


Abstract

Search, Discovery, Synthesis, and Characterization of Itinerant Magnets Composed

of Non-magnetic Constituents

by

Eteri Svanidze

The origin of magnetism in metals has been traditionally discussed in two

diametrically opposite limits: itinerant and local. Itinerant magnetism,

caused by conduction electrons, has been of interest due to intriguing

phenomena that frequently accompany it: heavy fermion behavior, co-

existence of superconductivity and magnetism, metamagnetic transitions,

spin- and cluster-glass behavior, multisublattice magnetism, non-Fermi

liquid behavior, and quantum criticality. Surprisingly, while many sys-

tems exhibit both local and itinerant magnetism, only two are known to

contain no local moment ions – Sc3In and ZrZn2. Doping experiments

on Sc3In were used to investigate the effects of both magnetic (Er) and

non-magnetic (Lu) substitutions within the itinerant matrix. While the

former induces a cluster-glass state, the latter drives the system through

a quantum phase transition. A novel Arrott-Noakes scaling indicates that

Sc3In cannot be described by the mean-field theory, contrary to what has

been seen in ZrZn2. This indicates that ZrZn2 and Sc3In are drastically

different, which is likely associated with the dimensionality of spin fluctu-

ations. Given these disparities between two seemingly analogues systems,

more itinerant compounds containing non-magnetic elements are needed.



iii

While the Stoner criterion for band ferromagnetism calls for high den-

sity of states at the Fermi level together with strong electron correlations,

more conditions are likely at play. A systematic search among 3d systems

resulted in the discovery of the first itinerant antiferromagnet composed

of non-magnetic elements – TiAu. The spin-density wave antiferromag-

netic ordering separates this compound from the previously reported fer-

romagnetic ones. Furthermore, perturbation of TiAu lattice with doping

resulted in an antiferromagnetic quantum critical point, which can pro-

vide insights on the validity of the self-consistent renormalization theory

of spin fluctuations in itinerant magnets.



Acknowledgements

A large number of people have helped me in numerous ways along my PhD

path during the last 5 years at Rice University. First of all, I would like to

thank my advisor Emilia Morosan for guidance and encouragement. My

committee members Junichiro Kono and Rui-Rui Du for their interest in

my research and for serving on both my Masters and PhD committees.

My labmates Jiakui Wang, Liang Zhao, Chih-Wei Chen, Binod Rai, An-

drea Marcinkova and Chris Georgen for useful discussions, reading of my

manuscripts and assistance with measurements.

During my tenure at Rice I have been fortunate enough to have collab-

orated with a large number of truly amazing people. Their expertise has

widened my horizons and has contributed significantly to my projects. I

am very grateful to Tiglet Besara and Theo Siegrist (Florida State Univer-

sity) for x-ray measurements and structural characterization of arcmelted

samples, necessary for our Sc3.1In and TiAu projects. Single crystal x-

ray diffraction of ScGa3 and LuGa3 samples would not have been possible

without Julia Chan and Gregory McCandless (University of Texas, Dallas)

I would like to thank Monika Gamża and Meigan Aronson for high-
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Chapter 1

Outline

The breakthroughs in the field of quantum mechanics in the beginning of the 20th

century allowed for an immense progress in understanding of the origin of magnetism

and long range magnetic order [156,221,261,397], as summarized in Chapter 2. This,

however, is only true for the case of local moment magnetism, where magnetic ions

are fixed on lattice cites. It was later realized that another type of magnetism, now re-

ferred to as itinerant, can arise from conduction electrons [350]. This realization came

after non-integer values of magnetic moment per atom were experimentally observed

for simple metals like Fe, Ni, and Co, different from what was expected from the

Hund’s rules. Stoner suggested that the extra moment arises from conduction elec-

trons and postulated a condition for the emergence of itinerant magnetism in a metal:

unpolarized sea of conduction electrons spontaneously creates a spin imbalance be-

tween spin-up and spin-down population, resulting in non-zero overall magnetization.

Most importantly, this is possible even when constituent elements are non-magnetic.

Itinerant magnetism is observed in a large number of systems, but it is almost always

accompanied by local moment magnetism. However, this is not the case in Sc3In [246]

and ZrZn2 [245], both of which do not contain any magnetic constituents. Both order
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ferromagnetically and exhibit Curie-Weiss-like behavior, and while ZrZn2 has been

studied extensively, this is not the case for Sc3In.

Since attempts to drastically alter the overall magnetization of Sc3In via pres-

sure [124, 140] and magnetic field [167] were unsuccessful, the effects of doping on

Sc3In were investigated. The addition of local moment ions in the itinerant matrix

was investigated by doping Sc3.1In with Er, as summarized in Chapter 5. This could

provide an insight into the interplay between the two types of magnetism: the itin-

erant moment is expected to have a weak variation with the composition, but the

overall magnetic moment should increase with increasing amounts of local moment.

It was found that Er doping of Sc3.1In [358] results in cluster-glass behavior below

the characteristic freezing temperature, which is enhanced by the increasing doping

amount x. The crystallographic frustration and site disorder, induced by Er doping

on the bipyramidal sites, induces a cluster-glass state that originates from a metallic

ferromagnetic ground state. Mixing of itinerant and local magnetism produces inter-

mediate values of the Rhodes-Wohlfarth ratio [309], signaling a transition from the

itinerant to the local limit. The effect of local moment ion doping in Sc3In is drasti-

cally different from that in ZrZn2, for which the addition of Gd3+ into the itinerant

matrix resulted in complete suppression of magnetism [25].

The effects of non-magnetic ion doping of Sc3.1In are presented in Chapter 4.

By partial substitution of Sc with Lu, it was possible to achieve a quantum critical

point [355]. While quantum critical points are observed in a large number of strongly

correlated electron systems, including high temperature superconductors [45,291,314],

low-dimensional compounds [90, 132, 158], and heavy fermions [54, 96, 260, 322, 348,

375], the number of quantum critical points in itinerant magnets is small. Perhaps this

explains the lack of associated theoretical understanding. Remarkable for a system

with no local moments, the quantum critical point is accompanied by non-Fermi
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liquid behavior, manifested in the logarithmic divergence of the specific heat both in

the ferro- and the paramagnetic states, as well as linear temperature dependence of

the low temperature resistivity. Through application of Arrott-Noakes analysis [17],

unusual critical scaling is observed close to the quantum critical point, yielding non-

mean-field values of critical exponents δ, γ and β. This is in stark contrast to the

mean-field nature of ZrZn2 [341]. It was established that the quantum critical scaling

of Sc3In is more similar to a heavy fermion URu2Si2 [57]. Possible explanation lies

within the dimensionality of spin fluctuations, since nearly 1D Sc3In is more similar

to the 2D URu2Si2 rather than the 3D ZrZn2 [355].

Given these discrepancies between seemingly analogues systems Sc3In and

ZrZn2, additional itinerant magnets are needed to develop a comprehensive under-

standing of itinerant phenomena. Compounds without local moment are particularly

convenient for studying itinerant magnetism as they lack complexity associated with

the interplay between local and itinerant moments. Unfortunately, a theoretical basis

for a systematic way of finding said compounds does not exist. Spontaneous magneti-

zation according to the Stoner criterion [350] is more likely to occur in d band metals

with high density of states at the Fermi level. Additionally, a peak in the density of

states near the Fermi surface is indicative of instability towards a magnetic ground

state and has been suggested to lead to magnetism [266]. From these considerations,

analysis of band structure calculations for intermetallic compounds was employed to

discover new itinerant magnets. This search was successful in finding the first itiner-

ant antiferromagnet, composed of non-magnetic constituents – TiAu [359]. Given the

small number of known itinerant magnets, the discovery of the novel itinerant antifer-

romagnet TiAu provides long-sought insights into the physics of itinerant magnets in

general, and of itinerant antiferromagnets in particular. A number of physical prop-

erty measurements including magnetization, resistivity, specific heat, neutron and

x-ray diffraction as well as muon spin relaxation were implemented to confirmed the
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spin-density wave ground state of TiAu below the Néel temperature TN ' 36 K, as

summarized in Chapter 6. The long range static order is further confirmed by neu-

tron diffraction data, which, together with µSR experiments, indicate small moment

ordering in the whole sample volume. In addition to the overwhelming experimental

evidence for the itinerant moment antiferromagnetic order in TiAu, density functional

theory calculations confirm the spin-density wave small moment ordering.

As summarized in Chapter 7, the suppression of the antiferromagnetic order

in TiAu to T = 0 in a quantum critical regime was possible via partial substitution

of Ti with Sc in Ti1−xScxAu. The critical doping estimate xc = 0.13 ± 0.01 is con-

sistent across all measurements, indicating collective quantum critical phenomenon.

Moreover, the scaling behavior of Ti1−xScxAu clearly indicates the 2D antiferromag-

netic nature of magnetic spin fluctuations [268]. Divergent specific heat along with

linear dependence of resistivity and diverging Grűneisen parameter are consistent

with a 2D antiferromagnetic non-Fermi liquid, previously only observed in f elec-

tron systems [129,206,207]. Moreover, non-Fermi liquid behavior associated with the

quantum critical point is more pronounced than that observed in Sc3In and ZrZn2.

The suppression of the spin density wave - paramagnetic transition to absolute zero

with Sc doping is also confirmed via band structure calculations, where a gradual shift

of the peak in the density of states at the Fermi level as well as the loss of the Fermi

surface nesting are expected. While the critical doping level extracted from the band

structure calculations is larger than xc = 0.13 ± 0.01, the quantitative discrepancy

is expected to decrease if the effects of disorder are taken into account. Understand-

ing the properties of this system will serve as a stepping stone towards explaining

anomalous properties of solids in general and itinerant magnets in particular.

An unexpectedly high hardness of arcmelted TiAu samples prevented typical

powder diffraction experiments but lead to a startling discovery – hardness of the
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Ti0.75Au0.25 alloy was found to be four times higher than that of pure Ti, as presented

in Chapter 8. The Ti1−xAux (0.22 ≤ x ≤ 0.8) alloys exhibit extreme hardness values,

elevated melting temperatures (compared to those of constituent elements), reduced

density compared to Au, high malleability, bulk metallicity, high biocompatibility,

low wear, reduced friction, potentially high radio opacity, as well as osseointegration.

All these properties render the Ti1−xAux alloys particularly useful for orthopedic,

dental, and prosthetic applications, where they could be used as both permanent

and temporary components. Additionally, the ability of Ti1−xAux alloys to adhere to

ceramic parts could reduce the weight and cost of these components. Since the search

for new hard materials is often challenging from both theoretical and experimental

points of view, a discovery of a hard biocompatible alloy is likely to benefit both

fundamental research and everyday applications.

In Chapter 9, superconductive properties of single crystals of ScGa3 and

LuGa3 are characterized. As evidenced by magnetization, specific heat and resistivity

measurements, these compounds have a Type I superconducting ground state: low

critical temperatures Tc = 2.1 - 2.2 K, field-induced second-to-first order phase tran-

sition in the specific heat, critical fields less than 240 Oe and low Ginzburg-Landau

coefficients (κ ≈ 0.23 and 0.30 for ScGa3 and LuGa3, respectively) are observed.

These properties render ScGa3 and LuGa3 two of only several Type I superconduct-

ing compounds, with most other superconductors being Type II (compounds and

alloys) or Type I (elemental metals and metaloids). Despite the large number of

known conventional and unconventional superconductors, new findings still emerge

even from simple, binary intermetallic systems. Valuable insights into the rare oc-

currence of Type I superconductivity in binary or ternary systems can pave the way

towards better understanding of superconducting phenomena.



Chapter 2

Background

2.1 Magnetism

While the first accounts of magnetism date back to ancient Greece, where the term

”magnet” was first introduced, not much was understood about the nature of mag-

netism until the 19th century. However, this did not prevent magnets from being

widely used as part of the compass as early as the 16th century. Hans Christian Oer-

sted noticed that an electric current in a coil could deflect a compass needle, observing

for the first time the correlation between the magnetic and electric fields. This gave

birth to the first electromagnet in 1825. Other scientists such as Ampere, Faraday,

Gauss and Maxwell made significant contributions to the subject, but it was mostly

the twentieth century physicists who have established proper theoretical models for

the origin of magnetism and long range magnetic order. Curie, Langevin, Weiss and

Néel described these phenomena, building the foundation for the field.
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2.1.1 Origin of Magnetism in Free Ions

In order to understand the ionic origin of magnetism, it is necessary to recall the fact

that electricity and magnetism are deeply intertwined – all magnetic phenomena are

due to electric charges in motion. Since the dynamics of an electron in a nucleus

can be separated into two parts, two contributions to overall magnetic moment exist

– orbital (l) and spin (s). By convention, the electrons can either be ”spin-up”

(ms = 1/2) or ”spin-down” (ms = −1/2). The total spin quantum number S for all

electrons in an ion can therefore be represented as:

S = n↑
1

2
− n↓

1

2
(2.1)

where n↑ and n↓ is the number of electrons in the spin-up and spin-down state.

Figure 2.1: Electron orbitals s, p, d, and f [3].

The wave-like nature of the electron only allows for the calculation of the

probability of finding it around the nucleus, providing a three dimensional map of
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the electron’s likely location. These possible quantum states of a single or a group

of electrons are known as atomic orbitals (since motion of an electron cannot be

described as that of a solid particle, its path can no longer be called orbit but rather

orbital in order to differentiate their wave-like nature). Depending on the angular

momentum quantum number, l = 0, 1, 2, 3, electrons can occupy different types of

orbitals: s (sharp), p (principal), d (diffuse), f (fundamental). These names, derived

from the characteristics of their spectroscopic lines, describe the shape of the orbitals,

depicted in Fig. 2.1. Subsequently, the magnetic quantum number ml is equal to

−l,−l+ 1, . . . ,+l−1,+l, and thus the total orbital quantum number L of an ion can

be found as:

L =
∑
l

ml (2.2)

Pauli’s exclusion principle, Coulomb repulsion, and spin-orbit coupling govern

the distribution of electrons among these orbitals. In order to determine the ground

state, Hund’s rules must be followed in the following sequence:

1. Maximum possible S consistent with Pauli’s exclusion principle.

2. For maximum S, choose configuration which maximizes L.

3. Since S and L are coupled, J = S + L (orbitals are more than half-filled) or

J = |L− S| (orbitals are less than half-filled).

In the absence of an applied magnetic field, electron spins are randomly ori-

ented, hence no net magnetization is observed. However, when a magnetic field is

applied, the magnetic spins will experience a torque, aligning them and giving rise to

a net magnetization. Similar to the free ion case, the magnetic moment of an atom

has two contributions, which result in the orbital µL, and spin µS magnetic moments:
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L

S

J

μL

μS

μJ

Figure 2.2: Representation of the total angular momentum.

−→µ L = −gLµB
−→
L (2.3)

−→µ S = −gSµB
−→
S (2.4)

where µB is the Bohr magneton and gL = 1 and gS = 2 are the orbital and spin

Landé g-factors, respectively. Combining the two as a vector sum, the total angular

momentum −→µ J is shown in Fig. 2.2 and can be found as:

−→µ J = −→µ L +−→µ S (2.5)
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Introducing the total Landé g-factor gJ allows for µJ to be written in a form

similar to that of µL and µS:

µJ = gJµBJ (2.6)

Additionally, gJ can be written in the following form:

gJ =
3

2
+

1

2

S(S + 1)− L(L+ 1)

J(J + 1)
(2.7)

As mentioned earlier, a magnetic moment will tend to align with the field

when an external magnetic field is applied. From the classical point of view, since the

electron is constantly in motion, the magnetic field will result in a force perpendicular

to electron’s velocity. Because no work is being done, this means that the energy of

the system does not depend on the applied field, yielding zero magnetization [42]. A

more formal proof can be derived using classical statistical mechanics as follows. For

a system of N electrons, the magnetic moment µ is a linear function of the position

with the following form [11]:

µ =
N∑
i=1

ai
∂ri
∂t

(2.8)

The vector coefficients ai depend on the position coordinates ri (i = 1 . . . N),

but not on the momentum pi. The canonical equations of classical motion for a

charged particle are given as [11]:

∂ri
∂t

=
∂HCL

∂pi
and

∂pi
∂t

= −∂HCL

∂ri
(2.9)
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HCL =
1

2me

N∑
i=1

(
pi −

e

c
Ai

)2

+ eφ(q) (2.10)

where me is the electron mass, Ai is the magnetic vector potential and φ(q) is the

electric scalar potential. Substituting the expression for ∂ri/∂t into the total magnetic

moment equation yields:

µ =
N∑
i=1

ai
∂HCL

∂pi
(2.11)

The classical statistical average that will be measured can be found as:

M =

∫
µe−βHCLdr1 . . . drNdp1 . . . dpN∫
e−βHCLdr1 . . . drNdp1 . . . dpN

(2.12)

with β = 1/kBT . The numerator of the above expression is a sum of terms, each

proportional to:

∫ ∞
−∞

∂HCL

∂∂pi
e−βHCLdpi = [−kBTe−βHCL ]∞pi=−∞ (2.13)

According to Eq. 2.10, HCL ∝ p2
i . Therefore, the sum M vanishes, yielding

zero magnetization for any applied field [46]. This relationship is known as the Bohr-

Van Leeuven theorem [46], stating that electrons behaving according to the classical

laws of physics do not interact with an applied magnetic field. This problem can be

addressed by treating electrons as a quantum mechanical phenomena, which will be

presented in Section 2.1.2.

As noted earlier, in order to probe the magnetic character of a given material,

an external magnetic field must be applied. The response of the material is known as

the magnetic susceptibility χ. In some materials the spins will align in the direction
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Figure 2.3: Various contributions to the magnetic susceptibility of a metal. Relative
magnitudes are not drawn to scale.

of the field, yielding a positive value of χ (paramagnets, χ > 0), while in other

cases spins will have a direction opposite to that of the field, resulting in a negative χ

(diamagnets, χ < 0). The different contributions to the overall magnetic susceptibility

χ arise from various orbital filling configurations. Their relative strengths ultimately

dictate the material’s behavior:

1. Electrons in filled atomic orbitals (L = S = 0):

– Larmor diamagnetism typically results in a very small contribution to the

susceptibility, χL ≈ −10−6 − 10−8 emu/mole [27].

2. Electrons in partially filled atomic orbitals:

– If J = 0, the Van Vleck paramagnetism arises with χV ≈ 10−6−10−8 emu/mole
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[81].

– If J 6= 0, Curie paramagnetism (Sections 2.1.2 and 2.1.3) will be the dominant

contribution to the susceptibility since χCurie ≈ 10−2 − 10−3 emu/mole [27].

3. Conduction electrons:

– Electron’s spin contribution to susceptibility χ is known as Pauli paramag-

netism (Section 2.1.4), χPauli ≈ 10−410−6 emu/mole [27,346].

– Electron’s orbital motion results in Landau diamagnetism, the value of which

is approximately 1/3χPauli [27, 81,295].

It is important to note that, except for the Curie paramagnetism, all of the

above contributions are temperature-independent (Fig. 2.3). Combinations of various

contributions present in a material will dictate overall susceptibility χ. An example

of mass susceptibility for several pure elements is shown in Fig. 2.4.

Figure 2.4: The mass susceptibility for the first 60 elements in the periodic table at
room temperature as function of the atomic number [42].
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2.1.2 Non-interacting Magnetic Moments: Curie Law

Besides being material-dependent, magnetic susceptibility χ also depends on the mag-

nitude of the applied magnetic field:

χ =
dM

dH
= − 1

V

∂2F

∂H2
(2.14)

where F is the free energy given by:

F = −kBT lnZ (2.15)

where kB is Boltzman’s constant and Z is the partition function. The free energy is

temperature-dependent since the temperature-induced motion of ions in solids com-

petes with the magnetic field’s tendency to align them. The partition function Z can

be calculated as follows:

Z =
J∑

mJ=−J

e
−EJ,mJ
kBT =

J∑
mJ=−J

e
−gJmJµBH

kBT (2.16)

with EJ,mJ being the energy eigenvalues of a magnetic ion in a magnetic field H for

a system of non-interacting magnetic moments, described by HNI :

EJ,mJ = gJµBmJH with mJ = −J, . . . , J (2.17)

HNI = −gJµB
∑
j

−→
Jj ·
−→
H (2.18)
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Therefore, the magnetization can be determined as:

M =
kBT

V

∂

∂H

( J∑
mJ=−J

e
−gJmJµBH

kBT

)
(2.19)

which yields:

M = M0

[2J + 1

J
coth

(2J + 1

2J
x
)
− 1

2J
coth

( 1

2J
x
)]

(2.20)

x =
gJJµBH

kBT
and M0 = ngJJµB (2.21)

Thus

M = M0BJ(x) (2.22)

where BJ(x) is the Brillouin function that depends on the values of the quantum

numbers S, L and J . For small values of x, a series expansion can be used to

approximate the Brillouin function:

BJ(x) =
(J + 1)x

3J
+O(x3) (2.23)

Because M is linear in H for low H values, when kBT >> gµBH the magnetic

susceptibility χ can be approximated as:

χ ≈ M

H
(2.24)

Using the expansion for BJ(x) from the Eq. 2.23 (with higher order terms
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Figure 2.5: Comparison of paramagnetic moment µPM , obtained from experiment
with that expected based on Hund’s rules [133].

discarded) and the expression for the magnetization from the Eqs. 2.22 and 2.21, the

magnetic susceptibility χ can be found as:

χ =
ng2

Jµ
2
BJ(J + 1)

3kBT
(2.25)

The dependence on the particular magnetic ion (through the values of the

quantum numbers S, L and J) can be summarized by the quantity called the para-

magnetic moment µPM , defined as:

µPM = gJ
√
J(J + 1)µB (2.26)
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This allows for the susceptibility to be rewritten as:

χ =
nµ2

PM

3kBT
=
C

T
where C =

nµ2
PM

3kB
(2.27)

The above expression describes the relationship between temperature and

magnetic susceptibility of a given material, ignoring correlations between ions, and

is known as the Curie law (C is the Curie constant). Since there is typically a

temperature-independent component of the susceptibility χ0 that can arise from var-

ious contributions (Section 2.1.1), the Curie law is typically written as:

χ =
C

T
+ χ0 (2.28)

Upon subtraction of the χ0 term, the linear temperature dependence of the

inverse susceptibility it evident. It was first noticed experimentally by P. Curie [87]

and was later derived theoretically by P. Langevin [221]. The values of µPM , extracted

from the fit to the Curie law, are compared with those obtained from Eq. 2.26 (Fig.

2.5) [133]. The agreement is generally fair for 4f elements with the exceptions of Eu

and Sm, for which the L− S coupling is small resulting in level mixing as a function

of temperature or field [133]. For compounds containing 3d electrons, the orbital

momentum is frequently quenched due to interactions between electrons, yielding

L = 0.

In the following Section, the Curie law will be expanded to include interactions

between spins, which result in a collective behavior, known as long range magnetic

order. Depending on the type of the spin-spin interaction, the material will order

ferromagnetically (parallel) or antiferromagnetically (antiparallel).
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2.1.3 Interacting Magnetic Moments: Curie-Weiss Law

The Curie law, derived for a system of non-interacting magnetic moments, indicates

that susceptibility χ is inversely proportional to the temperature T . In order to derive

the temperature dependence of a system with spin-spin interactions, an extra term

must be added to the Hamiltonian in Eq. 2.18. If the coupling constant between

spins i and j is denoted by Jij, the Hamiltonian will have the following form:

HIN = gJµB
∑
j

−→
Jj ·
−→
H −

∑
ij

Jij
−→
Ji ·
−→
Jj (2.29)

Further, the Hamiltonian can be written in an equivalent form:

HIN = gJµB
∑
j

−→
Jj ·

(
− 1

gJµB

∑
ij

Jij
−→
Ji +

−→
H
)

(2.30)

where the sum in parentheses represents the effective molecular field at the ith spin

site (HMF ), given by:

−→
HMF = − 1

gJµB

∑
i

Jij
−→
Ji (2.31)

This allows for the Hamiltonian to be written in a simplified form:

HIN = gJµB
∑
i

−→
Ji · (

−→
HMF +

−→
H ) (2.32)

The molecular field tends to align neighboring magnetic moments parallel or

antiparallel to each other, depending on whether the coupling constant Jij is positive

(ferromagnetic case) or negative (antiferromagnetic case). In the case of a ferromag-

netic order, the strength of the molecular field was postulated by Weiss [397] as part
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of his molecular field model, giving:

HMF = λM (2.33)

with λ representing the molecular field constant.

As mentioned earlier, temperature effects compete with field’s spin alignment.

If the temperature is raised, the magnetization will be gradually reduced by thermal

fluctuations, and the magnetic order will be suppressed at the critical temperature.

The Brillouin function, defined in previous section by Eqs. 2.21 – 2.23, now has an

additional term:

M = M0BJ(x) with x =
gJµBJ(H + λM)

kBT
(2.34)

Since it is necessary to solve the above equations simultaneously, a graphical

solution is shown in Fig. 2.6. A non-zero solution, M > 0, exists only if the slope of

the line from Eq. 2.34 is smaller than the initial slope of the Brillouin function. This

means that the magnetization M is finite and positive only for temperatures below

the transition temperature TC , known as the Curie temperature:

TC =
gJµB(J + 1)λM0

3kB
=
nλµ2

PM

3kB
(2.35)

The magnetization is zero for temperatures T ≥ TC , and non-zero for T < TC .

