (5.15) 
i=0 

it is apparent that the second derivatives of all of the individual functions that com-

pose (5.15) only depend on the intermediate initial values and control parameters of 

a single subinterval. This is a favorable property since the Hessian of (5.15) has a 

separable block structure; that is, the blocks of the Hessian corresponding to inter-

mediate initial values and control parameters of different subintervals are identically 

zero. 



60 

The separable block structure then motivates the use of a block quasi-Newton 

update procedure, where the Hessian of (5.15) is updated on each subinterval indi-

vidually. It is not clear whether this block update procedure has the same convergence 

properties as a regular quasi-Newton update. However, in practice fast, superlinear 

convergence has been observed when close to a solution. 

The quasi-Newton update used in the analysis of this thesis is a damped BFGS 

update given by Nocedal and Wright [40, Section 18.3]. Let Bk be a symmetric and 

positive definite matrix, an approximation to a separable block of the Hessian of 

(5.15), and let the gradient of (5.15) with respect to the intermediate initial values 

and control parameters of the subinterval under consideration at the previous iterate 

and the current iterate be 

VyiCk and V y A + \ 

respectively, with yk = Further, define 

< = y r 1 - yf and vk = (V yXf+ 1) - (VyX*). 

Then the Hessian update can be defined by 

Bk+l = Bk_ Bkwk{wk)T Bk
 + r*(r*)T 

(wk)T BkWk (jjk^Tj-k' 

with rk = 9kvk + (1 — 9h)Bkwk. 9k is defined so that Bk+1 is always positive definite 

by 

1. if (w k)Tv k > 0.2(wk)TBkwk-
9k = ' 

(0 .8 (w k ) T B k w k ) / ( (w k ) T B k w k - Cwk)Tvk), if (w k)Tv k < 0.2{w k)TB kw k , 



[40, Section 18.3]. This is another favorable property that meets the assumptions of 

the merit function in Section 3.2. 

Control parameterizations that elicit this structure are not difficult to surmise, 

and three of these are explored in the next section. 

5.4 Control Parameterizations 

The parameterization of u can be done in many ways. For instance, the techniques 

used in LGL PS collocation to interpolate the control could also be used in MS 

methods. However, such a parameterization would create an unnecessary explicit de-

pendence between the parameters defining the control. Instead, the parameterization 

can be completed piecewise on each of the subintervals. These piecewise parame-

terizations do not themselves need to guarantee the continuity of the control or its 

derivatives at the junction of two subintervals. To guarantee these properties, the 

control parameterization on each subinterval could be defined analytically so that the 

control and derivatives at the junctions are continuous. However, a scheme like this 

would destroy the ability to approximate V y y £ with block quasi-Newton updates. To 

overcome this destruction, extra constraints can be imposed on the control param-

eterization. With this in mind, the three control parameterizations that have been 

used in this analysis will be detailed. 



62 

5.4.1 Piecewise Constant Control Parameterization 

l T 

First, let q = T T 
A0 ' ' ' AN 

, a, e Mm for i = 0 , . . . , N, and define 

u(t) = a,, te[ti:ti+1), and i = 0 , . . . , N, 

and u(tiv) = ajv, such that k = (N + 1 )m. Clearly, defining nearly any extra equality 

constraints at the junctions would severely restrict the ability of this constant param-

eterization to effectively approximate the control. However, inequality constraints 

could be imposed to guarantee that the difference between controls on adjacent inter-

vals is not too large, but these have not been studied in this thesis. The only extra 

constraint imposed on this constant parameterization is 

A^v — SLN-I = 0. (5.16) 

Without this constraint, the KKT matrix tends to become singular if there is no 

constraint governing the behavior of the control at t^. This is because the rows and 

columns of the Hessian of the Lagrangian corresponding to qJV will be zero, and the 

columns of the constraint Jacobian corresponding to these parameters will be zero. 

5.4.2 Piecewise Linear Control Parameterization 

a r hT • • • hT <A0 Uq An U n 
Second, let q = 

and let the control parameterization be 

T 

, a; e Mm and b, e Mm for i = 0 , . . . , N, 

u{t)= + te[t0,tf], i = 0,...,N, 
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so that now k = 2(N + l)m. To impose the continuity of this linear control parame-

terization, the constraints 

(a»+1 - + (b i+i - bi) = 0, i = 0 , . . . , iV - 1 (5.17) 

are defined. 

5.4.3 Piecewise Cubic Control Parameterization 

Finally, let q = 

for i = 0 , . . . , N, and define 

„ T u T T J T do °o Lo u0 T HT T JT 
AN U N CN N 

a i 5 Cj, d i G IRm, 

u(t) = a^3 -I- hit2 + Cit + d,, te[t0ltf], i = 0,...,N, 

where k = 4(iV-|- 1 )ra. In this case, the constraints imposed in the analysis contained 

in this thesis are on the continuity of the control and its derivative. That is, 

(aj+i - ai)t3
i+1 + (b i+i - bi)t2

i+l + ( c m - c%)tl+1 + (di+1 - di) = 0, and (5.18a) 

and 3(a,+i - sn)t2
i+1 + 2 ( b m - bi)ti+1 + (c,+1 - c?) = 0, (5.18b) 

for i = 0 N - 1. 

5.5 Well-posedness and Convergence of the MS 

Transcription 

The MS transcription is performed in several stages. In the first step a control 

parameterization is applied to approximate the original optimal control problem (2.1) 



by (5.1). For piecewise constant controls Goh and Teo [18] provide convergence 

results for the convergence of the parameterized control to a solution of (2.1) as the 

parameterization is refined. See also [53] and [43]. 

If (5.2) are integrated exactly, then a solution (x, q) of the optimal control problem 

(5.1) with (5.1e) replaced by (5.5) is equivalent to a solution (s0, • • • . Sjv,q) of the 

NLP (5.6) in the following way. If (x, q) solves (5.1) with (5.1e) replaced by (5.5), 

then (s0 = x(t0), • • • , ŝ v = x(£yv), q) solves (5.6). On the other hand, if (s0, • • • , s^, q) 

solves (5.6), then (x, q) solves (5.1) with (5.1e) replaced by (5.5), where 

x(t) = Xi(t;Si,q), te[ti,ti+1], i = 0,...,N-l 

and XI solves (5.2). Moreover, the Lagrange multipliers A0, • • • , \N-I corresponding 

to the equality constraints in (5.6) are related to the adjoint variables A corresponding 

to the dynamics (5.1b) in the optimal control problem (5.1) with (5.1e) replaced 

by (5.5) by the identity A» = A(^). See Grimm and Markl [24]. Further, Grimm 

and Markl [24, Section 5.2] suggest that the Lagrange multipliers // belonging to 

the function G of (5.7) are proportional to the path constraint multipliers for the 

continuous problem (2.1), that is 

Mi _+ ~ 
(U+l — ti) 

when the control is parameterized by a piecewise constant function like that of Section 

5.4.1. This result is originally due to the proof of Grimm [23]. 
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5.6 Structure and Sparsity of the K K T Systems 

