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Abstract

On a Conjugate Gradient-Restoration Algorithm
for Mathematical Programming Problems
by

EDWARD E CRAGG

In this thesis, the problem of minimizing a function f(x) subject to a
constraint ¢(x) = 0 is considered. Here, f is a scalar, X an n-vector, and
¢ is a q-vector, with q <n. The use of the augmented penalty function is
explored in connection with the conjugate gradient-restoration algorithm.
The augmented penalty function W(x, A k) is defined to be the linear com-
bination of the augmented function F(x, \) and the constraint error P(x),
where the q-vector A is the Lagrange multiplier and the scalar k is the
penalty constant,

The conjugate gradient-restoration algorithm includes a conjugate-
gradient phase involving n-q iterations and a restoration phase involving one
iteration. In the comjugate-gradient phase, one tries to improve the value of
the function, while avoiding excessive constraint violation. In the restoration
phase, one reduces the constraint error, while avoiding excessive change in
the value of the function,

Concerning the conjugate-gradient phase, two classes of algorithms

are considered: for algorithms of Class I, the Lagrange multiplier X is
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determined so that the error in the optimum condition is minimized for given
x%; for algorithms of Class II, the Lagrange multiplier A is determined so that
the constraint is satisfied to first order. For each class, two versions are
studied. In version (0), the penalty constant is held unchanged throughout the
entire algorithm, In version (B), the penalty constant is updated at the begin-
ning of each conjugate-gradient phase so as to achieve certain desirable properties.
Concerning the restoration phase, the minimum distanc¢ algorithm is
employed. Since the use of the augmented penalty function automatically
prevents excessive constraint violation, single-step restoration is considered.
If the function f(X) is quadratic and the constraint ¢(x) is linear, all the
previous algorithms are identical, that is, they produce the same sequence of
points and converge to the solution in the same number of iterations. This
number of iterations is at most N, = n-q if the starting point X is such that
cp(xs) = 0 and at most N, = 1+n-q if the starting point X is such that cp(xs) # 0.
In order to illustrate the theory, five numerical examples are developed.
The first example refers to a quadratic function and a linear constraint, The
remaining examples refer to nonquadratic functions and nonlinear constraints.
For the linear-quadratic example, all the algorithms hehave identically, as
predicted by the theory. For the nonlinear-nonquadratic examples, algorithms
of Class II generally exhibit faster convergence than algorithms of Class I and
algorithms of type (B) generally exhibit faster convergence than algorithms of

type (o).
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1. Introduction

In Ref. 1, the problem of minimizing a function f(x) subject to a constraint
©(x) = 0 was considered, where f is a scalar, x an n-vector, and ® a q-vector,
with q <n, The use of the augmented penalty function (Ref, 2) was explored
in connection with the ordinary gradient algorithm. The augmented penalty
function W(x, A, k) combines linearly the augmented function and the constraint

error and is defined as

Wz, K) = £(%) + A Lo(x) + k! (x)o(x) (0

where the g-vector A is the Lagrange multiplier and the scalar k >0 is the
penalty constant, The superscript T denotes the transpose of a matrix.

The ordinary gradient algorithm of Ref, 1 is constructed in such a way
that the following properties are satisfied in toto or in part: (a) descent property
on the augmented penalty function, (b) descent property on the augmented
function, (c¢) descent property on the constraint error, and either (d) constraint
satisfaction on the average or (e) individual constraint satisfaction.

With the above considerations in mind, two classes of algorithms were
developed in Ref, 1. For algorithms of Class I, the multiplier is determined
so that the error in the optimum condition is minimized for given x; for algorithms
of Class II, the multiplier is determined so that the constraint is satisfied to
first order.

For each class, two versions were presented. In version (o), the penalty
constant is held unchanged for all iterations. In version (B), the penalty constant
is updated at each iteration so as to ensure satisfaction of property (d) for

algorithms of Class I and property (b) for algorithms of Class II.



In this thesis, the use of the augmented penalty function (1) is explored
in connection with the conjugate gradient-restoration algorithm (Refs. 3-4).
Specifically, algorithms whose basic cycle involves a conjugate-gradient phase
and a restoration phase are considered. In the conjugate-gradient phase, one
tries to improve the value of the function while avoiding excessive constraint
violation. In the restoration phase, one reduces the constraint error, while
avoiding excessive change in the value of the function.

Concerning the conjugate-gradient phase, two classes of algorithms are
considered: for algorithms of Class I, the multiplier A is determined so that
the error in the optimum condition is minimized for given x; for algorithms
of Class II, the multiplier A is determined so that the constraint is satisfied
to first order, As in Ref, 1, two versions are given for each class. In version
(o), the penalty constant is held unchanged throughout the entire algorithm, In
version (B), the penalty constant is updated at the beginning of each conjugate-
gradient phase so as to achieve certain desirable properties.

