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1 Introduction 

A simplified model which governs many physical processes such as seismic and acoustic wave 
propagation is the following linear acoustic wave equation: 

( 
l f)2 ) ---6.-v'a·v' u=f 

cl cJt2 ' 
(1.1) 

where a = a( x) is the logarithrn of the density, c = c( x) is the sound speed of the medium, 
and f = f(x, t) is the source term which introduces the energy to the problem. If a, c 
and f are given along with appropriate side conditions, the forward ( or direct) problem is 
to determine u = u(:r, t), the excess pressure. For appropriate choices of a, c, and J, u is 
determined uniquely by standard linear hyperbolic theory of partial differential equations 
(p.cl.e.). Thus the problem stated aboYc defines a map from the coefficients to the solution 
of the wave equation. In this paper, we study an aspect of the regularity of this map, or 
rather its composition with the trace on a time-like hypersurface. 

Throughout this work we shall restrict ourselves to the special case of constant velocity 
c, though we believe that the ideas in this work may be extended to cover some more general 
cases. 

To fix ideas, write :r E IRn as (x', Xn), where x' E IRn-1
, Xn E IR. We assume that the 

problem is set in the whole space IRn and 'U = 0 in the past (t < 0). Take f(x, t) = 8(x, t) 
as an ideal point source. Thus u is the retarded fundamental solution: 

Du. 

1l 

Va· 'vu= 8(x, t), (x, t) E IRn x IR 

0. t < 0, 

where D is defined to be of - 6., and 6. is the Laplacian. 

(1.2) 

(1.3) 

1This work was partially supported by the National Science Foundation under grant DMS 86-03614 and 
DMS 89-05878, by the Office of Naval Research under contracts N00014-K-85-0725 and N00014-J-89-1115, 
by AFOSR 89-0363, and by the Geophysical Parallel Computation Project (State of Texas). 
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Define the forward map F as: 

F : er -t ( c/m) lxn=O , (1.4) 

where¢ E C3°(IR.n+l) is supported inside the conoid {t > lxl} and near{xn = O}. 
Because Fis nonlinear, one wants to work with the formal linearization (or formal deriva­

tive) DF, with respect to the reference state (cr0 , u0 ), defined by first order perturbation 
theory (Born-approximation). 

D8u 

811 

9cro · 98u = 'v8cr · 'vuo 

0, t < 0. 

The formal derivative DF(cr0 ) is given by 

D F( CTo )bcr = ( ¢8u) lxn=O · 

(1.5) 

(1.6) 

(1. 7) 

It is our main goal in this work to determine appropriate spaces of the domain and range of 
F for which 

the formal derivative DF is bounded. 

Throughout this paper, we shall always assume that 

(A) supp(8cr) C {xn > 1:}, 

for E > 0 small. In some applications, this assumption is realistic, as the density can 
be measured directly, near the location of receivers (i.e. Xn = 0). Also the domain of 
dependence properties of the wave equation implies that c/Ju and ¢8u depend on a and 8a 
only in a bounded subset. Thus we shall throughout assume that a and 8a have fixed, 
bounded support. 

Let n C IRk be open and bounded, 1 C T*(f!). A constant C is said to depend on the 
Hs n H;ich)-norm of u; E Ccf'(IR.k) if for any conic neighborhood r of I there exists a 'ljJ.d.o. 

Q of order zero with ES( Q) ~ f and q = I on I n { (x, e) : Jel > 1} such that C can be 
bounded in terms of llwlls,11 + IIQwll,·,11· 

The following is the statement of our main result which will be proved in the sections 
which follow. 

Theorem 1.1 Assume either that 

(i) n ~ :3, .s > rna:r{:3 + n/2, l + n - 1}, and a0 E Hs(IR,n) or 

(ii) n = 2, 8 > ma:i:{4, l + 1}, and ao E HS n H::C312({(x,e): en= O}). 

Then under the assumption (A). the following estimate holds 

(1.8) 

where the constant C depends on the HS -1wrm (n ~ 3) or the HS n H::C312( { ( X' e) : en = 0} )­
norm of a0 (n = 2) but is independent of 8cr. 
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The study of the forward map is motivated by the inverse problem which arises in reflec­
tion seismology, oil exploration, ground-penetrating radar, etc. Mathematically, the inverse 
problem is to determine the coefficient a by knowing additional boundary value conditions 
of u. Since the inverse problem is just to invert the functional relation F, we are naturally 
interested in all the properties of this forward map. 

To understand the problem, let us look at a simple exploration seismology experiment: 
Near the surface of the earth, a seismic source is fired at some point (point source). The 
seismic waves propagate into the earth. Since the earth's structure varies ( as do its physical 
properties) part of the energy of the wave will be reflected back to the surface and can be 
measured. The inverse problem is to deduce the interior properties of the earth from the 
recorded data. 

A simple model of this refiection seismic inverse problem in this context is: given data 
Fdata(x', t), find a coefficient a(x) so that 

F(a) = Fdata 

or perhaps minimizing the error (Fdata - F(a)) in some norm. 
Numerical solution of this problem by means of Newton's method and its relatives requires 

a choice of Banach space structure in the space of models a and in the space of data F( a) 
(see e.g. Kantorovich and Akilov [15]), in such a way that F is singular. The simplest 
regularity property of Fis boundedness of DF, which is discussed in this paper. We believe 
that similar arguments will establish smoothness of F and allow investigation of coercive 
properties of DF, as is required by the theory of optimization. 

The most efficient relatives of Newton's method, the quasi-Newton, conjugate gradient, 
and variable metric methods, a.11 require a Hilbert space structure on the space and models. 
This fact accounts for our reliance on the L2-based Sobolev spaces in this work. 

When the spatial dimension is one or c and a depend only on Xn (layered problem) there 
is a large literature available. For a similar problem in which the medium was assumed to be 
excited by an impulsive load on the surface { Xn = O} instead of point sources, the properties 
of the forward map have been studied fairly satisfactorily by Symes and others (see Symes 
[25] for references). It was shown by Symes that, for the constant wave speed case, the 
forward map defines a C 1 -difJeomorphism between open sets in certain Hilbert spaces by 
applying the method of geometrica.l optics together with energy estimates. 

When the spatia.l dimension n > 1 and c, a depend on all space variables (nonlayered 
problem), very little is known in mathematics. Symes [23, 24], Sacks and Symes [21], Rakesh 
[18], and Sun [22] have some partial results. The difficulties are essentially due to the 
ill-posed nature of the timelike hyperbolic Cauchy problem and the presence of nonsmooth 
coefficients. For the one dimensional wave equation, both coordinate directions are spacelike, 
which indicates that the problcn1 is hyperbolic with respect to both directions. Apparently, 
this is not the case when the spatia.l dimension is larger than one. 