The same methods that can be used to solve the NLP formed by transcribing (2.1) 

with LGL PS collocation can also be used to solve the NLP resulting from an MS 

transcription. This again leads to the construction and factorization of the KKT 

matrix. The structure for the KKT matrix resulting from an MS transcription (cubic 

control parameterization) with the ordering of variables 

(5.19) J,T „T nT \ I „T T . . . „T T VI T T T 
u0 °0 4 0 A 0 ®1 4 1 TV—1 HN-l A N - l °N MiV N 

is shown in figure 5.1. Each of the A j, i = 1 , . . . ,N — 1, are the multipliers corre-

sponding to the constraints 

Si+i — Xi(ti+1; s ,̂ a ,̂ bi, Cj, d,) = 0, 

(&i+i - ai)t%+1 + (bi+i - bi)t2
l+l + (ci+i - ci)t i+ l + (dj+i - d,) = 0, and 

3(ai+x - ai)t2
i+l + 2(b i+i - bi)U+i + (ci+1 - c») = 0, 

so that Ai G R n + i m . Again, only half of this matrix needs to be stored since it is 

symmetric. 

The KKT systems that arise in MS discretizations of optimal control problems can 

be solved by structured direct methods that are tailored to the structure introduced 

by MS. See, e.g., [49, 50, 32, 34], In this thesis a sparse LU decomposition is applied. 

When factored into lower- and upper- triangular matrices by Gaussian elimination 

with pivoting, these matrices are sparse for MS transcription, and require a similar 

amount of storage space to that of the KKT matrix itself. These triangular matrices 



are shown in figure 5.2. A comparison of the required storage for MS transcription 

with constant, linear, and cubic control parameterizations as well as LGL PS col-

location for various N is given in figure 5.3. Clearly, for any of the given control 
/ 

parameterizations, MS transcription has a distinct advantage over PS collocation 

when storing the KKT matrices, particularly as N increases. 

Figure 5.1: Sparsity pattern for MS KKT matrix with N = 20, n = na = nb = 10, 

and m = 3 
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Figure 5.2: Lower triangular matrix (left) and upper triangular matrix (right) for 

factorization of MS KKT matrix 

Number of Nonzero Elements 

Number of Nodes 

Figure 5.3: Comparison of storage requirements for LGL PS collocation and MS 

constant, linear, and cubic transcriptions with N = 20, n = na = n\, = 10, and m = 3 



Chapter 6 

Numerical Examples 

6.1 Introduction 

To illustrate the consistency of the numerical solution of the direct problem with 

that of the indirect problem, the following simple examples, chosen because of the 

availablity of analytical solutions for the states, control, adjoints, and multipliers, 

were considered. Let Sj, qj, Aj, and fj,l represent the optimal numerical solution of 

a given example at node t% found by the LGL PS method or the MS method with a 

constant control parameterization, satisfying the KKT conditions of Theorem 2.3.1. 

Also, let x*(ti), u*(tt), A*(ti), and /i*(ij) be the optimal analytical soluton to a given 

example, which satisfies the necessary conditions of Theorem 2.2.1, evaluated at the 

transcription points Then define the state, control, adjoint, and multiplier errors 

68 
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to be 

x .error (U) = |X*{ti) ~ Si (6.1) 

, error (ti) = |u*(ti) - q, (6.2) 

XerTOI(ti) = |A*(tj) — Aj|, and (6.3) 

f j ^ i u ) = IIi*(u) - M •%\ » (6.4) 

respectively. 

The numerical solutions discussed here are found by interfacing the objective 

and constraint functions defined in Appendix A with MATLABs fmincon on a PC 

running Microsoft Windows XP Professional, Version 2002, Service Pack 3, with 

an AMD Athlon 64 X2 Dual Core Processor 5600+ at 2.91 GHz and 2.0 GB of 

RAM, and under the MATLAB 7.6.0 (R2008a) environment, fmincon was chosen 

for these comparisons so that they are more easily repeatable, without the need for 

the optimization algorithm described in this thesis. The default options of fmincon 

were altered to allow the definition of the objective gradient and constraint Jacobians, 

to specify the algorithm as interior-point, and to set stricter tolerances on the exit 

creteria of the algorithm. These options are as follows: 

• 'GradObj' set to 'on' 

• 'GradConstr' set to 'on' 

• 'Algorithm' set to 'interior-point' 
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• 'TolX' set to 1 x 10~16 

• 'TolFun' set to 5 x 10~8 

Also, these examples serve as a way of highlighting the ability of the MS tran-

scription to approximate the states, controls, adjoints, and multipliers of an OCP 

as well as LGL PS collocation, despite the spectral convergence of the PS method 

highlighted by Gong, et al. [20]. This becomes much more apparent when there are 

discontinuities in any of these variables or their derivatives. 

6.2 Linear-Quadratic Example 

This simple example is adapted from Hager [25] and is given by 

f 1 1 min / x(t)2 + -u(t)2dt (6.5a) 

s.t. i(t) = ]-x{t) + u(t), t e [0,1] (6.5b) 
£ 

x(0) = 1 (6.5c) 

The analytical solution is defined by 

x-(t) = 2 e " P g l + e X p ( l v (6.6a) exp(3t/2)(2 -f exp(3))' 
2(exp(3t) - exp(3)) 

exp(3£/2)(2 -f exp(3))' 
2(exp(3£) - exp(3)) 

= exp(3£/2)(2 + exp(3))' ^ ( 6 ' 6 b ) 

2(exp(3t) — exp(3)) 
exp(3t/2)(2 + exp(3)) 

These solutions are shown in figures 6.1, 6.3, and 6.5. The smoothness of the analytical 

solution of this example leads to significantly better approximations of the states, 
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controls and adjoints by LGL PS collocation. This is due to the optimal solution 

being infinitely many times differentiate. When the solution of an optimal control 

problem is not smooth this is not the case and can be witnessed in the following 

examples. 

Optimal State 

Figure 6.1: Optimal state for example (6.5). 

PS State Error MS (constant) State Error 

10 

10' 

10' 

10 

— N=25 
N=50 
N=100 
N=200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t t 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Control 

Figure 6.3: Optimal control for example (6.5). 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Adjoint 

Figure 6.5: Optimal adjoint for example (6.5). 

