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SUCCESSIVE ELEMENT CORRECTION ALGORITHMS FOR SPARSE 
UNCONSTRAINED OPTIMIZATION 

GUANGYE LI* 

Abstract. This paper presents a successive element correction algorithm and a secant modification 
of this algorithm. The new algorithms are designed to use the gradient evaluations as efficiently as pos­
sible in forming the approximate Hessian. The estimates of the q-convergence and r-convergence rates 
show that the new algorithms may have good local convergence properties. Some restricted numerical 
results and comparisons with some previously established algorithms suggest the new algorithms have 
some promise to be efficient in practice. 
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1. Introduction. Consider the unconstrained minimization problem 

(1.1) min f(x) 
xeRn 

where f : D C Rn ---t R is twice differentiable, and the Hessian H ( x) is sparse. To solve 
problem ( 1. 1), we consider the following iteration is considered: 

(1.2) 

where Bk, an approximation to H(xk), is a symmetric matrix with the same sparsity 
as the Hessian. To specify the sparsity of a given matrix B, we use M to denote the 
set of index pairs (i,j), where bij is a structural nonzero element of B, i.e., 

M = {(i,j) : bij =JO}. 

Since Bis symmetric, if (i,j) EM, then (j,i) EM. For convenience, we rewrite (1.2) 
as 

(1.3) 

where x is the current step, x is the new step, and B is an approximation to H ( x). 
Obtaining a good cheap approximation to the Hessian is an important topic in 

many recent papers, and it is algo the purpose of this paper. Currently, there are 
several ways to get a sparse and symmetric approximation to the Hessian under the 
assumption that a subroutine for the evaluation of '\7 f(x) is available (We assume that 
it is not convenient to access the component functions of '\lf(x) separately). In partic­
ular, finite-difference methods are often quite attractive since such methods retain good 
convergence properties, and the number of gradient evaluations needed to difference the 
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gradient is usually small relative to the dimension of the problem when the Hessian is 
sparse. 

For solving sparse nonlinear systems of equations, Curtis, Powell and Reid [5] pro­
posed an efficient finite-difference algorithm, called the CPR algorithm, which is based 
on a partition of the columns of the Jacobian. Subsequently, Coleman and More [1] im­
proved on this method, using graph coloring technique, and then developed a software 
package for sparse finite differences [3]. Powell and Toint [11] extended the CPR idea 
to the symmetric case and proposed two practical methods to obtain an approximation 
to the Hessian: the direct and the indirect lower triangular method. The former is 
based on a symmetric partition of the columns of the Hessian. The latter is based on 
a partition of the columns of the lower triangular part of the Hessian. Coleman and 
More [2] connected these partition problems to various graph coloring problems and 
provided some partitioning algorithms which usually make the number of the gradient 
evaluations optimal or nearly optimal. A software package for sparse symmetric finite 
differences was developed by Coleman and More [4]. 

The definitions of a partition and a consistent partition of the columns of a matrix 
can be found in Li [8]. Now we give the definition of a symmetrically consistent partition. 

DEFINITION 1.1. A partition of the columns of a symmetric matrix B is symmet­
rically consistent if, for (i,j) EM, 

(1.4)The group containing column j has no other column with a nonzero in row i, 

or 

(1.5)The group containing column i has no other column with a nonzero in row j. 

Note that given a symmetrically consistent partition of the Hessian, if (1.4) is not 
satisfied for (i,j) E M, then (1.5) must be satisfied for (j, i) E M. Now the direct 
method can be formulated as follows: Given a symmetrically consistent partition of the 
columns of the Hessian, which divides the set {1, 2, ... , p} into p subsets c1 , c2 , ... , cp (for 
convenience, c1, l = 1, 2, ... , p indicates both the sets of the columns and the sets of the 
indices of these columns), let 

where h1 =/- 0 are scalars, and let 

y1 = g(x + d1) - g(x), l = 1, 2, ... ,p, 

where g(x) = "Vf(x). Let (i,j) EM and i E c1, j E Cm. If only (1.4) is satisfied, then 
b;j = bji are determined uniquely by the equation 
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i.e., 

(1.6) 
er ym 

bij = ~-

If only (1.5) is satisfied, then bij = bji are determined uniquely by the equation 

i.e., 

(1.7) 

If both (1.4) and (1.5) are satisfied, then one can choose either (1.6) or (1.7), and the 
other one will be ignored. Alternatively, an averaging technique is possible. 