Rakesh in [18] looked at a rela.ted linearized velocity inversion problem with constant 
density and point sources. Assurning smooth background velocity, he obtained some results 
on both upper and lower bounds for the linearized forward map. The essential observation in 
Rakesh's work is that DF is a Fourier integra.l operator (see also Beylkin [7]). Unfortunately, 
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the calculus of Fourier integral operators employed in Rakesh's work is not applicable to the 
nonsmooth reference velocity case since the linearized forward map is a Fourier integral 
operator only when the reference velocity is smooth. 

In [23], Symes gave a pair of examples, based on the geometric optics construction, which 
show that both DF(l) and DF(l)- 1 are unbounded for a slightly different problem. As the 
examples show, within the Sobolev scales no strengthening or weakening of topologies of the 
domain and range can make both DF and DF- 1 bounded. This fact also implies a strategy 
of regularization: Change the topology in the domain so that DF becomes bounded, then 
ask for optimal regularization of D p- 1 in the sense of best possible lower bound estimate 
for DF. In both examples of Symes, the unboundedness was caused by rapid oscillation of 
o- in the x'-direction or the tangential directions, hence the problem is actually "partially 
well-posed", i.e., only more smoothness of the coefficients in tangential directions ( essentially 
grazing ray directions) will be required to cure the difficulty. This might be the main reason 
the anisotropic Sobolev spaces II"'·" ( lRn) or Horn:iander spaces, were introduced in [21] and 
[22]. 

In Theorem 4.1 of [21] Sacks and Symes showed by using the method of sideways energy 
estimates that for a linearized density determination problem with constant velocity and 
plane wave sources, D F is bounded from H 1

•
1 to H 1

, provided the reference coefficient is in 
H 1

,s for some .s > n + 2. They also proved the injectivity of DF. Our techniques and results 
are quite different from theirs. We intend to assure the optimal regularity of the timelike 
trace under different hypotheses, which are in some ways weaker. 

There remains an extremely important issue to be addressed, namely, 
What i.s an appropriate .space for the domain of DF ? 
In 198:3, Symes suggested that microlocal restrictions on the coefficients might regularize 

the inverse problem (see [24]). In some sense, this was confirmed by Bao and Symes [2] 
where we were able to prove a trace theorem for the solutions of general linear p.d.e. with 
smooth coefficients. Roughly speaking, our theorem asserts that the solution will belong 
to Hs along a codirnension one hypersurface if it belongs to Hs in a neighborhood of the 
hypersurface and to Hs+l rnicrolocally in those directions where the p.d.e. is not microlocally 
strictly hyperbolic. Note that we gained back the half derivative from the standard trace 
theorern. In a recent paper [:3]. we proved a sin1ilar time like trace regularity result for 
a second order hyperbolic equation with nonsmooth coefficients. It is obvious that the 
presence of nonsmooth coefficients ,vill introduce new singularities to the solutions so that 
only limited initial regularity can be propagated. A crucial step in [3] was to develop an 
extended Beals-Reed theorem (Theorem 1 in [6]) on propagation of singularities. 

The main result of this paper is a boundedness theorem for the linearized forward map 
DF(o-0 ) for the (sufficiently regular) nonsmooth o-0 . The main ingredients of our proof are 
the method of energy estimates, a. microlocal regularity study of the fundamental solution, 
results on propagation of singularities, several trace regularity results, and a useful duality 
technique. 

It is known that in their applications to nonlinear wave equations, most of the results 
based on Rauch 's lemma ( or the method of Fourier analysis) are limited to relatively weak 
singularities. This work exhibits that to some extent, strong singularities appearing in the 
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linear wave equation ( e.g. the fundamental solution) can also be tackled by this Fourier 
analysis method with the help of a duality argument and the progressing wave expansion. 
The relation between the coefficients and solution with strong singularities remains to be 
fully understood, especially when the coefficients are less regular. 

The plan of this paper is as follows. In Section 2, a regularity theorem for the solution 
of the model problem is established. To serve this purpose, a dual problem is introduced. A 
crucial step is the derivation of an explicit estimate from Homander's result on propagation 
of singularities. Section 3 is devoted to the proof of our main theorem. The main ingredients 
of our proof are: microlocal regularity analysis of the solutions for the transport equations; 
a microlocal version of the classica.l trace theorem; and regularity study of the dual problem. 

Notation. Throughout this paper, the reader is assumed to be familiar with the basic 
calculus of Pseudodifferential Operators (" 1/-ul.o. ") as stated in Taylor [26] or Nirenberg 
[17]. A classical 4,.d.o. P of order 1n is denoted as P E OP Sm with its symbol p E Sm. 
ES(P) stands for the essential support of operator P. vV F(u) denotes the wave front set 
of a distribution u. Jf 5 is the standard L2-type Sobolev space and Htoc means a local 
Sobolev space. (0 means (1 + 1~1'2 )

112
. For a nice discussion on microlocal Sobolev spaces 

Hs n H;~e(x 0 ,fo), we refer the reader to Bea.ls [.5], see also Rauch [19]. For simplicity, C 
serves as a generalized positive constant the precise value of which is not needed. 

Warning. \Vhen the reference density a-0 is smooth, most of the regularity results for 
the forward map in this work will follow more easily from the calculus of Fourier Integral 
Operators. For a standard text on F. I. 0. we refer to Duistermaat [11] or Hormander [13]. 
However, this technique fails with the appearance of the nonsmooth reference density, an 
assumption important in this work. 

2 Regularity of the Fundamental Solution 

Since the excess pressure u in the model equation is in fact the fundamental solution, in order 
to study the regularity of the forward map, the regularity of the fundamental solution must 
be understood. It is evident that the real obstacle here is the singular right-hand side so 
that none of the propagation of singularity results could be applied directly. A natural way 
to cure this difficulty is by employing the Hadamard theory of progressing wave expansion. 
We refer the reader to Courant and Hilbert [10] or Friedlander [12] for a detail study on 
the method of progressing wave expansions. According to Hadamard's construction, the 
fundamental solution may be represented as a sum of the principal part and remainder. One 
can then study the remainder by the Beals-Reed type propagation of singularity theorem. 
However, a. great drawback of this idea is that additional regularity is needed to regularize 
the remainder term. In this section, we develop a new approach based on the method 
of microlocal analysis. A clua.l problem is introduced so that the regularity study of the 
fundamental solution may be transformed into regularity study of the dual problem which 
has a smooth right hand side. In this process, a crucial step is to derive an estimate out 
of Hormander's theorem on propagation of singularities. As one might expect, with the 
presence of nonsmooth coefficients, the Rauch-type results and some commutator results 
will be demanded. 
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2.1 Statement of result, preliminaries 

Consider a problem obtained by integrating the model problem in the time variable, 

(D - 9c:ro · 9)vo = <5- ";
1 
(t)8(x), (x, t) E IR,n+l 

Vo= 0, f < 0. 
(2.1) 

The following is a regularity theorem for the fundamental solution. 