PS Adjoint Error 

N=25 
N=50 
N=100 
N=200 

^•l 11, 
- • • — J 

10" 

10 

10 
s 

10 

10 

MS (constant) Adjoint Error 

— N=25 
— N = 5 0 
—N=100 

N=200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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6.3 Piecewise-Constant Control Example 

min / x(t)dt 
x(t),u(t) Jo 

s.t .x(t) = u(t), t e [0 ,3 ] 

x(0) = 1 

- l <«(<)<!, te[ 0,3] 

x(t) > o , te [o, 3] 

x(3) = 1 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7d) 

(6.7e) 

(6.7f) 

This example is adapted from Hartl, et al. [27], and has an analytical solution defined 

by 

z*(f) = { 

u*(i) = { 

A*(t) = { 

1 - t , t e [0,1); 

o, t e [ l , 2 ] ; 

t - 2. t € (2, 3]; 

- 1 , t e [ 0 , l ) ; 

0, t G [1,2]; 

1. t G (2, 3]; 

1 - t , t e [ 0 , l ) ; 

0, t £ [1,2]; 

2 - t , te (2,3]; and 

(6.8a) 

(6.8b) 

(6.8c) 
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= 

1 ~t, 

o, t4(t) = 

o, 

0, 0, t e [ 0 , l ) ; 

1, t e [1,2]; 

o, t G (2,3], 

(6.8d) 0, /4W = < 

t - 2, 

where nl(t), /^(t), and are the multipliers corresponding to the inequalities 

u(t) > — 1, u(t) < 1, and x(t) > 0, respectively. These solutions are shown along with 

the errors of the numerical solutions in figures 6.7-6.14. Only one of the multipliers 

is shown; however, the others elicit similar behavior in the errors of the numerical 

solutions The discontinuities of the control and the derivatives of the states, adjoints, 

and multipliers degrade the ability of LGL PS collocation to approximate the optimal 

state, control, adjoint, and multipliers, particularly at the times t = 1 and t = 

2 where the discontinuities exist. These discontinuities also have an effect on the 

MS transcription, and introduce a significant amount of error at these points. A 

potential way to achieve similar accuracy to the example of Section 6.2 would be 

to discretize the problem on three separate intervals, so that on each interval the 

solution is smooth. However, in cases where the analytical solution is unknown, and 

the ability to anticipate the location of discontinuities in the solution is not available, 

such a scheme would be ill-conceived. 



Optimal state 

% u r e 6.7: Optima] 
s ta te for example (6.7). 

p S S ta te Error 

MS (constant) State Error 

0 01 
°t

S 0-& 0.7 0.8 0.9 , 
0 M O ^ T T , \5 0 5 oy oT oT l 

State e „ o r for LGL P S , „ 
^ E r r o PS collocation (left) and MS (constantJ 

c o m p u t e d b y ( 6 J ) for t h f i e x a m p f e ^ transcription 
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1 
0.8 
0.6 
0.4 
0.2 

•f 0 

- 0 . 2 
-0 .4 
-0 .6 
-0.8 

- 1 

0.5 

Optimal Control 

1 1.5 
t 

2.5 

Figure 6.9: Optimal control for example (6.7). 

PS Control Error 
10" 

10 

g 10" 

-N=25 
-N=50 
-N=100 
- N=200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

10 

10 

10 

10 

10 

MS (constant) Control Error 

— N=25 
— N=50 
— N = 1 0 0 
— N = 2 0 0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Adjoint 

Figure 6.11: Optimal adjoint for example (6.7). 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Multiplier 

Figure 6.13: Optimal multiplier ( ^ ( t ) ) for example (6.7). 

Figure 6.14: Multiplier (/ii(t)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.4) for the example (6.7). 



6.4 A Final Example 

80 

min / 2xi(t)dt 
xi(t),x2(t),u(t) Jo 

s.t. 

(6.9a) 

xi{t) = x2(t), t e [0,3] 

±2{t)=u(t), *e[0,3] 

xi(0) = 2 

x2(0) = 0 

- 2 < u(t) < 2 , t E [0, 3] 

x1(t) > - l , te[o,3] 

(6.9b) 

(6.9c) 

(6.9d) 

(6.9e) 

(6.9f) 

(6.9g) 

Define r = -*/6 and a = \/6/2. This example is adapted from Hartl, et al. [27], and 

has an analytical solution defined by 

2-t2, -21, te[0,a)] 

*!(*) = < 2 + t2 + 2a2 - 4<rt, A{t) = 2(t-2a), te\a,r); (6.10a) 

u*(t) = < 

-1, 

-2 , t e [ 0 , a ) -

2, te{a,r)-, 

0, te[r, 3]; 

2(t-2a), te[a,r); 

0, te[r, 3]; 

(6.10b) 
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3a - 21, 2cr2 — 3at + t2, t £ [0, a); 

3a-2t, K(t) = < 2a2-3at + t2, t£{a,r)- and (6.10c) 

0 0, t£[r, 3]; 

2a2 - 3at + t2 0 o, te[0,(T); 

ti(t)=\ 0, = \ 2a2 — 3at + t2, (4(t) = \ 0, tG[a , r ) ; 

0, 0 2, t£[r, 3]; 
V V V 

(6.10d) 

where Al(t) and are the adjoints corresponding to the differential equations for 

X\(t) and x2(t), and nl(t), ^(t), and are the multipliers corresponding to the 

inequalities u(t) < 2, u(t) > —2, and x(t) > —1, respectively. These solutions are 

shown along with the errors of the numerical solution in figures 6.15-6.22. Again, 

because of the points of disconuity, t = a and t = r , in either the states, controls, 

adjoints, multipliers, or their derivatives the approximation of the optimal states, con-

trols, adjoints, and multipliers degrades significantly for the LGL PS approximation, 

and likewise for the MS transcription. LGL PS collocation has a particular problem 

with approximating the adjoints at the boundaries, a defect highlighted by Benson 

[4, Section 3.3.2]. This is especially apparent in figure 6.20. 
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Optimal State 

Figure 6.15: Optimal state (x2(£)) for example (6.9). 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Control 
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t 

Figure 6.17: Optimal control for example (6.9). 

PS Control Error 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 
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MS (constant) Control Error 
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— N = 5 0 
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N=200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 



84 

Optimal Adjoint 

Figure 6.19: Optimal adjoint (Ai(t)) for example (6.9). 

Figure 6.20: Adjoint (Ai (£)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.3) for the example (6.9). 
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Optimal Multiplier 

Figure 6.21: Optimal multiplier (fJ>i(t)) for example (6.9). 

Figure 6.22: Multiplier (/Ji(t)) error for LGL PS collocation (left) and MS (constant) 

transcription (right). Error computed by (6.4) for the example (6.9). 



Chapter 7 

A Practical Application: The ISS 

ZPM 

7.1 Introduction 

The difficulty of finding an OCP that is complicated to solve numerically, but has 

a numerical solution, paired with the desire to understand the capability of LGL 

PS collocation and MS methods on the ISS ZPMs, has prompted the testing of the 

algorithm described in this thesis on a particular ZPM. The particular ZPM under 

consideration is that of the first ZPM flight test demonstration, since it has been 

proven to work in practice [6, Chapter 5]. 

