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ABSTRACT 

EQUIVALENT LINEARIZATION OF A RANDOMLY EXCITED 
YIELDING OSCILLATOR 

fcy 
Hirokazu Takemiya 

Equivalent linearization of bilinear hysteretic systems 

subjected to a white noise-excitation is attempted by using 

2nd and 3rd order linear systems. The bilinear hysteretic 

systems considered have the slope ratio between the initial 

and the reduced stiffness of ol/= 1/2 (moderately nonlinear case) 

and - 1/21 (nearly elasto-plastic case). The technique is to 

match both energy dissipation per unit of time and average 

frequency between the original system and its equivalent linear 

system in stationary motion. In the 2nd order linearization 

these criteria are essentially the same as the requirements 

from the Krylov-Bogoluibov method. However, special attention 

is given to the estimation of the hysteretic energy dissipation 

per unit of time, resulting in improved predictions of stationary 

levels of root-mean-square displacement and velocity response. 

Satisfying the above matching criteria does not require 

explicit specification of the parameters in the equivalent linear 

system. In this investigation several linearization matching 

the above criteria are considered. These include: the usual 2nd 



order linear system, a model with two uncorrelated 2nd order 

modes whose undamped natural frequencies correspond to the 

initial stiffness and the reduced stiffness of the bilinear 

hysteretic system, a 3rd order linear system which has the same 

stiffness arrangement as the bilinear hysteretic system model 

but replaces the Coulomb friction slider in the original system 

by a viscous damper, and a model with two uncorrelated 3rd order 

modes which have the same root-mean-square displacement. 

A severe test of the equivalence to the original system is 

executed by comparing the response power spectral densities. 

After getting the specified equivalent linear systems, 

their transient root-mean-square responses are compared with 

the experimental results. Tor this response analyses, the Rice 

method is applied for the 2nd order linear systems and the 

Markov process approach is taken for the 3rd order linear systems. 

As a result, a correlation between the stationary response 

power spectral density matching and the transient root-mean- 

square response matching is found. As a whole, the two-mode 

3rd order linear system proves to be the best linearization 

among those considered herein. 
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SUMMARY OF NOMENCLATURE 

Symbol Explanation or Definition 

À amplitude of vibration 

fAil 

E[ • J 

see Eq.(5.8) 

see Eq.(5.8) 

expectation 

(E.D.)b energy dissipation per unit of time in the 
bilinear hysteretic system (BHS) 

(E.D.)2nd 
energy dissipation per unit of time in the 2nd 
order linear system (2LS) 

(E.D.)3rd 
energy dissipation per unit of time in the 
3rd order linear system (3LS) 

F 
O 

K2)2(«) 

amplitude of the periodic excitation 

frequency response function of the two-mode 
2nd order linear system (2M2LS) 

frequency response function of the equivalent 
2nd order linear system (E2LS) 

H3,1(<U) 
frequency response function of the mass in the 
3LS 

ïï3i2to) frequency response function of point 2 in the 
3LS(see Fig.10) 

H3,1,2(W) 
transfer function of the two-mode 3rd order 
linear system (2M3LS) 

transfer function of the low frequency 3rd order 
linear system (LF3LS) 

H
3,1,H

W) 
transfer function of the high frequency 3rd 
order linear system (HF3LS) 

H.E.D. hysteresis energy dissipation per cycle 

H measure of the excitation intensity, see Eq.(2.5) 

R(-r) auto-correlation function 
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Symbol Explanation or Definition 

So level of white noise 

S covariance matrix of y^ 

1 s 1 determinant of S 

tSJil 
Y 

adjoint matrix of the (i,j) element of S 

yield level 

raj see Eq.(5.7) 

c viscous damping coefficient in the BHS 

ci 
equivalent viscous damping coefficient in the 
3LS 

C2 
equivalent viscous damping coefficient representing 
the hysteresis energy dissipation in the 3LS 

Ceq 

erfc( • ) 

viscous damping coefficient of the E2LS 

complementary error function 

see Eq.(5*7) 

h(t) impulse response function of the linear system 

i imaginary unit 

k small amplitude stiffness of BHS 

*1 
reduced stiffness after BHS yielding 

keq equivalent stiffness of E2LS 

m mass 

ms mean-square response 

P transition probability density function 

PA(U) probability density function for random amplitude 

operation matrix defined in Eq.(5.12) 

t 
1 

time 

X displacement 
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Symbol Explanation or Definition 

W 
state vector, see Eq.(5*7) 

{ziî state vector, see Eq.(5*ll) 

fZiol 

d 

initial state vector 

slope ratio in the BHS 

flo 

^eq 

^2L’ PzB. 

P 31’ ^32 

fraction of the critical viscous clamping in BHS 

fraction of the critical viscous damping in E2LS 

damping factors in the 2M2LS 

damping factors in the JLS 

r fraction of the ms response contributed from the 
LF3LS in the 2M3LS 

£(.) Dirac delta function 

5 

7 

fraction of the critical viscous damping in the 
2LS 

*L 
eigen values of characteristic equation (5.13) 

see Eq.(5*18) 

? 

V X 

0*x 
3,1 ,L 

root-mean-square (rms) displacement 

rms velocity 

rms displacement of the LF3LS 

^•1«L 

3,1,H 

(fix) 

rms velocity of the LF3LS 

rms displacement of the HF3LS 

rms velocity of the HF3LS 

normalized restoring force-deformation 

a) circular frequency 
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Symbol Explanation or Definition 

Ù)Q 
undamped natural frequency of small amplitude 

CUeq undamped natural frequency of the E2LS 

^KB 
average frequency prediction from Krylov- 
Bogoliubov method with small nonlinearity 

UR 
average frequency prediction from the harmonic 
resonance frequency 

W3,l average frequency of the 3LS 

^b,l 
average frequency of BHS 

Cdd - P4 

(Uod ^eq /peq " ^ 

dt1 
ith order time derivative 

Dots over variables also denote derivatives with respect to time 



I» INTRODUCTION 

1.1. Background 

When the earthquake-resistant design of structures is 

discussed, the basic questions concern how well the structures 

will survive earthquakes, and which design parameters are the 

most preferable ones. Furthermore, it may be that these 

questions are best answered probabilistically rather than 

deterministically because of the uncertainties involved in the 

excitation, even assuming the structural properties are fixed. 

This means that the response randomness comes soley from the 

excitation through a completely prescribed structure. Hence, 

the finding of a design solution must involve the statistical 

excitation characteristics. 

When the excitation intensity is small, the corresponding 

structural response remains within the yield level of strength 

of the composing material, then the linear response analysis 

will be enough for designing. However, when a structure is 

exposed to a strong motion, its response will certainly exceed 

its yield level, and the force-deformation characteristics are 

no longer linear but result in a deformed shape. It must be 

noted here that such a situation does not lead instantly to the 

structural collapse. We can observe many structures which 

have survived earthquakes although responding beyond their yield 

level. This fact tells us that the existence of another branch 



beyond the yield level in the force-deformation characteristics 

and the energy dissipation from the resulting hysteresis loop 

can contribute much to earthquake-resistance. Several types 

of such curves have been proposed depending on the type of 

structure, and the corresponding response analyses have been 

carried out by many people using particular earthquake records^ 

or some simulations * as input motion. 

However, the stochastic treatment seems to be more appropriate 

from the aforementioned reason. Rice's method-^ ' ^ and 

6) 7) 
the Markov process approach ;’ {J are available in this direction. 

But the former method is not applicable in the nonlinear system 

response analysis. In this case the governing equation is easily 

constructed by the latter method, but the solution is found only 

6) 
in limited cases. ' A hysteretic system is yet to be solved. 

One possible approach to such a system involves seeking an equiv¬ 

alent linear system whose response characteristics can approximate 

those of the original system. This procedure is very attractive 

for two reasons: first, the well established random linear 

theory^ ’ ^ can then be applied for the response analysis and 

secondly, the efficient use of modern digital computers are then 

available. 

Many people have been concerned so far with finding an equiv¬ 

alence between a hysteretic system and the 2nd order viscously 

damped linear system in steady state harmonic motion. Among 
o\ 

them Jennings0'listed six conceivable linearization techniques 

for the elasto-plastic hysteretic system, where the hysteretic 
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energy dissipation per cycle is equated between the original 

system and its linearization. Rea^' presented a geometrical 

interpretation for the Jennings results by using the Ramberg- 

Osgood type force-deformation curve and added one more approach. 

If a bilinear hysteretic system is exposed to a random 

excitation, its response becomes a function of the ratio of the 

excitation intensity level to the system yield level» as pointed 

out by Iwan and Lutes.Liextended one of the above harmonic 

results assuming a random amplitude distribution, but his approach 

turned out to give poor results when applied to the bilinear 

hysteretic system. Essentially the linearization techniques for 

random motion may be classified into the following three types; 

(1) the matching of response characteristics 

(2) the Krylov-Bogoliubov method 

(3) the dissipative energy equivalence per unit of time 

12) The first method was taken by Hudson. This author from 

response spectra curves evaluated the équivalant viscous damping 

factor in the 2nd order linear system with the same mass and 

the initial tangent stiffness of the hysteretic system. Lutes'^ 

showed several conceivable linearizations coming from different 

response matching criteria, using analog computer results. 

These methods, however, are not practical for general response 

prediction because of their dependence on preceeding experiments. 

The application of the second approach was first discussed by 

C6tughey1àÂd was applied to the bilinear hysteretic system in 

small nonlinearity situations by the author"!-^ According to the 
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10) 
Iwan and Lutes investigation, this method can predict the yield¬ 

ing system response satisfactorily for a moderately nonlinear 

system but not for a severly nonlinear case. The third method 

léî 
was proposed by Karnopp ' in the analysis of an elasto-plastic 

system and was called the power balance method. Karnopp and 

17) 
Brown assumed that the random hysteretic energy dissipation 

cycle is equal to the average frequency of the hysteretic system. 

That is, the authors assumed that the average energy dissipated 

per unit of time could be found by multiplying the average energy 

dissipated per cycle times an average frequency of the system. 