If a small magnetic field µBH << kBT is applied at T ≥ Tc, then the linear expansion

from Eq. 2.34 can be used to determine the magnetization M :

M

M0

≈ gJµB(J + 1)

3kB

(H + λM

T

)
(2.36)
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Figure 2.6: Graphical solution of Eqs. 2.34.

resulting in:

M

M0

≈ TC
λM0

(H + λM

T

)
(2.37)

M

M0

(
1− TC

T

)
≈ TCH

λM0

(2.38)

Therefore, the magnetic susceptibility, χ can be written as:

χ ≈ C

T − TC
(2.39)

including the temperature-independent susceptibility contribution χ0, the Curie-Weiss
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law becomes:

χ = χ0 +
C

T − θW
(2.40)

In the above equation, C is the same Curie constant as that in the Curie law

(Eq. 2.28), χ0 represents a small, temperature-independent susceptibility contribu-

tion, and θW is the Weiss temperature. It follows from Eq. 2.40 that 1/(χ−χ0) vs. T

is linear, from which the values of µPM and θW can be extracted. In order to account

for inter-atomic coupling, the magnetic field in the Eq. 2.28 must be rewritten as:

M

H + λM
=
C

T
(2.41)

The susceptibility can now be expressed as:

χ =
M

H
=

C

T − λC
(2.42)

Therefore θW = λC, and the sign of θW indicates whether or not the molecular field is

acting in the same direction as the applied field. Thus, θW = 0 indicates paramagnetic

behavior, while non-zero values signal ferromagnetic (θW > 0) or antiferromagnetic

(θW < 0) coupling, as shown in Fig. 2.7. Furthermore, the absolute value of θW is

close to the value of the ordering temperature TC or TN , since according to Eqs. 2.35

and 2.27:

TC =
nλµ2

PM

3kB
= Cλ = θW (2.43)

Experimentally, the value of the ordering temperature and θW are sometimes

found to be different as the effects of short-range order above TC are neglected in the
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Figure 2.7: Temperature dependence of 1/(χ − χ0) for the paramagnetic (orange),
antiferromagnetic (blue), and ferromagnetic (green) cases.

simple molecular field treatment [138].

2.1.4 Magnetism of Conduction Electrons

In previous sections, susceptibility contributions of both interacting and non-interacting

localized electrons have been discussed. For local moment magnets, the magnetic mo-

ments are fixed on lattice sites and the magnitude of the overall magnetization can

be predicted according to Hund’s rule. The driving interaction is the inter-atomic

exchange, therefore the coupling between the neighboring atoms is strong [258]. How-

ever, magnetism can also arise from conduction or valence electrons (also called itiner-

ant due to delocalized character) that move nearly free inside the material. The driv-
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ing interaction in this case is the intra-atomic exchange and the size of the magnetic

moment can no longer be predicted by the Hund’s rules. The Landau diamagnetism,

caused by conduction electrons, is rarely of interest as its magnitude is much smaller

than that of the Pauli paramagnetism, which will be discussed in this section. Ferro-

and antiferromagnetism can arise under certain conditions, as will be presented in

Section 2.1.5.

Since motion of conduction electrons is not restrained, it is suitable to treat

them as a free electron gas. The energy of an electron when no external magnetic

field is applied is given by:

E =
~2k2

2m
(2.44)

Each k-state in a metal can be doubly occupied because of the two possible

spin values (up and down, Fig. 2.8(a)). An applied magnetic field will either raise

(spin-down) or lower (spin-up) the energy of an electron by µBH:

E↓↑ =
~2k2

2m
± µBH (2.45)

The increase and decrease in the energies of the spin-down and spin-up elec-

trons will result in different Fermi energy EF values in the two sub-bands, Fig. 2.8(b).

In order to achieve a physical state with the same Fermi energy EF and minimize the

overall energy of the system, electrons from the ”down” sub-band flip to the ”up”

states until the Fermi energies in the two sub-bands match, as shown in Fig. 2.8(b).

Because the magnetic moment of an electron is equal to 1µB, the imbalance of up
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Figure 2.8: (a) Without external field, the number of electrons in both sub-bands is
the same. (b) After a field has been applied, the Fermi energy shifts, resulting in
Pauli paramagnetism.

and down electrons will result in a net magnetization:

M = −(n↑ − n↓)µB (2.46)

The number of up and down spins (n↑ and n↓) can be written in terms of the

density of states g(E):

n↓ =

∫
g↓(E)f(E)dE (2.47)
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n↑ =

∫
g↑(E)f(E)dE (2.48)

where f(E) is the Fermi-Dirac distribution given by:

f(E) =
1

e(E−µ)/kT + 1
(2.49)

A Taylor expansion can be applied for the density of states if the magnetic

field is small (µBH << EF ), and the above equation becomes:

g↑(E) ≈ 1

2
g(E − µBH) ≈ 1

2

(
g(E)− µBHg′(E)

)
(2.50)

g↓(E) ≈ 1

2
g(E + µBH) ≈ 1

2

(
g(E) + µBHg

′(E)
)

(2.51)

Therefore:

n↑ =
1

2

∫
g(E)f(E)dE − 1

2
µBH

∫
g′(E)f(E)dE (2.52)

n↓ =
1

2

∫
g(E)f(E)dE +

1

2
µBH

∫
g′(E)f(E)dE (2.53)

Thus, from Eq. 2.46, the magnetization can be found as:

M = µ2
BH

∫
g′(E)f(E)dE = µ2

BH

∫
g(E)f ′(E)dE (2.54)
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For the low temperature limit, f ′(E) ≈ δ(E − EF ):

M = µ2
BH

∫
g(E)δ(E − EF )dE = µ2

BHg(EF ) (2.55)

The resulting Pauli susceptibility χPauli is positive and does not depend on

temperature:

χPauli = µ2
Bg(EF ) (2.56)

Which, using the density of states for the free electron case (g(EF ) = mkF/~2π2),

gives [27]:

χPauli =
( e2

2π~c

)2

(a0kF ) =
( 2.59

rs/a0

)
10−6 (2.57)

where a0 and rs are Bohr and elemental radii, respectively. Significant discrepancies

between measured and theoretical values, listed in Table 2.1, are the result of neglected

electron-electron interactions [27]. Both theoretical and experimental values of χPauli

reveal that while Pauli paramagnetism is the dominant temperature-independent sus-

ceptibility contribution, it has a rather weak effect, as compared to the local moment

magnetism. This can be explained by the fact that, while for the localized picture

at least one electron per magnetic atoms contributes to the overall magnetization, in

the itinerant case only electrons close to the Fermi surface play a role [42]. Therefore,

features in resistivity and specific heat (Figs. 2.14(c, d) and 2.15(d)), corresponding

to the transition from ordered to the disordered state are much weaker for itinerant

magnets, as compared with the local ones.
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Table 2.1: Comparison of calculated and measured Pauli susceptibility values χPauli
[27].

Metal rs/a0

106χPauli 106χPauli

(from Eq. 2.57) (measured)

Li 3.25 0.80 2.0 [325]

Na 3.93 0.66 1.1 [326]

K 4.86 0.53 0.8 [324]

Rb 5.20 0.50 0.8 [185]

Cs 5.62 0.46 0.8 [185]

2.1.5 Itinerant Ferromagnetism: Stoner Criterion

Itinerant ferromagnetism is often referred to as band ferromagnetism because it is

caused by spontaneously split electron bands: unpaired electrons are delocalized

which broadens the original energy levels. This broadening W depends on the inter-

atomic separation r:

W ∝ r−5 (2.58)

Under the influence of an applied magnetic field, a portion of electrons is

transferred from the spin-down to the spin-up band, the kinetic energy of the system

EK.E. will then increase by:

∆EK.E. =
1

2
g(EF )(δE)2 (2.59)

As previously stated, the overall magnetization will be given by:

M = −µB(n↑ − n↓) = µB

(1

2

[
n+ g(EF )(δE)

]
− 1

2

[
n− g(EF )(δE)

])
(2.60)
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Figure 2.9: The density of spin-up and spin-down electrons exhibit a spontaneous
spin splitting without any external magnetic field.

M = µB

(1

2
n+

1

2
g(EF )(δE)− 1

2
n+

1

2
g(EF )(δE)

)
(2.61)

M = µBg(EF )(δE) (2.62)
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The gain in the potential energy EP.E. can be expressed as:

∆EP.E. = −1

2
µ2
Bλ(n↑ − n↓)2 (2.63)

where λ is the molecular field constant as stated earlier.

For interacting electrons, the effective exchange energy per pair of 3d electrons

is known as Ueff and is the measure of the Coulomb energy:

Ueff = µ2
Bλ (2.64)

Thus from Eq. (55 – 57) it follows that:

∆EP.E. = −1

2
Ueff

[
g(EF )(δE)

]2

(2.65)

Therefore, the total change in the energy that arises from the electron transfer

between the up and down sub-bands is:

∆E = ∆EK.E. + ∆EP.E. =
1

2
g(EF )(δE)2(1− Ueffg(EF )) (2.66)

If 1 − Ueffg(EF ) > 0, then the fraction of electrons that move from the

spin-down to spin-up band is zero and the system is non-magnetic. On the other

hand if 1 − Ueffg(EF ) < 0, then ∆E < 0 and the 3d band will be split, leading to

ferromagnetism. Therefore, the following condition, known as the Stoner criterion, is

obtained:

Ueffg(EF ) ≥ 1 (2.67)
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For spontaneous ferromagnetism, the spin-up and spin-down bands will be

split by an energy ∆ if the Coulomb effects are strong (large Ueff ) and the density of

states at the Fermi level g(EF ) is large. The density of states of the s- and p-electron

bands is much smaller than that of the d band, favoring spontaneous magnetization

according to the Stoner criterion in the d band materials.

If the Stoner criterion is met, the susceptibility will exceed the value expected

based on the Hund’s rules (Section 2.1.1). A phenomenon known as the Stoner

enhancement is caused by strong Coulomb interactions between the electrons. The

energy shift described above will produce magnetization, thus in an applied magnetic

field H the total change in energy is given by:

∆E =
1

2
g(EF )(δE)2

[
1− Ueffg(EF )

]
−MH =

M2

2µ2
Bg(EF )

[
1− Ueffg(EF )

]
−MH

(2.68)

The equilibrium condition is given by:

d∆E

dM
=

M

µ2
Bg(EF )

[
1− Ueffg(EF )

]
−H = 0 (2.69)

and therefore the resulting susceptibility is:

χ =
M

H
≈ µ2

Bg(EF )

1− Ueffg(EF )
=

χ0

1− Ueffg(EF )
= Sχ0 (2.70)

where S = 1
1−Ueffg(EF )

is known as the Stoner enhancement factor.

Therefore, the susceptibility is enhanced compared to that of systems with-

out interactions between the band electrons. In materials that are on the verge of

ferromagnetism (i. e. χ(T = 0) = inf, the Fermi level is located immediately above
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a sharp peak in the density of states, and the system can be driven into magnetic

order with doping [258]), the Stoner enhancement factor will significantly increase the

magnetic susceptibility. This will not, however, cause spontaneous ferromagnetism.

Examples of these systems are Pd and Pt metals that have susceptibility roughly one

order of magnitude greater than that of Zr metal [42].

2.1.6 Itinerant Antiferromagnetism

An electron traveling through an antiferromagnetic crystal experiences exchange-

correlation forces that point in opposite directions on two sublattices, and that polar-

ize each sublattice in such a way that on one sublattice the magnetization is positive,

and on the other it is negative [214]. Using the approach developed for the ferromag-

netic case, the antiferromagnetic material should be thought of as being composed

of two sublattices A and B, whose lattice points are denoted by j and l, respec-

tively [261]:

MA =
1

2

∑
j

(nj↓ − nj↑) (2.71)

MB =
1

2

∑
l

(nl↓ − nl↑) (2.72)

Staggered magnetization Ms can then be found as:

Ms = MA −MB (2.73)

This, in turn, can be used to calculate the free energy within the Hartree-Fock
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approximation [261]:

FHF (Ms, T ) = F0(Ms, T )− IM2
s (2.74)

The above expression can be expanded as:

FHF (Ms) =
( 1

2χ0
s

− I
)
M2

s + · · · (2.75)

yielding the condition for the appearance of antiferromagnetism in a localized moment

scenario:

2Iχ0
s > 1 and 2Iχ0

s(TN) = 1 (2.76)

A similar approach can be applied for the itinerant case, where a spin density

wave is formed. Possible existence of such an antiferromagnetic ground state in an

itinerant electron system was first proposed by Slater [335], and then generalized by

Overhauser [293], who used it in order to explain magnetic properties of Cr. The free

energy shown in Eq. 2.75 will now depend on the amplitude of the spin density wave

with the wave vector Q [261]. This results in a modified condition for the appearance

of an antiferromagnetic ground state:

2Iχ0(Q) > 1 (2.77)

From the above equation is it obvious that the criterion for instability of the

paramagnetic ground state is more complex than the Stoner criterion, evoked for

ferromagnetic metals (Eq. 2.67). The dependence of susceptibility χ(Q) on the wave

vector Q indicates that the criterion can be satisfied even if I is small, provided Fermi
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Figure 2.10: Schematic incommensurate spin density wave in bcc Cr. The arrows
indicate the amplitude of the spin density wave at the lattice sites [404].

surface is nested [261] and Q ≈ 2kf (where kf is the diameter of the Fermi sphere)

[404]. Various types of spin density waves have been reported experimentally [108],

with examples including commensurate and incommensurate in both two and three

dimensions [30]. In Cr, a static incommensurate spin density wave is formed, showing

a sinusoidal variation with position (Fig. 2.10) [404].

Cr metal remains the archetypical example of a spin density wave in a metal.

Interestingly enough, the 3d character of Cr has been shown to be of fundamental

importance to its being magnetic, given that both Mo and W whose Fermi surfaces

are very similar to that of Cr are non-magnetic [108]. The temperature dependence

of various physical properties in the neighborhood of the Neél temperature (TN = 311

K [108]) is shown in Fig. 2.11. The discontinuity signals transition from ordered into

disordered state in a first order manner.

Cr has also of high interest since it is one of the very few non-Kondo systems

that can be driven through an antiferromagnetic quantum critical point [227]. Quan-
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Figure 2.11: Physical properties near TN in Cr: linear thermal expansion (α), resistiv-
ity ρ, specific heat Cp, and thermoelectric power S as a function of temperature [108].
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tum critical points were achieved in Cr with both pressure [223] and doping [411] with

scaling properties and critical exponents in both cases consistent with a 3D antiferro-

magnetic quantum critical point [227]. This type of quantitative analysis of quantum

critical points in Cr has been invaluable for testing the self-consistent renormaliza-

tion theory in itinerant antiferromagnets [227]. However, many open questions still

remain, calling for additional systems.

2.1.7 Itinerant vs. Local Magnetism

As mentioned earlier, local moment magnetism arises from magnetic ions fixed at

lattice positions. The magnitude of the individual spins remains the same for the

whole temperature range, while the competition between temperature fluctuations

and inter-atomic coupling results in mis-alignment of magnetic moments above T = 0

K (Fig. 2.12(a)). As T → 0 K, an increasing number of spins becomes co-aligned,

resulting in the maximum overall magnetization. This is in stark contrast to the

itinerant case, for which the size of magnetic moments grows as a function of temper-

ature (Fig. 2.12), yielding maximum magnetic moment at T = 0 K. For that reason,

the ratio of the number of magnetic moment carriers below and above the transition

can be used to differentiate between itinerant and local magnets. The paramagnetic

moment µPM and the saturated moment estimates µsat can be used to determine the

magnetic carrier per atom qC (since it is derived from the Curie constant) and qsat,

respectively [309]. The quantity qC describes the behavior of the system for tem-

peratures above the ordering temperature, and is determined from the paramagnetic

moment µPM [309], using:

qC(qC + 1) =
(µPM)2

4
(2.78)
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T = 0 K

T < Tord

T > Tord

(a) Local (b) Itinerant

Figure 2.12: The evolution of magnitude of magnetic moment with temperature for
the (a) local and (b) itinerant scenarios in zero field. Reproduced from Ref. [261].

Similarly, qsat is obtained from the saturation magnetization at temperatures

below the transition temperature:

qsat =
µexpsat

2
(2.79)

The ratio of qC and qsat is known as the Rhodes-Wohlfarth ratio: if the number

of carriers below the transition temperature (qsat) is the same as the one above the

transition temperature (qC) the ratio is:

qC
qsat
≈ 1 (2.80)

indicating a local-moment system. The other limiting case is that when:

qC
qsat

> 1 (2.81)

observed in delocalized or itinerant magnets [309]. The values of the Rhodes-Wohlfarth

ratio for local (triangles) and itinerant (circles) moment compounds, together with
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those for ZrZn2 (green square) and Sc3In (blue square), are shown in Fig. 2.13. While

the the Rhodes-Wohlfarth ratio of magnetic carries [309] is generally used to differ-

entiate between local and itinerant mechanisms in ferromagnetic materials, similar

analysis has been applied to antiferromagnetic systems [31,288,301].

2.1.8 Itinerant Magnets without Magnetic Elements: Sc3In

and ZrZn2

Heisenberg’s theory for localized electrons [156] has been used to explain many phe-

nomena associated with local-moment magnetism, including the linearity of the in-

verse susceptibility, as predicted by the Curie-Weiss law [261] in accordance with
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Figure 2.13: Rhodes-Wohlfarth ratio for local magnets (open symbols) and itinerant
magnets (full symbols), reproduced from Ref. [261].
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the Langevin and Weiss theory [220, 221, 397]. In metals, a separate contribution to

magnetism is due to the conduction electrons, yielding non-integer values of magnetic

moment per atom in Bohr magnetons even in simple elemental magnets such as Fe,

Ni, and Co. The Stoner model [350] (Section 2.1.5) qualitatively accounts for this

discrepancy in metals with large interaction constant I and high density of states at

the Fermi level g(EF ), but falls short in correctly predicting the Curie temperature

and the Curie-Weiss-like magnetic susceptibility.

When a new family of weakly ferromagnetic materials was discovered, appli-

cation of both Stoner and Heisenberg theories was not successful in estimating the

magnitude of the paramagnetic moment [263]. Moreover, Curie-Weiss-like suscepti-

bility in ZrZn2 [245] (Fig. 2.14(a)) and Sc3In [246] (Fig. 2.15(b)), previously thought

to indicate presence of localized magnetic moments [365], was puzzling since both

compounds are composed of non-magnetic elements. This indicated that a different

mechanism is responsible for the Curie-Weiss-like behavior in weakly ferromagnetic

materials [103].

Consequently, it has been determined that the effect of spin fluctuations is

rather important for the thermodynamic properties of itinerant ferromagnets, and

thus needs to be accounted for theoretically. The solution came with the theory

of self-consistent renormalization theory of spin fluctuations [264, 265], unifying the

local and itinerant pictures of magnetism and postulating a new cause for the Curie-

Weiss-like susceptibility as the interactions of the spatially extended modes of spin

fluctuations [261]. As for the itinerant antiferromagnets, a spin-density-wave model,

based on the Hartree-Fock approximation, has been initially proposed as the underly-

ing principle for the observed magnetic and physical properties [293]. However, when

the importance of spin-fluctuations was realized for the case of ferromagnetic cou-

pling [264, 265], similar considerations were investigated for antiferromagnets [151].
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(a) (b)

(c) (d)

ZrZn2

Figure 2.14: Physical properties of ZrZn2: (a) inverse susceptibility as a function
of temperature [44], (b) magnetization as a function of field [299], temperature-
dependent (c) resistivity and (d) specific heat [412].

While the self-consistent renormalization theory has been successful in explaining the

majority of the phenomena seen in experiments, it includes a number of approxima-

tions [289], some of which are not easily justifiable [266, 289, 365]. While additional

theoretical attempts have been put forth [214,289], a systematic, mathematically rig-

orous theory that quantitatively explains all compounds that lie between the localized

and itinerant limits is still lacking. This can be aided by discovery and characteriza-

tion of new itinerant systems.
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(c)

(b)

(d)

(a)

Sc3In

Sc3.1In

Figure 2.15: Physical properties of Sc3In: (a) Variation of the size of the magnetic
moment as a function of Sc:In ratio [246], (b) susceptibility and inverse susceptibility
as a function of temperature [140], (c) magnetization as a function of field [124], (d)
temperature-dependent magnetization derivative and specific heat scaled by temper-
ature [355].

2.1.9 Search for New Itinerant Magnets

The search for new itinerant magnets is complicated by the drastic differences in prop-

erties of the known systems, which exhibit heavy fermion behavior [194,306,316], co-

existence of superconductivity and magnetism [21,312,320,417], metamagnetic tran-

sitions [5,270,385], chiral order [71,148,211,380], multisublattice magnetism [59,106],

Fermi-liquid [64] as well as spin- and cluster-glass [29, 94, 212] behaviors. Further-

more, only two itinerant magnets do not contain magnetic elements – ZrZn2 [245] and

Sc3In [246]. Quite surprisingly, while both ZrZn2 and Sc3In exhibit Curie-Weiss-like

ferromagnetism [44,124], they differ drastically in their dimensionality [176,213], crit-
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ical scaling behavior [341, 355], and susceptibility to perturbations [25, 140, 341, 355].

This will be described in more detail in Chapters 5 and 4.

Given these discrepancies between seemingly analogues systems, additional

itinerant magnets are needed to develop a comprehensive understanding of itiner-

ant phenomena. Compounds without local moment are particularly convenient for

studying itinerant phenomena as they lack complexity associated with the interplay

between local and itinerant moments. Additionally, ordering temperatures and size

of magnetic moments are typically small, making these systems good candidates for

a quantum phase transition.

Unfortunately, a theoretical basis for a systematic way of finding said com-

pounds does not exist. As mentioned earlier, spontaneous magnetization according to

Figure 2.16: In Sc3In and ZrZn2, Sc and Zr are located across from Zn and In.
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the Stoner criterion is more likely to occur in d band metals (Section 2.1.5). There-

fore, non-magnetic transition metals were surveyed. Additionally, existing itinerant

magnets composed of non-magnetic elements (Sc3In and ZrZn2) are located across

each other on the periodic table (Fig. 2.16), which can possibly lead to enhanced

correlations I, necessary for the fulfillment of the Stoner criterion (Section 2.1.5). In

general, the bigger the difference in electronegativity of two elements, the stronger the

electron-electron correlation is [120]. Consequently, binaries of transition metal ele-

ments located across from each other in the periodic table were examined. For these,

band structure calculations [88,89,328] were analyzed. According to the Stoner crite-

rion (Section 2.1.5), high density of states at the Fermi level is desired. Additionally, a

peak in the density of states near the Fermi surface is indicative of instability towards

a magnetic ground state and has been suggested to lead to magnetism [266]. From

these considerations, analysis of band structure calculations for binary intermetallic

compounds is likely to yield new itinerant magnets. This search was successful in

finding the first itinerant antiferromagnet, composed of non-magnetic constituents –

TiAu – properties of which will be described in Chapter 6.
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2.2 Phase Transitions

2.2.1 Classical vs. Quantum Phase Transitions

Paul Ehrenfest classified phase transitions according to the behavior of the free energy

derivatives and the energy involved in the process:

1. First-order phase transitions: the first derivative is discontinuous, but the sec-

ond one is continuous. Solid to liquid and liquid to gas transitions belong to this

class, exhibiting discontinuous change in the density. These transitions include

latent heat transfer – energy is either released or absorbed during the phase

transition.

2. Second-order phase transitions: the first derivative is continuous but the second

one is discontinuous. Examples include ferromagnetic phase transition during

which the first derivative of free energy – magnetization varies continuously,

while the second derivative – susceptibility – changes abruptly. Other examples

include superconductor and superfluid transitions. A phenomenological theory

of this type of transitions was given by Lev Landau.

3. Infinite-order phase transition: they are continuous, but there is no symmetry

breaking. Some quantum phase transitions belong to this class.

The defining feature of quantum phase transitions is the fact that they occur

at T = 0 K. Classical phase transitions – also referred to as the thermal phase

transitions – are driven by the competition between the energy and the entropy of

a given system. On the other hand, quantum phase transitions occur at absolute

zero and classically the lack of entropy should imply no phase transition. Although

thermal fluctuations cease to exist at absolute zero, quantum fluctuations come into

play. The origin of quantum phase transitions is Heisenberg’s uncertainty principle –
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if the atoms are placed precisely at the sites of a perfect crystalline lattice, then the

momenta of the atoms are uncertain.

Since quantum phase transitions only occur at T = 0 K, the variation of

physical parameter other than temperature will induce the transition. There are

three quantities that can be varied in order to induce a quantum phase transition:

1. Magnetic field

2. Pressure

3. Chemical substitution – doping

The existence of quantum critical points – places where the quantum phase

transition takes place – is hard to predict but could be observed based on physical

properties of the system. Even though quantum phase transitions cannot be measured

directly since the absolute zero is not achievable, the physical properties of materials

at finite temperatures are determined by the properties for the system at absolute

zero, and thus the presence of a quantum critical point can be inferred.

2.2.2 Critical Exponents and Critical Scaling

While Curie (Eq. 2.28) and Curie-Weiss (Eq. 2.40) Laws describe how susceptibility

changes with temperature, behavior of other physical properties as a function of

temperature and field is also of interest. Since changing temperature often results in

a phase transition (from ferro- to paramagnetic state, for example),

Landau theory of phase transitions [390] is a mean-field theory in which an

identical exchange field is experienced by all spins. The free energy for a ferromagnet
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can be written as a power series in M :

F (M) = F0 + a(T )M2 + bM4 + . . . (2.82)

where F0 and b are constants and a(T ) = a0(T − TC) is a function of temperature.