86 
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7.2 International Space Station Dynamics 

The International Space Station (ISS) dynamics, assuming circular low Earth orbit, 

can be described by a set, of differential equations using the rotational rate ui : R —» R3 

of the body reference frame with respect to an inertial frame, the total three-axis mo-

mentum of the ISS Control Moment Gyroscopes (CMGs) h : R ->• R3, and the CMG 

control torque rc : R —> R3 [6, Chapter 2], The states u(t),h(t), and rc(t) are ex-

pressed in the body reference frame, which is fixed with respect to the ISS with the 

positive x-axis directed toward the nose and the positive y-axis along the main truss 

pointing starboard. Also, the dynamics are specified with respect to the orientation of 

the body reference frame with respect to the Local Vertical Local Horizontal (LVLH) 

frame, where the positive x-axis points in the direction of the velocity vector, the pos-

itive z-axis towards the Earth, and the y-axis perpendicular to the orbit plane. These 

reference frames are depicted in figures 7.1 and 7.2. The optimizations performed in 

this thesis will use the orientation described by a quaternion, q : R —>• R4; however, 

this orientation can be described in other ways as well. For instance, the orientation 

could be described using Euler angles or any sequence of rotations about the axes of 

the body reference frame [57, Section 5.5.2]. 

Quaternions, also known as Euler parameters, can be described by an angle, 6 : 
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M i—> M, and a unit vector, e(t) : R R3, pointing along the rotation axis: 

qo(t) 

q(t) 
Qi (*) e ^ ) s i n ( ^ ) 

eJ(£)sin(M) 

ek(t) s i n ( ^ ) 

92 W 

Qz(t) 

[57, Section 5.4.1], Further, quaternions are constrained to be unit norm, that is, 

H^OIh = 1- With these definitions, identities that are often described by other 

rotations sequences can be written relative to quaternions. For instance, the direction 

cosine matrix, C : R4 > R3x3 , can be written as 

1 - 2(q2(t)2 + q3{t)2) 2(gi(t)q2(t) + q0(t)q3(t)) 2(qi(t)q3{t) - qQ{t)q2{t)) 

{t)q2{t) - q0{t)q3{t)) 1 - 2(gi{t)2 + q3(t)2) 2(q2(t)q3(t) + q0{t)qi{t)) , 

2(qi(t)q3(t) + q0(t)q2(t)) 2(q2(t)q3(t) - q0(t)gi(t)) 1 - 2(gi(t)2 + q2{t)2) 

where the convention C, will be used to denote the zth column of C [57, Section 5.4.1], 

Define parameters J 6 R3 x 3 and ujorb € R to represent the moment of inertia of 

the spacecraft in the body reference frame and the orbital rate of the space station 

around the Earth, respectively. These two parameters can vary with time, but for sim-

plicity are not described by their respective differential equations or other functional 

relationships. 

Bhatt cites two of the prevailing disturbance torques acting on the ISS as the 

gravity gradient torque and aerodynamic torque [6, Sections 2.4.1 and 2.4.2]; however, 

c m ) -
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only the first of these is treated in this numerical example. The gravity gradient 

torque, written with respect to q(t), is defined as [29] 

rgg(q(t)) = 3u2
orbCMt)) x (JCMt)))-

The representation of the states relative to the body reference frame and the dynamics 

relative to the LVLH reference frame requires a description of the LVLH rate at the 

current orientation defined by q(t). This is given by [6, Section 2.2.1] 

Uo(q(t)) = -uorbC2{q(t)). 

With these definitions in mind, the rotational dynamics of a spacecraft in a circular 

orbit are given by [57, 6, 29] 

u(t) = J-'i-uit) X (Ju(t) + h(t)) - Tc(t) + Tgg(q(t))], 

h(t) 

m 

— Tc{t), and 

1 
- T m ) 0 (oj(t)T-oj0(q(t)) T\ 

where T(q(t)) is the quaternion operator 

T(q(t)) = 

Qo(t) 

Qi it) 

Q2(t) 

Qs(t) 

-<7i W 

qo (t) 

93 (t) 

Mt) 

-12 (t) 

- ? 3 ( t ) 

Qo(t) 

Qi(t) 

~qs(t) 

<12 (t) 

-Qi(t) 

qo(t) 



Figure 7.1: ISS body reference frame (adapted from [41]). 

Figure 7.2: ISS LVLH reference frame [6, Section 2.1] (adapted from [38]). 
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7.3 ZPM Optimal Control Problem 

The ZPM OCP transitions the states u(t), h(t), and q(t) from predetermined initial 

values to a set final values without exceeding the path boundary conditions on h(t) 

at any time t 6 [to,tf]. This OCP is now stated in a particular formulation: 

mm 
U)(t),/l(t),g(t),Tc(t) 

s.t. 

u(t) 

Kt) 

m 

h(t)Th{t) < k 

a; (£0) 

h(t0) 

q(k) 

" ( i f ) 

h(tf) 

q(tf) 

Tc(t)TTc(t) dt 

J~l[-oj(t) x ( J u ( t ) + h(t)) - r c(t) + Tgg(q(t))] 

Tc{t) 

lT(q(t)) 0 ( u T ( t ) - ^ ( q m 
T 
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ho 

qo 

Of 

hf 

qi 

7.4 ISS 90-degree Maneuver 

The prototypical example for the International Space Station ZPM Maneuvers is 

adapted from the Master's Thesis of S. Bhatt [6, Section 4.5]. The problem was to 

rotate the Space Station 90-degrees from the orientation in Table 7.1 to the orientation 
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in Table 7.2 in 7,200 seconds. The parameters chosen for this maneuver were 

J = 

18, 836, 544 3, 666, 370 2, 965, 301 

3,666,370 27,984,088 -1,129,004 

2,965,301 -1,129,004 39,442,649 

and (Jorb = 0.0657 deg/sec. 

slug-ft2 

State Roll Pitch Yaw Units 

e(to) 2 -9.34 13 deg 

h(t0) 1,000 -500 - 4 , 200 ft-lb-sec 

Table 7.1: Initial conditions for 90-deg ZPM 

State Roll Pitch Yaw Units 

<tf) -2.19 -7.88 -89.85 deg 

h(tf) - 9 - 3 , 557 -135 ft-lb-sec 

Table 7.2: Final conditions for 90-deg ZPM 

The optimal state and control trajectories computed from the PS method with 

30 collocation points and the MS method with 30 equally spaced nodes and 30 inte-

gration intervals on each subinterval are shown in figures 7.3-7.15. The optimization 

algorithm described in Chapter 3 was applied until the solution met the tolerances 

e°pt = 5 x 10"2 and efeas = 5 x 10"6, or ey = 5 x 10"12. The performance of the 

optimization algorithm on this example is given in the table 7.3. Notice that the 
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solutions produced by the LGL PS and MS methods, with each of the control pa-

rameterizations, are similar and produce objective values that differ at most by 19 

percent from the best value found, which is the value for MS (linear) in table 7.3. 

These differences are likely due to the differences in the transcription techniques and 

the choice of N = 30. The results of Sections 4.4 and 5.5 suggest that these so-

lutions would approach one another, and approach the true optimal solution of the 

continuous OCP if N —> oo. 