It is shown in this work that that assumption is unsatisfactory 

for a severely nonlinear system. 

Another possible method predicting the hysteretic system 

response is to find an equivalent nonlinear nonhysteretic system 

and to use Caughey's solution 1 of the corresponding Fokker-Plank 

19) 
equation, as Lutes 7 attempted. However, this approach is hard to 

extend to other than white Gaussian excitation cases. At the same 

time, the transient response is yet to be found for such a system. 

As for an equivalent linearization in transient motion, 

which is more important in earthquake engineering than is the 

linearization in stationry motion, few works have been done so far. 

12) 
Hudson’s work ' belongs to this field but his investigation was 

limited only to giving a crude estimation of the equivalent 

viscous damping representing hysteresis energy dissipation. 

20) 
Only Shah's work 'presents the response comparison in a transient 

situation between experimental results for a bilinear hysteretic 



system and its equivalent linearizations obtained in reference (13). 

1.2. Object and Scone 

The objective of this investigation is two-fold: first, 

to find a linear system with response characteristics nearly 

equivalent to those of a bilinear hysteretic system in stationary 

random motion when subjected to a stationary Gaussian white noise 

excitation; secondly, to check this "equivalent" linear system 

to see whether it is also able to predict the transient response 

of the original system. 

As for the bilinear hysteretic system, two typical ones 

whose experimental results are avallable^^are considered, one 

of which has the slope ratio between the initial sfiffness and 

the reduced stiffness after the system yielding as d = 1/2; 

and the other of which has oi = 1/21. In this thesis, the former 

system will be referred to as the moderately bilinear hysteretic 

system and the latter as the nearly elasto-plastic hysteretic 

system. 

Herein, the term "equivalent linear system" is used for 

a linear system which can approximate both the root-mean-square 

(rms) displacement and rms velocity of the bilinear hysteretic 

system. Both of these response characteristics are needed in 

predicting the maximum response or in dealing with the first 



- 6 - 

passage problem of the original system. These quantities are 

functions of the ratio of the excitation intensity level to the 

system yielding level, as is reviewed in Chapter II. 

The linearization technique adopted is based on matching 

energy dissipation per unit of time between the bilinear 

hysteretic system and the linear system, as well as matching 

average frequency between these systems. First, these criteria 

are applied to the 2nd order linear system in Chapter III. 

In this case, these requirements are the same, in essense, as 

the Krylov-nogoliubov linearization. The energy matching criterion, 

requiring no specific linear system due to the fact that any 2nd 

order system dissipates the same amount of energy per unit of time^^ 

is concerned with the prediction of the rms displacement response. 

On the other hand, the average frequency matching criterion is 

related to the prediction of the rms velocity response. 

It is possible to specify the 2nd order system linearizations 

satisfying the above matching criteria. Then, as a severe test 

of the equivalence to the original system, response power 

spectral density matching is attempted for those systems. Two 

systems are considered in this part of the investigation. The 

first is the usual 2nd order linear system with the same mass as 

the bilinear hysteretic system but with the stiffness and the 

damping coefficient depending on the nonlinearity situation. 

The second system has two uncorrelated 2nd order modes, where 

the one modalfrequency corresponds to the initial stiffness and 

the other to the reduced stiffness of the bilinear hysteretic 
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system. 

As a further step to linearization of bilinear hysteretic 

systems, the 3rd order linear model of Fig.10, which has the same 

stiffness arrangement as the bilinear hysteretic system model of 

Fig.2 but replaces the Coulomb slider in the original system by 

a viscous damper, is considered in Chapter IV. As the linearization 

technique, the energy dissipation matching per unit of time is 

applied. Since the 3rd order linear system is found to dissipate 

the same amount of energy per unit of time as the 2nd order system, 

it results in the same prediction of the rms displacement. But 

in this case the average frequency is confined in the vicinity 

of the natural frequency of the initial stiffness or of the reduced 

stiffness of the bilinear hysteretic system, such that velocity 

matching cannot be achieved, in general. Therefore, a model 

having two uncorrelated 3r(* order modes is devised and then 

average frequency matching is executed. This two-mode model of 

the 3rd order linear system is checked in the frequency domain 

(response power spectral density) for representative nonlinearity 

situations. 

After getting the above equivalent linear systems, all of 

which yield the same rms displacement and velocity response in 

stationary motion, they are compared in the transient response 

region with the experimental Results in Chapter V, where Rice's 

method^ ’ "^is taken for the response analysis of the 2nd order 

7) 
linear systems and the Markov process approach'' for the 3rd order 

linear systems. 



- 8 - 

The last Chapter VI gives the conclusions drawn from 

the investigation reported herein. 



II. BILINEAR HYSTERETIC SYSTEM 

2.1. Description of the system 

A bilinear hysteretic system is the nonlinear system having 

the normalized restoring force-deformation characteristics of 

Fig.l. This figure represents steady state response with amplitude 

A and yield level of Y. Fig.2 is an illustration of such a con¬ 

ceptual mechanical model, and the corresponding governing equation 

can be written as : 

to* + ck + K<PW * 

* + + CûO pw = At) 

, the mass 

, undamped natural circular frequency of small 
amplitude response 

, small amplitude stiffness 

, reduced stiffness after the system yielding 

, fraction of critical viscous damping for small 
amplitudes 

, bilinear hysteretic restoring force character¬ 
istics chosen to have an initial slope of unity 
and the second slope 01= k^/K 

, excitation force 

and the dots over variable x denote derivatives with respect to time. 

No exact response characteristics of such a hysteretic system 

due to a random excitation of f(t) have yet been obtained analy- 

(2.1) 

(2.1)' 

or 

where m 

K - ki + (<2 

ki 

@0' 

<P(X) 

/nfii) 
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tically. Experimental investigations on such systems, on the other 

hand, have been made so far by many people, and extensively by 

Iwan and Lutes. 

2.2. Root-mean-square Response 

This section gives a brief description of the experimental 

results for the rms response of the bilinear hysteretic systems, 
10) 

as obtained by Iwan and Lutes from an analog computer investigation. 

These results will be used to check the accuracy of the approximate 

methods presented here. The authors considered the excitation as 

a Gaussian white noise. Using a two-sided power spectral density, 

which is convenient for analytical response investigation, gives 

the auto-correlation function as 

fcfr) = 2TiSjK) (2.2) 

The SQ here is one-half of that used by the authors since they 

used a one-sided definition of power spectral density. 

In the hysteretic system, the response level is a function 

of the excitation level and the yield level. This is the essential 

difference of the hysteretic system from the linear system for 

which the response is direct proportional to the excitation level. 

Jbor a linear system represented by the governing equation of 



11 - 

X + 2QùJ0 x + (û, x = /(t) (2.3) 

the rms displacement (h* and rms velocity 0^ ^ can be 

expressed in a nondimensional form as 

J2 So J2 So £0o (2.4) 

The above authors presented the experimental rms displacement 

and velocity normalized by 

(2.5) 

and Nil. t respectively. The dashed lines in Figs.5*6,7,8,13 and 

14 are such experimental results reproduced from the reference (10), 

which, clearly indicate the hyèteretic system response deviation 

from the linear system response of the initial stiffness. Note 

significant decrease and sometimes significant increase in rms 

which produces the least response for a given excitation level in the 

slightly viscously damped bilinear hysteretic system and the rms 

displacement increases monotonically with the decrease of the 

yield level in the 5 % fraction of critical damped case of the 

nearly elasto-plastic hysteretic system. The rms velocity is 

always decreased and has the least response at a certain yield 

level for a given excitation level. 

that a change in the yield level sometimes results in 

displacement response and that there exists a yield level 
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The limiting cases of the extreme nonlinearity situations 

of ï/N-é-00 or Y/N-^O are intuitively taken as linear systems 

governed by the equation of 

m K + cx + Ax = mftt) (2.6) 

or 

X + 2$QX + 11
 

*-
4

-,
 

3
 

(2.6)' 

where Q = (0, or £ » depending on Y/N-^ W or Y/N-rO, 

respectively, and = (3ou)0 . 

are found as: 

for the rms displacement 

_ LÏÏL 
ri 2 JP0 

fax 

~W 7i 

for the rms velocity 

1 w yjm 

_/ Pc 

Then the rms response characteristics 

as Y/N-*’** 

as Y/N-^O 
(2.7) 

as Y/N-»o° or as ï/N-»-0 (2.8) 

These values make the response asymptotes for the corresponding 

response, which are drawn in chain lines in Figs.7»8,13 and Ilf. 

2.3. Average frequency 

One measure of the average frequency of the mass 

of the oscillator of Fig.2 is given by the ratio of the rms velocity 

response 0^ to the rms displacement response i.e. 

(2.9) 
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It will be shown that knowledge of this quantity as well as the 

energy dissipation per unit of time give enough information for 

predicting the bilinear hysteretic system displacement and 

velocity response. 

Lutes' experimental results defined by Eq.(2.9) is reproduced 

from reference (13) for the cases of d = 1/2 with (30= 0 % 

and of 0(= 1/21 with (3# = 0 % in Fig. 3 by the dashed lines. 

One can note from this figure that the average frequency of the 

bilinear hysteretic system varys continuouély from the natural 

frequency a)0 of small amplitude response to the reduced frequency 

JS"aû0 of the second branch stiffness as the value ^
X/Y grows. 
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III. EQUIVALENT LINEARIZATION BY THE 2ND ORDER SYSTEM 

3*1* Equivalent 2nd order linear system 

Consider the 2nd order linear system of Fig.4 as a lineari¬ 

zation of the bilinear hysteretic system of Eq.(2.1) when 

subjected to the random excitation of Eq.(2.2). The governing 

equation of motion of this system is expressed as 

m X + Cn X + kef X =ti)f(i) (3.1) 

or 

X + 2x ■+■ iWgy X =» ^(t) (3.1) 
where 

(V JjZbj 
and these parameters are to be determined as demonstrated below. 

