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1 Introduction

A simplified model which governs many physical processes such as seismic and acoustic wave
propagation is the following linear acoustic wave equation:

1 97
—_—— - A—-Vo-V = 1.
((}2 EIE A o )u f, (1.1)

where o = o(z) is the logarithm of the density, ¢ = ¢(z) is the sound speed of the medium,
and f = f(x,t) is the source term which introduces the energy to the problem. If o, ¢
and f are given along with appropriate side conditions, the forward (or direct) problem is
to determine u = u(xz,t), the excess pressure. For appropriate choices of o, ¢, and f, u is
determined uniquely by standard linear hyperbolic theory of partial differential equations
(p.d.e.). Thus the problem stated above defines a map from the coefficients to the solution
of the wave equation. In this paper, we study an aspect of the regularity of this map, or
rather its composition with the trace on a time-like hypersurface.

Throughout this work we shall restrict ourselves to the special case of constant velocity
¢, though we believe that the ideas in this work may be extended to cover some more general
cases.

To fix ideas, write * € IR™ as (2, 2,), where 2’ € IR*™', z,, € IR. We assume that the
problem is set in the whole space IR™ and v = 0 in the past (¢ < 0). Take f(z,t) = é(z,1)
as an ideal point source. Thus u is the retarded fundamental solution:

Ou - Vo Vu=z,t), (z,f) ¢ R" xR (L.
v = 0. t<0, (1.
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where O is defined to be 9 — A, and A is the Laplacian.

IThis work was partially supported by the National Science Foundation under grant DMS 86-03614 and
DMS 89-05878, by the Office of Naval Research under contracts N00014-K-85-0725 and N00014-J-89-1115,
by AFOSR 89-0363, and by the Geophysical Parallel Computation Project (State of Texas).



Define the forward map F' as:

F:o—(¢u) |zp=0, (1.4)

where ¢ € Cg°(IR™) is supported inside the conoid {t > |z|} and near{z, = 0}.

Because F' is nonlinear, one wants to work with the formal linearization (or formal deriva-
tive) DF', with respect to the reference state (g, ug), defined by first order perturbation
theory (Born-approximation).

Oéu — Voo Véu=Véo-Vug (1.5)
bu = 0, t<0.

The formal derivative DF(oyg) is given by
DF(oy)b0 = ($éu) |z,=0 - (1.7)

It is our main goal in this work to determine appropriate spaces of the domain and range of
F for which
the formal derivative DF is bounded.

Throughout this paper, we shall always assume that
(A) supp(éo) C {z, > €} .

for ¢ > 0 small. In some applications, this assumption is realistic, as the density can
be measured directly, near the location of receivers (i.e. z, = 0). Also the domain of
dependence properties of the wave equation implies that ¢u and ¢déu depend on o and éo
only in a bounded subset. Thus we shall throughout assume that o and 6o have fixed,
bounded support.

Let © C IR* be open and bounded, ¥ C T*(2). A constant C is said to depend on the
H* N HT ,(v)-norm of w € C°(IR*) if for any conic neighborhood T of + there exists a .d.o.
Q of order zero with FS(Q) C T and ¢ =1 on yN {(z,£) : |¢| > 1} such that C can be
bounded in terms of ||wl||s.q + ||Qw]|,q-

The following is the statement of our main result which will be proved in the sections
which follow.

Theorem 1.1 Assume either that
(1) n >3, s >max{3+n/2, | +n—1}, and 59 € H*(IR™) or

(ii) n =2, s > maz{4, [+ 1}, and oo € H*N Hgfﬂ({(m,{) &, =0}).
Then under the assumption (A), the following estimate holds

IDF(00)60]l; < Cl150]|y 2z (1.8)

where the constant C' depends on the H®-norm (n > 3) or the HSOHL;F,_,Bﬂ({(:E,{) €, = 0})-
norm of oq (n = 2) but is independent of éo.



The study of the forward map is motivated by the inverse problem which arises in reflec-
tion seismology, oil exploration, ground-penetrating radar, etc. Mathematically, the inverse
problem is to determine the coeflicient ¢ by knowing additional boundary value conditions
of u. Since the inverse problem is just to invert the functional relation F', we are naturally
interested 1n all the properties of this forward map.

To understand the problem, let us look at a simple exploration seismology experiment:
Near the surface of the carth, a seismic source is fired at some point (point source). The
seismic waves propagate into the earth. Since the earth’s structure varies (as do its physical
properties) part of the energy of the wave will be reflected back to the surface and can be
measured. The inverse problem is to deduce the interior properties of the earth from the
recorded data.

A simple model of this reflection seismic inverse problem in this context is: given data
Fiata(2',t), find a coefficient o(z) so that

F(O’) = quta

or perhaps minimizing the error (F., — F'(0)) in some norm.

Numerical solution of this problem by means of Newton’s method and its relatives requires
a choice of Banach space structure in the space of models o and in the space of data F(o)
(see e.g. Kantorovich and Akilov [15]), in such a way that F is singular. The simplest
regularity property of F' is boundedness of DF', which is discussed in this paper. We believe
that similar arguments will establish smoothness of F and allow investigation of coercive
properties of DF', as is required by the theory of optimization.

The most efficient relatives of Newton’s method, the quasi-Newton, conjugate gradient,
and variable metric methods, all require a Hilbert space structure on the space and models.
This fact accounts for our reliance on the L?-based Sobolev spaces in this work.

When the spatial dimension is one or ¢ and o depend only on z,, (layered problem) there
is a large literature available. For a similar problem in which the medium was assumed to be
excited by an impulsive load on the surface {z, = 0} instead of point sources, the properties
of the forward map have been studied fairly satisfactorily by Symes and others (see Symes
[25] for references). It was shown by Symes that, for the constant wave speed case, the
forward map defines a C'—diffeomorphism between open sets in certain Hilbert spaces by
applying the method of geometrical optics together with energy estimates.

When the spatial dimension n > 1 and ¢, o depend on all space variables (nonlayered
problem), very little is known in mathematics. Symes [23, 24}, Sacks and Symes [21], Rakesh
[18], and Sun [22] have some partial results. The difficulties are essentially due to the
ill-posed nature of the timelike hyperbolic Cauchy problem and the presence of nonsmooth
coefficients. For the one dimensional wave equation, both coordinate directions are spacelike,
which indicates that the problem is hyperbolic with respect to both directions. Apparently,
this is not the case when the spatial dimension is larger than one.