In some cases, a good, symmetrically consistent partition of the columns of Hessian 
can take advantage of symmetry to reduce p. As an example, we consider a 6 x 6 matrix 
with the arrow structure: 

X X X X X X 

X X 0 0 0 0 

A= 
X 0 X 0 0 0 
X 0 0 X 0 0 
X 0 0 0 X 0 
X 0 0 0 0 X 

Since one row of the matrix is dense, six directions, di = hiei, i = 1, 2, ... , 6, are 
needed, i.e., p = 6 if the symmetry is ignored. In this case, (1.4) and (1.5) are both 
satisfied. But if we have the partition: Ct = {1 }, c2 = {2, 3, 4, 5, 6}, and the directions 
dt = ( h, 0, 0, 0, 0, Of and h2 = (0, h, h, h, h, hf, then B can be determined uniquely 
by (1.6) and (1.7). In this case, (1.4) is satisfied for Ct, and (1.5) is satisfied for c2 • 

Unfortunately, in many cases, Powell and Toint's direct symmetric method can not 
take the advantage of the symmetry to reduce p. This has been shown by Coleman 
and More[2] by means of a result on band matrices saying that 2/3 + 1 differences 
are required for estimating the Hessian by a direct symmetric method, where /3 is the 
lower bandwidth of the Hessian. Since 2/3 + 1 differences are also required by a direct 
method, it is clear that symmetry is of no use in this case. As an example, we consider 
the Hessian with a tridiagonal structure: 

X X 0 0 0 0 
X X X 0 0 0 

(1.8) A= 
0 X X X 0 0 
0 0 X X X 0 
0 0 0 X X X 

0 0 0 0 X X 

A symmetrically consistent partition of the columns of the matrix is: Ct = {1, 4, 7, ... }, 
c2 = {2, 5, 8, ... }, c3 = {3, 6, 9, ... }, p = 3, which is the same as the case when the 
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symmetry is ignored, but which is optimal. In this case, both (1.4) and (1.5) are 
satisfied. 

The indirect lower triangular method can sometimes exploit symmetry to a greater 
extent than the direct method. For example, a symmetric band matrix requires only 
/3 + 1 differences using a substitution procedure. On the other hand, the computation of 
an element of B requires a sequence of substitutions, which makes the cost of obtaining 
B higher than in the direct method, and which may magnify rounding and truncation 
errors. 

The sparse finite-difference methods referred to above can all be used within the 
context of a Newton-like method. At each iteration, a new finite-difference approxima­
tion to the Hessian is computed at the cost of p extra gradient evaluations, for some p 
usually much less than n. Still, pis usually considerably large than one and it may be 
computationally advantageous to further reduce the number of gradient evaluations per 
iteration. A possible strategy for doing this is at cost of not updating all elements was 
suggested by Feng and Li[7]. They proposed a successive element correction method, 
called the column-row update method. By this method, at each iteration one column 
of B is corrected by a vector obtained from differencing the gradient "V J(x ), and the 
corresponding row of B is corrected by the transpose of this column. Such a correction 
continues successively and periodically. 

In this paper, we propose a successive element correction method which is an exten­
sion of both the column-row update method and the sparse symmetric direct method. 
Since it is based on a symmetrically consistent partition of the columns of the Hessian 
obtained from Coleman and More's partitioning algorithms, we call it the CM-element 
correction method (CMEC). This method needs only two gradient evaluations at each 
iteration. The differencing direction is chosen to allow for the direct determination of 
the nonzero elements induced by a group from a symmetrically consistent partition. In 
order to use the information sufficiently enough to obtain a better approximation to 
the Hessian, we also propose a secant modification of the CMEC method, which is a 
combination of the CMEC and a secant method. Our numerical results indicate that 
the new methods promise to be efficient in practice. 

In section 2, we describe the CMEC algorithm and some of its properties. In 
section 3, we give some local convergence results for the CMEC algorithm. In section 
4, we describe the modified algorithm. In section 5, we experimentally compare the 
algorithms mentioned above. 