Theorem 2.1 Suppose that l + n/2 < s and c:r0 E Hs (IR.n). Then for Vo solving the equation 
(2.1), l < s - n/2 

Vo E Hf0 c(U) 

where U = {IRn x (O, Ti)} n {t > 1:-rj} (1'1 > 0). And for</> E cr(U), the following estimate 
holds 

ll¢vol11 ::::; C 

where the constant C depends on ¢ and Ila-oils-

(2.2) 

In order to establish Theorem 2.1, we need the following results. The first was originally 
established by Bony [8] and was extended by Meyer [16]. See also Beals [4] for a different 
proof. 

Proposition 2.1 Supposr: that for sorne (:i: 0 , fo) E T*(filn)\O, u E Hs n H::ne(xo, fo), n/2 < 
s ::::; r ::::; 2s - n/2, and g E C: 00

, then 

We also need a Ga.rcling's type inequality concerning the microlocal ellipticity. 

Lemma 2.1 Assume that Q1 E OPS 1111
, Q2 E OPS'm2 , with m 1,m2 E fil. Furthermore 

assume that Q 2 is elliptic on ES'( Q 1 ). Then for any r E fil, n and O' two open bounded sets 
of filn with n cc D', and u E C\'('(!1). 

Proof Let !11 and !12 be open sets with n cc !11 cc !12 cc !1'. Construct a cut-off 
function </> E Cr(n'), cf>= l on !11, and </J = 0 on !1'\!12. 

The assumption Q2 is elliptic on ES( Q 1 ) implies that a ?j).d.o R, a parametrix of Q 2 on 
ES( Qi), may be found such that 

(2.3) 

with J( a smoothing opera.tor. 
Having defined cf>, we can 110w rewrite 
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It follows that, for any r, 

IIQ1RQ2ulls,fl < IIQ1R¢Q2ul1s,O + IIQ1R(l - ¢)Q2ulls,O 
< Cl1¢Q2ulls+m1 -m2 ,JR" + Cll(l - ¢)Q2ullr,rl' 
< C 11 Q21L I ls+m 1 -m2 ,0' + C llu llr,0' · 

On the other hand, from (2.:3). it is obvious that 

A combination of the above discussions will complete the proof. D 

Finally, the proof of Theorem 2, l demands the use of the following two lemmas. Lemma 
2.2 gives an estimate based on Nirenberg's proof [17] of Hormander's theorem which describes 
the propagation of regularity along bicharacteristics. With nonsmooth coefficients, only a 
limited amount of regularity propagates. It indicates that an estimate may be derived near 
any bichara.cteristic, hence near the characteristic variety of operator D = 8; - ~- We then 
proceed in Lemma 2.3 to argue that in the elliptic region of the operator D an estimate may 
also be formed. \Vith a concern about t.he nonsmooth a0 , it should not be surprising that 
both results require a commutator argument. 

Let IT: T*(D0 ) - !10 denote the projection of T*(D0 ) onto its base space. 

Lemma 2.2 Assume thats> n/2, a-0 E I:f8+ 1 (IRn). Suppose that /3 is a null bichamcteristic 
ofD, (x0,fo) E /3, 1u is smooth in a nei9hb01'1wod ofx0, and 

vanishes in a neighborhood of rI;,. Then there exists a 'lj).d.o. B of or·der zero (essentially 

supported near fJ) so that for any </>1 E C\f (JR.n+I) and k < s - n/2 + 2, there is C > 0, 

Here C depends on a0 , l·, B, and </> 1 , but not on tu. 

Proo.f. Let n be an open bounded set containing supp( ¢1 ) and 

Du, - 'vao · 'vw = J. 

According to Nirenberg's construction, one can find a 'lj).d.o. B0 of order zero with 

(1) bo supported in a small conic neighborhood of /3, Bo elliptic near /3, 

(2) ITsupp( b0 ) n supp(f) = 0, and 

(3) [D, Bo] E OPS0
. 
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Since w solves (2.1), the method of energy estimates yields 

llwlh:::; Cll.fllo, 

where C is a constant depending on I !Vero! ls for .s > n/2. 
Observe that from (2.1 ), 

D~B0 w = [D, Bu]w + [Bo, Vo-o · V]w + Bof. 

Since II supp( b0 ) n supp(f) = 0, we have 

Bo.f = 0. 

Now energy estimates give 

IIBowl'2,o:::; C(ll[D, Bo]wlli,o + IJ[Bo, VO"o · V]wJli,o). (2.4) 

Since [D, B0 ] is of order 0, 

ll[D, Bo]wll1,o:::; CjjwJli:::; Cll.fllo · 

The third term in (2.4) may be estimated by applying the generalized commutator lemma, 
Lemma 2.4 in [3] and the corresponding estimate. In fact, let 1 + n/2 < s0 , we then have 

jj[Bo, Vr.ro · Vw]lli,o:::; CjjwJli :::; CJJ.fllo, 

where C depends on I IV O"ollso. 
Thus 

II Bowl '2.o :::; Coll fl lo , 

with Co depending on IIVcrollso· 

(2.5) 

Applying Nirenberg's construction once again, we can find a 'lj;.d.o. B 1 of order zero 
such that ES(Bi) C ES(B0 )(strictly), B1 also has properties (1) and (2) above; moreover 
[D, B1] E OPS- 1 and Bo is elliptic near ES(B1 ). From (2.1) and B1 .f = 0, 

D~ B1 w = [D, Bi]w + [B1, V0"0 • V]w. 

If we write down the energy estimates, after a simple 'lj;.d.o. cut-off on B 1 , we will find 

IIB1wllto::; C'llwlli + CIIA1[B1, Vao · V]wl'2,ollB1wll3,o, 

where A 1 E OPS'0 , ES(B1 ) c RS(Ai) c ES'(B0 ), B 0 is elliptic on ES'(A1 ), and a 1 = 1 on 
ES(Bi) n {(x,t), ltl ~ l}. 

Now since 10 E H1 n H},c(ES(B0 )), Lemma 2.4 in [:3] again implies that [B1 , VO"o · V]w E 
H 1 n H!e(ES(Ai)) and 

IJAi[B1, VO"o · V]wJJ2,o:::; C(llwlli + ll,41wl'2,n). 