Rakesh in [18] looked at a related linearized velocity inversion problem with constant
density and point sources. Assuniing smooth background velocity, he obtained some results
on hoth upper and lower bounds for the lineatized forward map. The essential observation in
Rakesh’s work is that DF is a Fourier integral operator (see also Beylkin [7]). Unfortunately,



the calculus of Fourier integral operators employed in Rakesh’s work is not applicable to the
nonsmooth reference velocity case since the linearized forward map is a Fourier integral
operator only when the reference velocity is smooth.

In [23], Symes gave a pair of examples, based on the geometric optics construction, which
show that both DF(1) and DF(1)~! are unbounded for a slightly different problem. As the
examples show, within the Sobolev scales no strengthening or weakening of topologies of the
domain and range can make both DF and DF~! bounded. This fact also implies a strategy
of regularization: Change the topology in the domain so that DF becomes bounded, then
ask for optimal regularization of DF~! in the sense of best possible lower bound estimate
for DF. In both examples of Symes, the unboundedness was caused by rapid oscillation of
o in the z’-direction or the tangential directions, hence the problem is actually “partially
well-posed”, i.e., only more smoothness of the coefficients in tangential directions (essentially
grazing ray directions) will be required to cure the difficulty. This might be the main reason
the anisotropic Sobolev spaces H™*(IR") or Hérmander spaces, were introduced in [21] and
[22].

In Theorem 4.1 of [21] Sacks and Symes showed by using the method of sideways energy
estimates that for a linearized density determination problem with constant velocity and
plane wave sources, DF' is bounded from H! to H?, provided the reference coefficient is in
H'¢ for some s > n+ 2. They also proved the injectivity of DF. Our techniques and results
are quite different from theirs. We intend to assure the optimal regularity of the timelike
trace under different hypotheses, which are in some ways weaker.

There remains an extremely important issue to be addressed, namely,

What is an appropriate space for the domain of DF' ?

In 1983, Symes suggested that microlocal restrictions on the coefficients might regularize
the inverse problem (see [24]). In some sense, this was confirmed by Bao and Symes [2]
where we were able to prove a trace theorem for the solutions of general linear p.d.e. with
smooth coefficients. Roughly speaking, our theorem asserts that the solution will belong
to H* along a codimension one hypersurface if it belongs to H*® in a neighborhood of the
hypersurface and to H**! microlocally in those directions where the p.d.e. is not microlocally
strictly hyperbolic. Note that we gained back the half derivative from the standard trace
theorem. In a recent paper [3], we proved a similar time like trace regularity result for
a second order hyperbolic equation with nonsmooth coefficients. It is obvious that the
presence of nonsmooth coefficients will introduce new singularities to the solutions so that
only limited initial regularity can be propagated. A crucial step in [3] was to develop an
extended Beals-Reed theorem (Theorem 1 in [6]) on propagation of singularities.

The main result of this paper is a boundedness theorem for the linearized forward map
DF(oy) for the (sufficiently regular) nonsmooth . The main ingredients of our proof are
the method of energy estimates, a microlocal regularity study of the fundamental solution,
results on propagation of singularities, several trace regularity results, and a useful duality
technique.

It is known that in their applications to nonlinear wave equations, most of the results
based on Rauch’s lemma (or the method of Fourier analysis) are limited to relatively weak
singularities. This work exhibits that to some extent, strong singularities appearing in the



linear wave equation (e.g. the fundamental solution) can also be tackled by this Fourier
analysis method with the help of a duality argument and the progressing wave expansion.
The relation between the coeflicients and solution with strong singularities remains to be
fully understood, especially when the coefficients are less regular.

The plan of this paper is as follows. In Section 2, a regularity theorem for the solution
of the model problem is established. To serve this purpose, a dual problem is introduced. A
crucial step is the derivation of an explicit estimate from Homander’s result on propagation
of singularities. Section 3 is devoted to the proof of our main theorem. The main ingredients
of our proof are: microlocal regularity analysis of the solutions for the transport equations;
a microlocal version of the classical trace theorem; and regularity study of the dual problem.

Notation. Throughout this paper, the reader is assumed to be familiar with the basic
calculus of Pseudodifferential Operators (“ .d.o. ) as stated in Taylor [26] or Nirenberg
[17]. A classical ¥.d.o. P of order m is denoted as P € OPS™ with its symbol p € S™.
ES(P) stands for the essential support of operator P. W F(u) denotes the wave front set
of a distribution u. H*® is the standard L%-type Sobolev space and H}, means a local
Sobolev space. (£) means (1 + |€]%)'/2. For a nice discussion on microlocal Sobolev spaces
H* N H y(20,&0), we refer the reader to Beals [5], see also Rauch [19]. For simplicity, C
serves as a generalized positive constant the precise value of which is not needed.

Warning. When the reference density g is smooth, most of the regularity results for
the forward map in this work will follow more easily from the calculus of Fourier Integral
Operators. For a standard text on F. I. O. we refer to Duistermaat [11} or Hormander [13].
However, this technique fails with the appearance of the nonsmooth reference density, an
assumption important in this work.

2 Regularity of the Fundamental Solution

Since the excess pressure u in the model equation is in fact the fundamental solution, in order
to study the regularity of the forward map, the regularity of the fundamental solution must
be understood. It is evident that the real obstacle here is the singular right-hand side so
that none of the propagation of singularity results could be applied directly. A natural way
to cure this difficulty is by employing the Hadamard theory of progressing wave expansion.
We refer the reader to Courant aud Hilbert [10] or Friedlander [12] for a detail study on
the method of progressing wave expansions. According to Hadamard’s construction, the
fundamental solution may be represented as a sum of the principal part and remainder. One
can then study the remainder by the Beals-Reed type propagation of singularity theorem.
However, a great drawback of this idea is that additional regularity is needed to regularize
the remainder term. In this section, we develop a new approach based on the method
of microlocal analysis. A dual problem is introduced so that the regularity study of the
fundamental solution may be transformed into regularity study of the dual problem which
has a smooth right hand side. In this process, a crucial step is to derive an estimate out
of Hormander’s theorem on propagation of singularities. As one might expect, with the
presence of nonsmooth coeflicients, the Rauch-type results and some commutator results
will be demanded.



2.1 Statement of result, preliminaries

Consider a problem obtained by integrating the model problem in the time variable,

(O =Voo-Vvg =67 (1)§(z), (,1) € R*! (2.1)
Vo = 0 N t<0. '

The following is a regularity theorem for the fundamental solution.