In order to find the ground state energy it is necessary to minimize the free energy:

∂F

∂M
= 0→ 2M(a0(T − Tc) + 2bM2) = 0 (2.83)

Therefore, the non-zero solution of the above equation is given by:

M = ±
√
a0(Tc − T )

2b
(2.84)

Eg. 1.66 shows that the magnetization below the phase transition behaves as

(Tc−T )1/2. The mean-field theory is the simplest type of theory that describes phase

transitions, without taking into account correlations and fluctuations that become

particularly important near the critical temperature above which the magnetic order-

ing vanishes. Therefore, in real systems, the magnetization behaves like (Tc − T )β,

where the exponent β is not necessarily equal to 1/2. This exponent is one of the crit-

ical exponents which give important information about the nature of the phase transi-

tion. Other critical exponents characterize the temperature- and the field-dependence

of the magnetization M , field H and reduced temperature:

t =
T − Tc
Tc

(2.85)

M ∝ tβ for t < 0 (θ > 0) (2.86)
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M ∝ H1/δ for t = 0 (2.87)

χ ∝ t−γ for t > 0 (θ < 0) (2.88)

where β, γ and δ are the critical exponents, whose values depend on the specific

properties of a given system and satisfy following relation:

δ − 1 =
γ

β
(2.89)

The mean-field theory cannot provide an accurate description of systems with

less than four dimensions, thus it is necessary to use the Ising or the Heisenberg

models [42]. The list of the possible models is rather small due to the fact that

the critical exponents are independent of the type of the phase transition, i.e. same

for ferromagnetic-paramagnetic, liquid-gas or a quantum phase transition. For a

continuous phase transition, the critical exponents must depend only on:

1. The dimensionality of the system, d.

2. The dimensionality of the order parameter, D.

3. Whether the forces are short- or long-ranged.

The above assumptions apply only to static critical exponents, i.e. critical

exponents that do not change with time. By comparison, the dynamical critical

exponents characterize time-dependent properties. It is possible to determine critical

exponents for a few particular cases-set of different values of D and d for both short-

and long-ranged forces. For some of the models, solutions already exist [42]:

1. Systems with d = 1 do not exhibit continuous phase transitions.
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2. For systems with d ≥ 4, the mean-field solution should be applied.

3. Most of the cases with long-ranged interactions can be solved with a mean-free

solution.

4. The case with d = 2 and D = 1 is known as the 2D Ising model.

5. The case with D =∞ for any d is known as the spherical model.

The values of critical exponents for those and some other cases are listed in

Table 2.2.

Table 2.2: Critical exponents for various models [42].

Model Mean - field Ising (2D) Ising (3D) Heisenberg

D any 1 1 3

d any 2 3 3

β 1/2 1/8 0.326 0.367

γ 1 7/4 1.2378(6) 1.388(3)

δ 3 15 4.78 4.78

The most common real case corresponds to d = 3 with short-ranged inter-

actions which has not been solved exactly. For this and other cases that cannot be

solved directly, other methods should be used [42].

As mentioned previously, the self consistent renormalization theory took into

account coupling among the spin fluctuation modes in a self-consistent manner [261].

This theory resolved the difficulties of the Stoner theory and predicted quantum

critical exponents [268]. A summary of quantum critical exponents for both antifer-

romagnetic and ferromagnetic 2D and 3D systems in given in Table 2.3 and 2.4.
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Table 2.3: Critical exponents for itinerant systems at the critical point [268].

FM (Q = 0) AFM (Q 6= 0)

3D 2D 3D 2D

1/χQ T 4/3 → C.W. −T lnT → C. W. T 3/2 → C.W. −T/lnT → C.W.

Cm/T -lnT T−1/3 −T 1/2 -lnT

1/T1 Tχ Tχ3/2 Tχ
1/2
Q TχQ

ρ T 5/3 T 4/3 T 3/2 T

Table 2.4: Critical exponents for itinerant systems near a quantum critical point [268].

FM (Q = 0) AFM (Q 6= 0)

3D 2D 3D 2D

Cm/T lnS S1/2 −S1/2 lnS

1/T1 Tχ Tχ3/2 Tχ
1/2
Q TχQ

(ρ− ρ0)/T 2 S1/2 S S1/2 S

2.2.3 Arrott and Arrott-Noakes Analysis

The Curie temperature TC at which the material orders ferromagnetically cannot be

determined unambiguously. While an estimate (θW ) can be extracted from Eq. 2.40

by fitting the χ(T ) data to the Curie-Weiss law, fluctuations associated with the

critical point do not allow for a good fit around TC .

The Arrott-plot technique was first introduced by A. Arrott in 1957 [22], and

is widely used to determine TC from the field-dependent magnetization data. The

method, derived independently by A. Arrott and K. Belov, is based on the Landau

theory of phase transitions [23].

The free energy of a magnetic system will be decreased when a magnetic field

is applied, as compared to the zero-field case (Eq. 2.82):

F (M) = F0 + a(T )M2 + bM4 −MH (2.90)
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T = Tc

Ferromagnetic 
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Paramagnetic 
state : T > Tc

TM0

χ0

Figure 2.17: Arrott plot with the critical isotherm represented by a red line passing
through the origin.

Minimizing the free energy results in the following temperature-magnetization

relationship:

H

M
= 4bM2 + 2a0(Tc − T ) (2.91)

It can be seen from the above equation, that plotting H/M as a function of

M2 for various T values, will result in parallel lines, all with the same slope of 4b.

Those isotherms are referred to as the Arrott plots. The isotherm that corresponds

to the Curie temperature TC should pass through the origin, yielding an accurate

value of TC (Fig. 2.17). Unfortunately, this method can only be applied to systems

that exhibit the mean-field behavior. It relies on the fact that critical exponents,
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mentioned in Section 2.2.2, have following values:

• β = 0.5, describing how the ordered moment grows below the Curie temperature

• δ = 3, describing the curvature of M(H) at TC

• γ = 1, describing the divergence of magnetic susceptibility at TC

In order to extend the Arrott technique to non-mean-field cases, it is necessary

to modify the equation of state in the following manner:

(H
M

)1/γ

=
T − Tc
T1

+
(M
M1

)1/β

(2.92)

where T1, M1, β and γ are parameters to be determined from fitting the data and

this is known as the Arrott-Noakes technique [24]. Similarly to the regular Arrott

plot technique, the Arrott-Noakes procedure will yield values of TC , spontaneous

magnetization M0 and critical exponents β, γ and δ. The relationships between M ,

H and the reduced temperature t are given for three separate regions by Eqs. 2.86 -

2.88, as before. However, in this case, exponents can have values different from those

expected within mean-field description.

It is important to note, that in order for the Arrott-Noakes analysis to be

consistent, it is necessary to satisfy following conditions simultaneously:

• The Arrott-Noakes isotherms must be linear at high fields and evenly spaced in

reduced temperature t.

• In the Arrott-Noakes plot, the critical isotherm must pass through the origin

and be linear for the whole field range.

• Scaling in |M |/|t|β vs. H/|t|δγ plot should occur, thus when plotting |M |/|t|β

vs. H/|t|δγ the isotherms should collapse onto two diverging curves – one below

the Curie temperature and one above the Curie temperature.
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• The critical exponents must obey Eq. 2.89.

• The value for the Curie temperature TC should be consistent between scaling,

modified Arrott and power-law fitting methods [24].

An comparison between Arrott and Arott-Noakes analysis in Sc3.1In is pro-

vided in Chapter 4. The Arrott-Noakes approach indicates non-mean field nature

of Sc3.1In, with critical exponents very different from those seen in another itinerant

ferromagnet without magnetic constituents ZrZn2.
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2.3 Spin-Glass Systems

A spin-glass is defined as a random, mixed-interacting, magnetic system characterized

by a random, yet cooperative, freezing of spins at a well-defined temperature Tf

below which a highly irreversible, metastable frozen state occurs without the usual

long-range spatial magnetic order [273]. The name spin-glass was given because of

the similarity with the ordinary glasses which freeze without any long range atomic

order. Cluster-glass materials are glassy systems in which the spins exhibit short

range correlations within a cluster, while the clusters themselves show the cooperative

freezing characteristic of spin-glasses [40,273].

The first ingredient necessary for glassiness is frustration. The term frus-

tration has been introduced to describe systems in which a spin (or a number of

spins) cannot find an orientation to fully satisfy all of the interactions between the

neighboring spins [95]. A simple example of a frustrated lattice in two dimensions

is a triangular one, shown in Fig. 2.18(a). Once two spin orientations are chosen,

antiferromagnetic coupling cannot be satisfied for all three spins. Moreover, both

choices have the same exchange energy, resulting in a degenerate ground state with

a finite entropy even at zero temperature [273]. Similar problem occurs in the case

of a square lattice with ferromagnetic nearest neighbor and antiferromagnetic next-

nearest neighbor interactions, as shown in Fig. 2.18(b). Coupling for more than two

spins cannot be satisfied, no matter which spin configuration is chosen. For three

dimensional systems, frustration is observed in pyrochlore lattices, where antiferro-

magnetically coupled spins are located on the corners of a tetrahedron. Frustrated

systems can present a wide range of physical properties due to many ground state

configuration options, as compared with ordered systems [16].

While frustration can create degenerate and metastable ground states, it is not

sufficient to generate a spin-glass. It must be accompanied by disorder or randomness.
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Figure 2.18: Two examples of frustrated lattices: (a) a triangular lattice with anti-
ferromagnetic coupling and (b) a square lattice with ferromagnetic nearest neighbor
and antiferromagnetic next nearest neighbor coupling.

Randomness is created either by a random site occupancy or by irregular bonds

between magnetic ions. Mixed ferro- and antiferromagnetic interactions are essential

to install the competition and to ensure cooperativeness of the freezing process [273].

First observations of spin-glass properties were made in dilute magnetic al-

loys such as CuMn [274,321], AgMn [230] and AuFe [63,275]. Random distribution of

magnetic impurities in a non-magnetic matrix affects the sign and strength of interac-

tions, giving rise to competing interactions and frustration. The physical properties

depends greatly on the concentration regimes, shown in Fig. 2.19. For the very di-

lute region, there are isolated impurity-conduction electron couplings which result in

a Kondo effect (WM region). The TK = Tf (x0) is taken as the concentration limit x0,

below which the Kondo effect plays a large role. For the next concentration region,

conduction electron screening is eliminated and spins start to interact in pairs (SG

region). Physical properties are universal functions of the concentration scaled pa-
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Figure 2.19: Different types of magnetic behavior for various concentration regimes
in a canonical spin-glass [273].

rameters T/x and Hext/x with Tf ∝ x [273]. The scaling laws breakdown around 0.5

%, where Tf ∝ x2/3. As the concentration of magnetic impurities is increased, there

is a greater statistical chance of the impurity being first or second nearest neighbor to

another impurity. Consequently, magnetic clusters can form as a result of concentra-

tion fluctuations in a random alloy [273]. When the magnetic behavior is dominated

by the presence of such clusters, the material is referred to as a mictomagnet or a

cluster-glass [273]. An example of clusters embedded in a spin-glass matrix is shown

in Fig. 2.20.

For higher concentrations x, the percolation limit is reached: the concentra-

tion of magnetic ions is high enough to create a continuous path of nearest neighbor

spins from one end of the system to another, resulting in long range magnetic order

(LRO region). While Fig. 2.19 provides an estimate for the concentration limits for

various regimes, it is important to note that those are not clear boundaries but rather

gradual transitions.

For most dilute magnetic alloys, the dependence of magnetic behavior on the
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Figure 2.20: Spin-glass with micromagnetic clusters in a 2D square lattice [273].

xxp xx0
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T

Figure 2.21: A schematic T – x phase diagram for a dilute magnetic alloy [273].
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concentration decribed above can be summarized in a phase diagram, shown in Fig.

2.21. The average Kondo temperature TK decreases with concentration. For TK > Tf ,

the Kondo effect prevents strong impurity-impurity interactions (WM region). For

x > x0, the spin-glass regime appears, developing Tf that is linearly dependent on x

(SG region) . When the percolation threshold is surpassed, there is a nearly linear

increase of TN or TC with concentration as a long-range ordered state is formed and

strengthened (LRO region) [273].

2.3.1 Physical Properties of Spin- and Cluster-glasses

As it is expected for a collections of randomly oriented spins, for T >> TF , a param-

agnetic state is observed. It is followed by a region in which interactions between spins

give rise to locally correlated clusters or domains which can rotate as a whole with

the external field (T > Tf ). In an applied magnetic field, a Curie-Weiss behavior is

observed (Eq. 2.40). As T → Tf , various spin components begin to interact with each

other over a long range since thermal fluctuations are diminished [273]. Deviations

from the Curie-Weiss law are observed, indicating the dominance of short-ranged

correlations. The value of θW , extracted from the Curie-Weiss fit, identifies ferromag-

netic and antiferromagnetic clustering, as shown in Fig. 2.22 [259]. For the alloys of

Au and Fe, the coupling changes from antiferromagnetic to ferromagnetic as the Fe

concentration increases [259].

Closer to T = 0 the system seeks its ground state configuration, resulting in

a cooperative frozen state for T < Tf . As mentioned previously, a number of ground

states is possible which means that the system can be trapped in a local rather than

an absolute minimum [273]. One of the main signatures of spin-glass materials, a

bifurcation between ZFC and FC magnetization, which occurs around the freezing

temperature, is another indication of the ground state degeneracy [273]. This can
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be seen in Fig. 2.23(a) for a Cu-doped Mn [277] and Fig. 2.23(b) for Ca-doped

LaCoO3 [56]. The FC magnetization is fully reversible while the ZFC one is not and

is highly sensitive to the rate of temperature increase dT/dt [273]. These effects occur

even when the applied field is small, confirming the existence of a multidegenerative

ground state. For cluster- glasses, the value of the FC magnetization for T < Tf

is generally higher than the ZFC one [273]. This difference can be seen from Fig.

2.23, where the susceptibility data for a spin-glass are given in (a) while that for

a cluster-glass compound are given in (b) [56, 277]. Another difference between the

two is that the freezing temperatures, defined as maxima in the DC ZFC χ(T ) data,

are generally lower than the irreversibility temperatures Tirr between the ZFC and


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Figure 2.22: The inverse susceptibility fits for various concentrations of Fe in Au.
The dashed lines are linear extrapolations of the Curie-Weiss fit, from which values
of θW are extracted. Negative values of θW indicate antiferromagnetic coupling while
those for ferromagnetic coupling are positive [259].
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Figure 2.24: (a) Evolution of cusp in AC susceptibility with application of field for
Au1−xFex [63]. (b) Temperature dependent χ′ and χ′′ for Eu0.2Sr0.8S in various
frequencies [165]. (c) Shift in the position of the cusp as a function of frequency for
Cu99.06Mn0.94 [272].



60

FC data for cluster-glasses. Additionally, lack of saturation in field-dependent M(H)

data at high magnetic fields is observed for the cluster-glass materials.

The value of the freezing temperature Tf is decreased with increasing field,

as the field forces the spins to align with its direction, lifting the degeneracy caused

by frustration, an example is given in Fig. 2.24(a) for Au1−xFex [63]. To avoid

erroneous Tf estimates, AC susceptibility measurements can be done instead. The

AC susceptibility method (Section 3.3) requires very small applied field which will

not affect the cusp, as the applied field smears the cusp to a broad maximum for DC

susceptibility data [273]. An example of the imaginary and real component of the

AC susceptibility for Eu0.2Sr0.8S is shown in Fig. 2.24(b) [165]. For temperatures

higher than Tf , χ
′ and DC susceptibility χ coincide. For low temperatures the AC

susceptibility χ′ is described by [273]:

χ′(T ) = χ′(0) + bT n (2.93)

with n ≈ 2 for metallic spin-glasses. Thus χ′(T ) extrapolates to a finite value for

T → 0. Another characteristic of spin-glass materials is the frequency dependence

of the cusp at Tf in the real part of the AC susceptibility [273]. As the frequency is

increased, the freezing temperature Tf achieves higher values, since higher frequencies

are frozen out at higher temperatures [273]. In order to quantify the frequency shift

following expression is typically used:

δ =
∆Tf (f)

Tf (f)∆(logf)
(2.94)

While a similar frequency dependence can also be found in superparamagnets,

the δ values of 0.1 or less are typically observed for spin-glasses (Table 2.5), which are

much smaller than those seen in superparamagnets [273]. Another way to differentiate
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Table 2.5: Frequency shifts δ for various spin-glasses [273].

System
∆Tf (f)

Tf (f)∆(logf)

Cu1−xMnx 0.005

Au1−xMnx 0.0045

Ag1−xMnx 0.006

Pd1−xMnx 0.013

Ni1−xMnx 0.018

Au1−xFex 0.010

La1−xGdxAl2 0.06

Eu0.2Sr0.8S 0.06

Fe1−xMgxCl2 0.08

spin-glasses and paramagnetic is to apply the Arrhenius law:

f = f0e
− Ea
kBTf (2.95)

where f is the driving frequency of the AC measurements, kB is the Boltzmann

constant, f0 is the characteristic relaxation frequency of a single spin (or cluster) and

Ea is the activation energy or the energy barrier separating the states [273]. If the

values of the freezing temperature Tf are recorded as the function of frequency f

and fitted with the Arrhenius law, unphysical values of f0 (10−200 s) and Ea (4400

K) are obtained. This distinguishes spin-glasses from superparamagnets, where the

Arrhenius law does indeed hold and gives physically realistic values.

Since the increase of Tf with frequency mimics what happens if an ordinary

glass becomes more viscous, another method of analysis is extracted from the theory

describing real glasses. The Vogel-Fulcher law is empirical which characterizes the

viscosity of supercooled liquids [119,273,343,371]:

f = f0e
− Ea
kB(Tf (f)−T0) (2.96)
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here Ea is the activation energy and T0 is the Vogel-Fulcher temperature that is often

interpreted as a measure of intercluster interaction strength [15, 273, 332, 360]. A

generally better agreement is seen for the Vogel-Furcher fit.

Another analysis of the freezing temperature evolution with frequency is taken

from the theory for dynamical scaling near a phase transition [273]. Conventionally,

the critical relaxation time τ = 1/f is related to the correlation length ξ as τ ∝ ξz.

Since ξ diverges with temperature, τ ∝ ξz and ξ ∝ (T/(T − Tc))
ν . A power-law,

established by Hohenberg et. al. [160], is frequently used to describe glassy materials

[40,273]:

τ = τ0

(Tf (f)

Tf (0)
− 1
)−zν

(2.97)

where τ0 is the characteristic relaxation time of a single spin (or cluster), ν is the criti-

cal exponent which describes the growth of the correlation length ξ [ξ = (Tf (f)/Tf (0)−

1)−ν ], and z is the dynamic exponent which describes the evolution of the relax-

ation time. Typical values for the relaxation time are around 10−12 s, while Tf (0)

is slightly lower than the freezing temperature Tf , extracted from DC data. Empir-

ically, the zν values for glassy systems have been observed to fall within the range

2 ≤ zν ≤ 14 [371].

While both DC and AC susceptibility display clear features corresponding to

the transition into the frozen state, this is not the case for the specific heat data.

While another estimate of Tf (0) from specific heat would have been useful, the lack

of a clear peak or singularity in the specific heat data does not allow for it. A broad

cusp in the temperature-dependent specific heat Cp(T ) at T ≈ (1.2 − 1.4) Tf (0) is

generally observed, as shown in Fig. 2.25(a). This clearly differentiates spin-glass

freezing from a conventional phase transition. With the transition into the glassy
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Figure 2.25: (a) Specific heat in various external fields for Cu99.7Mn0.3 [53]. (b)
Specific heat per Eu atom divide by kBT as a function of temperature T . The inset
shows the behavior on a log-log plot [255].

state, the entropy is removed as the temperature is decreased:

Sm =

∫ T

0

Cm
T
dT = R ln(2S + 1) (2.98)

The constant amount of entropy Sm is drastically diminished even above the

freezing temperature Tf . Even more is lost due to the formation of clusters, as the

material enters the glassy state [273]. The loss of entropy explains the lack of a

distinct feature at Tf .

2.3.2 Theoretical Description of Spin-glass Systems

It is important to note that the transformation of a spin-glass that occurs at the

freezing temperature requires a different theoretical description, as compared with

regular phase transitions. This process involves a complicated interplay between



64

randomly distributed and frustrated spins which has been the subject of extensive

theoretical as well as experimental investigations.

The transition into a frozen state is inherently different from a typical phase

transition, therefore a traditional order parameter can no longer be used. Instead,

Edwards and Anderson focused on the time order. If each spin Si becomes locked in

to a preferred direction at site i, its orientation will remain the same tomorrow as it

was today [273]. The time autocorrelation function was introduced:

q = lim
t→∞
〈〈Si(0) · Si(t)〉T 〉C (2.99)

where the inner angular brackets represent a thermal averaging and the outer a con-

figurational average over all spins. The evolution of q with temperature T can be

determined using the condition ∂F/∂q = 0, where F (q) is the free energy. The

derivation of the free energy starts with a hamiltonian for a random-bond 3D square

lattice:

H = −
∑
i

jJijSi · Sj −
∑
i

Hi · Si (2.100)

The spins on site i and j interact via exchange coupling Jij and are randomly

chosen using a Gaussian distribution with a variance ∆:

P (Jij) =
1√

2π∆2
e−

J2
ij

2∆2 (2.101)

Consequently, the free energy is given in terms of the partition function Z:

F = −kBT lnZ = −kBTTr
(
e
−H
kBT

)
(2.102)
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Now the free energy can be obtained in the mean-field approximation, assum-

ing 〈〈Sαi S
β
j 〉T 〉 = 0 and setting q = 〈〈Si〉2T 〉C [273]. As mentioned above, q(T ) can be

determined from ∂F/∂q = 0, but it is only solvable in the limits T → 0 and T → Tf ,

resulting in:

q(T → 0) = 1−
( 2

3π

)1/2 T

Tf
(2.103)

q(T → Tf ) = −1

2

[
1−

(Tf
T

)2]
(2.104)

Using the fluctuation-dissipation theorem, the susceptibility can be written as:

χ(T,H = 0) =
(gµB)2

3kBT

∑
ij

[
〈〈S2

j 〉T 〉C − 〈〈Si〉2T 〉C
]

(2.105)

Since there are no short- or long-range correlations, all i 6= j terms must be

set to zero [273]. This results in:

〈〈S2
i 〉T 〉C = 1 (2.106)

〈〈Si〉2T 〉C = q (2.107)

which in turn simplifies Eq. 2.105 as:

χ(T,H = 0) =
(gµB)2

3kBT
(1− q(T )) ≈ χac(T ) (2.108)

For H = 0, the limiting values of q(T ), taken from Eqs. 2.103 and 2.104, can
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Figure 2.26: (a) Susceptibility and (b) specific heat versus reduced temperature cal-
culated from the Edwards and Anderson model for two spin values [112].

be substituted into the above equation:

χac(T ≤ Tf ) =
(gµB)2

3kBT
−O(Tf − T )2 (2.109)

χac(T → 0) =
(gµB)2

3kBT

( 2

3π

)1/2 T

Tf
= const (2.110)

This explains the asymmetric cusp in the susceptibility and the constant χ at

very low temperatures. However, the Edwards and Anderson model also predicts a

cusp in the specific heat at the Tf , which contradicts experimental observations [273].

The mean-field approximation, applied by Fischer [112], compared classical (S =∞)

and quantum (S = 1/2) spins. The results for the calculated susceptibility and

specific heat are shown in Fig. 2.26: the χ(T ) for S = 1/2 agrees with typical

experimental results while S =∞ is more reminiscent of a generic specific heat data

[112]. This clearly indicates that there is a problem with the mean-field approximation
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of the Edwards and Anderson model. Additionally, the Edwards-Anderson model is

not solvable for the whole temperature region, away from T = 0 or T = Tf , leaving

the description of the frozen state incomplete.

Another variation of the mean-field approximation was proposed by Sherring-

ton and Kirkpatrick [330], who assumed that every spin couples equally with every

other spin [273]. This means that the probability distribution P (Jij) is assumed to

be the same for all i− j pairs of spins, independent of how far they are apart:

P (Jij) =
1√

2π∆′2
e−

(Jij−J
′
0)2

2∆′2 (2.111)

the scaling of variance δ′ = ∆/N1/2 and mean J ′0 = J0/N is required in order to

account for infinite-range interactions [273]. The mean J ′0 has been included to reflect

the possibility of ferromagnetism. Repeating some of the calculations done for the

Edwards-Anderson model, expressions for the spin-glass order parameter q and the

ferromagnetic order parameter m are obtained:

q =
1√
2π

∑
e
−z2

2 tanh2
(∆
√
q

kBT
z +

J0m

kBT

)
dz (2.112)

m =
1√
2π

∑
e
−z2

2 tanh
(∆
√
q

kBT
z +

J0m

kBT

)
dz (2.113)

For given ratios of J0/∆, q(T ) and m(T ), the above expressions are used to

determine the magnetic phase diagram, shown in Fig. 2.27(a). Three possible phases

are predicted from the Sherrington-Kirkpatrick model for Ising spins interacting via

an infinite-ranged Gaussian distribution of exchange forces centered at J0 with width
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Figure 2.27: (a) Magnetic phase diagram for Ising spins interacting via an infinite-
ranged gaussian distribution of exchange forces with variance ∆ and mean J0. (b)
The AC susceptibility as a function of temperature, calculated from the Sherrington-
Kirkpatrick model: J0/∆ is 0 and 0.5 for upper and lower curves, respectively. The
field H = 0 for solid curves and H = 0.1J0 for the dashed ones [330].

∆ [330]. The AC susceptibility can be computed from q(T ):

χ(T ) =
1− q(T )

kBT − J0(1− q(T ))
(2.114)

The evolution of χ with field can be calculated by including the applied field

H in to the hamiltonian in Eq. 2.100. This behavior is shown in Fig. 2.27(b), for

which J0/∆ = 0 and 0.5 as well as H = 0 and 0.1∆ are considered [273]. As observed

in experiments, the AC susceptibility data show a cusp which becomes rounded and

shifts downward in a DC field. The agreement for the specific heat case the agreement

is not as good, as a cusp is predicted by the Sherrington-Kirkpatrick model along with

an unphysical negative value of the entropy at T = 0.

The difficulties observed in the Sherrington-Kirkpatrick model called for addi-

tional investigations: Almeida and Thouless showed that the Sherrington-Kirkpatrick

solution is unstable at low temperatures for both spin-glass and ferromagnetic phases

[91]. The stability limit is given by a phase boundary, known as the AT line, which
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Figure 2.28: (a) The AT line or the H − T phase diagram illustrating the stability
limits of the Sherrington-Kirkpatrick solution for the case of J0 = 0 [91]. (b) Phase
diagram for vector spins interacting with infinite-ranged distribution (J0 is the mean
and ∆ is the width of variance) [121].

marks the onset of freezing of the spin component longitudinal to the field [40]:

HAT (T )

∆J
∝
(

1− T

Tf

)3/2

(2.115)

The instability line of the Sherrington-Kirkpatrick solution for the spin-glass

state extends all the way from Tf down to 0, as depicted in Fig. 2.28(a) [91]. The ex-

perimental consequence is that below the stability line irreversibilities in the magnetic

properties should appear, which, as mentioned previously, are the decisive character-

istic of a frozen spin-glass state [273].

