
Successive Element Correction Algorithms

for Sparse Unconstrained Optimization

Guangye Li

October, 1991

TR91-34

SUCCESSIVE ELEMENT CORRECTION ALGORITHMS FOR SPARSE
UNCONSTRAINED OPTIMIZATION

GUANGYE LI*

Abstract. This paper presents a successive element correction algorithm and a secant modification
of this algorithm. The new algorithms are designed to use the gradient evaluations as efficiently as pos­
sible in forming the approximate Hessian. The estimates of the q-convergence and r-convergence rates
show that the new algorithms may have good local convergence properties. Some restricted numerical
results and comparisons with some previously established algorithms suggest the new algorithms have
some promise to be efficient in practice.

Key Words. unconstrained optimization, symmetry, sparsity, Hessian.

AMS(MOS) subject classification. 65K10, 65H10

1. Introduction. Consider the unconstrained minimization problem

(1.1) min f(x)
xeRn

where f : D C Rn ---t R is twice differentiable, and the Hessian H (x) is sparse. To solve
problem (1. 1), we consider the following iteration is considered:

(1.2)

where Bk, an approximation to H(xk), is a symmetric matrix with the same sparsity
as the Hessian. To specify the sparsity of a given matrix B, we use M to denote the
set of index pairs (i,j), where bij is a structural nonzero element of B, i.e.,

M = {(i,j) : bij =JO}.

Since Bis symmetric, if (i,j) EM, then (j,i) EM. For convenience, we rewrite (1.2)
as

(1.3)

where x is the current step, x is the new step, and B is an approximation to H (x).
Obtaining a good cheap approximation to the Hessian is an important topic in

many recent papers, and it is algo the purpose of this paper. Currently, there are
several ways to get a sparse and symmetric approximation to the Hessian under the
assumption that a subroutine for the evaluation of '\7 f(x) is available (We assume that
it is not convenient to access the component functions of '\lf(x) separately). In partic­
ular, finite-difference methods are often quite attractive since such methods retain good
convergence properties, and the number of gradient evaluations needed to difference the

* Department of Mathematical Sciences, Rice University, P. 0. Box 1892, Houston, Texas 77251-
1892.

1

gradient is usually small relative to the dimension of the problem when the Hessian is
sparse.

For solving sparse nonlinear systems of equations, Curtis, Powell and Reid [5] pro­
posed an efficient finite-difference algorithm, called the CPR algorithm, which is based
on a partition of the columns of the Jacobian. Subsequently, Coleman and More [1] im­
proved on this method, using graph coloring technique, and then developed a software
package for sparse finite differences [3]. Powell and Toint [11] extended the CPR idea
to the symmetric case and proposed two practical methods to obtain an approximation
to the Hessian: the direct and the indirect lower triangular method. The former is
based on a symmetric partition of the columns of the Hessian. The latter is based on
a partition of the columns of the lower triangular part of the Hessian. Coleman and
More [2] connected these partition problems to various graph coloring problems and
provided some partitioning algorithms which usually make the number of the gradient
evaluations optimal or nearly optimal. A software package for sparse symmetric finite
differences was developed by Coleman and More [4].

The definitions of a partition and a consistent partition of the columns of a matrix
can be found in Li [8]. Now we give the definition of a symmetrically consistent partition.

DEFINITION 1.1. A partition of the columns of a symmetric matrix B is symmet­
rically consistent if, for (i,j) EM,

(1.4)The group containing column j has no other column with a nonzero in row i,

or

(1.5)The group containing column i has no other column with a nonzero in row j.

Note that given a symmetrically consistent partition of the Hessian, if (1.4) is not
satisfied for (i,j) E M, then (1.5) must be satisfied for (j, i) E M. Now the direct
method can be formulated as follows: Given a symmetrically consistent partition of the
columns of the Hessian, which divides the set {1, 2, ... , p} into p subsets c1 , c2 , ... , cp (for
convenience, c1, l = 1, 2, ... , p indicates both the sets of the columns and the sets of the
indices of these columns), let

where h1 =/- 0 are scalars, and let

y1 = g(x + d1) - g(x), l = 1, 2, ... ,p,

where g(x) = "Vf(x). Let (i,j) EM and i E c1, j E Cm. If only (1.4) is satisfied, then
b;j = bji are determined uniquely by the equation

2

i.e.,

(1.6)
er ym

bij = ~-

If only (1.5) is satisfied, then bij = bji are determined uniquely by the equation

i.e.,

(1.7)

If both (1.4) and (1.5) are satisfied, then one can choose either (1.6) or (1.7), and the
other one will be ignored. Alternatively, an averaging technique is possible.