2. The CMEC method and its properties. Given a symmetrically consistent 
partition of the columns of the Hessian, which divides the set {1, 2, ... , n} into p subsets 
c1,c2, ... ,cP, and given a scalar sequence {hk}, where hk =J 0, k = 1,2, ... , let 

(2.1) dk = I: hkej, 
jEc,k 

where 

ik = { k(modp), if k(mod p) =J 0 
p, otherwise, 
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and let 

(2.2) 

Also let Bk = [bfJ Suppose that B 0 is a nonsingular matrix which has the same sparsity 
as the Hessian. Then { Bk} can be obtained by the following procedure: When k ~ p, 

for (i,j) EM and j E q, if (1.4) is satisfied, the bt = bji is determined by equation 

(2.3) 

As in (1.6), we have 

(2.4) 
T k 

bk bk ei Y 
ij = ji = ---,;;;-, 

and the other elements of Bk are equal to the corresponding elements of Bk-l _ When 
k > p, the elements of Bk are corrected, as described above successively and periodically. 
In other words, for ( i, j) E Mand j E ck, if (1.4) is satisfied, then b7j = bji is determined 
by (2.4). The other elements of Bk are equal to the corresponding elements of Bk-l. 

For (1.8), the element corrections at the first three iterations are shown below, 
where the elements at the '*' positions are corrected. 
At the first iteration, 

B1= 

At the second iteration, 

B2= 

At the third iteration, 

B3= 

* * 0 0 0 0 
* X X O O 0 
0 
0 

X 

0 
X * 
* * 

0 

* 
0 
0 

0 0 0 * X X 

0 0 0 0 X X 

X * 0 0 0 0 

* * * 0 0 0 
0 * X 

0 0 X 

X O 0 
X * 0 

0 0 0 * * * 
0 0 0 0 * X 

X X O O O 0 
X X * 0 0 0 
0 
0 

* * * 
0 * X 

0 0 
X 0 

0 0 0 X X * 
0 0 0 0 * * 
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At each iteration, at least half of the elements of Bk are corrected by some difference 
quotients, but only two gradient values are needed. In three iterative steps every nonzero 
element of Bk is corrected at least one time. 

Next, we describe an enhancement of the basic algorithm which can make it more 
efficient. Note that we can correct more elements than those in just one group at each 
iteration. In general, we can expand a group of columns by adding some columns from 
other groups. The elements in this expanded group can be determined uniquely by only 
two gradient evaluations. The rule for adding columns from other groups is as follows: 
Columns from other groups can be added provided there are no nonzeros in the same 
row position in this expanded group. We may expand a group Ci to a group Ci with 
"maximal size"; that is if we add an additional column to c,;, then there must be at 
least two nonzeros at the same row position. 

As an example, we consider the problem with the following structure: a dense five­
dimensional leading submatrix is followed by a tridiagonal matrix of arbitrary length. 
An eight-dimensional version of this structure is given in (2.5). 

X X X X X 0 0 0 
X X X X X 0 0 0 
X X X X X 0 0 0 

(2.5) B= X X X X X 0 0 0 
X X X X X X 0 0 
0 0 0 0 X X X 0 

0 0 0 0 0 X X X 

0 0 0 0 0 0 X X 

The following symmetrically consistent partition of the columns of the matrix is optimal: 
c1 = {1}, c2 = {2}, C3 = {3,6,9, ... }, C4 = {4,7,10, ... } and cs= {5,8,11, ... }. Hence, 
the number of gradient evaluations for the direct algorithm at each iteration is six. 
Note that only five elements of the Hessian are estimated for each of the gradient 
values g(x + he1 ) and g(x + he2 ). When n is large, this is an inefficient use of gradient 
evaluations. However, we can expand each group so that close to n elements of the 
Hessian are estimated with each gradient evaluation. Specifically, we can expand c1 to 
c1 = {1, 7, 10, 13, ... } and c2 to c2 = {2, 8, 11, 14, ... }; and let c3 = c3, c4 = c4 and cs = C5. 
Note that there are some overlaps between Ci, i = 1, ... , 5, i.e., c1 nc4 = {7, 10, 13, ... } and 
c2 n c5 = {8, 11, 14, ... }. The elements corrected in the first three iterations are shown 
below. Again, the elements at the "*" positions are corrected. At the first iteration: 