For non-Ising vector spin-glasses with transverse spin components, additional

order parameters need to be considered. Gabay and Toulouse [121] extended the

Sherrington-Kirkpatrick solution to Heisenberg spin-glasses, which resulted in another
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phase boundary, also known as the GT line [273]:

HGT (T )

∆J
∝
(

1− T

Tf

)1/2

(2.116)

The GT line describes the freezing of the transverse spin component. The

resulting phase diagram is shown in Fig. 2.28(b). In addition to the spin-glass, para-

and ferromagnetic phases seen in the case of the Ising spins (Fig. 2.27(a)), two new

regions are observed - M1 and M2. These are mixed states, where spin-glass and

ferromagnetism coexist [273].
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2.4 Superconductivity

Materials can be classified in terms of how well they conduct electricity. The idea

that freely moving conduction electrons make a metal a good conductor was first

developed by Drude in 1905 [20]. While the Drude model did not take into account

wave-like properties of electrons, the formula for the conductivity of metals remains

correct:

σ =
ne2τ

m
(2.117)

where m is the effective mass of the conduction electrons, e is the electron charge,

and τ is the average lifetime for free motion of an electron between collisions with

impurities or other electrons [20]. Since resistivity ρ is the reciprocal of conductivity

σ, ρ can be expressed as:

ρ =
m

ne2τ
(2.118)

Resistivity depends on temperature mainly via different scattering processes,

which alter the mean life-time τ . In a typical metal, there are three main scattering

processes: scattering by impurities, by electron-electron interactions, and by electron-

phonon collisions [20]. While the resistivity of a typical conductor decreases as a

function of temperature, the minimum value is limited by impurities and other defects:

even at temperatures close to the absolute zero, conductors show some resistance.

According to Mattheissen’s rule [248], the overall resistivity can be written as:

ρ = ρ0 + ρph(T ) + ρel(T ) + ρsd (2.119)
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Figure 2.29: Resistivity of a typical conductor (dashed line) and a superconductor
(solid line) [231].

The temperature-independent residual resistivity ρ0 is caused mainly by electron-

impurity and electron-defect scattering. All other terms are temperature-dependent:

ρsd is caused by spin disorder, ρph(T ) (∝ T at high T and ∝ T 5 at low T ) describes

lattice scattering, and ρel (∝ T 2) represents electron scattering. A typical resistivity

plot for a conductor and a superconductor is shown in Fig. 2.29. The resistivity above

Tc was chosen to be considerably higher for a superconductor in order to showcase

an important trend: regular conductors do not become superconductors while many

poor conductors are good superconductors [231]. High resistivity above Tc is caused

by strong electron-phonon interactions, resulting in a high electron scattering rate.

The same interaction is responsible for electron pairing in the superconducting state.

In superconducting materials, the electrical resistivity disappears completely below

the critical temperature Tc, allowing an electric current with no power source to flow

indefinitely within a loop of superconducting wire (no change will be observed in times

less than 101010
years [372]). For comparison, the age of the universe is 109 years [80].
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Figure 2.30: (a) Schematic diagram of the exclusion of magnetic flux from interior
of a superconductor [372]. (b) Distribution of magnetic field lines around the su-
perconductor below and above the critical temperature Tc. (c) A Nd-based magnet
levitating above a YBa2Cu3O7 pellet, cooled with liquid N.

The phenomenon was first observed by H. Kamerlingh Onnes in 1911 while he was

testing the validity of Drude model at low temperatures using Hg (since Hg could be

purified better than Pt, Au, or Cu). The complete disappearance of resistivity below

4 K was unexpected and its observation would not have been possible if it had not

been for the significant breakthroughs in cryogenic research made by J. Dewar, G.

Calude and H. Kamerlingh Onnes.

Because of the technical difficulties with cooling superconductors below their

transition temperatures, it took twenty-two years to discover the next hallmark prop-

erty of superconductors – perfect diamagnetism, first observed by Meissner and

Ochsenfeld in 1933 [254]. As the sample is cooled below the critical temperature,
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it becomes a perfect diamagnet with χ = −1/4π (Fig. 2.30(b)). Since the critical

temperature of YBa2Cu3O7 (Tc = 93 K [372]) is above the boiling point of liquid

nitrogen (77 K), it is possible to observe the Meissner effect by placing a Nd magnet

on top of a N-cooled YBa2Cu3O7 pellet, as shown in Fig. 2.30(c).

As shown in Fig. 2.30(a), the magnetic field has a finite penetration depth

λ (typically on the order of 500 Å ), which means that perfect diamagnetism can

only be observed in bulk samples. The penetration depth λ, along with supercon-

ducting order parameter Φ and coherence length ξ [372] were first introduced as part

of the phenomenological Ginzburg-Landau theory, proposed in 1950 [136]. The GL

approach provides a reasonable explanation of several macroscopic properties of su-

perconductors without any assumptions from the microscopic point of view. The

London equations, which describe microscopic electric and magnetic fields, estimate

the penetration depth as:

λL(0) =

√
m∗

µ0ne2
(2.120)

where m∗ is the electron’s effective mass and n is the total density of conduction

electrons. Another characteristic length – coherence length ξ – was defined by Pippard

[300] and later included in the Ginzburg-Landau theory, can be calculated as:

ξ(0) =
0.18~kF
kBTcm∗

(2.121)

The Ginzburg-Landau theory also defines a dimensionless, temperature-independent

parameter κ, known as the Ginzburg-Landau parameter:

κ =
λL(0)

ξ(0)
(2.122)
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In 1957, it was shown by Abrikosov [7] that the Ginzburg-Landau parameter κ

is related to the surface energy between the normal and superconducting phases. This

energy is positive for κ < 1/
√

2 (Type I superconductor) and negative for κ > 1/
√

2

(Type II superconductor) [372]. The GL parameter is frequently used to classify

superconductors into Type I and II. All elemental superconductors are Type I, ex-

hibiting low critical temperatures, with the highest Tc of 9.2 K for Nb [20]. While the

majority of composite superconductors are classified as Type II, only a few Type I

compounds are known: LaRhSi3 [17], YbSb2 [408,418], Ag5Pb2O6 [413], ZrB12 [376],

Rh2Ga9 and Ir2Ga9 [393]. The physical properties of newly discovered Type II super-

conductors ScGa3 and LuGa3 are discussed in Chapter 9.

(a)

(c)

(b)

(d)

Figure 2.31: Typical field-dependent magnetization M(H) curves of (a) Type I and
(b) Type II superconductors. Temperature dependence of critical field(s) for a (c)
Type I and (d) Type II superconductor [20].
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The entrance into the diamagnetic state is different for Type I and Type II

superconductors, as shown in Fig. 2.31(a) and (b). Moreover, the reversible nature of

the Meissner effect implies that superconductivity can be destroyed if a high enough

magnetic field Hc is applied [372]. For each temperature, there is a well-defined critical

field Hc, at which superconductivity disappears. While the transition at zero field is

of second order, the transition in the presence of field is of first order because there is

a discontinuous change in the thermodynamic state of the system and the associated

latent heat [372]. This is evident from the increased magnitude of the specific heat

jump at Tc observed in Type I superconductors, with an example shown in Fig. 9.4(a)

and (b) for ScGa3 and LuGa3. For materials with κ > 1/
√

2, Abrikosov showed

that instead of a discontinuous breakdown of superconductivity in a first-order phase

transition at Hc, there was a continuous increase in flux penetration starting at lower

critical field Hc1 and reaching a maximum value at the upper critical field Hc2 [7].

For Hc1 < H < Hc2, the magnetic field lines penetrate inside the superconductor

forming a vortex structure that consists of small normal state domains, surrounded

by the superconducting phase. This state is known as a mixed or Abrikosov state,

disappearing gradually as the field is increased to Hc2 (Fig. 2.31(d)).

Fig. 2.31(c) and (d) shows this universal curve of the temperature dependence

of Hc vs. T for both Type I and Type II superconductors. Empirically, it was found

that the evolution of the critical temperature with field can be approximated by a

Werthamer-Helfand-Hohenberg (WHH) parabolic law [372]:

Hc(T ) = Hc(0)
[
1−

( T
Tc

)2]
(2.123)

The effect of the external field on the sample depends on sample’s shape.

For example, for a long thin cylinder or sheet, the field everywhere on the surface of

the sample Ha is the same as the applied field (Fig. 2.32(a)). This, however, is not
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(a) (b)

Figure 2.32: The distribution of magnetic field lines around a sample for a long, thin
cylinder (η = 0) (a) and a sphere (η = 1/3) (b) [372].

true for a sphere, shown in Fig. 2.32(b). To account for various sample geometries,

a demagnetizing factor η was introduced [372]. The demagnetizing factor η ranges

from zero (for a long, thin cylinder) to unity for an infinite flat slab in a perpendicular

field:

1− η < Ha

Hc

< 1 (2.124)

For typical samples, a value of η = 1/3 (sphere) or η = 1/2 (cylinder) is generally

used.

The next breakthrough in the theoretical understanding of superconductors

was the development of the Bardeen-Cooper-Schrieffer (BSC) theory, published in

1957 [32]. It was shown that the phonon-mediated electron-electron interactions cre-

ate bound electron pairs, also known as Cooper pairs, which comprise the supercon-
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Figure 2.33: Progress in development of superconducting materials [286].

ducting charge carriers [372]. The BCS theory was the first microscopic theory that

explained almost all of the unusual physical properties of superconductors known at

that time, including the Meissner effect, zero resistivity, critical field and tempera-

ture, jump in the specific heat, and superconducting gap. The superconducting gap

∆ was defined in terms of the minimum energy Eg, needed to break-up a Cooper pair:

Eg = 2∆(T ) (2.125)

2∆(0)

kBTc
= 3.53 (2.126)

The above ratio, extracted from the specific heat data, has been experimen-

tally verified in a number of conventional superconductors. Another successful pre-
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diction of the BCS theory is the jump in electronic specific heat at Tc:

Ces − Cen
γT

∣∣∣
Tc

= 1.43 (2.127)

where Ces and Cen are the electronic specific heat in the superconducting and normal

states, respectively, and γ is the Sommerfeld coefficient. This ratio is frequently

used in order to determine whether or not a superconductor is a conventional one,

i. e. if it can be understood in the theoretical framework of BCS. BCS theory

prompted Josephson’s prediction of a zero voltage supercurrent flowing between two

superconducting electrodes, separated by a weak link [180]. This hypothesis was soon

confirmed experimentally [18], resulting in a variety of applications, one of which is

SQUID magnetometry, described in Section 3.3.

Another milestone was the discovery of the high Tc family of superconduc-

tors in 1986 by J. D. Bednorz and K. A. Müller, who observed superconductivity in

La2−xBaxCuO4 at 35 K [36]. While this Tc was still not high enough for broad practi-

cal applications, the discovery still attracted a lot of interest since a superconducting

state was observed in an insulator. According to McMillan’s theory, the maximum

critical temperature Tc, derived from the BCS theory, could not exceed the limit of

40 K [251]. This was accepted until a compound with Tc of 93 K was discovered

by M. K. Wu and C. W. Chu in 1987 [403]. This material not only contradicted

McMillan’s theory but also made more applications possible, as the superconducting

state was achievable with liquid N, eliminating the need for expensive and techno-

logically challenging liquid He cooling. Since the mechanism of superconductivity

could not be explained within the BCS framework, the cuprates were categorized as

unconventional superconductors.

Further search for high Tc compounds persisted with even more enthusiasm
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as the invalidation of McMillan’s theory opened the possibility for even higher Tc

superconductors. The upper limit of experimentally detected Tc values has risen in

incremental steps, as new families of superconductors were discovered, as shown in

Fig. 2.33. The record for critical temperature was set by HgBa2Ca2Cu3O8+δ with Tc

up to 165 K under pressure [72]. The understanding of superconductivity mechanism

in cuprates is still lacking, with a general consensus that the superconductivity is

associated with spin fluctuations. Another family of superconductors discovered in

2006 [187] are known as pnictides, they exhibit lower critical temperatures compared

to cuprates but are still intriguing as the pair-breaking effect resulting from magnetic

Fe ions was thought to be harmful to superconductivity. Additionally, their behavior

cannot be explained within the framework of BCS, indicating that other pairing

mechanisms rather than the electron-phonon coupling must be at play.



Chapter 3

Experimental and Theoretical Techniques

An important part of sample synthesis and characterization relies heavily on a number

of experimental and theoretical techniques, discussed in the following chapter. The

search for new materials is followed by synthesis design, which is often one of the most

challenging endeavors of the entire process. Physical characterization of structural,

magnetic, thermal, and transport properties is often the initial step toward fully un-

derstanding a given compound. While those measurements can provide considerable

information, additional techniques such as x-ray photoemission spectroscopy, neutron

diffraction, and muon spin relaxation can lead to more in-depth characterization. For

the final step, similar to many other disciplines, a comparison of experimental and

theoretical results is necessary.
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3.1 Sample Preparation

In a single crystal, the constituent atoms are arranged in an orderly manner that

extends in all three spatial dimensions. Because of this periodicity and order, which

give way to reduced strain, a smaller impurity concentration, reduced porosity and

grain boundaries as well as smaller surface to bulk ratio, as compared to polycrys-

talline samples, single crystals allow to better probe the intrinsic properties of a given

material [116]. Additionally, for reactive samples, single crystals can be significantly

less air-sensitive, as compared with polycrystalline ones, due to the formation of a

passivating surface layer [178]. By aligning a single crystal in a certain direction,

with respect to the magnetic field, it is also possible to extract anisotropic informa-

tion. The latter would be lost if the measurement is done on polycrystalline matter,

where the random orientation of microscopic grains averages out any such properties.

Moreover, some macroscopic and microscopic probes can only be utilized with single

crystal material, examples include de Haas-van Alphen effect, as well as many neu-

tron and x-ray scattering experiments [116]. While large crystals are certainly more

desirable, crystals with dimensions of several mm on a side are more than sufficient.

Binary or ternary phase diagrams are the starting point of any growth recipe

design. An example of a Sc-Ga composition dependent melting point phase diagram

is shown in Fig. 3.1. The liquid region, shown in blue, is separated from the solid

and mixed phases by the liquidus line. The compounds are represented by gray

vertical lines, indicating five existing binary phases of Sc and Ga. Two of them –

ScGa3 and Sc5Ga3 – melt congruently, i. e. they can be obtained by mixing Sc

and Ga in the same ratios as those specified by compound’s stoichiometry, heating it

above the melting temperature and then slowly cooling. The other three compounds

are incongruent melters, which means that if the sample growth starts with the same

elemental ratio as the targeted compound, it will result in a mixture of liquid and solid,
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both with different compositions from the starting one. For majority of incongruent

melters, the best preparation method is the liquid flux growth; where the flux can

either be an extra quantity of one of the constituting elements (self flux) or an element

that is not part of the desired compound. While the self flux method is generally

more favorable, given it does not introduce extra elements into the reaction, for some

compounds this is not feasible, either due to high melting temperature or vapor

pressure [116]. When selecting an element as a flux, care must be taken so that the

constituents of the targeted compound do not form any bonds with the flux within the

given composition and temperature range [62]. Low melting metals such as Sn, Bi,

Sb, Ga and In are commonly used, but binary phase diagrams of the flux with each

of the reactants must be consulted. It has been noted, that for congruent melters,

introduction of a new element as a flux is not as risky, given that the congruent

melting compound is likely to precipitate [116].

Growth from high-temperature molten fluxes is the most common technique

for growing small single crystals. While other options such as floating zone, Bridge-

man or Czochralski methods are possible and are widely used by the semiconductor

industry, they are generally more successful for congruently melting compounds and

require substantially more raw material as well as growth time [116]. The growth

temperatures are also typically higher for this techniques, since the melt has to be

heated above the melting temperature of the desired compound, which is frequently

inaccessible in traditional furnaces and sample containers. On the contrary, liquid

flux method allows materials to be grown well below their melting points, producing

less thermal strain and fewer defects [116]. The flux also acts like a purifier, trapping

impurities that would otherwise appear in the crystals [116]. After a homogeneous

molten solution has been obtained, the process of cooling starts. A slow cooling rate,

accessible via a programmable furnace, favors large crystal formation. The draw-

back of the spontaneous nucleation, which governs this type of crystal growth, is the
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Figure 3.1: Phase diagram of ScGa3 [389] with a few features specified on the plot.
The growth recipe for the ScGa3 compound is marked by a red line [357].

possibility of flux inclusions within a crystal, which can be addressed by using an

oscillating temperature profile [203].

Problems also common to other methods include container issues, as sec-

ondary, unexpected reactions could occur between the sample and the container [116].

The choice of container for a particular growth mostly depends on the chemicals that

will be used in a growth, with the most common crucibles being those made out of

alumina (Al2O3) with volumes of 2 (Fig. 3.2) or 5 ml [60–62,113,116,188]. The react-

ing elements are placed in the bottom crucible (growth crucible) with the low melting

elements placed on top of the high melting ones. The growth crucible is covered by

another inverted crucible (catch crucible), that is either filled with quartz wool (Fig.

3.2) or includes an alumina strainer (Fig. 3.2). Additional quartz wool (or quartz
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Figure 3.2: Packing scenario for a flux growth: constituents are combined in an
alumina crucible, sealed in quartz ampoule.

shards) are placed below and above the crucibles in order to minimize the pressure

exerted on the tube, and, given higher thermal expansion coefficient of alumina, as

compared with quartz, to prevent outward pressure by the crucible upon heating [62].

To prevent the sample from reacting with air, the crucibles are sealed in an

amorphous quartz ampoule under inert Ar atmosphere. This is done by first necking

the tube and then sealing it off with a hydrogen-oxygen torch. The maximum tem-

perature of such growth is 1200◦C, as quartz starts to soften at higher temperatures.

The resulting ampoule is placed in a furnace and a controlled method of heating and

cooling is possible via a furnace equipped with a programmable temperature con-

troller. Upon the completion of the growth, extra liquid is decanted by placing the

inverted ampoule in a centrifuge, separating grown crystals from the flux. During

the spin, the quartz wool or the alumina strainer separate the crystals from the flux,

which flows to the bottom of the catch crucible where it solidifies. If the flux solidifies
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around the crystals, it could later be removed mechanically or chemically, by etching

the sample in a water-acid solution. The chemical etching process is complicated

by finding a suitable etchant, one that would attack the flux more quickly than the

crystals [62]. A detailed summary of etchants for various metals is given in Ref. [394].

High vapor pressure can be contained by double-sealing the quartz tube within

a larger tube or by using a metal (Ta, Ni, Nb or Al) instead of a quartz ampoule.

When using a metal ampoule, the alumina strainer can be replaced by a metal one

– a second cap in which small holes have been drilled, placed in the middle of the

sealed tube Fig. 3.2(d). The growth is sealed by welding a metal cap on top of the

metal tube in partial Ar atmosphere using an arcmelter, shown in Fig. 3.5(a).

An example of a self flux growth is the synthesis of ScGa3 and LuGa3 [357],

shown in Fig. 3.1. Chunks of Sc or Lu (Hefa Rare Earth 99.999%) with Ga (Alfa

Aesar 99.9999%) were combined in a ratio of 1:9 using packing method, shown in Fig.

3.2(a). The following temperature profile was used:

R. T.
2 h−−→ 930◦C (2 h)

48 h−−→ 760◦C→ spin (3.1)

Metallic cubic crystals with well-formed facets up to 2×2×2 mm3 in size were ob-

tained. In order to eliminate possible stress and strain in as-grown crystals, cubes of

both ScGa3 and LuGa3 were wrapped in Ta foil (since Ta acts as oxygen getter) and

annealed at 800◦C for a week in a quartz ampoule, partially filled with Ar.

While growth of binary compounds can be somewhat straightforward at times,

this is not always the case. Moreover, the process becomes even more complicated

when the number of reactants is increased. The number of ternary phase diagrams is

much lower and only a limited number of temperature cuts is generally available [389].

In some cases, even though a recipe is optimal for one member of the series, the other

members cannot be grown in the same way. Although the growth of one phase over
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Figure 3.3: Single crystal growth of Sc3In is complicated by high melting temperatures
and short liquedus line [389].

another is governed by their respective stabilities, such data are often not available

and are hard to model reliably, calling for a trial and error approach. While the

accidental growth of undesired secondary phases may appear to be troublesome, it is

often a source of new and interesting materials [62].

Whenever single crystal samples are not available, polycrystalline samples

can be prepared either by arcmelting or solid state reaction. The latter is more

common for oxides or chalcogenides while the former is generally applied to metalloids.

Arcmelting involves weighing out the components in stoichiometric ratios and melting

them with an electric arc in an inert atmosphere, using the arcmelter shown in Fig.

3.5(a). For elements with low vapor pressure, this method yields small mass losses

(< 1%), preserving the correct stoichiometry. Frequently, small crystallites form
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Figure 3.4: Single crystal growth of TiAu is complicated by a large width of formation
and high melting temperature [389].



89

on the surface of arcmelted buttons, big enough to be used for single crystal x-ray

diffraction experiments.

In the case of Sc3In, obtaining single crystals is not possible due to high

melting temperatures and short liquidus line (Fig. 3.3), calling for arcmelting. It has

already been established [246] that the hexagonal Sc3In (space group P63/mmc) forms

non-stoichiometrically around the atomic ratio Sc:In = 3:1. In our studies, presented

in Chapter 4, it was determined that the optimal composition, which yielded the

highest Curie temperature TC and paramagnetic moment µexpPM , was Sc:In = 3.1:1.

Therefore, polycrystalline samples of Lu-doped Sc3.1In (Chapter 4) and Er-doped

Sc3.1In (Chapter 5) were prepared by arcmelting Sc (Cerac 99.99%) with In (Alfa

Aesar, 99.9995%) and Er (Cerac 99.99%) or Lu (Ames Laboratory, 99.999%). The

mass losses for both studies were no more than 0.3 %. The arcmelted buttons were

subsequently wrapped in Ta foil and annealed under inert atmosphere in a quartz

ampoule for over two weeks using following temperature profile:

R. T.
step−−→ 950◦C(96 h)

step−−→ 850◦C (96 h)
step−−→ 750◦C (96 h)

96 h−−→ R.T. (3.2)

Arcmelting was also implemented for the case of TiAu, where high melting

temperatures and large width of formation (Fig. 3.4), did not allow for single crystal

synthesis. Annealing was performed but did not improve physical properties.
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Figure 3.5: The arcmelter, along with a TiAu sample prepared using it (inset).
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3.2 Crystallography and X-ray Diffraction

Solids can be divided into two broad categories with respect to their structure: crys-

talline and noncrystalline [342]. Crystalline materials can be further separated into

those occuring in a single crystal form (the orientation of the crystallographic axes is

the same throughout the sample) and those found to be polycrystalline (the crystal-

lographic axes of individuals grains are oriented independently of each other) [342].

In an ideal single crystal, atoms are arranged in strictly periodic arrays, extending

in all three dimensions, with a well-defined position of each of the atoms that can

be easily determined. The surroundings of any two equivalent atoms are identical,

no matter how far apart they are separated, producing what is known as long-range

crystallographic order [342].

When describing a crystal, it is common to ignore the actual atoms and ions

and focus on the lattice, a three dimensional array of points [86]. The unit cell is

defined as the constituting basis for the crystal lattice, determined by vectors (~a, ~b, ~c)

and the angles between them α = (~b, ~c), β = (~a, ~c), γ = (~a, ~b), as shown in Fig. 3.6.

There are seven types of units cells (and, consequently, lattice systems), which have

different edge lengths and internal angle measures.

Within a unit cell, atoms can occupy different positions: on the corners (sim-

ple), inside the body (body-centered), on the face (face-centered) or on the base

(base-centered). However, not all of the combinations of the crystal systems and lat-

tice centerings are necessary to describe all possible lattices, as several of these are

equivalent to each other. The reduced number is fourteen, as shown in Fig. 3.6.

The lattice can also be thought of as a series of regularly arranged, parallel

rows or planes. A family of planes, members of which are equidistant from one

another, is characterized by three integers (h, k, l), known as the Miller indices [86].
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Figure 3.6: The fourteen Bravais lattices [86].
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Figure 3.7: Planes in a cubic lattice and their Miller indices [144].

These are defined as the reciprocals of the fractional intercepts which the plane makes

with the crystallographic axes. For example, if the Miller indices of a plane are

(h, k, l), then the plane makes intercepts of 1/h, 1/k and 1/l with the axes, and, if

the axial lengths are a, b and c, the actual intercepts would be a/h, b/k and c/l (Fig.

3.7).

One of the best methods used to determine the crystal structure of a given

material is x-ray diffraction. It relies on constructive and destructive interference of

monochromatic x-rays and a crystalline sample, governed by the Bragg’s law:

nλ = 2d sin θ (3.3)

where n is the order of diffraction, d is the spacing of crystallographic planes, λ is the

incident wavelength, and θ is the incident angle [86].
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2

(b)

(c)

(a)

Figure 3.8: (a) The schematic for the Bragg-Brentano diffractometer configuration.
(b) Adjustable slits that control the intensity of incident and diffracted beams. (c)
The path of the x-ray beam in a diffractometer, equipped with a monochromator [144].

In an x-ray diffraction experiment, the layers of atoms in a crystal can be

thought of as a three-dimensional collection of slits, which produce a pattern that

changes with the incident angle. Since diffraction occurs when the wavelength of the

radiation is comparable to the characteristic spacing within the object causing the

diffraction, x-rays, with wavelength λ typically between 0.02 Å and 100 Å, are ideally

suited to probe lattice spacing [86].