Here C depends on IIVO"o\1s1 for 2 + n/2:::; s1. 
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Because of our construction, Bo is elliptic on ES(Ai); therefore Carding's type inequality 
Lemma 2.1 leads to, for any rf'al ,. aucl n CC D1 

by (2.5). 
Therefore we have shown that 

where C1 depends on ll\7aollw 
'0/e can continue this process by constructing a sequence of 'ljJ .d.o. Bi and Ai ( i = 1, · · 

·, k - 2), such that 

• Bi has properties (1), (2), and [D, Bi] E OPS-i, 

• ES(B;_i) c ES(A;_i) c ES(B;), and 

• B; is elliptic on ES(A;_ 1 ), a;-1 = 1 on ES(Bi-d n {(x,e), 1(1 2 l}, 

• Also 
IIB;wlli+2,ri :S Cillfllo, 

where C; depends on ll\7 aulls, for i + n/2 < s;. 

Eventually we conclude by cl1oosing B = lh-2 so that, for k - 2 + n/2 < s, 

IIBwll1,,,ri :S Cllfllo 

with C dependiug on ll\7 aolls-
The proof of Theorem 2.1 requires a. slightly different form of Lemma 2.2. 

D 

Corollary 2.1 Assume that s > n/2. a0 E Jls+ 1 (1Rn). Suppose that 1 is a set of null 

bicharacteristics of D, ( :r0 , fo) E ~1, w is sm.ooth in a neighbo1,fwod of xo, and 

vanishes in a neighborhood of fh. Then there exists a 1f,,.cl.o. Q of order zero (essentially 

supported near 1 ) so that for any ¢ 1 E Ct"(ffi.n+i) and k < s - n/2 + 2, there is C > 0, 

Here C depends on a0 , I.:, Q, anrl cp 1 , but not on w. 

Proof For every null bi characteristic of the set 1 , Lemma 2.2 indicates that a 'ljJ.cl.o. B of 
order zero may be found so that 

Now Q may be constructed as Q = LB. l\foreover, the local compactness of the unit sphere 
ensures that the summation is finite. D 
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Lemma 2.3 Assume thats > 11/2, cr0 E JJ8+ 1 (IRn). Suppose that P is a 1p.d.o. of order 
zero such that a conic neighborhood of its essential support is contained in the elliptic region 
of the wave operator D. Assume also that 

vanishes in a neighborhood of flp. Then for any ¢1 E Cg:'(JRn+I) and k < s - n/2 + 2, there 
is C > 0 so that 

Here the constant C depends on cr0 , 1..-, P, and ¢1 , but not on w. 

Proof The proof is based on the same type of bootstrap arguments as in the proof of last 
lemma. 

Let 
Ow - Vo-o · Vw = f. (2.6) 

Assume that n :J supp( ¢1 ) be a bounded open set. From the support assumption on p, we 
see that Pf= 0. Hence, by applying P to both sides of (2.6), we find 

DP,w = [D, P]w + [P, Vo-0 • V]w + Vo-0 • V Pw. (2.7) 

Now since D is elliptic in a sma.ll conic neighborhood of ES(P), there exists a 'ljJ.d.o. P0 of 
order zero, such that ES(P) C ES(P0 ), P0 is elliptic near ES(P), and Dis elliptic in a small 
conic neighborhood of ES( P0 ). From the ellipticity of P0 D on ES(P), Lemma 2.1 gives, for 
any real number rand n cc n1 

•. 

or from (2.7) 

Therefore an application of Lemma 2.4 and the generalized Rauch's lemma in [3] yields 

I IPwl lk.12 < C\ IJPowllk-1,n 1 + C2(J JwJ 11 + JJPowl lk-2,rl') 
+C3(Jlwlli + IIPowllk-1,n 1 ) 

< CJlfllo + CJJPowllk-1,n 1
• 

Here constants C2 and C3 depend on IJVo-olls fork - 2 + n/2 < s. 
Thus the bootstrap arguments on P0 will accomplish the proof. 
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2.2 Proof of Theorem 2.1 

We study the regularity of v0 through its dual problem. To simplify the arguments on the 
dual problem, we make use of the symmetric form of (2.1) by introducing p( x) = e-uo. Then 
(2.1) becomes 

l . 2 1 1 n-1 
D1vo = [-o1 - '\7 · (-'v)]vo = -6--2 (t)6(x) 

p p p (2.8) 
Uo = () f < (). 

Now let us look at a dual problem to (2.8), 

D1w = [!a; - 'v · (!'v)]w = \]i 
p p (2.9) 

w = 0 t >> T1, 

where \]i E Cg:'(D) with n = {JR" x (O.Ti)} n {t > lxl + co}, for Eo > 0 small. Note that, 
this equation may be reformulated as 

0'1 w = Ow - 'v O"o • 'vw = e-uo \]i 

w = 0 t >> T1. 

Thus if we can show that for any \JI E C';;'>( n) 

l(Dfvo, W)I::; CII\Jillo, 

then it can be concluded that 

118;vollo,ri::; C. 

From (2.8), integration by parts leads 

l(D;z,o, W)I l(D1D;vo,w)I 

I( ~6(t)6(:r), a;-(n-1
)1\v)I 

p 

< Cl(8;-(n-l)/2w)(O, O)I. 

The trace theorem (see for example [26]) yields that 

with <Pi E C0 (01 ), D1 a small neighborhood of the origin and 0 1 n supp(\JJ) = 0. 
Construct two ·1Jul.o. Q 1 , Q 2 E OPS0 (IRn+l ), such that 

• Q 1 + Q2 = R; where R is an elliptic 4,.d.o. of order zero in 0 1 ; 

• ITsupp(qi) n supp(W) = 0, for i = 1, 2; 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

• ES(Q 2 ) is a small conic neighborhood of set of null bicharacteristics of the wave oper­
ator D passing over n1 ; 
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• Q1 is microloca.lly smoothing on the null bicharacteristics passing over f!i. 

Therefore, with (2.13), we have 

(2.14) 

here the expression makes sensP because the domain of dependence for wand the pseudo-local 
properties of Q1 and Q2. 

Now, we can apply Corollary 2.1 to obtain that 

(2.15) 

Lemma 2.3 yields 

IIQ2 10 ll1+1,01 s; CII\J!llo (2.16) 

where the constants here depend on I lcrol ls· 
Therefore, we have shown 

(2.17) 

To complete the proof, we have one more step to go, that is, to estimate all the x­
derivatives as well as the corresponding mixed derivatives of v0 up to order of l. This may 
be done by introducing another dual problem. Here, we demonstrate this method by looking 
at 8;, v0 ( i = 1, · · ·, n). The rest terms ca11 be estimated by the same fashion. It suffices to 
show that for any \JI E Cg:' ( D) 

for i = 1, · · ·, n. 
Let w solve the dual problem (2.9), w 1 solve the following problem 

[ l . 2 ( l )] [ I ] 01 Wt = -cJt - '/. -'/ W1 = Ox '01 W 
p p • 

w = 0 t >> T1 . 

