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ABSTRACT

EQUIVALENT LINEARIZATION OF A RANDOMLY EXCITED
YIELDING OSCILLATOR

by
Hirokazu Takemiya

Equivalent linearizsastion of bilinear hysteretic systems
subjected to a white noise-excitation is attempted by using
2nd and 3rd order linear systems. The bilinear hysteretic
systems consldered have the slope ratio between the initial
and the reduced stiffness of ol= 1/2 (moderately nonlinear case)
and o/ = 1/21 (nearly elasto-plastic case). The technique is to
match both energy dissipation per unit of time and average
frequency between the original system and lts equivalent linear
system in stationary motion. In the 2nd order linearization
these criteria are essentially the same as the requirements
from the Krylov-Bogolulbov method. However, special attention
is given to the estimation of the hysteretic energy dissipation
per unit of time, resulting in improved predictions of stationary
levels of root-mean-square displacement and velocity response.
Satisfying the above matching criteria does not require
explicit specification of the parameters in the equivalent linear
system. Iﬁ this investigation several linearization matching

the above criteria sre considered. These include: the usual 2nd



order linear system, a model with two uncorrelated 2nd order
modes whose undamped natural frequencies correspond to the
initial stiffness and the reduced stiffness of the bilinear
hysteretic system, a 3rd order linear system which has the same
stiffness arrangement as the bilinear hysteretic system model
but replaces the Coulomb friction slider in the original system
by a viscous damper, and & model with two uncorrelated 3rd order
modes which have the same root-~mean-square displacement.
A severe test of the equivalence to the original system is
executed by comparing the response power spectral densitles.
After getting the specified equivalent linear systems,
their transient root-mean~-square responses are compared with
the experimental results. For this response analyses, the Rice
method is applied for the 2nd order linear systems and the
Markov process approach i1s taken for the 3rd order linear systems.
As a result, a correlation between the stationary response
power spectral density matching and the transient root-mean-
square response matching is found. As a whole, the two-mode
3rd order linear system proves to be the best linearization

among those considered herein,
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SUMMARY OF NOMENCLATURE

Explanation or Definition

amplitude of vibration
see Eq.(5.8)
see Eq.(5.8)
expectation

energy dissipation per unit of time in the
bilinear hysteretic system (BHS)

energy dissipation per unit of time in the 2nd
order linear system (2LS)

energy dissipation per unit of time in the
2rd order linear system (3LS)

amplitude of the periodic excitation

frequency response function of the two-mode
2nd order linear system (2M2LS)

frequency response function of the equivalent
2nd order linear system (E2LS)

frequency response function of the mass in the
3LS

frequency response function of point 2 in the
3LS(see Fig.l0)

transfer function of the two-mode 3rd order
linear system (2M3LS)

transfer function of the low frequency 3rd order

linear system (LF3LS)

transfer function of the high frequency 3rd
order linear system (HF3LS)

hysteresis energy dissipation per cycle

measure of the excitatlion intensity, see Eq.(2.5)

auto-correlation function



Symbol
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Explanation or Definition

level of white noise

covariance matrix of Yy

determinant of S

adjoint matrix of the (i,Jj) element of S
yield level

see Eq.(5.7)

viscous damping coefficient in the BHS

equivalent viscous damping coefficient in the
3LS

equivalent viscous damping coefficient representing
the hysteresis energy dissipation in the 3LS

viscous damping coefficient of the E2LS
complementary error function

see Eq.(5.7)

impulse response function of the linear system
imaginary unit

small amplitude stiffness of BHS

reduced stiffness after BHS yielding
equivalent stiffness of E2LS

mass

mean-square response

transition probability density function
probability density function for random amplitude
operation matrix defined in Eq.(5.12)

tiée

displacement



Symbol Explanation or Definition
{7;3 state vector, see Eq.(5.7)
{zi} state vector, see Eq.(5.11)
fzioi initial state vector
o slope ratio in the BHS
ﬂo fraction of the critical viscous damping in BHS
ﬂeq fraction of the critical viscous damping in E2LS
pZL’ ﬂaH damping factors in the 2M2LS
ﬁ}l’ [332 damping factors in the 3LS
ot fraction of the ms response contributed from the
LF3LS in the 2M3LS
5(-) Dirac delta function
3 fraction of the critical viscous damping in the
2Ls
i 203 /&
7\1 eigen values of characteristic equation (5.13)
lUij see Eq.(5.18)
% /2/7
o~ root-mean-square (rms) displacement
X -
138 rms velocity
% rms displacement of the LF3LS
3y1,L
N rms veloclity of the LF3LS
PNy rms displacement of the HF3LS
1,H
0‘5(;’1’H rms velocity of the HF3LS
] ]
A x) normalized restoring force-deformation

w circular frequency



Symbol Explanation or Definition

Yo undamped natural frequency of small amplitude

Weq undamped natural frequency of the E2LS

WKB average frequency prediction from Krylgv—
Bogoliubov method with small nonlinearity

Wr average frequency prediction from the harmonic
resonance frequency

w},l average frequency of the 3LS

a)b,l average frequency of BHS

6 2
wd weq - Peq
Wod Weq / Péq -1

i
g'gi ith order time derivative

Dots over variables also denote derivatives with respect to time.



I. INTRODUCTION

l.1l. Background

When the earthquake-resistant design of structures is
discussed, the basic questions concern how well the structures
will survive earthquakes, and which design parameters are the
most preferable ones., TFurthermore, it may be that these
questions are best answered probabilistically rather than
deterministically because of the uncertainties involved in the
excitation, even assuming the structural properties are fixed.
This means that the response randomness comes soley from the
excitation through a completely prescribed structure. Hence,
the finding of a design solution must involve the statistical
excitation characteristics.

When the excitation intensity is small, the corresponding
structural response remains within the yield level of strength
of the composing material, then the linear response analysis
will be enough for designing. However, when a structure is
exposed to a strong motion, its response will certainly exceed
its yield level, and the force~detormation characteristics are
no longer linear but result in a detormed shape. It must be
noted here that such a situation does not lead instantly to the

structural collapse. We can observe many structures which

have survived earthquakes although responding beyond their yield

level. This fact tells us that the existence of another branch



beyond the yield level in the force-deformation characteristics
and the energy dissipation from the resulting hysteresis loop
can contribute much to earthquake-resistance. Several types
of such curves have been proposed depending on the type of
structure, and the corresponding response analyses have been

carried out by many people using particular earthquake recordsl)

or some simulationsz)

as input motion.

However, the stochastic treatment seems to be more appropriate
from the aforementioned reason. Rice's methodB)’ &)y 3) and
the Markov process approachs)’ 7 are available in this direction.
But the former method is not applicable in the nonlinear system
response analysis. In this case the governing equation is easily
constructed by the latter method, but the solution is found only
in limited cases.6) A hysteretic system is yet to be solved.
One possible approach to such & system involves seeking an equiv-
alent linear system whose response characteristics can approximate
those of the original system, This procedure is very attractive
for two reasons: first, the well established random linear
theoryQ)' 2) can then be applied for the response analysis and
secondly, the efficient use of modern digital computers are then
available.

Many people have been concerned so far with finding an equiv-
alence between a hysteretic system and the 2nd order viscously
damped linear system in steady state harmonic motion. Among

thenm Jenningsg)listed six conceivable linearization techniques

for the elasto-plastic hysteretic system, where the hysteretic



energy dissipation per cycle is equated between the original
system and its linearization. Rea9) presented a geometrical
interpretation for the Jennings results by using the Ramberg-
Osgood type force-deformation curve and added one more approach.
If a bilinear hysteretic system 1s exposed to a random
excitation, its response becomes a function of the ratio of the
excitation intensity level to the system yield level,as pointed

out by Iwan and Lutes.lo) Liull)

extended one of the above harmonic
results assuming a random amplitude distribution, but his approach
turned out to give poor results when applled to the bilinear
hysteretic system, Essentially the linearization techniques for
random motion may be classified into the following three types;

(1) the matching of response characteristics

(2) the Krylov-Bogoliubov method

(3) the dissipative energy equivalence per unit of time
The first method was taken by Hudson.lz) This author from
response spectra curves evaluated the equivalent viscous damping
factor in the 2nd order linear system with the same mass and
the initial tangent stiffness of the hysteretic system. Lutesl3)
showed several conceivable linearizations coming from different
response matching criteria, using analog computer results.
These methods, however, are not practical for general response
prediction because of their dependence on preceeding experiments,
The application of the second approach was first discussed by
C&ugheyléhd was applied to the bilinear hysteretic system in

small nonlinearity situations by the authori”) According to the
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Iwan and Lutes investigation}O)this method can predict the yield-
ing system response satisfactorily for a moderately nonlinear
system but not for a severly nonlinear case, The third method
was proposed by Karnopp16) in the analysis of an elasto-plastic
system and was called the power balance method. Karnopp and
Brown17) assumed that the random hysteretic energy dissipation
cycle is equal to the average frequency of the hysteretic system.
That is, the authors assumed that the average energy dissipated
per unit of time could be found by multiplying the average energy
dissipated per cycle times an average frequency of the system.
It is shown in this work that that assumption is unsatisfactory
for a severely nonlinear system,

Another possible method predicting the hysteretic system
response is to find an equivalent nonlinear nonhysteretic system

18)

and to use Caughey's solution of the corresponding Fokker-Plank
equation, as Lutesl9)attempted. However, this approach is hard to
extend to other than white Gaussian excitation cases., At the same
time, the transient response is yet to be found for such a system.
As for an equivalent linearization in transient motion,
which is more important in earthquake engineering than is the
linearization in stationry motion, few works have been done so far.
Hudson's Workla) belongs to this field but his investigation was
limited only to giving a crude estimation of the equivalent
viscous damping representing hysteresis energy dissipation.

20)

Only Shah's work™ ‘presents the response comparison in a transient

situation between experimental results for a bilinear hysteretic



system and its equivalent linearizations obtained in reference (13).

l.2, Object and Scope

The objective of this investigation is two-fold: first,
to find & linear system with response characteristics nearly
equivalent to those of a bilinear hysteretic system in stationary
random motion when subjected to & stationary Gaussian white noise
excitation; secondly, to check this "equivalent" linear system
to see whether it is also able to predict the transient response
of the original systen.