The restoring forces in Eqs.(2.1) and. (3.1) can then written 

as Cx + K^(x) and C x + K x , respectively. Multiplying 

these restoring forces by x gives the rates of energy dissipation 

in the two systems. Equating the expectations of these values of 

energy dissipation per unit of time yields 

C£[X] + /C£f^(X)Xj « + Aey£fXXj (3.2) 

Noting that E[xx] = 0 in the stationary state motion, one can get 

-+ KEfWXj = CegE (3.3) 
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or the equivalence per unit mass per unit of time 

@ep = ft + ~2 £ [x *3 (3.3)' 

Similarly, if both restoring forces are multiplied by x and then 

their expectations are equated, one can get 

A'&[<P(X))(] = AeqEtx\I (3.4) 

or the equivalence per unit mass 

£[(P(X)X2 

El A 
(3«4) ' 

i i 
Eqs.(3.3) and (3.4) are exactly the same as are obtained from 

the Krylov-BOgoliubov method.However, in calculating 

E$0(x)x] and E[^(x)x] the procedure used in this work differs 

15Î 
from that previously used ■" with the Krylov-Bogoliubov method. 

3*2. Average frequency 

The quantity (0 in Eq.(3.1)' is the same as the average 
eq 

frequency as defined in Eq.(2.9). When the narrow-band process 

is assumed for the bilinear hysteresis response, 

CO 

ewm] =j-£Mc(A)] = (3.6) 
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where p(u) is the probability density function of random amplitude 
A 

A, and 

Sic 

CM) = cos)/, (p(AtosŸ)ch/ (3.7) 

15) i 
Under the above assumption, Caughey 'evaluated Eq.(3.4) by 

taking the Rayleigh distribution for A, which has probability 

density of the form 

Ux 

m = if e (3.8) 

where 0% is the rms displacement. The result is 

L ^ 

(ta) = 1 - | (i3 + TV) (5- l)* e 
vds (3.9) 

\ % 1 

2 
where ^ 

7 = “PS" 

This average frequency prediction was compared with the analog 

computer result by Lutes^^ and was comfirmed to be able to match 

very closely the latter for the moderately nonlinear case but 

deviates appreciably for the nearly elasto-plastic case of 

between 0.7 and 10. 

Another possible prediction of the average frequency is 

an extension from the harmonic resonance frequency of a bilinear 

22) hysteretic system. Using the Rayleigh amplitude assumption of 

Eq.(3.8), one can evaluate the expectation of the square of the 
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resonance frequency to obtain sin average frequency of 

1 „** 
e *) (3.10) 

where 

This derivation is given in Appendix A. 

The average frequencies found by Eqs.(3»9) and (3.10) are 

compared with that from the experimental investigation in Fig.3» 

Note that Eq.(3«9) Is able to predict the average frequency 

defined by Eq.(2.9) for the bilinear hysteretic system closer 

than Eq.(3.10). Furthermore, it was shown in Ref.(13) that there 

is no appreciable variation of the average frequency due to the 

viscous damping effect except for °x/Y <0.7. Hence, Eq.(3«9) 

will be used to predict the average frequency of the original 

system in the later investigation. 

3.3« Energy dissipation per unit of time 

As already noted, Eq.(3.2) represents the energy dissipation 

per unit of time. In this investigation the hysteresis energy 

dissipation per unit of time E[^(x)xJ is estimated from 
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the hysteresis energy dissipation per cycle which is the integrated 

quantity over the hysteresis cycle. Furthermore, this quantity 

is a convenient measure to use since its magnitude is the area 

enclosed in the hysteresis loop, and can be found, referring to 

the restoring force-deformation diagram of Fig.l, as 

(H.E.D.) 
0 

4Y(A-Y)K(1- Di ) 

, for A <Y 

, for A >Y (3.11) 

In converting from the energy dissipation per cycle to the 

energy dissipation per unit of time it must be noted that the 

energy dissipation cycle due to system yielding may be of 

different duration than the cycle of the mass response of the 

bilinear hysteretic system which affects the viscous energy 

dissipation. One can easily recognize from Fig.2 that the former 

frequency où^ is to be determined from the' response across 

the Coulomb damper (point 2 in the same figure), while the latter 

frequency <0.^ is to be determined from the mass response. 

Therefore, the total expected energy dissipation per unit of time 

in the bilinear hysteretic system can be expressed as 

E (E.D./unit time)^ = C E [x2) + E [|^H.E.D.)] 

(3.12) 

It is anticipated here that varies such that it is almost 

equal to Ct)Q when the response exceeds slightly the yield level Y 

and as the response greatly exceeds Y it approaches S^(0Q because 
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the stiffness component otK (spring 1 in Fig.2) then dominates the 

bilinear hysteretic system response which is related to the motion 

of the point 2 in Fig.2. Thus one can reasonably expect that 

JÔZ^o ^ (rfb2 ^ (3.13) 

This relation confines the expected hysteresis energy dissipation 

per unit of time as 

E [H. E. 0.] < £[ (H.E.D.)] < £[ H.E.D] 

(3.14) 

In the extrme cases such as A/Y-*- 1 or A/Y-*-^ the bilinear 

system reduces into the linear system with the initial stiffness 

K,or the one with the reduced stiffness tfK, respectively. 

Furthermore, the corresponding response appears as a narrow-band 

process if the viscous damping effect is small. In these cases 

the distribution of the amplitude A is certainly represented by 

the Rayleigh distribution of Eq.(3»8). This distribution is also 

assumed to apply for all other cases in this investigation, 

although this may turn out to be a crude assumption when A/Y is not 

either very large or very small.Hence,the expectation of hysteresis 

energy dissipation per cycle is evaluated from Eq.(3»H) as 

£[ H.E. E>0 = C4Y(U-Y)*U-oL)%(U) dU 
V 

= ZlWm-d’)'/ Q (3.15) 
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where erfc(*) denotes the complement scry error function defined by 

er-fccw) = 1 - -ÿf | e 
u -t2 

dt (3.16) 

3.4. Prediction of the rms response characteristics 

The linearization requirements of Eqs.(3»3) and (3.4) are to 

match the energy dissipation per unit of time and the average 

frequency between the bilinear system and the linear system, 

as is stated in section 3.1* In this section, matching energy 

dissipation per unit of time is first considered in stationary 

17) 
state motion. This method was used before by Karnopp and Brown 7 

who called it the power balance method, but the authors took 

the average frequency of Eq.(3»9) as the energy dissipation cycle. 

Therefore, their rms response predictions come out the same as 

those obtained by Iwan and Lutes^0^using the Krylov-Bogoliubov 

method. 

In what follows, an improved prediction of the rms displacement 

is achieved by considering the bounds for the expected hysteresis 

energy dissipation of Eq.(3.14)« This technique, however, does 

not necessarily result in velocity response matching with the 

original system even when displacement response matching is 

achieved. To overcome this shortcoming, the average frequency 

matching between the hysteretic system and its linearization is 

also considered, taking the prediction by Eq.(3»9)* Since the 
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average frequency is related to the viscous damping effect in 

the bilinear hysteretic system, this matching criterion is of 

great significance in the linearization of the viscously damped 

bilinear hysteretic system. 

For convenience sake and at the same time for a check of 

the accuracy in predicting the bilinear hysteretic system response 

by the following method, a Gaussian white noise excitation f(t) 

of Eq.(2.2) is used. Then the corresponding response character¬ 

istics of the linearized'system are easy to obtain from the input- 

output relationship in linear random vibration theory^* ^when 

the frequency response function of the concerned response H(id) 

is known, as 

where i is the imaginary unit. Substitution of Eq.(3*18) into 

Eq.(3.17) for H(hJ) yields the rms displacement response ^x and 

the rms velocity response of 

The frequency response function of Eq.(3.1) is given as 

l 
(3.18) 

(3.19) 
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The 2nd order system of Eq.(3»l) can dissipate the expected 

energy per unit of time through its viscous damper ~ 

E[(E.D./ unit time)2nd^ = C E[x2] = 2mûJeÿ(3e?fi£ 

(3.20) 
Substitution of the rms velocity response from Eq.(3.19) into 

Eq. (3*20) yields 

E[(E.D./ unit time)2nd] = m*s0 (3.21) 

Note that the energy dissipation per unit of time is independent 

of and C^. Then the energy dissipation equivalence criterion 

between Eq.(2.1) and Eq.(3»l) gives, from Eq.(3»3) 

4- D.)] Œ miLS0 (3.22) 

Introducing the average frequency one can get 

= mus. (3.23) 

where the Krylov-Bogoliubov prediction 6)^ in Eq.(3.9) will be 

substituted for 6)^ from the average frequency matching criterion. 

3*4.1. No viscous damping case (C= 0) 

In Eq.(3.23), substitute the bounds of Eq.(3.14) for the 
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expected hysteresis energy dissipation per unit of time, for 

the case where there is no viscous damping effect in the hysteretic 

system. Hence, 

E[H E.D.] < toTLSo < £[H.E.V} (3.2*f) 

where E[H.E.D.J is given in Eq. (3*15) • Since the hysteretic system 

response varies with the ratio of excitation level to yield level, 

as stated in section 2,2., it is convenient to normalize Eq.(3*2^) 

by the measure of excitation given in Eq.(2.5). Thus, 

\2 ^ /, pc\ 

2(1-0^) eric (j^) - ^ — 2j5C(i-oC)erk(ifc) 

This relationship should give upper and lower bounds for the 

response &x/Y (or *VN) for a given Y/N. It is anticipated that 

in the limiting case Y/N-*• 0, the upper bound will give a good 

prediction for ^x/Y in connection with the remarks in section2.2. 

On the other hand, if Y/N->W, the lower bound is expected to be 

a good approximation for ^r/Y. 

Another possible estimation of the hysteresis energy dissipa¬ 

tion per unit of time is to postulate that its cycle is equal to 

the average frequency of response. This gives 

(3.26) 
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where AJ^may substituted from in Eq.(3»9) or from ü)^ 

in Eq.(3.10). The solution using ^or ^bl ^as keen Proposed 

17) by Karnopp and Brown. 