We have 

1(8~;vo, \JJ)I l(t'o,D~;01w)I 

< i(01uo,D~,w)I + l(01vo,w1)I 

< CIU?'..,u;(n-l)/2w)(0,0)I + Cl(cf(n-l)/2w1)(0,0)I. 

Again, the trace theorem gives 

l([{vo, \J1 )I < Cll¢1wll1+1 + Cll¢1w1lh 

< Cll¢1wll1+1 

(2.18) 

(2.19) 

where in order to obtain the second inequality, we have applied the standard energy estimates 

and a commutator argument. From (2.17), the estimate (2.18) can then be proved. D 
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3 Proof of the Main Theorem 

Our goal in this section is to detPrmine the appropriate hypotheses under which DF(a-o), 
the linearization of F about a reference state a-0 , is bounded. Our proof is based on the 
microlocal regularity analysis of tlie transport equations and regularity study of the dual 
problem. 

Recall the linearized problem corresponding to the reference state (uo,a-o), for (t,x) E 
IRn+1 :1' - (x' "' ) , , .- - • ,,t·n, 

(D - Vo-0 • 'V)tiu = Vl5a- · Vuo 
/5u = 0 . t < 0 , 

(3.1) 

where u0 is the solution of the model problem corresponding to the reference density a-o. The 
linearized forward map can be defined as 

DF(a-o)bcr = (cpl5u) lxn=O, (3.2) 

where ¢(.r,t) E CcnIR"+1
) is supported inside the conoid {t > lxl}, and near {xn = O}. 

Once again we consider a related problem, 

n-1 

(D - v'o-0 · 'V) v = Vbo- · Vvo 
I.'= Q, t < 0, 

where DU= at~V and Vo solves 

n-1 
(D - Vcr0 · 'V)v0 = 0--2 (t)b(:r) 

Vo= Q , t < 0. 

Observe that for l E ffi, 

IIDF(cro)bo-111 II (</>bu) lxn=oll1 
< Cjj(cpv) lxn=O !111' 

(3.3) 

(3.4) 

(3.5) 

where /1 denotes l + ( n - l) /2. Thus the real challenge here is to get an appropriate trace 
regularity estimate for 1• on a time-like hypersurface {xn = O}. 

Before getting into the details of the proof, let us first make the following general remarks 
on this theorem: 

The estimate ( 1.8) has a similar form to a Rakesh's theorem (Theorem 2.5 in [18]). 
Actually, we conjecture that a formal extension of our proof here could lead to an elementary 
proof of his theorem. On the contrary, the principal tool of Rakesh's proof, calculus of Fourier 
integral operators, is not available when the reference density is nonsmooth. 

Our approach enjoys the beauty of the method of energy estimates, that is, it possesses 
useful information on various pararnet.ers involved in the estimates. 
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3.1 Some useful results 

Hadamard's construction leads to the progressing wave expansion for Vo, 

s 

l'o = L b1,Sdt - r(x)) + R,.0 (x, t) (3.6) 
~,=O 

where r( :r) = la'I, 80 is the Heaviside function, S} = .':h-1 ( k ~ 1), and Rv0 vanishes at 
t = r(x). Moreover {bd solve the transport equations, fork= 1,· · ·,s, 

2 9 T · 9 b0 + ( .6 T + 9 T · 9 a O) b0 

29r · Vbk + (.6r + Vr · Yao)bk 

0 

.6bk-1 + V ao · Vbk-1 . 

(3.7) 

(3.8) 

From (3.:3), Hadamard's construction also gives the progressing wave expansion of v, 

s 

u = L akSdt - r(x)) + Rv(x, t), (3.9) 
k=O 

where r(x) = l:rl, 80 is the Heaviside function, 8£ = Sk-I, Rv vanishes at t = r(x), and {ad 
solve the transport. equations, for It = 0, · · ·, s - 1, 

2Yr · 9a0 + (D.r + Vr · Va0 )a0 = -boVr · Vfia (3.10) 

2Vr · Vak+I + (.6r + Vr · Yao)aq1 = .6ak + Vao · Vak + Vfia(Vbk - bk+l Vr). (3.11) 

In fact, the equations (3.10) and (:3.11) arc the first order perturbation of the equations (3.7) 
and (:3.8), respectively. 

For convenience, we introduce a function q = a0 /2+q0 with Vr-Vq0 = l::::,,r/2. Thus away 
from the origin, q is nothing more than a smooth perturbation of a0/2. Then the transport 
equations (3.7), (3.8) rna.y he transformed to equations 

for k = l, · · ·, l1. 

YT· Yb0e'1 

VT· Vb1.e'I 

() 

( D.b1.-i/2 + Va0 · 'Vbk-i/2)eq , 

(3.12) 

(3.13) 

Similarly, equations (:3.10) and (:3.11) may be transformed to equations 

VT· Va 0 eq 

Vr · Vake" 

YT· Y(8ab0 eq) (3.14) 

(D.ai..-i/2 + Va0 · V ak-i/2)eq + V 8a(Vbk - bk+l Vr)eq /2 , (3.15) 

fork:= 1, · · ·, /1 , where to obtain the first equation, we have used the equation Vr-Vb0 eq = 0. 
Observation. The right hand side of the equation (3.13) may be rewritten in terms of bk_ 1 eq 
as 

Similar observation may be madr for the right hand side of (3.15). 
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Observe that all the transport cqw,tions have the same principal part "vT · "v which is 
a smooth vector field. 'T'herefore. in order to understand the regularity of the solutions to 
(3.12)-(3.15) it is essential to stndy tlie properties of this smooth vector field. The following 
is a microlocal regularity result for the solutions of transport equations. It indicates that a 
refined regularity result can be achieved microlocally a.way from the characteristic variety of 
the wave opera.tor, in contrast to a direct application of the energy estimates. This result 
will be used frequently throughout the proof of Theorem 1.1. 