As for the bilinear hysteretic system, two typical ones

whose experimental results are availablelo)

are considered, one
of which has the slope ratio between the initial sfiffness and
the reduced stiffness after the system yielding as A = 1/2;
and the other of which has of = 1/21. In this thesis, the former
system will be referred to as the moderately bilinear hysteretic
system and the latter as the nearly elasto-plastic hysteretic
systen,

Herein, the term "equivalent linear system" is used for
a linear system which can approximate both the root-mean-square
(rms) displacement and rms velocity of the bilinear hysteretic

system. DBoth of these response characteristics are needed in

predicting the maximum response or in dealing with the first



passage problem of the original system. These quantities are
functions of the ratio of the excitation intensity level to the
system yielding level, as is reviewed in Chapter II.

The linearization technique adopted is based on matching
energy dissipation per unit of time between the bilinear
hysteretic system and the linear system, as well as matching
average frequency between these systems. First, these criteria
are applied to the 2nd order linear system in Chapter III.
In this case, these requirements are the same, in essense, as
the Krylov-psogoliubov linearization. The energy matching criterion,

requiring no specific linear system due to the fact that any 2nd
16)

order system dissipates the same amount of energy per unit of time,

is concerned with the prediction of the rms displacement response.
On the other hand, the average frequency matching criterion is
related to the prediction of the rms velocity response.

It is possible to specify the 2nd order system linearizations
satisfying the above matching criteria, Then, as & severe test
of the equivalence to the original systen, response power
spectral density matching is attempted for those systems. Two
systems are considered in this part of the investigation. The
first is the usual 2nd order linear system with the same mass as
the bilinear hysteretic system but with the stiffness and the
damping coefficient depending on the nonlinearity situation.

The second system has two uncorrelated 2nd order modes, where
the one modalfrequency corresponds to the initial stiffness and

the other to the reduced stiffness of the bilinear hysteretic



system.

As a& further step to linearization of bilinear hysteretic
systems, the 3rd order linear model of Fig.l0, which has the same
stiffness arrangement as the bilinear hysteretic system model of
Fig.2 but replaces the Coulomb slider in the original system by
z viscous damper, is considered in Chapter IV. As the linearization
technique, the energy dissipation matching per unit of time is
applied. Since the 3rd order linear system is found to dissipate
the same amount of energy per unit of time as the 2nd order systenm,
it results in the same prediction of the rms displacement. But
in this case the average frequency is confined in the vicinity
of the natural frequency of the initial stiffness or of the reduced
stiffness of the bilinear hysteretic system, such that velocity
matching cannot be achieved, in general. Therefore, a model
having two uncorrelated 3rd order modes is devised and then
average frequency matching is executed. This two-mode model of
the 3rd order linear system is checked in the frequency domain
(response power spectral density) for representative nonlinearity
situations.

After getting the above equivalent linear systems, all of
which yield the same rms displacement and velocity response in
stationary motion, they are compared in the transient response
region with the experimental results in Chapter V, where Rice's
methodB)’ 4, 5):i.s taken for the response analysis of the 2nd order
linear systems and the Markov process approach7) for the 3rd order

linear systems.



The last Chapter VI gives the conclusions drawn from

the investigation reported herein,



II. BILINEAR HYSTERETIC SYSTEM

2.l. Description of the systenm

A bilinear hysteretic system 1s the nonlinear system having
the normalized restoring force-~deformation characteristics of
Fig.l. This figure represents steady state response with amplitude
A and yield level of Y. Fig.2 is an illustration of such a con-
ceptual mechanical model, and the corresponding governing equation

can be written as :

MXx + CcX + K@X) = mf) (2.1)
or
. . a [
X 4+ 0W,X + W, Px)= Fit) (2.1)
where m , the mass
Y K , undamped natural circular frequency of small
I FaS
°” I/Mm amplitude response

K=k+k, , small amplitude stiffness
ki , reduced stiffness after the system yielding

= fraction of critical viscous damping for small
Go 24ym ' amplitudes

s bilinear hysteretic restoring force character-
istics chosen to have an initial slope of unity
and the second slope o= kl/K

mft)

and the dots over variable x denote derivatives with respect to time.

, excitation force

No exact response characteristics of such a hysteretic system

due to a random excitation of f(t) have yet been obtained analy-



tically. Experimental investigations on such systems, on the other
hand, have been made so far by many people, and extensively by

Iwan and Lutes,.°)

2.2. Root-mean-square Response

This section gives a brief description of the experimental
results for the rms response of the bilinear hysteretic systems,
as obtained by Iwan and Luteioirom an analog computer investigation.
These results will be used to check the accuracy of the approximate
methods presented here. The authors considered the excitation as
a Gaussian white noise. Using a two-sided power spectral density,
which is convenient for amalytical response investigation, gives

the auto-correlation function as

R() = 21S,30) (2.2)

The S° here is one-half of that used by the authors since they
used a one-sided definition of power spectral density.

In the hysteretic system, the response level is a function
of the excitation level and the yield level. This is the essential
difference of the hysteretic system from the linear system for
which the response is direct proportional to the excitation level.

For a linear system represented by the governing equation of



- 1]l -

ve . 2
X + 204X + o, x =7 (2.3)
the rms displacement &y and rms velocity O 4y ) can be
expressed in a nondimensional form as
2
axﬂa _ 0,2(‘)0 _ { [ 2
25,0, 125, 2/e (2.4)

The above authors presented the experimental rms displacement

and velocity normalized by

25,
N=[—F (2.5)

0

and NW, , respectively. The dashed lines in Figs.5,6,7,8,13 and
14 are such experimental results reproduced from the reference (10),
which clearly indicate the hysteretic system response deviation
from the linear system response of the initial stiffness. Note
that a change in the yield level sometimes results in
significant decrease and sometimes significant increase in rms
displacement response and that there exists a yield level
which produces the least response for a given excitation level in the
slightly viscously damped bilinear hysteretic system and the rms
displacement increases monotonically with the decrease of the

yield level in the 5 % fraction of critical damped case of the
nearly elasto-plastic hysteretic system. The rms velocity is
always decreased and has the least response at a certain yield

level for a given excitation level.
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The limiting cases of the extreme nonlinearity situations
of ¥/N— 00 or ¥/N—» O are intuitively taken as linear systems

governed by the equation of

mX + Cx + kx =mft) (2.6)

or

X o+ 280% + QX = (2.6)"

where 9 = @ Or  =H4&), , depending on ¥/N-» ¥ or ¥/N—»O0,
respectively, and {@ = B Wo - Then the rms response characteristics
are found as:

for the rms displacement

Ay _ L
N 2

as Y/N—o

Go
" } (2.7)
X _ 44X as Y/N—»0
N Z BN
for the rms wvelocity
.(%’.‘;/ = _;_% as Y/N-»® or as {/N—=0 (2.8)

These values make the response asymptotes for the corresponding

response, which are drawn in chain lines in Figs.7,8,13 and 14.

2.3, Average fregquency

One measure of the average frequency of the mass
of the oscillator of Fig.2 is given by the ratio of the rms velocity

tesponse &; to the rms displacement response ay, i.e.

ao
Gpy = a—: (2.9)
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It will be shown that knowledge of this quantity as well as the
energy dissipation per unit of time give enough information for
predicting the bilinear hysteretic system displacement and
velocity response.

Lutes' experimental results defined by Eq.(2.9) is reproduced
from reference (13) for the cases of of = 1/2 with (3,= O %
and of 0{ = 1/21 with (3, = O % in Fig.3 by the dashed lines.
One can note from this figure that the average frequency of the
bilinear hysteretic system varys continuously from the natural
frequency w, of small amplitude response to the reduced frequency

ﬁfa% of the second branch stiffness as the value M/¥ grows.
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IIT. EQUIVALENT LINEARIZATION BY THE 2ND ORDER SYSTEM

3,1, Eguivalent 2nd order linear system

Consider the 2nd order linear system of Fig.4 as & lineari-
zation of the bilinear hysteretic system of Eq.(2.1) when
subjected to the random excitation of Eq.(2.2). The governing

equation of motion of this system is expressed as

MX + CqX + KegX =mfd) (3.1)
or
or . 2
X+ 2feqleg X+ WX = fb) (3.1
where
Ce

Eef .

Yeo= [m (s 2 ke

and these parameters are to be determined as demonstrated below.
The restoring forces in Egs.(2.1l) and (3.1) can then written
as Cx + KP(x) and Ceq:'c + Keqx , respectively, Multiplying
these restoring forces by x gives the rates of energy dissipation
in the two systems. Equating the expectations of these values of

energy dissipation per unit of time yields

CEIX] + KE[QMX] = G&IX] + AKg&[XX] (3.2)

Noting that E[xx] = O in the stationary state motion, one can get

" . «2
¢ EIX] + KE[¢WX] = CegElX] (3.3)
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or the equivalence per unit mass per unit of time

2 EL@0X] :
Geg%g = (¢ + <Y, R (363)

Similarly, if both restoring forces are multiplied by x and then

their expectations are equated, one can get

KE[QXIX] = heg ELX) (34)
or the equivalence per unit mass

2 £[Y(X)X]
(ﬂ?{ = — (3.4) '
@o E[xX]
Eqs.(3.3)' and (3.4)' are exactly the same as are obtained from

the Krylov-sogoliubov method.)

However, in calculating
E[¢(x)x] and E[¢(x)x] the procedure used in this work differs

from that previously used15 ) with the Krylov-Bogoliubov method.