The x-rays, produced in the cathode tube are collimated and directed onto the

sample’s surface. The data are taken using Rigaku D/Max diffractometer with CuKα

radiation (λ = 1.5406 Å) and a graphite monochromator, as depicted in Fig. 3.8. As

both the x-ray source and the detector are moved to different angles, corresponding
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intensity is recorded. Samples are typically scanned at room temperature for 2θ

ranging from 5◦ to 90◦, with 0.03◦ step intervals and 3 second collection time for each

step. In order to improve the particle statistics, the sample stage is set to rotate at

60◦/s.
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Figure 3.9: An example of a powder diffraction pattern for ScGa3 with Miller indices
for all peaks [357]. Asterisks represent flux, present on the surface of single crystals.
Inset: the Pm3m crystal structure of ScGa3 [389].

A sample used for powder x-ray diffraction is prepared by grinding either

polycrystalline or single crystals into fine powders. A sample made in such a way

will contain crystallites that are randomly oriented in all possible directions, yielding

a complete diffraction pattern, an example is shown in Fig. 3.9. For every set of

planes, there is a small percentage of crystallites that are properly oriented to diffract,

yielding a diffraction peak with respective Miller indices. The resulting pattern is then
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compared with diffraction patterns expected for various compounds (ICDD-PDF 2012

database), using the MDI Jade 9 software package. Reference to the Miller indices,

extracted from the x-ray diffraction pattern, is used to identify the phase or phases,

present in a sample. Structural refinements are performed using General Structure

Analysis System (GSAS ) software package, allowing for the resolution of relative

amounts of phases (for those with concentration higher than 5% by weight), and

estimate lattice parameters as well as atomic positions.

The hardness of some polycrystalline samples renders powder x-ray diffrac-

tion experiments impossible. Another way of collecting room temperature diffraction

data is to scatter the x-rays off the cross section (about 3 mm in diameter) of cut and

polished specimens. For samples with diameter of about 5 mm, this was done using a

Rigaku D/Max diffractometer with CuKα radiation. For smaller sample size, a more

sensitive alignment is necessary, achievable via a custom 4-circle Huber diffractome-

ter with graphite monochromator and analyzer in non-dispersive geometry, coupled

to a Rigaku rotating anode source producing CuKα radiation (FSU, Siegrist Lab).

For these data, lattice parameter information was extracted using Winprep software

package [347].

Higher resolution diffraction data were collected on the BT-1 powder diffrac-

tometer at the NIST Center for Neutron Research. Collimators of 15′, 20′ and 7′

were used before and after the Cu (311) monochromator (λ = 1.5401 Å) and after

the sample, respectively, and data were collected in steps of 0.05◦ in the 2θ range of

3◦ to 168◦. The resulting patterns were analyzed using GSAS software packages.

In order to obtain single crystal x-ray data (UT Dallas, Chan Lab), pieces

of cut crystals were fixed to thin glass fibers with epoxy, then mounted on the go-

niometer head of an Enraf Nonius single crystal X-ray diffractometer equipped with

a Nonius Kappa CCD detector and a Mo Kα radiation source (λ = 0.72073 Å). All
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intensity data were collected at room temperature. Structural models were obtained

with direct methods using SIR971 and models were refined with SHELXL97.2. Final

models include extinction corrections and anisotropically modeled atomic displace-

ment parameters.
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3.3 Magnetization Measurements

Tunneling of Cooper pairs, predicted in 1962 by B. D. Josephson [180] is the underly-

ing principle of what is now know as the Josephson junction – two superconductors,

separated by an insulating barrier. Shortly after the effect was observed experimen-

tally in 1963 by Anderson and Rowell [18], the Josephson junction found a wide range

of applications as part of superconducting computing circuits with switching times

on the order of picoseconds. An example of such a device is a SQUID (Superconduct-

ing Quantum Interference Device), which is the crucial component of the Quantum

Design (QD) Magnetic Property Measurement System (MPMS), shown in Figs. 3.10

and 3.11. During DC magnetization measurements, a constant field is applied to the

measurement region as the sample is moved through the four coils, shown in Fig. 3.12.

According to Faraday’s law, this induces a current in the coils, which are inductively

coupled to the SQUID sensor, allowing for probing of the magnetic properties of the

sample. The conversion between flux and current is incredibly accurate, capable of

resolving a change in the external magnetic field on the order of 10−15 T, which corre-

sponds to the magnetization detection limit of 10−8 emu [104]. The coil configuration,

frequently referred to as the second-derivative (or second-order) gradient, is effective

in suppressing the noise in the detection circuit, caused by fluctuations in the large

magnetic field of the superconducting magnet [340]. Such configuration is shown in

Fig. 3.12, along with the resulting signal.

As-measured temperature-dependent magnetization data in units of emu are

scaled by mass m (g), field H (Oe) and molecular weight MW (g/mol), in order to

convert them to molar susceptibility with the units of emu/molF.U.:

χ
[emu

mol

]
=
M [emu] ·MW [g/mol]

H[Oe] ·m[g]
(3.4)
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(a) (b)

Figure 3.10: (a) QD MPMS instrument along with the (b) sample holder.

Similarly, the field-dependent data are scaled using the relation 1 µB/atom =

5585 emu/mol, yielding:

M
[ µB

atom

]
=
M [emu] ·MW [g/mol]

5585 ·m[g]
(3.5)

Since for some samples hysteretic behavior can be observed, both zero-field

cooled (ZFC) and field-cooled (FC) DC magnetization measurements are generally

performed. The temperature range of MPMS in a standard configuration is 2 to

400 K. For higher temperatures, the magnetization data were collected using the

Vibrating Sample Magnetometer option in a QD Physical Property Measurement

System (PPMS) equipped with an oven (SUNY Stony Brook, Aronson Lab), with

maximum temperature limit of 800 K. For temperatures under 400 K, the samples

are mounted in a plastic straw, as shown in Fig. 3.12, while for higher temperatures,
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Figure 3.11: (a) Main components of the MPMS system along with (b) the MPMS
magnet [340].

the samples are mounted in a brass holder or wrapped in aluminum foil. Whenever

possible, temperature- and field-dependent magnetization measurements are recorded

with the magnetic field H parallel or perpendicular to the crystallographic axes a, b

or c in order to check for anisotropic properties.

While fields up to 7 T are readily available using the QD MPMS system,

higher fields are provided by a 65 T short-pulse magnet at National High Magnetic

Field Laboratory in Los Alamos. The pulsed-field magnetization experiments use a 1.5

mm bore, 1.5 mm long, 1500-turn compensated-coil susceptometer, constructed from

50 gauge high-purity copper wire [137]. When a sample is within the coil, the signal

is V ∝ (dM/dt), where t is the time. Numerical integration is used to evaluate M .

Rod-like samples are mounted within a 1.3 mm diameter ampoule that can be moved
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Figure 3.12: A schematic showing how magnetic properties of a sample are recorded
using a second derivative gradient coil configuration [340].

in and out of the coil. Accurate values of M are obtained by subtracting empty-coil

data from that measured under identical conditions with the sample present. The

susceptometer is calibrated by scaling low-field M values to match those recorded

with a sample of known mass measured in a commercial SQUID or vibrating-sample

magnetometer. The accuracy of theM(H) data is restricted by the mass measurement

of the sample to around one percent. But in the regions of overlap with the low-field

QD MPMS data the agreement is very good. The susceptometer is placed within a 3He

cryostat providing temperatures down to 0.4 K. Care is taken to avoid sample heating

due to induced eddy currents. B is measured by integrating the voltage induced in a

ten-turn coil calibrated by observing the de Haas-van Alphen oscillations of the belly

orbits of the copper coils of the susceptometer [137].
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Figure 3.13: AC magnetic susceptibility coils configuration and sample insert [236].

During AC magnetic susceptibility measurements, an alternating field is ap-

plied to the measurement region either by itself or in addition to the constant mag-

netic field applied by the PPMS superconducting magnet. The schematic depicting

the AC magnetic susceptibility insert along with the coils set is shown in Fig. 3.13.

The PPMS does not utilize QD SQUID technology, instead the signal is analyzed

with a digital signal processor. Typically, AC susceptibility measurements are car-

ried out for frequencies f between 10 and 104 Hz, in a temperature range from 2 K to

50 K. The real and imaginary components of the susceptibility are recorded, as the

imaginary components are in phase with the driving signal while the real components

are 90◦ out of phase [236]. During each measurement, several waveform blocks can

be measured and averaged to reduce random noise in the signal [236].
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For temperature below those accessible by the QD PPMS, measurements of

AC magnetic susceptibility are performed in a 4He Dewar down to ∼1.17 K (UCSD,

Maple Lab). For measurements in the temperature range T ≤ 4.2 K, the temperature

is controlled by immersing the AC susceptibility coils in a bath of 4He and carefully

reducing the vapor pressure above the bath using a Stokes pump. For data measured

at T > 4.2 K, the AC magnetic susceptibility coils are positioned in the thermal

gradient above the 4He bath by manually adjusting the vertical position of the probe.

An AC current is driven on the primary coils with a frequency of 15.9 Hz using a

Linear Research LR700 AC resistance bridge, which produces an AC magnetic field

with magnitude of ∼ 0.3 Oe. This bridge is also used to measure the in- and out-of-

phase components of the signal, induced on the secondary pickup coils. The secondary

coils are balanced by counter-winding the wire to cancel background signals, induced

by the oscillating AC magnetic field. A small offset in the measured signal due to

minor imbalances in the home-built AC susceptibility coils is subtracted from the

data. The data are then scaled so that their arbitrary units are proportional to

emu/mol.
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3.4 Specific Heat Measurements

The QD heat capacity option of the PPMS (Fig. 3.14) measures the heat capacity

by adding and removing a certain amount of heat from the system while monitoring

the change in temperature and maintaining a constant pressure:

Cp =
(dQ
dT

)
p

(3.6)

The heat capacity puck, shown in Fig. 3.15, consists of a small microcalorime-

ter platform which is suspended by eight thin wires that serve as the electrical leads

for the embedded heater and thermometer as well as a structural and thermal connec-

tion to the platform. The sample is mounted on the platform by applying a thin layer

of cryogenic grease, generally Apiezon H or N, which provides the required thermal

contact with the platform. To ensure good coupling between the two, the samples

should be as flat as possible and smaller than the size of the platform. The sample

mass is limited by the increased relaxation time for larger samples, and a heat ca-

pacity signal for smaller samples comparable to that of the background, restricting

typical sample mass to around 10 mg. The puck temperature is recorded by the puck

thermometer, while the outside thermal shield helps maintain stable and uniform

temperature. High pressure (on the order of 0.01 µbar) ensures that no heat is lost

as part of the exchange gas.

As is the case with the MPMS, the lower temperature limit of PPMS is 2 K.

This, however, can be extended down to 0.4 K by using the QD 3He PPMS insert

(Fig. 3.14(b)). While the upper temperature limit for PPMS is 400 K, the relaxation

technique, employed in the specific heat measurements, limits the upper bound for

specific heat measurements to 100 K. The relaxation times are on the order of minutes

at 300 K, compared with fractions of a second at 2 K, resulting in prohibitively long
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(a) (b)

Figure 3.14: (a) QD PPMS instrument along with the (b) 3He insert.

data collection cycles as the relaxation time is averaged over 10 values per data point.

Moreover, the resolution is considerably worse for higher temperatures [236].

Prior to measuring heat capacity of the sample, an addenda measurement

is recorded for a greased, empty puck in order to separate the heat capacity contri-

bution of the sample from that of the entire puck. The measurement of each data

point consists of multiples stages. After an initial temperature has been stabilized, a

predetermined amount of heat is applied at a constant power for a fixed time. After

the power is terminated, the temperature of the platform relaxes toward the puck

temperature, corresponding to a cooling period [236]. Temperature data taken on

both warming and cooling are then analyzed first using the simple model and then

the 2τ model. The simple model assumes good coupling between the sample and the

platform, ensuring the same temperature for both:

Ctotal

(dT
dt

)
= −Kw(T − Tb) + P (t) (3.7)
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Figure 3.15: (a) Exploded view of the specific heat puck [236] along with (b) top and
(c) bottom perspectives.

where Ctotal is the total heat capacity of both the sample and the platform, Kw is the

thermal conductance of the supporting wires, Tb is the temperature of the thermal

bath (puck frame) and P (t) is the power supplied by the heater. Except for the

addenda measurements, a 2τ model is also evaluated. For the 2τ model, it is assumed

that the thermal contact between the sample and the platform is poor, hence two time

constants τ1 and τ2 are employed. The heat flow between the platform and the sample

as well as between the platform and the puck are estimated as follows [236]:

Cplatform

(dTp
dt

)
= P (t)−Kw(Tp(t)− Tb) +Kb(Ts(t)− Tp(t)) (3.8)
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C3Sample

(dTs
dt

)
= −Kg(Ts(t)− Tp(t)) (3.9)

where Cplatform and C3Sample are the heat capacities of the platform and sample, re-

spectively, Kg is the thermal conductance between the two due to the grease. The

temperatures Tp(t) and Ts(t) correspond to the platform and sample, respectively.

By fitting the actual measurement with the above relations, the heat capacity

parameters are extracted from whichever fit yields better least-squares fit. If the fit

to the 2τ model does not converge, the simple model is assumed, indicating perfect

coupling between the sample and the platform. The fitting process can be complicated

by either poor mounting or small sample signal, relative to that of the platform,

yielding an unrealistic 100% coupling value.
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3.5 Resistivity Measurements

The electrical resistivity of metals is dominated by collisions of the conduction elec-

trons with lattice phonons at room temperature and with impurity atoms and defects

at temperatures closer to the absolute zero (see Section 2.4). From the electron theory

of metals, this resistivity can be described as a sum of several contributions, according

to Eq. 2.119. The residual resistivity ratio (RRR) is commonly listed to reflect the

level of purity:

RRR =
ρ(300 K)

ρ(0 K)
(3.10)

where ρ(0 K) is the resistivity value at the lowest available temperature. For excep-

tionally pure materials, the RRR value can be as high as 106, while for some alloys

it can be as low as 1.1 [200].

Typically, the samples used for resistivity measurements are rather small,

which makes their overall resistance comparable to that of contacts and leads, at-

tached to the sample. In order to separate the two, it is common to use the four-probe

method, also known as Kelvin sensing. In a four-probe resistivity measurement, the

current I is supplied by the outside leads and the voltage drop V across the sample is

measured by the inner leads, as shown in Fig. 3.16(a). This method is very accurate

because there is almost no current in the loop used to measure voltage, which means

that the recorded voltage drop corresponds only to the sample. The resistance R is

then calculated from the Ohm’s law:

R =
V

I
(3.11)

Since resistance R depends on the sample geometry, the intrinsic property
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such as resistivity ρ is more appropriate when comparing various systems. Based on

the dimensions of the sample, the resistivity ρ can be calculated from the resistance

R:

ρ = R
a · b
L

(3.12)

where a and b are the dimensions of the cross-section of the sample and L is the

distance between two inner leads, as shown in Fig. 3.16(a).

The maximum excitation current value I is adjustable and should be chosen

a

(b)

(c) (d)

(a)

A

V

b

L

Figure 3.16: (a) Four-probe resistivity measurement. (b) Interface of the resistivity
puck. (c) The bottom view of the resistivity puck features 12 pin connections, identical
to those seen in the specific heat puck in Fig. 3.15 [236]. (d) A set of three samples,
prepared for a resistivity measurement.
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carefully; while it needs to be sufficiently high to yield a good signal, it must not

exceed 5000 µA, as higher values can overheat or even damage the sample [236].

Each resistivity puck is capable of measuring up to three samples simultaneously.

The interface, shown in Fig. 3.16(b), contains three groups of contacts, each of which

includes one positive and one negative terminal for both current and voltage. The

12 pins at the bottom of the resistivity puck (Fig. 3.16(b)) are again split into

three groups, one group for each of the samples (or channels). An example of a

prepared resistivity puck is shown in Fig. 3.16(d). Platinum wires are attached to

the polished surface of the samples using Epo-Tek H20E silver epoxy and soldered

to the four puck terminals. Samples must be electrically isolated from and thermally

in contact with the puck which is achieved by placing a piece of KimWipe, soaked

in Apiezon N grease, between the sample and the puck. Whenever possible, the

resistivity measurements are done on single crystals, with the current direction parallel

to one of the crystallographic axes. The temperature range is limited by the range

of PPMS to values between 2 and 400 K, which, as previously mentioned, can be

extended down to 0.4 K by using the QD 3He PPMS insert.

For some samples, DC resistivity data have high noise level which can be

resolved by using the AC transport option. The same standard four-probe method is

employed and an applied AC current along with the resulting AC voltage are recorded

as a function of temperature or field. By changing the frequency and excitation

current, lower noise levels are possible; the values are sample-dependent with an

available frequency range between 1 Hz to 1 kHz and current values from 10 µA to

2 A [236]. While AC transport tends to result in lower noise data, it is optimized

for relatively low resistances, as compared to the DC method. Additionally, only two

channels can be used to measure samples at a time.

Pressure-dependent electrical resistivity measurements (UCSD, Maple Lab)
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were carried out using a standard four-wire technique with platinum wires affixed

to the surface of the sample using a two-part silver epoxy to ensure a small contact

resistance. The sample was contained within a Teflon capsule, which was then placed

within a steel (MP35N) cylinder and compressed between tungsten-carbide pistons

within a beryllium-copper clamp. Within the Teflon capsule, equal parts by volume

of isoamyl alcohol and n-pentane served as the pressure transmitting medium while a

small piece of high purity tin was used as the manometer. The load was applied to the

clamp at room temperature (well above the melting point of the pressure transmitting

medium) thus ensuring nearly-hydrostatic conditions [174]. The superconducting

transition temperature of the tin manometer was measured using embedded induction

coils within the pressure clamp at low temperature [338]. The clamp was cooled in

a Dewar using liquid helium as the primary cryogen; temperatures below 4.2 K were

achieved by pumping on the Dewar and reducing the pressure of the helium vapor

above the bath.
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3.6 X-ray Photoemission Spectroscopy

Even though the majority of the structural compound information can be extracted

from x-ray diffraction experiments, as described in the previous section, a minimum

component concentration (typically around 5%) is necessary in order for the ma-

terial to register in the diffraction pattern. To resolve lower concentrations, x-ray

photoemission spectroscopy can be utilized. This powerful surface-sensitive quanti-

tative technique is capable of registering the elemental composition as low as 0.1%

by weight [73]. The principle of x-ray photoemission spectroscopy is based on the

photoelectric effect (Fig. 3.17(a)): a beam of incident photons strikes the surface of

the material and if photon’s energy hν is higher than the electron’s binding energy

EB, a core electron leaves the surface. The resulting electron will have kinetic energy

EK that can be expressed as:

EK = hν − EB − φ (3.13)

where the work function φ can be compensated for. The resulting kinetic energy EK

is a function of the binding energy EB, which is element-specific. This is used to

identify particular elements, corresponding to the resonance peaks in an x-ray pho-

toemission spectroscopy spectrum. The x-ray photoemission spectroscopy spectra are

quantified in terms of peak intensities (or areas) and peak positions. It is important

to note that while the incident x-ray can penetrate the sample deeply, the escaping

depth of ejected electrons is limited by inelastic collisions within the solid to under

10 nm (or about three times the inelastic mean free path) [235]. Therefore, x-ray

photoemission spectroscopy has severe limitations for studying bulk material as the

surface composition can be substantially different from that inside the bulk. In order

to cleanse the surface of contaminants an Ar sputtering gun is used. One of the
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problems, encountered during the spectra analysis is the background signal, which is

non-trivial in nature. This contribution results from the electrons located below the

resolution level and can be fitted using one of the preset function of the Casa XPS

suite, an example is shown in Fig. 3.17(d) [235].
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Figure 3.17: (a) Experimental layout of XPS Phi Quantera. (b) The mechanism of
a peak doublet formation. (c) Deconvolution of a peak with elements whose binding
energies are very similar. (d) Background subtraction fit. (e) A peak doublet of
Ca [235].

The spectral peaks are named according to the orbital and spin quantum

numbers (l and s) of the core levels from which they arise. For all orbitals where

l > 0, spin-orbit splitting, shown in Fig. 3.17(b), is observed, resulting in two peaks
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(j = l ± 1/2). The intensity ratio is proportional to j:

I1

I2

=
2j1 + 1

2j2 + 1
(3.14)

where j1 = l + 1/2 and j2 = l − 1/2. An example of such splitting is shown in Fig.

3.17(b), where the peaks’ relative intensities have a ratio of 1:2. Due to element-

dependent scattering intensity, when comparing intensities between various elements,

the relative sensitivities must be taken into account [73]:

Cx =
Ix
Sx∑
i

Ii
Si

(3.15)

where Cx, Ix, and Sx are the elemental concentration, intensity, and sensitivity, re-

spectively while the ratio of Ii and Si is summed over all constituent elements. In

general, the concentration estimates Cx, obtained from a carefully analyzed spectrum

using Eq. 3.15, will have error bars under 10%. While the x-ray photoemission spec-

troscopy technique is sensitive to all elements except for He and H, for some groups

of elements, a systematic overlap of the spectral lines is possible. Deconvolution of

peaks using a combination of Gaussian and/or Lorentzian line-shapes, shown in Fig.

3.17(c), is possible with Casa XPS software. Another solution is to analyze multiple

transitions, arising from the same element [73].

The peak positions are used to differentiate between various oxidation states

and to analyze chemical bonds: in elemental samples photoelectron core level peaks

occur at the same binding energy while in compounds the peak positions shift due

to ionic or covalent bonding. After initial alignment with the C1s peak (EB = 284.8

eV [279]), the oxidation state of all elements in the spectrum can be estimated from

tabulated values [279].
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As mentioned earlier, due to limited depth resolution, samples used for x-

ray photoemission spectroscopy must be homogeneous. Since the measurements are

done in a high vacuum environment, air-sensitive samples do not present any issues.

Moreover, this is a non-destructive technique, except for when prolonged sputtering

is done (this feature is sometimes used for depth profiling [73]). Care must be taken

when dealing with non-conductive samples as the ejected electrons create a charge

on the sample’s surface that accumulates over time and creates a barrier for future

photoelectrons, shifting the resulting spectrum. Typically this is not a problem for

conductive samples, which are grounded to the platen but might be problematic for

semiconducting and insulating samples. This can be addressed by either using a

charge neutralizer, which delivers a flux of low energy electrons to the surface, or by

shifting the spectrum accordingly [235].
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3.7 Hardness Measurements

As early as 300 BC, the hardness of a given material has been determined by its

resistance to scratching or indentation by another material. To quantify geological

samples, the well-known Mohs’s scale was created in the beginning of the 19th century,

ranging from 1 to 10, with 10 being the hardness of a diamond and 1 that of talc [134].

While this scale has proved to be useful for preliminary identification of minerals by

geologists in the field, the standards are arbitrary – for example, the difference in

hardness between 9 and 10 is much greater than that between 1 and 2. Moreover,

the scale is not very quantitative since non-integer hardness values that fall within

the same range are not easily comparable.

Brinell

Mohs’s
Vickers

Rockwell A

Rockwell C
Approximate

Yield Strength (MPa)

Figure 3.18: Scales for various hardness measurement methods compared to each
other and the yield strength [26].
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Currently, the four main methods of estimating hardness are conceptually

the same: the depth or area of an indentation along with the force applied on the

indenter for a certain time period is translated into a range of scales [134]. The

difference lies in the hardness measurement is in the geometry of the indenter –

a sphere (Brinell and Rockwell, Fig. 3.19(a)), a trigonal pyramid (Berkovich, Fig.

3.19(b)), a square pyramid (Vickers, Fig. 3.19(c)), or an elongated four-sided pyramid

(Knoop, Fig. 3.19(d)) [134]. Depending on the material, the size of the irreversible

indentation created in the specimen’s surface will range from macro (millimeters),

to micro (microns), and even to nano (nanometers). It is important to note that

conversion between various scales cannot be exact due to the different loads, shapes

of the indenters, as well as elastic properties and material homogeneity that affect

(a)

(d)(c)

(b)

Figure 3.19: Shapes of various hardness indenters: (a) spherical, (b) trigonal pyramid,
(c) square pyramid, and (d) elongated pyramid [134].
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136˚

F

Figure 3.20: Geometry of the indenter for the Vickers hardness test.

the hardness of the material [134]. However, various approximate relations have been

developed and are shown in Fig. 3.18 [26].

Due to their geometry, pyramid-shaped indenters generally yield more pre-

cise estimates, with the Vickers method being the most commonly used for ductile

materials such as metals. The shape of a Vickers diamond indenter in shown in Fig.

3.20, and it consists of a square-base pyramid whose opposite faces are 136o apart. A

load between 1 and 100 kgf is normally applied for 10 – 15 seconds after which the

diagonals of the indentation d1 and d2 are measured. The Vickers hardness HV is

then estimated using the following formula [134]:

HV =
2Fsin(136◦

2
)

d2
= 1.854

F

d2
(3.16)
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where d is the average of d1 and d2 and F is the applied force. Conversions of force

from kgf to N (1 kgf = 9.81 N) and area from mm2 to m2 (1 mm2 = 10−6 m2) are

used to convert from Vickers hardness (HV) to Pa: 1 Pa = 9.807 106 kgf/mm2.

The microhardness Vickers test is very similar to the regular Vickers test,

except that it is done on the microscopic scale with more precise instrumentation.

Naturally, a smaller force (less than 1 kgf) is applied. Particular attention needs to be

payed to the surface preparation since rough materials can produce erroneous hardness

values, especially for smaller loads and sample dimensions. However the resulting

error bars are significantly smaller than those obtained with macroscopic resolution.