Theorem 2.1 Suppose that 1 +n/2 < s and oy € H*(IR"™). Then for vo solving the equation
(2.1), l < s—nf2
vo € Hi,o(U)

where U = {IR™ x (0,T1)} N {t > |x|} (11 > 0). And for ¢ € C$*(U), the following estimate
holds
[léwolls < C (2.2)

where the constant C depends on ¢ and ||oolls.

In order to establish Theorem 2.1, we need the following results. The first was originally
established by Bony [8] and was extended by Meyer [16]. See also Beals [4] for a different
proof.

Proposition 2.1 Suppose that for some (xg,&) € T*(R")\0, u € H* N H] ,(z0,&), n/2 <
s <r<2s—n/2, and g € C™, then

g(l'v ’U) € H* N H;1l($0a€0) '
We also need a Garding’s type inequality concerning the microlocal ellipticity.

Lemma 2.1 Assume that ()1 € OPS™ | Q3 € OPS™, with my,m,; € IR. Furthermore
assume that Q3 is elliptic on ES(Qy). Then for anyr € IR, Q and 2 two open bounded sets
of R™ with Q@ CC ', and u € C*(0),

1@rulfls.o < ClQ2uls4my—ms.00 + Cllullrar -

Proof. Let ©; and Q3 be open sets with @ CC Q; CcC Q, cC Q. Construct a cut-off
function ¢ € C§*(Y'), ¢ = 1 on Oy, and ¢ = 0 on Q'\Q,.

The assumption Q)7 is elliptic on ES(();) implies that a ¥.d.o R, a parametrix of ()7 on
ES(Q4), may be found such that

QiEQ2= Qi + K (2.3)

with K a smoothing operator.
Having defined ¢, we can now rewrite

Q1EQu = Q1ReQqu + QR(1 — ¢)Qqu v



It follows that, for any r,

Q1 RQqullsa [|Q1RQullsa + ||Q1R(1 — ¢)Q2ul|s0

<
S Cl|¢Q‘2U’Hs+ml—mz,m” + C”(l - d))Q?uH"vQ/
< CVH(22“H3+7711—-7712,Q’ + CHU‘HTYQ' :

On the other hand, from (2.3), it is obvious that

Q1 RQu|ls0 > ||Qrullse — [[Kullsa .

A combination of the above discussions will complete the proof. O

Finally, the proof of Theorem 2.1 demands the use of the following two lemmas. Lemma
2.2 gives an estimate based on Nirenberg's proof [17] of Hormander’s theorem which describes
the propagation of regularity along bicharacteristics. With nonsmooth coefficients, only a
limited amount of regularity propagates. It indicates that an estimate may be derived near
any bicharacteristic, hence near the characteristic variety of operator O = 92 — A. We then
proceed in Lemma 2.3 to argue that in the elliptic region of the operator O an estimate may
also be formed. With a concern about the nonsmooth oy, it should not be surprising that
both results require a commutator argument.

Let IT: T"(2y) — Qo denote the projection of T™(£) onto its base space.

Lemma 2.2 Assume thal s > n/2, oo € H**'(IR"). Suppose that B is a null bicharacteristic
of O, (zg,&0) € B, w is smooth in a neighborhood of x4, and

Ow — Vaog-Vw € L2(1Rn+1)

vanishes i a neighborhood of 113. Then theve exists a y.d.o. B of order zero (essentially
supported near () so that for any ¢ € C*(IR™") and k < s —n/2 + 2, there is C > 0,

l|¢1 By < Cl|0w — Vag - Vwl|o .
Here C depends on oo, k, B, and ¢1. but not on w.

Proof. Let §) be an open bounded set containing supp(¢;) and
Ow — Vao-Vw = f.
According to Nirenberg’s construction, one can find a .d.0. By of order zero with
(1) bo supported in a small conic neighborhood of 3, By elliptic near 3,
(2) supp(by) N supp(f) = 0, and

(3) [0, By] € OPS°.



Since w solves (2.1), the method of energy estimates yields

helly < Clifllo

where C' is a constant depending on ||Vayll; for § > n/2.
Observe that from (2.1),

O] Bow =[O, ByJw + [Bo, Voo - V]w + By f .
Since Isupp(bo) N supp(f) = 0, we have
Bof =0.
Now energy estimates give
|| Bowl]z2.0 < CJ|[2, BoJwll1a + |[Bo, Voo - V]wl[1,0) - (2.4)
Since [3, By] is of order 0,
8, Bolwll1,a < Cllwlh < Cllfllo -

The third term in (2.4) may be estimated by applying the generalized commutator lemma,
Lemma 2.4 in [3] and the corresponding estimate. In fact, let 1 + n/2 < s¢, we then have

[[[Bo. Voo Vuwlllia < Cllwlly < Clifllo,

where C depends on ||Vogls,-
Thus
1Bowllz.0 < Collfllo (2.5)

with Cy depending on ||Vaglls,-

Applying Nirenberg’s construction once again, we can find a ¢.d.o. B; of order zero
such that ES(B,) C ES(By)(strictly), By also has properties (1) and (2) above; moreover
[0, Bi] € OPS™! and By is elliptic near ES(B;). From (2.1) and B, f = 0,

0} Byw = [0, ByJw+ [B1,Voy - V]w .
If we write down the energy estimates, after a simple ¥.d.o. cut-off on B;, we will find
1Brw|l3q < Cllwlly + Cll4i[Br, Voo - V]wllzall Biwllsa

where A; € OPS®, ES(B,) C FS(Ay) C ES(By), By is ellipticon ES(A;), and a; = 1 on
ES(By) N {(z,€),1¢] = 1}

Now since w € H'NHZ,
H'N HZ,(ES(A,)) and

mi

(£S(Bo)), Lemma 2.4 in [3] again implies that [By, Voo V]w €

|A1[By, Voo - V]wllaa < C(llwll + ||A1w]]2,0) -

Here C depends on ||Vaglls, for 2+ n/2 < s;.

@3]



Because of our construction, By is elliptic on ES(A,); therefore Garding’s type inequality
Lemma 2.1 leads to, for any real + and 0 CC {4

HAwwlla < CliBowllag, + Cllwll, < Clifllo
by (2.5).

Therefore we have shown that

I|Brwllsa < Cillfllo

where C) depends on |[Vaolls,.
We can continue this process by constructing a sequence of ¢.d.o. B; and A; (¢ = 1, -
-,k —2), such that

e B, has properties (1), (2), and [0, B;] € OPS™,
o ES(B;_;) C ES(A,—1) C ES(B;), and
e B;is ellipticon ES(Ai-1). ¢ioy =1 on ES(Biy) N {(x,€),}¢] > 1},

o Also
1 Biw|liv2.0 < Cillfllo

where C; depends on ||Vayl|,, for i +n/2 < s;.
Eventually we conclude by choosing B = Bj_, so that, for k — 2 +n/2 < s,
[1Bwllra < Cllflo

with C' depending on ||Vayl|s. )
The proof of Theorem 2.1 requires a slightly different form of Lemma 2.2.