2,2, Average freguency

1
The quantity (‘)eq in Eq.(3.1) is the same as the average
frequency as defined in Eq.(2.9). When the narrow-band process

is assumed for the bilinear hysteresis response,

s0) =4aA] = L[ WEwd (3.5)
[

EIPO0X] =EELACA)] = 34[7&6‘(“)7,{(“)0’“ (3.6)
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where géu) is the probability density function of random amplitude
A, and

21
) = %j s Y- P (A cos¥) dy (3.7)

Under the above assumption, Caugheyls)evaluated Eq.(B.#)' by
taking the Raylelgh distribution for A, which has probability
density of the form

ul

u 202
) = —+= x (3.8)
£ ) o €

where &, is the rms displacement. The result is

4 ;’
2
(ﬁ?) =1- s‘ft “)j(’% +77§ )(’é 0)* e’ (3.9)

2
where 20
7 T y?2

This average frequency prediction was compared with the analog

13) and was comfirmed to be able to match

computer result by Lutes
very closely the latter for the moderately nonlinear case but
deviates appreciably for the nearly elasto-plastic case of Y
between 0.7 and 10.

Another possible prediction of the average frequency is
an extension from the harmonic resonance frequency of a bilinear

hysteretic system?a) Using the Rayleigh amplitude assumption of

Eq.(3.8), one can evaluate the expectation of the square of the
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resonance frequency to obtain an average frequency of

2

o 4 5
@ 0 S2fld0 ) 20 D pees

+ (1=d)(1- e"}) (3.10)

This derivation is given in Appendix A.

where

The average frequencies found by Eqs.(3.9) and (3.10) are
compared with that from the experimental investigation in Fig.3.
Note that Eq.(3.9) is able to predict the average frequency
defined by Eq.(2.9) for the bilinear hysteretic system closer
than Eq.(3.,10). Furthermore, it was shown in Ref.(13) that there
is no appreciable variation of the average frequency due to the
viscous damping effect except for /Y <0.7. Hence, Eq.(3.9)
will be used to predict the average frequency of the original

system in the later investigation.

3.3. Energy dissipation per unit of time

As already noted, Eq.(3.2) represents the energy dissipation
per unit of time. In this investigation the hysteresis energy

dissipation per unit of time E[@(x)x] is estimated from
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the hysteresis energy dissipation per cycle which is the lntegrated
quantity over the hysteresis cycle. Furthermore, this quantity

is a convenient measure to use since its magnitude i1s the area
enclosed in the hysteresis loop, and can be found, referring to

the restoring force-deformation diagram of Fig.l, as

0 , for A <Y
(E.E.D.) = [, y(a-v)R(1- o) , for A>Y (3.11)

In converting from the energy dissipation per cycle to the
energy dissipation per unit of time it must be noted that the
energy dissipation cycle due to system yielding may be of
different duration than the cycle of the mass response of the
bilinear hysteretic system which affects the viscous energy
dissipation. One can easily recognize from Fig.2 that the former
frequency wba is to be determined from the' response across

the Coulomb damper (point 2 in the same figure), while the latter
frequency wbl is to be determined from the mass response.
Therefore, the total expected energy dissipation per unit of time

in the bllinear hysteretic system can be expressed as

o2 We
E (E.D./unit time), = CE[x°) + E[5:(H.E.D.)]
(3.12)
It is anticipated here that wbz varies such that it is almost

equal to W, when the response exceeds slightly the yield level Y

and as the response greatly exceeds Y it approaches ﬁicuo because
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the stiffness component oK (spring 1 in Fig.2) then dominates the
bilinear hysteretic system response which is related to the motion

of the point 2 in Fig.2. Thus one can reasonably expect that

Hw, = W2 = W (3.13)

This relation confines the expected hysteresis energy dissipation

per unit of time as

fi{)_? E[HED]) < E] f—{;._’(H.E.D)] < ﬁE[H.E.DJ
(3.14)

In the extrme cases such as A/Y»> 1 or A/Y->®, the bilinear
sysfem reduces 1nto the linear system with the initial stiffness
K,or the one with the reduced stiffness oK, respectively.
Furthermore, the corresponding response appears as a narrow-band
process 1f the viscous damping effect is small. In these cases
the distribution of the amplitude A is certainly represented by
the Rayleigh distribution of Eq.(3.8). This distribution is also
assumed to apply for all other cases in this investigation,
although this may turn out to be a crude assumption when A/Y is not
either very large or very small.Hence,the expectation of hysteresis

energy dissipation per cycle is evaluated from Eq.(3,11) as

£[HED]

("ax(u-Y)K-) BW) du
Y

y
2Tk (1-a) Y % erfe (ag) (3.15)
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where erfc(+) denotes the complementary error function defined by
9 (4 -
erfcu) = 1- ﬁ{ e dt (3.16)

°

3.4s Prediction of the rms response characteristics

The linearization requirements of Egqs.(3.3) and (3.4) are to
match the energy dissipation per unit of time and the average
frequency between the bilinear system and the linear system,
as is stated in section 3,1. In this section, matching energy
‘dissipat;on per unit of time is first considered in stationary
state motion. This method was used before by Karnopp and Brownl7)
who called it the power balance method, but the authors took
the average frequency of Eq.(3.9) as the energy dissipation cycle.
Therefore, thelr rms response predictions come out the same as

those obtained by Iwan and Luteslo)

using the Krylov-Bogoliubov
method.

In what follows, an improved prediction of the rms displacement
is achieved by considering the bounds for the expected hysteresis
energy dissipation of Eq.(3.14). This technique, however, does
not necessarily result in velocity response matching with the
original system even when displacement response matching is
achieved, To overcome this shortcoming, the average frequency

matching between the hysteretic system and its linearization is

also considered, taking the prediction by Eq.(3.9). Since the



average frequency is related to the viscous damping effect in
the bilinear hysteretic system, this matching criterion is of
great significance in the linearlzation of the viscously damped
bilinear hysteretic systen.

For convenience sake and at the same time for a check of
the accuracy in predicting the bilinear hysteretic system response
by the following method, a Gaussian white noise excitation f(t)
of Eq.(2.2) is used. Then the corresponding response character-
istics of the 1inearized‘sy§tem are easy to obtain from the input-
output relationship in linear random vibration theory?)’ 5)when
the frequency response function of the concerned response H{W)

is known, as

¢ 2 2 S 2
E[({,{TX)] = Oy = Son | &'Hw)| do (3.17)

]
The frequency response function of Eq.(3.1l) is given as

i

2 1
@ Hp W) = (3.18)
7 - ()" + 120eliz)

where 1 is the imaginary unit. Substitution of Eq.(3.18) into
Eq.(3.17) for H(W) yields the rms displacement response Ax and

the rms velocity response ®x of

o\x(de; _ o\*wey _ 7(: ( 1)
T3 % ~— [ty _ [26e 319
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The 2nd order system of Eq.(3.1) can dissipate the expected

energy per unit of time through its viscous damper

0] '2 2
E[(E.D./ unit time), ,J = Cqu[x] = 2MWeg Beg Ok
(3.20)
Substitution of the rms velocity response from Eq.(3.19) into

Eq.(3.20) ylields A

E[(E.D./ unit time)and]= mAs (3.21)

Note that the energy dissipation per unit of time is independent
of Keq and ceq‘ Then the energy dissipation equivalence criterion

between Eq.(2.1) and Eq.(3.1l) gives, from Eg.(3.3)

2m0, W, a\;;1 + 5[_‘%:(&5 D)] = MILS, (3.22)
Introducing the average frequency wbl, one can get

oMU, 0 0y, + E[L2 (HED)] = MRS, (3.23)
where the Krylov-Bogoliubov prediction wKB in Eq.(3.9) will be

substituted for a)bl from the average frequency matching criterion.

3 4.1, No viscous damping case (C= 0)

In Eq.(3.23), substitute the bounds of Eq.(3.1l4) for the
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expected hysteresis energy dissipation per unit of time, for
the case where there is no viscous damping effect in the hysteretic

system. Hence,

Yol d E[HED] <= mS, < % E[HED] (3.24)
2T = = om

where E[H.E.D.] is given in Eq.(3.15). Since the hysteretic system
response varies with the ratio of excitation level to yield level,
as stated in section 2,2., it is convenient to normalize Eq.(3.24)

by the measure of excitation given in Eq.(2.5). Thus,

Y
) i (Ba)

Yy* .25)

This relationship should give upper and lower bounds for the
response /Y (or B%/N) for a given Y/N. It is anticipated that
in the limiting case Y/N-» O, the upper bound will give a good
prediction for 0§/Y in connection with the remarks in section2.2.
On the other hand, if Y/N—®, the lower bound is expected to be
a good approximation for U &

Another possible estimation of the hysteresis energy dissipa-
tion per unit of time is to postulate that its cycle is equal to

the average frequency of response., This gives

Y
&) PR v (3.26)
N 2(4e)(1-d) erfc(ay)
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where a)blmay be substituted from a)KB in Eq.(3.9) or from a)R

in Eq.(3.,10). The solution using ‘WKB for ‘obl has been proposed

by Karnopp and Brown.17)
The above derived "upper" and "lower" bounds for /Y as

well as the predictions from Eq.(3.26) are compared with the

experimental results from reference (10) in Fig.5. From the results,

it is recognized that the "upper bound", which is derived from

the lower energy equivalence in Eq.(3.25), is always the best

approximation of @/N. In the region of Y/N of most concern,

say, from 2 to 8, this '"upper bound' gives almost the same value

as the experimental results for the moderately nonlinear case

(see Fig.5.1) and estimates the experimental results within 20 %

underestimate for the nearly elasto-plastic case. (see Fig.5.2)

The ""lower bound" on the other hand, turns out to be a poor

prediction in the whole region of Y/N. In the small nonlinearity

situation ( 4/Y < 1), the hysteresis energy dissipation cycle

might be expected to be the natural frequency 4, for small

amplitude response as discussed before, Nevertheless this

assumption fails to match the rms displacement response.