Hardness was measured using a Tukon 2100 microhardness tester, equipped with a

Vickers diamond pyramid indenter. The tests were performed on polished sample

surfaces of about 3 mm in diameter. Multiple tests were conducted for all samples,

using a 300 g load, with a duration of 10 s.
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3.8 Muon Spin Relaxation, Rotation, and Reso-

nance

Muon spin relaxation, rotation, and resonance (µSR) refers to a collection of methods

that make use of a short-lived subatomic particle called a muon in order to probe the

structural and dynamical processes on an atomic scale. A key difference of the µSR

technique, as compared with those involving x-rays or neutrons, is that scattering is

not involved [43]. Muons are implanted into a sample and reside there for the rest of

their lives, acting as microscopic magnetometers. The muons consequently decay into

positrons which are then detected, carrying the information about the muons they

came from [43]. With a mass of about 200 times greater that of an electron and 9

times less than that of a proton, a muon can be thought of as a heavier electron (µ−)

or a lighter proton (µ+) [276]. Even though both µ+ and µ− can be used for µSR

experiments, positive muons are generally preferred since their lifetime in a material is

considerably longer [276]. Additionally, µ+ is attracted to the electron cloud, which is

more interesting from a condensed matter prospective. If a positive muon captures an

electron it is referred to as muonium, in this way the electron acts as a very sensitive

probe that passes on what it senses to the muon via hyperfine splitting [276].

In the upper layers of the atmosphere, muons are created by the interaction

of cosmic rays with gas molecules, resulting in a few muons per minute at the sea

level. In a lab environment, a higher flux of muons is needed, which can be produced

from pions, which are in turn created from collisions of high-energy protons (> 500

MeV) with a carbon or beryllium target, as depicted in Fig. 3.21(a) [276] :

p+ p→ π+ + p+ n (3.17)
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The pion π+ then decays into a muon µ+ and a muon-neutrino νµ:

π+ → µ+ + νµ (3.18)

After muons are stopped within the sample, they will decay after time t with

probability proportional to e−t/τµ , where τµ = 2.2 µs is the lifetime of the muon [43].

The decay of a muon is a three body process, creating a positron e+ and two neutrinos

νe and νµ :

µ+ → e+ + νe + νµ (3.19)

Between the three produced particles, the positron e+ is the only one that

can be detected reliably. Because muon decay involves weak interaction, it displays

an unusual feature of not conserving parity, resulting in the direction of the emitted

positron being identical to that of the muon spin right before it decayed [43].

The major advantage of muons is that their large magnetic moment (3.18

times larger than that of a proton) makes them an extremely sensitive microscopic

probe of magnetic and electronic properties of matter. In systems with very small

and/or dilute moments, µSR is frequently the only method available for clear de-

tection of such phenomena, capable of sensing internal fields on the order of 0.1 G.

Another advantage of µSR is the ability to differentiate between magnetic and non-

magnetic regions within the same sample. These result in different signal amplitudes

that are proportional to the volume of a given phase for the sample. The result-

ing magnetic volume fraction provides quantitative information on coexisting phases,

inaccessible via any other measurement.

The TRIUMF facility uses a cyclotron to accelerate protons to approximately
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three quarters of the speed of light. The implantation depths in solids are typically

between fraction a nanometer. The type of material is not important, allowing for

testing of gas, liquid or solid samples as well as single crystals, polycrystalline samples

or thin films. For solid samples, typical thickness is around 0.1 cm; however, an area

of about 3.5 cm2 is required, as shown in Fig. 3.22. The samples are either mounted

on a silver tape (M20) or silver plate using grease (M15) and the holder is oriented

perpendicular to the direction of incoming muons. Air-sensitive samples are presented

via a constant He gas flow within the sample space. A large variety of environments

is available – dilution fridge temperatures, magnetic fields up to 8 T, electric fields,

high pressure, light illumination, and application of RF pulses.

(c) (d)

(a) (b)

Figure 3.21: (a) The mechanism of muon production. (b) Muon-spin precession in a
magnetic field B applied at an angle θ [43]. (c) The transverse field µSR setup. (d)
The zero-field µSR setup.
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(a)

(b)

(c)

Figure 3.22: (a) Samples mounted on a silver plate for the M15 beamline. The area
necessary for µSR experiments is equivalent to the area of a penny. (b) The top view
of the M20 experiment at TRIUMF. The main components include three orthogonal
pairs of Helmholtz coils, a cryostat and various detectors. (c) The silver tape and
holder used for the M20 beamline.

If the initial muon spin direction and the local magnetic field are at an angle

θ with respect to each other, the muon spin will start to precess around the end of

a cone of semi-angle θ about the magnetic field, as shown in Fig. 3.21(b) [43]. The

asymmetry function of the decaying positron can be represented as:

G(t) = cos2 θ + sin2 θ cos(γµBt) (3.20)

where γµ = ge/2mµ is the gyromagnetic ratio for the muon. If the direction of the

local magnetic field is random, the above expression should be averaged over all three



124

directions:

G(t) =
1

3
+

2

3
cos(γµBt) (3.21)

G(t) =
1

3
+

2

3
e−∆2t2/2(1−∆2t2) (3.22)

where ∆/γµ is the width of a Gaussian distribution, which is centered around zero

and used to estimate the strength of local magnetic field [43]. The result is known

as the Kubo-Toyabe relaxation function [154]. For dilute magnetic systems, such as

diluted alloys of Au with Fe and Cu with Mn [383], a Lorentzian distribution is more

appropriate, yielding:

G(t) =
1

3
+

2

3
e−at(1− at) (3.23)

where the parameter a =
√
π/2Cx∆ represents the average value of static and dy-

namic random fields at each muon site and depends on concentration Cx [383].

Two main techniques are generally implemented for µSR studies – transverse

field muon spin rotation (TF-µSR) and longitudinal field muon spin relaxation (LF-

µSR). The former involves the application of an external field, perpendicular to the

initial direction of the muon spin polarization, as shown in Fig. 3.21(b). The fre-

quency of the precession of the muon spin is proportional to the size of the field at

the muon site. This configuration is typically used to measure the magnetic field

distribution of the vortex lattice or the Knight shift in metallic systems [276]. For the

LF-µSR scenario, the external magnetic field is applied parallel to the initial direction

of the muon spin polarization. Therefore, the evolution of muon polarization along

its original direction is recorded. For weak internal magnetism, a zero-field muon
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spin relaxation (ZF-µSR) is performed in absence of an external magnetic field [276].

This very sensitive method can therefore register magnetic fields as small as 10−5 T,

that are either ordered or random, static or fluctuating with time [43]. In this sense,

ZF-µSR has a tremendous advantage over other resonance techniques [276]. Another

type of µSR measurements is referred to as muon spin resonance – a static magnetic

field is applied parallel to the initial muon spin. The resonance occurs when the RF

frequency matches an energy level splitting of one of the muon states present in the

system [276]. The main limitation of the µSR technique is the requirement of knowing

the precise stopping site of the muon in the material – while in some systems this

can be easily determined, in others the location is not known since there is a set of

possible interstitial sites which the muon can occupy [43].

The study of magnetism is the most common application of µSR, with exam-

ples including magnetically ordered, spin-glass, and frustrated compounds, materials

displaying magnetoresistance, heavy fermions, quazicrystals, molecular magnets, and

clusters [13, 14, 101, 146, 191, 191, 308, 380, 383]. In superconductors, µSR technique

is frequently applied to study phase separation, vortex phases, characteristic length

scales, and pairing properties [14, 43, 198, 229, 381]. A number of µSR experiments

have also been applied to study conducting polymers, quantum diffusion, ion mobility,

chemical mobility, and various biological systems.
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3.9 Tunnel Diode Oscillation Measurements

Oscillators have been used widely to investigate condensed matter systems due to the

great precision and high sensitivity with which frequency can be measured [93, 345].

The tunnel diode oscillator is an LC tank circuit, powered by a tunnel diode [74].

The low noise level (∆F/F0 ≈ 10−9) along with the low drift of the oscillator allows

data to be obtained with a very small temperature spacing interval [66]. Addition-

ally, the sensitivity of a properly constructed circuit is able to measure changes in

the magnetic moment on the order of 10−12 emu [386,387], which is much more sen-

sitive than the resolution limit of commercially available systems, such as an MPMS

(10−8 emu, Section 3.3). The tunnel diode oscillator resistivity measurements do

not require leads [75], eliminating sample stress, the possibility of sample damage,

and overheating, making it more advantageous than a traditional four-probe method.

This technique has been applied to numerous systems to investigate magnetoresis-

tance [12, 345], de Haas-van Alphen [28, 75, 303] and Shubnikov-de Haas [28, 303] ef-

fects, to determine dielectric constants [93], surface impedance [93], conductivity [75]

and resistivity [75], thermal expansion [93], as well as penetration depth and critical

fields of superconductors [28,66,74,75,126].

(b)(a)
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Figure 3.23: (a) Schematic representation of the tunnel diode oscillator circuit [99].
(b) Low temperature stage platform diagram along with an expanded view of the
sample tube [28].
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The general layout of the measurement system is shown in Fig. 3.23(a) and

(b) [28, 74, 75, 93, 99, 345]. Depending on the type of measurement being done, the

sample will either be placed between the capacitor plates (dielectric constant measure-

ments) or in the inductor tank circuit (susceptibility, penetration depth, or resistivity

measurements) [75]. The resonant frequency f , which is typically in the megahertz

range, can be expressed in terms of inductance L and capacitance C:

f =
1

2π
√
LC

(3.24)

While the tunnel diode oscillator technique is widely used, the interaction of

the sample with the tank circuit is not yet fully understood – only approximations

or empirical equations can relate the raw data to the properties of a sample [75].

The inductance of the tank circuit is shifted by a small amount ∆L when a magnetic

sample is inserted into a tank coil [287]. This results in a shift of resonant frequency

∆f = f − f0, where f0 is the resonant frequency of an empty coil. This shift is

proportional to both the real and imaginary components of the conductivity, which

allows to investigate both dielectric and magnetic properties of the material [12,386,

387]. A relation between the frequency shift ∆f and the susceptibility can be written

in terms of the volumes of the sample (Vs) and the coil (Vc):

∆f

f0

= −∆L

2L
≈ −1

2

Vs
Vc

4πχ (3.25)

For insulators, the measured susceptibility χ from Eq. 3.25 coincides with

the static dM/dH. However, the screening due to the surface effects results in an

additional susceptibility contribution for metals [28]. For the latter, the frequency

can only penetrate the sample by a finite depth, referred to as the skin depth δ. In

superconductors, this contribution is associated with the London penetration depth



128

λ. Since change in inductance ∆L is proportional to change in impedance ∆Z which

in turn is proportional to resistivity ρ, the latter can be related to the frequency shift

∆f using the skin depth δ [12, 303]:

∆f

∆f0

≈ −G∆δ

δ
with δ =

√
ρ

πµ0f
(3.26)

where G is the geometrical factor that depends on the sample and coil geometries

and µ0 is the magnetic permeability of free space. Even for values of δ greater than

the sample, the effective diamagnetism will shift the frequency, allowing for good

resistivity measurements [201,219].

It has been reported that itinerant and local moment systems induce a sub-

stantially different frequency response, providing a new way of differentiating between

them [386]. Itinerant ferromagnet ZrZn2 does not show a sharp peak in the resonator

frequency at TC (Fig. 3.24(a)), as compared with a sharp peak in local moment

ferromagnets CeVSb3 and CeAgSb2 (Fig. 3.24(b)) [386]. Additionally, under the

influence of an applied magnetic field, the position of the peak shifts to higher values

(b)(a)

Figure 3.24: (a) A broad peak is observed close to TC in an itinerant ferromagnet
ZrZn2 [386]. (b) A sharp cusp is visible around TC in a local moment ferromagnet
CeAgSb2 [386].
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for the local moment systems (Fig. 3.24(b)) and to lower values for itinerant ones

(Fig. 3.24(a)).

As for the antiferromagnetic case, a local moment compound SmAgSb2 was

found to exhibit only a gradual decrease of susceptibility below the Néel temperature

TN , likely associated with the loss of spin-scattering which changes the penetration

depth of the AC excitation field [386]. Itinerant antiferromagnets have not yet been

analyzed. Therefore, the possibility of using tunnel diode oscillator as a tool to

differentiate between itinerant and local antiferromagnets is investigated in Chapter

6 via tunnel diode oscillator measurements on the itinerant antiferromagnet TiAu.
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3.10 Neutron Scattering

While comprehensive crystallographic information can be obtained via x-ray diffrac-

tion for the majority of compounds, those containing light atoms (O or H) cannot

scatter x-ray efficiently. Electrons surrounding the nucleus scatter x-rays, hence heavy

atoms with many electrons attenuate the x-ray beam better. Moreover, neutrons can

penetrate matter far better than charged particles (Fig. 3.25). The value of the

mass of the neutron results in the de Broglie wavelength of thermal neutrons being

on the order of interatomic distances in solids and liquids (1 Å) [344]. The resulting

interference effects yield structural information. The scattering of the neutron by a

nucleus can be described in terms of a cross section σ – effective area presented by the

nucleus to the passing neutron. The strength of the interaction between the neutron

and the nucleus is known as scattering length b. The two quantities are related in the

following manner [304]:

σ = 4πb2 (3.27)

Unlike x-rays, neutrons interact with atoms in a manner that does not seem

correlated (Fig. 3.25). In fact, the neutron’s interaction with a nucleus varies from

one isotope to another – a property that is frequently used in isotope labeling. The

energy of thermal neutrons is on the same order as that of many excitations in con-

densed matter. Therefore, the change in the neutron’s energy during scattering is a

large fraction of its initial energy [344]. The magnetic moment of a neutron interacts

with unpaired electrons within an atom, thus elastic scattering from this type of in-

teraction can be used to investigate the arrangement of electron spins and the density

distribution of unpaired electrons [304]. On the other hand, inelastic scattering gives

the energies of magnetic excitations, and permits the study of time-dependent spin
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Figure 3.25: Penetration depth as a function of atomic number for neutron (red),
x-rays (blue), and electrons (yellow). The penetration depth is taken as the depth at
which the intensity has been reduced to about 37 % of its original value [304].

correlations within the scattering system [344].

When neutrons are scattered by matter, both the momentum and the energy

of the neutrons and the matter are changed. Since the total momentum and energy

are conserved, the momentum transfer is given by:

Q = k − k′ (3.28)

Q is know as the scattering vector and k is the wave vector (hk = 2πmv). The

above expression is displayed pictorially in Fig. 3.27. The magnitude and direction of

Q is determined by the magnitudes of the wave vectors for both incident and scattered
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Figure 3.26: Types of interactions depending on the incoming beam type – neutrons
(red), x-rays (blue), and electrons (yellow) [304].
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(a)

(b)

Figure 3.27: (a) Elastic (k′ = k) and (b) inelastic (k′ > k or k′ < k) scattering
events [304]. In both cases, the neutron is scattered through the angle 2θ with a
scattering vector is Q.

beams as well as the scattering angle 2θ. For elastic scattering:

Q =
4πsinθ

λ
(3.29)

It as shown by Van Hove that the scattering intensity I(Q, η) is proportional

to the Fourier transform of a function that gives the probability of finding two atoms

a certain distance apart [304]. This result can be manipulated to reveal scattering

effects of two types – coherent vs. incoherent scattering. The former corresponds to
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a scattering scenario in which the neutron wave interacts with the whole sample as a

unit so that the scattering waves from different nuclei interfere with each other. This

scattering provides structural information. Elastic coherent scattering can be used to

investigate the equilibrium structure while the inelastic coherent scattering provides

information about the collective motion of the atoms.

During incoherent scattering, the neutron wave interacts independently with

each nucleus so that the scattered waves from each nucleus don’t interfere (the in-

tensities just add up). This type of scattering can arise from neutrons’ interaction

with the same atom but at different times or positions, providing information about

atomic diffusion [304].

For our neutron diffraction measurements the sample was sealed with helium

exchange gas and mounted in a closed cycle refrigerator with a base temperature of

2.6 K. To search for magnetic scattering the high intensity/coarse resolution BT-7

spectrometer was employed in two-axis mode, with a fixed initial neutron energy

of 14.7 meV (λ = 2.369 Å) and collimator (full-width-half-maximum) configuration

open – PG(002) monochromator – 80′ – sample – 80′ radial-collimator – position-

sensitive detector [232]. To characterize the sample and search for possible structural

changes associated with the magnetic phase transition the BT-1 high resolution pow-

der diffractometer was used. Collimators of 15′, 20′ and 7′ were used before and after

the Cu (311) monochromator (λ = 1.5401 Å) and after the sample, respectively, and

data were collected in steps of 0.05◦ in the 2θ range of 3◦ to 168◦.



135

3.11 Band Structure Calculations

A number of physical properties of a solid depend on the collective behavior of elec-

trons comprising it. While electrons of an isolated atom form discrete set of energy

levels, multiple atoms brought together form an energy continuum, know as an energy

band. The existence and size of energy gaps, i. e. the energy range where no electron

states can exist, distinguishes semiconductors from metals and insulators [415]. The

bands and band gaps near the Fermi level affect electronic properties the most, and

thus are frequently given special names, i. e. the conduction and the valence bands .

Density functional theory is a modeling method used to investigate the elec-

tronic structure of many-body systems. The calculation begins by introducing a

Hamiltonian that describes a perfect crystal. This Hamiltonian includes five terms

that characterize the motion of ions and electrons, repulsion between the electrons,

interaction between ions, and attraction between ions and electrons. Solving this

Hamiltonian would require to evaluate 1023 equations, which is not currently pos-

sible. Therefore, a number of approximations is utilized by various band structure

calculations methods.

The Born-Oppenheimer approximation [47] uses the fact that the ions of the

lattice are much heavier than the electrons, which allows to separate the motion of

electrons from that of the ions. This reduces the initial Hamiltonian to just three

terms that describe the motion of electrons, repulsion between electrons, and attrac-

tion between electrons and ions. While the complexity of the Hamiltonian is reduced

greatly, additional approximations are necessary to find the solution. The mean-field

approximation assumes that every electron experiences that same average potential.

The next approximation simplifies the solution of the Schrödinger’s equation, postu-

lating two theorems which result in a Kohn-Sham Hamiltonian [208]. This allows to

calculate all physical properties of a system if the electron density is known.
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Figure 3.28: Pictorial representation of a muffin-tin potential [2].

Depending on the basis that is used to diagonalize the Kohn-Sham equation,

several band structural calculation methods are typically implemented. For most

metals, the augmented-plane wave method developed by Slater in 1953 [336], is used.

It relies on the fact that the effective crystal potential is constant in most of the open

spaces between the cores. The potential is referred to as the muffin-tin potential,

consisting of that of a free ion at the core and strictly constant outside the core (Fig.

3.28).

Our band structure calculations were performed using the Full-Potential Lin-

earized Augmented Plane-Wave method implemented in the WIEN2K package [41,

296]. The PBE-GGA was used as the exchange potential, the default generalized

gradient approximation for the exchange correlation potential in WIEN2K [296].
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The lattice parameters and atomic positions were determined from x-ray and neu-

tron (whenever possible) diffraction experiments. More details regarding compound-

specific band structure calculations are provided in respective sections: TiAu (Sec-

tions 6.3 and 7.3), ScGa3 and LuGa3 (Section 9.3).

From the value of the density of states at the Fermi surface N(EF ), several

quantities can be estimated. For example, the value of γ can be calculated as:

γ =
2π2

3
N(EF )k2

B (3.30)

where k2
B is the Boltzmann’s constant.

Typically, the temperature-independent susceptibility contribution is domi-

nated by the Pauli susceptibility, as described in Section 2.1.4. Using Eq. 2.56, the

value of the temperature-independent contribution χ0 can be found as:

χ0 = 2µ0µ
2
BN(EF ) (3.31)

where µB is the Bohr magneton, µ0 = 1, and the factor of two is included to account

for both sub-bands.



Chapter 4

Doping-induced Quantum Critical Point in

(Sc1−xLux)3.1In

A quantum critical point occurs upon chemical doping of the weak itinerant ferromag-

net Sc3.1In. Remarkable for a system with no local moments, the quantum critical

point is accompanied by non-Fermi liquid behavior, manifested in the logarithmic

divergence of the specific heat both in the ferro- and the paramagnetic states, as well

as linear temperature dependence of the low temperature resistivity. With doping,

critical scaling is observed close to the quantum critical point, as the critical expo-

nents δ, γ and β have weak composition dependence, with δ nearly twice, and β

almost half of their respective mean-field values. The unusually large paramagnetic

moment µPM ∼ 1.3µB/F.U. is nearly composition-independent. Evidence for strong

spin fluctuations, accompanying the quantum critical point at xc = 0.035 ± 0.005,

may be ascribed to the reduced dimensionality of Sc3.1In, associated with the nearly

one-dimensional Sc-In chains.
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4.1 Motivation and Background

Quantum critical points are ubiquitous features in the phase diagrams of strongly

correlated electron systems, ranging from high temperature oxide superconductors

[45, 291, 314] and low-dimensional compounds [90, 132, 158], to itinerant magnets

[183, 341, 352, 409] and heavy fermions [55, 96, 261, 322, 348, 375]. Often, non-Fermi

liquid behavior [76, 83, 131, 256, 377], and critical scaling [205] accompany the quan-

tum critical point, and such novel phenomena have been extensively studied in heavy

fermions, and in particular in antiferromagnetically ordered systems. However, fewer

ferromagnetic quantum critical points are known and much less is currently under-

stood about itinerant electron magnets and their quantum critical behavior, partic-

ularly due to the limited number of existent itinerant magnets. These observations

make itinerant ferromagnets particularly appealing, given the comparatively smaller

number of known ferromagnetic then antiferromagnetic quantum critical points. The

quantum critical points recently observed in two substantively different systems, the

itinerant ferromagnet ZrZn2 [341] and the heavy fermion ferromagnet URu2Si2 [57],

are two such ferromagnetic quantum critical point systems. non-Fermi liquid behavior

is associated with the quantum phase transition induced by doping in the latter com-

pound, but not the former, reemphasizing the imperious need for a unified picture of

quantum criticality and non-Fermi liquid behavior in itinerant ferromagnet systems.

This study of the doping-induced non-Fermi liquid state close to the quantum critical

point in the itinerant ferromagnet Sc3.1In provides a first connection between the two

previously known ferromagnetic quantum critical point systems, a precursor of such

a unified theory.

Lu doping in Sc3.1In represents the first report of non-Fermi liquid behavior

associated with a quantum phase transition in this itinerant ferromagnet. The critical

composition xc in (Sc1−xLux)3.1In is very small, close to 0.035. The critical scaling
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Figure 4.1: Measured X-ray diffraction pattern for (Sc1−xLux)3.1In (black line) where
x = 0, with calculated peak positions marked by vertical lines, based on space group
P63/mmc and lattice parameters a = 6.42 Å and c = 5.18 Å. The crystal structure of
Sc3.1In (left inset) exhibits quasi-1D chains of Sc-In. Right inset: evolution of lattice
parameters a and c and the unit cell volume V with composition x.
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close to the quantum critical point is remarkable by comparison to ZrZn2 or URu2Si2:

while Sc3.1In is similar to the former compound as the only other known ferromagnetic

with no magnetic elements, its critical scaling is not mean-field-like, akin to that in

the latter system. The reduced crystallographic dimensionality of Sc3.1In, associated

with quasi-1D Sc-In chains (Fig. 4.1(c)), provides one plausible justification for the

similarities with the two-dimensional URu2Si2, by contrast to the three-dimensional

ZrZn2. In URu2Si2 the Kondo effect is inherently coupled with the quantum critical

behavior, but Sc3.1In has no local moments, rendering its magnetism and the quan-

tum critical point even more striking. What makes Sc3.1In even more unique is the

non-Fermi liquid behavior, a trait so far not seen in itinerant ferromagnets without

magnetic elements. It is therefore paramount to probe the existence of the quantum

critical point in this itinerant ferromagnet system, and properly characterize the non-

Fermi liquid behavior, as a precursor for a unified picture of quantum criticality in

itinerant ferromagnets. The development of such a unified theory necessitates more

itinerant ferromagnet systems, which starts with a thorough understanding of the few

compounds that are already known.

Itinerant ferromagnets lack the complexity associated with the interplay be-

tween the local and itinerant character of the electrons observed in heavy fermions

[9, 348]. Of the two known itinerant ferromagnets with no magnetic elements, ZrZn2

and Sc3In, the latter presents the advantage, from the quantum criticality perspective,

of a much lower magnetic ordering temperature TC ≤ 7.5 K [124, 139, 168, 244, 367]

in Sc3In. This would likely facilitate the suppression of magnetic order towards a

quantum critical point, but has proven difficult by the application of pressure [139]

or magnetic field [168]. Here we show that the quantum critical point in Sc3.1In

can indeed be reached by Lu doping, where the dopant ion is comparable in size

(r[Lu3+] = 0.861 Å) with the host ion Sc that it substitutes for (r[Sc3+] = 0.745

Å) [329]. This way, the effects of chemical substitution can be deconvoluted from
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those of chemical pressure, which is important given that pressure was shown to

enhance the ordering temperature [139]. The systematic analysis of the magnetiza-

tion isotherms M(H), temperature-dependent magnetization M(T ) at low fields, and

H = 0 specific heat data, for 0 ≤ x ≤ 0.10 indicate that the magnetic ground state is

suppressed in (Sc1−xLux)3.1In towards a quantum critical point close to xc ≈ 0.035.

Remarkably, the logarithmic divergence of the specific heat and the low-temperature

resistivity linear in T close to xc evidence non-Fermi liquid behavior in both the fer-

romagnetic and the paramagnetic state. Additionally, the reduced crystallographic

dimensionality, associated with quasi-1D Sc-In chains, may be linked to the non-Fermi

liquid behavior and the non-mean-field critical scaling, similar to that in the more 2D

ferromagnet, albeit with substantively different critical exponents.

4.2 Physical Properties

The hexagonal Sc3.1In compound has a Ni3Sn-type structure, with space group P63/mmc

and lattice parameters a = 6.42 Å and c = 5.18 Å [82]. The reported crystal struc-

ture for Sc3In is shown in Fig. 4.1(c). Highlighted are the Sc-In bypiramids which

form nearly one dimensional chains along the hexagonal c axis. In addition to the

nearly one-dimensional crystal structure, band structure calculations [177] also sug-

gest possible reduced electronic dimensionality. These observations will be discussed

in the context of the dimensionality of other itinerant ferromagnet systems close to

quantum criticality.