Concerning the restoration phase, the minimum distance algorithm of
Refs. 3-4 is employed. From Ref. 4, we know that incomplete restoration is
to be preferred to complete restoration and infrequent restoration is to be
preferred to frequent restoration if fast convergence is desired., Since the use
of the augmented penalty function (1) automatically prevents excessive constraint
violation, the algorithm with incomplete and infrequent restoration is investigated
here. Therefore, the restoration phase involves only one iteration and precedes

every n-q conjugate-gradient iterations.



2, Statement of the Problem

We consider the problem of minimizing the function

f = f(x) (2)

subject to the constraint

o(x) =0 (3)

In the above equations, f is a scalar, x an n-vector, and® a q-vectorl, where

q <n, [Itis assumed that the first and second partial derivatives of the functions
f and o with respect to x exist and are continuous; it is also assumed that the
constrained minimum exists,

2.1. Exact First-Order Conditions., From theory of maxima and minima,

it is known that the previous problem can be recast as that of minimizing the

augmented function

F(x, V) = f(x) + )\TC,O(X) (4
subject to the constraint (3), Here, X is a g-vector Lagrange multiplier, and
the superscript T denotes the transpose of a matrix, If

Fx(x, A) = fx(x) + cpx(x)k (6]

.2 . .
denotes the gradient of the augmented function, the optimum solution x, X

must satisfy the simultaneous equations

ox)=0 , Fx(x, N=0 (6)

1
All vectors are column vectors,

In Eq. (5), the gradients fx and Fx denote n-vectors and the matrix c_ox is
nxq.



2,2, Approximate Solutions. In general, the system (6) is nonlinear;

consequently, approxim ate methods must be employed. These are of two kinds:
first-order methods (such as the one discussed in subsequent sections of this

thesis) and second-order methods. Here, we introduce the scalar quantities
T T
P(X) =9 (060 , Q1) = F (XVF, (x,1) 4

measuring the error in the constraint and the optimum condition, respectively.
We observe that P = 0 and Q = 0 for the optimum solution, while P >0 and/or
Q >0 for any approximation to the solution., When approximate methods are used,

they must ultimately lead to values of x, X such that

Py se , QxMse, ®

Alternatively, (8) can be replaced by

R(x,\) < € &)

where
R(x, ) = P(x) + Q(x, D) (10)

denotes the cumulative error in the constraint and the optimum condition.

Here, ¢ 1’ 62’ 63 are small, preselected numbers. Note that satisfaction of

Ineq. (9) implies satisfaction of Ineqgs. (8), if one chooses el = €2 = 63.



3. Conjugate -Gradient Phase

In this section, we construct a conjugate-gradient algorithm based on

the consideration of the augmented penalty function

W(x, A, k) = F(x, \) + kP(x) (11)

where

B(x, 1) = £x) + 1 9(x) , P(%) = 0 (x)0(x) (12)

In this algorithm, the Lagrange multiplier and the penalty constant are deter-
mined so as to ensure satisfaction of the following properties, in toto or in part:
(a) descent property on the augmented penalty function, (b) descent property on
the augmented function, (c) descent property on the constraint error, and either
(d) constraint satisfaction on the average or (e) individual constraint satisfaction.
Properties (d) and (e) are employed to first order only.

3.1. Basic Algorithm, Let x denote the nominal point, X the varied point,

and Ax the displacement leading from the nominal point to the varied point. Let
\ denote the Lagrange multiplier, k the penalty constant, p the present search
direction, p the previous search direction, v the directional coefficient, and o
the gradient stepsize, Both p and p are n-vectors, while v and a are scalars.
With these definitions in mind, we consider the conjugate-gradient algorithm
represented by

Fx(x, A\ = fx(x) + cox(x))\
Px(x) = Zcpx(x)cp(x) 13

Wx(x, Ak = Fx(x, A+ kPX(x)



p= WX(Xa A K) + Yﬁ
Ax = -~ap (13)

X=x+Ax

whose form is suggested by the results of Refs, 3-4. For given nominal point
X, Lagrange multiplier ), directional coefficient y, and penalty constant k,

Egs. (13) constitute a complete iteration leading to the varied point X, providing
one specifies the gradient stepsize a.