A conceivable reason for this may be attributed to the Rayleigh

distribution assumption for the peak response process. It is

reported in reference (19) that the distribution of the bilinear

hysteretic system response is not Gaussian, especially around

P/Y = 0,5 its deviation is strong. The relationship between

this strongly non-Gaussian probability and the failure of equivalent

linearization is further investigated in this reference.
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The solution from Eq.(3.26) with a%l = a%B is seen to give
underestimation within 15 % error in the moderately nonlinear
case whife failing in its prediction in the region of most concern
for the nearly elasto-plastic case. Based on the above observation,
the "low energy equivalence" of Eq.(3.25) will be used henceforth
as the linearization technique., The reason why the "upper " bound
of Eq.(3,25) is not really higher than the experimental results
in the nearly elaso-plastic case, as is seen in Fig.5.2, may also be
due to the Rayleigh distribution assumption for the random amplitude
of bilinear hysteretic system response., In this case, the response
comes out as a rather broad-band process ln a fairly large range of
A /Y, as is investigated in section 3.5., so that the correspond-
ing peak distribution will be between the Rayleigh and the Gaussian
distribution.

The rms velocity response is easily found, using the average
frequency predicted by Eq.(3.9), as
0 = Wy O (3.27)
The bold solid line in Fig.6 shows the computation results for
the nearly elasto-plastic hysteretic system while the thin solid
line represents the prediction from the Krylov-Bogoliubov method

with small nonlinearity,lo)

and both are compared with the
experimental results of the dashed curve. Although the rms
velocity is directly affected by the prediction of the average

frequency of the original system, Eq.(3.27) approximates well
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the experimental results, giving an underestimate for the latter
within 20 9% error in the region of Y/N less than 0.5, an estimate
almost the same in the vicinity of Y¥/N = 1 and an overestimate
within 17 % error in Y/N between 2 and 15, On the other hand,
the Krylov-Bogoliubov method with small nonlinearity gives always
an underestimate within 20 % error for the experimental results.
In the moderately nonlinear case, the rms velocity prediction by
EqQ.(3.27) is almost the same as the experimental results in the

most concerned region of Y/N between 1 and 10.

34,2, Viscously damped case (C % 0)

For the viscously damped bilinear hysteretic system, the
energy dissipation matching criterion Eq.(3.3) is put into the
following form,

Y
CumgP  + j%woku—oa)yz(@@-‘)ezfcm) = MTSe (3.28)

The use of the normalization measure of Eq.(2.5) leads to

622 + B erfedn) = 3 G
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This gives the ratio of rms displacement to yield level for
a given value of Y/N. The dimensionless rms displacements
obtained in this way are plotted in Fig.7 together with the
previous results of (3= O for the moderately nonlinear case for
B, = 1 % and for the nearly elasto-plastic cases for (3, = 1 and
5 %. The dashed lines in the same figure are the analog computer
results reproduced from reference (10). Note that the above
prediction gives almost the same rms displacement response with
the experimental results in the whole reglon of Y/N for the
moderately nonlinear hysteretic system with 1 % viscous damping
effect, and an underestimate within 15 % error for the nearly
elasto-plastic case with the same viscousdamping but it loses
the accuracy in the most concerned region of Y/N as the viscous
damping effect grows and results in only 75 % prediction of the
experimental result in the worst case when 5 % viscous damping
exists. This is due to the descrepancy of the prediction of
average frequency by Eq.(3.9) from a%l as was seen in Fig. 3.
However, it must be emphasized that the method presented here
indicates a remarkable improvement of the response prediction
when compared with other methods.lo)’ 19)
When the nonlinearity situation becomes great such that
0x/Y>l, the average frequency “)KB approaches Ea)o and

the complementary error function can be expanded in a series as

Y 3 1 ]
erfe (zm) = 1- Bl% -4 + semla) -]
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Using only the first term of this series in Eq.(3.29) gives

an B2 + [E-a(FN1-ZX) - BAy)°

The first term belng great compared with the second term, then

in the 1imit one can get

N 1T

(4

BN

On the other hand, when the nonlinearity situation becomes small
such that &/Y< 1, the average frequency wKB approaches to &)

and the complementary error function has the expanded form of

erfc(,—%/-‘;}() =j%% exﬁégoé)“-%x} +_1%_§:_...]

so that taking only the first term leads Eq.(3.29) into
2 /_20\( 2 Y? 2
6, ) + Gu-0(FVeplzr) = FH)

The second term being again negligible compared with the first
term, so that in the limit one can get

P - LK .31
o = [T (3.31)

Egs.(3.30) and (3.31) indicate that in the above extreme non-
linearity situations the hysteretic system turns out as the 2nd
order system with initial stiffness or with reduced stiffness

as was discussed intuitively 1ln Chapter II. These phenomena are
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clearly recognized in the corresponding regions of Fig.7, where
the analytical predictions coincide with the experimental results
and both approach to the asymptotes of Egs.(3.30) or (3.31).

The rms velocity response of the viscously damped bilinear
hysteretic system is again found using the average frequency

prediction of Eq.(3.9), i.e.,

2 2
o, = wWks % (3.32)

Fig.8 shows the computation results, where one can see the

almost coincidence between the prediction and the experimental
result in the whole region of Y/N for the moderately nonlinear
hysteretic system with 1 % viscous damping factor. However,

the prediction glves an overestimate within 20 % error of

the experimental result in the 1 % viscously damped nearly elasto-
plastic hysteretic system and an overestimate within 15 % error

in the 5 % viscously damped case.

3.5. Power spectral density matching

In the previous section, reasonably good predictions both
for the rms displacement and rms velocity response of the bilinear
hysteretic system in stationary state motion are obtained based
on the criteria of matching energy dissipation and average

frequency. However, di.fferent linearizations satisfying both
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these matchings with the original system are now conceivable.
Another severe check on the accuracy of the equivalence between
the bilinear hysteretic system and its linearization can be made
in the frequency domain by comparing the response power spectral
density. This equivalence was first attempted by LuteslB)for

the equivalent 2nd order linear system and its two-mode model.
Note that Eq.(3.17) guarantees the rms response characteristics
matching up to the higher order derivative of response if it exists
when the response power spectral density is matched between two
systems., However, a more complicated linear system will generally
be required for this matching rather than the system matching

only the rms displacement or the rms velocity, or both.

3.5.1. Bilinear hysteretic system

As 1s stated before, the bilinear hysteretic system response
varys with the ratio of excitation to yield level. At the same
time it must be emphasized that its response power spectral
density shows a remarkable variation of shape depending on this
ratio. Hence, it may be worthwhile to review this relationship
from Iwan and Lutes'! analog computer investigation.lo) These
authors presented the response power spectral density of the bilinear
hysteretic system in the form of w: F:’L“’_) .

In Fig.9, the dashed lines show the experimental results

for representative cases of ®x/Y with no viscous damping.
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It is noted in Fig.9.1 that the shape of the power spectral density
of the moderately nonlinear case 1s close to that for a lightly
damped 2nd order linear system, indicating a noticeable peak.
However, the location of this peak is affected by the yleld level
Y and shifts continuously from the undamped natural frequency o,
of the small amplitude stiffness to the reduced frequency /o @»

of the second branch stiffness as the value of /Y becomes
large. The peak is always bounded and it has its lowest value

at approximately /Y = 1.3, On the other hand, the nearly
elasto-plastic hysteretic system is much more affected by the
yielding. TFig.9.2 shows a predominant peak at &, for small H/Y
and atld @, for large %/Y; however, the peak frequency shifting
does not occur in the same way for this case ags it does for the
moderately nonlinear case for intermediate wvalues of /Y.
Rather, it appears that for this system the peak at ), decreases
while the lower frequency components increase at the same time.
This gives a monotonically decreasing curve with no predominant
peak at all for %/Y between 4 and 9, This is indicative of

a broad-band response., At the same time, it is found that the
low frequency power spectral density always appear like that for

a linear system with the reduced stiffness.
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3e¢5.2+, Eguivalent linear systems

For linear systems the response power spectral density in
dimensionless form as above used is nothing but the normalized

frequency transfer function, afh(w)l.

3,5.2.8, FEgquivalent 2nd order linear system

Consider the system governed by kq.(3.l). Its frequency

transfer function can be written as
4

1 2
u,’lH,.e,(wﬂ =[ }(3.33)

(e2)" [ 11- i/ (et} "+ e/ ]

The equivalent linearization criteria requiring both matching
energy dissipation per unit of time and average frequency with

the bilinear hysteretic system yield

beg = I A (2)) (3.35)

where and O%/N are already obtained by Egs.(3.9) and (3.28),

a)KB
respectively. This system, as is seen from Egq.(3.33), can have

only one predominant peak at frequency a)e when C%q is small,

q
Therefore, it may be of use in approximating the response power
spectral density of the moderately nonlinear hysteretic system.

But for the nearly elasto-plastic hysteretic system case its
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application will be limited only to the nonlinearity situation

Mx /Y <1, considering the remarks in section 3.5.1., Fig.9.1l

shows the comparison of the analog computer results and its a
approximation by using Eq.(3.33) for the moderately nonlinear case.
Note that this system with stiffness and damping factor chosen as
functions of ®x/Y can match satisfactorily the response power spectral
of the hysteretic system only in great nonlinearity situations

( O /Y »1). 1In this case the transfer function of Eq.(3.33) has

2
4 Hg@|— o+ a8 & — o0 (3.36)

This 1s the same tendency as for the bilinear hysteretic system
described in section 3.5.1l. But the approximation by Eq.(3.33)
still has somewhat of a shortcoming for the small nonlinearity

situation case, for then
2
w, IH2’e9(w)I — | as ¢ — 0 (3.37)

This is contrary to the remarks in section 3,5.1.