* * * * * 0 0 0 

* X X X X 0 0 0 

* X X X X 0 0 0 

B= * X X X X 0 0 0 

* X X X X X 0 0 

0 0 0 0 X X * 0 
0 0 0 0 0 * * * 
0 0 0 0 0 0 * X 
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At the second iteration: 

X * X X X 0 0 0 

* * * * * 0 0 0 
X * X X X 0 0 0 

B= 
X * X X X 0 0 0 
X * X X X X 0 0 
0 0 0 0 X X X 0 
0 0 0 0 0 X X * 
0 0 0 0 0 0 * * 

Note that corresponding to the gradient values g(x + he1 ) and g(x + he2), n and n - 1 
elements of the lower triangular part of the Hessian are estimated at the first and the 
second iteration, respectively. 

ALGORITHM 2 .1. Given a symmetrically consistent partition of the columns of the 
Hessian which divides the set {1, 2, ... , n} into p subsets c1 , c2 , ... , cp, expand each group 
Ci to a maximal size group Ci. For a given x 0 E Rn, and a nonsingular matrix B 0

, which 
is symmetric and has the same sparsity as the Hessian, do the following: At the initial 

step: 

1. Setl=O. 

2. Solve B 0s0 = -g(x0
). 

3. Choose x1 by x1 = x 0 + s0 or by a global strategy. 
At each iteration k > 0 : 

1. Choose a scalar hk. 

2. If l < p, then set l = l + 1, otherwise set l = 1. 
3. Set 

dk = I: hkej. 
jEc1 

4- If j E c1 and (i,j) EM, then set 

(2.6) b7j = {ke;(g(xk + dk) - g(xk)), 

and set 

b~- = b~-
Ji iJ' 

otherwise set 

5. Solve Bksk = -g(xk) . 
6. Choose xk+1 by xk+1 = xk + sk or by a global strategy. 

7. Check convergence. 
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Now, we discuss some properties of the CMEC algorithm. 
LEMMA 2.1. If {Bk} is obtained by Algorithm 2.1, then all elements in nonzero 

positions of Bk are corrected at least one time in every p steps of the iteration. 
Proof. Consider the first p steps. Let (i,j) EM. and j E cm, i E c1, 1 Sm Sp, 1 S 

l Sp. If (1.4) is satisfied, then bfF1 is corrected by b7J = (ef ym)/hm. Otherwise, (1.4) 
is satisfied for (j,i) EM. Then bi_;-1 is corrected by bL = (ef y1)/h1

• Therefore, Lemma 
2.1 holds for k S p. Thus, the lemma holds in the first p steps, and by periodicity, the 
result follows. 

Let 

(2.7) 

and Jk = [Ji~]. Note that Jk is symmetric and it has the same sparsity as the Hessian. 
LEMMA 2.2. If b7j-l is corrected at the kth iteration1 then 

(2.8) b~- = b~- = J~-iJ Ji iJ. 

Proof. Note that 

(2.9) 

If (1.4) is satisfied for (i,j) EM, then 

(2.10) 

Thus, (2.8) follows from (2.6) and (2.10). Otherwise, (1.4) is satisfied for (j, i) E M, 
and then (2.9) implies that 

(2.11) 

Thus, (2.8) follows from (2.6) and (2.11). 
In the following context, we assume that D is an open convex set, and sometimes 

we assme that the Hessian astisfies the following Lipschitz condition: For (i,j) E M, 
there exists O'.ij > 0 such that 

(2.12) lef(H(x) - H(y))eil S O'.ijllx -yll, Yx,y ED. 

Let a= (I:(i,j)EMafj)1l 2
• Then (2.12) implies that 

(2.13) IIH(x) - H(y)IIF Salix - YII, Yx, y ED. 

LEMMA 2.3. Let {xk} and {Bk} be generated by Algorithm 2.1. Assume that 
xk E D and xk + dk E D. If bt-1 is corrected at the kth iterative step, then 

(2.14) lef (Bk - H(xk))ejl S ~ O'.ijlhkl. 
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Proof. It follows from (2.8) and (2.12) that 

lef (Bk - H(xk))eil leT(Jk - H(xk))ejl 

leT(fo
1 

(H(xk + tdk) - H(xk))dt)eil 

I k I 11 aij k vn k < aij Id I 10 tdt = Tlld II s 2aijlh I-

THEOREM 2.4. Assume H(x) satisfies Lipschitz condition {2.12). Let { xi}j=1 C D 
and {Bi}j=0 be generated by Algorithm 2.1 with B 0 satisfying IIB0 

