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CHAPTER I
INTRCDUCTION

I-l. Introduction to the Research Topics

To design a system capable of a desired performance is one of the
main objectives in most engineering problems, One of the common
requirements of such a performance is that the system exhibit a stable
behavior, The thesis is concerned with the development of design techniques
for systems which do not possess stable solutions. More precisely, the
thesis consists of two parts., The first part deals with the possibility

of designing a control law to stabilize a class of nonlinear systems

described by

ixa.é‘.cl = Ax(t) + bu(t) - bE(y(t),t) (1-1)
(t) = ex(t) (1-2)

Where x(t) = col.(xl(t), xz(t),....,xn(t))e R" represents the state
of the system at time t, u(t), y(t) are respectively the real valued
scalar input to and output from the system, A, b, ¢ are real constant
matrices of dimension nxn, nx 1, nx 1 respectively; the
superscript T denotes the transpose; and f : R2 — R:L is a real

valued nonlinear continuous function with respect to each of its arguments,

and satisfies

0& £(y(t),t)/y(t) & k , ¥t, ¥y (1-3a)

£(0,t) = 0 , ¥t (1-~3b)



The scheme representing the system (1-1l)=(1-3) , and the nonlinear
characteristic are showm in Figure 1 and Figure 2 respectively.
Throughout the rest of this thesis, for the sake of notational
convenience, we will use the same symbol for functions and their values.
The meaning being clear from the context, thus instead of (1-1)-(1-3),

we will write

ax . -
S5 = Ax 4 bu - bf(y,t) (1-la)
V= ch (1-2a)
and
0& f(yvt)/y ¢ k y Yy, ® (1‘30)
£(0,t) =0 , ¥t (1-3d)

Systems (l-1)-(1-3) arise in control problems, after suitable
idealization, when the nonlinearity of one element only is dominant and
the remaining elements can be considered to be linear. In such cases, y
is the deviation of the controlled element, and f(y,t) is the
nonlinearity of the power element.

The analysis of the stability of the system (l-1)=(1l=3) has
attracted wide attention in past decade (1) - (6), [36) . But the
question of the synthesis of a stable system by designing a control law
which insures the stability of the controlled system has remained
relatively unexplored, Recently, several authars (7} - (12) attacked
the problem by using a graphical approach or a mixed graphical and
computer aided design approach, This thesis applies modern control theory



techniques to designing a control law to achieve desired performances,
The design techniques are also developed for certain classes of
nonlinear systems of the form (1-1)=(1l-3) having multiple-nonlinearities
regardless of the complexity of pole-zero assignment,
The second part of the thesis investigates the possibility of
stabilizing systems described by

g’% = g(x,u,p) (1-4)

Where x, u are defined as before, p is a real parameter vector, which
is unknown but satisfies certain constraints; and g(e,ey.) = col.(gl
(.,.,.),....,gn(...,.)). gi(.,...) is a continuous function with respect
to each of its arguments such that solutions of (1-4) exist and are unique.

The problem considered is to show the existence and the construc-
tion of a control law which stabilizes (1l-4) for all parameters assuming
values in an appropriate region,

This type of problem is of great theoretical and practical
interest since in many concrete control systems, some parameters are
given with only a certain degree of accuracy, For instance, the
characteristics of a vacuum tube or a transistor provided by the
manufacturers are given as average values over some set of samples of the
product, Similar problems arise in the case of a system with parameters
which vary slowly during its operation. Many other important technical
questions involve the problems of the above type.

A parameter variation of a special class of nonlinear system has

been analyzed by [13] . For large parameter variations of dominant-type



systems, [ ll&] - [15] provide some approximation techniques and a
graphical method. We develop the design techniques which are completely
analytic and do not resort to a graphical procedure,

Attention has been given to the systems with unknown parameters
which are linear time-invariant systems, linear time-varying systems and
Lure systems, Different approaches are used for the above systems,

I-2. _ Outline of the Thesis

In Chapter II, we develop simple methods to stabilize the systems
(1-1)=(1-3). The control law of interest is in the form of a linear
combination of states, an output of a dynamic compensator. The compensator
designed consists of a cascaded compensator and a compensator in the
feedback loop. This special configuration can provide a scheme of
assigning poles of the controlled systems without influencing the pattern
of zeros, Results obtained are under the agsumptions of complete
controllability and complete observability of the system, In the latter
part of this Chapter, we further relax the restriction of the complete
observability of the system by requiring that the unobservable part of
the system be asymptotically stahble.

Chapter III represents an attempt to the generalization of the
results obtained in Chapter II to multi-variable systems. As was pointed
out in [16] » complete pole-zero assignment for a multivariable system
can not be done by using linear state feedback. We therefore restrict our
attention to two subclagses of systems, i.e. systems with adjoints
controls and systems having the property of simple-strong controllability.

We start with Chapter IV by assuming that the system parameters
are unknown and satisfy certain constraints, The control law o interest
is in the form of linear state feedback. In Chapter IV, attention has been
given to the linear multi-variable time-invariant case in which the system



parameters are confined to a compact subset of the parameter gpace. In
Chapter V, we consider the general linear time-varying systems in which
the system parameters belong to the set of continuous and bounded
functions, And in Chapter VI, a special class of nonlinear systems is
considered in which the system parameters are again confined to a compact
subset of the parameter space.

In Chapter VII, we conclude the thesis by stating the advantages
and the limitations of the approaches developed, and suggest possible
future research topics and approaches,

Examples are included to illustrate the results.



CHAPTER II
SIMPLE METHODS FOR STABILIZATION OF NONLINEAR FEEDBACK SYSTEMS

II-1., Introduction
In this chapter, we develop simple methods for designing a stable
nonlinear feedback system which is described by (l-l)-(1-3) and is

rewritten for handy reference :

% = AX + bx - bE(y,t) , (2-1)
y=zex , (2-2)

where the notation is the same as before, and f is a real valued

continuous function with respect to its arguments, and satisfies

0& £(y(t),t)/y(t) 6k, ¥y,t, (2-3a)
and £(o,t) =0, V¢, (2-3b)

by means of a control law which is either a linear combination of states
or the output of a dynamic compensator. The scheme representing the
system (2-1), (2-2) and the nonlinear characteristic (2-3) are shown in
Figure 1 and Figure 2. The set of functions f satisfying (2-3a) will be
said to lie in the sectar [0,k] .

The absolute stability oriterion for the system (2-1)=(2-3) has
received wide attention in the past decade [1) ,[2], [17] - (20]. we state
the results of [2] for its generality,

Theorem : For the system (2-1)-(2-3) to be absolutely stable in the
sector [0,k] , it is sufficient that far all w 2 0, the following
inequality be satisfied

Re G(jw) + 1/k 20 (2-4)



where a(3w) = eT(wWI-A)" b .

Stabilization of the systems (2-1)=(2-3) through graphical
methods has been studied in (7] - [10] in which Nyquist-like loci are used.
Recently, [11] , [12] use a mixed graphic and computer-aided design method
to develop algarithms so that the desired compensator can be constructed.
The development of algorithms in [ll] is based on the maximization of
the distance between the locus of G(jw) and a vertical line passing
through the point (0,- 3) of the {Reo(jw). ImG(Jw)} plane, While (12]
minimizes the area of the region enclosed by that vertical line and the
part of the locus of G(jw) lying to the left of the said vertical, while
[25] applies the linear observer concept to its design of a nonlinear
compensator, the results can not be held for time-varying nonlinearity.

It is the purpose of this chapter to use modern control techniques, and
to avoid any graphical method for the stabilization, by use of linear
components, of the systems (2«1)«(2-3),

It is shown that : 1) under the assumptions of complete
controllability and observability of the systems, a control law which is
a linear combination of states can always be found such that the
controlled system satisfies the absolute stability criterion; 2) under the
assumptions of complete controllability and observability of the systems,
a compensator which consists of a cascaded part and a feedback part can
always be found such that the controlled system will satisfy the absolute
stability criterion; 3) results obtained in 1) and 2) are generalized
to the gystems which are not completely observable,

II-2, Stabilization of Nonlinear Systems by Linear State Feedback



In order to have a meaningful proposed problem, we first
establish the complete controllability conditions and complete
obgervability conditions for systems (2-1)=(2-3) :

Assertion II-1 System(2-l) is completely controllable if and only if

the system

dx
dt 2 Ax ¢+ bu (2-5)

is completely controllable,
Proof: If (2-5) is completely controllable, then for every
x(tg) = X5 , there exists a meaéurable function ﬁ(t) and T S 0 such
that x(¢) = 0. If we apply the control u(t)=a(t)+£(y,t) to (2-1), we can
drive the state x, to the origin in time T , hence (2-1) is completely
controllable,

Conversely, if (2-1) is completely controllable with u(t) as the
desired control, then ﬁ(t):ﬁ(t)-f(y,t) will be the control for (2-5),
which drives the same state to origin in same time T , hence (2-5) is
completely controllable. &Q.E.D.
Assertion IT-2 System (2-5), (2-2) is completely obgervable if and only
if the system (2-1), (2-2) is completely observable,
Proof We first derive the conditions for complete observability of
(2-1), (2-2),

Taking first (n-1)th derivative of (2-2), we have

y=cx ,

%% = cTA.x - chf(yot) ’

. o *
- . L ) -



T, - . - M
%—ng =z cTan-1y _ %_‘I cTan2-ipgir(y,¢)/att
or y= elx

dy/dt + cTof(y,t) = oTax (2-6)

- -1 .
oty + nZ: cTAn-z-lbdif(y,t)/dti = clan=Ix

gtn=l  i=

Since y(t) is measured over finite time interval, dy/dt ,....,dp‘ly/dtn’l

are known functions, so are

ax t) - . R dti,f ,t),....)if t ,...,i b ’
L) - Fi e odiy/atd gy L) i)

i=0,.4+.4n-1, once £(.,t) is known. Hence in order to determine x(t)
uniquely from (2-6), it is both necessary and sufficient that rank

(e, ATe,..., (A"1)Te) o n which is exactly the necessary and sufficient
conditions for complete observability of (2-1),(2-2)., This completes the
proof of the Assertion. Q.E.D.