Lemma 3.1 Let 1/ be a smooth l'fclor field. Assume that u is a smooth function, Q E OPS0 

supported away from Char(V), and <PE C0"'<>(D) where Dis a bounded open set. Then there 
exist Q' E OPS0 also supported away from Char(V) and </>'i ¢> E Ca(D') with n cc D', 
such that for any r E IR, 

jjQqm[[sSl :S Cj[Q\6'Vu\ls-U1' + Cjj¢u\\r,0' · 

Proo.f. Let Qi be another 'lj_,.d.o. of order zero, such that Qi is elliptic on ES( Q) and 
ES(Qi) is away from Char(V). It follows from Lemma 2.1 that there exists Di ::)::) Dan 
open bounded set such that 

IIQ</Julls.n < CIIQ1 Vc/>ullsJl1 + Cjj¢ullr,n1 
< CjjQi[I·. c~]ulls-I,0 1 + Cj[Q1¢Vulls-1,01 + Cjjcpuj\r,01 • 

Now choose ¢1 E C0"'(Di) and ¢ 1 = 1 on supp(¢), then 

Q t[1/, 9'>] II = Ch [V, ¢]¢11l = Q1<P11l 

where Q1 = Qi[V, qi] is a. 'lj•.d.o. of order zero and ES(Qi) is away from Char(V). 
Thus 

IIQc/>ull,,n:::; CjjCJ1¢1ulls-1,0 1 + CjjQ1¢Vulls-1,01 + Cjj</mllr,01 • 

(3.17) 

(3.18) 

\Ve can then repeat the above process to get a similar estimate on IIQ1¢1ulls-1,01 • In fact, 
one can construct: Q 2 E OP S 0

, Q 2 is elliptic on ES( Qi) and ES( Q 2 ) is away from C har(V); 
¢2 E C0 (D2 ), <h = 1 on supp(¢). 01 CC !'12; Q2 = Q2[V, ¢1]. 

Then 

Following the same idea, one may keep going to get similar estimates: ( the i-th step) 
Construct: Qi E OPS0

, Q, is elliptic on ES(Q;_ 1 ) and ES(Qi) is away from Char(V); 
¢; E C0 (D;), <Pi= 1 on s11pp(d>;_i). D;-1 cc O;; Q; = Qi[V,¢;], 0 :Si :S k-1. (k is chosen 
to satisfy s - 1.~ :Sr). 

Then 
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Combining all of the estimates above, we have 

k-1 k-1 
IIQ</mllsJ2 :S CIICJk¢kull.,-k.n, +CL IIQi+1<PiVulls-i-l,rl;+12 +CL llef>iullr,rl;+1 · 

i=O 

In order to get the desired estimate, some further simplifications are needed. Clearly, for 
j = 0, · · ·, k - 2, 

hence 
k-1 

L Cllo,ull,.,n;+1 :::; Cll<Pk-1ullr,nk • 
i=O 

Since s - k: '.Sr, ll(\¢kulls-k,nk :S Cjj4'.!kvllr,nk, therefore, 

k-1 
IIQ</>ullsJl:::; Cll¢kull,·.rtk + L IIQi+1</>iVuJJs-i-l,rl;+1 · 

i=O 

Construct a 1/J.d.o. of order zero, Q', with the following properties: 
Q' is elliptic on u},:-J ES( C.\+ 1 q; ); ES( Q') is a.way from C har(V). Lemma. 2.1 then yields 

that 

I IQi+l ¢; 1,'ul ls-U11, I IQi+11>i1>k Vuj ls-1,rlk 
< CjjQ'</>d1ulJs-1,rl' + CJJ</>kVulJr-1,rl' 

(3.19) 

(3.20) 

where nk CC fl', i = 0, 1, · · ·, k - 1. Therefore, if we construct J E Cg"(fl') in such a way 
that arq> > 0 on supp( 1>1.- ), then 

Let </>' be </>k, we finally obtain 

IIQ</>ulls.11:::; CjjQ'¢'Vulls-1,rl' + CjjJullr,rl' 

which completes our proof. D 

We also need the following sta11dard result for hyperbolic p.d.e, as well as the estimates 
involving in its proof. See, for example, Chaza.rain-Piriou [9] for the idea of the proof. The 
following is the version stated in Bea.ls [5]. 

Lemma 3.2 (Linear Energy Inequality) Let p(:z:, D) be a pa1'tial differential operator of or­
der rn on IRn+i, strictly hyperbolic with respect to the plane { Xn+i = 0} J and let u satisfy 

P( x D)ll = f'(:e). If f' E Hs-m+l (]R11 +1
) and 'll E H 8 ,(x : Ix j < t) 1or some t > 0 then ' . . . loc lac n+l - J' J 

u E HtoJIR"+1). 

Next, we present a. trace regularity result. 
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Lemma 3.3 Assume thats > :3 + n/2, l S 11 S s, and v solves problem (3.3) then there is 
a ¢0 E Cf;' s1tpported near supp(~') 8 uch th at the following estimate holds, 

(3.21) 

where C is a constant depending on the Hs n H;
1
~t1 (]()-norm of a-0 , but is independent of 

80-. 

Proof This lemma is a direct application of Theorem 3.1 in [3] by taking into account of 
the fact that ¢ and 80- have disjoint supports. D 

3.2 Microlocal version of trace theorem 

The classical trace theorem in Sobolev spaces characterizes the regularity of a distribution 
restricted to a hypersurface. Dealing with inverse problems, one always has to face a difficult 
but crucial question: \Vhen do<'s the restriction operator commute with another operator 
of interest? The result i11 this subsection indicates that a simple microlocal trace theorem, 
which not only works on the space restriction but also on the phase restriction (i.e. a trace 
theorem on cotangent bundles), rnny lead to a way to cure this difficulty. 

Let 1( be a conic set in JR". i : J' E mn --+ (.r, O) E IRn+l. Define a semi-norm: for I a 
conic set of IRk and u E C~"'(lH"), 

Then, a proof of the classical trace theorem ( see e.g. in Taylor [26], pages 20-21) implies the 
following inequa.lity. 

Proposition 3.1 Fors> 1/2. u E c:g=·(mn+ 1
), 

Thus the map i~ may be extended to be a bounded map from H:ne(x x IR., J{ x IR) to 

H:~11\r, K), provided s > l/2. 
Let I1 2 be the projection map to the frequency space ( or the second factor). We may 

reformulate this result in tenns of 1/1.d.u .. 

Proposition 3.2 If Pi is a 1/•.d.o. of order zero in IRn, with IT2ES(Pi) c I<, then there 
exists a 1/J.d.o. A of order zero in IR11 +1

, and IT2 ES(A) C I( x IR, such that for s > 1/2, 
' C'00 (n) ' : h n . . . I ' . I · I " l" . f IRn+l u E O H wd Han open ,01111r.u .,u,.~et o , , 

where i* agaz.n denotes a restriction operator to a codimension one hypersurface and 0 0 = 
i*O. 
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The above results together with our Carding's type result Lemma 2.1 yield a microlocal 
version of trace theorem. 

Lemma 3.4 Assume that E is an elliptic operator of order m in JRn+l X I{ x IR, P E 
OPS0 (IR.n) and Il2ES(P) C J{. Then for s > 1/2, 1l E Co(n) where n and n' are open 

bounded subsets of JRn+l wdh n cc 11', and flo = i*!1, 

IIPi*vlls-1/2.llo :s; CIIE'lllls-rn,ll' + Cllllllr,ll' 

for any r E IR. 