In some cases, a good, symmetrically consistent partition of the columns of Hessian
can take advantage of symmetry to reduce p. As an example, we consider a 6 x 6 matrix
with the arrow structure:

X X X X X X

X X 0 0 0 0

A=
X 0 X 0 0 0
X 0 0 X 0 0
X 0 0 0 X 0
X 0 0 0 0 X

Since one row of the matrix is dense, six directions, di = hiei, i = 1, 2, ... , 6, are
needed, i.e., p = 6 if the symmetry is ignored. In this case, (1.4) and (1.5) are both
satisfied. But if we have the partition: Ct = {1 }, c2 = {2, 3, 4, 5, 6}, and the directions
dt = (h, 0, 0, 0, 0, Of and h2 = (0, h, h, h, h, hf, then B can be determined uniquely
by (1.6) and (1.7). In this case, (1.4) is satisfied for Ct, and (1.5) is satisfied for c2 •

Unfortunately, in many cases, Powell and Toint's direct symmetric method can not
take the advantage of the symmetry to reduce p. This has been shown by Coleman
and More[2] by means of a result on band matrices saying that 2/3 + 1 differences
are required for estimating the Hessian by a direct symmetric method, where /3 is the
lower bandwidth of the Hessian. Since 2/3 + 1 differences are also required by a direct
method, it is clear that symmetry is of no use in this case. As an example, we consider
the Hessian with a tridiagonal structure:

X X 0 0 0 0
X X X 0 0 0

(1.8) A=
0 X X X 0 0
0 0 X X X 0
0 0 0 X X X

0 0 0 0 X X

A symmetrically consistent partition of the columns of the matrix is: Ct = {1, 4, 7, ... },
c2 = {2, 5, 8, ... }, c3 = {3, 6, 9, ... }, p = 3, which is the same as the case when the

3

symmetry is ignored, but which is optimal. In this case, both (1.4) and (1.5) are
satisfied.

The indirect lower triangular method can sometimes exploit symmetry to a greater
extent than the direct method. For example, a symmetric band matrix requires only
/3 + 1 differences using a substitution procedure. On the other hand, the computation of
an element of B requires a sequence of substitutions, which makes the cost of obtaining
B higher than in the direct method, and which may magnify rounding and truncation
errors.

The sparse finite-difference methods referred to above can all be used within the
context of a Newton-like method. At each iteration, a new finite-difference approxima­
tion to the Hessian is computed at the cost of p extra gradient evaluations, for some p
usually much less than n. Still, pis usually considerably large than one and it may be
computationally advantageous to further reduce the number of gradient evaluations per
iteration. A possible strategy for doing this is at cost of not updating all elements was
suggested by Feng and Li[7]. They proposed a successive element correction method,
called the column-row update method. By this method, at each iteration one column
of B is corrected by a vector obtained from differencing the gradient "V J(x), and the
corresponding row of B is corrected by the transpose of this column. Such a correction
continues successively and periodically.

In this paper, we propose a successive element correction method which is an exten­
sion of both the column-row update method and the sparse symmetric direct method.
Since it is based on a symmetrically consistent partition of the columns of the Hessian
obtained from Coleman and More's partitioning algorithms, we call it the CM-element
correction method (CMEC). This method needs only two gradient evaluations at each
iteration. The differencing direction is chosen to allow for the direct determination of
the nonzero elements induced by a group from a symmetrically consistent partition. In
order to use the information sufficiently enough to obtain a better approximation to
the Hessian, we also propose a secant modification of the CMEC method, which is a
combination of the CMEC and a secant method. Our numerical results indicate that
the new methods promise to be efficient in practice.

In section 2, we describe the CMEC algorithm and some of its properties. In
section 3, we give some local convergence results for the CMEC algorithm. In section
4, we describe the modified algorithm. In section 5, we experimentally compare the
algorithms mentioned above.