Hereafter, we assume that systems (2-1)-(2-3) are completely controllable
and completely observable,

To facilitate our design of a control law which is linear state feedback,
we first transform the system (2-1),(2-2) into companion form [ 21], [22)
by defining

x = Koz (2-7)
Then (2-1), (2-2) become
g% = Az + bu - bf(y,t) (2-8)

y - 'éTz » (2'9)
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where ( N
o1 o0 . . . O
- o011 . . .0
A-xglake =] . . .
.. 1
-5'1 . . . . --a.vn J »

cTKc - [61'62’...'.’511] )

The transfer function of (2-1),(2-2), hence (2-8),(2-9) takes the form

n
(¥ oysi-ly
G(s) = ST(sI-A)"1b = izl (2-10)

i=l ’

For this companion form of the system, we note that only the denominator
of (2-10) can be influnced by the applied control. We intend here to
show that there are values of 235, i=l,....,n, which will satisfy (2-4)

regardless of the values of ¢, i=l,....,n.

Agsertion II-3 There exists a positive number), such that

Re( ié’:lai(jwﬁ'l/(s A ) 4+ 1/k 20, ¥ and ¥A 3N,  (2-11)

Proof: The numerator of (2-11) can be written as



kRe(Zc ' g 4 @2 e )
i=1

2n-2

= kRe( 3 (1) ()™ 4 (€5, (-1 Ine 3y (1) )T )

+ (G3an(-1)™*n2 4 B 1 (-L)M x4 8, (1) ()23 4 L e

22n2 n l&Zn-ll-

+ (=013 AP-L 4 B A (W) +NT5)) + 4 SR sCp AW

PP A s A o ol )

WP 4 w02 (00 N2k (3) 272 (o (<L) 48,1 (-1))

+ PG N ()P (O (1" A48 (1R ARGl (1)
+ S (-1 P (G 22kt o3 AP 18, AT kB A )
+ M ATE K (2-12)

Above, CE denotes n!/k!(n-k)! .
Note that (2-12) is a polynomial in w* and is greater than zero for all
w if all its coefficients are non-negative, This will be true if

O A% (C08,(-1)" ™ 43,1 (1M (9P %k 2 0

A (008 (-0 A4y (-1, (1) a5 -1 ()P k0

(2-13)

n .2n=2 n=2 n=l .
Cn-lx -kCn zclk +kCn lczl -CBA.

)3“+k7x“51 20

Each of the inequalities of (2-13) is a polynomial in A, and the
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coefficient of the highest degree innis positive, Therefore, for
sufficiently large 2 50, all inequalities of (2-13) are positive, which in
turn implies that (2-12) is positive for all w,
Iet Aj be the smallest positive number such that the ith inequality of
(2=13) is positive, Then

Pymmaxhy Ag, oeeeiy) (2-14)

is the desired value for the assertion. Q.E.D.
Having obtained the value A, which depends on ¢;, (is=l,...,n),we
can design the control law as

n -
u(t)_—_ Z (ii-Cg_]?\n-l*'l )Zi
izl

=(a-23% 2> a2} (2-15)
where a’*= col.(ngn,C;hn-l.....,02_17\), i:col.(s.l,.....in), and &, o)
is the inner produect in Euclidean space, With respect to the original
coordinate, we have

u(t) = (ra*ea, ko) (2-16)

The design procedures are summarized as
Step 1 : Transform the given system into companion form,
Step 2 : Determine A, from (2-13)
Step 3 : Obtain the control law as in (2-16)
IT- Example
Congider the system described by

'dxlT r Y O ()
a?’ -2 -1 1l xl 1
dx,
= 1 0 Ll It ¢ |2} (u-f(y,t))
ax
2
-1 0 1| {=x 1
kdtd X S 3’ ./
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1
v-[o, 0, 1] %, k= 3
x|
Step 1 K. can be found as
C
(0 -1 1
Kc =10 3 1
(2 1 1
Then - -
0 1 0
A=|o o 1 o - [z, 1, 1]
2 0 -1
o] o
Step 2 From (2-13), we require

3 + k(6A-1) 2 0
N + k(-2P#3X-3) 2 0
and lé + kh? 20
For k = 3, we find Ay=2. The corresponding A matrix is
0 1 0
=0 o 1

-8 12 6

Step 3 From (2-16)
u(t)=0.25(7x; =7%,=20x4)

II-4, Stabilization of Nonlinear Systems by Dynamic Compensation
In order to avoid the difficulty of measuring the possible

inaccessible states of a system, we will develop a method of stabilizing
a nonlinear system through measured outputs in this section. The scheme

representing such dynamic compensators is shown in Figure 3, and consists



of the system itself, a cascaded compensator and a feedback compensator

which are respectively described by

The system : %"g 2 Ax + byy = bE(y,,t) (2-17)
¥y= elx (2-18)
Cascaded compensator :
%—% =Dz ¢ eyy (2-19)
Vo= 4z (2-20)
Feedback compensator : n i=1

V3= ?lh% (2-21)

Without loss of generality, we assume that (A,b), (D,e) are in companion
form. And we assume ng (1,0y¢...,0). By eliminating y; end y4, and
defining wv=col,(x,z), we have

A 0 b e i-1 b
d
a% = T v+ (E‘lhigd_;fg%) - 0 f(yzat) (2"22)

v,z (0, ¢]%v (2-23)

The transfer function with respect to the input -f(y,t), and the output
Y5 obtained from (2-22) and (2-23) is

-1 T, & j-1
(sI-A b h. b
G(s) = [O,c] T o-4) © (iE=1 1.8 :

-ecT (sI-D )-l 0

ch 8I-A)"ba®( sI-D)-le

1-oT(s1-4) " LbqT (s1-D)Fe( 3 hysi™))
n i=l

p

n n i)
- - -l -
(s™+ Elaisi l)(sn+ 2_;] t:l:‘_s1 l)-( E:lcisi ) 5hisi l) '

(2-24)

14
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We note that the numerator of (2-24) is not affected by the determination
of compensator parameters, dj, hj, i=l,....,n. To show that the parameters
d;y hy, izl,....,n can be chosen independently, so that the roots of the
denominator of (2-24) can be arbitrarily placed, we assume that the

denominator takes the form
2n .
2% 77 a.si7t (2-25)
i=1 1

and compare the corresponding coefficients in s . We have the relation

betweendi, i:l,.....zn a-nd hi, di, i:l,....,n ’ as

/d N ¢ ~N (7 N
1 cl 0 e o o o o o a-l O . & o O -hl
3 * * N 0 : ) . : ¢
0( c C - ¢ o . ' . cl an_l e o & "'h-n
‘n _ n  %n-l a 1 (2-26)
n{-l-al O cn ¢ o o o 02 l an o o az d.l
. L L) . [ ) L} O l : :
d.: . . i , On ) il -
- 0 e o » & o o o o 0 0 ¢« o » l
2n / N\ "
\ /
\ /
Pollowing (23] , we find that dj, hy, dsl,...,n can be uniquely
determined by'd.i, iml,.s4.,2n, if and only if
rank [c, cA?, ceony c(Ap-l)TJ =n (2-27)

i.e, the system is completely observable which is assumed at the very

beginning.
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In particular, o(i, i=l,.44.,2n of (2-25) can be chosen as

2n -3
d; = AL 50 (2-28)

The characteristic equation of (2-24) becomes (s4)n )Zn. Then from
Asgertion II-3, a No can be found such that the whole system satisfies
absolute stability criterion, For any <\ -}7\0 y and with (2-28) we can
determine the compensator parameter from (2-26). The design procedures

are summarized as :

Step 1 Determine 7\0 for

n
Z cisl'l

Re 2= o4 1/k 20 forall w
(8¢ A)

Step 2 For any \2 Mo 0 determine hy, d;, i=l,...,n from
‘N through (2-26).

II-5. Example

Suppose the system is described by

[ ax, |
T 0 1 Xy 0
= + (u-f(yvt)) ’
dx
2
| L )= t
h P

y=(01) [xl] : k2



The cascaded compensator and the feedback compensator are respectively

described by
dzy /dt 0 1 23 0
= + yl
dz,/dt -4, ~dp| |z, 1
Z1
2
and
Then G(s) = S
(82-58-3)(82+d23+d1)-s(hl+h28)
Step 1 Re _ M f1/k 20 Fw o, if AR A =2
(ws N)
Step 2 From (2-26), we have
4 = =0.3333 N*
dy = 544 N

for all N2 2

hy = 1.6667 Aoy A3120-15

hy = =0.3333 N'-6 A°-20 A-28

Note that the compensator so designed has poles in the right half plane,
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IT-6, Stabilization of Nonlinear Systems Which Are Not Completely

Cbservable

The assumption of complete observability for (2-1)=(2-3) is
essential to the stabilization of such systems by using the methods
congidered in previous sections. Occasionally, we have systems that are
not completely observable, We intend, in this section to extend the
previously developed techniques to this class of systems,

First we introduce a coordinate transformation, which is dual to
that for the controllability considered in [ZMJ » and we decompose the
systems into observable and unobservable parts., Since (A,c) is not an

observable pair, rank (c, !\.'I‘c,.....(A.n"l

)Tc) = n) & n, The construction
of the transformation matrix can be obtained as : forman n x ny matrix
T = (e, 8%, 000, ("™Te) which has linearly independent, column
vectors. Then we supplement matrix Ty byan nx n, matrix T2 which
is obtained by taking any column vector ¢, with rank (Tl, ¢;) = ny+l ,
and T, = (c1s ATcl,....,(Anz-l)Tcl) with rank (T ,Tz) = m+n, . Unless
ny+n, = n , we have to find c, such that rank (Tl, Tos C2) = nyengel
and obtain T3 = (ep, ATcz,...., (An3-l)Tc2) . Repeating this process ,
finally we have

m
KT - (Tl, ngoono' Tm) and iza:lni =1 (2"'29)

with det(KT) £ 0

Now, we introduce the transformation 2z = Kgx to (2-1)=(2-3) and obtain

%% = Az + g(u-f(y,t)) (2-30)



v = &'z (2-31)