3¢5.2.b. Uncorrelated two-mode 2nd order linear systenm

Lutesl3)has suggested that an improved linear model can be
devised for the nearly elasto-plastic case by taking a two-mode
model of usual 2nd order linear systems, where the modal responses

are assumed uncorrelated and one modal frequency corresponds to
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the initial stiffness and the other to the reduced stiftness of
the bilinear hysteretic system. This gives the linear transfer

function of

o H, @) -[ - ¥ : %
T2 {1- @)7"+ 46, wy fol — (&Y )7 + 4(3540‘%)2]
(3.38)

where

_ T (o= 1) G = T (1-0o)
Y™ Tl Grd (G- G
(3.39)

The response characteristics included above are already obtained
by Egs.(3.29) and (3.32), respectively. However, this method may
be limited to the case where the above two modes are well separated,
since the response of two modes whose natrual frequencies are not
well separated can not be expected to be uncorrelated, The correla~
tion effect in this latter case usually reduces the two peaks of
of each mode into one.aa)

Fig.9.2 shows the approximation obtained in this way for
the nearly elasto-plastic hysteretic system. Note that it has
the same general tendency as the experimental response power
spectral density; however, a slight descrepancy can be observed,
which gives a lower value in the region fﬁ<l but a higher value
in the vicinity of -é% = 1. This discrepancy is partly due to
the inaccurate prediction of the rms displacement and rms velocity
response. Fig.9.3 shows the approximation by Eq.(3.38) for the

moderately nonlinear cases. It 1s noticed here that such approxi-

mation is only good in the strong nonlinearity situation ( /Y >1).
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The worst case is O°x/Y = 1.3 as shown in Fig.9.4,where the
least response is observed. In this figure the response power

spectral density approximation by Eq.(3.33) is also presented.
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IV, EQUIVALENT LINEARIZATION BY THE 3RD ORDER SYSTEM

4.1, Description of the system

In this chapter, the linear model of Fig.lO is considered,
with all elements taken the same as in the billinear hysteretic
system except that the Coulomb friction slider is replaced by
an additional viscous damper. This kind of model is frequently
used in the visconelastic theory. The corresponding governing

equations of motion can be expressed as:

m X, + Czj(i + keXs + k(X1 ~X2) = mft)

. (4.1)
C2X2 - k2(X1—X2) = 0

where X and X, are the displacements of the mass and across the

second damper as indicated in Fig.l0, and Cl and C, represent

2
the equivalent viscous damping coefficients for the wviscous and
hystersis energy loss in the bilinear hysteretic system, respectively.
Then the energy dissipation in‘the original system due to yielding

is replaced by that due to viscous damping in the proposed

linear system. Intuitively one can recognize that this systen,

when Ca—,-oo , corresponds to the or"iginal system with Y—»00 and

both give a 2nd order linear system with a stiffness K = kl + ka.
Similarly the original system, when Y0, corresponds to the new

system with Ca—rO and both give the 2nd order linear system with
reduced stiffness oK.
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To obtain the rms response characteristics of the proposed
linear system from Eq.(3.17), its frequency response function
first must be found. It is easily calculated from the steady

state motion as is seen in Appendix B. The result is

S @ + 1
(w‘)-{-g’(l-oé) s JB) 28y S 5 i)+

(4.2)
where 5%1 is the fraction of the critical viscous damping effect

2
@, H; @ -

EE 2(’3

defined by
Ci
== (4e3)
Bas 2d,m

and 632 is the additional viscous damping factor representing

the hysteresis energy dissipation defined by

6322 . (Lo l4)

Note that Eq.(4.2) has the 3rd order power of frequency since the
system is a 3rd order linear system. Similarly, the frequency

response function of the point 2 in Fig.l0 is found as

1
a), H, W) =
T iR ) - 1 o + () 000 )+

(4.5)

The limiting cases of the bilinear hysteretic system with
an infinite or zero yield level, being 2nd order linear systems,

are governed by Eq.(2.6) and then their frequency response functions



are expressed as

1
Q*Hw) = (4.6)

1-&)3+ i25)

where QR=0, or @ = olw, , depending on the yield level Y- () or
Y-—>0, respectively, and 3 = (3.“)0 . These extreme situations

are the same in the 3rd order linear system. That is

1
(1- (&)~ 126;,(%)

Wty @) = v a8 (o0 (L.7)

and
1

24 (W) = , -
“)oH.i.iw a[{i-{g%)‘}—i?(’;djé‘%,)] y a8 (Gp—0  (4.8)

where

7 C!
031" 2 W, M

These frequency response functions imply that the natural frequency
is w,when ;50 and/l{w, when B 35~%, and that the value of
| ]
the viscous damping factor (?31 or 331 is the same as (3,in the
above extreme cases.
Substitution of Eqs.(4.2) or (4.5) for H(@W) in Eq.(3.17)

yields for the mass response the mean-square (ms) displacement

2
. FBs 4 48332
2 TS 17 gco)? T %(i-ol)
EY T <8,0 a8 B; (49
' 3240 [ 31032 ) 14 O30y oy 23
{1+ (1-04)2}{ ¥ ol )}Pdﬁsz
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and the ms velocity

2
< 0
a2 _ LS L+ (_Q)TJ'TZ@?i

1-00
91" Aty (1+ Zutln}iss & 1¢>}+oc5ﬂ

and for the point 2 response the ms displacement

2 _ 1S, oz(i-oe) 7-a." (51

G2 20,07 {1, %ula)f1 - On
Gy {1+ (1_002}{ +—(§;-(i o&)}+ot(5”

and the ms velocity
2

- TS, Z;{M)T

-
Wl {14 T Baf 1. %ﬁ (1—oL)}+ol%

(4.10)

{4.11)

(4.12)

where the integration operation has been carried out by the

residue lntegral formula.aB) An alternative method for obtaining

the above response characteristics appears in Appendix C.

When the normalization is made for Egs.(4.9) and (4.10) by

the measure of Eq.(2.5), one obtains

4@92 <434 352
2 I+ Sa-0? "D

(6&34) . 1
4 (1&){1+—(ﬁ)&2’}(1& (331)4-0&(331

(4.9)"
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and s
14 4 (n )
(0\’2 1)2_ T (1-ot) 1-0l (4 lO)'
= ST BB 5y o

4.2, Prediction of the rms response

The 3rd order linear system defined by Eq.(4.1l), when subjected
to the random input motion of Egq.(2.2), can be expected to dissipate

the enrgy per unit of time

E[(E.D./unit time)jrd] = clE[;':fp CZED'cg] (4.13)

end when Et:‘cf] and E r:'cg] are substituted from Egs.(4.9) and

(4.10), the right hand side of Eq.(4.13) gives m7BS°, that is

E[(E.D./unit time)srd] = mLS, (4.14)

This energy dissipation per unit of time 1s exactly the same as
that for the 2nd order linear system, as is seen in Eq.(3.21).

This fact might be expected from the fact that the energy dissipa-
tion per unit of time is related only to the mass as far as a white
noise excitation is assumed.l6) Hence, the same rms displacement
response values as shown in Fig.?7 can also be predicted from the
above 3rd order linear system by matching energy dissipation per

unit of time, taking the same procedure as for the 2nd order



linearization. However, the rms velocity which is directly related
to the average frequency may not be matched with the bilinear
hysteretic system. But the previous consideration on the frequency
response function suggests that the 3rd order linear systenm

may have more flexibillty than the specified 2nd order linear

systen.

4,2.1., No viscous damping case (C = 0)

When no viscous damping is assumed, as a special case, for
the bilinear hysteretic system, the corresponding damping faetor
(331 in the 3rd order linear system vanishes. The average
frequency of this system is then found from kgs.(4.9) and (4.10)

by setting ﬁ}l = 0 as

(1-ot) 7
Y _
o =P+ T (4.15)

which implies that 4,/@= 1 when {332 = 0 and ag,,ya;:/I when
/332—'00 , as are seen in Egs.(4.7) and (4.8), and monotonically

decreases as (}’32 grows., However, the value of f)’32 is constrained

if energy dissipation matching is achieved. 1In particular,

from Eq.(4.9) 532 is found to be



Y
ﬁaz=%{&(i—u)(%¢)zt K- (590 - 121 (46

Note that there exist two different 3rd order linear systems
which give the same rms displacement response but have different

average frequencies. The variation is shown versus Y/N in

3,
Fig.ll, where 632 always falls in the region less than 0.053
or more than 0.60 for the moderately nonlinear hysteretic system.
The corresponding values for the nearly elasto-plastic case are
0.031 and 0.,36. TFig.l2 illustrates how the rms displacement
0\X3,1/N and the average frequency W;l vary with the wvalue of
/332. The small value of [;, in the region I in this figure
gives the average frequency as near the natural frequency for
the initial stiffness, &, and the large value of {}32 in the
region II gives it fairly near the reduced frequency for the
second branch stiffnessJacq. Henceforth, the 3rd order system
of the smaller ﬁ%z is referred to as the high frequency 3rd

order linear system and the one of the large as the low

31
frequency 3rd order linear system. These values of average
frequency are compared with the analog computer results in Fig.3.
It 1s noted here that one may reasonably choose the low frequency
3rd order linear system as a linearization of the bilinear
hysteretic system in the large nonlinearity situation and the
high frequency 3rd order linear system in the small nonlinearity

situation both for the moderately and nearly elasto-plastic cases.

But in the most concerned nonlinearity situation, say in the
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region of #%/Y from 0.6 to 10, neither of the above 3rd order
linear systems can approximate the experimental results for
average frequency. This results in failure in matching the
velocity response in that situation. The one-dotted and the two-
dotted chain lines in Fig.6 are the case for the nearly elasto-
plastic hysteretic systen.