2. The CMEC method and its properties. Given a symmetrically consistent
partition of the columns of the Hessian, which divides the set {1, 2, ... , n} into p subsets
c1,c2, ... ,cP, and given a scalar sequence {hk}, where hk =J 0, k = 1,2, ... , let

(2.1) dk = I: hkej,
jEc,k

where

ik = { k(modp), if k(mod p) =J 0
p, otherwise,

4

and let

(2.2)

Also let Bk = [bfJ Suppose that B 0 is a nonsingular matrix which has the same sparsity
as the Hessian. Then { Bk} can be obtained by the following procedure: When k ~ p,

for (i,j) EM and j E q, if (1.4) is satisfied, the bt = bji is determined by equation

(2.3)

As in (1.6), we have

(2.4)
T k

bk bk ei Y
ij = ji = ---,;;;-,

and the other elements of Bk are equal to the corresponding elements of Bk-l _ When
k > p, the elements of Bk are corrected, as described above successively and periodically.
In other words, for (i, j) E Mand j E ck, if (1.4) is satisfied, then b7j = bji is determined
by (2.4). The other elements of Bk are equal to the corresponding elements of Bk-l.

For (1.8), the element corrections at the first three iterations are shown below,
where the elements at the '*' positions are corrected.
At the first iteration,

B1=

At the second iteration,

B2=

At the third iteration,

B3=

* * 0 0 0 0
* X X O O 0
0
0

X

0
X *
* *

0

*
0
0

0 0 0 * X X

0 0 0 0 X X

X * 0 0 0 0

* * * 0 0 0
0 * X

0 0 X

X O 0
X * 0

0 0 0 * * *
0 0 0 0 * X

X X O O O 0
X X * 0 0 0
0
0

* * *
0 * X

0 0
X 0

0 0 0 X X *
0 0 0 0 * *

5

At each iteration, at least half of the elements of Bk are corrected by some difference
quotients, but only two gradient values are needed. In three iterative steps every nonzero
element of Bk is corrected at least one time.

Next, we describe an enhancement of the basic algorithm which can make it more
efficient. Note that we can correct more elements than those in just one group at each
iteration. In general, we can expand a group of columns by adding some columns from
other groups. The elements in this expanded group can be determined uniquely by only
two gradient evaluations. The rule for adding columns from other groups is as follows:
Columns from other groups can be added provided there are no nonzeros in the same
row position in this expanded group. We may expand a group Ci to a group Ci with
"maximal size"; that is if we add an additional column to c,;, then there must be at
least two nonzeros at the same row position.

As an example, we consider the problem with the following structure: a dense five­
dimensional leading submatrix is followed by a tridiagonal matrix of arbitrary length.
An eight-dimensional version of this structure is given in (2.5).

X X X X X 0 0 0
X X X X X 0 0 0
X X X X X 0 0 0

(2.5) B= X X X X X 0 0 0
X X X X X X 0 0
0 0 0 0 X X X 0

0 0 0 0 0 X X X

0 0 0 0 0 0 X X

The following symmetrically consistent partition of the columns of the matrix is optimal:
c1 = {1}, c2 = {2}, C3 = {3,6,9, ... }, C4 = {4,7,10, ... } and cs= {5,8,11, ... }. Hence,
the number of gradient evaluations for the direct algorithm at each iteration is six.
Note that only five elements of the Hessian are estimated for each of the gradient
values g(x + he1) and g(x + he2). When n is large, this is an inefficient use of gradient
evaluations. However, we can expand each group so that close to n elements of the
Hessian are estimated with each gradient evaluation. Specifically, we can expand c1 to
c1 = {1, 7, 10, 13, ... } and c2 to c2 = {2, 8, 11, 14, ... }; and let c3 = c3, c4 = c4 and cs = C5.
Note that there are some overlaps between Ci, i = 1, ... , 5, i.e., c1 nc4 = {7, 10, 13, ... } and
c2 n c5 = {8, 11, 14, ... }. The elements corrected in the first three iterations are shown
below. Again, the elements at the "*" positions are corrected. At the first iteration:

* * * * * 0 0 0

* X X X X 0 0 0

* X X X X 0 0 0

B= * X X X X 0 0 0

* X X X X X 0 0

0 0 0 0 X X * 0
0 0 0 0 0 * * *
0 0 0 0 0 0 * X

6

At the second iteration:

X * X X X 0 0 0

* * * * * 0 0 0
X * X X X 0 0 0

B=
X * X X X 0 0 0
X * X X X X 0 0
0 0 0 0 X X X 0
0 0 0 0 0 X X *
0 0 0 0 0 0 * *

Note that corresponding to the gradient values g(x + he1) and g(x + he2), n and n - 1
elements of the lower triangular part of the Hessian are estimated at the first and the
second iteration, respectively.