- H(x0 )11F < 8. If 
{xi+ di}J=I CD, then fork< p, 

(2.15) 

and fork~ p, 

(2.16) 

where 

where m(k) = min{k,p- l}i and h0 = 0. 
Proof. We first consider the case where k ~ p. By Lemma 2.1 for any (i,j) E M, 

there exists at least one integer O S q S p- 1 such that b~-q is corrected at the ( k - q )th 
step. Let m be the smallest one among all such q's. Then 

It can be obtained from Lemma 2.3 that 

leT(Bk - H(xk))eil leT(Bk-m - H(xk))ejl 
lef (Bk-m - H(xk-m))ejl + leT(H(xk-m) - H(xk))ejl 

< aij(f lhk-ml + llxk - Xk-mll) 

(2.17) < aii(ek + hk)-

Therefore, 

IIBk - H(xk)lli = L lef(Bk - H(xk))ejl 2 S a2 (ek + hk)2. 
(i,j)EM 

Thus, (2.16) follows from (2.17). 
Now we consider the case where 1 S k < p. In this case, it may happen that for 

some (i,j) EM, 



Let M; be the set of all such ( i, j) pairs, and let Mf = { ( i, j) E M : ( i, j) ¢-_ M;} . 
Also let 

E k __ Bk _ H(xk), E
1
k __ """" TEk T Ek 

~ ei ejeiej , 2 = 
(i,j)EMf 

Then, using (2.17), we have that 

and therefore, 

IIEkllF IIE: + E}IIF::; IIEtllF + IIE}IIF 
< a(ek + hk) + IIH(xk) - B 0 11F 
< a(ek + hk) + aJlxk - x0

11 + IIH(x0
) - B 0 11F 

< a(2ek + hk) + 8. 

3. Local convergence results for the CMEC algorithm. To study the local 
convergence of our algorithm, we assume that g : D C Rn -----+ Rn has the following 
property: 

(3.1) There is an x* ED, such that g(x*) = 0 and H(x*) is nonsingular. 

THEOREM 3.1. Assume that g : D C Rn -----+ Rn satisfies (3.1) and H satisfies 
Lipschitz condition (2.12). Assume that { xk} is generated by Algorithm 2.1 without 
any global strategy. Then there exist E, 8, h > 0 such that if O < lhkl < h and x 0 ED 
and B 0 E D satisfy 

llx0 
- x*II ::; E, IIB0 

- H(x0 )IIF::; 8, 

then { xk} is well defined and converges q-linearly to x*. If limk-+oo I hk I = 0, then the 
convergence is q-superlinear. If there exists some constant C such that Jhkl =:; CIJg(xk)II, 
then the convergence is p-step q-quadratic. 

Proof. Since x* E D and D is an open convex set, we can choose E so that 
S(x*,2t:) - {x: llx-x*II < 2t:} CD. Also, We can chose t:,8 and h so that 

9E 1 
yinh < E, 2/3(a( 2 + h) + 8) < 2. 

where f3 > 0 satisfies IIH-1 (x*)IIF < {3. 
We first show, by induction on k, that 

(3.2) 

For k = 0, we first show that B 0 is nonsingular. Notice that 

IIH-1 (x*)(B0 
- H(x*))IIF ~ IIH-1 (x*)IIF[IIB0 

- H(x0 )11F + IIH(x
0

) - H(x*)IIF] 
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Thus, by Dennis and Schnabel's Theorem 3.1.4 [6], 

ll(B
0t 1

IIF::; l ~ !. = 2(3. 
2 

Therefore x1 is well defined, and 

llx1 
- x*II < ll(B0

)-
1 IIF[llg(x*) - g(x0

) - H(x0 )(x* - x0 )11 
+IIB0 

- H(x0 )11Fllx* - x0 II] 
< 2/3[;11x* - x0 11 + 8]11x* - x0 II 

ac 1 
< 2/3( 2 + 8)llx* - x0 II ::; 211x* - x0 11· 

This means that (3.2) holds for k = 0. Now suppose (3.2) holds for k = l, 2, ... , m - 1. 
We show that it also holds for k = m. By (3.2), 

Thus, {xk + dk}k=I C S(x*,2c) CD. By Theorem 2.4, there exists an integer 1::; j 0 ::; 

min{m,p - 1} such that 

IIBm - H(xm)IIF < a(2llxm - Xm-io II+ hm) + 8 
< a(2llxm - x*II + llx* - xm-jo II + hm) + 8 

(3.3) < a( 4llx* - Xm-jo II + hm) + 8. 