Corollary 2.1 Assume that s > n/2. o9 € H*}(IR™). Suppose that v is a set of null
bicharacteristics of O, (x,&0) € v, w is smooth in a neighborhood of xq, and

Ow — Voo - Vw € L*(IR™!)

vanishes in a neighborhood of 1ly. Then there exists a .d.o. @ of order zero (essentially
supported near ) so that for any ¢, € C(IR™) and k < s —n/2 + 2, there is C > 0,

||61Qwllx < C||Bw — Voo - Vuwllo .

Here C' depends on oy, k, (), and ¢y, but not on w.

Proof. For every null bicharacteristic of the set v, Lemma 2.2 indicates that a ¢.d.o. B of
order zero may be found so that

l|o1 Bl € Cl|0w — Vou - Vwllg .

Now () may be constructed as @ = Y. B. Moreover, the local compactness of the unit sphere
ensures that the summation is finite. 0



Lemma 2.3 Assume that s > n/2, oy € H*'(IR"). Suppose that P is a 1.d.o. of order
zero such that a conic neighborhood of its essential support is contained in the elliptic region
of the wave operator 0. Assume also that

Ow ~ Voo - Vw € L*(IR**)

vanishes in a neighborhood of llp. Then for any ¢, € C(IR™) and k < s —n/2 + 2, there
is C' >0 so that
ll¢1 Pwlly < C||8w — Voo - Vuwl|o -

Here the constant C depends on o9, k, P, and ¢, but not on w.

Proof. The proof is based on the same type of bootstrap arguments as in the proof of last
lemma.
Let
Ow — Voo -Vw=f. (2.6)

Assume that © D supp(¢1) be a bounded open set. From the support assumption on p, we
see that Pf = 0. Hence, by applying P to both sides of (2.6), we find
OPw =[O, Plw + [P,Vay - V]w+ Vo, - VPw . (2.7)

Now since O is elliptic in a small conic neighborhood of ES(P), there exists a 1.d.o. Py of
order zero, such that ES(P) C ES(F), P is elliptic near ES(P), and O is elliptic in a small
conic neighborhood of ES(F). From the ellipticity of PO on ES(P), Lemma 2.1 gives, for
any real number » and 0 CC €.

HPU?HMQ S C

PoBPwlli—z.0 + Cllwl]; ,
or from (2.7)

|Pw|lke < C([1R[0, Plefli-za + || P[P, Voo - VIwlli—z0 + [[FoVao - VPwl-s01) -
Therefore an application of Lemma 2.4 and the generalized Rauch’s lemma in [3] yields

[Pwllra < CillPow|li-r,00 + Ca(llwoly + || Pow]|r-2.01)
+Cs({w]ly + || Powl|k-1.07)
< Cllifllo+C

PO’LUI !k_l'Ql .

Here constants Cy and (3 depend on ||Vaoy||s for k —2 +n/2 < s.
Thus the bootstrap arguments on Py will accomplish the proof. O

10



2.2 Proof of Theorem 2.1

We study the regularity of vy through its dual problem. To simplify the arguments on the
dual problem, we make use of the symmetric form of (2.1) by introducing p(z) = €. Then
(2.1) becomes

Orvp = (202 = V- (L9)J00 = L6755 (1)6(a)
p p p

(2.8)
vo=0 t<0.
Now let us look at a dual problem to (2.8),
Opo = (207 = V- (A9)w = w
w = |- — N w =
A p (2.9)

w=0 t>>1T1,

where ¥ € Cg°(Q) with Q = {IR" x (0.71)} N {t > |z] + €}, for ¢ > 0 small. Note that,
this equation may be reformulated as

0w = 0w — Voy- Vw = e~ 7%°U

w=0 t>>1. (2.10)
Thus if we can show that for any ¥ € C5°(Q)
(Do, ©)] < C|1¥]lo (2.11)
then it can be concluded that
l19vollon < C . (2.12)
From (2.8), integration by parts leads
|(Dpeo, U)] = (210,00, )]
= 1C0(08(@), 517
< Clar" T w)0.0)].
The trace theorem (see for example [26]) vields that
[(Dfvo. W)} < Cllgrwlli (2.13)

with ¢; € C§°(2y), Q1 a small neighborhood of the origin and €, N supp(¥) = 0.
Construct two ¢.d.o. Q1, Qy € OPS°(IR"*'), such that

o ()1 + Q2 = R; where R is an elliptic ¢.d.o. of order zero in y;
o Ilsupp(q:) Nsupp(V) =0, for ¢ = 1,2;
e £5(Q2) is a small conic neighborhood of set of null bicharacteristics of the wave oper-

ator O passing over {l;;

11



¢ () is microlocally smoothing on the null bicharacteristics passing over £2;.

Therefore, with (2.13), we have

[(Otvo, U)| < C||Q1d1w]li41,0, + CllQ2020| 141,90, (2.14)

here the expression makes sense because the domain of dependence for w and the pseudo-local
properties of )7 and ().
Now, we can apply Corollary 2.1 to obtain that

Q2w

iy < ClT . (2.15)

Lemma 2.3 yields
|Q20lli+1,0, < C|[¥]lo (2.16)

where the constants here depend on ||ogls.
Therefore, we have shown

(Do )] < Cllgrollisr < C]l (2.17)

To complete the proof, we have one more step to go, that is, to estimate all the z-
derivatives as well as the corresponding mixed derivatives of vy up to order of [. This may
be done by introducing another dual problem. Here, we demonstrate this method by looking

at L vo (i = 1,---,n). The rest terms can be estimated by the same fashion. It suffices to
show that for any ¥ € C§°(Q)
(9,00 0)] < €

Yo (2.18)

fore=1,---,n.
Let w solve the dual problem (2.9), w; solve the following problem

[ 1
Oywy = [=0} =V - (=V)]w, = [ai'_, O;w
p p
w=0 1>>1T1).