Transcription 

Technique 

Function 

Evaluations 
Iterations 

CPU Time 

[sec] 

Objective 

Value 

LGL PS 145 29 427 70.9 

MS (constant) 114 31 1813 74.1 

MS (linear) 117 34 1916 62.3 

MS (cubic) 84 24 1405 66.4 

Table 7.3: Performance of the optimization algorithm described in Chapter 3 on 

90-deg ZPM 
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CMG Momentum Magnitude [ft-lb-sec] 

4000 

LGL PS 
— MS (constant) 
- - MS (linear) 

MS (cubic) 
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Time [sec] 

Figure 7.3: 90-deg ZPM CMG momentum magnitude 
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CMG Momentum (Roll Axis) [ft-lb-sec] 
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Figure 7.4: 90-deg ZPM CMG momentum (roll axis) 
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CMG Momentum (Pitch Axis) [ft-lb-sec] 
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Figure 7.5: 90-deg ZPM CMG momentum (pitch axis) 
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CMG Momentum (Yaw Axis) [ft-lb-sec] 

Figure 7.6: 90-deg ZPM CMG momentum (yaw axis) 
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Rotational Rate (Roll Axis) [cleg/sec] 
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Figure 7.7: 90-deg ZPM rotational rate (roll axis) 
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Rotational Rate (Pitch Axis) [deg/sec] 

Time [sec] 

Figure 7.8: 90-deg ZPM rotational rate (pitch axis) 
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Figure 7.9: 90-deg ZPM rotational rate (yaw axis) 
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YPR Euler Angles (Roll Axis) [deg] 

Figure 7.10: 90-deg ZPM YPR Euler angles (roll axis) 
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YPR Euler Angles (Pitch Axis) [deg] 
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Figure 7.11: 90-deg ZPM YPR Euler angles (pitch axis) 
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YPR Euler Angles (Yaw Axis) [deg] 

Figure 7.12: 90-deg ZPM YPR Euler angles (yaw axis) 
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Control Torque (Roll Axis) [ f t- lbf] 

Figure 7.13: 90-deg ZPM CMG torque (roll axis) 
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Control Torque (Pitch Axis) [ f t- lbf] 

Figure 7.14: 90-deg ZPM CMG torque (pitch axis) 
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Control Torque (Yaw Axis) [f t- lbf] 

Figure 7.15: 90-deg ZPM CMG torque (yaw axis) 



7.5 Numerical Comparisons 

Defining fair, one-to-one comparisons between LGL PS collocation and MS transcrip-

tion is not such an easy task. The optimization algorithm interfacing the objective 

and constraint functions defined by the two methods can have a great impact on the 

performance of one method or the other. For this reason, the comparison of the com-

putation time for both methods will be on the time required to evaluate the objective 

and constraint functions. Essentially, the objective and constraint functions take the 

state and control trajectories at the current iterate and evaluate the functions and 

derivatives of the equations (4.2) of the LGL PS method or the equations (5.7), along 

with (5.16), (5.17), and (5.18), of the MS method with constant, linear, and cubic 

control parameterizations, respectively. 

The accuracy of these methods is also a meaningful comparison, so a measure of 

accuracy that is fair to both of these methods was defined. In essence, this measure 

of accuracy compares the optimal state trajectory to a state trajectory resulting from 

a simulation of the dynamics subject to the optimal control. Note that optimal here 

refers to the optimal numerical solution computed by the algorithm of Chapter 3. 

The comparisons of this section were completed using the ZPM example of the 

previous sections. The comparisons in this section were made on a PC running 

Microsoft Windows XP Professional, Version 2002, Service Pack 3, with an AMD 

Athlon 64 X2 Dual Core Processor 5600+ at 2.91 GHz and 2.0 GB of RAM, and 

under the MATLAB 7.6.0 (R2008a) environment. 
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7.5.1 Computation Time 

A comparison of the computation time was made by evaluating the objective and 

constraint functions for N = 3 , . . . , 100; evaluation began at N = 3 so that there was 

at least one node between to and t f . This was chosen as a fair comparison since the 

optimization algorithm spends a significant amount of time evaluating these functions. 

The objective and constraint functions are sometimes evaluated several times in one 

iteration of the optimization algorithm, and, in the optimization algorithm described 

in Chapter 3, these function were evaluated up to 23 times in one iteration. Figure 

7.16 illustrates the time required to evaluate the constraint functions for the LGL PS 

and MS transcriptions. 

Figure 7.16 shows that the NLP function evaluations for the LGL PS transcription 

are significantly faster compared to NLP function evaluations for the MS transcrip-

tion. This is due to the fact that in the MS transcription method the system of 

ordinary differential equations defined by (5.13) must be evaluated over each of the 

N — 1 subintervals in a particular transcription. This point is fortified by comparing 

just the MS methods for different values of nint. The computation time increases 

significantly as the number of integration intervals is increased, reaching nearly 2 

minutes when N = 100 and nint = 70. This would result in approximately 46 minutes 

for a single iteration of the optimization algorithm if the functions were evaluated the 

maximum number of times. However, this comparison needs be viewed as preliminary. 

Many aspects need to be included for a final computing time comparison. 
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Number of Nodes 

Figure 7.16: CPU time required to evaluate objective and constraint functions. The 

label nint refers to the number of integration intervals between nodes of the MS 

method, using a simple, fixed-step Runge-Kutta 4 integrator. 

For a better comparison of computing time requirements for single NLP function 

evaluations in the LGL PS transcription method and the MS transcription method 

several factors need to be included. The LGL PS transcription function evaluations 

are better vectorized than those for the MS transcription method, which is an ad-

vantage in the Matlab implementation. More importantly, the comparison was made 

for fixed number of points and Runge-Kutta time steps inside MS intervals. The use 

of an adaptive ODE solver inside the MS transcription method should be studied. 

For both transcription methods it would be better to study computational cost re-
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quirements for desired accuracy. Ultimately, this requires adaptive discretizations for 

both methods. Additionally it requires an evaluation of the overall optimization. For 

example, considering the numerical example of Section 7.4, the number of function 

evaluations is significantly less for each of the control parameterizations of the MS 

method when compared to those required to solve the problem transcribed by the 

LGL PS method (see, table 7.3). 

7.5.2 A Measure of Accuracy 

The CPU time required to evaluate the objective and constraint functions of the MS 

method seems like a profoundly limiting factor in the use of the method compared 

to PS methods. However, if a measure of accuracy for the two methods is defined as 

the difference between the states of the optimal solution computed numerically and 

the actual states obtained by integrating the dynamics subject to the control, then 

it can be shown that MS methods can perform increasingly well, even with only a 

few transcription nodes, just by increasing the accuracy of the numerical integration 

technique on each subinterval, while PS methods require an increase in the number 

of collocation points to achieve greater accuracy. 

Let (x*(t), u*(t)) be the optimal state and control trajectories obtained from the 

optimization algorithm described in Chapter 3 and x(t \ u*(t)) represent the state tra-

jectory resulting from the integration of the dynamics subject to u*(t) in an accurate 

numerical integrator. Then the desired measure of accuracy is defined as the error 
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between x*{t) and x(t\u*(t)): 

\\x*(t)-x(t;u*m\2. (7.2) 

For the optimization performed in the comparison that follows, the tolerances on 

the optimization algorithm were chosen to be eopt = 5 x 10~2, efeas = 5 x 1CT6, and 

ey = 5 x 10~12. The stricter tolerance on feasibility is enforced since the satisfaction of 

the dynamic of the PS methods and continuity constraints of the MS method should 

be accurate at the transcription nodes if this measure of accuracy is to make sense. 

