
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021 1

MOTIONBENCHMAKER: A Tool to Generate and

Benchmark Motion Planning Datasets

Constantinos Chamzas1, Carlos Quintero-Peña1, Zachary Kingston1, Andreas Orthey2, Daniel Rakita3,

Michael Gleicher3, Marc Toussaint2 and Lydia E. Kavraki1

Abstract—Recently, there has been a wealth of development in
motion planning for robotic manipulation—new motion planners
are continuously proposed, each with their own unique strengths
and weaknesses. However, evaluating new planners is challenging
and researchers often create their own ad-hoc problems for
benchmarking, which is time-consuming, prone to bias, and does
not directly compare against other state-of-the-art planners. We
present MOTIONBENCHMAKER, an open-source tool to generate
benchmarking datasets for realistic robot manipulation problems.
MOTIONBENCHMAKER is designed to be an extensible, easy-
to-use tool that allows users to both generate datasets and
benchmark them by comparing motion planning algorithms. Em-
pirically, we show the benefit of using MOTIONBENCHMAKER

as a tool to procedurally generate datasets which helps in
the fair evaluation of planners. We also present a suite of 40
prefabricated datasets, with 5 different commonly used robots
in 8 environments, to serve as a common ground to accelerate
motion planning research.

Index Terms—Motion and Path Planning; Manipulation Plan-
ning; Data Sets for Robot Learning

I. INTRODUCTION

MOTION planning is a core component of robotic manip-

ulation [1]. For example, motion planning is essential

in pick-and-place tasks [2], finding geometrically-constrained

motions such as opening drawers and doors [3], and as a tool

in task and motion planners to evaluate the feasibility of long-

horizon plans [4]. The multitude of applications of motion

planning has given rise to a multitude of motion planners

to tackle these specific problems, each employing their own

heuristics [5] to address the challenging general problem [6].

Despite the plethora of planning methods proposed over

the years, little emphasis has been placed on creating a

common ground to evaluate these planners—there are no shared

benchmarking datasets tailored to manipulation problems that

are commonly found in the literature [7]. The lack of shared

environments for evaluation often forces researchers to create

Manuscript received: September, 9, 2021; Accepted November, 18, 2021.
This letter was recommended for publication by Associate Editor Oren Salzman
and Editor Hanna Kurniawati upon evaluation of the reviewers’ comments.
At Rice University, this work was supported in part by NSF 1718478, NSF
2008720, NSF-GRFP 1842494, and Rice University Funds. Work on this project
by DR and MG was supported in part by NSF 1830242.

1CC, CQP, ZK, and LEK are with the Department of
Computer Science, Rice University, Houston, TX, USA
{chamzas,carlosq,zak,kavraki}@rice.edu

2AO and MT are with the Learning and Intelligent Systems
Lab, TU Berlin, Germany {orthey}@campus.tu-berlin.de,
{toussaint}@tu-berlin.de

3DR and MG are with the Department of Computer Sciences, University
of Wisconsin-Madison, {rakita, gleicher}@cs.wisc.edu

Digital Object Identifier (DOI): see top of this page.

Mo�onBenchMaker

Configura�on

Robot Descrip�on

Scene Descrip�on

Setup
Problem

Generator

Octomap

Generator

Scene

Sampler

Library Modules

Datasets

Benchmarking

Fig. 1. MOTIONBENCHMAKER architecture

their own, making it challenging for practitioners to understand

the advantages or disadvantages of a particular method if not

directly compared. Additionally, crafting bespoke planning

problems to evaluate a method is very time consuming, and

could lead to incorrect conclusions due to unintentional biases

in design. Finally, with the advent of learning-based planning

methods (e.g., [8]–[10]), there has been an increased need for

readily available open-source datasets that can be used for

training and testing.

We introduce MOTIONBENCHMAKER, a tool that facilitates

the creation of motion planning datasets to ease the evaluation

of motion planning algorithms in “realistic” manipulation

tasks. MOTIONBENCHMAKER was inspired by common issues

found in evaluating sampling-based planners on high-DOF

robots. Unlike most existing benchmarking resources, which are

designed for low-DOF robots or free-flying systems (see Table I),

MOTIONBENCHMAKER is intended for modern high-DOF

robots in “realistic” scenes, and its capabilities are broadly

useful to other types of planners, e.g., classical, optimization-

based, and learning-based. MOTIONBENCHMAKER consists

of a set of tools in the form of modules Fig. 1, which can

be utilized by user scripts and human-readable configuration

files. The two main use cases for MOTIONBENCHMAKER are

the generation of motion planning datasets and subsequent

evaluation of motion planners on these datasets. We also

provide 40 prefabricated datasets (5 different robots in 8
different environments) which are open source along with MO-

TIONBENCHMAKER
1. A video is also provided that visually

presents this work 2.

MOTIONBENCHMAKER specifies motion planning problems

as robot-agnostic manipulation queries which depend only on

the environment geometry—with this, it is easy to integrate new

problems and new robots to create new datasets (e.g., see Fig. 6).