ALGORITHM 2 .1. Given a symmetrically consistent partition of the columns of the
Hessian which divides the set {1, 2, ... , n} into p subsets c1 , c2 , ... , cp, expand each group
Ci to a maximal size group Ci. For a given x 0 E Rn, and a nonsingular matrix B 0

, which
is symmetric and has the same sparsity as the Hessian, do the following: At the initial

step:

1. Setl=O.

2. Solve B 0s0 = -g(x0
).

3. Choose x1 by x1 = x 0 + s0 or by a global strategy.
At each iteration k > 0 :

1. Choose a scalar hk.

2. If l < p, then set l = l + 1, otherwise set l = 1.
3. Set

dk = I: hkej.
jEc1

4- If j E c1 and (i,j) EM, then set

(2.6) b7j = {ke;(g(xk + dk) - g(xk)),

and set

b~- = b~-
Ji iJ'

otherwise set

5. Solve Bksk = -g(xk) .
6. Choose xk+1 by xk+1 = xk + sk or by a global strategy.

7. Check convergence.

7

Now, we discuss some properties of the CMEC algorithm.
LEMMA 2.1. If {Bk} is obtained by Algorithm 2.1, then all elements in nonzero

positions of Bk are corrected at least one time in every p steps of the iteration.
Proof. Consider the first p steps. Let (i,j) EM. and j E cm, i E c1, 1 Sm Sp, 1 S

l Sp. If (1.4) is satisfied, then bfF1 is corrected by b7J = (ef ym)/hm. Otherwise, (1.4)
is satisfied for (j,i) EM. Then bi_;-1 is corrected by bL = (ef y1)/h1

• Therefore, Lemma
2.1 holds for k S p. Thus, the lemma holds in the first p steps, and by periodicity, the
result follows.

Let

(2.7)

and Jk = [Ji~]. Note that Jk is symmetric and it has the same sparsity as the Hessian.
LEMMA 2.2. If b7j-l is corrected at the kth iteration1 then

(2.8) b~- = b~- = J~-iJ Ji iJ.

Proof. Note that

(2.9)

If (1.4) is satisfied for (i,j) EM, then

(2.10)

Thus, (2.8) follows from (2.6) and (2.10). Otherwise, (1.4) is satisfied for (j, i) E M,
and then (2.9) implies that

(2.11)

Thus, (2.8) follows from (2.6) and (2.11).
In the following context, we assume that D is an open convex set, and sometimes

we assme that the Hessian astisfies the following Lipschitz condition: For (i,j) E M,
there exists O'.ij > 0 such that

(2.12) lef(H(x) - H(y))eil S O'.ijllx -yll, Yx,y ED.

Let a= (I:(i,j)EMafj)1l 2
• Then (2.12) implies that

(2.13) IIH(x) - H(y)IIF Salix - YII, Yx, y ED.

LEMMA 2.3. Let {xk} and {Bk} be generated by Algorithm 2.1. Assume that
xk E D and xk + dk E D. If bt-1 is corrected at the kth iterative step, then

(2.14) lef (Bk - H(xk))ejl S ~ O'.ijlhkl.

8

Proof. It follows from (2.8) and (2.12) that

lef (Bk - H(xk))eil leT(Jk - H(xk))ejl

leT(fo
1

(H(xk + tdk) - H(xk))dt)eil

I k I 11 aij k vn k < aij Id I 10 tdt = Tlld II s 2aijlh I-

THEOREM 2.4. Assume H(x) satisfies Lipschitz condition {2.12). Let { xi}j=1 C D
and {Bi}j=0 be generated by Algorithm 2.1 with B 0 satisfying IIB0

- H(x0)11F < 8. If
{xi+ di}J=I CD, then fork< p,

(2.15)

and fork~ p,

(2.16)

where

where m(k) = min{k,p- l}i and h0 = 0.
Proof. We first consider the case where k ~ p. By Lemma 2.1 for any (i,j) E M,

there exists at least one integer O S q S p- 1 such that b~-q is corrected at the (k - q)th
step. Let m be the smallest one among all such q's. Then

It can be obtained from Lemma 2.3 that

leT(Bk - H(xk))eil leT(Bk-m - H(xk))ejl
lef (Bk-m - H(xk-m))ejl + leT(H(xk-m) - H(xk))ejl