The accurate numerical integrator was chosen to be MATLAB's ode45, with "RelTol" 

set at 5 x 10~6 and "AbsTol" set at 5 x 10~6 to coincide with the tolerance efeas of 

the optimization. These comparisons are shown in figures 7.17, 7.18, and 7.19. For 

fixed N, the MS method does, indeed, perform better as the number of integration 

intervals, nint, increases, while the only control over the accuray available for the LGL 

PS method is to increase the number of nodes. This must be taken into consideration 

when the memory available to perform the optimization is limited since the required 

storage space increases with N, and it does so significantly for LGL PS collocation. 
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Measure of Accuracy of LGL PS Method 
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Figure 7.17: rotational rate Error in LGL PS and MS (cubic) methods, rotational 

rate error is computed by (7.2). The label nint refers to the number of integration 

intervals between nodes of the MS method, using a simple, fixed-step Runge-Kutta 4 

integrator. 
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Measure of Accuracy of LGL PS Method 
Measure of Accuracy of MS (cubic) Method for 20 Nodes 
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Figure 7.18: CMG momentum error in LGL PS and MS (cubic) methods. CMG mo-

mentum error is computed by (7.2). The label nint refers to the number of integration 

intervals between nodes of the MS method, using a simple, fixed-step Runge-Kutta 4 

integrator. 
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Figure 7.19: YPR Euler angle in LGL PS and MS (cubic) methods. YPR Euler 

angle error is computed by (7.2). The label nint refers to the number of integration 

intervals between nodes of the MS method, using a simple, fixed-step Runge-Kutta 4 

integrator. 
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Conclusions 

This thesis drew some distinct comparisons between two popular transcription tech-

niques for optimal control problems governed by ordinary differential equations. Prior 

to this research, these two techniques existed separately from one another, and, of-

ten, in the detailed description of one technique the other was only mentioned as an 

alternative without explanation. The comparisons drawn in this thesis point to the 

limitations of these two methods, and suggest that the application certainly defines 

which should be used in particular situations. For instance, in situations where mem-

ory is limited, but accurate solutions are desired, MS methods would be the better 

choice. On the other hand, some situations require that solutions be found quickly, 

with little regard to the use of memory, and in this case, using the current implemen-

tation of these methods in MATLAB, the LGL PS method would be preferable. 

Both methods suffer, in some aspect, in approximating the true optimal solution. 

115 
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The absence of an existence result for LGL PS collocation is alarming, particularly 

when the continuous OCP has a solution but the LGL PS transcription does not. 

This can be overcome by the relaxation given in Section 4.4. MS methods suffer 

from their ability to approximate the solution to the continuous problem when the 

transcription is defined at only a small number of nodes. This can certainly be 

overcome by increasing the number of nodes. However, in the framework of the 

ZPM, these difficulties are not prohibitive since feasibility is far more important than 

optimality. 

Much more can be done to strengthen these comparisons. For instance, these 

methods could be applied to many more OCPs to confirm the results in computation 

time and accuracy. Further, the optimization algorithm is hardly robust at this 

point, and could be tuned to handle a greater variety of nonlinear programs. One 

way to potentially increase this robustness is to introduce a trust region step like that 

described by Waltz, et al., [11, 12, 56]. Tuning this algorithm and reapplying these 

comparisons would also lead to even more meaningful comparisons. Ultimately, the 

goal is to transfer the optimization package, along with the transcription techniques 

into an environment other than MATLAB, which could be compiled on any system. 
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Appendix A 

Matlab Code Organization 

The code developed for this thesis research has been written and structured for use 

only in MATLAB; this structure is shown in Figure A.l. One main directory titled 

matlab holds four main subdirectories optimalgs, MSbolza, MSmayer, and PS. The 

directories MSbolza, MSmayer and PS contain the files that handle the transcription 

of the continuous optimal control problem to the NLPs of (4.2) and (5.7). MSbolza 

and MSmayer hold essentially the same MATLAB m-files, but for the Bolza and 

Mayer formulations of the optimal control problem (2.1), respectively. 

The following sections will describe the inputs to each file in these directories in 

the order they are called to solve an optimal control problem. 
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/matlab 

/PS 
* can be replaced by constant, linear, or cubic to represent 
the three control parameterizations discussed in this thesis 

/MSbolza 

/MSmayer 

psdriver.m 

psobjective.m 

psconstraints.m 

pshessian.m 

pshessianfeasibility.m 

legdc.m 

-» Iglnodes.m 

The directory structure o 

msdriver*.m 

msobjective*.m 

msconstraints*.m 

mshessian*.m 

mshessian*feasibility.m 

mslhsrhs*.m 

msode*.m 

dampedBFGSupdate.m 

rk4integrator.m 

Msmayer is the same as Msbolza. 

/optimalgs interiorpointmethod.m 

> interiorpointmethodfeasibility.m 

Figure A.l: Directory structure for the code developed for this thesis 

A . l User Defined Settings and Problem Specific 

Functions 

Use of this code on a particular optimal control problem of the form (2.1) requires 

the definition a global structure, problem, defined by 

• problem.finalcostfunction - handle to MATLAB function that computes 

and returns Z(si5 ql5 U), Vx/(s;, q,, U), VJ{S;, U), V2
x/(sz, qi5 U), V2

xul(si, q,, U), 

and V2
u/(sJ,q i,i i). 

• problem.costfunction - handle to MATLAB function that computes and re-
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turns e(sN,tN), V x e ( s N , t N ) , and V2
xxe(sN,tN). 

problem, initeventfunctions - handle to MATLAB function that computes 

and returns a(s0,qo,*o), Vxa(s0, q0, to), Vua(s0, q0, t0), V2
xxa(s0,q0,t0), 

V^ua(s0,qo,to), and V*ua(s0, q0, to)-

problem.finaleventfunctions - handle to MATLAB function that computes 

and returns b(sN,qN,tN), Vxb(sN,qN,tN), Vub(sN,qN,tN), V2
xxb(sN,qN,tN), 

V2
xub(sN,qN,tN), and Vlub(sN,qN,tN) 

problem.odefunctions - handle to MATLAB function that computes and re-

turns f(Si, q^, ti), V x / (s j , qi, ti), V u / ( s i , q i , i i ) , V ^ / ^ , q,, t,), V2
xuf(sl,qi,ti), 

a n d ^luf(Si,<li,ti). 

problem.pathfunctions - handle to MATLAB function that computes and 

returns g{si: q,, ti), Vxg(sit q,, ti), Vug(st, qz, U), V2
xxg(Si, ql5 U), q,, U), 

and Vlug(si, qi? U) 

problem.n - number of states in the optimal control problem 

problem.m - number of controls in the optimal control problem 

problem.N - number of transcription nodes 

problem. ng - number of path constraint equations 

problem. na - number of initial time constraints 
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• problem.nl - flag indicating that there is an integral component to the cost 

(=1 if true, =0 if false). 