Planning problems within a dataset are randomly generated

1https://github.com/KavrakiLab/motion bench maker
2https://youtu.be/t96Py0QX0NI

https://github.com/KavrakiLab/motion_bench_maker
https://youtu.be/t96Py0QX0NI

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

given a nominal environment and a set of tunable parameters.

These parameters specify how objects in the environment can

vary in their pose and control how new samples of planning

problems are be procedurally generated. MOTIONBENCH-

MAKER also provides the ability to convert scenes described

with geometric primitives and meshes to a “sensed” representa-

tion, i.e., point clouds and octomaps [11]. MOTIONBENCH-

MAKER is fully compatible with the ROS [12] ecosystem

of tools and interfaces such as visualization with RViz and

motion planning through MoveIt [13] and Robowflex [14]. To

summarize, with MOTIONBENCHMAKER we contribute a tool

which

• has a modular and open architecture to facilitate creating

new datasets,

• procedurally generates new datasets by randomly varying

scenes,

• can convert scenes to “sensed” representations,

• has benchmarking capabilities,

• and is easy to integrate into the existing ROS ecosystem.

The rest of the paper is organized as follows. In Sec. II

we review other works in robotic benchmarking and dataset.

In Sec. III we describe the modules of MOTIONBENCH-

MAKER and in Sec. IV, we show how MOTIONBENCH-

MAKER facilitates the generation of motion planning datasets

incorporating new robots into existing scenes without much

effort. In Sec. V-A, we show that it is possible to infer

an incorrect conclusion when comparing motion planning

algorithms due to limited data, emphasizing the importance of

MOTIONBENCHMAKER’s problem generation. In Sec. V-B we

show that the prefabricated datasets in MOTIONBENCHMAKER

are challenging even for fine-tuned planners, and no sampling-

based planner rules over all.

II. RELATED WORK

Well-maintained datasets such as ImageNet [34] or Tencent

ML-Images [35] are fundamental for algorithmic breakthroughs

in research fields like computer vision. To achieve similar feats,

the robotics community has developed several high-quality

datasets. We give a brief overview of the most popular ones

(as of August 2021) with a focus on datasets for manipulation

planning. A more detailed overview can be found in [36] (up

until 2015).

We compare datasets with each other based on six desirable

properties. First, we compare if a dataset is procedurally

generated, meaning if there exists an algorithmic generation of

problems from a given scenario. Second, we compare planner

benchmarking capabilities, meaning if there exists a tool to

benchmark different motion planning algorithms on the dataset.

Third, if a dataset is procedurally generated, we check if there is

an interface with tunable parameters, i.e., if users can influence

the generation process. Fourth, we check if the dataset is high-

dof, i.e., if there exist robots with more than 6-DOF. Fifth, we

check if the dataset contains sensed representations, i.e., if there

exist environments in the dataset which are built from sensor

information. Finally, we check for articulated robots, i.e., if the

datasets contain robots that are beyond rigid bodies in 2D or

3D. Other properties could be examined, but we consider these

properties necessary for a tool that focuses on manipulation.

TABLE I
RELEVANT DATASETS IN ROBOTICS AS OF AUGUST 2021.

Paper Year

P
ro

ce
d

u
ra

ll
y

G
en

er
at

ed

P
la

n
n

er
B

en
ch

m
ar

k
in

g

T
u

n
ab

le
P

ar
am

et
er

s

H
ig

h
-D

o
f

(>
6

)

S
en

se
d

R
ep

re
se

n
ta

ti
o

n

A
rt

ic
u

la
te

d
R

o
b

o
ts

Vehicle Navigation

CommonRoad [15] 2017 × X × × × ×
Robot@Home [16] 2017 × × × × X ×
Multi-Agent Path-Find Benchmark [17] 2019 × X × × × ×
MAVBench [18] 2020 × × × × X ×
BARN [19] 2020 X X X × × ×
Bench-MR [20] 2021 × X × × X ×
PathBench [21] 2021 X X X × × ×

General Robotics

OMPLBenchmarks [22] 2015 × X × × × ×
Robobench [23] 2016 × X × X X X

Roboturk (Teleoperation database) [24] 2019 × × × X X X

RLBench [25] 2020 X × X X X X

OCRTOC [26] 2021 X X × X X X

Robot Manipulation

ACRV picking benchmark [2] 2017 × X × X X X

RoboNet [27] 2019 × × × X X X

GraspNet [28] 2020 × × × × × ×
Brown Planning Benchmarks [29] 2020 X X × X × X

Aerial Manipulation [30] 2020 × × × X X X

Bimanual Manipulation Benchmark [31] 2020 × X × X X X

In-hand manipulation benchmark [32] 2020 × × × X × X

ProbRobScene [33] 2021 X × X X × X

MOTIONBENCHMAKER (ours) 2021 X X X X X X

As can be seen in Table I, we divide the datasets into three

categories. The first category is datasets for vehicle navigation.

Several high-quality datasets exists like common road [15],

bench mobile robot [20] and the benchmark for autonomous

robot navigation (BARN) [19]. Similar datasets concentrate

on indoor-navigation [16], 2D multi-agent path-finding [17],

discrete point-robot path finding in 2D and 3D [21], free-flying

robots [22] or drones [18]. Our paper is complementary to

vehicle navigation in that we concentrate on robot manipulation

tasks.