Where
r )
All 0O¢.c¢.. O
A21 B2+ .. O
A -1
A= KTTA(KTT) = . ' .
L %l A-mz * o AT’"‘J
with , .
0 l 0 * o & o 0
0 0 1. O ¢
Aii= . . j-:l’oooo'm
ni
"B TRgy e oeoe e e TRy
> /
( 0 o L] L] L ® * L ] L] O
0 0 [ ] [ ] L] L[] L] L L] 0
Aij - . . ¢ . . i.jzl,...o.m
0] 0 * o o & @ a.o 0 i*j
1 2 nj
-ai‘] -aij ¢ o o o -a'ij
~ A
and A

c=(c,0)z

where ¢ is an np x1 vector.

let us partition the states 2z into observable and unobservable parts
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as 2z = col.(zy, 25) , and denote

Ay =4

Azz 0 Oo-lo

Ay Ay 0. .. 0
Az - . d .
§ %nz e o L] L] e . L . Am)
(A1 ]
Aqy
n
A3 - . f) - [‘b—l} 1
] b2 n-nl
A2 |
System (2-30),(2=31) can be written as
dz;
T ° Az + bju - i f(y,t) (2-32)
dz,
el A3zl + Ayzp + bou - bzf(y,t) (2-33)
Y = ¢'zy (2-34)

Note that the eigenvalues of (2-32),(2-33) are exactly the eigenvalues of
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Ay and Ay, while Ay is the system submatrix for the observable part of the
system and Az is that for the unobservable part. The control input u
which only involves observable parts, i.e. 21, can in no way affect the
eigenvalues of A, , and it can affect only the eigenvalues of A;. This

allows us to make the following assertion.#

Assertion II-4 System (2-30),(2-31), hence (2-32)-(2-34) can be

stabilized only if the eigenvalues of the unobservable part have negative
real parts,

With the assumption of satisfication of Assertion II-4, the problem of
stabilizing (2-32)=(2-34) can be reduced to that of (2-32),(2-34) which
have the same forms as (2.l1),(2-2) with lower order, and has been
considered in previous section. Hence the previously developed design
techniques can be directly applied to the unobservable systems once the

decomposition of the states has been performed,

# Once we have stabilized the system (2-32),(2-3%) by any of the above
design techniques, we have 1im zj(t)z0 which implies lim y(t)a0 and
iim £(y(t),t)=0. By considering z;, u, £(.,t) as input to (2-33),
together with the strict stability of A5, we can conclude that lim 2,20
from the well-known theory of ordinary éifferential equations, ¥
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CHAPTER III
STABILIZATION OF SYSTEMS WITH MULTIPLE NONLINEARITIES

III-1,  Introduction

In this Chapter, we attempt to generalize the results of Chapter
IT to a class of systoms containing multiple nonlinearities., Several
authors [ 3] - [6] have studied the absolute stability of such class of
systems described by

< = kx + Bu - BF(y,t) (3-1)
y=Cx (3=2)

where x is a n-vector representing states of the systems, u, y are
m-vectors, and A, B, C are respectively nxn, nx m, m x n matrices;
and F(y,t) = eol.( £1(¥1st)seeseesfp(y,t)) 1is assumed smooth enough to
ensure the existence and uniqueness for the solutions of (3-1), (3=2).
In addition, it satisfies

04 £5(y;ot)ys £ky » forall t, y;, i=l,....,m (3-3a)

and 25(0,t) = 0 ¥ o, isl,....,nm (3-3b)

Above, we use again the same symbol for functions and their

values for notational convenience; i.e., x for x(t), y for y(t) ete.,

as long as the meaning is clear from the context,
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Theorem Eﬁl System (3-1)=(3-3) is absolutely stable in the sector
(0,ks) , 1%1,....,m, if the hermitian part of

-1
C(jw - A) B+ K (3-4)

is positive definite for all w, where K-l = diag.(ky,eeee,ky)

It was shown in [16] » arbitrary pole-zero placement for multiple-
input system can not be done by using linear state feedback. We therefore
restrict our attention to two subclasses of the systems of the form
(3-1)=(3-3) having multiple nonlinearities, i.e. the systems with adjoint
controls [26] » and the systems having the property of simple-strong
controllability, despite the fact that systems with adjoint control are
seldom encountered in a realistic case,

It is shown that a control law which is a linear combination of
states always exists such that the controlled system (3~1)-(3-3) will
satisfy absolute stability conditions for systems with adjoint controls,
A method giving successive steps for constructing a control law for both
subclasses is developed,

I11-2, Stabilization of Jystems with Adjoint Controls

In order to have a meaningful problem, we first establish the
complete controllability conditions and complete observability conditions
for the system (3-1)=(3-3).

Assertion I1I1I-1 The system (3-1)-(3-3) is completely controllable
(observable) if and only if the system

dx .. -
a-{-Ax+Bu y Yalx (3-5)
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is completely controllable (observable).
Hereafter, we assume that system the (3«1)=(3«3) under
consideration is completely controllable and completely observable,
Assume that A has distinct eigenvalues. let bk be the kth
colum of B, and {A(k)} be the set of eigenvalues of A which may be
influenced by u through by. The class of multi-input systems
considered has the following properties :

: 6a
%1{7\(“)} = {"1’ >‘2"'°"’>‘n} = set of eigenvalues of A , (3=6a)
and {X(i)} N {%(j)} =4 it . (3-6b)

Condition (3-6a) guarantees that the system is completely controllable,
while condition (3-6b) indicates that each by influences a different set
of eigenvalues of A, The class of systems satisfying (3-6a) and (3-6b) is
referred to as systems with adjoint controls.

For this class of systems, we may represent (3-1)=(3-2) in terms
of the canonical form for multi-inputs systems [27] , (28] as

%=3x+§u-§r“(y.t) (3=7)

y=Cx (3-8)
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where
” ~
Im 0 e o o o o 0
0 Apey *
A - . ‘ L] (3-9)
\ 0 e o ©° o o ¢ o o Al)
and
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Each Ii' i=l,....,m is in companion form, corresponding to eigenvalues
influenced by w.. A typical submatrix A; is given by
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1.........0

o l.oooono

>

e s e O O

v ¢

-a'i’loooooooooo"ai)ni
N /

with the corresponding characteristic equation

n; -
31+ 23139‘11:0.
=1 '

Since the system is completely controllablne. we have

Zni-n.

isl

Every eigenvalue of A may be altered by changing the characteristic
equation of the companion matrix it is asseciated with. Due to the gpecial

structure of (3-9)
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(T~ 0 .eer 0 )
- -l
0 (SI‘Am.l) ' Y
(SI-Z)-I = : : : ’
X 0 ... : e 9 o o o » (»SI-Al)-l

- =1
where a typical submatrix (sI-4,) is of the form

r z z L ] L ] [ ] . [ ] ° L ] l \
z z L L] [ ] L[] L] * L ] 8
1 [ * . 82
(skA,)" = 1_ .., . . (3~10)
det(SI-Ai) . L] . L4
. . . '.1
14 2 00600600 sni
\ /

where z in matrix (10) denotes those elements in the matrix which are
not impertant in our discussion. The transfer function matrix corresponding
to (3-7), (3-8) is

a(s) = E(sI-K)'lﬁ (3-11)



s
0 0 [ EE XN NN RNN] 1 -
det(sI-A))
rl *
s
0 l g : 200000000 o
det(sI-A,) snz-l
1 N ’
]
.—(_}___) : 0 eeeensceee 0
det(sI-A
1 snl-l
Let elements of C be given as
, N
C

Qi

“~

Cm.o.. ssey cm'nm-l

2 2
Cm.o..ooo. Cm'n
n m

“m,0 *++*s Smyny g

|
l
|
|
|
|
l
|
|

1,0 *o*** C1,n,-1

2 2
C’.L,O’ essey cdl'nl.l

<

|
I
I
|
I
|
I
[ m

l 1,000 Cl.nl_]_

/s

e eo 0 M

np~1
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/

1, 1, nely )
. i - i % i
E ©y,18 % °2,1® 2. °myi®
=0 i=0 i=0
dot(sI-Al) det(s]:_'jz) crre e dﬂt(sI-Im)
ny=-1 n i
C, 18
430 1,1
det(SI-ll) o o o ¢ o o * o & o o o o
6e) =| . S
m-l2 : ‘ =1
cl.is . ‘ n si
Z _ L 4
det(sI-Kl) e s s e s s s e e s e e det(s]:-%)/
Gll(s) Glz(s) . o o o Glm(s)
| ente) Gyp(s) .
k Gml(S) ..... . o . o Gm(s)/
ns~l
where 2% ik

[
013(8)= kS0 “dnk° 1,35, 0000,m

det(sI-R,) '

Note that the numerator of Gij(s) depends upon c:;.k. 1,570 0000om,y
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k=0,....,nj-l, which are fixed for the given systems, and are not

influenced by the assignment of eigenvalues of Ij through linear state

feedback,

Now we consider the control law of the form

-

NN
n nl )
-6017\ -al.l""'-cg-f-al'nl eesssensossessssvrcsesvsecscee U xl
n2n2 n2 x2
L) S 0 "Coh -az.ll'OOOan.-lA-az.nzoooo :
0 . . . ) ‘ ‘sz>?m'ah,1'°" ;n
m
-C -3
N ol T ¢
m n!
where N> 0 and C_ = :

B~ ni(men)!

With this applied control law (3-12), the controlled system has

a transfer function matrix representation as

6(s) =

(

811(8) 612(5)

822(3) « o

6‘21(3)

6;1(8) e s e s e

v (3-13)



a

where

k
,G\. .(S) - k=0 ’ >\ > 0 i.j'.'l..ooo'm. (3“1#)

Assertion III-2  For any k,> 0, there is an X 13 > 0 such that

FaS
IGij(")l £ kg for all X 2 A 1,351, 000eym

- ij.