3.2, Lagrange multiplier. In accordance with the discussion of Section 1,

two possible determinations of the multiplier are presented here,
Algorithms of Class I. In these algorithms, the Lagrange multiplier is
determined so that the error in the optimum condition (7-2) is minimized with

respect to A for given x. Owing to the fact that
Qx, M) = [£(%) + 0 (O] [£.(0) + © (1] (14)
M= X X X X
the muitiplier is determined by the relation
Q,(x,2) =0 (15)

which implies that

cp;f(x)cpx(x)x + c,oz(x)fx(x) =0 (16)

This linear vector equation is equivalent to g linear scalar relations in which

the only unknown is the Lagrange multiplier A. The unique multiplier solving



Eqg, (16) is denoted by

A= )\0 Q17)

Algorithms of Class II. In these algorithl‘a’:ls, the Lagrange multiplier is

o

P

determined so that, at the end of any iteration, the Constraint is satisfied to

first order. Let ¢(x) # 0 and ©(¥) = 0 to first order. If quasilinearization is

employed, we obtain the relation
T
w(x) + CPX(X)AX =0 (18)
which, for convenience, is imbedded in the more general relation
T
(X)) -+ cpx(x)Ax =0 (19)

where 1 = 0 denotes a scaling factor to be specified. If Egs. (13-5) and (19) are

combined, we see that
- T
H(X) - cmpx(x‘;p =0 (20)
Let U be proportional to a throughout the algorithm, that is, let

u = Co (21)

where C is a constant to be speciﬁeds. Then, Eq. (20) becomes
T
Ce(x) - @ (xp =0 (22)
which, in the light of Egs. (13-1) through (13-4), becomes

T T N
cox(x)cnx(xﬂ +Q (x) [fx(x) + kPX(x> + Yp] - C(x)=0 (23)

3 If the function f(x), the constraint ¢(x), and the vector x are scaled in such a

way that the gradient stepsize a is O(1), then the choice C =1 is appropriate.



For given directional coefficient v, penalty constant k , and constant C, this
linear vector equation is equivalent to q linear scalar equations, in which
the only unknown is the Lagrange multiplier A, The unique multiplier solving

Eq. (23) is denoted by

A=, (24)

3.3. Directional Coefficient. For both algorithms of Class I and Class II,

the directional coefficient vy is determined by the relation

y=0 (25)
or

T ) T A A A A
Y -‘WX(X’ )\O’ k)\Nx(X, )O’ K)/WX. (X’ XO’ k)WX(X, )\09 k) (26)

Equation (25) is to be employed for the first iteration of the conjugate-gradient
phase and means that the search direction p is identical with the gradient of the
augmented penalty function Wx(x, X\, k). Equation (26) is to be employed for the
remaining iterations of the conjugate-gradient phase; since vy # 0, the search
direction p is not identical with the gradient of the augmented penalty function.
In Eq. (26), x denotes the present point, X the previous point, )\0 the solution
of Eq. (16) at the present point, and io the solution of Eq. (16) at the previous

point,

3.4. Penalty Constant. In accordance with the discussion of Section 1,

two possible determinations of the penalty constant are presented.
Version (o). The penalty constant is held at a preselected value throughout

the algorithm. It can be anticipated that, if k is either very small or very



large, alarge number of iterations may be required for convergence; hence,
k must be in a proper range.

Version (B). To circumvent the difficulties of version (a), the penalty
constant is held at apreselected value only throughout each conjugate-gradient
phase, and not throughout the entire algorithm. At the beginning of each conjugate-
gradient phase, k is updated in such a way that certain desirable properties hold.

Let X, denote the position vector at the beginning of a conjugate-gradient phase

and let the penalty constant k be selected from

k = 2CP(x ) /P;l;(xo)Px(xo) (27)

Then, for the first iteration of the conjugate-gradient phase, property (d) holds
for algorithms of Class I and property (b) holds for algorithms of Class II (see
Ref. 1). We recall that property (d) means constraint satisfaction on the average
and property (c) means descent property on the augmented function F(x, ).

3.5. Descent Properties. In the previous sections, we discussed the

determination of the Lagrange multiplier A, the directional coefficient v, and the
penalty constant k for both algorithms of Class I and Class [I, Prior to determining
the gradient stepsize o for given values of X, v, k, we establish whether certain
descent properties are satisfied, When the displacement (13-5) is employed, the
first variations of the functions W(x, A\, k), F(x, 1), P(x) are given by4

SW(x, 1, k) = WI(X, A, K)AX = -aw;f(x, A, K)p
8F(x, M) = FI(X, MAx = -onF;E(x, Mp (28)

T T
8P(x) = Px(x)Ax = -GPX(x)p

4 In the computation of the first variations of the functions W(x, A, k) and F(x, }),
the multiplier X is held constant.
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and, in the light of (13-1) through (13-4), can be rewritten as