The second category of datasets is focused on general

robotics. These works aim at covering broad robotic categories

like providing datasets and tools for remote teleoperation [24]

or object rearrangement [26]. While many papers are concen-

trating on learning-based approaches [25], there is also a trend

towards more reproducibility, for example by using container-

ization [21] to ease comparison over different operating systems

or configurations.

However, several tools in robotics have been developed

specifically for manipulation tasks. While the data generation is

often similar, approaches differ by focusing either on learning-

based algorithms or on planning-based algorithms. In learning-

based approaches like RobotNet [27], the focus is more on gen-

erating diverse camera streams. In planning-based approaches

like the Brown planning benchmark [29] the focus is more

on creating mesh-based representations of the world useful

to benchmark motion planners [37]. Other frameworks like

ProbRobScene [33] are independent of the algorithm used and

focus instead on generating scenes automatically. A particular

CHAMZAS et al.: MOTIONBENCHMAKER: A TOOL TO GENERATE AND BENCHMARK MOTION PLANNING DATASETS 3

Scene Samples (Output)

SE(3)

 Sampling

URDF

 Sampling

Nominal Scene (Input)

a)

b)

Global

Frame

Fig. 2. Scene Sampler: The scene sampler module generates variations on a nominal input scene given sampling parameters. When performing SE() sampling
(shown in a)), variation in the pose of objects in the scene can be specified globally (e.g., the bookshelf moving) and locally (e.g., the cylinders moving on the
shelves of the bookshelf). When performing URDF sampling (shown in b)), valid configurations of the kinematic structure specified by the URDF are sampled,
which results in different configurations of the cabinets.

dataset aimed at grasping is GraspNet, which concentrates on

using the YCB dataset of objects [28] to generate large sets of

grasping poses. Similar datasets and benchmark utilities concen-

trate on specific aspects of manipulation. This involves tasks

like bimanual manipulation [31], in-hand manipulation [32],

cloth manipulation [38], aerial manipulation [30], or solving

Rubik’s cube [39].

MOTIONBENCHMAKER differs from all those approaches

by (a) focusing on benchmarks specifically for motion planning

algorithms, (b) having an incremental generation tool to create

diverse sets of manipulation tasks, and (c) by concentrating on

broad manipulation capabilities for diverse high-dimensional

robotic arms. This involves not only single gripper grasps but

also bimanual manipulation (e.g., using the Baxter robot) and

multi-finger manipulation (e.g., using the ShadowHand robot).

III. LIBRARY MODULES

MOTIONBENCHMAKER is a flexible modular library com-

posed of four basic modules, shown in Fig. 1. The Scene

Sampler shown in Fig. 2, creates variations of a given nominal

scene. The Octomap Generator, shown in Fig. 3, converts a

geometric scene to a point cloud and subsequently an octomap.

The Problem Generator generates motion planning problems

given a scene, robot, and necessary configuration files. Finally,

the Setup module enables the easy creation and usage of the

generated datasets.

A. Scene Sampler

Given variation parameters, the Scene Sampler module

procedurally generates multiple scenes by randomly changing

the nominal scene. Currently, two complementary types of

sampling are provided namely SE() and URDF sampling as

shown in Fig. 2.

1) SE() sampling: For SE() sampling, the nominal scene

is a set of collision objects with SE() poses relative to the

global frame (shown in Fig. 2a). New scenes are generated

by adding random noise to the SE() poses of the collision

Camera

Position

Geometric Scene (Input) Sensed Scene (Output)

Ray

Casting

Fig. 3. Octomap Generator: The octomap generator module generates a
sensed representation (point cloud and octomap) by emulating a depth camera
from different positions.

objects [40]. The pose of the collision objects in the nominal

scene serves as the mean of the sampling distribution and

the variance (Gaussian) or bounds (Uniform) parameters are

specified through a configuration file. Finally, the random

perturbations to the collision objects’ poses can happen both

globally, e.g., the shelf in Fig. 2a is moved with respect to

the global frame, and locally, e.g., the cylinders in Fig. 2a are

perturbed with respect to the local frame of the shelf. Examples

of samples drawn are shown on the right side of Fig. 2a.

2) URDF sampling: In this type of sampling, the nominal

scene is specified as a URDF (Unified Robot Description For-

mat) file. The URDF specifies the number of joints that describe

the kinematic relations of objects in the scene. By sampling

valid configurations of this URDF (that is, collision-free with

itself), we can generate different scenes. This type of sampling

emulates movements of objects subject to kinematic constraints

such as cabinets opening and closing, shown in Fig. 2b.