To overcome this shortcoming of individual 3rd order systens,
their combination is considered so as to produce average frequency
matching with the original system. The simplest such model takes
the total mean~square response as the weighted sum of individual
responses, neglecting any coupling effects. Thus, the average

frequency is expressed as

2 2
a. .
R - PR RRLL X H) (4.17)
Ox3,4,4 a1

where 0\,(3[1’4-_;0\(3'1’“:0\,(3'1 . The notations &, ,and fx;,n are
the rms displacements of the low frequency 3rd order system and
the high frequency 3rd order system, respectively, and 0\7?31,L and
03(3"’” are the corresponding rms velocities. The weighting factor
7 is the fraction of the mean-square response contributed by

the low frequency system. This procedure is to adopt a two-mode
linear system whose modes are 3rd order and uncoupled as a lineari-
zation of the bilinear hysteretic system. Thus this model will

be referred to as the uncorrelated two-mode 3rd order linear
system. The left hand side of Eq.(4.17) will be replaced by

Eq.(3.9) following the remarks in section 3.2. Then, /¥ is solved
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as
2 2 2
W kB 0)(3,1 - 0\);3,4)4
7= 7 7 (4.18)
Px3,1, - o\fcs,i,H

Thus obtained rms velocity response is indicated in Fig.6 by the
bold solid line, which is of course identical with the prediction
by the 2nd order linearization, since both are based on matching

the average frequency to a}KB‘

4.2.2, Viscously damped case (C % O )

In principle it should be possible to choose the two damping
parameters C, and C, (or 631 and 532) for the modes such that
the response of the uncorrelated’ two-mode 3rd order system
matches both the rms displacement and velocity response coming
from Egs.(3.29) and (3.32). When the hysteretic system also
contains some viscous damping (C X O), however, the evaluation
of the equivalence parameters becomes very difficult. The explicit
evaluation of these parameters is desired since they are needed
for consideration of response power spectral density and transient
response. The following section presents an alternative approximate
method for evaluating the parameters in the uncorrelated two-mode
3rd order linearization of a hysteretic system containing viscous

damping.
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L.,3, Alternative response prediction

In this method the viscous damping coefficient C, is taken

2
to be the same as if C1 were zero. Thus Eq.(4.16) is used to
obtain 532, giving both & high frequency and a low frequency
3rd order systems, as before., In order to match the energy
dissipation between the other viscous damper and the viscous

damper in the bilinear hysteretic system, the damping coefficient

Cl is determined from
2 o 2
¢, EIX] =CEL[Xp4] (4.19)

Therefore, the assumptions are that the effect of the wiscous
damping on the hysteresis energy dissipation is considered
negligible and also that the effect of the damping C1 on the
motion of the point 2 in the 3rd order linear system is considered
negligible. The 3rd order linear system with such obtained
damping coefficients will certainly yield a slightly different
response than that from Eq.(4.1l4) when the viscous damping effect
grows in the bilinear hysteretic system.

Introducing the average frequencies a%l and a@l gives

2
¢, =(%1y ¢ (4.20)

or

= ()0 (420’
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Furthermore, this equation is replaced by the followling from

the average frequency matching criterion:

a)/<3 |
Oy = (57) O e

When the forementioned two-mode 3rd order }1near system is adopted
as a linearization of the bilinear hysteretic system, this
equation produces two different values for the viscous damping
factor 531, depending on the average frequency of the 3rd order

linear system. Substituion of ﬂ31 and thus obtained both

(G35
for the low and high frequency 3rd order systems into Eqs.(4.9)
and (4.10) gives the corresponding system response characteristics,
In applying the two-mode concept the rms displacements from the two
modes are assumed to be the same, which is not exactly true but is
is found to be acceptable when the viscous damping is small.

The normalized rms displacement and velocity response
obtained in this way are plotted in Figs.l3? and 14 for the modera-~
tely nonlinear systems with (%: O, and 1 % and for the nearly
elasto-plastic ones with (3, = 0, 1, and 5 %, and they are compared
with the analog computer results. For the moderately nonlinear
case the uncorrelated two-mode %rd order system predicts almost
the same values of rms displacement and velocity as the experimental
results in the most concerned region when a,: 1 %, but it loses
accuracy in the small nonlinearity situation of @Ox/Y < 0.7,
slightly underestimating the experimental results, and in the

large nonlinearity situation of 0&/Y:> 5, slightly overestimating
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them. For the nearly elasto-plastic case a remarkable improvement
within 10 % error underestimation is attained in predicting both
the rms displacement and velocity response in the most concerned
nonlinearity situation. Furthermore, for the 5 % viscously damped
case the rms displacement is almost the same as the experimental
results even in the small nonlinearity situation and the rms
velocity is underpredicted within 13 % error. In the large non-
linearity situation both response characteristics are slightly

overpredicted.

L.l4. Response power spectral density

In what follows the response power spectral densities of
the 3rd order system and of the uncorrelated two-mode 3rd order
system whose parameter are determined in sectlon 4.3 are investi-
gated. Since the frequency resp?nse function of the 3rd order
system 1s found by Eq.(4.2) for the mass response, its normalized

transfer function is expressed as

|+ (i (é"r)]?

o, | H #(w)l:{

FTEA )« (S (-G ) T E

(4.22)
Neglecting correlation between the modal responses, the previously

adopted two-mode system has a transfer function of

l\alu.



2 2 2 2 _é.
U5, @ | = 417 [Es @]+ a-mlag, g )
(1.23)

where the low frequency 3rd order linear system transfer function,
H},l,L(ao and the high frequency one, H3,1,H(“0 are found from
Eq.(4.22) by su'x?stituting the appropriate values of ﬁ31’ ﬁ32
and )¥. When 631 = 0, the above 3rd order system or the two-mode
system coincides with the corresponding system obtained from

the energy dissipation matching and average frequency matching
criteria in section 4,.2.

The plotting of Eq.(4.,22) and Eq.(4.23) are made for the
representative cases of nonlinearity situation used in section
3.5 for the 2nd order linearization. Fig.l5.1 for a nearly
elasto-plastic case shows that for the nonlinearity situation of

Ox/Y = 1.0 the two-mode 3rd order system can approximate

the experimental results quite well except in the less significant
very low frequency region, having a small peak at the natural
frequency @, of initial stliffness of the bilineé} hysteretic
system and relatively flat frequency contents below &,. But

as the nonlinearity situation grows the two-mode 3rd order system
fails in matching the response power spectral density in the
vicinity of w, . The experimental results lose the predominant
peak at w, but the two-mode system does still have a. small spike
there. In this nonlinearity situation, it appears that the low
frequency 3rd order system by itself can better approximate the

experimental results as is seen in Fig.l5.2. 7For a moderately
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nonlinear hysteretic case, the response power spectral density
approximation by the 3rd order system is limited to large or small
honlinearity situationsdue to its rather fixed average frequency
at either the natural frequency of Initial stiffness or of the
reduced stiffness of the original system., Compared to the 2nd order
system approximation, the 3rd order system can improve the
matching with the experimental results in the low frequency region,
although the peak location matching is not so good as the former
system (see Fig.l5.3). The uncorrelated two-mode approach by the
3rd order system in the intermediate nonlinearity situation results
in a failure, showing two appreciable peaks at the above locations.
The computation result at /Y = 1.3 is given in Fig.9.4 for

comparison from other linearizations,
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V. TRANSIENT RESPONSE

The preceeding two chapters-presented several equivalent
linear systems which give reasonable predictions for both the rms
displacement and velocity response for bilinear hysteretic systems
in stationary state motion. When one is concerned with the
structural response due to earthquake motion, however, it should
be noted that structures are usually forced to vibrate from an
initial state of rest. An earthquake excitation is generally of
relatively short duration, say around 30 seconds at most, and its
main part might be considered as a stationary Gaussian process.
Structures designed to resist earthquakes generally have a funda-
mental vibration period of 0.5 to 5 seconds. Hence, from the
structural design point of view the most significant portion of
the response may be in the transient region before reaching
the stationary state motlon. Note the fact now that different
equivalent linear systems may have different response features in
this region, even though they have the same stationary response
levels. For these reasons, transient response comparisons are
made between these linear systems and the bilinear hysteretic
system, assuming the Gaussian white noise of Eq.(2.2) as input

motion.
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5¢1. The 2nd order linear systems

The transient response characteristics of the linear system
expressed by Eq.(3.1l) are found from the Rice method 3)s 4, 5)af.s

E[dt‘xm) P z)] f [ 2 ‘/,(t1 7) 2 Zf,ﬁ(fz-fﬂ E[?‘f‘ﬁ)f(rz)]d‘qdrz (5.1)

where h(t) is the impulse response function of the concerned
system, which is the inverse Fourier transform of the frequency
response function of Eq.(3.18). Substitution of h(t) and Eq.(2.2)
into Eq.(5.1) for E[f('c‘l)f( 7,)] gives the mean-square (ms)
21) 2 =
displacement as
—2@40 it 2@&/2 2
ey[ 1+ w sinlwgt + Z}?ﬁsin de]J
(5.2)

& )= 4(}9?(%9)3[1‘
and the ms velocity as

(Qz'{. 2 '2&9“@9

2 2
et

(5.3)
for (Squl, where W =4J, 1-(53, and the measure of excitation N
is given in Eq.(2.5). The parameters included above, weq and (jeq
can be obtained by Eqs.(3.34) and (3.35), respectively.
When the uncorrelated two-mode model indicated by Eq.(3.38)
is considered as a linearization, the transient ms response is
the sum of the ms responses from each mode, In this case,

the damping factors which are determined by Eq.(3.39) are not
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ealways less than 1.0. TFor the representative cases investigated
in section 3.5, the high frequency mode always has the damping
factor less than 1.0 but the low frequency mode has values greater
than 1.0 in small nonlinearity situations (small &/Y). Thus,
when both the high and the low frequency systems have damping
factors less than 1.0, the transient response can be calculated
from Egs.(5.2) and (5.3) by replacing weq by W, or K w,, and
ﬁeq by ﬁZH or (’ZL in Eq.(3.39), respectively. For the
system with damping factor greater than 1.0, the transient response
can be calculated by the following:

for the ms displacement

0\ 2

=25 (ﬁ%[l Y 1 arsinh 20t + 20 ok, ]
(5.4)

and for the ms velocity

2
: T
(,,,—mﬁ') = [1- e {1 Msmﬁ 24,,t 4-2&,3 sinh w.,dt}]
o 4ep %,
(5.5)
where ¢,, = tWeg/(log—1 and for the low frequency system weq =[ol W,

and ﬁeq = oy
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5.2. The 3rd order linear systems

When a linear system is subjected to the Gaussian white noise
excitation of Eq.(2.2), the response process is a Markov process.
Then the system response characteristics are completely determined
by its initial probability density function and its transition
probability density. The latter function is the solution of the
associated Chapman-Kolomogorov-Smoluchowskl integral equation or,
equivalently, of the associated Fokker-Plank partial differential
equation,

For the 3rd order linear system it is easier to find the rms
response characteristics by the above method than to use the
previously described Rice method, which involves finding the
impulse response and the following double integration.