WG 1, K) = ~aW. (%, X, KW (%, 1K) + Y]
BF(x, 1) = . (x, [F (%, 1) + kP_(x) + Y] (29)

BP(x) = 0P L (O[F, (%, 1) + KP_(x) + YP]

Augmented Penalty Function. For both algorithms of Class I and algorithms

of Class I, the first variation of the augmented penalty function is negative pro-
viding

w:f(x, LW (%, 2, k) + Yp1>0 (30)
For the first iteration of the conjugate-gradient phase (v = 0), Ineq. (30) is
satisfied, and the descent property SW(x, \,k) <0 holds. Therefore, for a
sufficiently small, the decrease of the augmented penalty function is guaranteed.
For subsequent iterations (v # 0), Ineq. (30) may or may not be satisfied, and
the descent property SW(x, A,k) < 0 may or may not hold, Whenever Ineq. (30)
is violated, the conjugate-gradient phase must be interrupted, and the restoration
phase must be started,

Augmented Function, For both algorithms of Class I and algorithms of

Class 11, the first variation of the augmented function is negative providing

T a
>
Fx(x, X)[Fx(x, N+ kPX(x) +vp] >0 31)
For algorithms of Class I, Eq. (16) implies that

T
PX (x) Fx(x, MN=0 (32)
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and, Ineq. (31) becomes
T ~
F_ (%, MIF (%, 1) + ¥p] >0 (33)

For the first iteration of the conjugate-gradient phase (y = 0), Ineq. (33) is sat-~
isfied, and the descent property 8F(x,\) <0 holds. Therefore, for o sufficiently
small, the decrease of the augmented function is guaranteed, For subsequent
iterations, Ineq. (33) may or may not be satisfied, and the descent property
8F(x, ) <0 may or may not hold.

For algorithms of Class II, Eq. (23) implies that
T a
Px(x)[Fx(X’ M)+ kPx(x) + yp] - 2CP(x) =0 (34)

and Ineq. (31) becomes

T T T
F_ (%, MF_(%, 1) + K[2CP(x) - kP ()P (M]+Y[F (N - kP ()] >0

(35)
For the first iteration of the conjugate-gradient phase (Y = 0), Ineq. (35) is
satisfied if k is chosen in accordance with (27), and the descent property
8F(x, \) <0 holds. Therefore, for o sufficiently small, the decrease of the
augmented function is guaranteed. For subsequent iterations, Ineq. (35) may
or may not be satisfied, and the descent property 8F(x, ) <0 may or may not hold.

Constraint Error. For both algorithms of Class I and algorithms of

Class I, the first variation of the constraint error is negative providing

T a
Px(x)[FX(x, A+ kPx(x) +vYp]>0 (36)
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For algorithms of Class I, Eq. (32) holds, and Ineq. (36) becomes

PP, () + YB] >0 (37)

For the first iteration of the conjugate-gradient phase (y = 0), Ineq. (37) is
satisfied and the descent property &P(x) <0 holds. Therefore, for a sufficiently
small, the decrease of the constraint error is guaranteed. For subsequent
iterations, Ineq. (37) may or may not be satisfied, and the descent property
8P(x) < 0 may or may not hold. For the above considerations, the restoration
phase is indispensable to the stability of algorithms of Class I.

For algorithms of Class II, Eq. (34) applies, and Ineq. (36) becomes

2CP(x) > 0 (38)

Since P(x) is positive, the descent property 8P(x) < 0 holds for all iterations

of the conjugate-gradient phase. Therefore, for o sufficiently small, the
decrease in the constraint error is guaranteed. For the above considerations,
the restoration phase is not indispensable to the stability of the algorithms of
Class 11, but it is desirable in order to ensure quadratic terminal convergence.

3.6, Gradient Stepsize, The descent properties established in the previous

section are instrumental in the determination of the optimum gradient stepsize for
given nominal point X, Lagrange multiplier A, directional coefficient v, and
penalty constant k. If Egs. (13-5) and (13-6) are combined, the position vector

at the end of the conjugate-gradient step becomes

f=x-ap (39)
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where p is known through Eq. (13-4). This is a one-parameter family of
varied points X, for which the augmented penalty function, the augmented

function, and the constraint error are functions of the form
W(X, A, k) = W(x-ap, A, k) = W(a)
F(X%, \) = F(x-ap, A) = F(a) (40)
P(X) = P(x-ap) = P(a)