(2.19)

We have
(85,00, W) = |(vo. D5, Dyw)]
(D100, 35,10} + [(B1v0, w1))|
< Lo )(0,0)] + €107 Pw)(0,0)]

IN

Again, the trace theorem gives

](a_i.ivo,\]’)] Cll¢rw]lisr + Cligrwi |

<
< 0H¢1w|ll+1

where in order to obtain the second inequality, we have applied the standard energy estimates
and a commutator argument. From (2.17), the estimate (2.18) can then be proved. 0

12



3 Proof of the Main Theorem

Our goal in this section is to determine the appropriate hypotheses under which DF(oy),
the linearization of F' about a reference state g, is bounded. Qur proof is based on the
microlocal regularity analysis of the transport equations and regularity study of the dual
problem.
Recall the linearized problem corresponding to the reference state (ug,q), for (¢,z) €
IR,n+l, T = (.’L‘I,.’l?n),
(0 -~ VYau-V)éu = Véo - Vug

Su=0, t<0, (3.1)

where ug is the solution of the model problem corresponding to the reference density og. The
linearized forward map can be defined as

DF(0¢)é0 = (¢pbu) |zn=0 , (3.2)

where ¢(x,t) € CZ°(IR™!) is supported inside the conoid {t > |z|}, and near {z, = 0}.
Once again we consider a related problem,

(0 —=Vou-V)v=Véo- Vg

e=0. 1<0. (3.3)

n—1
where du = 0, ? v and vy solves

n—1

(B—=Voy-V)vg=06""72
vo=0, t<0.

(t)o(a) (3.4)

Observe that for [ € IR,

IDF(oo)éalli = | (¢6u) le,=oll
Cll(6v) len=o [l1s, (3.5)

IN

where [; denotes { + (n — 1)/2. Thus the real challenge here is to get an appropriate trace
regularity estimate for v on a time-like hypersurface {z, = 0}.

Before getting into the details of the proof, let us first make the following general remarks
on this theorem:

The estimate (1.8) has a similar form to a Rakesh’s theorem (Theorem 2.5 in [18]).
Actually, we conjecture that a formal extension of our proof here could lead to an elementary
proof of his theorem. On the contrary, the principal tool of Rakesh’s proof, calculus of Fourier
integral operators, is not available when the reference density is nonsmooth.

Our approach enjoys the beanty of the method of energy estimates, that is, it possesses
useful information on various parameters involved in the estimates.
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3.1 Some useful results

Hadamard’s construction leads to the progressing wave expansion for vg,

vg = Z beSik(t — 7(z)) + Ry (2, 1) (3.6)
k=0
where 7(2) = ||, So is the Heaviside function, S, = Sy_; (k > 1), and R,, vanishes at

t = 7(x). Moreover {b;} solve the transport equations, for k =1,---,s,

INVT -V + (AT + V7 -Vog)by = 0 (3.7)
VT Vb + (AT + V1 -Vop)b, = Abi_1+ Voo Vb . (3.8)

From (3.3), Hadamard’s construction also gives the progressing wave expansion of v,

0= apSk(t —7(2)) + Ru(a,t), (3.9)
k=0
where 7(2) = |2], Sp is the Heaviside function, Sj, = Sx_y, R, vanishes at t = 7(z), and {ax}

solve the transport equations, for £ =0,--+ s — 1,
2Vr - Vag+ (AT 4+ V71 -Vog)ag = —bVT - Véo (3.10)

VT - Vage + (AT + V7 - Vog)aw: = Aag + Voo - Vag, + Véo (Vb — b V). (3.11)

In fact, the equations (3.10) and (3.11) are the first order perturbation of the equations (3.7)
and (3.8), respectively.

For convenience, we introduce a function ¢ = 0¢/2+ ¢o with V7-Vgo = A7/2. Thus away
from the origin, ¢ is nothing more than a smooth perturbation of 0g/2. Then the transport
equations (3.7), (3.8) may be transformed to equations

V- Vige! = 0 (3.12)
V7 -Vbe! = (Ab_1/2+ Voo Vbp_1/2)e?, (3.13)

for k=1,---1.
Similarly, equations (3.10) and (3.11) may be transformed to equations

V1 -Vage! = Vr-V(bobye?) (3.14)
V7 -Vae! = (Aap_1/2+4 Vog-Vag1/2)e? + Véo (Vb — b1 V1) /2, (3.15)
for k = 1,---,[;, where to obtain the first equation, we have used the equation V7-Vbge? = 0.

Observation. The right hand side of the equation (3.13) may be rewritten in terms of by_;e?
as

A(be_1€9)/2 — |V ql*brp_1€9/2 — bp_1¢9Aq/2 — V(be_1€?) - Vo + by_1€'Vq- Vo . (3.16)
Similar observation may be made for the right hand side of (3.15).
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Observe that all the transport equations have the same principal part V7 - ¥V which is
a smooth vector field. Therefore. in order to understand the regularity of the solutions to
(3.12)-(3.15) it is essential to study the properties of this smooth vector field. The following
is a microlocal regularity result for the solutions of transport equations. It indicates that a
refined regularity result can be achieved microlocally away from the characteristic variety of
the wave operator, in contrast to a direct application of the energy estimates. This result
will be used frequently throughout the proof of Theorem 1.1.

Lemma 3.1 Let V be a smooth vector ficld. Assume that u is a smooth function, Q € OPS°
supported away from Char(V), and ¢ € CP(Q) where  is a bounded open set. Then there
exist Q' € OPS® also supported away from Char(V) and ¢', ¢ € CZ(V) with @ CC
such that for any r € IR,

1Qéullsn < CHQ'¢Vulls—ro + Cllgullr0r -

Proof. Let @y be another ¥ .d.o. of order zero, such that @Q; is elliptic on ES(Q) and
ES(Q,) is away from Char(V). It follows from Lemma 2.1 that there exists £, DD § an
open bounded set such that

1Qdullse < ClliVeullsa, + Clloullrq, (3.17)
< CllqVoolulls-ra, + CllQ1Vulls—1,0, + Clldullre, - (3.18)

Now choose ¢; € C57(£;) and ¢; = 1 on supp(¢), then

O [V, oJu = [V, gl1u = Qiyu

where (), = 1]V, ¢] is a ¢ .d.o. of order zero and ES(Q,) is away from Char(V).
Thus

!|(2<75‘f~‘|1s,52 < CHQW’)I‘”Hs—I,m + C|1Q1¢V'“||s—1,01 + CH¢“||T,01 .

We can then repeat the above process to get a similar estimate on ||Q1é1u||s—1.9,. In fact,
one can construct: Qo € OPSY, Qs ellipticon ES(Q1) and ES(Q.) is away from Char(V);
¢2 € C5°(Q2), @2 = 1 on supp(¢). 1 CC Q5 Q2 = Qo V. n].