Proof: It is clear that I aij(w) , is bounded. Since it is continuous
N
04{w<® and lin|@G Tim =0 h
over Lw an lin | Gi;](")| <O In IGi;j(")l To show
that it is bounded by any specified value ko, we write (3-14) in the form

6. (s) = k=0

and define w= W/
%l
i o k k‘nj
Then ~ = cjok(w) »
Gij(") = k=0 . (3-15)
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As far as the range of w, 0 Sw<® , is concerned, there would
be no difference in using w or ¥ as variable, Hereafter, we replace W
by w in (3-15). The coefficients of (3-15) are proportional to at least
of arder ( 1/A), and hence can be made as small as we wish. This completes
the proof of the Assertion. Q.E.D,

For the absolute stability of (3-7), (3-8), by invoking the

condition (3-4), we require that the following matrix be positive definite
for all w20 :

/ N\

e Gy (WM2/ky By (304G () evvnns B (300405 ()

G(ow) = | Gp(wiG () 2Re Gop(wh2/ky +evunns Gp(IW)4Gap(w) | (3-16)

.

° ’

. .
L

¢ L]

tam(m;emlm) C et e . e am(jw)-bz/km’

for some suitable 2> 0,

To this end, we first state :
Definition III-l An mxm matrix H with real diagonal elements and
complex off-diagonal elements is called a dominant matrix if

hys- %'hi” >0 121, 0000,m
i
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It may happen that hij is a function of some parameters, we then further
have

Definition III-2 An m x m matrix H(w) with real diagonal elements
and complex off-diagonal elements is called a uniformly dominant matrix,
if there exists an /> 0 (independent of w) such that

h:. (W) = h, .(w) > >0, forall w, i=l,....,n
ii Jzii 1j I /"
J

An immediate consequence of the above definitions is the following

Assertion III-3 If H(w) is hermitian and is uniformly dominant in
w, then it is positive definite for all w
Proof Iet Z be any complex n x 1 vector, and consider

'z' H(w)z = Z hli(w)z Zg +Z Z hla(w)ziz
i=l j J*i.

> E zi(ﬂ |h13(w)|ziza)+ ZE h;J(W)z zs

N e
Z *
+p ?ilziai
m
> L zi|2 > 0 Q.E.D.
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Consider the off-diagonal elements of (3-16), and for specified ky > 0,

we have

G500 + 8330 | < | By00] + |G 00| < 20 140, 1L, em

for suitably chosen >‘i j > 0 according to Assertion III-2, The diagonal

elements, for suitably chosen A > 0, leads to

iJ

2 A 2 A
_l.c-; + 2Re Gii(jw) ) —lq - 2ky -2 Gii(jw) + 2k

2-2__21(

ky 0

Let ky = max.(kl,......km). and k, can be chosen such that

- V)
For this ko, there are Ny, 1,5%L,....,n, such that | Gy (iw)|<
k, for all X 13?- 3\1 4 + And (3-16) is a unifornly dominant matrix,
hence is positive definite for all w .

Let 7\* = max, ( Xij' i,J°1yecee,m) (3-18)
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Then the control law has the form (3-12) with X > A

The design procedure is summarized below :

Step 1: Transform the given system into canonical form;
Step 2: Specify k, according to (3-17);

Step 3: Find X j according to Assertion ITI-2;

Step 4: Determine » as in (3-18);

Step 5:  Obtain control law as in (3-12) with any A2 A *,

We are now in the position to state the following

Assertion ITI-4 For the completely controllable and completely

observable system of the form (3-1)=(3-3) with adjoint controls, a control
law which is linear state feedback can always be found such that the
controlled systems will satisfy the absolute stability criterion.
IIT= e

Let us consider the gystem described by

(axy/at] [0 1 o o X 0o o
dx,/dt 2 3 0 0 x, 0 1] [uw=f;(y,t)
= t
dxs /dt 0 0 1 o0 x4 0 0 | uy=falyy,t)
 dxy, /dt ) L0 0 5 6] | x) L1 o
( % h
M5k i1 0 1 o x, _ _
¥, 0 1 0 1 X,
xu )



(

—G(S) =
1

kg = 0.2<

1
2 Re( W) +1/2

we require

0.2 - —ZL-Z— 2

which are true if

A
l¢ N\ =35
Step 5:
ol
w | =

4 —8
4 (~s+ >12 )j2 ( s+>\21)

Z
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then the system will satisfy the absolute stability criterion,

III-4. Stabilization of Simple-strongly Controllable Nonlinear Systems

In the last section, we have considered the systems with adjoint

controls, in which each control input can only influence some of the system
eigenvalues. In this section, we consider a class of systems in which
every eigenvalue can be influenced by at least one control. The systems
under consideration are assumed to have the property of simple-strong
complete contrallability which is defined as
Definition II1I-3 The system (3-1), (3-2) is said to be strongly
completely controllable if it is completely controllable by each control
separately, i.e, with all others set equal to zero.
Definition ITT4 The system (3-1), (3-2) is said to be simple-strongly
completely controllable if it is completely controllable by AT LEAST
one control separately, with all others set to zero.
The simple-strong complete controllability is something
in-between strong complete controllability and complete controllability.
Assume that system (3-1), (3-2) is simple-strongly completely
controllable by w, (if more than one, let u, be one of them). Then
(A,b,) is a controllable pair, where by 1is the kth column of B,
(3-1) can be written as

m .
& ax+ Lbgy, - B@) (3-19)
i=]

Set uy = 0, ik, i=1,....,m, and transform (3-19) into the companion farm



E_i_ = Ri +—buk - -BF(Yot) ’ y = —C; ’ (3-20)

at
where - N
0 1 0 [ ] [ ] * L . 0
— o 0 l L ] L ] ® L] [ ] 0
A - . hd N . 9 (3-21)
L-El "az e o o o o o "‘En
/
Assume that the control U takes the form
- N nei-l
Y= - (L Cima» ’31) R A 20 (3-22)

i=l

Then the transfer function matrix between the output y and input
-F(y,t) has a characteric equation (s+7\)n, and is denoted by

G(s) = O(sI-A)"B

[ Nll(S) le(S) e o o o o Nllll(s)\
Ny(e)  Ny(s) oo o v oo Ny (s)

H
2

Y |-
;l

(M@ o Hy(e)
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where Nij(s) is the numerator of '('}'ij(s). and is a pclynomial in s of
degree at most (n-1). And Ni;j(s) may contain A of degree at most n.

From the same argument of previous section, there is a A N J> 0 such
that

Ny 5 ()

0
{ k, N
e d I forall »23%,, (3-23)

where kg 3 can not be specified beforehand, since Eij(s) may contain
A of the same degree in both numerator and denominator,

For the absolute stability of (3-1), (3-2), we invoke condition
(3-4) and require Re G(s) + K be positive definite for all w. Following
the same lines as in the previous section, we further require

m
Z kg’ < l-];_ v i=l...l..m . (3‘24)
j=1 J i
Let * -
A = max, ( >‘ij’ i’-j=loo-non) (3=25)

Then the control law u, takes the form (3-22) with X > X"

The design procedures are summarized as

Step 1: Choose v, such that (A, bk) is a controllable pair, Set
w =0, i%k;
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Transform (A, b,) into companion form;
Find kgj from (3-23);

Step 4: Repeat step 3, if (3-24) fails to hold, or show that non-existence
of such 3\13, 1,351, 0000 on;

Determine -;‘i;j’ hence A ;

Obtain control law w, as in (3-22) with X 2 A%,

LEE

o
:
x

The design procedures developed for systems which are simple-

strongly completely controllable may fail in some cases because the values
of kgj, i,j=l,....,n, can not be specified beforehand. But this
particular structure of the characteristic equation for the chosen control
type (3-22) will give a quick indication for the non-existence of such a

A * for the design scheme,
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CHAPTER IV
STABILIZATION OF MULTI-INPUT CONTROLLABLE LINEAR SYSTEMS
WITH UNKNOWN PARAMETERS

IV-1., Introduction

The stabilization of multi-input controllable linear systems with
fixed system parameters has received wide attention in recent research in
system theory [?Sﬂ - [jJJ . Various techniques are developed to obtain
the control law which stabilizes the systems and in the meantime achieves
an optimality with respect to certain performance index., However, in many
of the real-world control systems, some parameters are given with only a
certain degree of accuracy. Similar problems arise in the case where the
system parameters vary slowly or drift from the operating values, For
these cases, it would be no longer valid to stabilize the systems with
respect to a particular parameter value, or ever with respect to the
neighborhood of a particular parameter value, The parameters are initially
unknown, The only constraint on parameters is that they belong to a
compact set, We will show the existence of linear state fsedback control
law which stabilizes the system with possible parameter values in a
compact set,

This type of problem has been studied in [lh; - [15] » in which
the dominant type systems of scalar case are considered. The results are
limited and depend on the determination of the stability region.

We start with the systems with parameters assuming two different
values, Then the obtained results are generalized to the case where the
system parameters assume values in a compact subset of the parameter space.

IV-2,  Stabilization of Multi-input Controllable Linear System with
Parameters Assuming Two Different Values
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The systems under consgideration are described by

dx

where the state x is a n vector, the control u isan m veetor,

and A, B are constant matrices of compatible order,

r Sy
A hae e Ay
Azy  App Aom
A - . . . (L"—za)
m L ] L] o [ ] L] L ] L %m
L y
where r N
0 1 0....0
0 o l . L] L] . O
Aii - ? . i:lpooao.m
1 2 ny
"33 TRyg e e e 44
~ A
" ~
and 0 0 ® s o ¢ o o 0
Ai- - : ‘ . : L,=3eeeeym
j . 4
0 O L ] » L] * L ] L[] o
2 n
\-a-ij -aij e & 8 o -aig
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~ ~
0
: 0.0.0..0
0 ¢ n
1
by 0 :
B = 0 '. (4=2b)
. g" . n,
; 2 T
Ol...‘... 6 rxrn
b
m
L p
m
1-

we start with the systems (4-1) of the form (4=2) for two reasons, First,
it could be the structure of the interconnection of m linear subsystems
through inputs and outputs. Each subsystem is in a companion form.,
Second, as was shown in [28) , (32) , the class of multi-input
controllable linear systems having the same Brunovsky constants can be
transformed into (4=1) of the form (4=2) by a nonsingular transformation
and a modified input.