Thus, 

1 
IIH-1 (x*)(Bm - H(x*))IIF::; (3(a(5c + h) + 8) < 2, 

and therefore, 

which shows that xm+I is well defined. By (3.3) 

llxm+I - x*II < ll(Bm)-1 IIF[llg(x*) - g(xm) - H(xm)(x* - xm)II 
+IIBm - H(xm)IIFllx* - xmll] 

< 2(3[;11xm - x*II + IIBm - H(xm)IIF]llx* - xmll 
ac -

< 2(3[2 + a(4c + hm) + 8]llx* - xmll 

(3.4) - 2j,[a(;c + h + 8]llx* - xmll ::; ~llxm - x*II, 

which completes the induction step. It follows from (3.2) that {.i-k} converges to x* at 
least q-linearly. 
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Note that for k 2'. p, by (2.16) inequality (3.3) is changed to 

IIBk - H(xk)IIF :S o:(llxk - x*II + llx* - xk-p+l II+ hk) 
< o:(2llx* - xk-p+l II + hk), 

and therefore, (3.4) is changed to 

(3.5) llxk+1 - x*II :S 2o:,B(;llx* - xk-p+lll + hk)llxk - x*l1-

Since {hk} is a sub-sequence of { hk}, hk -----+ 0 implies hk -----+ 0. Therefore, by (3.5), { xk} 
converges to x* q-superlinearly if hk-----+ 0. By Dennis and Schnabel's Theorem 5.4.1 [6], 

lhkl :S Cllg(xk)II 
is equivalent to 

lhkl :S C1llxk - x*II, 
where C1 > 0 is a constant. Therefore, if lhkl s; Cllg(xk)II, inequality (3.5) can be 
rewritten as 

(3.6) llxk+l - x*II :S C2llx* - xk-p+lllllxk - x*II :S C2llx* - xk-p+l112, 

where C2 > 0 is a constant, which implies that { xk} converges to x* at least p-step 
q-quadratically. 

THEOREM 3.2. Assume that g satisfies the hypotheses in Theorem 3.1 and that 
lhkl :S Cllg(xk)II- Then the r-convergence order of Algorithm 2.1 is not less than Tp, 
where Tp is the unique positive root of the equation 

tP - tp-l - 1 = 0. 

Proof. Inequality (3.6) can be rewritten as 

p-1 

llxk+l - x*II :S C3llxk - x*II L llxk-j - x*II, 
j=O 

where C3 > 0 is a constant. Thus, the desired result follows from Ortega and Rhein­
holdt's Theorem 9.2.9 [10]. 

It is well known that the efficiency index is one of the ways to evaluate an algorithm. 
It is defined by E = lnT /µ,where Tis the convergence order of the algorithm andµ is the 
number of function evaluations at each iteration counted in number of vectors (g( x)). 
To compare Algorithm 2.1 with Powell and Toint's direct finite-difference algorithm 
which needs p + 1 function evaluations per iteration, and the local convergence order of 
which is 2 under some assumptions, we computed the ratio of the efficiency indices of 
these two algorithms, i. e., 

(p + l)lnTp 
rp = 2ln2 · 

The values of rp various with different pare shown in Table 1. The results show that the 
ratio is always not less than one and it increases as p increases, however, the increase 
speed slows down as p becomes larger. This means that Algorithm 2.1 may be more 

competitive in the sense of the efficiency index when pis relatively large. 
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TABLE 1 

p 1 3 5 7 9 19 29 39 100 
rp 1.00 1.10 1.21 1.31 1.39 1.68 1.86 2.00 2.48 

4. A secant modification of the CMEC method. As mentioned by the author 
in a previous paper [8], at step k, the information g(xk-l) has not been used in the 
CMEC method. Therefore, it is reasonable to consider to use this information and 
make a secant update to Bk to get a better approximation to the Hessian, say J3k, and 
then solve the linear system 

To implement this, we apply Toint's [12] sparse symmetric secant (SPSB) update to 
have the following modified CMEC method. 