The above derived "upper" and "lower" bounds for ^*/Y as 

well as the predictions from Eq.(3»26) are compared with the 

experimental results from reference (10) in Fig.5. From the results, 

it is recognized that the "upper bound", which is derived from 

the lower energy equivalence in Eq.(3»25), is always the best 

approximation of *VN. In the region of Y/N of most concern, 

say, from 2 to 8, this "upper bound' gives almost the same value 

as the experimental results for the moderately nonlinear case 

(see Fig.5*1) and estimates the experimental results within 20 % 

underestimate for the nearly elasto-plastic case, (see Fig.5*2) 

The "lower bound" on the other hand, turns out to be a poor 

prediction in the whole region of Y/N. In the small nonlinearity 

situation ( ^/Y < 1), the hysteresis energy dissipation cycle 

might be expected to be the natural frequency &)0 for small 

amplitude response as discussed before. Nevertheless this 

assumption fails to match the rms displacement response. 

A conceivable reason for this may be attributed to the Rayleigh 

distribution assumption for the peak response process. It is 

reported in reference (19) that the distribution of the bilinear 

hysteretic system response is not Gaussian, especially around 

^Sr/Y =0.5 its deviation is strong. The relationship between 

this strongly non-Gaussian probability and the failure of equivalent 

linearization is further investigated in this reference. 
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The solution from Eq.(3»26) with is seen to give 

underestimation within 15 % error in the moderately nonlinear 
i 

case while failing in its prediction in the region of most concern 

for the nearly elasto-plastic case. Based on the above observation, 

the "low energy equivalence'1 of Eq.(5*25) will be used henceforth 

as the linearization technique. The reason why the "upper " bound 

of Eq.(3»25) is not really higher than the experimental results 

in the nearly elaso-plastic case, as is seen in Fig.5*2, may also be 

due to the Rayleigh distribution assumption for the random amplitude 

of bilinear hysteretic system response. In this case, the response 

comes out as a rather broad-band process in a fairly large range of 

^*/Y, as is investigated in section 3» 5»» so that the correspond¬ 

ing peak distribution will be between the Rayleigh and the Gaussian 

distribution. 

The rms velocity response is easily found, using the average 

frequency predicted by Eq.(3»9)» as 

O'* = 
akB <3.27) 

The bold solid line in Fig.6 shows the computation results for 

the nearly elasto-plastic hysteretic system while the thin solid 

line represents the prediction from the Krylov-Bogoliubov method 

with small nonlinearity,^^ and both are compared with the 

experimental results of the dashed curve. Although the rms 

velocity is directly affected by the prediction of the average 

frequency of the original system, Eq.(3.27) approximates well 
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the experimental results, giving an underestimate for the latter 

within 20 % error in the region of Y/N less than 0.5» an estimate 

almost the same in the vicinity of Y/N = 1 and an overestimate 

within 17 % error in Y/N between 2 and 15. On the other hand, 

the Krylov-Bogoliubov method with small nonlinearity gives always 

an underestimate within 20 % error for the experimental results. 

In the moderately nonlinear case, the rms velocity prediction by 

Eq.(3*27) is almost the same as the experimental results in the 

most concerned region of Y/N between 1 and 10. 

5.4.2. Viscously damped case (C ^ 0) 

For the viscously damped bilinear hysteretic system, the 

energy dissipation matching criterion Eq.(3.3) is put into the 

following form. 

ct>toK + ~ m’cs- <3-28) 

The use of the normalization measure of Eq. (2.5) leads to 

= ¥7? (3.29) 
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This gives the ratio of rms displacement to yield level for 

a given value of Y/N. The dimensionless rms displacements 

obtained in this way are plotted in Fig.7 together with the 

previous results of (30= 0 for the moderately nonlinear case for 

(30 = 1 % and for the nearly elasto-plastic cases for (3# = 1 and 

5 %. The dashed lines in the same figure are the analog computer 

results reproduced from reference (10). Note that the above 

prediction gives almost the same rms displacement response with 

the experimental results in the whole region of Y/N for the 

moderately nonlinear hysteretic system with 1 % viscous damping 

effect, and an underestimate within 15 % error for the nearly 

elasto-plastic case with the same viscousdamping but it loses 

the accuracy in the most concerned region of Y/N as the viscous 

damping effect grows and results in only 75 % prediction of the 

experimental result in the worst case when 5 % viscous damping 

exists. This is due to the descrepancy of the prediction of 

average frequency by Eq.(3»9) from as was seen in Fig. 3» 

However, it must be emphasized that the method presented here 

indicates a remarkable improvement of the response prediction 

when compared with other methods. 

When the nonlinearity situation becomes great such that 

^x/Y^>l, the average frequency Ct)^ approaches vGC(d0 and 

the complementary error function can be expanded in a series as 

«*(&) = -FT&/ + JP*®' - 1 
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Using only the first term of this series in Eq.(3.29) gives 

«P'&f + Jf- w2 

The first term being great compared with the second term, then 

in the limit one can get 

K _ _L[JL 
H 2 ]<*& (3.30) 

On the other hand, when the nonlinearity situation becomes small 

such that tyc/Y<§ 1, the average frequency it) approaches to CO0 

and the complementary error function has the expanded form of 

so that taking only the first term leads Eq.(3«29) into 

% 

The second term being again negligible compared with the first 

term, so that in the limit one can get 

// 
(3.3D 

Eqs.(3.30) and (3*31) indicate that in the above extreme non¬ 

linearity situations the hysteretic system turns out as the 2nd 

order system with initial stiffness or with reduced stiffness 

as was discussed intuitively in Chapter II. These phenomena are 
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clearly recognized in the corresponding regions of Fig.7, where 

the analytical predictions coincide with the experimental results 

and both approach to the asymptotes of Eqs.(3.30) or (3*31)■ 

The rms velocity response of the viscously damped bilinear 

hysteretic system is again found using the average frequency 

prediction of Eq.(3»9)» i.e., 

= OOKBO\? (3.32) 

Fig.8 shows the computation results, where one can see the 

almost coincidence between the prediction and the experimental 

result in the whole region of Y/N for the moderately nonlinear 

hysteretic system with 1 % viscous damping factor. However, 

the prediction gives an overestimate within 20 % error of 

the experimental result in the 1 % viscously damped nearly elasto- 

plastic hysteretic system and an overestimate within 15 % error 

in the 5 % viscously damped case. 

3.5. Power spectral density matching 

In the previous section, reasonably good predictions both 

for the rms displacement and rms velocity response of the bilinear 

hysteretic system in stationary state motion are obtained based 

on the criteria of matching energy dissipation and average 

frequency. However, different linearizations satisfying both 
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these matchings with the original system are now conceivable. 

Another severe check on the accuracy of the equivalence between 

the bilinear hysteretic system and its linearization can be made 

in the frequency domain by comparing the response power spectral 

density. This equivalence was first attempted by Lutes^^for 

the equivalent 2nd order linear system and its two-mode model. 

Note that Eq.(3»17) guarantees the rms response characteristics 

matching up to the higher order derivative of response if it exists 

when the response power spectral density is matched between two 

systems. However, a more complicated linear system will generally 

be required for this matching rather than the system matching 

only the rms displacement or the rms velocity, or both. 

3.5.I. Bilinear hysteretic system 

As is stated before, the bilinear hysteretic system response 

varys with the ratio of excitation to yield level. At the same 

time it must be emphasized that its response power spectral 

density shows a remarkable variation of shape depending on this 

ratio. Hence, it may be worthwhile to review this relationship 

from Iwan and Lutes' analog computer investigation.^0^ These 

authors presented the response power spectral density of the bilinear 
3 

hysteretic system in the form of bJ9 

In Fig.9, the dashed lines show the experimental results 

for representative cases of ^x/Y with no viscous damping. 



- 31 - 

It is noted in Hg.9.1 that the shape of the power spectral density 

of the moderately nonlinear case is close to that for a lightly 

damped 2nd order linear system, indicating a noticeable peak. 

However, the location of this peak is affected by the yield level 

Y and shifts continuously from the undamped natural frequency u)0 

of the small amplitude stiffness to the reduced frequency JSCcOo 

of the second branch stiffness as the value of ^x/Y becomes 

large. The peak is always bounded and it has its lowest value 

at approximately ^x/Y = 1.3» On the other hand, the nearly 

elasto-plastic hysteretic system is much more affected by the 

yielding. Iig.9»2 shows a predominant peak at ù)0 for small ^x/Y 

and a.tfâû)0 for large ^x/Y; however, the peak frequency shifting 

does not occur in the same way for this case as it does for the 

moderately nonlinear case for intermediate values of fy'Y. 

Rather, it appears that for this system the peak at o)0 decreases 

while the lower frequency components increase at the same time. 

This gives a mo no tonic silly decreasing curve with no predominant 

peak at all for ^x/Y between Zf and 9» This is indicative of 

a broad-bând response. At the same time, it is found that the 

low frequency power spectral density always appear like that for 

a linear system with the reduced stiffness. 
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3.5.2*. Equivalent linear systems 

For linear systems the response power spectral density in 

dimensionless form as above used is nothing but the normalized 

frequency transfer function, 6/^|H(&I) I . 

3.5.2.a. Equivalent 2nd order linear system 

Consider the system governed by Jüq.(3.1). Its frequency 

transfer function can be written as 

(3.33) 

The equivalent linearization criteria requiring both matching 

energy dissipation per unit of time and average frequency with 

the bilinear hysteretic system yield 

àJe? = CO KB (3.34) 

°-35) 

where 4)^ and are already obtained by Eqs.(3.9) and (3.28), 

respectively. This system, as is seen from Eq.(3»33)j can have 

only one predominant peak at frequency ^ eq when (?eq is small. 

Therefore, it may be of use in approximating the response power 

spectral density of the moderately nonlinear hysteretic system. 

But for the nearly elasto-plastic hysteretic system case its 
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application will be limited only to the nonlinearity situation 

^x/Y <1, considering the remarks in section 3.5.1. Fig.9.1 

shows the comparison of the analog computer results and its a 

approximation by using Eq.(3*33) for the moderately nonlinear case. 