< aij(f lhk-ml + llxk - Xk-mll)

(2.17) < aii(ek + hk)-

Therefore,

IIBk - H(xk)lli = L lef(Bk - H(xk))ejl 2 S a2 (ek + hk)2.
(i,j)EM

Thus, (2.16) follows from (2.17).
Now we consider the case where 1 S k < p. In this case, it may happen that for

some (i,j) EM,

Let M; be the set of all such (i, j) pairs, and let Mf = { (i, j) E M : (i, j) ¢-_ M;} .
Also let

E k __ Bk _ H(xk), E
1
k __ """" TEk T Ek

~ ei ejeiej , 2 =
(i,j)EMf

Then, using (2.17), we have that

and therefore,

IIEkllF IIE: + E}IIF::; IIEtllF + IIE}IIF
< a(ek + hk) + IIH(xk) - B 0 11F
< a(ek + hk) + aJlxk - x0

11 + IIH(x0
) - B 0 11F

< a(2ek + hk) + 8.

3. Local convergence results for the CMEC algorithm. To study the local
convergence of our algorithm, we assume that g : D C Rn -----+ Rn has the following
property:

(3.1) There is an x* ED, such that g(x*) = 0 and H(x*) is nonsingular.

THEOREM 3.1. Assume that g : D C Rn -----+ Rn satisfies (3.1) and H satisfies
Lipschitz condition (2.12). Assume that { xk} is generated by Algorithm 2.1 without
any global strategy. Then there exist E, 8, h > 0 such that if O < lhkl < h and x 0 ED
and B 0 E D satisfy

llx0
- x*II ::; E, IIB0

- H(x0)IIF::; 8,

then { xk} is well defined and converges q-linearly to x*. If limk-+oo I hk I = 0, then the
convergence is q-superlinear. If there exists some constant C such that Jhkl =:; CIJg(xk)II,
then the convergence is p-step q-quadratic.

Proof. Since x* E D and D is an open convex set, we can choose E so that
S(x*,2t:) - {x: llx-x*II < 2t:} CD. Also, We can chose t:,8 and h so that

9E 1
yinh < E, 2/3(a(2 + h) + 8) < 2.

where f3 > 0 satisfies IIH-1 (x*)IIF < {3.
We first show, by induction on k, that

(3.2)

For k = 0, we first show that B 0 is nonsingular. Notice that

IIH-1 (x*)(B0
- H(x*))IIF ~ IIH-1 (x*)IIF[IIB0

- H(x0)11F + IIH(x
0

) - H(x*)IIF]
10

Thus, by Dennis and Schnabel's Theorem 3.1.4 [6],

ll(B
0t 1

IIF::; l ~ !. = 2(3.
2

Therefore x1 is well defined, and

llx1
- x*II < ll(B0

)-
1 IIF[llg(x*) - g(x0

) - H(x0)(x* - x0)11
+IIB0

- H(x0)11Fllx* - x0 II]
< 2/3[;11x* - x0 11 + 8]11x* - x0 II

ac 1
< 2/3(2 + 8)llx* - x0 II ::; 211x* - x0 11·

This means that (3.2) holds for k = 0. Now suppose (3.2) holds for k = l, 2, ... , m - 1.
We show that it also holds for k = m. By (3.2),

Thus, {xk + dk}k=I C S(x*,2c) CD. By Theorem 2.4, there exists an integer 1::; j 0 ::;

min{m,p - 1} such that

IIBm - H(xm)IIF < a(2llxm - Xm-io II+ hm) + 8
< a(2llxm - x*II + llx* - xm-jo II + hm) + 8

(3.3) < a(4llx* - Xm-jo II + hm) + 8.

Thus,

1
IIH-1 (x*)(Bm - H(x*))IIF::; (3(a(5c + h) + 8) < 2,

and therefore,

which shows that xm+I is well defined. By (3.3)

llxm+I - x*II < ll(Bm)-1 IIF[llg(x*) - g(xm) - H(xm)(x* - xm)II
+IIBm - H(xm)IIFllx* - xmll]

< 2(3[;11xm - x*II + IIBm - H(xm)IIF]llx* - xmll
ac -

< 2(3[2 + a(4c + hm) + 8]llx* - xmll

(3.4) - 2j,[a(;c + h + 8]llx* - xmll ::; ~llxm - x*II,

which completes the induction step. It follows from (3.2) that {.i-k} converges to x* at
least q-linearly.