The elements of A, B, the parameters of the systems, are

assumed to belong to a compact subset Cp of mnxmx R" » Where

k . .
C - aij y 1yJ=lyeees,m, bil izlyeeee,m ?

k:l'ocao.nj

k k k L] . L3
2 5 €4 ij'Aij being compact subsets of R, i,jml,ee..,m,

kﬂl...ao’n‘ md bim é bi ﬁ biM [ i=1'o...’m

J 4

where b; ., b;y are known bounds on parameters by, izlyeceas,m,



We assume that the parameters of A, B, assume two possible
k A
Va.luesﬂl, ﬂz € Cp . where ﬂl = { aij’ i,:j:l.oooo’m ’ bi’ i:l’ooo.m

k:'.l.oooo'nj

2k . A
a‘ndﬂz - aij. ipaﬂooco.’m [ bi. i'-'-l'cooo.m .

k=1,ocoo.nj

Mathematically, systems with parameters assuming two possible
values are equivalent to two different systems, which are described

respectively by
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0 01..0 o0- o0 : :
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_Al A2 A M /:1 A ny Al A2 A N A
a'll ‘a]-loo.-all —alzoao-alz vse “a-lm "alm -alm bl
0.....0 0 1...0 0.co..0 0
: E 0 01..0 XXX E :
0 o . 0 0
dx_ _Al A2 . amy Al A No Al A2 Alplx g u
at |2 “Sgre et ~dppe e minptens iy ~Eopes iy 2
: R . 3 (“-Ba)
0veeedO e 1,0 0
; * XXX X] o 01.... o :
[ : . 0 .
0.....0 : 0
al A Al A N2 al A n A\
-aml ¢ s o "aml - ooc"amz see -amooooo. %’J bnj
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and
7’ ~ -~ \
0 1 ooo- O O secee 0 0 eeesevece 0 0
0 0...0 *° . : X
. ¢ .o o . : 0
: O cooo:o O esoecevoee 0 0
2l AN al A Ty 2
ApdgeAnt A A2 4 L) By
01l1l0...0 0
0010000 :
. : . o
& | A0 4l - Amp 2
dt = "aaloooouo ‘3»21 '322000 "azz esce X 4 ?’2 u
: . . . | (4=30)
ooooooooo. o '0 l 0 esesnae 0
: ; .. 0 01000000.. *
o .........o * ¢ 0 *
¢ o 0
a1 A M o2l R N
-3 eccene “aml escesnncsonce oco-amo-ooo-c -a-m @m
P \ p

A N
In order to have a meaningful problem, we assume by, ?’i £ 0, i=l,,00.,m,
To simplify the calculation, we introduce the transformation for input

wzH (v-tx) (ht)

where new input v is an m-vector, and
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Then (4-3a), and (4=3b) become respectively
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Define Y(i = ;,;i , i=1l,,...,m, and assume fli 2 0.5+ &, , where
i
< 3 is an arbitrarily small number, isl,....,m. Note that we have options
to choose as to which system becomes (4=5a) or (4-5b) simply by
interchanging the systems (4=3a) and (4-3b) at the very beginning,
To design a single control law v to stabilize both (4-5a) and

(4-5b), we consider the control v of the form

n, n ny n-l n
1 1.1 1
-CO A -Cl ?\ ooo-cnl_i}\ o eencooe 0 e0v000cnseee 0
0 sevc0cce0s0soee O "cnzlnzcoo-cnz Ao.oooooo 0
0 n -l
. . 2 .
v: . O ¢ . X
: . - (46
nmnm nm"m'l nm
g O 020000000000 00000c000000000S O ev0esee -Co A -Cl A s o™ nm_lh
/
A
- Tx

for some A3 0 . With (4=6), (4=5a) has a characteristic equation
m

n n Zni
6s) = IT (o#n) T2 (o)™ m (aan )", (4=7)
3=

which is a Hurwitz polynomial for any ) 5 0. In order to show that the
control v of the form (4-6) can stabilize (4=5b) for some AN 0, we



first prove the following Assertion,

Assertion IV-1

n
n; n.=j¢l .
]I(s +"( 2017\1 371 ) is a Hurwitz polynomial
J=1
izl J=1
if Y‘ i , € is an arbitrarily positive number, isl,....,m
and)\ » O,
n ni ni""j+l 1
:|I o’"
Proof Sé.nce ( 8 + r( i Z CJ-l ) is a product of m

J=1
polynemials in s , and it is a Hurwitz pelynomial if each polynemial

y i®l,,...,m is a Hurwitz polynomial.,

Consider the ith polynemial, and write it in a convenient fora

Ny n n,=jsl
P P AN
=1

n
- r(i( 8+ ) 5‘+( 1"11 ) et

n
Dencte  ,(s) = Ny(e+2) 1 (4-8)
A
and  H(s) = (-1 et (4=9)

and consider the contour [ as shown in Figure 4.
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A 2 2
mong [y, |R(0)] % 2 0 202%™, ana [ % -7,

we have Iﬁi(jw)l N |§1(Jw)| if My D0.5E , del,...im.

Mong [T, , it is obvieus that |ﬁi(:jw)| > |§1(J‘v)| .

Since the conditiens of Rouchés theerem [33] are satisfied, we
conclude that ,ﬁi(s) and ﬁi(s)+§i(a) have the same number of zereos
within |—' . Since all zeros of ﬁi(s) are located outside [ , it must
be true that all zeros of ﬁi(s)+§i(s) are located outsider’ . This
completes the proof of the Assertion. Q.E.D.

An immediate consequence of the Assertion JJ-l is that, for =1

- ~

m ni mn ni m m ni nj
P Badnd £ gl ...
i=l i=1 i=l J;l
m ni nm m ni nj
1 Z qj_CZ +Z Z T)injcl 03 e o o o o
i=l is]l jel
a ny .
2 1% :
A.Q = ? i=1qi . y 0 (410a)
: l .. ﬁ'ﬂ.ooo'n"’l
. 0 * )
0 0

and
An=711"]2°'°'°']m5°° (4~10b)



Substituting (4=6) into (4-5b), and letting 0(1;3 = '}1311{3-'\!1‘3 '

1,j51y0e00,m, k=l,.....nj » We have

/
0 l 0 -.oco ~
0 0 l .0..0 0 [ R N N ) o

mm ol m no,1 2 2 1 2 T
-Co 7\ +%.looo-cnl_ +dll dlz dlz ooooooodlz oooodlm dlm [ EX X ¥ N dlm

0 1 0..0..0 )

0 0 0 1 .eeee 0 o0ee :

2

&
N

[
B

o

dx 1 2 M MM 1 "2 a2 1 "
el d dzloooooo d =-C. A +c{22...-0n2_ 7\+d2200000(2m dzm ooooooo%

L ] L] [ ] L] . * e ® .
[ ] L ] ® @ L] L[] [ ] L L]

0 1 0..00
0 0 leces
1 2 n My My 1 "m o
escsee ® ¢ & ¢ 0 & o 0 06 0 0o 0 ™ ‘N eoo™ ‘A d
\ A %m A Co A ¥gye+=Op 2™ )
=7\Jx . (4-11)

Expanding det(sI-'K). we have a polynomial in s

N n
a(e) = "+ L% et (412)
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which when subjected to the stability test of Routh~Hurwitz criterion takes
the form

o~ ns ~ N
b B 200
1 5 oY
_ o .
A - . 9 -_-1,....,!1-1 (u-lBa)
2 0 1 .
and - ~
B =% - (4-13b)
Expansion of the determinant of (4~13) yields
_ 2241 2041) 5
A‘q = {Tﬁ)o% + TX.IA‘-%_) +....+T€ 'l 'p*l ',ozl.ooo.n. (u-lu)
where

The right hand sides of (4~14) are polynomials in A of decreasing
degree, The coefficients of the highest powers of 7 are all positive,
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since we have shown in (4-10) that 8, ,{=1,....,n are positive if
N; =0.5€, , i=l,....,m . Hence, there exists a "7\2; 0 such that

By r0forall )23,

let * - -
A =m.(7\l.ng oc.c.)\n) (4-15)

Then contrel v = Tx withany A 2 A . Hence u=H ( T+T )x with
*
A 2 )\  will stabilize both systems,

Asgertion IV-2 For the multi-input controllable linear system (4=1) of
the form (4-2) with parameters assuming two possible different values,
there always exists a control law which is in the form of linear state
feedback and which can stabilize the system having either parameter value,
if

qiéo.s*ei t} isl.oooo’m [} (h"lé)

Assertion IV can be easily generalized to the systems with parameters
assuming any finite number of possible values, These results can be applied
to systems containing a finite number of on-off contrel switches.

Assertion IV-3 For the multi-input controllable linear system (4=1) of
the form (4-2) with parameters assuming any finite number of possible
values, there always exists a control law which is in the form of linear
state feedback and which can stabilize the system having any of the



parameter values, if for any possible combination of different parameter
pair , we have

° 8 =l|0000'
fh-°5+ N i n

Q -1'....’3-‘;&;-1 (ll_l?)

where N is the number of possible parameter values.

Proof For any two possible parameter values, we can find a 7\; y SO
that u = H-l( T+T)x  with A2 7\; will gtabilize the system assuming
either parameter value. Let them run through all possible pair of
parameter values and take

* * »*
A - mc( kl....'.")\-ﬁ‘ﬁ-lz) . (4—18)
2

Then uws= HD( ™ )x  with 3 3 > is the desired control. Q.E.D.
IV- Stabilization of Multi-Input Controllable Linear Systems with
Parameters Agssuming Values in a Compact Subset of the Parameter
Space
The results of IV-2 are now generalized to systems with parameters

agsuming values in a compact subset in the parameter space. The problem
considered in this section is more difficult than that of previous section,
because there is now an infinite set of Hurwitz inequalities,

Asgertion IV-4  For the multi-input controllable linear systems (4=1) of

the form (4-2) with parameters assuming values in C

D ? there always exists



22

a control law which is linear state feedback and which can stabilize the

system having any parameter values in Cp if by, ® £ 30 or

Proof lLet us consider a particular element Jf)L le cp » having the specific

» where £ is an arbitrarily small number,
values for by

*

*k Ak -
1° 3-:1.:]e ij ! 10J7leeecesmy K2lyoeeenys By = bypy o by 20 i=l m}
")' Tdgeeoy

and any other element () € Cp -

For this pair of parameter values, we have

bi
- -
r{i - bi* 21 3 0.5+ € i 0 i"l.oco.’m .