Along the straight line defined by Eq. (39), the above functions admit

the derivatives

T,
Wa(a) = -Wx(x, A, k)p
F (o) = —FT()'E A) 41
oo =-F (X Mp (41)
T ..
Pa(a) = -PX(X)p

which, ata =0, become

T
Wa(O) = -W)éx, A Kp

T

F (0) = -F (x,Mp (42)
T

P(0)=-P_(xp

if Wa(O) <0, the descent property on W(a) holds, and the search for the optimum
gradient stepsize can be initiated, If Wa(O) 20, the descent property on W(a)
does not hold; the search direction p must be discarded, the conjugate-gradient

phase must be interrupted, and the restoration phase must be started.
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We now assume that W 0(0) <0 and that a minimum W(a) exists. Then,
we employ some one-dimensional search scheme (for instance, quadratic

interpolation, ubic interpolation, or quasilinearization) to determine the value

of o for which

W (@) =0 (43)

This procedure should be used iteratively until the modulus of the slope satisfies

any of the following inequalities:
Wz( y<€, or Wz(a) <€ WZ(O) (44)
a® 7% a 5 "¢

where ¢ 4 and 65 are small, preselected numbers, Of course, the value of a

satisfying Ineq. (44) must be such that

W() < W(0) (45)

3.7. Convergence Properties. If the function f(x) is quadratic, if the
constraint ©(x) is linear, and if the starting point Xs is such that c,o(xs) =0, then
algorithms of Class I and algorithms of Class II become identical. They produce
the same sequence of points and converge to the solution in at most N, = n-q
iterations, If any of the above conditions is violated, the quadratic convergence
property does not hold, However, quadratic terminal convergence can be
achieved if a suitable restoration phase is inserted in the algorithm (see

Section 4).



15

4, Restoration Phase

Let x denote the nominal point, X the varied point, and Ax the displacement
leading from the nominal point to the varied point. Let o denote the Lagrange
multiplier, p the search direction, and p the restoration stepsize. Here, 0 is
a g-vector, p an n-vector, and y a scalar, With these definitions in mind, we

consider the restoration algorithm represented by

C.D:f (X)CDX(X)G -o(x)=0

p= coX(X)o

(46)
Ax = -Up
X=X+ Ax

whose form is suggested by the results of Refs, 3-4. For given nominal point
x, Eqgs. (46) represent a complete iteration leading to the varied point X,
providing one specifies the restoration stepsize U.

4.1. Descent Property, Prior to determining the restoration stepsize U,

we establish a basic descent property. When the displacement (46-3) is employed,

the first variation of the function P(x) is given by
T T
P(x) = Px(x)Ax = -LLPX(x)p (47)
with
T
P(x) =0 (0p(x) , P_(x) =20 (X)Ax) (48)
In the light of (46-1), (46-2), (48), Eq. (47) can be rewritten as

8P(x) = -2UP(x) (49)
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Since uis positive and P(x) is positive, Eq. (49) shows that 8P(x) <0. Therefore,
for | sufficiently small, the decrease of the constraint error is guaranteed.

4.2, Restoration Stepsize. The descent property established in the previous

section is instrumental in determining the optimum restoration stepsize. If
Eqgs. (46-3) and (46-4) are combined, the position vector at the end of a restor-
ation step becomes

X=x-Mp (50)
where p is known through Eq. (46-2), This is a one-parameter family of varied

points %, for which the constraint error is a function of the form
P(X) = P(x - up) = P(1) (51)

Along the straight line defined by Eq. (50), the constraint error admits the

derivative

T .
Pu(“) = -P_(®p (52)
which, at u =0, becomes
P (0) = P (x)p = -2P(X) (53)
(0 = P (xX)p = -2P(x

a result consistent with (49). Since Pu(O) < (, the search for the optimum
restoration stepsize can be initiated.

Assuming that a minimum of P(U) exists, we employ some one-dimensional
search scheme (for instance, quadratic interpolation, cubic interpolation, or

quasilinearization) to determine the value of u for which

Pu(Ll) =0 (54)
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Ideally, this procedure should be used iteratively until the modulus of the slope

satisfies any of the following inequalities:

Pu(l.l) Se6 or Pu(u) <e PU(O) (55)

7

where € 6 and €7 are small, preselected numbers. Of course, the value of U

satisfying Ineq. (55) must be such that

P(L) < P(O) (56)

Since a rigorous search might take excessive computer time, we propose
here an alternate procedure. We observe that, for a linear constraint, Eq. (54)
is solved by 1 = 1. This result and the descent property of the previous section
suggest replacing the rigorous search by a bisection process on W starting from
=1, Specifically,wwe first assign the value i = 1 to restoration stepsize and
verify Ineq. (56). If Ineq. (56) is satisfied, the iteration is completed. If
Ineq. (56) is violated, W is bisected several times until satisfaction of Ineq. (56)
occurs. This is guaranteed by the descent property of the previous section,