A result on propagation of singularities, see Proposition 1.3.3 in Duistermaat [11] or 
Theorem 8.2.1:3 in Hormander [14], demonstrates the relation between the wavefront of the 
restriction of a distribution and tlie wavefront set of its own. However the result does not 
directly lead to any explicit bound. Here, in this direction, we present a result together with 
an estimate. The proof follows directly from Lemma 2.2 and Lemma 2.3. 

Lemma 3.5 Assume thats> n/2. er0 E Jf 5+1 (IRn). Suppose that w is smooth near {t = O} 
and Dw - Ver0 · Vw E L2(IRn+1

). Then there e:rists an elliptic 1p.d.o. B of order zero, such 
that ES( B) is contained in Cy, a ··cylindrical" conic neighborhood of 

{(.r,t,(,(.c,') E T*IR"+ 1 \0, t2 
- l:rl 2 = O,w = VT ·0 

along w direction, and the symbol of B. l1 satis_fi:cs 

Tisup71(!1) n supp(Dw - Ver0 · Vw) = 0. 

Then, for any ¢1 E C\f'(IH 11+1) and k < 8 - n/2 + 2, 

where the constant C depends on O'o, k, B, and ¢1 , but not on w. 

3.3 Proof of Theoren1 1.1 

Recall the assumption made in Sect ion ] . 

(A) Sllpp(8er) C {:r" > t:} . 

for E > 0 small. 

(3.22) 

For simplicity, we shall abo assume that !1 is an integer. Without any further difficulty, 
the proof may be extended formally to cover the genera.I case. 

Let ¢ E C0 be supported inside the characteristic surface and the set {xn < c/2}. 
Multiplying¢ to both sides of equal.ion (:3.:3), we have 

Dqu = d>'v er0 · Vv + [D, ¢]v 
/' = 0. t < 0. 
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Here we have used the fact tliat according to the assumption (A), </> and 8a have disjoint 
supports, so that </>9 OCJ' · Vv0 = 0. 

Having Lemma :3.3, the estimate of ll(¢v)lx,,=oll11 may be reduced to estimating ll</>ovll11 • 

For the sake of simplicity, we shall only discuss the estimates of the t-derivatives of v. The 
rest rnay be estimated as in the proof of Theorem 2.1. 

The rest of this section is devoted to the estimate of ll</>ovll11 • 

We study the regularity of v through its dual problem. Once again, we look at the 
symmetric form, for p( x) = e-170

• 

[ 1 . 2 1 )] 1 D 1v= -d1 -V·(-V vo=-VOCJ'·Vv0 
p p p 

v=O t<O. 

A dual problem to (3.24), 

D'1w = [!8;- 9 · (!v)]w = W 
p p 

w = 0 t >> T1 , 

where w E Co(n) with O = {IR 11 x (O,Ti)} n {t > lxl + t:}, for a small t: > 0. 
Thus if we can show that for any W E C0 (!1) 

then it can be concluded that 

Green's identity and integratiou by parts lead to 

(u; 1 u, \JI)= UJ; 1 u, D~w) 

l . j l i a a i = (D18/v, iv) - 2 -[o/v-.-w - w-8/v]ds 
t=r(.r) p on on 

Let us look at the first term. From equation (:3.3), 

Thus 

Applying Theorem 2.1 and energy estimates to the right hand side, we have 

with the constant C depending on IICJ'olls, for s > rnax{l + n/2, Ii+ n/2}. 
Using Harclamard's construdio11. one rnay get: 

(8;1v)lt=T(:r) = 0./1' (8;1
+

1
v)lt=r(.r) = a11+1, (o,,0; 1

v)lt=T(x) = Oxa/1 + O.ti+l· 
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Denote 

/

. 1 -cl r) 
11 = _ -cJ/v-. -__ wds , 

. t:=r(.r) p dn 1 1 fj l 
12= --

0 
(fJ/v)wds. 

t:=T(X) p 11, 

Observation. The integrands are all compactly supported even though neither v nor w is 
compactly supported. 

Since the above integrals liavc similar forms, we will only give a detail estimate of 11 by 
making the following remark on tl1e estimate of 12 : 

Now, by integration by parts, tl1e first term of the right hand side can be studied just like 
11 ; while the second term may also he handled in a similar fashion as for 11 . 

3.4 The estimate of 11 

A function </>(:r) E Ci5'°(f!), n a11 open bounded set in IRn and f2 => supp{fJ;vlt==T:nwlt==T}, 
may be found because the integrand of / 1 is compactly supported, so that 

. 1 fj 
l1 = /, d>-fJ;v-wds . 

. l==r(r) . p on 
Now construct two 1/ul.o. Q 1 , Ch E OPS0 (lR") 

• ES( Q 2) is a small conic neighborhood of {Vr · ~ = O}; 

• Q/s symbol q2 = 1 near {vr · ( = O} n {(x,~), l~I 2 l}. 

Recall the definitions of (Ji and Q2 . We can again rewrite 11 as, for a </>1(x) E Cgc'(f!') with 
f! C ff, 

I 1 Q . i :::i1 Q . D t · j Q i ;:ii Q a j Q i a1 a 1 11>-u/v 1<!>1:=')W(.~+ ,</>-u(v 2<P1::1wds+ 2</>- /v</>1--;:;-wds 
t==T p un. t== r p un t==T p un 

li,a + Jl,b + 11,c. 

Now, we estimate 11,c,- Ju,, and 11., separately. 
(a) The estimate of 11,0 

Clearly, in order to estimate 11.11, it suffices to estimate IIQ14>¼aii II and IIQ1</>1 ;n wlt==TII­
These terms may be handled by the following propositions. 

Proposition 3.3 The following udimolr holds 

IIQ,<i.ibkeqllo.ri s ck 

where n cc n and ck depends on llo-ollk-
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Proof. The proof is based on an application of Lemma. 3.2. We also have to use variants of 
Ranch's Lemma, Schauder's Lemma, together with Proposition 2.1. 

In fact, Lemma. 2.2 leads to, for any 1·, 

where n CC !11, ¢~, ¢1 E C\'_;"'(Di), and Q' supported a.way from Char('Vr· 'V). From (3.13), 
it is easy to represent the right hand side in terms of bk-I eq. Therefore, Ranch's Lemma and 
Proposition 2.1 yield 

wheres> l + n/2 and the constant C depends on llo-olls· 
One can then continue this process by applying Lemma 2.2 to estimate I IQ~ </>2bk-l eql li,01 • 

After l similar steps, we can write the following estimate, for any r, 

k 

IIQ16b1,.cqllo,n :S c11q;¢1boeqllk,ll1 + L Cll¢;b;llr,ll, 
i=l 

(3.30) 

where C depends on !lo-oils for s > l + n/2, D cc !11 cc··· cc Dk, and ef>i E Cg:'(Di)­
We next discuss why the smoothing terms 11¢;b;Jl,.,o; may be negligible. 
Note that the transport equations are hyperbolic along the,\ direction(,\= Ix!). Actually, 

introducing polar coordinates. \\'f' then get Vr · V = ;>. (,\ = Ix!). Thus, ,\ ma,y be treated 
as the "time" variable for a standard hyperbolic problem. The right hand sides of transport 
equations may be expressed under the polar coordinates as 

(3.31) 

Because of the main assumption, o-(.r) is constant near lxl = 0, that is, vo is the fundamen­
tal solution for the sanw equation with constant coefficients. The Hadamard construction 
yields that bk (k = 0, · · ·, l1 ) are srnooth function near lxl = 0 (or).= 0), see [20] or [1] for 
more discussions. Lemma 3.2 tlieu becomes applicable. 