Then from Assertion IV-2, we have shown the existence of a
) *
7\*§0 and of a control law u:Hl( @-}T )x with A X A , which
stabilizes the system having either of the parameter values, It is obvious

that A* is dependent upon the choice of L) € C, . Since the determination

|4
of A *(.0..) involves only continuous operations, the dependence of A *

o is compact by assumption, the
- - A
existence of a A * such that the control law u = H l( T+T )x with

on ). € Cp is continuous, Since ¢C

A2 * which stabilizes the systems having any of the paramster values

in Cp is guaranteed, where

- % *
A =z=suwp (X (1))
.O.Ecp



This completes the proof of the Assertion.

QcE oDo
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CHAPTER V
STABILIZATION OF LINEAR TIME-~VARYING SYSTEMS WITH UNKNOWN PARAMETERS

V-1, _ Introduction

In Chapter IV, we have considered the problem of the stabilization
of multi-input controllable linear systems. This chapter extends the
results of Chapter IV to linear time-varying systems. Results obtained
in Chapter IV are heavily dependent on the use of complex variable theory
which is not valid for linear time-varying systems., A different method of
analysis is developed for this case,

The time-varying coefficients of the system are initially unknown,
but they belong to the set of continuous and bounded real valued functions.
We will show the existence and the construction of a control law which is
linear in state feedback and which stabilizes the system with all possible
time-varying coefficient in the set. The approach used is similar to that

of Chapter IV,
V-2, Stabilization of ILinear Time-Varying Systems with Parameters

Assuming Two Different Time Functions

The linear time-varying systems considered are described by

Q"a-,(cﬂ = A(t)x(t) + b(t)u(t) x(tg)=x, (5-1)

where state x(t) is ne-vector, control wu(t) is a scalar, and



(o 1 0.veeea0 ]
0 0 l.vssea

At) = N 0 . ’
oy (t)  way(t) o au . - (t)

b(t) =

Qe o ¢ O ©O

bo())

where 2a,(t), i=l,.....,n, by(t) are bounded and continuous functions
for t > ty Let

71!: { £(t) : | £(t) l { M, and f£(t) is continuous for
t 2t } (5-2)

and
‘;‘r = { £(t) : f£(t) is bounded and is contimuous for

t 2t (5-3)
Obviously, ?nC?

The problem considered is to design a single control law of the

form
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n

u(t) = L q,(t) x;(8) = q (+) x(t) (5-4)
i=l

where qi(t) € ?' » i%l,....,n and q(t) = ool.(ql(t)......qn(t) ), such
that the controlled systenm

%&Q = (A(t) + b(t) g (t)) x(t)

has asymptotically stable solutions for all a(t), 1=1,....,n, by(t)e 714’
The above problem has the same important implications as for
time-invariant systems. We assume that |b0(t)| >E > 0 or
bo(t) £ =€ < 0 for t 2 t), and that the parameters of A(t),
b(t) assume two possible sets () 11 ﬂ-z of time functions in ?H’

i,e,

ﬂ 1 - { Qj_(t)o i=l,....,n, %o(t). gi(t)'%o(t)e7}!’1:1"0'!“}

and . , = {ﬁi(t). 391,.0000m, Do(8),3 (8,350, 100 sm by (t) € 7}4} .

Mathematically, we have two different systems 8 and 8, described
respectively by
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-~
7
J

0 1 0 covees O 0
0 0 l.ceeee 0 0
=) .| ' ) x(t)+ | ° u(t)
. .. . (5~52)
. . 0
| B ) cenrens B(1) | By(t)
and
/ N\ ( )
0 1 0 ceese O 0
0 0 1 [ X XN K J o o
a(t) o | . ) x(t) 4+ | o |u(t) (5-5)
; IR 6
A A A X
2 (8) By(t) veeeres B (E) | By(t) |

4

To simplify the derivation, we make the change of control u(t) by
defining

n
By(t) ult) = v(t) 4+ él?i(t) x; (¢) (5-6)

Substituting (5-6), into (5-5), we have (5-5a), (5-5b) become respectively



&g
0

and

dt

\

1l 0 coeeee O ] ' 0 ‘
0 1l seeess O 0
‘ ol e | L v (5-7a)
0 veveveseee 1 0
O 0...0’..00. 0 l y
o 1 0 [ EEEENNNYR] 0
0 l [ E A EENNNN] 9 ]
. . : ,
; - i
5, (t) B, (t) - B, (t) Byt (t) 4 (t) By, (t)
- ’ - m—— seesse =8 - T
IR m L TR w2 a0 E ()
0 \
0
. v(t) (5=7b)
0
BQ.
\bol

We consider the control v(t) of the form
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n
1+l
W) = -] G A, (1) (5-8)
i=]

where an—l!——
17 11(n-1)!

Expressing u(t) in terms of =x(t), we have

» and N\ is a positive constant to be determined.

n

A 1
aw) =1 T (R- T 5 (1) (5-9)
bo(t) m

Substituting (5-8) into (5-7a), we obtain a linear time-invariant system,
which has a characteristic equation of the form G(s) = (s+ )" and which
is asymptotically stable for any A D 0,

To show that the control v(t) of the form (5-8) can stabilize
(5-7b) for some X > 0, we first prove the following Assertion

Assertion V-1 The matrix A , where

[ L ]
0 0 1 eeeecanes O
A= L (5-10)
Bo®) mn Do) mna Byt n
\ %o(t) 0 ) cecanes -,g;-(;-)- Che /
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is such that the real parts of all its eigenvalues are negative,
if

(1) A0 A
By
@) pr)= oy 21 ¥t 2t

Proof:  det( u(t) I-A) can be expanded as

/ln(t) + {é(t)clnA /A""l(t) + ﬁ(t)chzjun'z(t) Feveet F(t)}xn

n
= B () +x)" - Q- F_‘_ ) Aw)

The eigenvalues of A are exactly the roots of the equation

L) p'w) =o

n
[( JE) +2) - - ry

or Cp@wn) = ¢ ) p"e) (5-12)
whera 0 < cl)(t) l.F_(-;i) < 1, ¥t

We will prove the Assertion by contradiction. Suppose that one
eigenvalue of A has the property, /u(t) =V (t) + 3 T(t) with
'4/. (t) > 0 for some t » t,. Then from (5-11), we have



[V @3 c@nn])"= ¢ @y wwso @) (5-12)

Taking absolute values of both sides of (5-12), we have

2
(¥ @)’ @] = 2w VPanaen”

o [P e o P =n]4>2<t) (VR A1)

o A%y = (af$w) DypPerede) (5-13)

Since the right hand side of (5-13) is always negative for
¢ (t) < 1, while the left hand side of (5-13) is positive for V¥ (t) > 0
for some t, and A\ > 0 which is impossible. This contradiction
completes the proof. Q.E.D.

From (5-13), we have

>\2+z>\\|¢ (t) < o ¥t 2t A >0 (5-14)

which gives a lower bound for real part of the eigenvalues of A in
terms of )\ . Hereafter, we assume the conditions of the Assertion V-1 are
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x
satisfied for our systems, i.e. bo(t)/'ﬁo(t) - f(t)2 1 %t > t, .
Substituting (5-8) into (5-7b), we obtain

0 l ® o L] o ]
0 0 1 e o000 0
dx(t) _ ’ :
it - : . . B : :
: . . (51
. “ ’ ’ l
R BOE®-G .o B BRI )

which can be decomposed into two parts

BLL = 2 2(0) + AL x(t) (5-16)
( 0 0..0v00 0 )
Al(t) = : . 2 :

* L]

0 ® o o o 0 & o 0 0 . \d 0
| S EER®) L e Bt

and A(t) is defined as in (5-10).
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Iet W(t,to) be the fundamental matrix of the system

L) - T e x(tg) =%y (5-17)

which is asymptotically stable for any X > 0, It is well-known [34]
that

A
- 'é'(t’to)

[[Wtgrt)|| < @ e (5-18)

where 0 is a constant, and ” .....” denotes the Euclidean norm,
The solutions of (5-16) can be written in the Cauchy integral form as

t
x(t) = W(t,tg) x(to)+/t W(t,t,) wlr 1ty) 4 () x(T)dT
0

t
= W(t,t) Xt /t W(t,T ) AL(T) x(T )t (5-19)
o

Taking norm on both sides of (5-19), we have

Dt

A
- S=(t=tg) t - tg)
|=)]| £ 6 2 [P +ﬂ g e 2 7 || A, ljx@)]| et (5-20)
0
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Since every elements of Al(t) belongs to ?M' we then have

“Al(t)” {m (5-21)
with (5-21), (5-20) becomes
2t Lot t 1
|x®)ffe? " < 8027 O jxtty)]] +/t B M o2 t”x('c)” dt
0

Using Gromwell's inequality, we further have

1/2 Nt,

1/2 \t 8 M, (t-t,)
1= || {De l|x(t,))] e fattto

1
= (A =20 M ) (t=t,)
=] < [[xo]| 8 e z R (5-22)

If M 1is chosen such that

n > 20m (5-23)



then we can show lim x(t) =0
tp®
The results obtained are summarized and stated ag

Assertion V-2 For the linear time-varying system of the form (5-1) with
parameters assuming two possible sets of time functions, there always
exists a control law which is linear state feedback, and which can stabilize
the systems having either parameter values if

The design procedures is summarized as :
Stepl: Find 8 , which is independent of A ;
Step 2: Find M;
Step 3: Pick A2 A * =20M;
Step 4: Obtain control law in (5-9) with N\ > ) *;
Assertion V-2 can be easily generalized to systems with parameters
assuming any finite number of possible sets of time functions.