Remark. The restoration phase is important for two reasons: (i) it gives
stability to algorithms of Class I; for these algorithms, the descent property on
the function P(u) is not guaranteed during the conjugate-gradient phase; and (ii)
it accelerates the convergence of both algorithms of Class I and Class II; if
the function {(x) is quadratic, if the constraint ¢(x) is linear, and if the starting
point Xy is such that cp(xs) # 0, then convergence to the solution in at most N, = 1+n-q

iterations is possible if the restoration phase precedes the conjugate-gradient phase.
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5. Summary of Algorithms

The conjugate gradient-restoration algorithms discussed here involve the
alternate succession of conjugate-gradient phases and restoration phases. The
basic functions involved in these phases are the augmented function F(x, N, the con-
straint error P(x), and the augmented penalty function W(x, \,k). They are defined by

T
F(x, N = f(x) + A" o(x)
T
P(x) = © (X)P(X) (57)

W(x, A, k) = F(x, ) + kP(x)

5.1. Conjugate-Gradient Phase. For algorithms of Class I, the conjugate-

gradient phase involves n-q iterations, each of which is represented by the

following equations:
c_oT(x)CD (X)A_+ cpT(x)f x=0
X x7o xUX
)= X
Fx(x, o) fx(x) + CDX(X) o

P (x) = 20 ()w(x)

(
x X
W (%) ,k) = F_(x,A )+ kP_(x)
X (o] X (9] X (58)
W h LW (0 KW (AL W (%, 1K)
Y= Ay N x5 Mo x7 0’
p=W_(x XO, k) + Yp
Ax = -ap

X=x+Ax

For the first iteration, Eq. (58-5) is bypassed and is replaced by v =0.
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Algorithm (I-a). This algorithm is represented by Eqs. (58), with the

penalty constant k held unchanged throughout the entire algorithm.

Algorithm (I-B). This algorithm is represented by Egs. (58), with the penalty
constant k held unchanged only throughout each conjugate-gradient phase, At the begin-

ning of any conjugate-gradient phase, the penalty constant is updated according to
k = 2CP(x )/P (x P (x ) (59)
- o Fx o P, '

where X denotes the position vector at the beginning of the first iteration of any
conjugate-gradient phase,

For algorithms of Class 1I, the conjugate-gradient phase involves n-q
iterations, each of which is represented by the following equations:

T T
@x(x)cox(m o T ®E X =0
Fx(x, )\0) = fx(x) + cox(x))\o
P(x) = 2 _(x)P(x)
W (x, A ,ky=F_(x,A )+ kP_(x)

X (o] X (o] X

WA LW (5,1 L, K)/W kb LW (3,5 LK)
Y - X » 0’ X » o! X(X’ o’ X » o’
coT Yo (XA, + T MWE () + kP () +vp] - Cop(x) =0 (60)
.X(x b (XA, Cpx(x [X(x L+ YD X) =
Fx(x, Ay = fx(x) + C,Dx(x))\*
W_(%,2,,k) = F_(%,1,) + KP_(x)
p=W (5N,Kk+Yp

AX = -op
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For the first iteration, Eq. (60-5) is bypassed and replaced by vy = 0.

Algorithm (II-o), This algorithm is represented by Egs. (60), with the

penalty constant k held unchanged only throughout each conjugate-gradient phase.
At the beginning of any conjugate-gradient phase, the penalty constant is updated

according to T
k = 2CP(xO)/PX(xo)Px(xO) (61)

where X, denotes the position vector at the beginning of the first iteration of any
conjugate-gradient phase.

Search Scheme. The search for the optimum gradient stepsize ia made

on the augmented penaity function

W(X, ), k) = W(x-ap, A, k) = W(a) (62)

where \ = XO for algorithms of Class I and A = A for algorithms of Class Il.

First, one checks the sign of the derivative

T
W (0) = -W_(x, %, kp (63)

if Won(o) <0, the search for the optimum gradient stepsize is initiated., If
WQ(O) 2 0, the conjugate-gradient phase is interrupted and the restoration phase
is started, Assuming that Wa(O) <0, one employs any one-dimensjonal search

scheme until the following stopping condition is satisfied:

2
Wa(cn) <e, (64)
or

Wi(ot) <e Wi(o) (65)

5
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where

R
Wa(on) = Wx(x, A, K)p (66)

5.2. Restoration Phase. The restoration phase is represented by the

following equations:

T p—
cpx(x)cpx(x)c -px) =0

p = o (x)0

(67)
Ax = -up
X=x+ Ax

For every iteration, the search for the restoration stepsize is made on the

constraint error

P(X) = P(x - up) = P(1) (68)