Note that this system with stiffness and damping factor chosen as 

functions of <^x/Y can match satisfactorily the response power spectral 

of the hysteretic system only in great nonlinearity situations 

( 0y/Y ^1). In this case the transfer function of Eq.(3.33) has 

42|H^W)|— as ü —> 0 (3.36) 

This is the same tendency as for the bilinear hysteretic system 

described in section 3.5.1. But the approximation by Eq.(3.33) 

still has somewhat of a shortcoming for the small nonlinearity 

situation case, for then 

— 1 as (f) —* 0 (3.37) 

This is contrary to the remarks in section 3*5.1. 

3.5.2.b. Uncorrelated two-mode 2nd order linear system 

Lutes^^has suggested that an improved linear model can be 

devised for the nearly elasto-plastic case by taking a two-mode 

model of usual 2nd order linear systems, where the modal responses 

are assumed uncorrelated and one modal frequency corresponds to 
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the initial stiffness and the other to the reduced stiffness of 

the bilinear hysteretic system. This gives the linear transfer 

function of 

 \   1 1? 

ii - ($,)V+ v - fàrj1 * jp/jxfâfJ 
(3.38) 

where 

n C (0L- 0  „ X(l-ot)   

* {<*&*-faf} -{fàŸi 
(3.39) 

The response characteristics included above are already obtained 

by Eqs.(3»29) and (3*32), respectively. However, this method may 

be limited to the case where the above two modes are well separated, 

since the response of two modes whose natrual frequencies are not 

well separated can. not be expected to be uncorrelated. The correla¬ 

tion effect in this latter case usually reduces the two peaks of 

2 ?) 
of each mode into one. 

Fig.9.2 shows the approximation obtained in this way for 

the nearly elasto-plastic hysteretic system, hote that it has 

the same general tendency as the experimental response power 

spectral density; however, a slight descrepancy can be observed, 

which gives a lower value in the region -^<1 but a higher value 
tu» 

in the vicinity of -^ = 1. This discrepancy is partly due to 

the inaccurate prediction of the rms displacement and rms velocity 

response. Fig.9.3 shows the approximation by Eq.(3.38) for the 

moderately nonlinear cases. It is noticed here that such approxi¬ 

mation is only good in the strong nonlinearity situation ( ^x/Y>*l). 



- 35 - 

The worst case is 0"x/Y = 1.3 as shown in Fig.9**f, where the 

least response is observed. In this figure the response power 

spectral density approximation by Eq.(3*33) is also presented. 
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IV. EQUIVALENT LINEARIZATION BY THE 3RD ORDER SYSTEM 

4.1. Description of the system 

In this chapter, the linear model of Fig.10 is considered, 

with all elements taken the same as in the bilinear hysteretic 

system except that the Coulomb friction slider is replaced by 

an additional viscous damper. This kind of model is frequently 

used in the viscodeiastic theory. The corresponding governing 

equations of motion can be expressed as: 

/n Xi + Cj X| + kiXt + faCXi — Xi) s fP~f(t) 

C2 X2 ~ C ^ 1 — = 0 

where x^ and x2 are the displacements of the mass and across the 

second damper as indicated in Fig.10, and and C2 represent 

the equivalent viscous damping coefficients for the viscous and 

hystersis energy loss in the bilinear hysteretic system, respectively. 

Then the energy dissipation .in ^he original system due to yielding 

is replaced by that due to viscous damping in the proposed 

linear system. Intuitively one can recognize that this system, 
t 

when C2-^-oo , corresponds to the original system with Y-*co and 

both give a 2nd order linear system with a stiffness K = + k2* 

Similarly the original system, when Y-»0, corresponds to the new 

system with C2-^o and both give the 2nd order linear system with 

reduced stiffness oLK. 
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To obtain the rms response characteristics of the proposed 

linear system from Eq.(3.17) i its frequency response function 

first must be found. It is easily calculated from the steady 

state motion as is seen in Appendix B. The result is 

. 1-Oi (CÜ-. 
n^W + 1 

u~ H, .to) = 0 3,1 

2 @32 $32 

(4.2) 

where Q^ is the fraction of the critical viscous damping effect 

defined by 

Ci 
(4.3) 

and is the additional viscous damping factor representing 

the hysteresis energy dissipation defined by 

l-cc k2 

@32~ 2U)n 
(4.4) 

Note that Eq.(4.2) has the 3rd order power of frequency since the 

system is a 3rd order linear system. Similarly, the frequency 

response function of the point 2 in Iig.10 is found as 

The limiting cases of the bilinear hysteretic system with 

an infinite or zero yield level, being 2nd order linear systems, 

are governed by Eq.(2.6) and then their frequency response functions 
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are expressed as 

Q7 H m (4.6) 

where Q - cj9 or # = ol(09 i depending on the yield level Y-►00 or 

Y—»0, respectively, and ££> = @ U)0 • These extreme situations 

are the same in the 3rd order linear system. That is 

and 

as (4.7) 

as 0?2 —00 (4.8) 

where 
' _ Ci 

“ 2lôCùJ,m 

These frequency response functions imply that the natural frequency 

is ùJ0 when andJ3L(i)0 when and that the value of 

the viscous damping factor (?^ or (3^ is the same as in the 

above extreme cases. 

Substitution of Eqs.(4«2) or (4*5) for H(6/> in Eq.(3.17) 

yields for the mass response the mean-square (ms) displacement 

A 2 1LSa 

**>= 
i+üü^F 

4@3t&j2 
U(i-oC) 

(u 
(i-00 \J3 2 

(4.9) 
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and the ms velocity 

TIS0  

2@3SUO ( 1 + 

-ot) I-oL 
(4.10) 

and for the point 2 response the ms displacement 

_£(k_/_& + ft I 
TtS, Qt(t-UV J-* (W  

2$^' {l + 1*Mz}{i + M(i-u)} +0L& 
U-<i)*n (b, J fa 

(4.H) 

and the ms velocity 

d-£)s 

{uykê»î{u&(i-u)î + ctfë2 

(4.12) 

where the integration operation has been carried out by the 

residue integral formula.An alternative method for obtaining 

the above response characteristics appears in Appendix C. 

When the normalization is made for Eqs.(4«9) and (4.10) by 

the measure of Eq.(2.5)* one obtains 
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and 

f+ 

(%,)_ JL (t-oQ* i-oi- i-oi (4.10) 

4.2» Prediction of the rms response 

The 3rd order linear system defined by Eq.(4.1), when subjected 

to the random input motion of Eq.(2.2), can be expected to dissipate 

the enrgy per unit of time 

E [(E.D./unit time)^] = C1E[x£)+ C2Efx|) (4.13) 

2 * 2 
and when Etx^] and E rx2) are substituted from Eqs.(4.9) and 

(4.10), the right hand side of Eq.(4.13) gives m7tSQ, that is 

E[(E.D./unit time>3rd] = mfcSQ (4.14) 

This energy dissipation per unit of time is exactly the same as 

that for the 2nd order linear syètem, as is seen in Eq.(3.21). 

This fact might be expected from the fact that the energy dissipa^ 

tion per unit of time is related only to the mass as far as a white 

noise excitation is assumed. 1 Hence, the same rms displacement 

response values as shown in Fig.7 can also be predicted from the 

above 3rd order linear system by matching energy dissipation per 

unit of time, taking the same procedure as for the 2nd order 
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linearization. However, the rms velocity which is directly related 

to the average frequency may not he matched with the bilinear 

hysteretic system. But the previous consideration on the frequency 

response function suggests that the 3rd order linear system 

may have more flexibility than the specified 2nd order linear 

system. 

4.2.1. No viscous damping case (C = 0) 

When no viscous damping is assumed, as a special case, for 

the bilinear hysteretic system, the corresponding damping factor 

j3^ in the 3rd order linear system vanishes. The average 

frequency of this system is then found from Bqs.(4.9) and (4.10) 

by setting (3^ = 0 as 

&0 
= JBTf 1 (i-oc./ A 

& ( J_o0 2 ^ (4.15) 

which implies that tyffcJt= 1 when p^ = 0 and (0^ycà9- Jtj[ when 

^2 —*-00, as are seen in Eqs.(4«7) and (4.8), and monotonically 

decreases as grows. However, the value of is constrained 

if energy dissipation matching is achieved.. In particular, 

from Eq.(4«9) ^5 ^oun(* to 
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03, =^{dU-U)(^)2h Jt]ol(i-OLfi^f Ï7; (4.16) 

Note that there exist two different 3rd order linear systems 

which give the same rms displacement response but have different 

average frequencies. The variation is shown versus Y/N in 

Fig. 11, where 0^ always falls in the region less than 0.053 

or more than 0.60 for the moderately nonlinear hysteretic system. 

The corresponding values for the nearly elasto-plastic case are 

0.031 and O.36. Fig.12 illustrates how the rms displacement 

and the average frequency 4)^1 vai>y with the value of 

The small value of /?^2 
in the region I in this figure 

gives the average frequency as near the natural frequency for 

the initial stiffness, 0)g and the large value of ^2 in the 

region II gives it fairly near the reduced frequency for the 

second branch stiffnessJ5u)0. Henceforth, the 3rd order system 

of the smaller /7^2 is referred to as the high frequency 3rd 

order linear system and the one of the large 0^ as the low 

frequency 3rd order linear system. These values of average 

frequency are compared with the analog computer results in Fig.3. 

It is noted here that one may reasonably choose the low frequency 

3rd order linear system as a linearization of the bilinear 

hysteretic system in the large nonlinearity situation and the 

high frequency 3rd order linear system in the small nonlinearity 

situation both for the moderately and nearly elasto-plastic cases. 

But in the most concerned nonlinearity situation, say in the 
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region of ^/Y from 0.6 to 10, neither of the above 3rd order 

linear systems can approximate the experimental results for 

average frequency. This results in failure in matching the 

velocity response in that situation. The one-dotted and the two- 

dotted chain lines in Fig.6 are the case for the nearly elasto- 

plastic hysteretic system. 