The governing equation of the 3rd order system of Eq.(4.1)
is converted into simultaneous partial differential equations of

the flrst order with the change of varlables as

1 = % Jp = X5 I3 X (5.6)

Then Eq.(4.1) is expressed in a matrix-vector form as

_g_t{yi} = [al{y} + {5(8)) (1=1,2,3) (5.7)
where ¥y o o0 1] 0
_ i _}l o
{y5) = {g’ra} [e] = l—éa —%2 0 {fi(t)}—{f(t)
3 2 2
fﬁ%fz.ﬁa -%?
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When the excitation of Eq.(2.2) is input into the 3rd order systenm,

the corresponding Fokker-Plank equation becomes7)

{ 3
__= 2 (Ap) FZaya/, LJ-P) (5.8)

where P = P(yl, Yo yi; t Y100 Y00 yzo; to) is the transition
probability denslity function, representing the state probability
density of Y10 Yo and y3 at time t, given state Y100 Y2g? and y30
at to, and

o
Q

o

{AL}=[a”yL} [BLJ] = lo 4 0

o 0 2SS,
or, explicitly
_g% - g_y’();P) - W—[C2(yl %IP) - —§73[—(-f7,<-yr %J’z- )P

2
+ TS, ayp (5.9)

A convenient method to solve this Fokker-Plank equation 1s

to transform 1t into the form of
oP > o 1 3 a’P
SF = - Z Z‘-—sf.(ZgP) Y 2%3;?92)* (5.10)

For this purpose, the following transformation of co-ordinates is

made as

{2} = g1} (5.11)
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where the operation matrix [g] is the one which can diagonalize

[A] such that

[310a) = [AJ[%] (5.12)

where [A] 1is the diagonal matrix of the eigen values ?A; of [a]

which is obtained from

[l2) — 21| =0 (5.13)

For the 3rd order system the A; are the complex roots of

3 Gy . ke ¢ ky k
2;‘4'(5—:4-,7')7‘&*' 2;,7;2/(27&'*'#;2 = 0 (5.13)

-1
Using this solution, one can get the inverse of [4], [4] {from
Eq.(5.12) as

- 1 A . N
ko k.
-1 2 ke
(7] = Uy K2 +C2A4 T K2 + G2z Us ka+GAs
7\1 Az )3 J
(5.14)

end furthermore one can set G91= 935 = ql3 = 1 without losing
)
generality. Using the solutions of Eq.(5.13), the [4]matrix is

found as
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The statistical characteristics of the transformed response
{zi}have already obtained been obtained by Wang and Uhlenbeck7)for
the initial conditions of {zio}. The mean value is

At
{E[21} = [&) [e’] (5.16)
The variances and the covariances are given by

Ui (7\ +A)t

E{(3,- E@) (g -EE)) = - =L [1-

ey ] (5.17)

where
(4] = [3)B)IST (5.18)
and the superscript T denotes the transpose of a matrix.

The initial condition in the original co-ordinates, i.e.

P( yl" Y2, .73 0 | \\/107 y2anyso; 0) = 5(.)’1—)'“,) 5(%')/20)3()/3‘%0)
(5.19)

makes {zio} = {0}. Thus the above response characteristics become

it ANt
[% 2] =Elzz) = 7\,,7‘ [1- J (5.20)

The back transformation of E[zi j] into the original co~ordinates

can be carried out by using the matrices [@] and [2]5

- 2 2 2
opﬁ qz% QX%W . T
02 _ \\\~ 2 2 _ - 2 2
[Pl 8y, 4% = [91[0yz{31) (5.21)
o 02
symmetric™.Yys

This gives the mean-square response characteristics of the 3rd order

systen,
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5.3. Analysis

The transient mean-square displacement and velocity response
of the previously obtained equivalent linear systems are first
investigated in the case of no viscous damping in the bilinear
hysteretic system, i.e., (1: 0. As the basis of comparison,

ao)which were obtained fronm

the experimental results by Shah,
ensemble averages,after integrating the bilinear hysteretic system
step by step with a digitally generated white noise excitation,
are used. Figs.l6 and 17 show some representative cases for both
moderately nonlinear and nearly elasto-plastic hysteretic systems,
where the transient response of the equivalent 2nd order linear
system of Eq.(3.1l) is presented by the dotted line, that of the
two-mode model of the 2nd order system of Eq.(3.38) by the thin
solid line, that of the low frequency 3rd order linear system by
the one~dotted chain line, that of the high frequency 3rd order
system by the two-dotted line, that of the two-mode model of the
3rd order system by the bold solid line, and that of the above
experimental results by the dashed line. The selection of
an equivalent linear system is made with the help of the response
power spectral density matching in sections 3.5 and 4.l4, assuming
the existence of some correlation between this and transient
response matching.

First note that the transient response duration of the bilinear
hysteretic system differs strongly depending on the value of Y/N.

Figs.1l6 and 17 show that this duration is minimum when the mean-
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square velocity response in stationary state is minimum. For the
moderately nonlinear hysteretic system this occurs between Y/N = 2
and 3 and for the nearly elasto-plastic hysteretic system between
Y/N = 1 and 2, both giving the transient duration of about 3 to 4
times the undamped natural period of small amplitude response.
On the other hand, the strong-motion portion of earthquakes
usually have an excitation duration of at least 5 to 10 times
the natural period of the concerned structure. Hence, for the
bilinear hysteretic system in the situation of Y/N giving the
minimum mean-square velocity response the stationary state response
is more significant than the transient one from the structural
design point of view. However, for the bilinear hysteretic systenm
in other situations the transient response becomes significant
due to the long duration time to reach the stationary state
motion, Note, though, that this duration is shortened by the
presence of viscous damping in the bilinear hysteretic system.
Secondly, compare the transient response of the bilinear
hysteretic system with that of the equivalent linear systems.
In the moderately nonlinear hysteretic case the equivalent 2nd
order linear system and the two-mode model of the 3rd order linear
system give almost the same transient response and both can
approximate well the experimental mean-square displacement and
velocity response, except near the linear system response region,
say Y/N = 15. The failure in this last situation is apparently

due to the poor prediction of the stationary state response.



On the other hand, in the nearly elasto-plastic hysteretic case,
the transient response differs appreciably among the investigated
equivalent linear systems, depending on the value of Y¥/N. When
Y/N = 1,0, the equivalent 2nd order linear system is the best
equivalent linearization of the original system. At this situation,
Ax/Y is nearly 10 so that the response power spectral density
approximation is also best by this system, referring to section 3.5.
When ¥/N = 5, the two-mode model of the 3rd order system is

the best linearization. At this situation, ?x/Y is nearly 1,0
so that this system is also the best to approximate the response
power spectral density of the original system. Note, however,

that in this situation, near the linear system response, all the
linearizations considered give almost the same transient response
and can approximate reasonably the experimental results.

From the above observation it 1s concluded that if the response
power spectral density is matched between the bilinear hysteretic
system and its linearization in the stationary state motion,
then the transient response of the corresponding linear systenm
can well approximate that of the original system, As a whole the
two-mode model of the 3rd order linear system is the best lineari-
zation améng those considered herein.

Hence, the transient response comparison between the viscously
damped bilinear hysteretic system and its linearization by the
two-mode 3rd order system is made in Figs.l8 and 19, 1In this

case, the system parameters of the linear model as determined in
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section 4.3 are used. In these figures the stationary state
response from section 4.1 and from the analog computer are also
presented, Note that the two-mode 3rd order linear system
succeeds quite well in matching both the mean-square displacement
and velocity response in viscously damped bilinear hysteretic
cases, except in the particular case of Y/N = 15 for the moder-

ately nonlinear hysteretic system.
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VI. SUMMARY AND CONCLUSIONS

Two analytical linearization techniques for hysteretic
systems in stationary random motion which have been separately
proposed in the past are combined here, One of the techniques is
Krylov-Bogoliubov method with certain small nonlinearity assumptions

as proposed by Caughey,l5)

and the other is the power balance
method proposed by Karnopp.l?) The former method is derived from
the mean square minimization of the difference between the equations
of motion for the bilinear hysteretic system and the 2nd order
linear system with the same mass, This minimization gives two
equivalence conditions concerning the equivalent frequency and
the equivalent damping factor. The latter method is based on
establishing an energy loss equivalence per unit of time between
the two systems. However, it was demonstrated in section 3,1 that
this equivalence gives a requirement which is closely related to
one of those in the Krylov-Bogoliubov method. This requirement
is referred to as the energy dissipation matching criterion.
In this study this requirement is used in conjunction with the
other requirement from the Krylov-Bogoliubov method, which is
called the average frequency matching criterion.

When predicting the root-mean-square (rms) displacement
from the criterion of matching energy dissipation per unit of time,
it was found that much attention must be paid to the average
duration of hysteresis energy dissipation cycle. This cycle

was found to have different duration than the cycle of the mass
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response (or the average frequency of the mass response).
Reference (10) reports that for moderate values of response
level over yield level the bilinear hysteretic system response
exhibits a typical wandering motion of the central axis in its
time history, and that the response is like small oscillations

at the small amplitude natural frequency superposed on this low
frequency wandering. It appears that the low frequency component
primarly represents motion across the Coulomb friction slider in
the model. The average frequency across this slider is strongly
related to the slope of restoring force curve beyond yielding,
denoted by oK, which justifies taking the reduced frequency
after system yielding as the average frequency of the hysteresis
energy dissipation cycle. The rms displacement comparison
between the above prediction and the experimental resultslo)
confirmed this hystereslis energy dissipation cycle. TFor the
prediction of the rms velocity response, the average frequency
matching criterion was used, together with the above prediction of
the rms displacement, As a result, significantly improved
predictions both for the rms displacement and velocity response
were attained, without specifying the parameters of the linearized
system,

WVhen one is concerned with a bilinear hysteretic systenm
response analysis due to earthquake excitation, response matchings
in non-stationary motion are desired for the equivalent linear
system, If the earthquake motion is simply approximated by

a stationary motion of a limited duration, as is frequently
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assumed, then the more general nonstationary problem is reduced

to the transient problem of the system response building up to its
stationary state. Various equivalent linear systems are concelvable,
all of which can satisfy the energy dissipation matching per unit
time and the average frequency matching criteria mentioned above.