Assertion V=3 Far the linear time-varying systems of the farm (5-1) with
parameters assuming N possible sets of time functions, there always
exists a control law which is linear state feedback and which stabilizes
the systems having any set of time function if for any possible combination
of two different sets of time functions, we have

ev (t) 2 1 ¥t ?_ to j- .oooo.mg!—ll
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Proof: Follow the same lines as in Assertion V -3, Hence the proof is
omitted,
V=3, Ex. e

Consider the system described by

( dxl 3 4 W -~ T / \
at 0 1 X 0
= + u(t)
%J -a'l(t) - z(t) "2 bo(t)
\ \ / L / )\ /
- -2t
where 31 = sint , 3\.2 =e t . ’l;o(t) = l¢e
A A -2t -t
B =moost , B=eTt , Bylt)=leT, f(t)= ﬁ—& >
e

Step1: Following [35] , we find

9=ﬁ;



70

Step 4: u=___12.{ [sint-)\z, e -2)\] with X >8J2 .
Llye™

V=4, Stabilization of Linear Time-Varying Systems with Parameters
Ass Time Functions in

Assertion V-l  For linear time-varying systems of the form (5-1) with
parameters assumign possible sets of time functions in # M, there always
exists a control law which is linear state feedback and which stabiligzes
the eystems having any set of time function in Fy if by, > 0 or

boM < 0 where

bom & Polt) < boy ¥t (5-24)

Proof: Let us consider a particular set of time functions in Fy ,
which has a specific value for bo(t) ’

1= M 0™ Om
2bgy if by < 0

N = { a}(t), 431,....,m, By § aj(t)e F, 451,.00,m, Dy if by > o)

and any other () = {ai(t), 15L,.009my by(t); &, (L), by(t)€ 7,‘_}
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b, (t)
Sincee =— > 1 ¥+t ) t,, and from the Assertion V-2, ve

)

have shown the existence of an )\* ) 0 and a control law (5-9) with

X 2 A", which stabilize the systems having either of the parameter

values,

Actually, in the proof of Assertion V-2, we can easily show that
the results hold far any A(t) with a;(t)€ F , 42l,....,n . Hence
the existence and the construction of control law can be obtained from

n
u(t) = ok [ L, (ag(t)-Cy ) x, (¢) ]
0 i=]

with X > 2\*. Q.E.D.



CHAPTER VI
STABILIZATION OF NONLINEAR SYSTEMS WITH UNKNOWN PARAMETERS

VI-1,  Introduction
In Chapter II, we have considered the problem of stabilization

far a class of nonlinear systems (2-1)-(2-3) with known and fixed system
parameters, The control law so obtained is guaranteed to stabilize the
system having this parameter value. In this chapter, we intend to
generalize the above problem to the case where the system parameters are
initially unknown, but they belong to a compact subset aDp of the
parameter space, We will show the existence of a control law which is in
the form of linear state feedback and which stabilizes the systems with any
possible parameters values in o@p .

(23] nas studied the parameter variation for the system (2-1)-
(2-3) by allowing some of the parameters to be unspecified, and obtained
the relation between these parameters for absolute stability of the system,

It is well known that the stability of the system (2-1),(2-2) with
f(y,t) = 0 for all y,t is a necessity for the absolute stability of
system (2-1)-(2-3). It is therefore, a must to consider the problem of
stabilization of the linear system (2-1),(2-2) with parameters assuming
values in a compaot subset of the parameter space before considering
the corresponding problem for nonlinear systems.

In Chapter IV, we have shown the existence of a control law
which is linear state feedback and which stabilizes the multi-input
controllable linear systems with parameters assuming values in a compact
subset of the parameter space., For the case m = 1, the results can be
applied to this chapter. Based on this structure of the control law, we
will show, by putting more restrictions on the parameters, the existence



of a control law for stabilizing nonlinear systems(2-l)-(2-3),

Vi-2, Stabilization of Nonlinear Systems with Parameters Assuming Two

Different Values

The systems under consideration are described by (2-1), (2-2)

which are repeated for reference:

dx
Ezkx+bu-bf(y,t) (6=1)
T

y=c¢x (6=2)

where the state x is an n-vector, the control u, output y are
scalars, and A,b are nxn, nx 1l matrices respectively, f(y,t) is
a continuous function with respect to each of its arguments and satisfies

0 < f(y,t)y ¢ k ¥t,y, (6-3a)

and £(0,t) =0, Yt (6=3b)

We assume that the systems (6-1),(6-2) are given in companion form, i.e.



%

4 N
0 1 0.¢..0
0 0 l1....0
A: ° . ‘. :
) . oooool
\.al -aZoooooo-an
7/
/ N
0
0
b= » c:[cl.....-CJ
0
stJ

where the paramesters s C3, i=l,....,n, bt € a@ » Which is defined
840 C4 0 D

as

&p: {ai’ ci, i-"l,.....n. bo H aiEAi. ciE‘A, i’di.Ai ming

compact subset of R, iZl,....,n, a.mzlbm 4 by £ bx}

We first assume that the system parameter assume two possible values ()L 1
and ), where () = { &, &, 1al,u00im, By} ama 1, {ﬁi. B
isl,....,n, bo} . Mathematically, we have two different aystoms
described respectively by
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r 0 1 0 .00 0 ) ( 0 ]
0 0 l1....0 0
e - . . .
& _ | A I B o R S
. B 0
A A A a
\-81 ‘32 evvscsee -a-n) L bo)
AA A
T=( C1s C2reeeeey Cy ) x
and 4 N ~
0 1 0 cene 0 ro
0 0 1....0 0
a | - ~ :
&_ | , Dol ke || et (6k)
. Co1 0
IA\ k ‘ ”~ 4\\
\ -a.l - sssscsee ‘ﬁn J § bo‘

N n
y= ( el' 62.-00--..

N\
A
cn)x

N
In order to have a meaningful problem, we assuse DBy, by % O «
n

We intend to design a single control u of the form u(t) = Z Q Xy 9
9y, i=l,....,n are constant, such that both (6-4a) and

im}

(6=kb) will satisfy the absolute stability conditions.

To simplify our derivation, we introduce the change of input

va-) %

L, %%y + Byu (6-5)

?
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Substituting (6-5) into (6-4a) and (6-4b), we have respectively

0 1 o.....t. o
g- ? 0 .l ...l...? x+
at = . . :
3 . , l
c/\ ) /A\
4 24, i 528
LT B, By ™.
and
(0 1 0....0) [0
dx : . . .
at = : ' , : X 4 .
’ © 1 0
0 ® [ ] [ [ ] * L ] o [ ] L] o ‘ l
N P 4 ’

o? loo‘» o

o

(v=£(y,t))

(v-£(y,t))
(6~6a)

(6=6b)

Attent%on is given to the case where bo . bo > 0 , which implies

d = _. 2 1, since otherwise, we can always interchange the two systems

sotha.t dal.,

To design a single control v(t) to stabilize both (6-6a) and

(6-6b), we consider the control v of the form

n=isl
v(t)="Z Cilx xi )

i=l

(6-7)



77

Where n
C; =n!fil(n-1)! , and X > 0 to be determined,

with (6-7), (6-6b) has a characteristic equation with output y and
input -f(y,t) as

a(s) = (s+ )" (6-8)

which is a Hurwitz polynomial for any A > 0 . And in Chapter II, we
have shown the existence of A I > 0, and a control law of the form
(6-7) with X> X7, such that

Re G(jw) + 1/k > 0 ¥Fw

In order to show that the control v(t) of the form (6-7) can
stabilize (6-6a) for some )\ ; > 0, we first prove the following assertion

Aggertion VI-l There exists a A\ ; such that

o Zi°1 1-1 ]
Re [ 1’ +E > 0 ¥w
oy Z. (o cn f\11-14-1 i1 k

i=1
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1 _<_ ol _<. do where d o.-.. for n:l. 2’ 3, and,
n n
2C 2C
4 nelf
d =m1no( 0esveey ) » tor n:lm. ﬁl|2’3oo.
3" (6=9a)
or
20, 2001
0=mino(———_—— 9 eosveey ) s for n=l"m+1, 131.2'3...
ZCFFCE 262-1 n-l
< -1 (6-9b)
o
20, 2,2
d 4 mino( 9 esse ) » for n%z, 181.2’3..000
0 2c}- 2C° =Gy
e 34l (6-9¢)
aor n n
o , = min, ( °% 2 )+ far n=4m3, 121,2,3
0= . 2cn_cn » seee o 2cn _‘cﬁ_ » ’ 959 0000
2 3"l 3 (6-94)

where every entry of min.(.ee, .esy +.., ) should be positive, it will
not be considered for determining of o If it 13 negative. And ol 0™
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if no entry appears in min, (.., ¢ ¢, veec yore)
Proof:

n A _del

by c 8
Re ﬂL"l + 1/k = Re = + 1/k

Bn-l- Cn .)fl-ii-lsi-l (}_ =1) sn*( 84‘)\)n
j-l A
i=]

The numerator of the above equation is

£ { FED N (D" s r @™ gy A (Lt s,

n=l A 2J 2n-3

n n=l
+ ("'l) cn-lc1x+ ("l) chZ )\ + o000 00 s + [ 65 Xn-eucn.lx

-2 ne%
* 330::-2 Xn -,620::.3 >\n.3 A _q_>\ ] 81‘4- [04% - 3 1>\
-1 2
) A (BT ) &
500 A" e 0") ¢ ) [ 2R) R (R
"'["2’*‘1" AN J“ﬁ\}f;ﬂ- 874 | 3op(-1) 4G (-
2n-2 ) N
+;1-C:(-1)"J s +[-cu(-1) +C c3(-1) (c'z')z(-l)" 2+c;_'c§(.1)“

in, ..n 4 2n-k 1 n n n 2 n n 1n .
f ;cq,("l) ] A8 + cseoeee +[ &C:.I"'cn.lcn.a‘f(cn-z) -cn-lcn"a* &CM]
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2n-b 4 in n 2 1n 2n-2 2 2n
A 3 ¢ [Jcn_z‘(cn-l) 'f&'cn_z] A 8 4+ A