• problem.nb - number of final time constraints 

• problem.tinit ial - starting time for the optimal control problem 

• problem, t f i n a l - final time for the optimal control problem 

• problem.nint - desired number of integration intervals on each of the 

(problem.N-l) subintervals of the MS method 

• problem.plotfunction - handle to MATLAB function that plots state and con-

trol trajectories at all outer loop iterations of Direct Multiple Shooting. This 

function takes inputs x = {so, . . . , s;v}, u = {q 0 , . . . , q^v}, and t = {t0,..., tN}. 

If this functionality is not being used, the user must set problem.plotfunction=''. 

In all cases the vector functions / , g, a, and b are column vectors, and for a given 

function h(x) € Rm , where x £ Rn, the Jacobian matrix hx e Km x n js given by 

dhi dhi dhi 
dxi dx2 dxn 

dh2 dh2 dh2 
dx\ dx2 dxn 

dhm dhm dhm 
dxi dx2 dxn 

Further, certain parameters can be defined for use in the optimization algorithm. The 

structure options contains the following: 
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• options, iprint - if equal to 1, relevant information at each major iteration of 

the interior point algorithm is printed to the command window; default = 0. 

• options. plotf lag - if equal to 1, the function pointed to by problem, plotfunction 

is called at each iteration of the algorithm; default = 0 

• options .maxit - maximum number of major iterations; default = 1000. 

• options. opttol - first order optimality stopping tolerance eopt; default = l.e-6 

• options. feas to l - tolerance on satisfaction of the constraints efeas; default = 

l.e-6 

• options.xtol - stepsize stopping tolerance ey; default = l.e-7. 

The following two options are predefined relative to the MS and PS transcriptions 

in this code, but can be modified when solving other nonlinear programs with the 

optimization algorithm: 

• options.hessian - option to set the Hessian to either a BFGS (set by the 

string 'BFGS') quasi-Newton update or a user-supplied Hessian (set by the 

string 'user-supplied'); default = 'BFGS' 

• opt ions, hessianf unction - handle to function tha t computes the Hessian of 

the Lagrangian (defined in Section 3.2) with respect to the state and control 

variables. 
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An initial guess at the state and control trajectory must also be given to the 

optimization algorithm. This is done by defining the structure guess that follows: 

• guess.x - guess at the state trajectory x(t). This must be a problem.n by 

problem.N array where the trajectory of state % occupies row i of the guess. 

Must also be specified for at least t0 and t f . 

• guess.u - guess at the control trajectory u(t). This must be a problem.m by 

problem.N array where the trajectory of control i occupies row i of the guess. 

Must also be specified for at least t0 and t f . 

• guess.t - node locations (time) of the elements of guess.x and guess.u. 

A.2 Driver Files 

• [primal,dual]=msdriverconstant(guess,options) 

• [primal,dual]=msdriverlinear(guess,options) 

• [primal,dual]=msdrivercubic(guess,options) 

• [primal,dual]=psdrivercubic(guess,options) 

Inputs: 

• guess - the structure guess described in the previous section 

• options - the structure options described in the previous section 
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Outputs: 

• primal - structure containing primal. states, primal. controls, and primal. nodes. 

These are arrays containing the optimal state and control trajectories at the lo-

cations defined by primal. nodes. The structure also contains primal. cputime-

the runtime (seconds) of the multiple shooting algorithm, primal. f count-the 

number of calls to the objective and constraint functions in the optimization al-

gorithm, primal. i terations- the number of iterations required to complete the 

optimization algorithm, and primal. objval-the value of the objective function 

at the completion of the algorithm. 

• dual - structure containing the corresponding dual variables of the optimization 

algorithm. 

These driver files format the supplied guess so that it is useful to the interior point 

code, call the interior point code, and format the output of the interior point code 

into the primal and dual structures. 

A.3 Nonlinear Interior Point Method Function 

[x,lambda,muu,objval,out]=interiorpointmethod(... 

nlpobj ectivefunction,nlpconstraintfunction,x,options) 

Inputs: 
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• nlpobjectivefunction - string containing the handle to a function that takes 

input x and outputs the scalar function J evaluated at x and the gradient with 

respect to x of J evaluated at x. 

• nlpconstraintf unction - string containing the handle to a function that takes 

input x and outputs the vector functions F and G evaluated at x and the Jaco-

bians with respect to x of F and G evaluated at x. 

• x - initial guess or starting vector for the optimization algorithm 

• options - structure defined as before 

Outputs: 

• x - optimal value for the vector x 

• lambda - equality constraint multipliers at optimal x 

• muu - inequality constraint multipliers at optimal x 

• objval - J evaluated at optimal x 

• out - structure containing the number of iterations taken to complete the opti-

mization (out. i terations) and the number of calls to the objective and con-

straint functions (out.fcount). 

interiorpointmethod.m solves the nonlinear program defined by (2.5). 
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A.4 NLP Objective Functions 

• [J,DJ]=msobjectiveconstant(x) 

• [J,DJ]=msobjectivelinear(x) 

• [J,DJ]=msobjectivecubic(x) 

• [J,DJ]=psobjective(x) 

Inputs: 

• x - input trajectories for states and controls of the optimal control problem, x 

is a vector in the form 

1 T 

s0 q0 Si qi • • • sN 

where N =problem.N and Sj and q̂  for i = 0 , . . . , TV are the state and control 

parameters defined in the context of this thesis. 

Outputs: 

• J - J evaluated at x from the function problem.costfunction 

• DJ - Jacobian of J with respect to x evaluated at x from the function problem, costfunction 

These objective functions convert the objective of the optimal control problem (2.1) 

to the objectives of the nonlinear programs (5.7) and (4.2) using the transcription 

techniques described in this thesis. 
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A.5 NLP Constraint Functions 

• [G,F,DG,DF]=msconstraintsconstant(x) 

• [G,F,DG,DF]=msconstraints l inear(x) 

• [G,F,DG,DF]=msconstraintscubic(x) 

• [G,F,DG,DF]=psconstraints(x) 

Inputs: 

• x - input trajectories for states and controls of the optimal control problem, x 

is a vector in the form 

-I T 
So q o S i qx • • • sN qyv 

where N =problem.N and Sj and q̂  for i = 0 , . . . , N are the state and control 

parameters defined in the context of this thesis. 

Outputs: 

• F - F evaluated at x from the function problem.odefunctions 

• G - G evaluated at x from the function problem.pathfunctions 

• DF - Jacobian of F with respect to x evaluated at x from the function problem. odef unctions 

• DG - Jacobian of G with respect to x evaluated at x from the function problem, pathf unction; 
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These constraint functions convert the constraints of the optimal control problem (2.1) 

to the constraints of the nonlinear programs (5.7) and (4.2) using the transcription 

techniques described in this thesis. 