11

Note that for k 2'. p, by (2.16) inequality (3.3) is changed to

IIBk - H(xk)IIF :S o:(llxk - x*II + llx* - xk-p+l II+ hk)
< o:(2llx* - xk-p+l II + hk),

and therefore, (3.4) is changed to

(3.5) llxk+1 - x*II :S 2o:,B(;llx* - xk-p+lll + hk)llxk - x*l1-

Since {hk} is a sub-sequence of { hk}, hk -----+ 0 implies hk -----+ 0. Therefore, by (3.5), { xk}
converges to x* q-superlinearly if hk-----+ 0. By Dennis and Schnabel's Theorem 5.4.1 [6],

lhkl :S Cllg(xk)II
is equivalent to

lhkl :S C1llxk - x*II,
where C1 > 0 is a constant. Therefore, if lhkl s; Cllg(xk)II, inequality (3.5) can be
rewritten as

(3.6) llxk+l - x*II :S C2llx* - xk-p+lllllxk - x*II :S C2llx* - xk-p+l112,

where C2 > 0 is a constant, which implies that { xk} converges to x* at least p-step
q-quadratically.

THEOREM 3.2. Assume that g satisfies the hypotheses in Theorem 3.1 and that
lhkl :S Cllg(xk)II- Then the r-convergence order of Algorithm 2.1 is not less than Tp,
where Tp is the unique positive root of the equation

tP - tp-l - 1 = 0.

Proof. Inequality (3.6) can be rewritten as

p-1

llxk+l - x*II :S C3llxk - x*II L llxk-j - x*II,
j=O

where C3 > 0 is a constant. Thus, the desired result follows from Ortega and Rhein­
holdt's Theorem 9.2.9 [10].

It is well known that the efficiency index is one of the ways to evaluate an algorithm.
It is defined by E = lnT /µ,where Tis the convergence order of the algorithm andµ is the
number of function evaluations at each iteration counted in number of vectors (g(x)).
To compare Algorithm 2.1 with Powell and Toint's direct finite-difference algorithm
which needs p + 1 function evaluations per iteration, and the local convergence order of
which is 2 under some assumptions, we computed the ratio of the efficiency indices of
these two algorithms, i. e.,

(p + l)lnTp
rp = 2ln2 ·

The values of rp various with different pare shown in Table 1. The results show that the
ratio is always not less than one and it increases as p increases, however, the increase
speed slows down as p becomes larger. This means that Algorithm 2.1 may be more

competitive in the sense of the efficiency index when pis relatively large.
12

TABLE 1

p 1 3 5 7 9 19 29 39 100
rp 1.00 1.10 1.21 1.31 1.39 1.68 1.86 2.00 2.48

4. A secant modification of the CMEC method. As mentioned by the author
in a previous paper [8], at step k, the information g(xk-l) has not been used in the
CMEC method. Therefore, it is reasonable to consider to use this information and
make a secant update to Bk to get a better approximation to the Hessian, say J3k, and
then solve the linear system

To implement this, we apply Toint's [12] sparse symmetric secant (SPSB) update to
have the following modified CMEC method.

ALGORITHM 4.1. Given a symmetrically consistent partition of the Hessian, x 0

and B 0 as in Algorithm 2.11 do the following: At the initial step :
1. Set l = 0 and]3° = B 0 •

2. Solve B0 s = -g(x0
).

3. Choose x 1 by x 0 + s or by a global strategy.
At each iteration k > 0:

1. Update Bk-l by Algorithm 2.1 to get Bk.
2. Update Bk by SPSB update to get jjk.
3. Solve J3k s = -g(xk).
4. Choose xk+1 by xk+l = xk + s or by a global strategy.
5. Check convergence.

Using the same analysis as that for the modified CM-successive column correction
method (see Li [8]), we have the following local convergence result for the modified
CMEC method.

THEOREM 4.1. The modified CMEC method has at least the same local convergence
properties as the CMEC method.

5. The numerical results. We computed six examples by Powell and Toint's
direct method (PTD), Powell and Toint's indirect method (PTID), Toint's sparse PSB
method (SPSB), the CM-element correction methods (with and without expanding the
groups of a partition) and the modified CM-element correction method. In this section
we compare the numerical results from these six methods.