Then

HQ1¢1“H3—1,Q] < CHQz@/'zuqu.Qg + CHQ2¢1VU||S—2,Q; + C||¢1U||r,02 .

Following the same idea, one may keep going to get similar estimates: (the ¢-th step)
Construct: Q; € OPSY, Q; is elliptic on ES(Q,—1) and ES(Q;) is away from Char(V);
$i € C(Q), ¢i =1 on supp(di_y). iy CC Qi Qs = Qi[V,¢:],0 <1<k —1. (kis chosen
to satisfy s — k& < r).

Then

1Qidiullsmin, < ClIQis10im1ullsmictain + CllQin10VUllsmizr,aiyr + Cllditellrauy, -
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Combining all of the estimates above, we have

k-1

k-1
1Qdullsa < ClQidrullsmra, + C D NQir10iVullsmicigiz + C D it lrauys -
=0 1=0

In order to get the desired estimate, some further simplifications are needed. Clearly, for
jIO,"',k“—Q,
H@(/“”'I'-QJH <C

|¢j+1u||r,ﬂj+2 R

hence
k-1

Z C'Hd)iull?,ﬂi+1 < C‘l(fék—luHﬁQk .

=0

Since s — k < r, ||Qk¢kuﬂs_k‘gk < C|dxullrg,, therefore,

k-1
HQdullse < Cllowu|lra, + Y 1Qi1: Ve |smicr0ups -
=0

Construct a w.d.o. of order zero, )', with the following properties:
Q' is elliptic on U2y ES(Q41¢5); £S(Q") is away from Char(V). Lemma 2.1 then yields
that

HQz‘+1¢iVUHs-1.Q,, = HQ;’+1¢:’¢1:VUHs—1,Q,,. (3-19)
< C,‘ QQf)k‘/UHs__LQI + Cll(vékquT—lyQ' (320)

where O, CC ', 7 =0,1,-- -,k — 1. Therefore, if we construct ¢ € C(Q') in such a way
that ar¢ > 0 on supp(¢r), then

-r0 < Cllgullror -

[|p1V u

Let ¢' be ¢, we finally obtain

HQoullsn < ClQ'¢Vulls—1,0 + Clldullrar

which completes our proof. O

We also need the following standard result for hyperbolic p.d.e, as well as the estimates
involving in its proof. See, for example, Chazarain-Piriou [9] for the idea of the proof. The
following is the version stated in Beals [5].

Lemma 3.2 (Linear Energy Inequality) Let p(x, D) be a partial differential operator of or-
der m on R™!', strictly hyperbolic with respect to the plane {x,41 = 0}, and let u satisfy
ple, D)u = f(x). If f € HZ"P (R and w € HE (2 : |2ny1] < €) for some € > 0, then
u e HE (R™).

Next, we present a trace regularity result.
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Lemma 3.3 Assume that s >34 n/2, 1 <1 < s, and v solves problem (3.3) then there is
a ¢ € Cg° supported near supp(o) such that the following estimate holds,

(v

337120H11 S C“QSO’U”I} 9 (3'21)

l+1

AT (K )-norm of oo, but is independent of

where C is a constant depending on the H* N H
bo.

Proof. This lemma is a direct application of Theorem 3.1 in [3] by taking into account of
the fact that ¢ and 6o have disjoint supports. 0O

3.2 Microlocal version of trace theorem

The classical trace theorem in Sobolev spaces characterizes the regularity of a distribution
restricted to a hypersurface. Dealing with inverse problems, one always has to face a difficult
but crucial question: When does the restriction operator commute with another operator
of interest? The result in this subsection indicates that a simple microlocal trace theorem,
which not only works on the space restriction but also on the phase restriction (i.e. a trace
theorem on cotangent bundles), may lead to a way to cure this difficulty.

Let K be a conic set in IR", i : 2 € IR — (2,0) € R™"'. Define a semi-norm: for v a
conic set of IR* and u € C°(IR¥),

[t~ = (./E'EN d¢

Then, a proof of the classical trace theorem (see e.g. in Taylor [26], pages 20-21) implies the
following inequality.

a(e)He)*) .

Proposition 3.1 Fors > 1/2, u e C&F(IR™),
|7.x”'|/\’,s——]/2 S Cl“l]\"x]R,s .

Thus the map * may be extended to be a bounded map from H? ,(z x IR, K x IR) to
H;—[lﬁ(;t, K), provided s > 1/2.
Let II, be the projection map to the frequency space (or the second factor). We may

reformulate this result in terms of ¢.d.o..

Proposition 3.2 If P, is a ¢¥.d.o. of order zero in R", with II,ES(P,) C K, then there
ezists a .d.o. Py of order zero in R™', and T, ES(P,) C K x IR, such that for s > 1/2,
u € C(Q) with Q an open bounded subset of IR**!,

DR .
||1 1? u’lls—]/Q,Qo S CHPQUHS,Q )
where 1 again denotes « restriction operator to a codimension one hypersurface and Qy =

*Q).
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The above results together with our Garding’s type result Lemma 2.1 yield a microlocal
version of trace theorem.

Lemma 3.4 Assume that £ is an elliptic operator of order m in R"' x K x R, P €
OPS°(IR™) and 1I,ES(P) C K. Then for s > 1/2, u € C§°(2) where Q and ' are open
bounded subsets of R™" with @ CC ', and Qp = i*Q,

P ull—1 /200 € CllEU|somgr + Cllullra
for any r € IR.

A result on propagation of singularities, see Proposition 1.3.3 in Duistermaat [11] or
Theorem 8.2.13 in Hérmander [14], demonstrates the relation between the wavefront of the
restriction of a distribution and the wavefront set of its own. However the result does not
directly lead to any explicit bound. Here, in this direction, we present a result together with
an estimate. The proof follows directly from Lemma 2.2 and Lemma 2.3.

Lemma 3.5 Assume that s > n/2, oo € H**'(IR"). Suppose that w is smooth near {t = 0}
and Ow — Voy - Vw € LA(IR"™). Then there exists an elliptic o.d.o. B of order zero, such

that ES(B) is contained in C'y, a “cylindrical” conic neighborhood of
{(z,t,6,w) € T"IR™MN0, 2 — |2 = 0,w = VT - £}
along w direction, and the symbol of B. b satisfies
[supp(b) N supp(Dw — Voo - Vw) =0 .
Then, for any ¢, € CE(IR™) and k < s —n/2 42,

|6, Buwl|, < C

Dw — Vog - Vwllo (3.22)

where the constant C' depends on oy, k, B and ¢y, but not on w.