ALGORITHM 4.1. Given a symmetrically consistent partition of the Hessian, x 0 

and B 0 as in Algorithm 2.11 do the following: At the initial step : 
1. Set l = 0 and ]3° = B 0 • 

2. Solve B0 s = -g(x0
). 

3. Choose x 1 by x 0 + s or by a global strategy. 
At each iteration k > 0: 

1. Update Bk-l by Algorithm 2.1 to get Bk. 
2. Update Bk by SPSB update to get jjk. 
3. Solve J3k s = -g( xk). 
4. Choose xk+1 by xk+l = xk + s or by a global strategy. 
5. Check convergence. 

Using the same analysis as that for the modified CM-successive column correction 
method (see Li [8]), we have the following local convergence result for the modified 
CMEC method. 

THEOREM 4.1. The modified CMEC method has at least the same local convergence 
properties as the CMEC method. 

5. The numerical results. We computed six examples by Powell and Toint's 
direct method (PTD), Powell and Toint's indirect method (PTID), Toint's sparse PSB 
method (SPSB), the CM-element correction methods (with and without expanding the 
groups of a partition) and the modified CM-element correction method. In this section 
we compare the numerical results from these six methods. 

The 'global strategy' used to force convergence from far away points was a simple 
line search backtracking strategy as described by Dennis and Schnabel[6]. If a direction 
p is found to be an increase direction, i.e. pTV f > 0, then the negative direction -p 

will be used. According to Dennis and Schnabel[6], we choose the step length in finite 
differences for each element as 

hj = Jmacheps xj, 
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where macheps is the machine precision. The stopping tests we used are the ones given 
by Dennis and Schnabel [6) and all tests were run with the same accuracy requirement 
( E = 10-5

). For all functions and all methods, the global minimum was found. For 
the SPSB method, Algorithm 2.1 and Algorithm 4.1, the initial approximations to 
the Hessian were computed by the PTID method for Example 5.1-5.4 and by the PTD 
method for Example 5.5-5.6. All tests were run on the Jilin University Honeywell DPS-8 
in double precision. 

Example 5.1 is an extension of Example 9.2.2 in [6], where the dimension is only 
two. Example 5.2, Example 5.3 and Example 5.4 are variations of the Broyden Banded 
Function (see [9]). Here we only made some changes on the lower half bandwidth 
and the upper half bandwidth to have five diagonal, seven diagonal and nine diagonal 
structures. The results for these four examples are shown in Table 2 where NI is the 
number of iterations and NG is the total number of the gradient evaluations needed for 
solving these problems. 

Example 5.5 and Example 5.6 are created to see the effect of expanding groups in 
Algorithm 2.1. Example 5.5 has the same structure as (2.5), i. e. a dense 5-dimensional 
leading sub-matrix followed by a tridiagonal matrix, which we call the tadpole structure. 
The partition of the columns of the Hessian we used for the PTID method is c1 = 
{1}, c2 = {2}, C3 = {3}, c4 = {4,6,8, ... } and c5 = {5, 7,9, ... }, which is an optimal 
partition. The symmetrically consistent partition of the columns of the Hessian we used 
for other methods is c1 = {1} , c2 = {2}, c3 = {3, 6, 9, ... }, c4 = { 4, 7, 10, ... } and c5 = 

{5, 8, 11, ... }, which is also optimal. For Algorithm 2.1 and Algorithm 4.1 we expand 
group c1 to c1 = {1, 7, 10, 13, ... } and c 2 to c 2 = {2, 8, 11, 14, ... }. Example 5.6 has also 
the tadpole structure. However, the dimension of the leading sub-matrix is six instead 
of five. The partition of the columns we used for the PTID method for this example 
is C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4}, Cs= {5,7,9, ... }, C6 = {6,8,10, ... }, which 
is an optimal partition. The symmetrically consistent partition of the columns of the 
Hessian we used for other methods is c 1 = {1} , c 2 = {2}, c 3 = {3}, c 4 = {4, 7, 10, ... }, 
c5 = {5, 8, 11, ... } , and c6 = {6, 9, 12, ... }, which is also optimal. For Algorithm 2.1 and 
Algorithm 4.1 we expand group c1 to c1 = {1, 8, 11, 14, ... }, c2 to c2 = {2, 9, 12, 15, ... } 
and c3 to c3 = {3, 10, 13, 16, ... }. In Table 3, we compare the PTD method, PTID 
method, the CMEC method without expanding any groups of a partition (CMECW), 
Algorithm 2.1 and Algorithm 4.1. 