The 'global strategy' used to force convergence from far away points was a simple
line search backtracking strategy as described by Dennis and Schnabel[6]. If a direction
p is found to be an increase direction, i.e. pTV f > 0, then the negative direction -p

will be used. According to Dennis and Schnabel[6], we choose the step length in finite
differences for each element as

hj = Jmacheps xj,

13

where macheps is the machine precision. The stopping tests we used are the ones given
by Dennis and Schnabel [6) and all tests were run with the same accuracy requirement
(E = 10-5

). For all functions and all methods, the global minimum was found. For
the SPSB method, Algorithm 2.1 and Algorithm 4.1, the initial approximations to
the Hessian were computed by the PTID method for Example 5.1-5.4 and by the PTD
method for Example 5.5-5.6. All tests were run on the Jilin University Honeywell DPS-8
in double precision.

Example 5.1 is an extension of Example 9.2.2 in [6], where the dimension is only
two. Example 5.2, Example 5.3 and Example 5.4 are variations of the Broyden Banded
Function (see [9]). Here we only made some changes on the lower half bandwidth
and the upper half bandwidth to have five diagonal, seven diagonal and nine diagonal
structures. The results for these four examples are shown in Table 2 where NI is the
number of iterations and NG is the total number of the gradient evaluations needed for
solving these problems.

Example 5.5 and Example 5.6 are created to see the effect of expanding groups in
Algorithm 2.1. Example 5.5 has the same structure as (2.5), i. e. a dense 5-dimensional
leading sub-matrix followed by a tridiagonal matrix, which we call the tadpole structure.
The partition of the columns of the Hessian we used for the PTID method is c1 =
{1}, c2 = {2}, C3 = {3}, c4 = {4,6,8, ... } and c5 = {5, 7,9, ... }, which is an optimal
partition. The symmetrically consistent partition of the columns of the Hessian we used
for other methods is c1 = {1} , c2 = {2}, c3 = {3, 6, 9, ... }, c4 = { 4, 7, 10, ... } and c5 =

{5, 8, 11, ... }, which is also optimal. For Algorithm 2.1 and Algorithm 4.1 we expand
group c1 to c1 = {1, 7, 10, 13, ... } and c 2 to c 2 = {2, 8, 11, 14, ... }. Example 5.6 has also
the tadpole structure. However, the dimension of the leading sub-matrix is six instead
of five. The partition of the columns we used for the PTID method for this example
is C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4}, Cs= {5,7,9, ... }, C6 = {6,8,10, ... }, which
is an optimal partition. The symmetrically consistent partition of the columns of the
Hessian we used for other methods is c 1 = {1} , c 2 = {2}, c 3 = {3}, c 4 = {4, 7, 10, ... },
c5 = {5, 8, 11, ... } , and c6 = {6, 9, 12, ... }, which is also optimal. For Algorithm 2.1 and
Algorithm 4.1 we expand group c1 to c1 = {1, 8, 11, 14, ... }, c2 to c2 = {2, 9, 12, 15, ... }
and c3 to c3 = {3, 10, 13, 16, ... }. In Table 3, we compare the PTD method, PTID
method, the CMEC method without expanding any groups of a partition (CMECW),
Algorithm 2.1 and Algorithm 4.1.

Example 5.1 (Three diagonal).

- (x; - 2)4 + (x; - 2)2x~+l + (xi+1 + 1)2, i = 1, 2, ... , n - l,
(xn - 2)4,
(-1, -1, ... , -lf,
36, p = 2 for PTID andp = 3 for others.

Example 5.2 (Five diagonal).

n

f(x) = ~f;(x),
i=l

14

TABLE 2

Algorithms Example 5.1 Example 5.2 Example 5.3 Example 5.4
NI NG NI NG NI NG NI NG

PTD 7 29 7 43 7 57 7 71
PTID 7 22 7 29 7 36 7 43
SPSB 29 32 31 35 39 44 34 40

Alg.2.1 11 24 14 31 17 38 19 43
Alg.4.1 10 22 11 25 13 30 14 33

where

fi(x) = Xi(2 + 5x7) + 1 - I: Xj(l + Xj),
jEJ;

where

Ji= {j : j -:f i, max(l, i - m1) ~ j ~ min(n, i + mu)},

and

m1 = 1, mu= 1, XO= (-1,-1, ... ,-l)T,

n = 36, p = 3 for PTID and p = 5 for others.
Example 5.3 (Seven diagonal).
The same as Example 5.2 except for that m1 = 2, mu = 2, n = 36, p = 4 for PTID

and p = 7 for others.
Example 5.4 (Nine diagonal structure).
The same as Example 5.2 except for that m1 = 3, mu = 3, n = 36, p = 5 for PTID

and p = 9 for others.
Example 5.5 (Tadpole structure 1).

f(x) = J(x) + 0.5(x1 - X2 + X3 - X4 + X5 - 1)4,

where](x) is defined by Example 5.1,

xl = (-1,-1, ... ,-lf, x2 = (3,3, ... ,3f, n = 36, p = 5.