Specifically, one employs a bisection process on {4, starting from p = 1, until

the following inequality is satisfied:

P(l) < P(0) (69)

5.3. Special Conditions. In this section, special conditions relevant to

the computer implementation of conjugate gradient-restoration algorithms are

presented,

Starting Condition., The algorithms can be started from any nominal point

X regardless of whether ®(x ) = 0 or ox) # 0.
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Initial Phase., The algorithms are started with a restoration phase if

P(xs) > el and a conjugate-gradient phase if P(xs) se 1

Restoration Phase; Bypassing Condition, Usually, a complete cycle includes

a restoration phase and a conjugate-gradient phase, However, if at the beginning
of the restoration phase Ineq. (8-~1) is met, the restoration phase is bypassed,
and the conjugate-gradient phase is started directly.

Conjugate-Gradient Phase: Stopping Conditions. The conjugate-gradient

phase must be stopped under the following conditions: (i) every n-q iterations,
or (ii) if Won(o) 20, where WG(O) is given by Eq. (63).

Conjugate Gradient-Restoration Algorithm: Stopping Condition. A conjugate

gradient-restoration algorithm is stopped when Ineqs. (8) are satisfied or Ineq. (9)

is satisfied,
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6. Numerical Examples

In order to illustrate the theory, five numerical examples were developed
using a Burroughs B-5500 computer and double-precision arithmetic, The
algorithms were programmed in Extended ALGOL, The constant C was specified
tobe C=1.

Concerning the conjugate-gradient phase, the one-dimensional search on
the function W(a) was done in accordance with Section 5,1; a modification of
quasilinearization was employed; the stopping condition for the one-dimensional

search was

Wi(on) < WZ(O) x107° (70)

Concerning the restoration phase, the one-dimensional search on the function
P(.) was done in accordance with Section 5. 2.

Convergence was defined as follows:
R(x, 1) < 10”12 (71)

. . ) .
and the number of iterations for convergence N, was recorded . Incidentally,

satisfaction of Ineq. (71) implies that6
Px) <1012, Qx,n) < 10712 (72)

Conversely, nonconvergence was defined by means of the inequalities

N = 1000 (73)

or
N_ =20 (74)

5 . . . . .
The number N, includes both the iterations of the conjugate-gradient phase and
the iterations of the restoration phase,

Inequality (72-1) constitutes the bypassing condition for the restoration phase.
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Here, N is the iteration number and NS is the number of bisections of the step-

size required to satisfy the inequalities

W(a) < W(0) oxr P(u) <P(0) (75)
Example 6.1. Consider the problem of minimizing the function7
f=(x-y)2+(y+z-2)2+(u-1)2+(w-1)2 (76)
subject to the constraints
x+3y=0, z+u-2w=0 , y-w=0 amn
This function admits the relative minimum f = 4.0930 at the point defined by
x =-0.7674 , y = 0.2558 , z=0.6279 , u=-0.1162 , w =0,2558

(78)

and

>\1 = 2,0465 , 12 =2.2325 , XS = -5,9534 7N
The nominal point chosen to start the algorithm is the point of coordinates

X=y =2=u=wW=2 (80)

not consistent with (77).

Example 6.2, Consider the problem of minimizing the function

f=(x- 924y -2 (81)

7 For simplicity, the symbols employed in the examples denote scalar quantities.
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subject to the constraint
x(1+y2)+z4-3=0 (82)

This function admits the relative minimum f = 0 at the point defined by

Xx=y=2z=1 (83)
and
A =0 (84)
The nominal point chosen to start the algorithm is the point of coordinates

X=y=2=2 (85)

not consistent with (82).

Example 6.3. Consider the problem of minimizing the function
f=(x~1)2+(x-y)2+(y-2)4 (86)
subject to the constraint

x(1+y2)+z4-4-3J2:0 (87)

This function admits the relative minimum f = 0.3256 x 10-1 at the point defined by

x=1.1048 , y=1.1966 , z=1.5352 (88)

and

A = <0.1072x 107! (89)
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The nominal point chosen to start the algorithm is the point of coordinates
X = y =7 = 2 (90)

not consistent with (87).

Example 6.4, Consider the problem of minimizing the function
f=(x-1)2+(x-y)2+(z-1)2+(u-1)4‘+(W-1)6 on
subject to the constraints
ux2+sin(u-w)-2J2=O , y+z4u2-8-J2=0 (92)
This function admits the relative minimum £ = 0, 2415 at the point defined by

x=1.1661 , y=1.1821 , z=1.3802 , u=1.5060 , w=0.6109

93)

and

A, =-0.8553x 1071 , %, = -0.3187 x 107t (94)
The nominal point chosen to start the algorithm is the point of coordinates

X=y=zZ=u=wW=2 95)

not consistent with (92).