B. Octomap Generator

Octomap Generator is an optional module that provides a

way to convert geometric scene representations (i.e., geometric

primitives and meshes) to point clouds and octomaps [11], as

shown in Fig. 3. The point cloud is generated by specifying

in the frame(s) of the depth camera which is simulated with

gl_depth_sim3. This point cloud is later converted to an

octomap. When a dataset is generated, all three representations

3https://github.com/Jmeyer1292/gl depth sim

https://github.com/Jmeyer1292/gl_depth_sim

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

Inverse

Kinematics

Robot, Scene, EE offset (Input)

Scene Representation

Motion Planning Problem (Output)

Robot Description

Object, End-Effector Offsets

Start Configuration

Goal Configuration

Fig. 4. Problem Generator: Given a robot description (URDF), geometric
scene, and object-centric end-effector poses, the problem generator creates
a motion planning problem. To have robot-agnostic problems, the start and
goal of the problem can be specified as end-effector grasp poses, e.g., by
specifying pose S1 relative to the object’s reference frame S0. Additionally,
a robot-specific transformation S2 relative to the robot’s end-effector frame
is applied to the pose to account for different gripper idiosyncrasies. Full
joint configurations can also be used as start/goal. Finally, a robot also has an
optional base offset (not shown) that can be specified.

(geometric, point cloud, octomap) can be simultaneously pro-

duced. Note that for motion planning, an octomap representation

usually has a much higher collision checking time and is

an over-approximation of the geometry, leading to harder

motion planning problems. Nevertheless, we consider the

sensed representation more “realistic” since it can be provided

from any RGB-D camera, and is often used in practice.

C. Problem Generator

One critical idea in MOTIONBENCHMAKER is the fact that

motion planning problems can be easily generated for any

robot-scene pair. When done by hand, this process can be

challenging and time-consuming since valid start and goal joint

configurations in a motion planning problem depend on both

the robot and the scene. The Problem Generator provides this

functionality by defining a set of start and goal manipulation

queries. These queries are specified as pose offsets expressed

in the frame of collision objects in the nominal scene. For

example as seen in Fig. 4, the query expresses how the blue

cup can be grasped. This is achieved by defining appropriate

object-centric offsets that are robot agnostic. This specification

is conceptually similar to the affordance templates proposed

by [41]. Finally, objects in the scene can be attached to the

end-effector(s) to emulate pick and place tasks.

The Problem Generator creates full-motion planning requests

(i.e., start/goal configurations in joint space) by performing

collision-aware inverse kinematics. These requests can be

readily used together with a scene, to create a varied set of

motion planning problems. Note that there can be multiple

queries defined for a scene, but the generated requests will

consist of a single start-goal pair. During generation, a planner

can optionally be used to verify the feasibility of a problem.

As an additional feature, the Problem Generator supports the

specification of manipulation queries for multiple end-effectors

in the kinematic chain, e.g., multi-tip queries. This is useful

for applications in bimanual manipulation and when planning

for dexterous hand robots such as the bookshelf with Baxter

and the Shadowhand examples respectively (see Fig. 6).

1 // Load the dataset given a meta-data file

2 auto setup = std::make_shared<Setup>("conf.yaml");
3 auto robot = setup→getRobot();

4 auto planner = setup→createPlanner("planner");

5 Experiment experiment("exp", Profiler::Options());
6

7 for (int i = 1; i <= setup→getNumSamples(); i++)

8 {

9 // Load the ith scene in the dataset

10 auto scene = std::make_shared<Scene>(robot);
11 setup→loadGeometricScene(i, scene);

12

13 for (auto planner_name : {"PRM", "BiEST"})

14 {

15 // Load the start and goal configuration

16 auto request = setup→createRequest();

17 setup→loadRequest(i, request);

18

19 // Set planner.e.g., PRM, BiEST

20 request→setConfig(planner_name);

21 experiment.addQuery(//

22 planner_name, scene, planner, request);

23 }

24 }

25

26 auto data = experiment.benchmark();

27 OMPLPlanDataSetOutputter output("results.log");

28 output.dump(*data);

Fig. 5. A code snippet demonstrating how to load a dataset and benchmark
different planners through the Setup module.

D. Setup

A convenient Setup class provides an easy-to-use interface to

load created datasets and create planner, scene and robot. An

example script with Setup is shown in Fig. 5. A dataset created

by MOTIONBENCHMAKER comes with a meta-data manifest

(line 2, “conf.yaml”). This manifest contains all the relevant

parameters that define the dataset and allow the user to access

the sampled scenes and requests. Once loaded, Setup can create

instances of a robot (line 3) and a planner (line 4). Our library

takes advantage of the Robowflex [14] library to provide these

constructs—Robowflex encapsulates the MoveIt [13] library for

motion planning and provides capabilities for planning inside

simple scripts.

The Setup class also provides a simple way to access each

scene (line 11) and corresponding request (line 17) within

a dataset. After creating an experiment (line 5), it is easy

to add this specific problem (a scene and request, line 22)

to the set of problems to benchmark. After a benchmark

is executed (line 26), the collected data can be output into

a variety of formats, e.g., a SQL database compatible with

PlannerArena [22].

IV. EXAMPLE USECASES

The user interacts with MOTIONBENCHMAKER in two

ways: by creating C++ scripts that call library modules or by

specifying values in configuration files to define new problems.

The first case of using C++ scripts was shown in Sec. III-D.