Both annealed and non-annealed samples exhibit extreme hardness, compara-

ble to that of high carbon steels [355], which made it very difficult to perform powder

x-ray diffraction measurements. However, it was feasible to x-ray a polished surface

of the arcmelted buttons, as described in Section 3.2. An example of a diffraction
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pattern is shown in Fig. 4.1(a) for (Sc1−xLux)3.1In with x = 0. All observed peaks can

be indexed with the space group P63/mmc. As shown in Fig. 4.1(b), both a (right

axis, circles) and c (right axis, triangles) lattice parameters, along with the unit cell

volume V (left axis, squares) for (Sc1−xLux)3.1In for 0 ≤ x ≤ 0.10, increase nearly

linearly with x.

4.2.1 Temperature-Dependent Magnetization Measurements

For weak itinerant ferromagnets, the low-field susceptibility is expected to follow a

T−1 behavior [262]:

χ0

χ(T )
= 1− α + λ(T ), (4.1)

where the coefficient λ encompasses the dependence on the local amplitude of spin

fluctuations and is linear in temperature λ ∼ T/T ∗C , and α = Iρ(EF ), where I is

the coupling constant and ρ(EF ) is the density of states at the Fermi level. When

T ∗ � T ∗C , α ∼ (T/T ∗)2 usually has only a weak T 2 dependence. However, the

magnetic susceptibility χ(T ) in Sc3.1In follows a modified Curie-Weiss-like law:

χ(T ) =
C

T ∗
+

C

(T − T ∗C)
, (4.2)

as illustrated in Fig. 4.2(a). Such a temperature dependence can possibly be under-

stood when considering strong spin fluctuations, associated with the low-dimensional

Fermi surface of Sc3In [177]: if T ∗ > T ∗C (but not � T ∗C), then the temperature

dependence of α is not negligible compared to that of λ. In weak IFMs, the Curie-

Weiss-like temperature T ∗C , determined from linear fits of the inverse susceptibility

after the temperature independent term C/T ∗ was subtracted, coincides with the
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perature TC is estimated from the peak position (solid line), indicated by the vertical
arrow.
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Curie temperature TC . As shown below, this is not the case in (Sc1−xLux)3.1In, even

though TC and T ∗C are both continuously suppressed to 0 K with x.

A local minimum in the derivative dM/dT (Fig. 4.2(b), left axis) corresponds

to the Curie temperature TC in Sc3.1In. Moreover, the specific heat data for x = 0,

plotted as Cp/T (right axis, Fig. 4.2(b)), also displays a broad maximum at TC . This

is remarkable, given that such transitions are often difficult to identify in the field-

independent properties of itinerant ferromagnets, even in single crystalline samples

[57]. In Sc3.1In, the susceptibility derivatives and specific heat data provide evidence

that the ferromagnetic ordering occurs below TC ∼ 4.5 K, as also demonstrated by the

field-dependent data shown below. The different measurements consistently indicate

that TC is significantly lower than the older estimates from Arrott isotherms alone

[124,139,367], when Sc3In was erroneously assumed to be a mean-field ferromagnet.

In (Sc1−xLux)3.1In, TC is continuously suppressed by Lu doping above x =

0.02 to values below those accessible by the QD MPMS system. Further data below

T = 2 K was collected from 4He AC susceptibility measurements shown in Fig. 4.2(c).

Lack of data around the 4.2 K 4He transition precludes a TC estimate for x = 0 and

x = 0.005, when the transition falls close to this temperature interval. However,

for all other compositions up to x = 0.04, the peak corresponding to TC (illustrated

by the solid line fit in Fig. 4.2(c)) is continuously reduced to temperatures below

T = 1.17 K, as shown in Fig. 4.2(c). This agrees with the critical composition

xc = 0.035± 0.005, as determined from the analysis below.

4.2.2 Arrott and Arrott-Noakes Analysis

Strong spin fluctuations in Sc3.1In result in deviations from linearity in the inverse

susceptibility around T ∗C which precludes the accurate determination of the Curie

temperature TC from the χ(T ) data. Alternatively, Arrott isothermsM2 vs. H/M [22]
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β = βMF = 0.5 and γ = γMF = 1, TC = 9.75 K (solid line) and (c) non-mean-field
exponents β = 0.26 and γ = 1.03, TC = 4.45 K (solid line). (b) Log-log plot of Sc3.1In
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had previously been employed to determine TC in Sc3In. Existing reports give this

value to be less than 7.5 K [124,139,168,244,367]. If the Arrott plot technique were

used for Sc3.1In (Fig. 4.3(a)), it would appear that ferromagnetic order occurred

close to 9.75 K. This implies that the Sc-In ratio used for the current study is closest

to the optimal one [244], compared to all previous reports. However, the Arrott

isotherms deviate strongly from linearity at high H values [124, 139, 367]. This is

a compelling indication that the mean-field theory cannot accurately describe the

weak ferromagnetism in Sc3.1In, in contrast with, for example, ZrZn2 [341]. The more

generalized Arrott and Noakes method [24] was successfully employed to characterize

the critical scaling in the heavy fermion ferromagnet URu2Si2 doped by Re [57]. In

the current work, this generalized critical scaling is applied to a different type of

quantum critical point, in the weak itinerant ferromagnet Sc3.1In which has no local

moment elements. It would appear that the non-Fermi liquid behavior results from

the non-mean field character of the magnetism in these itinerant ferromagnets.

The Arrott-Noakes scaling represents a generalization of the mean-field scal-

ing of the magnetization M , magnetic field H and the reduced temperature t =

(T/TC − 1), as summarized in Section 2.2.3. In the case of (Sc1−xLux)3.1In, the

Curie temperature TC and exponent δ are first determined from log-log M(H) plots

for each composition, as shown in Fig. 4.3(b) for x = 0 and in Fig. 4.4(a-c) for

x = 0.005, 0.008, and x = 0.01. At TC , critical scaling requires that the isotherm

be linear, with a slope equal to the critical exponent δ. The T = 1.8 K isotherm

for x = 0.02 is nearly linear all the way down to H = 0 T (Fig. 4.4(d)), indicating

that TC for x = 0.02 is finite and smaller than 1.8 K. For all other ferromagnetic

compositions (Fig. 4.4(a-c)), non-linear isotherms occur within 20% of TC . There-

fore, in the absence of M(H) measurements below 1.8 K, the nearly linear log-log

M(H; 1.8 K) isotherm for x = 0.02 is a good indication that the TC value estimate

for this composition is within 20% of TC , which yields TC(x = 0.02) = 1.5 ± 0.3 K.
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This value agrees well with the AC susceptibility estimate, where TC = 1.62 K.

Next, the critical exponents β and γ are determined from the expected linear

dependence of M1/β vs. (H/M)1/γ. A subset of the resulting isotherms is shown in

Figs. 4.3(c) (x = 0) and 4.1(a-c) (x = 0.005, 0.008 and 0.01). The extrapolations

of the linearized isotherms in the ferromagnetic state yield the spontaneous mag-

netization M0 from the vertical axes intercepts. As expected, M0 scales with |t|β,

as shown in Fig. 4.6(a) for (Sc1−xLux)3.1In where 0 ≤ x ≤ 0.02. In contrast with

URu2−xRexSi2 [57], M0 for (Sc1−xLux)3.1In (Fig. 4.6(a)) grows faster in the ordered

state, as the critical exponent β for the former, β = 0.26±0.05, is less than half of the

respective value in the latter system [57]. However, the β values in (Sc1−xLux)3.1In

are unusually small, which implies that the ordered moment in this weak itinerant

ferromagnet is more readily destabilized by fluctuations close to TC . This might indi-

cate a fragile magnetism in a nearly 1D electron system [177], which doping and the

attendant disorder immediately suppress to 0 K.

The Arrott-Noakes critical exponents δ (triangles), γ (squares) and β (circles),

scaled by their mean-field (MF) values, are presented in Fig. 4.6(b) as a function

of composition. Most strikingly, δ is nearly twice as large as its mean-field value

δMF , while β is nearly half of βMF , leaving γ nearly identical to its mean-field value

γMF . δ is a measure of the curvature of M(H) at TC , with larger values signaling

faster saturation. A comparison between (Sc1−xLux)3.1In and URu2−xRexSi2 [57]

shows that larger δ values for the former compound are also associated with a larger

relative magnetization M(5.5 T; 1.8 K) ≈ 0.2 µB. This value at t = 0.6 is nearly

15% of the paramagnetic moment µPM ≈ 1.3 µB for the composition x = 0 with

maximum TC . The corresponding value for URu2−xRexSi2 is M(5.5 T; 1.8 K)/µPM ≈

(0.4 µB)/(3.8 µB) ≈ 10% (for which TC,max = 27 K is obtained for x = 0.6), nearly

one third less at a comparable relative temperature t (Fig. 1, bottom panel, in Ref.
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[24]).

The scaling collapse of M |t|−β vs. H|t|−δβ, shown in Figs. 4.3(d) and 4.1(a-c),

exemplifies how the M |t|−β vs. H|t|−δβ curves collapse onto two diverging branches,

for t < 0 (open symbols) and t > 0 (full symbols). This collapse is similar to that

observed for the heavy fermion URu2−xRexSi2 [57], which is remarkable, given the

lack of formal local moments in the constituent elements of (Sc1−xLux)3.1In.

4.2.3 Non-Fermi Liquid Behavior

An independent and compelling evidence for the quantum critical point in the doped

Sc3.1In system is the non-Fermi liquid behavior below x = 0.04. One signature of non-

Fermi liquid behavior is the logarithmic temperature dependence of the specific heat

Cp/T (Fig. 4.8(a)), which occurs over a decade in temperature. The T lnT specific

heat, shown in Fig. 4.8(a), may, in principle, have two possible origins: non-Fermi

liquid behavior or Schottky anomaly. For a Schottky anomaly, a low-T peak in the

specific heat would move up in temperature with increasing H. However, the de-

crease of the low temperature Cp/T with increasing H (inset, Fig. 4.8(a)) invalidates

the Schottky anomaly scenario and not surprisingly, since this would be associated

with low-lying energy states (not the case for a system with no formal local mo-

ments). The non-Fermi liquid scenario is therefore more plausible in (Sc1−xLux)3.1In

for 0 ≤ x ≤ 0.04. More interestingly, the non-Fermi liquid behavior coexists with

the ferromagnetic state. This coexistence has been explained based on magnetic clus-

ter formation as a result of competition between Ruderman-Kittel-Kasuya-Yosida

(RKKY) coupling and Kondo effect [35, 280]. However, this is the first observation

of non-Fermi liquid behavior within the ferromagnetic state in a weak itinerant ferro-

magnet without magnetic elements. The implication is that a new model would be re-

quired to describe the ground state in Sc3.1In, or that the Griffiths-McCoy model [141]
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may still be appropriate if evidence for Kondo effect emerged for this compound.

Besides the T lnT behavior in the specific heat, (Sc1−xLux)3.1In displays lin-

ear resistivity at the lowest temperatures ρ(T ) = ρ0 + AT n (n = 1), as shown in

Fig. 4.8(b). A detailed study of the (Sc1−xLux)3.1In resistivity and non-Fermi liquid

behavior as a function on both T and x is underway, revealing that the resistivity

exponent remains n = 1 well beyond TC , substantively different from the marginal

Fermi liquid exponent n = 5/3 of ZrZn2 [337]. Moreover, the specific heat data for

ZrZn2 is Fermi liquid-like [297], with no T lnT dependence like that reported here for

(Sc1−xLux)3.1In. As illustrate by the inset in Fig. 4.8b for x = 0, all polycrystalline

(Sc1−xLux)3.1In samples have comparable ρ(T ) values for 0 ≤ x ≤ 0.10. It should be

remarked that the absolute residual resistivity values ρ0 and the residual resistivity

ratios RRR = ρ(300 K)/ρ0 for (Sc1−xLux)3.1In are ρ0 ∼ µΩcm and RRR ∼ 3 - 4,

values characteristic of good metals, comparable even with those of ZrZn2 single crys-

tals [337]. These are arguments suggesting minimal disorder effects on the quantum

critical behavior of the doped Sc3.1In. Even more important for the question of disor-

der, the resistivity change ∆ρ in the range of linearity (Fig. 4.8b) is also comparable

to the residual resistivity values ρ0, whereas strong disorder effects would result in

∆ρ << ρ0. Therefore the resistivity exponent itself n = 1 and the T lnT specific

heat in (Sc1−xLux)3.1In speak in favor of small disorder effects, by contrast with, for

example, doped NixPd1−x [281]. In the latter compound, disorder was considered to

change the temperature dependence of the specific heat from the expected non-Fermi

liquid T lnT in the quantum critical region, to T3/2 slightly away from the quantum

critical point. Even for the pressure-induced quantum critical point in MnSi [297], the

resistivity exponent is found to be n = 3/2, a value attributed to frozen-in disorder

even in very high purity systems.
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Figure 4.9: Time spectra of zero field and longitudinal field µSR of (Sc1−xLux)3.1In
where x = 0 (squares), 0.01 (downward-facing triangles) and 0.025 (leftward-facing
triangles). The background sample holder contribution in the two Lu-doped samples
was subtracted. The solid lines represent fits to Eqs. 4.3 and 4.4.

4.2.4 Muon Spin Relaxation Measurements

The small saturation moments of itinerant systems preclude the accurate determina-

tion of the small ordered moment from neutron diffraction investigations, similar to

the case of ZrZn2 [6]. On the contrary, the muon spin relaxation (µSR) technique is

extremely sensitive to local magnetic fields and has been used to investigate multiple

itinerant systems [65,128,284,380,383]. Figure 4.9 shows the time spectra observed in

zero field and longitudinal field at the lowest temperature. The fast relaxation in the

early time region in zero field is eliminated by the decoupling effect in longitudinal

field, which indicates that the observed relaxation is due to a static field, generated
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by the static magnetic order in both the undoped and doped systems. For the zero

field Sc3.1In spectrum, two precession frequencies at low temperatures can be seen,

as shown in Fig. 4.10(a). The zero field time spectra were analyzed by assuming a

functional form of:

G(t) = [A1 cos(2πν1t)e
(−Λ2

1
t2

2
) + A2 cos(2πν2t)e

(−Λ2
2
t2

2
) + (A1Z + A2Z)e

(− t
T1

)
]VM+

(1− VM)[GKT (t,∆KT1) +GKT (t,∆KT2)]

2

(4.3)

where GKT (t) is the Kubo-Toyabe function [154] for random nuclear dipolar fields,

and A1Z and A2Z are assumed to be a half of A1 and A2, respectively, as expected

for polycrystalline specimens. A very good fit was obtained by assuming A1 = A2,

presumably due to two magnetically-nonequivalent muon sites populated with equal

probabilities. For the longitudinal relaxation rate 1/T1, two values for the two dif-

ferent sites could not be resolved. So, one value of T1 was used in the fit. The

temperature dependence of the two frequencies ν1 and ν2 is shown in Fig. 4.10(a).

The volume fraction VM of the magnetically ordered region, shown in Fig. 4.10(b),

was determined from the amplitudes of the precession signals. The volume fraction

VM decreases gradually with increasing temperature, indicating co-existence of vol-

umes (or regions) with and without static magnetic order. Although the precession

signal disappears around T = 5.5 K, a small VM remains above this temperature up to

T ≈ 8 K. This is due to a non-precessing but relaxing signal with a small amplitude,

caused by static random fields from the electron system remaining in a small volume

fraction.

The Lu-doped samples show relaxing signal without precession at low tem-

peratures, indicating a more random internal field, as compared with the undoped
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Sc3.1In. In order to reproduce the observed line shape, the zero field time spectra of

the Lu-doped samples have been analyzed by assuming the following functional form:

G(t) = A1(1− pσ2)e−
1
2
σ2t2 +

A1

2
e

(− t
T1

)
+ Abg (4.4)

where the first term represents the transverse relaxation, the second term is the longi-

tudinal 1/T1 component, and the third term is a background signal from the sample

holder. From independent measurements in weak transverse field at low tempera-

tures, the values of the non-relaxing background signal from a silver sample holder

Abg were estimated to be 0.36 and 0.55 for x = 0.01 and 0.025 samples, respectively.

These values are consistent with the known background level from the cryostat and

sample holder, and a rather small sample size. It is, however, not possible to elim-

inate the possibility that signal from a small paramagnetic volume in the specimen,

persisting to T = 0 K, is included in the background signal. Due to difficulty in

separating the effects of slow relaxation and partial volume fraction, the amplitude

A1 was fixed to be temperature-independent, allowing to extract the relaxation rate

σ. A phenomenological ”dip” parameter p (p = 1) for the Kubo-Toyabe function was

introduced, while smaller p values would fit line shapes with a shallower dip, which

are often observed in real materials, including the present case of Lu-doped systems.

Although the fit is not perfect, as shown by the lines in Fig. 4.9, the functional form

of Eq. 4.4 was used to compare the relaxation rates in different specimens without

introducing additional free parameters. Fig. 4.11(a) shows the temperature depen-

dence of σ in the two Lu-doped specimens. To compare the relaxation rates σ with

the static field measured in undoped Sc3.1In, the spatially averaged value of the static

local field was determined as:

Hav = VM
A1ν1 + A2ν2

A1 + A2

+
(1− VM)(∆KT1 + ∆KT2)

2γµ
(4.5)
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where γµ represents the gyromagnetic ratio of a positive muon and ∆KT are the widths

of the Kubo-Toyabe function for nuclear dipolar fields. We plot Hav in Fig. 4.11(a)

with the relaxation rate (left axis) and the average field (right axis), scaled with γµ.

Since the static internal field is expected to be proportional to the local static spin

polarization, Fig. 4.11(a) demonstrates the development of the spatially-averaged

magnetic order parameter which can be compared to the spontaneous magnetization

M0, shown in Fig. 4.6(a).

Measurements of the spin-lattice relaxation rate 1/T1 were performed in an

applied longitudinal field. Figure 4.11(b) shows the temperature dependence of 1/T1

for (Sc1−xLux)3.1In with x = 0, 0.01, 0025. There is no divergent behavior in Sc3.1In,

while the Lu-doped samples exhibit a peak in 1/T1 at the ordering temperature. In

either case, the absolute values of 1/T1 are less than 0.1/µs, which implies that the

relaxation rate measured in zero field (Fig. 4.11(a)) is predominantly due to a static

field, even at temperatures very close to the ordering temperature. In Fig. 4.11(a), a

finite relaxation rate/average field persists up to high temperatures for all the three

systems. This is attributed to the nuclear dipolar field, as Sc has a very large nuclear

moment.

The absence of dynamic critical behavior and the gradual change of the vol-

ume fraction VM , observed in undoped Sc3.1In, indicates a first-order transition at the

magnetic order. It is interesting to note that a weak ”second order” feature is ob-

served for Lu-doped samples. However, further experimental data are needed given

the fact that the order parameter (Fig. 4.11(a)) exhibits a non-linear dependence

on the Curie temperature TC , suggesting a remaining effect of first-order quantum

evolution. Additionally, the difficulty in separating the effects of moment sizes and

volume fraction at very small relaxation rates, as well as the uncertainty in estimating

background level, prevent reliable determination of VM for the Lu-doped samples.
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4.3 Discussion

The paramagnetic moment µPM (diamonds, Fig. 4.12(a)), determined from the Curie-

Weiss-like law, is nearly composition-independent µPM ∼ 1.3µB/F.U. Moreover, the

Weiss-like temperature T ∗C decreases nearly linearly with x for x ≤ 0.10, after an

initial jump between x = 0 and 0.005 (squares, Fig. 4.12(a)). Considering that Curie-

Weiss-like behavior in the itinerant scenario arises from the temperature-dependence

of the amplitude of spin fluctuations [262], this sudden increase in the corresponding

T ∗C signals enhanced spin fluctuations due to the disorder brought on by Lu doping.

Between x = 0.02 and x = 0.04, T ∗C changes sign in a continuous manner, suggesting

the presence of a (second order) doping-induced quantum critical point in this com-

position range near xc = 0.035 ± 0.005. Moreover, TC determined either from χ′(T )

or M(H) data (Figs. 4.2(c)-4.1) moves down continuously in temperature below 1.17

K for the doping amounts above 0.03, indicating that the quantum critical point is

close to this composition.

The determination of the critical composition xc at the quantum critical point

requires consistency between the M(T ) and χ′(T ) data, the critical scaling analysis of

the M(H) measurements as well as the µSR results. Indeed, the critical composition

xc = 0.035 ± 0.005 is determined from (i) the TC (circles and triangles) and T ∗C

(squares) values (Fig. 4.12(b)) approaching 0 K at the quantum critical point and

(ii) the critical scaling rendering the Arrott-Noakes plots M1/β vs. (H/M)1/γ as

parallel isotherms, equally spaced in t (Figs. 4.3(c) and 4.1(a-c)). Moreover, the µSR

results confirm the development of static magnetic order with a nearly full volume

fraction at low temperatures, and diminishing moment size as a function of decreasing

ordering temperature. Moreover, the continuous variation of T ∗C and TC with x and

the µSR evidence for a second order phase transition in the Lu doped samples are

also evidence for the quantum phase transition induced by Lu doping.



162

0.00 0.01 0.02 0.03 0.04

0

4

8

NFL
+

NFL

 T
*

C
 from 

DC
(T)

 T
C
 from M

DC
(H)

 T
C
 from 

AC
(T)

(b)

 

T
C
(K

) 
  
  
 T

* C
(K

)

x in (Sc
1-x

Lu
x
)
3.1

In

FM 

0.00 0.02 0.04 0.06 0.08 0.10

-20

-10

0

10

20

-2

-1

0

1

2

(Sc
1-x

Lu
x
)

3.1
In

T
C
(K

) 
  
  
 T

* C
(K

)
(a) 

P
M  (

B /F
.U

.)

 

a

In

Sc b

Figure 4.12: (a) T − x phase diagram for (Sc1−xLux)3.1In for 0 ≤ x ≤ 0.10, with
the Weiss-like temperature T ∗C (squares, left axis), the Curie temperature TC (cir-
cles, left axis) and paramagnetic moment µPM (diamonds, right axis). (b) Enlarged
T − x phase diagram for x ≤ 0.04 [shaded area in (a)], with the ab plane projection
of the Sc3.1In unit cell shown in the inset. The horizontal line at T = 1.17 K de-
notes the minimum experimental temperature, with the open symbols representing
TC estimates extrapolated from accessible measurements.



163

Doping in Sc3.1In reveals intriguing traits associated with quantum criticality

in general, and with weak itinerant ferromagnet systems in particular: the paramag-

netic moment µPM is surprisingly large in (Sc1−xLux)3.1In, and nearly independent of

x, even as the system goes through the quantum phase transition at xc = 0.035±0.005.

Not surprisingly then, the critical exponent β is unchanged through the ferromagnetic

state, although its value β = 0.26 ± 0.05 is smaller than that in any other known

quantum critical system. The minute critical composition and small β value, together

with the jump in T ∗C as x > 0 (Fig. 4.12(b), squares) point to a weak itinerant fer-

romagnet ground state, easily perturbed by doping. This may seem unusual in light

of the stark differences between Sc3.1In and the related itinerant ferromagnet system

ZrZn2 [341], with mean-field specific heat and marginal Fermi liquid resistivity be-

havior, or the similarities with the extraordinary critical scaling in the heavy fermion

ferromagnet URu2−xRexSi2 [57], close to these systems’ respective doping-induced

quantum critical points. However, these observations may be reconciled from crystal-

lographic and electronic properties considerations: as a nearly 1D structure is formed

by bipyramidal Sc-In chains (Fig. 4.1(c)), the reduced dimensionality in Sc3.1In ren-

ders it more similar to the layered (2D) URu2Si2 compound than the cubic (3D)

ZrZn2. It appears that the non-Fermi liquid behavior in the ferromagnetic state may

also be correlated with the non-mean-field scaling, and, more importantly, that this

correlation is independent of the presence of hybridized f -electrons. Consequently, the

universality of the quantum critical behavior common to the former two compounds

may be ascribed to spin fluctuations, associated with reduced crystallographic dimen-

sionality. More itinerant ferromagnet systems are needed to probe this universality.

Equally important is the synthesis of single crystals of Sc3.1In, which would enable

further characterization of the implications of dimensionality on the quantum critical

point, as well as to probe the potential non-Fermi liquid behavior at the quantum

critical point and in the ferromagnetic state.



Chapter 5

Doping-induced Cluster-glass Behavior in

(Sc1−xErx)3.1In

As it was mentioned previously, Sc3.1In is a weak itinerant ferromagnet with no mag-

netic constituents. While doping with non-magnetic Lu, discussed in Chapter 4,

resulted in a quantum critical point, the interplay of local and itinerant moments

in this system has not been investigated. In the following Chapter, this scenario is

investigated by doping Sc3.1In with Er3+ local moment ions, to form (Sc1−xErx)3.1In.

As x increases, the Weiss-like temperature θ stays positive and nearly triples up to

x = 0.10. Moreover, Er doping of as little as x = 0.02 induces a cluster-glass state,

which persists up to x = 0.10, as evidenced by DC and AC susceptibility measure-

ments, and confirmed by the Vogel-Fulcher analysis.
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5.1 Motivation and Background

While it has been shown that, in some magnetic systems, the nature of the magnetic

moment can be changed from local to itinerant via pressure [69] or doping [79, 331],

distinguishing between the two types of moments within a given system has proven

to be difficult [386,387]. A possible solution is to use an itinerant electron ferromag-

net compound in which all constituents are non-magnetic, and then titrate in local

moment-bearing ions. Currently, only two compounds, ZrZn2 [245] and Sc3In [246],

are known to exhibit itinerant ferromagnetism despite the fact that their compo-

nents do not possess any magnetic moment. An addition of local moment to the

itinerant matrix was attempted via Gd3+ substitution in Zr1−xGdxZn2 [25]. Sur-

prisingly, it appeared that the instability of the itinerant magnetism in ZrZn2 [246]

prevented the enhancement of the overall magnetization upon doping [25]. More-

over, the Curie temperature TC and the Weiss-like temperature θ decreased with

increasing x in Zr1−xGdxZn2, resulting in the suppression of the ferromagnetic state

at xc = 0.025 [25]. Perhaps not as surprising, non-magnetic element doping also re-

sulted in the suppression of the Curie temperature TC [341]. The similarity between

the magnetic and non-magnetic doping effects is quite striking but could possibly

be explained by the instability of ferromagnetism in ZrZn2, as predicted by the band

structure with a narrow peak at the Fermi surface [246,402]. For Sc3In, the peak in the

density of states at the Fermi level was found to be broader than that of ZrZn2 [88].