3.3 Proof of Theorem 1.1

Recall the assumption made in Section 1.
(A) supp(bo) C {a, > €},

for € > 0 small.

For simplicity, we shall also assume that {4 is an integer. Without any further difficulty,
the proof may be extended formally to cover the general case.

Let ¢ € C§° be supported inside the characteristic surface and the set {z, < ¢/2}.
Multiplying ¢ to both sides of equation (3.3), we have

Dov = ¢Voy - Vo + [0, ¢lv

r=0. 1<0. (3.23)
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Here we have used the fact that according to the assumption (A), ¢ and éo have disjoint
supports, so that ¢Voo - Vg = 0.

Having Lemma 3.3, the estimate of ||(¢v)
For the sake of simplicity, we shall only discuss the estimates of the ¢-derivatives of v. The
rest may be estimated as in the proof of Theorem 2.1.

The rest of this section is devoted to the estimate of ||ov]|y.

We study the regularity of v through its dual problem. Once again, we look at the

70

zn=0]]1, may be reduced to estimating ||{gov||i,-

symmetric form, for p(z) = ¢~

1. 1 1
00 = [0} =V - (=V)]vo = =Véo - Vg
Je

‘ P P (3.24)
v=0 t<0.
A dual problem to (3.24),
D= (22— V. (A= v
w = |- —_ R w =
I ot P (3.25)

w=0 t>>1,

where U € C§°(§2) with Q = {IR" x (0,71)} N {t > |z| + €}, for a small € > 0.
Thus if we can show that for any ¥ € C'3°(9)

(9702, W)] < Clléalls, 1¥]lo (3.26)

then it can be concluded that

9 valloa < Cll6oll, (3.27)

Green’s identity and integration by parts lead to

(D0, W) = ()0, 0 w)

. 1 d (3.28)
= (0,00, w) — 2/ [0y —w — w—=0""v]ds
(010 v, w) 1=T(.l‘)/)[ ™ an ]
Let us look at the first term. From equation (3.3),
(0,080, w) = (Véo - Vv, w) .
Thus
(010 e w)] < Cll8o]] 1|87 vollog w1, -
Applying Theorem 2.1 and energy estimates to the right hand side, we have
(040 v, )] < C6o]] ||9]] (3.29)

with the constant C' depending on {|og||s, for s > mazx{l +n/2,l; + n/2}.
Using Hardamard’s construction, one may get:
] ! 0 ol
(atlv,)lt:'r(:c) = Gy, (anl+lv)|t=T(r) = Q415 (()m()tlv)|t=7(x) = aa:all + Q1.
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Denote : 5 L 8
: g G
I = / —(')t“'v,—wds N / —,—(8510)10(13 .
Jt=r(x) p on t=r(z) p ON

Observation. The integrands are all compactly supported even though neither v nor w is
compactly supported.

Since the above integrals have similar forms, we will only give a detail estimate of Iy by
making the following remark on the estimate of I5:

g 1 . 1
I, = ——'2/ -V V(dthvh:,)wds +/ —8tll+lvwds .
t=r{z) P t=1(z) P

Now, by integration by parts, the first term of the right hand side can be studied just like
I1; while the second term may also be handled in a similar fashion as for .

3.4 The estimate of I;

A function ¢(x) € C§°(), Q an open bounded set in IR* and Q D supp{9iv|i=r Zw|=,},
may be found because the integrand of I} is compactly supported, so that

. 1 .
Iy = / qb—atllr—d—wds.
t=7(x) p an

Now construct two .d.o. @, Q2 € OPS°(IR")
o 1+ Q:=1;
o ES5(Q2) is a small conic neighborhood of {V7 - ¢ = 0};
o ();'s symbol ¢; = 1 near {Vr £ =0}n{(z,¢), || > 1}.
Recall the definitions of (J; and (5. We can again rewrite I; as, for a ¢(x) € C§°(Q') with
Qc
1, . 1 d 1 ad
L = / QIQ—d:J'L7Q1@1‘—-'u}(/.,\“ + ngé—afvaQq&l—wds —+—/ ngﬂ—atllvqﬁl—wds
t=r1 P 071 t=T1 P an t=T1 P 3n
= hothp+lic.

Now, we estimate I, ,, I}, and I, . separately.
(a) The estimate of /,

Clearly, in order to estimate [, ,, it suffices to estimate [[quﬁ%all || and [|Q1¢1Zwle=||.
These terms may be handled by the following propositions.

Proposition 3.3 The following estimale holds
Q1bre|lon < Ck

where @ CC Q and Cy, depends on lloollk-



Proof. The proof is based on an applicalion of Lemma 3.2. We also have to use variants of
Rauch’s Lemma, Schauder’s Lemma, together with Proposition 2.1.
In fact, Lemma 2.2 leads to, for any r,

[1Q16bre |0 < Cl|Q16, VT - Vbre||—1.0, + Cllp1bxe|| 0,

where Q CC Qy, ¢, 61 € C(N), and Q' supported away from Char(V7-V). From (3.13),
it is easy to represent the right hand side in terms of by_;e9. Therefore, Rauch’s Lemma and
Proposition 2.1 yield

11Q160e 0.0 < Cl|Q4dabr_1€|10, + Cllgibrllre,

where s > 1 +n/2 and the constant (' depends on ||op||s.
One can then continue this process by applying Lemma 2.2 to estimate ||Q}d2bk-1€%||1.,0,-
After | similar steps, we can write the following estimate, for any r,

k
@100k 0.0 < C||Qdiboe?| k0, + Z Cl|¢ibillrq, (3.30)

=1

where C' depends on ||og||s for s > I +n/2, Q CC O, CC--- CC N, and ¢; € CF().

We next discuss why the smoothing terms ||¢;b:||..0, may be negligible.

Note that the transport equations are hyperbolic along the A direction (A = |2|). Actually,
introducing polar coordinates. we then get V7 -V = 5% (A = |z|). Thus, A may be treated
as the “time” variable for a standard hyperbolic problem. The right hand sides of transport
equations may be expressed under the polar coordinates as

dbkeq
dA

(3.31)

Because of the main assumption, o(x) is constant near |z| = 0, that is, vg is the fundamen-
tal solution for the same equation with constant coefficients. The Hadamard construction
yields that by (k= 0,---,1;) are smooth function near |z| = 0 (or A = 0), see [20] or [1] for
more discussions. Lemma 3.2 then becomes applicable.