There (shown in Fig. 5) the user loads an existing dataset

in MOTIONBENCHMAKER to benchmark different motion

planners— benchmarking results can be plotted and analyzed

through PlannerArena [22].

CHAMZAS et al.: MOTIONBENCHMAKER: A TOOL TO GENERATE AND BENCHMARK MOTION PLANNING DATASETS 5

Fig. 6. Representative problems from the 40 different prefabricated datasets provided with MOTIONBENCHMAKER. There are 8 nominal scenes and 5 robots,
which create the 40 datasets, each consisting of 100 different problems.

The second case considered is a user who desires to create

a new dataset with a robot or scene not currently in MOTION-

BENCHMAKER. The user simply needs to provide a robot

description and scene description file along with the required

offsets (Sec. III-C). Given these files, MOTIONBENCHMAKER

through a script will procedurally generate varied motion

planning problems, without the burden of manually creating

valid start/goal configurations and scene samples for different

problems. For example, we used this script for the 40 different

prefabricated datasets, shown in Fig. 6. We created 8 nominal

scenes and specified the end-effector and base offsets of the

following 5 robots: a Fetch (7-8-DOF) a Panda (7-DOF), a UR5

(6-DOF), a Baxter (7-14-DOF) and a ShadowHand mounted on

a KUKA arm (31-DOF).

To verify that each generated problem is feasible, we used a

highly-tuned sampling-based planner with a large timeout (60

seconds) and discarded problems that could not be solved in

time. For each dataset, an arbitrary number of motion planning

problems can be generated but for our purposes, we created

100 motion planning problems for each dataset.

Finally, MOTIONBENCHMAKER has already been used to

create a diverse set of datasets suitable for learning-based

methods [8], [42], for hyper-parameter tuning methods [43],

for planning under uncertainty [44], for planning in partially

observable environments [45] and for planning on different

abstraction levels [5], [46].

V. EVALUATIONS

In this section, we present two evaluations to showcase the

efficacy of MOTIONBENCHMAKER. In Sec. V-A we demon-

strate how using few motion planning problems can potentially

lead to wrong conclusions, for example when comparing two

motion planners. In Sec. V-B we demonstrate that many of the

prefabricated datasets are challenging and no specific planner

outperforms the other ones.

A. Wrong Hypothesis

Undoubtedly, in any research field, it is necessary to compare

the performance of different methods. In motion planning

research, it is often the case that a practitioner has a specific

robot and target application in mind, which begets the need to

manually construct an appropriate benchmark. Creating a bench-

mark from scratch without the appropriate tools is both time-

consuming and challenging since a large number of problems

might be required to achieve statistical significance. We note

here that the designed experiments highlight the importance of

using a large number of problems when comparing different

planners and should not be interpreted as an indication of which

planner is best. Unless indicated, planners are using default

parameters from OMPL [37].

Consider the following hypothetical scenario: a practitioner

wants to compare different planners on a picking task. Specif-

ically, the problem of interest involves a UR5 robot tasked

with picking a cylinder from a shelf, shown in Fig. 7a. Say

the practitioner either samples or chooses specific instances of

this scene: in Fig. 7b and Fig. 7c, we present the worst case

scenarios for this practitioner (for 5, 10, 50, and 100 problem

instances) in terms of drawing conclusions on their planner’s

performance.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

b)a) c)

Fig. 7. a) One of the 100 sampled problems in a simple shelf-picking dataset for a UR5 robot. Both the relative angular position of the shelf as well as
the position of the cylinder (not shown for visual clarity) vary between motion planning problems. b), c) Two different adversarial orderings of the same 100
motion planning problems. The Y-AXIS shows the planning time while the X-AXIS is the number of motion planning problems considered. A timeout of 60
seconds was used for all the problems and each motion planning problem was solved 20 times. It is clear that when using only a small number of motion
planning problems, the wrong conclusions can be drawn, as the best performing planner can be different when considering all 100 problems.

a) b)

d)c)

Fig. 8. a) One of the 100 sampled in a box-picking dataset with the Panda
robot. In this task, both the relative angular position of the box and the position
of the object in the box (not shown for visual clarity) vary. b), c), d) Show
the normalized cost for 3 different optimizing planners in the box-picking task.
The median is shown of 5 independent runs for each planner with a 99%
confidence interval. Trial 1 and 2 shown in c), d) show the convergence plots
of RRT* BIT* and AIT* on a single, specific motion planning problem while
b) shows results considering all 100 problems. Results in aggregate differ
between Trial 1 and Trial 2 demonstrating that using a few motion planning
problems could potentially lead to incorrect conclusions.