Example 5.1 (Three diagonal). 

- (x; - 2)4 + (x; - 2)2x~+l + (xi+1 + 1)2, i = 1, 2, ... , n - l, 
(xn - 2)4, 
(-1, -1, ... , -lf, 
36, p = 2 for PTID andp = 3 for others. 

Example 5.2 (Five diagonal). 

n 

f(x) = ~f;(x), 
i=l 
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TABLE 2 

Algorithms Example 5.1 Example 5.2 Example 5.3 Example 5.4 
NI NG NI NG NI NG NI NG 

PTD 7 29 7 43 7 57 7 71 
PTID 7 22 7 29 7 36 7 43 
SPSB 29 32 31 35 39 44 34 40 

Alg.2.1 11 24 14 31 17 38 19 43 
Alg.4.1 10 22 11 25 13 30 14 33 

where 

fi(x) = Xi(2 + 5x7) + 1 - I: Xj(l + Xj), 
jEJ; 

where 

Ji= {j : j -:f i, max(l, i - m1) ~ j ~ min(n, i + mu)}, 

and 

m1 = 1, mu= 1, XO= (-1,-1, ... ,-l)T, 

n = 36, p = 3 for PTID and p = 5 for others. 
Example 5.3 (Seven diagonal). 
The same as Example 5.2 except for that m1 = 2, mu = 2, n = 36, p = 4 for PTID 

and p = 7 for others. 
Example 5.4 (Nine diagonal structure). 
The same as Example 5.2 except for that m1 = 3, mu = 3, n = 36, p = 5 for PTID 

and p = 9 for others. 
Example 5.5 (Tadpole structure 1). 

f(x) = J(x) + 0.5(x1 - X2 + X3 - X4 + X5 - 1)4, 

where ](x) is defined by Example 5.1, 

xl = (-1,-1, ... ,-lf, x2 = (3,3, ... ,3f, n = 36, p = 5. 

Example 5.6 (Tadpole structure 2). 
A 4 

f(x) = f(x) + 0.5(x1 - X2 + X3 - X4 + X5 - X5) ' 

where J(x) is defined by Example 5.1, 

x 0 = (-1,-1, ... ,-lf, x2 = (3,3, ... ,3f, n = 36, p = 6. 

It can be seen from the numerical results that for most of the cases, Algorithm 4.1 
takes the least number of gradient evaluations and it takes less number of iterations 
than Algorithm 2.1. For all the cases, Algorithm 2.1 takes less number of gradient 
evaluations than the PTD method. 

From Table 5 we can see that when the groups in a symmetrically consistent par­
tition of the columns can be expanded, both Algorithm 2.1 and Algorithm 4.1 may use 

much fewer gradient values than those for the PTD and PTID methods. 
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TABLE 3 

Example 5.5 Example 5.6 
Algorithms xu = xl Xu= x2 Xu= xl Xu= x2 

NI NG NI NG NI NG NI NG 
PTD 6 37 8 49 6 43 8 57 
PTID 6 37 8 49 6 43 8 57 
SPSB 36 42 25 31 42 49 19 26 

CMECW 13 31 17 39 15 36 19 44 
Alg. 2.1 12 29 15 35 14 34 17 40 
Alg. 4.1 11 27 13 31 11 28 11 28 

6. Concluding remarks. We have given two algorithms for solving unconstrained 
optimization problems which use gradient evaluations efficiently. The local convergence 
properties established for Algorithm 2.1 in section 3 are quite satisfactory, and the 
numerical results suggest the algorithms have some promise to be efficient in practice. 
When the gradient evaluation is not very expensive, we may consider a variation of 
Algorithm 2.1 or Algorithm 4.1 such that instead of correcting of just one group, two or 
more groups are chosen at each iteration. This technique may increase the r-convergence 
order and reduce the number of the iterations required for convergence, but, of course, it 
will take more gradient evaluations at each iteration than those required by Algorithm 
2.1 or Algorithm 4.1. 
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