Example 6.5. Consider the problem of minimizing the function

f=(x-1)2+(x-y)2+(y—z)2+(z—u)4+(u-w)4 (96)
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subject to the constraints
2 3 2
X+y +2z -2-3/2=0, y-z +u+2-2/2=0,xw-2=0 (97)

This function admits the relative minimum f = 0.7877 x 10-1 at the point defined
by
x=1,1911 , y=1.3626 , z=1.4728 , u =1.6350 , w=1,6790 (98)

and

A, = -0.3882x 1070, Ay =-0.1672x 107, A = -0.2879 107 (99)

The nominal point chosen to start the algorithm is the point of coordinates
X:y:Z:u:W:Z (100)

not consistent with (97).



28

7. Results and Conclusions

For the previous examples and experimental conditions, the conjugate-
gradient restoration algorithms of Class I and Class II were tested in versions
(o) and (B). In the former, the penalty constant is held unchanged throughout the
entire algorithm; in the latter, the penalty constant is held unchanged only through-
out each conjugate-gradient phase, The numerical results are given in Tables
1-4, where the number of iterations at convergence N, is shown. From the tables,
the following conclusions arise:;

(a) For the linear-quadratic Example 6.1, all the algorithms behave
identically as predicted by the theory. For these algorithms, quadatic convergence
(that is, convergence in N, = l+n-q iterations) is verified.

(b) For the nonlinear-nonquadratic Examples 6,2 through 6.5, the algorithms
do not behave identically. A detailed analysis is given below,

(c) In general, algorithms of Class II are superior to algorithms of Class I,
in that they require a smaller number of iterations for convergence.

(d) In general, algorithms of type (B) are superior to algorithms of type (a)
for two reasons: (i) in algorithms of type (B), the penalty constant is not arbitrary
but is determined so that certain special properties are enforced for the first
iteration of the conjugate-gradient phase; and (ii) the number of iterations at
convergence for algorithms of type (B) is close to the minimum with respect to k
of the number of iterations at convergence for algorithms of type (2).

In closing, it is of interest to compare the present algorithms with the
algorithm developed by Haarhoff and Buys in Ref. 5. While all these algorithms

include a restoration phase involving one iteration and a conjugate-gradient phase
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involving n-q iterations, two main differences must be noted: (i), here, the

search for the restoration stepsize is done on the function P(4); in Ref. 5, the
search for the restoration stepsize is done on the function W(u); (ii) here, the
Lagrange multiplier A is updated at the beginning of each iteration of the conjugate-
gradient phase; in Ref. 5, the Lagrange multiplier A has a constant value during
each conjugate-gradient phase; this constant value is computed at the beginning

of the previous restoration phase.

If the function f(x) is quadratic, if the constraint ¢(x) is linear, and if the
starting point X, is such that cp(xs) # 0, the present algorithms converge to the
solution in at most N, = 14n-q iterations, while this is not the case with the
algorithm of Ref, 5. Therefore, the present algorithms should exhibit faster
convergence than the algorithm of Ref, 5, even if the function f(X) is nonquadratic

and/or the constraint &(x) is nonlinear.
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Table 1. Number of iterations at convergence N, for Algorithm (I-c).

Example
k
6.1 6.2 6.3 6.4 6.5
-4
10 3 20 15 17 11
1672 3 20 13 14 11
-2
10 3 20 9 24 9
1071 3 17 18 46 12
0
10 3 55 18 41 15
10t 3 495 38 84 29
10 3 >1000 36 117 380
103 3 >1000 68 178 >1000
10 3 >1000 120 186 >1000

Table 2. Number of iterations at convergence N, for Algorithm (I-8).

Example

6.1 6.2 6.3 6.4 6.5

Eq. (59) 3 20 11 15 11
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Table 3. Number of iterations at convergence N, for Algorithm (II-a).

Example
Kk

6.1 6.2 6.3 6.4 6.5

-4
10 3 15 12 13 10
10'3 3 23 12 13 10

-2
10 3 16 12 17 9
107! 3 23 15 24 11
100 3 37 15 48 11
10" 3 62 61 100 14
102 3 142 >1000 118 25
10° 3 >1000 >1000 120 26
10* 3 >1000 >1000 >1000 39

Table 4. Number of iterations at convergence N, for Algorithm (II-B).

Example
k
6.1 6.2 6.3 6.4 6.5
Eq. (61) 3 20 12 13 9
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