We generated 100 feasible motion planning problems as

described in Sec. IV and benchmarked planning time for

BIEST [47] and RRTConnect [48] (we use RRTConnect with

two different “range” values, 0.05 and 0.5, which controls the

C-space expansion step). For each specific problem (an instance

of the scene), the problem was solved 20 times (with a 60

seconds timeout), for a total of 2000 data points given 100

scenes. In figures Fig. 7b and Fig. 7c you can see two different

adversarial orderings of the data. That is, for both of these

plots, we sorted the same motion planning problems in the

dataset such that problems early in the dataset have the largest

difference in average planning time between the two compared

planners. In Fig. 7b BIEST and RRTConnect with range 0.5 are

compared. The X-AXIS denotes how many problems from the

sorted problems are considered. Here, BIEST is better when

considering only 5 or 10 problems, while when considering

the entire dataset (100 problems) it is clear that RRTConnect is

more performant. In Fig. 7c, the same effect is demonstrated

between BIEST and RRTConnect with a range parameter of

0.05, with BIEST faster only after aggregating the results

from all 100 problems. This empirically shows the danger

in considering only a few problem instances for evaluation.

MOTIONBENCHMAKER provides the tools necessary to easily

create varied datasets to help avoid this problem.

Beyond planning time, this phenomenon could occur when

comparing other planner metrics, e.g., comparing the best cost

over time for asymptotically-optimal sampling-based planners,

as shown in Fig. 8. Here the experiment entails a Panda

robot grasping a cylinder from the box with similar variation

as in Fig. 7. In this example cost is defined as joint path

length, but different costs suchs as clearance or cartesian length

can be specified through the MoveIt [13] interface. We show

the median of the best normalized cost found for RRT* [49],

BIT* [50], and AIT* [51]. Each planner is run 5 times per

problem, with a given 180 seconds planning time. Fig. 8c

and Fig. 8d indicate two different conclusions about which

planner performs best when considering a single problem

instance. As above, incorrect conclusions would be drawn about

planner performance in this domain if only based on a specific

problem instance—Fig. 8b shows the aggregated results over

all 100 problems, which provides a stronger conclusion. Note

that in general all datasets are prone to bias, but procedurally

generating more instances ameliorates this bias.

CHAMZAS et al.: MOTIONBENCHMAKER: A TOOL TO GENERATE AND BENCHMARK MOTION PLANNING DATASETS 7

Range Parameter

Timeout

RRTConnect

BKPIECE

BiEST

A
v
e
ra

g
e
 P

la
n

n
in

g
 T

im
e
 (

s
)

Fig. 9. Timing results for three planners (BKPIECE, RRTConnect, and BIEST) in 4 environments from Fig. 6 (both geometric and sensed) on 3 different robots
(the Fetch, UR5, Baxter) for a total of 12 datasets. We plan for both arms of the Baxter in the table environment while for only in the rest. In each plot on this
matrix, the value of each of the planner’s range parameters (which controls C-space expansion) is varied between 0 to 7, in increments of 0.25. The average
planning time over the 100 problems in the dataset for each range parameter is shown on a log scale, plotted as a line. Planning timeout was 60 seconds,
visualized as a dotted red line—lines touching the red line indicate planning timeout. Note that for many problems, specific tunings of the planners are required
to solve the problem, while no planner consistently outperforms all others, indicating their difficulty and diversity.

B. Benchmarking Results of Datasets

In this section, we analyze the results of benchmarking

12 out of the 40 datasets on both the geometric and sensed

(octomap) representations to demonstrate the difficulty of the

provided datasets. We benchmarked three bidirectional tree-

based planners, namely BIEST [52], RRTConnect [48], and

BKPIECE [53] for different values of their range parameter

as shown on the X-AXIS of each subplot in Fig. 9. We choose

these planners, as among sampling-based planners they are

typically highly performant in such tasks. Additionally, the

range parameter (used by each planner to control the rate of

expansion in C-space) is empirically known to have a significant

influence on planning performance.

Results are shown in Fig. 9. We first note that these

problems demonstrate a broad range of planning performance—

each of these planners varies in performance according to

environment and robot and there is no clear winner across

the full spectrum of problems. In several cases, even the most

performant planner has more than 1 second of average planning

time indicating the difficulty of the datasets. Moreover, note

that planner performance is comparable between the geometric

and the sensed problems, with a small performance hit in the

sensed representation. Finally, we verify that these planners are

sensitive to the range parameter, as there are clear performance

peaks for the planners at specific range values for different

problems.

VI. DISCUSSION

In this paper, we have presented MOTIONBENCHMAKER, a

new open-source tool to procedurally generate and benchmark

motion planning datasets. MOTIONBENCHMAKER supports

a robot-agnostic specification of environments, sampling new

planning problems from a specified distribution, and can gener-

ate “sensed” representations for realistic, challenging problems.

Through our experiments, we show the importance of proce-

durally generating datasets, as using only a few hand-designed

problems could potentially lead to incorrect conclusions.

In the future, we would like to continue extending the

repository of generated datasets with the help of the community,

with more robots and environments as well as supporting

sequential motion planning problems, such as in task and motion

planning. We would also like to add features that help users

profile their dataset with a set of metrics or features, e.g., space

expansiveness, to help understand what are the challenging

aspects of the proposed problem. Some of the limitations

of this work are that SE() and URDF sampling are only

approximations of the variability of the real world, no camera

data can be given to the planner for visual planning, and only

geometric constraints are considered. We hope to continuously

improve this tool and that it will help the community advance

the field of motion planning by supporting researchers to design

and share benchmarking datasets.