To overcome this shortcoming of individual 3rd order systems, 

their combination is considered so as to produce average frequency 

matching with the original system. The simplest such model takes 

the total mean-square response as the weighted sum of individual 

responses, neglecting any coupling effects. Thus, the average 

frequency is expressed as 

^bi= ' T~s  
H 

(4.17) 

where i • The notations *Xj/1/Z,and <^1(H are 

the rms displacements of the low frequency 3rd order system and 

the high frequency 3rd order system, respectively, and anc* 

Hare corres
P°n<^-nS rms velocities. The weighting factor 

X' is the fraction of the mean-square response contributed by 

the low frequency system. This procedure is to adopt a two-mode 

linear system whose modes are 3rd order and uncoupled as a lineari¬ 

zation of the bilinear hysteretic system. Thus this model will 

be referred to as the uncorrelated two-mode 3rd order linear 

system. The left hand side of Eq.(4»17) will be replaced by 

Eq.(3«9) following the remarks in section 3«2. Then, T' is solved 
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as 

r= 
2 .2 

ÜKB Px3,i - <7\ *3 A H 

*3,*,^ — ^X3,t.H 
(4.18) 

Thus obtained rms velocity response is indicated in Fig. 6 by the 

bold solid line, which is of course identical with the prediction 

by the 2nd order linearization, since both are based on matching 

the average frequency to 

4.2.2. Viscously damped case (C V 0 ) 

In principle it should be possible to choose the two damping 

parameters and (or and $-52) ^or the m°des such that 

the response of the uncorrelated.1 two-mode 3rd order system 

matches both the rms displacement and velocity response coming 

from Eqs.(3.29) and (3*32). When the hysteretic system also 

contains some viscous damping (C 4 °)» however, the evaluation 

of the equivalence parameters becomes very difficult. The explicit 

evaluation of these parameters is desired since they are needed 

for consideration of response power spectral density and transient 

response. The following section presents an alternative approximate 

method for evaluating the parameters in the uncorrelated two-mode 

3rd order linearization of a hysteretic system containing viscous 

damping. 
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4.3* Alternative response prediction 

In this method the viscous damping coefficient C2 is taken 

to he the same as if were zero. Thus Eq.(4.16) is used to 

3rd order systems, as before. In order to match the energy 

dissipation between the other viscous damper and the viscous 

damper in the bilinear hysteretic system, the damping coefficient 

is determined from 

Therefore, the assumptions are that the effect of the viscous 

damping on the hysteresis energy dissipation is considered 

negligible and also that the effect of the damping on the 

motion of the point 2 in the 3rd order linear system is considered 

negligible. The 3rd order linear system with such obtained 

damping coefficients will certainly yield a slightly different 

response than that from Eq.(4«14) when the viscous damping effect 

grows in the bilinear hysteretic system. 

Introducing the average frequencies CO^ and 6^ Sives 

obtain @ ^ giving both a high frequency and a low frequency 

C,£lxb =C£f*/<J (4.19) 

(4.20) 

(4.20) 
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Furthermore, this equation is replaced by the following from 

the average frequency matching criterion: 

- 

When the forementioned two-mode 3rd order linear system is adopted 

as a linearization of the bilinear hysteretic system, this 

equation produces two different values for the viscous damping 

factor depending on the averaèe frequency of the 3rd order 

linear system. Substituion of and /?,_ thus obtained both 
31 

for the low and high frequency 3rd order systems into Eqs.(4.9) 

and (4.10) gives the corresponding system response characteristics. 

In applying the two-mode concept the rms displacements from the two 

modes are assumed to be the same, which is not exactly true but is 

is found to be acceptable when the viscous damping is small. 

The normalized rms displacement and velocity response 

obtained in this way are plotted in Figs.13 and 14 for the modera¬ 

tely nonlinear systems with (Jo= 0, and 1 % and for the nearly 

elasto-plastic ones with ($0 = 0, 1, and 5 %, and they are compared 

with the analog computer results. For the moderately nonlinear 

case the uncorrelated two-mode 3rd order system predicts almost 

the same values of rms displacement and velocity as the experimental 

results in the most concerned region when 0g = 1 but it loses 

accuracy in the small nonlinearity situation of ^*/Y < 0.7, 

slightly underestimating the experimental results, and in the 

large nonlinearity situation of ^x/Y > 5, slightly overestimating 
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them. For the nearly elasto-plastic case a remarkable improvement 

within 10 % error underestimation is attained in predicting both 

the rms displacement and velocity response in the most concerned 

nonlinearity situation. Furthermore, for the 3 % viscously damped 

case the rms displacement is almost the same as the experimental 

results even in the small nonlinearity situation and the rms 

velocity is underpredicted within 13 % error. In the large non¬ 

linearity situation both response characteristics are slightly 

overpredicted. 

if. 4» Response power spectral density 

In what follows the response power spectral densities of 

the 3rd order system and of the uncorrelated two-mode 3rd. order 

system whose parameter are determined in section 4.3 are investi¬ 

gated. Since the frequency response function of the 3rd order 

system is found by Eq.(4»2) for the mass response, its normalized 

transfer function is expressed as 

adopted two-mode system has a transfer function of 
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<4
I
3,I,2(4/) I ■ + » -«lH3,i,HH,r 

(4.23) 
where the low frequency 3rd order linear system transfer function, 

H, , T(CJ) and the high frequency one, H, , „(*/) are found from 

Eq.(4.22) by substituting the appropriate values of 

and p'. When = 0, the above 3rd order system or the two-mode 

system coincides with the corresponding system obtained from 

the energy dissipation matching and average frequency matching 

criteria in section 4.2. 

The plotting of Eq.(4*22) and Eq.(4.23) are made for the 

representative cases of nonlinearity situation used in section 

3.5 for the 2nd order linearization. Fig.15.1 for a nearly 

elasto-plastic case shows that for the nonlinearity situation of 

O^x/Y =1.0 the two-mode 3rd order system can approximate 

the experimental results quite well except in the less significant 

very low frequency region, having a small peak at the natural 

frequency d)0 of initial stiffness of the bilinear hysteretic 

system and relatively flat frequency contents below C00. But 

as the nonlinearity situation grows the two-mode 3r^ order system 

fails in matching the response power spectral density in the 

vicinity of 6)0 . The experimental results lose the predominant 

peak at C0o but the two-mode system does still have a small spike 

there. In this nonlinearity situation, it appears that the low 

frequency 3rd order system by itself can better approximate the 

experimental results as is seen in Fig.15.2. For a moderately 



nonlinear hysteretic case, the response power spectral density 

approximation by the 3rd order system is limited to large or small 

nonlinearity situationsdue to its rather fixed average frequency 

at either the natural frequency of initial stiffness or of the 

reduced stiffness of the original system. Compared to the 2nd order 

system approximation, the 3rd order system can improve the 

matching with the experimental results in the low frequency region, 

although the peak location matching is not so good as the former 

system (see Fig.15.3)» The uncorrelated two-mode approach by the 

3rd order system in the intermediate nonlinearity situation results 

in a failure, showing two appreciable peaks at the above locations. 

The computation result at ^/Y = 1*3 is given in Fig. 9*4 for 

comparison from other linearizations. 



- 50 - 

V. TRANSIENT RESPONSE 

The preceeding two chapters presented several equivalent 

linear systems which give reasonable predictions for both the rms 

displacement and velocity response for bilinear hysteretic systems 

in stationary state motion. When one is concerned with the 

structural response due to earthquake motion, however, it should 

be noted that structures are usually forced to vibrate from an 

initial state of rest. An earthquake excitation is generally of 

relatively short duration, say around 30 seconds at mo$t, and its 

main part might be considered as a stationary Gaussian process. 

Structures designed to resist earthquakes generally have a funda¬ 

mental vibration period of 0.5 to 5 seconds. Hence, from the 

structural design point of view the most significant portion of 

the response may be in the transient region before reaching 

the stationary state motion. Note the fact now that different 

equivalent linear systems may have different response features in 

this region, even though they have the same stationary response 

levels. For these reasons, transient response comparisons are 

made between these linear systems and the bilinear hysteretic 

system, assuming the Gaussian white noise of Eq.(2.2) as input 

motion 
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5.1. The 2nd order linear systems 

The transient response characteristics of the linear system 

expressed by Eq.(3»l) are found from the Rice method ^as 

= SijU£i/}(tr7l')^ll(t:l~T2) (5.1) 

where h(t) is the impulse response function of the concerned 

system, which is the inverse Fourier transform of the frequency 

response function of Eq.(3»l8). Substitution of h(t) and Eq.(2.2) 

into Eq.(5.1) for E[f('C. )f( £,)} gives the mean-square (ms) 
24) 

displacement as 

^ rf Z2^4 . 
A { SÎr)2ûJdt+ 

(5.2) 

and the ms velocity as 

[î - e
2^9Ùh9j i _ 0i2ËË9sir)2oJdt + 2^j- s//>Wj] 

(5.3) 

for (3>e(i<l, where 00^ =^Jl~Pef and the measure of excitation N 

is given in Eq.(2.5). The parameters included above, ù)Q(^ and p 

can be obtained by Eqs.(3*34) and (3*33), respectively. 

When the uncorrelated two-mode model indicated by Eq.(3»38) 

is considered as a linearization, the transient ms response is 

the sum of the ms responses from each mode. In this case, 

the damping factors which are determined by Eq.(3*39) are not 
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always less than 1.0. For the representative cases investigated 

in section 3.5I the high frequency mode always has the damping 

factor less than 1.0 but the low frequency mode has values greater 

than 1.0 in small nonlinearity situations (small 0$/Y). Thus, 

when both the high and the low frequency systems have damping 

factors less than 1.0, the transient response can be calculated 

from Eqs.(5.2) and (5.3) by replacing U) by CJ0 or J^[U)0 , and 

(3eq by /?2jj or (?2L in E<
1*(3.39)I respectively. For the 

system with damping factor greater than 1.0, the transient response 

can be calculated by the following: 

for the ms displacement 

(5.4) 

and for the ms velocity 

(5.5) 

where and for the low frequency system u) eq 

and /»„ = fa- 
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5.2. The 3rd order linear systems 

When a linear system is subjected to the Gaussian white noise 

excitation of Eq.(2.2), the response process is a Markov process. 

Then the system response characteristics are completely determined 

by its initial probability density function and its transition 

probability density. The latter function is the solution of the 

associated Chapman-Kolomogorov-Smoluchowski integral equation or, 

equivalently, of the associated Fokker-Plank partial differential 

equation. 