Eventually, there exists a constant 'y depending on ||og||x, so that

[|Q10bre’|] < Ci (3.32)
0
Proposition 3.4 The following estimate holds
Q1 elJoa < Clléolli,

where C depends on ||ool|s for s > {1l +n/2.1;}.



Remark. With a few necessary changes, the proof of Proposition 3.3will still work. Ob-
serve that the only major difference to the analysis before is that each one of the transport
equations now possesses an extra term, which may be viewed as a “source” term. Certainly,
these extra terms are responsible for the ¢ term in the estimate of our main theorem.

We may also rewrite the right hand side of (3.15) in terms of ax_;e? plus a source term
containing do. The desired estimate then follows by applying Lemma 3.4, together with
algebraic estimates, various forms of Schauder’s Lemma, Rauch’s Lemma Proposition 2.1,
and commutator lemmas.

Note that the transport equations of ay may be viewed as the first order perturbation of
the corresponding equations of b;,. Hence near 2| = 0, by the main assumption (A4) éo = 0,
ar=0for k=1,---1;.

Next, we want to get an estimate of ||Q1¢4 (.%w]tﬂ]]o,g:.

Proposition 3.5 For (1, w, V. and ¢; as previously defined, we have
0
11Q1015=10]i=r 0.0 < C||¥||
dan
where the constant C' depends on ||ogl|s. for s > 1+n/2.

Proof. Since w solves the dual problem (2.9), which has smooth right hand side, we need a
characteristic trace regularity result [or w. Note that £.5(Q,) is away from the characteristic
variety of the wave equation. In fact, an application of a characteristic trace regularity result,
Corollary 2 in [2], yields that there exists a ¢ € Cg°(IR*), such that

0 s
1Quér 5 eh=rlloar < Cligull < CII¥

the second inequality comes {rom the standard energy estimates. O
(b). The estimate of [,

Because of Proposition 3.4, in order to bound I 4, it suffices to estimate || Q21 %w|t=7||0’gz.
This requires the microlocal trace regularity result Lemma 3.4 and the regularity analysis of
the dual problem Lemma 3.5. The estimate can be easily derived by applying Lemma 3.4
and Lemma 3.5.

Proposition 3.6 For )3, w. and ¢, defined above. The following holds
o0
HQ‘Z@I(—U’It:'rHO,Q' < CH\I’H
an

with the constant C' depending on ||og||s for s > 1 +n/2

(c). The estimate of [,
We want to estimate

: 1 0
/ Q20—a;, ¢ =—wds .
Ji=r(z) p on

o
o



Obviously, this term has to be handled very differently. In fact, the transport operator (the
operator appears in the transport equations) is elliptic on ES(Q,), by Lemma 3.1 the L?
norm of Q1 ¢a;, may be bounded by the I/ norm of @, éas. However, there is no ellipticity
on ES(Q)3), and the only direct estimate one may expect 1s by applying Lemma 3.2, which
implies that essentially the L? norm of Qq¢a;, has to be bounded by the H?1 norm of ¢ay.
To cure this difficulty, we introduce a “bootstrap” argument by taking advantage of the
transport equations and the fact that Qggf)l%whm is a much smoother term (it would be
smooth if o were smooth). Again. we start with the corresponding estimate for b;,.

Proposition 3.7 The estimate

1
| (020=by, ¢1—.a wds| < C||¥|
t:T(;l’) ,[) an

holds with the constant ' depending on ||oo||s, for s > [, +(n — 3)/2.

Proof. Without loss of generalitics, (o may be assumed to be self-adjoint. Thus
1 ) 1 d
ot Lt~ [ Liouon L.
/t:'."(ll‘) ch P g i 0‘”‘ e t=7(z) & ¢Q2¢1 871 was ((3 33)

Since ()26, :%w is much smoother than the other part, one wants to apply transport equations
to reduce b, to the one requires the least regularity.
Consider a problem

. _ 0
(VT : v)*”l = éeao qQ?él(%w)'tzf(z) (334)
Wy = 0 near |2|=0. (3.35)

Then (3.33) becomes

/ (D20l 61 =—wds = / Vr Vb, e'Wids .
t=r(x) P on t=7()
IFrom the transport equation (3.16). we have

/ L VT T ids = / Ay €)/2 = Vg Pby-yef)2 — Aghy-re?/2
t=7(r Jt=r(r)
~V (b, -1¢")Vqo + b, -1e"V ¢V qo) W1 ds
= / [)11_16qP1 ]”VldS
Ji=r1(x)

where P = A — [V¢|? = Aq+ V- Voo + V- V.

One can then introduce another problem

(Vr- V)i, = ¢PW, (3.36)
W, = 0 near |2|=0. (3.37)
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Hence

1 )
/ (Q20—bi, 0 7(——'1{)(/..5 = / V7 Vb, _1e"PWads .
t=r(x) p dn t=r(x)

We can continue this procedure. Indeed, it [ollows, after [I;/2] steps where [[,/2] = 1,/2 if [
is even and is ({; — 1)/2 if {; is odd. that

1.0
/t:r(a,-) Q‘z(f)p*bll@] %'w(/s = '/t:‘r(g;) V. Vb[11/2]eqPVV[11/2]+1ds

where W, solves

(Vr V)W, = ¢PW,_, (3.38)
W, = 0 near || =0 (3.39)

fori=1,---[L/2] + 1L
Therefore, by the Cauchy-Schwatz inequality, Proposition 2.1, and Rauch’s Lemma

L9 .
)Qz¢;bu@1%w(ﬁ-“l < Cllby, o€l —ap 2 1P Wi payellapn 211, (3.40)

‘ t=7(2
with C dependiug on ||og||s, for some s > n/2. Since b;e? solves the ¢-th transport equation,
Lemma 3.2 then implies that

[0, 21y =200 721 < Cl0olly, - (3.41)

Next, applying Lemima 3.2, alter some simple calculations, we can obtain

d

PWhy oy llap 21, < C ¢€0°_qQ2¢1(%w)ltm(r)”ll—l :

Now Lemma 3.4 and Lemma 3.5 may be applied to get

PWY el o211 < ClY

where the constant C' depends on ||og||s with s > [} — 1/2 + n/2. a
Once again, a variant of the proof of Proposition 3.6, with no additional technical diffi-
culty, will lead to the following result.

Proposition 3.8 The estimate

c

: 1 d
| (Q20—a;, $1—wds
Jt=r(x) P dn

< Clléo] 1]

holds with the constant C' depending on ||oylls, for s > 1 + (n —1)/2.
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