A.6 Fixed-Step Runge-Kutta 4 Integrator 

[ t ,x ]=rk4integrator( func , t span ,xO,N,vararg in) 

Inputs: 

• f unc - handle to the function containing the ODE's to be numerically integrated 

• tspan - 1 by 2 vector containing the lower and upper bounds for the integration 

interval 

• xO - column vector initial conditions for the ODE's 

• N - number of integration intervals 

• varargin - arguments to pass to the function defined by the handle func 

Outputs: 

• t - node locations where the ODE's were integrated 

• x - solution to the differential equations resulting from the numerical integration 

rk4integrator .m numerically integrates a set of ODE's using Runge-Kutta-4 numer-

ical integration. 
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A.7 ODE Functions for the MS Methods 

• [odestatedots]=msodeconstant(time,odestates,u,ti.problem) 

• [odestatedots]=msodelinear(time,odestates,qi,qidot,ti,problem) 

• [odestatedots]=msodecubic(time,odestates,apram,bparam,... 

cparam,dparam,problem) 

Inputs: 

• time - time at the current iteration of the numerical integration 

• states - x, S, and Q at the current iteration of the numerical integration 

• u, qi, qidot, aparam, bparam, cparam, dparam - control parameters at the 

beginning of the interval tspan defined in the function rk4integrator .m for 

the respective control parameterization 

• t i - lower bound of the interval tspan defined in the function rk4integrator .m 

• problem - structure defined in the first section of this appendix 

Outputs: 

• odestatedots - x, S, Q computed from the ODE's defined in this thesis given 

the value of states. 

These ODE functions compute x, S, Q for the ODEs defining the continuity conditions 

and objective of the MS methods of this thesis. 
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A.8 NLP Hessian Functions 

• [del2L]=mshessianconstant(x,lambda,muu) 

• [del2L]=mshessianlinear(x,lambda,muu) 

• [del2L]=mshessiancubic(x,lambda,muu) 

• [del2L]=pshessian(x,lambda,muu) 

Inputs: 

• x - trajectories for states and controls of the optimal control problem, x is a 

vector in the form 

1 T 

So Qo s a q j • • • SN q /v 

where N =problem.N and sj and q̂  for i = 0 , . . . , N are the state and control 

parameters defined in the context of this thesis. 

• lambda - equality constraint multipliers at the current iteration of the optimiza-

tion algorithm 

• muu - inequality constraint multipliers at the current iteration of the optimiza-

tion algorithm 

Outputs: 

• del2L-Hessian of the Lagrangian evaluated at the current iteration of the opti-

mization algorithm 
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These Hessian functions compute the hessians of the Lagrangians, with respect to 

the state and control variables, of the nonlinear programs (5.7) and (4.2) relative the 

transcription techniques described in this thesis. 

A.9 L H S / R H S functions for the MS Methods 

• [rhs,lhs]=mslhsrhsconstant(lhs,rhs) 

• [rhs,lhs]=mslhsrhslinear(lhs,rhs) 

• [rhs,lhs]=mslhsrhscubic(lhs,rhs) 

Inputs: 

• rhs - right hand side of the KKT system evaluated at the current iteration 

• lhs - left hand side of the KKT system evaluated at the current iteration 

Outputs: 

• rhs - reordered right hand side of the KKT system evaluated at the current 

iteration 

• lhs - reordered left hand side of the KKT system evaluated at the current 

iteration 

These functions take the right- and left-hand sides of the KKT system and reorder 

them to take advantage of the structure resulting from the MS transcriptions. 
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A. 10 Quasi-Newton Update to the Hessian 

[Bkplusl]=dampedBFGSupdate(Bk,xkplusl,xk,gradkplusl,gradk) 

Inputs: 

• Bk - approximation of the Hessian at the current iteration 

• xkplusl - value of x at the next iteration 

• xk - value of x at the current iteration 

• gradkplusl - gradient evaluated at xkplusl 

• gradk - gradient evaluated at xk 

Outputs: 

• Bkplusl - approximation of the Hessian at the next iteration 

dampedBFGSupdate.m computes the damped BFGS approximation to the Hessian of 

a scalar function given the gradient of this function evaluated at the current and next 

iteration as well as the variables at the current and next iteration and a previous 

approximation to the Hessian. 

A. 11 Feasibility Restoration 

[x ,out ]= inter iorpointmethod(nlpconstra int funct ion ,x ,muu, . . . 

b a r r i e r , s t o p t e s t , o p t i o n s ) 
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Inputs: 

• nlpconstraintfunction - string containing the handle to a function that takes 

input x and outputs the vector functions F and G evaluated at x and the Jaco-

bians with respect to x of F and G evaluated at x. 

• x - initial guess or starting vector for the optimization algorithm 

• lambda - current equality constraint multipliers of the regular interior point 

method 

• muu - current inequality constraint multipliers of the regular interior point 

method 

• barrier - current barrier parameter of the regular interior point method 

• stoptest - constraint violation of the regular interior point method 

• options - structure defined as before 

Outputs: 

• x - value for the vector x that satisfies the stopping criteria of the feasibility 

restoration, or stoptest 

• out - structure containing the number of iterations taken to complete the opti-

mization (out. iterations) and the number of calls to the objective and con-

straint functions (out. f count). 
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interiorpointmethodfeasibility .m solves the nonlinear program defined by 

(3.11). 

A. 12 NLP Feasibility Hessian Functions 

• [de l2Lfeas]=mshess ianconstantfeas ib i l i ty (x , lambda,muu,Dref ,zeta) 

• [de l2Lfeas ]=mshess ian l inearfeas ib i l i ty (x , lambda,muu,Dref , ze ta ) 

• [de l2Lfeas]=mshess iancubicfeas ib i l i ty (x , lambda,muu,Dref ,zeta) 

• [de l2Lfeas ]=pshess ianfeas ib i l i ty (x , lambda ,muu,Dref , ze ta ) 

Inputs: 

• x - trajectories for states and controls of the optimal control problem, x is a 

vector in the form 

1 T 

s0 Qo Si qi • • • S/v q^ 

where N =problem.N and sj and q, for i = 0 , . . . , N are the state and control 

parameters defined in the context of this thesis. 

• lambda - equality constraint multipliers at the current iteration of the optimiza-

tion algorithm 

• muu - inequality constraint multipliers at the current iteration of the optimiza-

tion algorithm 
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• Dref - the matrix defined by (3.12) 

• zeta - the weighting parameter of the objective defined in Section 3.4. 

Outputs: 

• del2Lf eas-Hessian of the Lagrangian of the feasibility nonlinear program eval-

uated at the current iteration of the optimization algorithm 

These Hessian functions compute the Hessians of the Lagrangians, with respect to the 

state and control variables, of the nonlinear program (3.11) relative the transcription 

techniques described in this thesis. 

A. 13 Miscellaneous Functions for LGL PS Method 

• [ t ,w]= lg lnodes (N, t f ) 

• [D]=legdc(N) 

Inputs: 

• N - number of collocation points 

• t f - t,f relative to the optimal control problem (2.1) 

Outputs: 

• t - node locations for the LGL PS Method. 



144 

• w - weights for quadrature with respect to the LGL PS Method. 

• D - the differentiation matrix D of the LGL PS Method. 

These functions compute the node locations, quadrature weights, and differentiation 

matrix for the LGL PS method. 