For the 3rd order linear system it is easier to find the rms 

response characteristics by the above method than to use the 

previously described Rice method, which involves finding the 

impulse response and the following double integration. 

The governing equation of the 3rd order system of Eq.(4.1) 

is converted into simultaneous partial differential equations of 

the first order with the change of variables as 

y-L - ^ » y2 ~ 
x£ ’ “ ^1 (5.6) 

Then Eq.(if.l) is expressed in a matrix-vector form as 

£t{yt) = 
+ I1!**)) (i=1.2.3> (5.7) 

where 

i^ii 
0 0 1 
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When the excitation of Eq.(2.2) is input into the 3rd order system, 

7) 
the corresponding Fokker-Plank equation becomes 

9P 
dt 

a2 

(%P) (5.8) 

where P = P(ylt y2, t y1Q, y20, y^; tQ) is the transition 

probability density function, representing the state probability 

density of y1, y2, and y^ at time t, given state y1Q, y2Q, and y^ 

at t^, and 

o 

0 

o 

o 

o 

0 

o 0 2&S0 
à 

or, explicitly 

•I- 71 S< 
92P 

ïÿ? 
(5.9) 

A convenient method to solve this Fokker-Plank equation is 

to transform it into the form of 

(5.10) §f = ~ 
t=l ij*l 

For this purpose, the following transformation of co-ordinates is 

made as 

Ut] = ipm (5.11) 
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where the operation matrix [<^j is the one which can diagonalize 

[Cl] such that 

mm = Mr?] (5.12) 

where f/^J is the diagonal matrix of the eigen values of [O] 

which is obtained from 

| [Û] - 7V£ 11 = O (5.13) 

For the 3rd order system the are the complex roots of 

_L (ka , Ct ) + faCi[ +■ À Ci | - 0 fr 1 T\' 

L + Kcl¥w) Ai + lïïr2 ^ " (5*13) 

-i 
Using this solution, one can get the inverse of from 

Eq.(5*12) as 

m
_1
 = 

! i 1 1 1 1 1 1 

S, 

Î \ hi 
' k2 k2 \ A2 ► 
Ks ^axi Ai + C3X3 + CjTij 

». 

< A* ) l *2 J l ^3 J 
/ 

(5.14) 
and furthermore one can set = q^ = <1^ = 1 without losing 

generality. Using the solutions of Eq.(5.13)! the [^matrix is 

found as 
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The statistical characteristics of the transformed response 

[z^ have already obtained been obtained by Wang and Uhlenbeck^for 

the initial, conditions of {z^Q} • The mean value is 

{£[£]} = {ïiPÎ te'tj (5.16) 

The variances and the covariances are given by 

= "~*T- [1-e 
« i+AJ 

l'.,- rt 
+ 

(5-17) 

where 

Cfy] - ftimw (5-i8) 

and the superscript T denotes the transpose of a matrix. 

The initial condition in the original co-ordinates, i.e. 

y*, ^* 01 y10, 
= 

(5.19) 
makes = {o}. Thus the above response characteristics become 

(5.20) 

The back transformation of E[z^z^] into the original co-ordinates 

be carried out by using the matrices and can 

V 

symmetric 

= Rïro^Jteiy (5.21) 

This gives the mean-square response characteristics of the order 

system. 



- 58 - 

5.5» Analysis 

The transient mean-square displacement and velocity response 

of the previously obtained equivalent linear systems are first 

investigated in the case of no viscous damping in the bilinear 

hysteretic system, i.e., ft0= 0. As the basis of comparison, 

20) 
the experimental results by Shah, which were obtained from 

ensemble averages,after integrating the bilinear hysteretic system 

step by step with a digitally generated white noise excitation, 

are used. Figs.16 and 17 show some representative cases for both 

moderately nonlinear and nearly elasto-plastic hysteretic systems, 

where the transient response of the equivalent 2nd order linear 

system of Eq.(3«l) is presented by the dotted line, that of the 

two-mode model of the 2nd order system of Eq.(3»38) by the thin 

solid line, that of the low frequency 3rd order linear system by 

the one-dotted chain line, that of the high frequency 3rd order 

system by the two-dotted line, that of the two-mode model of the 

3rd order system by the bold solid line, and that of the above 

experimental results by the dashed line. The selection of 

an equivalent linear system is made with the help of the response 

power spectral density matching in sections 3*5 and 4.4, assuming 

the existence of some correlation between this and transient 

response matching. 

First note that the transient response duration of the bilinear 

hysteretic system differs strongly depending on the value of Y/N. 

Figs.16 and 17 show that this duration is minimum when the mean- 
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square velocity response in stationary state is minimum. For the 

moderately nonlinear hysteretic system this occurs between Y/N = 2 

and 3 and for the nearly elasto-plastic hysteretic system between 

Y/N = 1 and 2, both giving the transient duration of about 3 to 4 

times the undamped natural period of small amplitude response. 

On the other hand, the strong-motion portion of earthquakes 

usually have am excitation duration of at least 5 to 10 times 

the naturel period of the concerned structure. Hence, for the 

bilinear hysteretic system in the situation of Y/N giving the 

minimum mean-square velocity response the stationery state response 

is more significant than the transient one from the structural 

design point of view. However, for the bilinear hysteretic system 

in other situations the transient response becomes significant 

due to the long duration time to reach the stationary state 

motion. Note, though, that this duration is shortened by the 

presence of viscous damping in the bilinear hysteretic system. 

Secondly, compare the transient response of the bilinear 

hysteretic system with that of the equivalent linear systems. 

In the moderately nonlinear hysteretic case the equivalent 2nd 

order linear system and the two-mode model of the 3rd order linear 

system give almost the same transient response and both can 

approximate well the experimental mean-square displacement and 

velocity response, except near the linear system response region, 

say Y/N = 15. The failure in this last situation is apparently 

due to the poor prediction of the stationary state response. 
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On the other hand, in the nearly elasto-plastic hysteretic case, 

the transient response differs appreciably among the investigated 

equivalent linear systems, depending on the value of Y/N. When 

Y/N = 1.0, the equivalent 2nd order linear system is the best 

equivalent linearization of the original system. At this situation, 

AX/Y is nearly 10 so that the response power spectral density 

approximation is also best by this system, referring to section 3.5. 

When Y/N = 5» the two-mode model of the 3rd order system is 

the best linearization. At this situation, <5*X/Y is nearly 1.0 

so that this system is also the best to approximate the response 

power spectral density of the original system. Note, however, 

that in this situation, near the linear system response, all the 

linearizations considered give almost the same transient response 

and can approximate reasonably the experimental results. 

From the above observation it is concluded that if the response 

power spectral density is matched between the bilinear hysteretic 

system and its linearization in the stationary state motion, 

then the transient response of the corresponding linear system 

can well approximate that of the original system. As a whole the 

two-mode model of the 3rd order linear system is the best lineari¬ 

zation among those considered herein. 

Hence, the transient response comparison between the viscously 

damped bilinear hysteretic system and its linearization by the 

two-mode $rd order system is made in Figs.lü and 19. In this 

case, the system parameters of the linear model as determined in 
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section 4.3 are used. In these figures the stationary state 

response from section l±.l and from the analog computer are also 

presented. Note that the two-mode 3rd order linear system 

succeeds quite well in matching both the mean-square displacement 

and velocity response in viscously damped bilinear hysteretic 

cases, except in the particular case of Y/N = 15 for the moder¬ 

ately nonlinear hysteretic system. 
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VI. SUMMARY AND CONCLUSIONS 

Two analytical linearization techniques for hysteretic 

systems in stationary random motion which have been separately 

proposed in the past are combined here. One of the techniques is 

Krylov-Bogoliubov method with certain small nonlinearity assumptions 

15) 
as proposed by Caughey, ^7 and the other is the power balance 

17) 
method proposed by Karnopp. 17 The former method is derived from 

the mean square minimization of the difference between the equations 

of motion for the bilinear hysteretic system and the 2nd order 

linear system with the same mass. This minimization gives two 

equivalence conditions concerning the equivalent frequency and 

the equivalent damping factor. The latter method is based on 

establishing an energy loss equivalence per unit of time between 

the two systems. However, it was demonstrated in section 3*1 that 

this equivalence gives a requirement which is closely related to 

one of those in the Krylov-Bogoliubov method. This requirement 

is referred to as the energy dissipation matching criterion. 

In this study this requirement is used in conjunction with the 

other requirement from the Krylov-Bogoliubov method, which is 

called the average frequency matching criterion. 

When predicting the root-mean-square (rms) displacement 

from the criterion of matching energy dissipation per unit of time, 

it was found that much attention must be paid to the average 

duration of hysteresis energy dissipation cycle. This cycle 

was found to have different duration than the cycle of the mass 
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response (or the average frequency of the mass response). 

Reference (10) reports that for moderate values of response 

level over yield level the bilinear hysteretic system response 

exhibits a typical wandering motion of the central axis in its 

time history, and that the response is like small oscillations 

at the small amplitude natural frequency superposed on this low 

frequency wandering. It appears that the low frequency component 

primarly represents motion across the Coulomb friction slider in 

the model. The average frequency across this slider is strongly 

related to the slope of restoring force curve beyond yielding, 

denoted by tfK, which justifies taking the reduced frequency 

after system yielding as the average frequency of the hysteresis 

energy dissipation cycle. The rms displacement comparison 

between the above prediction and the experimental results'*'0^ 

confirmed this hysteresis energy dissipation cycle. For the 

prediction of the rms velocity response, the average frequency 

matching criterion was used, together with the above prediction of 

the rms displacement. As a result, significantly improved 

predictions both for the rms displacement and velocity response 

were attained, without specifying the parameters of the linearized 

system. 

When one is concerned with a bilinear hysteretic system 

response analysis due to earthquake excitation, response matchings 

in non-stationary motion are desired for the equivalent linear 

system. If the earthquake motion is simply approximated by 

a stationary motion of a limited duration, as is frequently 
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assumed, then the more general nonstationary problem is reduced 

to the transient problem of the system response building up to its 

stationary state. Various equivalent linear systems are conceivable, 

all of which can satisfy the energy dissipation matching per unit 

time and the average frequency matching criteria mentioned above. 