Eventually, there exists a constant. (\ depending on I lo-ol lk, so that 

(3.32) 

D 

Proposition 3.4 The following estimate holds 

where C depends on llo-olls for s > { 1 + n/2, li}. 
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Remark. With a few necessary changes, the proof of Proposition 3.3will still work. Ob­
serve that the only major difference to the analysis before is that each one of the transport 
equations now possesses an extra term, which may be viewed as a "source" term. Certainly, 
these extra terms are responsible for the /5cr term in the estimate of our main theorem. 

V·-./e may also rewrite the right hand side of (3.15) in terms of ak_1eq plus a source term 
containing 8cr. The desired estimate then follows by applying Lemma 3.4, together with 
algebraic estimates, various forms o[ Schauder's Lemma, Rauch's Lemma Proposition 2.1, 
and commutator lemmas. 

Note that the transport equations of ak may be viewed as the first order perturbation of 
the corresponding equations of b1,. Hence near i:rl = 0, by the main assumption (A) 8cr = 0, 
ak = 0 fork= l,· · ·,/1. 

Next, we want to get an estim,itc of IIQ1ct>1;: wlt=Tllo,rl'-

Proposition 3.5 For Q 1 , w, W. and c/) 1 as previously defined, we have 

where the constant C depends on I lcrol Is, for s > 1 + n/2. 

Proof Since w solves the dual problem (2.9), which has smooth right hand side, we need a 
characteristic trace regularity result for w. Note that ES( Q 1 ) is away from the characteristic 
variety of the wave equation. In fact, an application of a characteristic trace regularity result, 
Corollary 2 in [2], yields that there exists a ¢ E C0 (IR.n+l ), such that 

the second inequa.lity comes from tlie st;-inclarcl energy estimates. D 

(b). The estimate of I 1.1, 

Because of Proposition :3.4, in order to bound I1,b, it suffices to estimate I IQ21>1 ;n wlt=T I lo,0'· 
This requires the microlocal trace regularity result Lemnia 3.4 and the regularity analysis of 
the dual problem Lemma :3.!5. Tlw estimate can be easily derived by applying Lemma 3.4 
and Lemma :3.5. 

Proposition 3.6 For Q2 , w, and 6 1 rlt./i:ned above. The following holds 

with the constant C depending on I lo-ol ls for s > l + n/2 

( c). The estimate of 11 ,c 

We want to estimate 
· 1 8 j Chrp-az 1 </'>1 -

8 
.wds . 

' l.=r(.r) p n 
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Obviously, this term has to be liamllecl very differently. In fact, the transport operator (the 
opera.tor appears in the transport equations) is elliptic on ES(Q 1 ), by Lemma 3.1 the L2 

norm of Q1¢az1 may be bounded by the Ifl 1 norm of Q1 cpa0 . However, there is no ellipticity 
on ES(Q 2 ), and the only direct Pstirnate one may expect is by applying Lemma 3.2, which 
implies that essentially the L2 nonn of Q2¢a11 has to be bounded by the H 211 norm of <pa0. 

To cure this difficulty, we introduce a "bootstrap" argument by taking advantage of the 
transport equations and the fa.ct that Q2¢1 ;n wlt=r is a much smoother term (it would be 
smooth if cr0 were smooth). Again. we start with the corresponding estimate for b1 1 • 

Proposition 3. 7 The esfinw.ff 

holds with the constant. C depending on llaolls) for s > l1 + (n - 3)/2. 

Proof Without loss of generalities, Ch may be assumed to be self-adjoint. Thus 

(3.33) 

Since Ch¢1 ;nw is much smoother than the other part, one wants to apply transport equations 
to reduce b1 1 to the oue n'quires t.lie least regularity. 

Consider a problem 

(VT. vnr1 
ll'i 

a 
<PCCTo-q Q2¢1 ( -;:;--w) lt=r(x) 

un 
0 near Ix I = 0 . 

Then (3.33) becomes 

From the transport equation (:3.IG). we have 

l=r(:r) "VT. "Vb11eqlV1cls = .l=r(.,}~(b11-1eq)/2- l"Vql
2
b11-1e9/2- t::..qb11-1e 9 /2 

-V(b11-1e")"Vqo + b1 1 -1eq"Vq"Vqo)vVids 

j. b11-1eqPi lV1ds 
. t=r(.r) 

where P = 6 - l"Vql 2 
- ~q + V ·Vero+ "Vq · Vq0 . 

One can then introduce anotltf'.r problem 

(VT· V)"IF2 

1+'2 

¢PlV1 

0 near lxl = 0 . 
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Hence 
- l iJ l C22<1>-h1 1 91 -__ -wds = l VT· Vb11 -1eq PTV2ds. 

t=r(.r) p dn t=r(x) 

We can continue this procedurf'. lndeecl, it follows, after [li/2] steps where [li/2] = li/2 if 11 

is even and is (/1 - 1)/2 if 11 is odd. tliat 

where vV; solves 

for i = 1, · · ·, [li/2] + 1. 

(V,. vr1v; 

JV; 

¢PHl;-1 

0 near Ix!= 0 

(3.38) 

(3.39) 

Therefore, by the Cauchy-Sclmatz inequality, Proposition 2.1, and Rauch's Lemma 

(3.40) 

with C dependiug on j jo-0 l ls, for s0111e .s > n/2. Since b;eq solves the i-th transport equation, 
Lemma :3.2 then implies that 

(3.41) 

Next, applying Lemma :3.2. c1fter some simple cakulations, we can obtain 

Now Lemma ;3.4 and Lemma :3.!S may be applied to get 

where the constaiit c: depends on I lo-ol Is with .s > /1 - 1/2 + n/2. D 

Once again, a variant of the proof of Proposition :3.6, with no additional technical diffi­
culty, will lead to the following result. 

Proposition 3.8 The estimaft 

holds with the constant C rfrpendin!J on I lo-ol ls, for s > l1 + (n - 1 )/2. 
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