In this investigation, the usual 2nd order linear system and

a model with two uncorrelated 2nd order modes are first considered.
These linear systems, although they approach to the same stationary
response levels, show different transient response behavior,

It was shown that there exists a correlation bhetween matching this
transient response behavior and matching the stationary response
power spectral density. For the comparison the experimental

results from Iwan and Luteslo)

were used for power spectral density
and Shah's experimental result%?%ere used for the transient response.
As a further step of equivalent linearization, a 3rd order
linear system and its uncorrelated two-mode system are also
considered. The 3rd order linear system considered herein has
the same mass, springs and dashpot as the hysteretic model, but
it also has an additional viscous damper replacing the Coulomb
slider and representing the hysteresis energy dissipation due to
system ylelding. This system was shown to have an average
frequency of [ w, across the additional viscous damper when no
viscous damping effect existed in the original system, which is
consistent with the hysteresis energy dissipation cycle used in

the above energy dissipation matching criterion. Since the energy

dissipation per unit of time is the same for any conceivable linear



- 65 -

system in stationary motion as long as they have identical mass
and are subjected to identical Gaussian white noise excitation,
the energy dissipation matching criterion gives the same rms
displacement for the 3rd order system as for the 2nd order system.
However, the 3rd order system considered in this investigation,
has a rather fixed average frequency either near the natural
frequency of the initial stiffness =--= high frequency 3rd order
system, or fairly near the reduced frequency after the systenm
yielding ~=~ low frequency 3rd order system. Thus this system
can not necessarily result in velocity matching with the original
system. Of course, one can get a good prediction for the rms
velocity response by using the average frequency matching criterion.
In this case, however, one must take the two-mode system as

the equivalent linear system,

For the response power spectral density matching and the
transient response matching investigations of the 3rd order
systems, the system parameters must be explicitly determined.

In the viscously damped hysteretic case, it is very difficult

to evaluate these parameters for the two-mode 3rd order system in
order to satisfy the energy dissipation and average frequency
matching criteria. Fortunately, an alternative determination
adopted in section 4.3 resulted in better prediction for the rms
displacement than that from the energy dissipation matching
criterion in the most concerned nonlinearity situation for the

nearly elasto-plastic hysteretic system.
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The transient response matching was also investigated for
the two-mode 3rd order system and was compared with the results
of the 2nd order systems. It was observed that there was a greater
variation of velocity response than displacement response amoﬁg
the different linear models, particularly near the nonlinearity
situation where the minimum value of stationary velocity was
attained. As a whole, the two-mode 3rd order system proved to be
the best linearization, and the transient respénse matching by
this system was improved for the nearly elasto-plastic case as
the viscous damping effect was increased in the bilinear hysteretic
system up to 5 % of critical damping.

In structural design practice, the transient time before
reaching stationary response is one of the significant factors.
This time depends strongly on the ratio of yield level to excitation
level in the bilinear hysteretic system. For the yield level
which gave the smallest stationary wvelocity response for a particular
excitation level, this duration of transient response was about
3 to 4 times the initial natural period. In other situations

the transient response continued for & much longer time.
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Appendix A

A prediction of the average frequency

When the bllinear hysteretic system is subjected to random exci-
tations, its average frequency defined by the ratio of the rms
velocity response to the rms displacement response is expected to
be a function of /Y. This theoretical prediction is made here
based on the resonance frequency 1n the harmonic mtion.

This frequency is deduced by Caughey,al) assuming the slowly

Varying response amplitude and phase, as

{%(A)z { ! y for ALY
Wo

o+t [cos(i- - 2(1-FHX(1-1) ) for A>Y

(4.1)

where A is the amplitude of the bilinear hysteretic system in
resonant motion,

For random excitations, 1f the system is assumed to behave
with the above resonance frequency corresponding to its amplitude
at any cycle, then the mean square expectation of the resonance

frequency is found from

(chA>) ] = f: (ﬁ’#)zf(ﬂ)a@ (A.2)

The assumption of the Rayleigh distribution of Eq.(3.8) for p(A)

yields



- 71 -

2
0 R

el v S [el- ) - 2Pl e

2
+ (1-0)(1-€ 2) (4.3)

where Y = ?%;

This expression is plotted as the dotted line in Fig.3 for

comparison with the average frequency obtained experimentally.
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Appendix B

Response characteristics of the 3rd order linear system

The governing equation of motion of Eq.(4.l) is rewritten in
a vector-matrix form as
m o] [¥% C 0] 1% lotky -ka| X ntt)
™ + * + —1
o o (% o cd'ke -Ka  ka| LK 0
(B.1)
This steady state harmonic solution can be found by substituting

X, = _Kie_ia)t
X2 = Xpet (5.2)
ft) = F, el
then
1= 2 Kk k - Cy k2, : C K)? % (B.3)
[ (-w+ 454 K2) 4 i SO} 52+ 2w) - (2)
5
X, Fo(B. 1)
. C 2 o\ D.
[ e d2) + L50) (g v1 50) —(3)
If the following notations are used
_ _k K1 +k2 _ G _1-o0 Kk
% = Ky+Ks “$=/—ﬁT—_' (EF'EZJJE‘ @ﬁ-;ia;“zf
(B.5)

the frequency response functions are obtained for the mass as

. 1-0
1% 4 w,
L-Zﬁu *

H(w):—":
217 F 1o 3 B 2 toby 2, vup
o "I W —[@(1-°4) +1}“)¢‘U + i(2f5+ zg_,z)“é‘” (“6;
B.
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and for the point 2 indicated in Fig.lO as

X
Hjly W) = ?2

o
B - 031
- on— 2{%2 { 2 (1)~ 1}ww+z(2p31+ )wwuxw
(B.7)
The rms response characteristics are calculated &)y 3)
for the mass
2 o P ]
A, A s |a; H3,1(w)| S w)dw (B.8)
et Lo
for the point 2
o\jﬁr o0 ” |2 (
= Heo )| S W) dw B.9)
b= [l
When the excitation is a stationary noise with intensity level So’

these integrals can be readly evaluated in an analytical way?B)

The results are

14 4f332 4 4 (351652
2 ms,  graye a0

0, =
1 2339} 461 B3 By Bat (B.10)
0 { + (1_&)2}{1".75;“—0&)}4-0((532
462 46,6
pl o Se I+ Ggp * T
(B.11)

T 2l o, Tl He &gt} 2yl
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Appendix C

Stationary state response (Alternative method 1)

Since the real part of the Ki of Eq.(5.135 is negative when

t—00, Eq.(5.20) becomes

2 /%
(%51, B vy (c.1)

i Zili st Zl J' S+- l" [}

where [%1.] is the diagonal matrix amnd [_0; , 18t denotes the

i%J
covariance matrix in the stationary state response. Substitution
of Eq.(5.12) and Eq.(5.18) into Eq.(C.2) and using Eq.(5.21) yields

the requirement relationship for [03: v 1st .
i%J

01005y )y + [05yle (@17 = -(B) (.3

After solving this equation componentwise, the covariance matrix

for yi is found as

4 N

2 2 2
g\}'g o:)Wz 0‘.7' 1Yz

N

0‘2 1 = \\ 2
[ y‘y', \Q,z 0}':?'3
N

~N
N n2
symmetric \9'\73'
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7LSe
e 15 (10 G )+ S5

[ ke O ki Ko Cy
Gt teke Tt 0
ke Gt _Ki
T Tz m m

AN Ct C2 K10
) (/c(;*'—!*‘??; i Ro ;)

(C.lt)
Using the notations of Eq.(B.5), the above is
TS, 4331(%e2 B3t (334
& = 2l {1+ Zatee il ol oty
4 @2 431332 2082 5 Bs2
1+ o/(l—o(.)2+ A1) Q((I_OL)fI_O( + fZ?l} o
\\\‘\ 2(52 2 (39
“\\_ mf 1ol + ﬁ&'d} - —j_—oz'”o
symmetric T~
Tl - s 4P (52
I+ (1-ot)? My,

!
(Cely)
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As for the mean-square velocity at point 2 in the 3rd order system

2
d\);z , one can deduce it from

2
0\; = (}?(23)25[0(1—7(2)]

2 =

_ ke 2 2 2
= (Z)(04 - %%+ 0x,) (. 5)
Substituting (f‘-a s 0"' , and o2 into this from Eq.(C.4) gives
1. Ths Y2
kg ko Ko
2 m C2 T So
o, = (C.6)

2 CK1 K: 1\ ko Ciy K1
i [ (1 5 )Tt )* )
or
Pl
2 TSo (1—)?

o, = .
T 204 {1+ I to%z }{1+%(1-d)}+d§’é

(c.6)'
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Stationary response (Alternative method 2)

From the linearity property of the adopted 3rd order system,
one can take the 3-dimensional Gaussian distribution for the
transition probability P in the Fokker-Plank equation in a stationary

state. That is

P(¥)s T,0 T35 0| T4 Tpor V303 &)

1 1 &2
- N - e _—- I -\'
PO Y20¥9)= % |sl% 2181 LZ %lS'u %% (.o

where [S| is the determinant of the covariance matrix for Iy i.e.

-

2 2 2

‘7;\/1 Dive Py
~ 2 2
S = \Ab’z A

Rt 2
L symmetric o \\73
and |s| is the adjoint matrix of the (i,g) element of S.

After substituting Eq.(C.6) into Eq.(5.9), one can get the following
slx simultaneous &lgebraic equations in the above six unknown

2
mean-square responses but one of which, 0y1y3 should be identically

zero due to the stationarity of the process.

K2 Ki + ks ZSo | 8] 51
K K S ISlz
2 2 _ TOo 23 =
2
[Sl31 S LS, 1Sz (C.8)

K K Ci 15133 |Sl23
{ -l -2.-:-|§|23 = 1Sl + 7SS, st C°
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“19u - Kig Kt g, + g, - s, e _

S c -
22018l —(—§f+7’)|§| =0

These equations give the same solutions as Eq.(C.4).
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