Example 5.6 (Tadpole structure 2).
A 4

f(x) = f(x) + 0.5(x1 - X2 + X3 - X4 + X5 - X5) '

where J(x) is defined by Example 5.1,

x 0 = (-1,-1, ... ,-lf, x2 = (3,3, ... ,3f, n = 36, p = 6.

It can be seen from the numerical results that for most of the cases, Algorithm 4.1
takes the least number of gradient evaluations and it takes less number of iterations
than Algorithm 2.1. For all the cases, Algorithm 2.1 takes less number of gradient
evaluations than the PTD method.

From Table 5 we can see that when the groups in a symmetrically consistent par­
tition of the columns can be expanded, both Algorithm 2.1 and Algorithm 4.1 may use

much fewer gradient values than those for the PTD and PTID methods.
15

TABLE 3

Example 5.5 Example 5.6
Algorithms xu = xl Xu= x2 Xu= xl Xu= x2

NI NG NI NG NI NG NI NG
PTD 6 37 8 49 6 43 8 57
PTID 6 37 8 49 6 43 8 57
SPSB 36 42 25 31 42 49 19 26

CMECW 13 31 17 39 15 36 19 44
Alg. 2.1 12 29 15 35 14 34 17 40
Alg. 4.1 11 27 13 31 11 28 11 28

6. Concluding remarks. We have given two algorithms for solving unconstrained
optimization problems which use gradient evaluations efficiently. The local convergence
properties established for Algorithm 2.1 in section 3 are quite satisfactory, and the
numerical results suggest the algorithms have some promise to be efficient in practice.
When the gradient evaluation is not very expensive, we may consider a variation of
Algorithm 2.1 or Algorithm 4.1 such that instead of correcting of just one group, two or
more groups are chosen at each iteration. This technique may increase the r-convergence
order and reduce the number of the iterations required for convergence, but, of course, it
will take more gradient evaluations at each iteration than those required by Algorithm
2.1 or Algorithm 4.1.

Acknowledgement.
The author would like to thank Professor Thomas Coleman for his many important

and helpful suggestions and corrections on the preliminary draft of this paper.

REFERENCES

[1] T. COLEMAN AND J. M. E, Estimation of sparse jacobian matrices and graph coloring problems,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 187-209.

[2] --, Estimation of sparse hessian matrices and graph coloring problems, Mathematical Pro­
gramming, 28 (1984), pp. 243-270.

[3] --, Software for estimation of sparse jacobian matrices, ACM Transaction on Mathematical
software, 10 (1984), pp. 329-345.

[4] --, Software for estimation of sparse hessian matrices, ACM Transaction on Mathematical
software, 11 (1985), pp. 363-377.

[5] A. CURTIS, M. POWELL, AND J. REID, On the estimation of sparse jacobian matrices, Journal
of Applied Mathematics, 13 (1974), pp. 117-119.

[6] J. DENNIS AND R. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlin­
ear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[7] G. FENG AND G. Lr, The column-row update method, Numerical Mathematics, Journal of Chinese
Universities, 5 (1983).

[8] G. LI, Successive column correction algorithms for solving sparse nonlinear systems of equations,
Mathematical Programming, 43 (1989), pp. 187-207.

[9] J. MORE, B. GARBOW, AND K. HILLSTROM, Testing unconstrained optimization software, ACM
Transaction on Mathematical software, 7 (1981), pp. 17-41.

[10] J. ORTEGA AND W. RHEINBOLDT, Iterative Solution of Nonlinear Equations, Academic Press,
New York and London, 1970.

16

[11] M. POWELL AND P. To INT, On the estimation of sparse hessian matrices, SIAM Journal on
Numerical Analysis, 16 (1979), pp. 1060-1074.

[12] P. TO INT, On sparse and symmetric matrix updating subject to a linear equation, Mathematics
of Computation, 31 (1977), pp. 954-961.

17