In this investigation, the usual 2nd order linear system and 

a model with two uncorrelated 2nd order modes are first considered. 

These linear systems, although they approach to the same stationary 

response levels, show different transient response behavior. 

It was shown that there exists a correlation between matching this 

transient response behavior and matching the stationary response 

power spectral density. For the comparison the experimental 

results from Iwan and Lutes'*-0^ were used for power spectral density 
20 ) 

and Shah's experimental results were used for the transient response. 

As a further step of equivalent linearization, a 3**d order 

linear system and its uncorrelated two-mode system are also 

considered. The 3rd order linear system considered herein has 

the same mass, springs and dashpot as the hysteretic model, but 

it also has an additional viscous damper replacing the Coulomb 

slider and representing the hysteresis energy dissipation due to 

system yielding. This system was shown to have an average 

frequency of JoCt09 across the additional viscous damper when no 

viscous damping effect existed in the original system, which is 

consistent with the hysteresis energy dissipation cycle used in 

the above energy dissipation matching criterion. Since the energy 

dissipation per unit of time is the same for any conceivable linear 
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system in stationary motion as long as they have identical mass 

and are subjected to identical Gaussian white noise excitation, 

the energy dissipation matching criterion gives the same rms 

displacement for the 3**d order system as for the 2nd order system. 

However, the 3r<* order system considered in this investigation, 

has a rather fixed average frequency either near the natural 

frequency of the initial stiffness -— high frequency 3rd order 

system, or fairly near the reduced frequency after the system 

yielding low frequency 3rd order system. Thus this system 

can not necessarily result in velocity matching with the original 

system. Of course, one can get a good prediction for the rms 

velocity response by using the average frequency matching criterion. 

In this case, however, one must take the two-mode system as 

the equivalent linear system. 

For the response power spectral density matching and the 

transient response matching investigations of the 3rd order 

systems, the system parameters must be explicitly determined. 

In the viscously damped hysteretic case, it is very difficult 

to evaluate these parameters for the two-mode 3rd order system in 

order to satisfy the energy dissipation and average frequency 

matching criteria. Fortunately, an alternative determination 

adopted in section i*.3 resulted in better prediction for the rms 

displacement than that from the energy dissipation matching 

criterion in the most concerned nonlinearity situation for the 

nearly elasto-plastic hysteretic system. 
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The transient response matching was also investigated for 

the two-mode 3rd. order system and was compared with the results 

of the 2nd order systems. It was observed that there was a greater 

variation of velocity response than displacement response among 

the different linear models, particularly near the nonlinearity 

situation where the minimum value of stationary velocity was 

attained. As a whole, the two-mode 3rd order system proved to be 

the best linearization, and the transient response matching by 

this system was improved for the nearly elasto-plastic case as 

the viscous damping effect was increased in the bilinear hysteretic 

system up to 5 % of critical damping. 

In structured, design practice, the transient time before 

reaching stationary response is one of the significant factors. 

This time depends strongly on the ratio of yield level to excitation 

level in the bilinear hysteretic system. For the yield level 

which gave the smallest stationary velocity response for a particular 

excitation level, this duration of transient response was about 

3 to 4 times the initial natural period. In other situations 

the transient response continued for a much longer time. 
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Appendix A 

A prediction of the average frequency 

When the bilinear hysteretic system is subjected to random exci¬ 

tations, its average frequency defined by the ratio of the rms 

velocity response to the rms displacement response is expected to 

be a function of ^x/Y, This theoretical prediction is made here 

based on the resonance frequency in the harmonic mtion. 
pi} 

This frequency is deduced by Caughey, ' assuming the slowly 

varying response amplitude and phase, as 

where A is the amplitude of the bilinear hysteretic system in 

resonant motion. 

For random excitations, if the system is assumed to behave 

with the above resonance frequency corresponding to its amplitude 

at any cycle, then the mean square expectation of the resonance 

frequency is found from 

[<w‘( 1- TT) - 2(1-7rj/x(J-$ } tor* >r 

, for £ 

(A.l) 

(A. 2) 

The assumption of the Rayleigh distribution of Eq.(3.8) for p(A) 

yields 
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+ 

co 

^ [c*l( t-f) - 5(i-f )f|(i-f)r?e *]dt 

+ (i-u)(t -e'2) (A.3) 

where 9 = 
x 
fax 

This expression is plotted as the dotted line in Fig.3 for 

comparison with the average frequency obtained experimentally. 
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Appendix B 

Response characteristics of the 3rd order linear system 

The governing equation of motion of Eq.(^.l) is rewritten in 

a vector-matrix form as 

m 0 

0 0. 

rx, 
## 

v 
Ct 6 

0 C21 
r* it 

A/ ^ 

— Kn K% 

|X.1 

^2 

\fnfit) 

l 0 ) 

(B.l) 

This steady state harmonic solution can be found by substituting 

icüt 
Xl = 

^2 = XjÊ 

then 

■/ft) = F, e- 

% + i 

(B.2) 

 m ^ z m ~ y 

1=f<-'3) 

~7?T 

{('&*+ -W+-*?») + ^•S’^3(7? *-i jj;*0) -(!%) 

If the following notations are used 

Aî 
Od = 

kt+J<2 

ki +-/T2 
a ~ m 9 - J«51" 20/,/W 

/? _ 1-Oi ka 
{l32~ isrc; 

(B.5) 
the frequency response functions are obtained for the mass as 

,-^i- 

; . (j 
L 2?32 

a). 

M F° + + ^3i* ^32^^ + 0^ 
(B.6) 
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and for the point 2 indicated in Fig. 10 as 

HS/2(V) = To 

(Jo 

. 1 0C 
'ilfe 4/3 - 

(B.7) 
The rms response characteristics are calculated ^ ^ 

for the mass w 

= ( \<JW3.i(V)\ SW)do) (B.8) 
3±i -oo 

4 

for the point 2 

= 
W 

Ç\luH (B.9) 

When the excitation is a stationary noise with intensity level SQ, 

these integrals can he readly evaluated in an analytical way. 
23) 

The results are 

ft 

4ft32 -4 fijtfijs 
K So J*c+ 

1 +. ^3a . 
NF ^   

(B.10) 

(B.ll) 
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Appendix C 

Stationary state response (Alternative method 1) 

Since the real part of the of Eq.(5»13i Is negative when 

t—*00 , Eq.(5»20) becomes 

=—(c-D 

or, in the matrix form 

=-r«p <c.a> 

where is the diagonal matrix and z 3 st denotes the 

covariance matrix in the stationary state response. Substitution 

of Eq,(5*12) and Eq.(5.l8) into Eq.(C.2) and using Eq.(5.21) yields 
2 

the requirement relationship for {0* 3 st . 
yiyJ 

+ <°-3) 

After solving this equation componentwise, the covariance matrix 

for y^ is found as 

= 

%2 ^y.yj 

fry 

\ 
symmetri cx

N fty 
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C a Ti 
k? m 

7tSo 

m* ■} 
* 

J<2 O ktC2 

~üz m t m Ai 
''v 

ka , O 
■75 

v -w 

C2 M 

0 

!Si 
m 

symmetric 

Using the notations of Eq.(B.5)i the above is 

(C.4) 

4(& 4 + r r» 4. 4(^3i^32 2pj2 J @32 , n 1 1 + tf(t-uy ot(l-oQ Ôijï-oi') t I^SC *- 

symmetric 

£&L / Jhz + n A 
Oi(i-tf)1

 1-U l 3ii 
foï a 

° 

A 4(^32 4p34$32 
1 (T^Ô2 “T^“ 

(C.4)' 
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As for the mean-square velocity at point 2 in the 3rd order system 
2 

, one can deduce it from 

= fëffâ-&<&*+<&) <°-5> 

Substituting 0s? , fr2 , and O' into this from Eq.(C.4) gives 
yl yly2 y2 

or 

2 
= 

oi = TLSo 

ki kg 
m Co 

H 5t 

Ca ki S /<2 f 1 , ^ V fe . kjCi 1 
fain l rrl^ToAiro + Jrir “7»*V 

32 

(l-o£): 

(jCbi 

(C.6) 

(C.6)' 
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Stationary response (Alternative method 2) 

From the linearity property of the adopted 3rd order system, 

one can take the 3-dimensional Gaussian distribution for the 

transition probability P in the Fokker-Plank equation in a stationary 

state. That is 

PC^, 72, y3:«>|yl0. y2o- V 

1 r i 3 3
 1 

= y2’
y3)= (27i)% |s|» eXy^ "^iH (c.7) 

t J 

where |S| is the determinant of the covariance matrix for y^, i.e. 

s = 

0V 

K 

<A 

t>- 

X 

symmetric 

N / 
and |s|. . is the adjoint matrix of the (i,j) element of S. 

After substituting Eq.(C.6) into Eq.(5«9)» one can get the following 

six simultaneous algebraic equations in the above six unknown 
2 

mean-square responses but one of which, w^y^ should be identically 

zero due to the stationarity of the process. 

r ~ Isl u + IS|21 

7f|S|M - f-isl* ■ 

7CS» I <Sl 3i 
2 |£l 

2 
7CSo 
2 ISI 

KSg JS&j 
2 \s\ 

0 

0 

0 

_ 1^112 kz 

c2 
\s\ 23 

Ki2 
m 

I jbd IS 1*3 
ISI 

(C.8) 

= o 
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-Iü« - f a** Hf2
i&»+= o 

K 
%4>\&S3 -f-^(--£)ISI = O 

These equations give the same solutions as Eq.(C.Jf). 
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Fig. 10 3rd Order Linear System 
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Fig. 17*1 Transient Mean-square Response 
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Fig. 18.1 Mean-square Displacement 
of the Two—mode 3rd Order System 



Fig.18.2 Mean-square Displacement* 
of the Two-mode 3rd Order System 
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Fig.19.1 Mean-square Velocity 
of the Two-mode 3rd Order System 
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