REFERENCES

[1] M. T. Mason, “Toward robotic manipulation,” Annual Review of Control,

Robot., and Autom. Syst., vol. 1, pp. 1–28, 2018.
[2] J. Leitner, A. W. Tow, N. Sünderhauf, J. E. Dean, J. W. Durham,

M. Cooper, M. Eich, C. Lehnert, R. Mangels, C. McCool et al., “The
ACRV picking benchmark: A robotic shelf picking benchmark to foster
reproducible research,” in IEEE Int. Conf. Robot. Autom., 2017, pp. 4705–
4712.

[3] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” Annual Review of Control, Robot., and

Autom. Syst., vol. 1, no. 1, pp. 159–185, 2018.
[4] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,

and T. Lozano-Pérez, “Integrated task and motion planning,” Annual

Review of Control, Robot., and Autom. Syst., vol. 4, pp. 265–293, 2021.
[5] A. Orthey and M. Toussaint, “Section patterns: Efficiently solving narrow

passage problems in multilevel motion planning,” IEEE Trans. Robot.,
pp. 1–15, 2021.

[6] J. F. Canny, The Complexity of Robot Motion Planning. MIT Press,
1988.

[7] G. Antonelli, “Robotic research: Are we applying the scientific method?”
Frontiers in Robotics and AI, vol. 2, no. 13, pp. 1–4, 2015.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

[8] C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L. E.
Kavraki, “Learning Sampling Distributions Using Local 3D Workspace
Decompositions for Motion Planning in High Dimensions,” in IEEE Int.

Conf. Robot. Autom., Jun. 2021.

[9] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in IEEE Int. Conf. Robot. Autom., May 2018,
pp. 7087–7094.

[10] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning to plan
in high dimensions via neural exploration-exploitation trees,” in Int. Conf.

on Learn. Representations, 2020.

[11] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in IEEE ICRA workshop on open source software, May 2009, pp. 1–6.

[13] S. Chitta, I. Sucan, and S. Cousins, “Moveit! [ros topics],” IEEE Robot.

Autom. Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[14] Z. Kingston and L. E. Kavraki, “Robowflex: Robot motion planning with
MoveIt made easy,” arXiv preprint arXiv:2103.12826, 2021.

[15] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in IEEE Intelligent Vehicles

Symposium (IV), 2017, pp. 719–726.

[16] J. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez, “Robot@home,
a robotic dataset for semantic mapping of home environments,” Int. J. of

Robotics Research, vol. 36, no. 2, pp. 131–141, 2017.

[17] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak, “Multi-
agent pathfinding: Definitions, variants, and benchmarks,” Symposium on

Combinatorial Search (SoCS), pp. 151–158, 2019.

[18] J. Tani, A. F. Daniele, G. Bernasconi, A. Camus, A. Petrov, A. Courch-
esne, B. Mehta, R. Suri, T. Zaluska, M. R. Walter et al., “Integrated
benchmarking and design for reproducible and accessible evaluation of
robotic agents,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2020,
pp. 6229–6236.

[19] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), 2020, pp. 116–121.

[20] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-MR: A motion planning benchmark for wheeled
mobile robots,” IEEE Robot. Autom. Letters, vol. 6, no. 3, pp. 4536–
4543, 2021.

[21] A. Toma, H. Hsueh, H. A. Jaafar, R. Murai, P. H. J. Kelly, and S. Saeedi,
“Pathbench: A benchmarking platform for classical and learned path
planning algorithms,” in The Conference on Robots and Vision (CRV),
2021, pp. 79–86.

[22] M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion planning
algorithms: An extensible infrastructure for analysis and visualization,”
IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 96–102, 2015.

[23] J. Weisz, Y. Huang, F. Lier, S. Sethumadhavan, and P. Allen, “Robobench:
Towards sustainable robotics system benchmarking,” in IEEE Int. Conf.

Robot. Autom. IEEE, 2016, pp. 3383–3389.

[24] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay et al., “Roboturk: A crowdsourcing
platform for robotic skill learning through imitation,” in Conf. on Robot

Learning, 2018, pp. 879–893.

[25] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The robot
learning benchmark learning environment,” IEEE Robot. Autom. Letters,
vol. 5, no. 2, pp. 3019–3026, 2020.

[26] Z. Liu, W. Liu, Y. Qin, F. Xiang, M. Gou, S. Xin, M. A. Roa, B. Calli,
H. Su, Y. Sun, and P. Tan, “OCRTOC: A cloud-based competition and
benchmark for robotic grasping and manipulation,” IEEE Robot. Autom.

Letters, vol. 7, no. 1, pp. 486–493, 2022.

[27] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh,
S. Levine, and C. Finn, “Robonet: Large-scale multi-robot learning,” in
Conf. on Robot Learning. PMLR, 2020, pp. 885–897.

[28] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-
scale benchmark for general object grasping,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 444–11 453.

[29] S. Murray, G. D. Konidaris, and D. J. Sorin, “Roadmap subsampling for
changing environments,” in IEEE/RSJ Int. Conf. on Intell. Robots and

Syst., pp. 5664–5670.