2n 2.n n=2 2 n-l. 2 1 n n-1 . n
L e @ D N 4 )" ™ 2N -

- 2 - A
NE R U N E R AR T eE TSV PNATE TR

-1 -2 2 -3, 2n-4
'i'(-l)n @n.zcln)\f(-l)n an.lcg A *(Ol)n Bch; XB ] (jW) XXxx

2n=4 n=l A~ N ne2

+ k( 35 )\n-auc::_l)\ +c3c A

nZ_n n n
t [ ( (Gp) -2, _;Cn 3420, ) N n-2

A n=3 A N 4 2n=2

n 2
-c2c2_3>\ +,C *xn'u)] w o4 [( (c,_,) =2 o-ll-cﬁ_z)x

p (SNl AT HE D AT ] R e 3T (6-10)

(6-10) is greater than zero ¥w if all of its coefficients are positive,
This will be true if

2 2 A A
(-5 ) M e k(=28 14 8.d%) > 0

1 2
[(BP-2iche 2] a* (28,58, o0 8, BN 4,2 > o



) . (6-11)

7\' o) >0

For sufficiently large A > 0 , the signs of the inequalities of (6-11)
are determined by the coefficients of the highest degree of A in the
inequalities. Hence every insquality of (6-11l) is positive if o satisfies
(6=9). The negative entry of min,(.eeyeeeyees) 0f (6=9) implies the positive
leading coefficients for 1 £ & {® in one of the inequalities of
(6-11), hence it should not be considered in determining o , . If no entry
appears in min,(.eeyeeeyeee) , this implies each inequality of (6-11) has
a positive leading coefficients for all 1 £ & <® |, This completes the
proof. Q.E.D.

Hereafter, we agsume that 1 ¢ 21\)0/30 £ o » Which is
independent of A ., We are now in a position to prove the following

assertion,

Assertion VI-2  There exists an 7\; 0 such that

d Z. 31“1“1

>‘n-i+l)8i-1 +1/k >0 Yw (6=12)

s E (a1+ol
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* < - A 2
far all A 2 A, and 1fel $o, and & =8 -eld; , iFl,ee0en

The numerator of (6~12) can be obtained as

SLNIH

- a 2 e
{3 N TR N S SR RN & VRIS

a _ , a
bty 2 +dIn )]} ()" { 2(2)"( 22 40, A M2 1)

- - 2 -l L
(222 4 2% (1) e )™ :‘(l+c§>~ SRR GO S ik WA

E a A
By 4 (D28, (24 + ) 6 "'2+c>\)]}(sw)"’

‘5, -
* ceccece + { [2( '&2 +c:-)+7\2n.4) - 2( {:%"‘C:.l%n l)( 22 +C .1) )

(24" D?) ax [ 5(3”\)-%(0( N )+03(32

- -

n ne2,. A,% n _n3. A n  nek 4 a
A ) =Gl T 4C A )*°1(3(i*°n-47‘ )]} w +{-[2(;

s, A7) L (24 2] +k[A3(al+>\)-cz( 2 4 A

5

18,32 4 2™ )) } SR T SN PP (6-13)
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(6=13) is greater than zero for all w , if all of its coefficients are
positive, This will be true if

3
- ‘:('1 +c27\)+(°( dr ek (23 BN > o

<“'JL +Cy 2)7 -z(d clxx“f +03 )+d<a‘7}‘3+c2x")

a. a
+ Kk [ %-(Gn_a- I *°1>‘) G (2= 7 +027\ ) - & (L2 +C§>\3)]> 0

4 A" - 2R o, 3T rk [ 4N - 4,2 2, 0
a

"'°1(o( +c:_27\ )] >0

(Faa™? e 8242 > 0 (6-14)

Since for sufficiently large A > 0 , we examine the coefficients
of the highest arder of A in each inequality of (6-14), and find that
these coefficients are exactly the same as that in (6-11), the existence
of 7\; such that (6-12) holds for any X 2 )\; is guaranteed.

By chosing )\* = max.(A} , 23, A3 ). the control u(t) of
the form



n
at) =4 | Lea, - d a" xi] with X > A (615)
by i=l

will stabilize both systems (6-4a), (6-4b),
The results are sumarized as :

Assertion VI-3 For the nonlinear system of the form (6-l)-(6=3) with
parameters assuming two possible different values, there always exists a
control law of the form (6-15) which can stabilize the systems having
either parameter values if

The design procedures are summarized as :
Stepl: Check if 1 ¢ %olgo ar %o/ﬁo (g s
Step 2: Transfarm (6-1)=-(6=3) into companion form, and change the input

by (6=5);
Step 3: Find x;. X2 7\;;
Stepks: st A\ wmx. (2], X3, A3 ) and obtain control as in

(6-15) with » > 2",

The results are easily extended to the system with paramesters

assuming any finite number of possible values. The results are similar to

previous chapters and the derivation is omitted.

VI-3, Example
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Given the systems described by

i I GO I I SR
dt X
= + (u-£(y,t))
&y
a | X Po
\ / \ 4 L / ~ /
1
y =(e40) y kel
x
2
A A Ay A A
with al=-l,a2=l,bo=l.cl.-_l.02=-1 and
A A A R N
81=2.82=-1,b0=2,0 :-1,02-0

Step 1: From (6-9), we have o(o =¢0 since n=2
Step 2: Change the input u by defining

v(t) = u(t) + x; = x,

Then we have two different systems described by
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0 1 0
& - x + (v-2(yst)) 4 y=[-1.0]x
dat
-l 1 2
and 0 1 [ 0
ax _
at ~ x ¢ (v-£(y,t)) , ¥=(@,=1) x;
0 0 1
Step 3: To determine 7\;_ , consider
Re ( -—(-5’:]-'-)-2—) + 1 , which is greater than zero for all
s+ N\

A D> M=l and consider

=28
Re + 1 , which is greater than zero
[_szlwn )5+ (-142 2) ]

for all A ¥ 7\;.1.

Tt is obvious that »\ S =1

Let 7\*=2

Step &: u(t) = -5x, = 3%, will stabilize both systems,
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Vi-4, Stabilization of Nonlinear Systems with Parameters Assuming
Values in A Compact Subset of the Parameter Space

The results of VI-2 are generalized to the systems with parameters

assuming values in a compact subset in the parameter space,

Assertion VI-4 For the nonlinear systems of the form (6-l)=(6=3) with
paramsters assuming values in ag.p » there always exists a control u(t)
of the form (6-15) which can stabilize the system having any parameter

values in Dp y if

0<€ < b ¢ 1y & dyh

[ T2
o
(o)
i
&
N
]
m
N
o

or -ulobH (6=16)

where ¢ 1is an arbitrarily small number
Proof: Let us consider a particular element . 1 € an » having the

specific values for bo R

* *
ﬂl= { ai * 0; » ill......n ’ bogbm if bm> 0 }

*
b0=bu if b“< 0

and any other element 1 € °©p with b, satisfying (6-16).



For tais pair of parameter values, we have

[
I
L
u
Oo‘ilod
IN
Z
o

then from Assertion VI-2, we have shown the existence of an A* > 0

and of a control of the form (6-15) with X > 2* , which stabilizes the
system having either parameter values, It is obvious that A* depends
upon the choice of <2 € &) . Since the determination of A"({L)
involves only continuous operations, the dependence of X* on J) € o@p
is continuous, Since ‘Q: is compact by assumption, the existence of a
A" such that the control law of the form (6=15) with » > »* which
stabilizes the systems having any of the parameter values in ODp is
guaranteed, where

%k
A = sup_ A(L)
.n.eon

This completes the mroof of the Assertion. Q.E.D.
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CHAPTER VII
CONCLUSIONS

ViI-1, Conclusion

Problems of stabilization of nonlinear dynamic systems with
fixed or unknown parameters are conasidered. In Chapter II, the methods
for the stabilization of a scalar Lure system by means of a linear state
feedback or dynamics compensators design of specific type are developed,
The existence of such a control law is guaranteed under the assumptions
of complete contrallability and complete observability of the gystems, in
which the condition of complete observability can be further relaxed by
requiring the unobservable part be agymptotically stable. Chapter III
attempts to extend the results obtained in Chapter II to the systems
containing multiple-nonlinearities. The effort has been successful for
two subclasses of such systems, i.e, systems with adjoint controls and
systems having the property of simple-strong complete controllability.

In many of the real concrete systems, the system paramesters are
given with a certain degree of accuracy, or the parameter values vary
slowly during the operation. It is then necessary to consider the problems
of stabilization of the system assuming all possible parameter values,
The proof for existence of a linear state feedback control law for the
stabilization of the class of multi-input controllable linear systems,
the class of the general linear time-varying systems, and the class of
Lure system is derived respectively in Chapter IV, Chapter V, and Chapter
VI, in which the parameters of the systems are assumed to satisfy certain
constrains,

ViI-2, Discussions
In this thesis, the development of design techniques and the
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proof of the existence of a control law are mads use of gome special
structures of the control law, The advantage of this approach consists in
reducing the determination of n feedback coefficients to that of only
one, and which gives the results in a completely analytic fashion. It is
possible to improve the results by assuming the structure of the control
law with more than one undetermined coefficient. This, however, will
definitely increase the complexity in the proof of our results.

The results obtained in this thesis consist in finding a real
number A * such that any linear feedback control law with A 2 A*
will achieve the desired goal. The selection of A over the range
© 3 A 2 \* geems arbitrary. However, )\ has direct effect on the
system response and performance, Large valus of ) may have better
system responses, in the meantime, it may increase the difficulty in
realizing the control law, Far a suitahly chosen A , the compromise
between various factors affecting the system responses should be made.
This may lead to a formulation of an optimal control problem,
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Figure 1 : Schematic representation of the nonlinear gystem considered
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Figure 2 : Characteristic of nonlinear function fgx,tl
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Figure 3 : Configuration for Compensator Design
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Figure 4 : The contour