[30] A. Suarez, V. M. Vega, M. Fernandez, G. Heredia, and A. Ollero,
“Benchmarks for aerial manipulation,” IEEE Robot. Autom. Letters, vol. 5,
no. 2, pp. 2650–2657, 2020.

[31] K. Chatzilygeroudis, B. Fichera, I. Lauzana, F. Bu, K. Yao, F. Khadivar,
and A. Billard, “Benchmark for bimanual robotic manipulation of semi-
deformable objects,” IEEE Robot. Autom. Letters, vol. 5, no. 2, pp. 2443–
2450, 2020.

[32] S. Cruciani, B. Sundaralingam, K. Hang, V. Kumar, T. Hermans, and
D. Kragic, “Benchmarking in-hand manipulation,” IEEE Robot. Autom.

Letters, vol. 5, no. 2, pp. 588–595, 2020.
[33] C. Innes and S. Ramamoorthy, “ProbRobScene: A probabilistic specifi-

cation language for 3D robotic manipulation environments,” in IEEE Int.

Conf. Robot. Autom., 2021.
[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2009, pp. 248–255.
[35] B. Wu, W. Chen, Y. Fan, Y. Zhang, J. Hou, J. Liu, and T. Zhang,

“Tencent ml-images: A large-scale multi-label image database for visual
representation learning,” IEEE Access, vol. 7, pp. 172 683–172 693, 2019.

[36] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“Benchmarking in manipulation research: Using the Yale-CMU-Berkeley
object and model set,” IEEE Robotics & Automation Magazine, vol. 22,
no. 3, pp. 36–52, 2015.

[37] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[38] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova, A. Var-
ava, J. Borras, C. Torras, A. Marino, G. Alenya et al., “Benchmarking
bimanual cloth manipulation,” IEEE Robot. Autom. Letters, vol. 5, no. 2,
pp. 1111–1118, 2020.

[39] B. Yang, P. E. Lancaster, S. S. Srinivasa, and J. R. Smith, “Benchmarking
robot manipulation with the rubik’s cube,” IEEE Robot. Autom. Letters,
vol. 5, no. 2, pp. 2094–2099, 2020.

[40] A. Yershova and S. M. LaValle, “Deterministic sampling methods for
spheres and so (3),” in IEEE Int. Conf. Robot. Autom., vol. 4, 2004, pp.
3974–3980.

[41] S. Hart, P. Dinh, and K. Hambuchen, “The affordance template ROS
package for robot task programming,” in IEEE Int. Conf. Robot. Autom.,
2015, pp. 6227–6234.

[42] E. Pairet, C. Chamzas, Y. R. Petillot, and L. E. Kavraki, “Path planning
for manipulation using experience-driven random trees,” IEEE Robot.

Autom. Letters, vol. 6, no. 2, p. 3295–3302, Apr. 2021.
[43] M. Moll, C. Chamzas, Z. Kingston, and L. E. Kavraki, “HyperPlan:

A framework for motion planning algorithm selection and parameter
optimization,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2021.

[44] C. Quintero-Peña, A. Kyrillidis, and L. E. Kavraki, “Robust Optimization-
based Motion Planning for high-DOF Robots under Sensing Uncertainty,”
in IEEE Int. Conf. Robot. Autom., Jun. 2021, pp. 9724–9730.

[45] C. Quintero-Peña, C. Chamzas, V. Unhelkar, and L. E. Kavraki, “Motion
Planning via Bayesian Learning in the Dark,” in ICRA: Workshop on

Machine Learning for Motion Planning, Jun. 2021.
[46] A. Orthey, S. Akbar, and M. Toussaint, “Multilevel motion planning: A

fiber bundle formulation,” 2020, arXiv:2007.09435 [cs.RO].
[47] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On

finding narrow passages with probabilistic roadmap planners,” in Int.

Wksp. on the Algorithmic Foundations of Robotics. Springer, 1998.
[48] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:

Progress and prospects,” in Algorithmic and Computational Robotics:

New Directions, 2000, pp. 293–308.
[49] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[50] J. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in IEEE Int. Conf. Robot.

Autom., 2015, pp. 3067–3074.
[51] M. P. Strub and J. D. Gammell, “Adaptively Informed Trees (AIT*):

Fast asymptotically optimal path planning through adaptive heuristics,”
in IEEE Int. Conf. Robot. Autom., 2020, pp. 3191–3198.

[52] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in IEEE Int. Conf. Robot. Autom., vol. 3. IEEE,
1997, pp. 2719–2726.

[53] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by interior-
exterior cell exploration,” in Int. Wksp. on the Algorithmic Foundations

of Robotics, vol. 57. Springer, 2009, pp. 449–464.

	I Introduction
	II Related Work
	III Library Modules
	III-A Scene Sampler
	III-A1 se(3) sampling
	III-A2 URDF sampling

	III-B Octomap Generator
	III-C Problem Generator
	III-D Setup

	IV Example Usecases
	V Evaluations
	V-A Wrong Hypothesis
	V-B Benchmarking Results of Datasets

	VI Discussion
	References