Attempts to drastically alter the overall magnetization via pressure [124, 140] and

magnetic field [167] were unsuccessful. However, Lu3+ doping resulted in remarkable

non-Fermi liquid behavior, and revealed the existence of a quantum critical point at

xc ≈ 0.03 [355], as described in Chapter 4.

The addition of local moment ions in itinerant magnets should provide an

insight into the interplay between the two types of magnetism: the itinerant moment
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is expected to have a weak variation with the composition, but the overall magnetic

moment should increase with increasing amounts of local moment. However, the

itinerant magnetic moments was suppressed to zero upon Gd doping of ZrZn2 [25].

Therefore it is crucial to elucidate how the local and itinerant moments interact.

To this end, the effects of Er doping into Sc3.1In are presented below. In order

to minimize the chemical pressure effects caused by doping, Er3+ (r[Er3+] = 0.890

Å) [329] was chosen, since this magnetic rare earth was closest in size to the host Sc

ion (r[Sc3+] = 0.745 Å) [329] that it substituted for. Er doping as small as x = 0.02

in (Sc1−xErx)3.1In induced a cluster-glass state [358]. The corresponding freezing

temperature Tf increased with increasing x up to x ≈ 0.10, a composition which

appears to correspond to the solubility limit of Er in Sc3.1In.

5.2 Physical Properties

It has been established that the mechanism of the cluster-glass behavior relies heav-

ily on the existence of frustration and disorder [273]. Antiferromagnetic coupling

[225, 282, 353] lends itself more readily to geometric frustration than ferromagnetic

coupling, explaining the limited number of metallic, ferromagnetically coupled cluster-

glass systems, as described in Section 2.3.1. Several cases are known, where a cluster-

glass states arises from a ferromagnetic ground state in metal oxides [162,250,310,416],

however the metallic examples are limited to Pd-Mn [190] and Ce-Ni-Cu [237] alloys,

U2IrSi3 [224], U2CoSi3 [360], and PrRhSn3 [15]. While the cluster-glass state in both

U2IrSi3 and U2CoSi3 has been attributed to crystallographic disorder [224, 360], dy-

namic fluctuations of crystal-field levels have been suggested as the underlying mech-

anism for the magnetic frustration in PrRhSn3 [15], based on the fact that neither site

disorder nor geometric frustration is present in this compound. The current study

shows that the addition of Er3+ local moments in the ferromagnet Sc3.1In induces a



167

cluster-glass state in (Sc1−xErx)3.1In (0 < x ≤ 0.10), while the Weiss-like tempera-

ture θ, a measure of the local-to-itinerant moment coupling, remains positive. The

Er-induced site disorder, along with frustration in the bipyramidal Sc/Er-In chains

(Fig. 5.1(b)) is the underlying source of the glassy behavior.

The P63/mmc structure and purity of the (Sc1−xErx)3.1In samples for 0 ≤

x ≤ 0.10 was confirmed by x-ray diffraction measurements. The lattice parameters

were determined using GSAS refinement, as described in Section 3.2. In the case

of undoped Sc3.1In (Fig. 5.1(a)), the lattice parameters a = 6.42 Å and c = 5.18

Å agree with the previously reported values [82]. The composition dependence of the

lattice parameters a (triangles) and c (circles), together with the change in the unit

cell volume V (squares), is shown in Fig. 5.1(b) for (Sc1−xErx)3.1In (0 ≤ x ≤ 0.10).

A systematic increase in the lattice parameters a and c, and the unit cell volume V is

observed with increasing Er concentration. Secondary phase peaks become visible in

the x-ray data for x > 0.10, suggesting that this is the solubility limit for Er in this

hexagonal structure.

The DC magnetic susceptibility presented in Fig. 5.2(a) shows irreversibility

between zero field cooled (full symbols) and field cooled (open symbols) data at

low temperatures. This irreversibility, together with the increase of the field cooled

magnetization upon cooling, is likely associated with either a cluster-glass state or a

long-range ferromagnetic order. AC susceptibility data presented below points to the

cluster-glass scenario.

At high temperatures, the temperature-dependent susceptibility should be

analyzed in the context of the interplay between local and itinerant moment mag-

netism. For local moments, the susceptibility χL(T ) is described by the Curie-Weiss
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law [261]:

χL(T ) = χ0,L +
CL

T − θW
(5.1)

where χ0 is the temperature-independent magnetic susceptibility, CL is the local

moment Curie constant, and θW is the Weiss temperature. The itinerant moment

susceptibility χI(T ) also varies inversely proportional to the temperature [261], and,

in the case of strong spin fluctuations, χI(T ) can be written as [261,355]:

χI(T ) = χ0,I +
CI

T − T ∗C
(5.2)
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Figure 5.3: T = 2 K magnetization as a function of field for (Sc1−xErx)3.1In with
0 ≤ x ≤ 0.10. Inset: calculated saturated moment µcalcsat (line) and measured magnetic
moment µ5.6T (diamonds).
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Here CI is a Curie-like constant, proportional to the quadratic paramagnetic itinerant

moment, and T ∗C is a Weiss-like temperature. For a system with mixed local and

itinerant moment contributions, their linear superposition would result in a magnetic

susceptibility of the form:

χ(T ) = χ0 + a
CL

T − θW
+ b

CI
T − T ∗C

(5.3)

As seen in Fig. 5.2(b), the inverse high-temperature susceptibility 1/(χ(T )−

χ0) is linear in T for x ≤ 0.10, which is consistent with Eq. 5.3 only if θW = T ∗C = θ,

suggesting cooperative behavior of the local and itinerant moments in (Sc1−xErx)3.1In:

∆χ(T ) = χ(T )− χ0 =
xCL + (1− x)CI

T − θ
=

Ctot
T − θ

(5.4)

The paramagnetic moment µexpPM and the Weiss-like temperature θ can be

determined from the linear fits of the inverse susceptibility at high temperatures, using

Eq. 2.28. The θ values, listed in Table 5.1, remain positive and increase monotonously

with x up to x = 0.10, in contrast with the Gd-doped ZrZn2 where θ values decreased

with Gd concentration [25]. Despite the fact that the x = 0 sample has no magnetic

constituents, the value of its paramagnetic moment µexpPM(x = 0) = µI ≈ 1.3 µB/F.U.

is remarkably large, consistent with previous reports [167, 246, 355]. As the amount

x of Er is increased, the overall paramagnetic moment µexpPM grows, as indicated by

the decreasing slope of the inverse susceptibility in Fig. 5.2(b). The calculated

paramagnetic moment µcalcPM can be estimated as a function of x:

µcalcPM =
√

(1− x)µ2
I + 3.1xµ2

L (5.5)

where µI = 1.3 µB/F.U. is the itinerant contribution and µL = 9.59 µB/Er3+ is the
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local moment per Er3+ ion. Good agreement between µexpPM and µcalcPM , revealed in the

inset of Fig. 5.2(b), is an indication of cooperative behavior of the local and itinerant

moments in this system.

5.3 Cluster-Glass Analysis

In order to verify the glassiness of (Sc1−xErx)3.1In, suggested by the DC magnetization

data above, additional AC and DC magnetization, and specific heat measurements

have been performed. The DC magnetization measurements have already revealed

some signatures of cluster glass behavior, including zero field cooled-field cooled ir-

reversibility, increasing χFC on cooling and Tf (0) < Tirr (Fig. 5.2(b)). The AC sus-

ceptibility χ′(T ) and specific heat data, together with the magnetization isotherms

M(H) at T = 2 K, presented below, reveal additional traits associated with the

cluster glass behavior, enumerated in Sections 2.3.1.

A notable effect of Er doping in Sc3.1In is large hysteresis and finite coercivity

in (Sc1−xErx)3.1In (0.02 ≤ x ≤ 0.10, Fig. 5.3), while in the pure itinerant system

(x = 0, squares, Fig. 5.3) no hysteresis is observed at T = 2 K. It has been remarked

[19] that the low-temperature magnetic moment in a cluster glass is often less than

the one for the saturated single ion moment. The field-dependent magnetization

data, shown in Fig. 5.3 can be used to determine µ5.6T as the lower limit for the

saturated magnetic moment for all compositions, which can then be compared to the

calculated values. The calculated saturated moment is found as the superposition of

the itinerant µcalcsat contribution from Sc3.1In, and the local Er3+ contribution, scaled

per formula unit:

µcalcsat (x) = 3.1 x µ(Er3+) + (1− x) µ(Sc3.1In) (5.6)
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where µ(Er3+) = gJµB = 9 µB, and µ(Sc3.1In) = 0.20 µB/F.U. is the magnetic

moment of Sc3.1In at maximum field available for these measurements (H = 5.6 T).

For example, for x = 0.10, the largest measured magnetic moment, taken as theM(H)

value at 5.6 T (Fig. 5.3), is µ5.6T (x = 0.10) = 1.71 µB. For x > 0 the calculated

values of µcalcsat (x) are larger than the measured µ5.6T ones, as seen in the inset of Fig.

5.3, consistent with the cluster glass state [19].

For 0.02 ≤ x ≤ 0.10, χ′(T ) (Fig. 5.4) reveals a broad, frequency-dependent

peak, another indicator of glassy behavior [273] (Section 2.3). Conversely, no peak

and no frequency-dependence can be detected for x = 0, indicating that doping is

necessary to induce glassiness. Fits to the measured χ′(T ) peaks, with an example

shown in Fig. 5.4(d) (solid line), yield values of the freezing temperature Tf (f),

which are plotted in Fig. 5.5. A parameter δ can be determined from the change

in the frequency f with the freezing temperature Tf (f) [273]. This is a quantitative

measure of peak shift in χ′(T ) with frequency, and it is used to discriminate between

spin-glass, cluster glass and superparamagnetic systems (Eq. 2.94).

For 0.02 ≤ x ≤ 0.10 in (Sc1−xErx)3.1In, the δ values are around 0.01, higher

than those reported for typical canonical spin-glasses (δ ≈ 0.005 for Cu1−xMnx, Ta-

ble 2.5) [40, 273], and lower than those for noninteracting ideal superparamagnetic

systems (δ > 0.10), [98] but comparable to those of known cluster-glass compounds

(PrRhSn3 and CeNi1−xCux) [15,237]. This provides more evidence for a cluster-glass

state induced by Er doping in Sc3.1In [273].

In a cluster glass, the relaxation time τ is a measure of the proximity to the

spin-glass limit [40]. The power-law fits to Eq. 2.97, shown in Fig. 5.5(a-e) for

(Sc1−xErx)3.1In for 0.02 ≤ x ≤ 0.10, are used to determine the parameters zν and τ0.

Common values of the characteristic relaxation time τ0 in glassy systems are ∼ 10−12

s, comparable to that obtained for (Sc1−xErx)3.1In. Empirically, the zν values for
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glassy systems have been observed to fall within the range 2 ≤ zν ≤ 14 [371]. This is

also true in the case of (Sc1−xErx)3.1In, as the zν values, listed in Table 5.1, are close

to 10 for most x ≤ 0.10 samples, and smaller (but still > 2) only for x = 0.02.
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Figure 5.6: Cp/T vs. T 2 for (Sc1−xErx)3.1In (0 ≤ x ≤ 0.10), with open symbols
corresponding to the freezing temperature Tf (0), as determined from χ′(T ).

Using the values of the relaxation time τ0 determined above, the characteristic

frequency f0 is calculated as f0 = 1/(2πτ0). The relationship between the freezing

temperature Tf (f) and the characteristic frequency f0 is given by the empirical Vogel-

Fulcher law (Eq. 2.96) [119,273,343,371] which takes into consideration the strength

of intercluster interactions [15, 414]. It is possible to fit the data with the Eq. 2.96

rewritten as:

Tf (f) =
Ea
kB

1

ln(f0/f)
+ T0 (5.7)
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The parameters Ea and T0, derived respectively from the slope and intercept

of the Vogel-Fulcher fits of Tf (f) vs. 1/ln(f0/f) (shown in the insets of Fig. 5.5(a-

e)), are summarized in Table 5.1. The nonzero values of T0 [15, 414] confirm that

the clusters are strongly correlated, while T0 ≤ 0 would correspond to a collection of

non-interacting spins, i.e. a spin-glass compound.

The specific heat data for (Sc1−xErx)3.1In (0.02 ≤ x ≤ 0.10), plotted as Cp/T

vs. T 2 in Fig. 5.6 displays a broad peak near the freezing temperature Tf (0), marked

by the large open symbols. A broad maximum at the temperature exceeding the

freezing temperature Tf (0) is usually observed in cluster-glass systems, as mentioned

above. No such peak is visible for x = 0, although at low T the upturn in Cp/T is

thought to be associated with non-Fermi liquid behavior [355]. Even for x > 0, Cp/T

vs. T 2 (Fig. 5.6) displays a low-T upturn, whose origin maybe be attributed to either

a Schottky anomaly or non-Fermi liquid behavior. This remains to be clarified in a

future study.

The composition dependence of the freezing temperature Tf (0) and the irre-

versibility temperature Tirr is shown as squares in Fig. 5.7. By contrast to the effects

of Gd doping in ZrZn2 [25], where the Weiss-like temperature θ was suppressed with

increasing amounts of local moment, Er doping of Sc3.1In resulted in an increase of θ.

The paramagnetic moment µexpPM and the saturated moment estimate µ5.6T

can be used to determine the magnetic carrier per atom qc and qs [309]. The qc

parameter describes the behavior of the system for temperatures above the transition

temperature, and is determined from the paramagnetic moment µexpPM , using Eq. 2.78

[309].

Similarly, qs is obtained from the saturation magnetization at temperatures

below the transition temperature as qs = µ5.6T/2, where µ5.6T is assumed to be close to

the saturated moment given the small slope of the M(H) isotherms in Fig. 5.3. If the
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number of carriers below the transition temperature, qs, is the same as the one above

the transition temperature, qc, the Rhodes-Wohlfarth ratio is qc/qs ∼ 1, indicating

a local-moment system. The other limiting case is that for qc/qs > 1, observed

in delocalized or itinerant magnets (qc/qs = 4 for ZrZn2 and 6.1 for Sc3In [309]).

The values of the Rhodes-Wohlfarth ratio for local (full triangles) and itinerant (full

circles) moment compounds, together with those for (Sc1−xErx)3.1In (open circles),

are shown in Fig. 5.7(b). The coexistence of local and itinerant magnetic moments

in Er-doped Sc3.1In yields Rhodes-Wohlfarth ratios between 2.7 and 3.7 (see Table

5.1, as evidenced in the inset of Fig. 5.7(b). However, this ratio remains enhanced

compared to the local moment limit for x ≤ 0.10, suggesting that larger amounts

of local moments would be necessary before the local moment magnetism became

predominant.

Table 5.1: Cluster-glass parameters for (Sc1−xErx)3.1In (0 ≤ x ≤ 0.10).

x
Tirr µexpPM θ

δ
Tf (0)

zν
T0

qc/qs
(K) (µB/F.U.) (K) (K) (K)

0 - 1.29± 0.05 6.4± 1 - - - - 2.98

0.02 18± 1 2.77± 0.05 13.0± 1 0.014 15.1± 1 2.7± 2 14.1 3.73

0.04 19± 1 3.62± 0.05 16.5± 1 0.012 17.6± 1 11.0± 2 15.6 3.33

0.06 22± 1 4.38± 0.05 15.9± 1 0.010 20.6± 1 8.8± 2 18.7 2.69

0.08 24± 1 5.00± 0.05 17.4± 1 0.009 22.2± 1 10.1± 2 20.0 3.47

0.10 25± 1 5.57± 0.05 17.2± 1 0.009 22.9± 1 10.8± 2 20.6 2.72

5.4 Conclusions and Open Questions

A non-magnetic dopant such as Lu [355] yielded no glassy behavior in (Sc1−xLux)3.1In,

but rather a gradual suppression of the ferromagnetic state towards a quantum critical

point. Conversely, Gd local moment doping of another itinerant ferromagnet with no

magnetic moments, ZrZn2, also resulted in a gradual suppression of the ferromagnetic
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state, with no evidence for the glassiness [25]. Er doping in Sc3.1In contrasts the

findings for Zr1−xGdxZn2, as the paramagnetic moment is enhanced with increasing

x in the former, while the doping results in cluster-glass behavior in (Sc1−xErx)3.1In,

with cooperative behavior of the local and itinerant moments suggested by the DC

susceptibility χ.

The AC and DC magnetization measurements, along with specific heat data,

show that (Sc1−xErx)3.1In (0.02 ≤ x ≤ 0.10) exhibits cluster-glass behavior below the

characteristic freezing temperature 15 K ≤ Tf (0) ≤ 24 K, which is enhanced by the in-

creasing doping amount x. The cluster-glass behavior is marked by the irreversibility

of zero field cooled-field cooled DC magnetization data, a broad frequency-dependent

peak in the AC susceptibility, a large value of δ parameter, the lack of saturation in

the low temperature magnetization at high fields, and a weak anomaly in the spe-

cific heat data. Moreover, the Vogel-Fulcher analysis established that the clusters are

strongly correlated.

Given that the emergence of cluster-glass state is only possible via frustra-

tion of the lattice, crystal-field-induced destabilization of magnetic moments, and site

disorder, we propose site disorder and frustration to be at play here. The lattice of

Sc3.1In exhibits reduced dimensionality [176] due to nearly one-dimensional bipyra-

midal Sc-In chains. The crystallographic frustration and site disorder, induced by Er

doping on the bipyramidal sites, induces a cluster-glass state that originates from a

metallic ferromagnetic ground state. It is imperious that the interplay between the

local and itinerant moment in this system be elucidated, which can be achieved via

muon spin relaxation measurements.



Chapter 6

Novel Itinerant Antiferromagnet TiAu

As mentioned previous, the origin of magnetism in metals has been traditionally dis-

cussed within either itinerant or local pictures. Surprisingly, there are very few known

examples of materials that are close to the itinerant limit, and their properties are

not universally understood. In the case of the two such examples discovered several

decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their

magnetic ground states draws on the existence of 3d electrons subject to strong spin

fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin den-

sity wave ground state, its 3d -electron character has been deemed crucial to it being

magnetic. Here we report the discovery of the first itinerant antiferromagnet metal

with no magnetic constituents, TiAu. Antiferromagnetic order occurs below a Néel

temperature TN ' 36 K, about an order of magnitude smaller than in Cr, rendering

the spin fluctuations in TiAu more important at low temperatures. This new itiner-

ant antiferromagnet challenges the currently limited understanding of weak itinerant

antiferromagnetism, while providing long sought-after insights into the effects of spin

fluctuations in itinerant electron systems.
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6.1 Motivation and Background

The local and itinerant moment are extreme limits of magnetic behavior, with poorly

understood physics associated with in-between scenarios. While the local moment

magnetism (or real-space localized magnetic moments and fluctuations) was readily

understood early on within a Heisenberg model [156] using a Weiss molecular field,

the itinerant moment behavior (corresponding to moments and fluctuations local-

ized in the reciprocal space) can only partially be reproduced by current theoretical

approaches (Section 2.1.8). Despite the success of the Stoner model [350] and the sub-

sequent improvements when spin fluctuations were accounted for [264–266], a unified

picture of magnetism (which to encompass both extreme scenarios, local and itinerant

moment) remains elusive. A practical limitation is the small number of known itiner-

ant moment magnetic systems. In one extreme case, that of magnetic metals without

magnetic constituents, only two itinerant ferromagnets, Sc3In [246] and ZrZn2 [245],

have been known for fifty years (see Section 2.1.8). Here we report the discovery of

the first itinerant antiferromagnet metal with no magnetic constituents, TiAu. Given

the small number of known itinerant magnets, the discovery of the novel itinerant

antiferromagnet TiAu provides an opportunity for detailed studies which to advance

the understanding of the physics of itinerant magnets in general, and of itinerant

antiferromagnets in particular. Thermodynamic and transport measurements reveal

the antiferromagnetic order at a Néel temperature TN ' 36 K. The long range static

order is further confirmed by neutron diffraction data, which, together with µSR ex-

periments indicate small moment ordering in the whole sample volume. In addition to

the overwhelming experimental evidence for the itinerant moment antiferromagnetic

order in TiAu, density functional theory calculations confirm the spin density wave

small moment ordering, with more detailed calculations using dynamical mean-field

theory, left to a future in-depth theoretical study.
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6.2 Physical Properties

6.2.1 Structural and Composition Analysis

Evidence for itinerant moment antiferromagnetic order. TiAu has been reported to

form in three distinct crystal structures, cubic Pm3̄m [97], tetragonal P4/nmm [323]

and orthorhombic Pmma [97], posing an inherent difficulty in synthesizing it as a

single phase. It comes as no surprise then, that no reports of physical properties

of TiAu exist. Here we report the magnetic and electronic properties of phase pure

orthorhombic TiAu, and show that it is a new itinerant electron antiferromagnet.
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Figure 6.1: Neutron diffraction data: a high resolution diffraction pattern for T = 5
K is indexed with the orthorhombic Pmma TiAu phase, denoted by blue vertical
marks. The inset shows a portion of the high-intensity diffraction data (solid circles)
taken on BT-7 at T = 2.5 K. Fig. 6.5(d) shows the observed counts (solid circles) for
the magnetic peak, with the solid curves representing fits to Gaussian (instrumental)
peaks.
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Neutron diffraction data were collected on the BT-1 powder diffractometer

and BT-7 thermal triple-axis spectrometer at the NIST Center for Neutron Research.

BT-1 data were used for the crystallographic analysis at T = 5 K (black) as shown in

Fig. 6.1, with all peaks identified as the orthorhombic Pmma TiAu phase (vertical

marks). Fig. 6.2 shows the observed counts (solid circles) for the magnetic peak.

The solid curve is a fit to Gaussian (instrumental) peaks (solid curve). The results of

structural refinements of the data below (T = 5 K) and above (T = 60 K) TN as well

as those obtained from room temperature x-ray diffraction are summarized in Table

6.1 and Table 6.2, respectively.

X-ray photoemission spectroscopy is a technique extremely sensitive in re-

solving the elemental composition [73] (see Section 3.6). O and C peaks can often be

present in spectra [73], a consequence of sample preparation. The rest of the peaks

in Fig. 6.3 correspond to Ti and Au, confirming the purity of the 1:1 Pmma phase,
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Table 6.1: Crystallographic information for Pmma TiAu extracted from neutron
diffraction data.

Neutron diffraction

Temperature (K) T = 5 T = 60

Lattice parameters

a (Å) 4.622(1) 4.622(0)

b (Å) 2.914(5) 2.916(6)

c (Å) 4.897(0) 4.895(9)

Atomic positions

Ti (0.250(0), 0.000(0), 0.311(0)) (0.250(0), 0.000(0), 0.308(2))

Au (0.250(0), 0.500(0), 0.817(6)) (0.250(0), 0.500(0), 0.817(6))

Table 6.2: Crystallographic information for Pmma TiAu extracted from x-ray diffrac-
tion analysis.

X-ray diffraction

Temperature (K) T = 300

Lattice parameters

a (Å) 4.632(3)

b (Å) 2.948(9)

c (Å) 4.885(5)

Atomic positions

Ti (0.250(0), 0.000(0), 0.313(3))

Au (0.250(0), 0.500(0), 0.820(2))

consistent with neutron (below) and x-ray (not shown) diffraction data. X-ray pho-

toemission spectroscopy is also employed in determining the valence of elements in

many compounds [100, 199, 238, 283]. Fig. 6.3(b) reveals that the binding energy of

4f7/2 Au is close to 85 eV, suggesting that Au is close to a Au1+ state [252]. The

large energy absorption of Ti does not allow for high resolution measurements, lim-

iting the number and quality of peaks that can be successfully analyzed. In TiAu,

the binding energy for the most pronounced Ti 2p3/2 line is split into two peaks, one

at ≈ 455 eV (for Ti2+ or Ti3+) [279] and another one at ≈ 459 eV (Ti4+) [279], as
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Figure 6.3: X-ray photoemission spectroscopy: (a) survey scan along with elemental
scans for Au (b) and Ti (c).

shown in Fig. 6.3(c). A comparison of the areas under the respective curves suggests

the valence of Ti to be 3.8± 0.12. In this itinerant magnet, the x-ray photoemission

spectroscopy results showing a small d electron contribution are consistent with the

small itinerant moment ordering indicated by µSR and neutron measurements, and

rule out the presence of a local moment in TiAu.
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6.2.2 Magnetization, resistivity, and specific heat

The first evidence for the antiferromagnetic ground state is the cusp around 36 K in

the temperature-dependent magnetic susceptibility M(T )/H, shown in Fig. 6.4 (left

axis). By analogy with local moment antiferromagnets, the TiAu zero field-cooled

and field-cooled data are indistinguishable. The value of the temperature-independent

Pauli susceptibility, calculated from the magnetic density of states χ0 ≈ 0.2·10−3 emu

mol−1, agrees well with the experimental one M0/H ≈ 0.3·10−3 emu mol−1. Upon

warming above the Néel temperature, the inverse susceptibility H/(M −M0) (right

axis, Fig. 6.4) is linear in temperature up to 800 K. Such linear T dependence of

Ti
Au

b

c a

0

5

10

0 200 400 600 800
0.0

0.5

1.0

1.5


0
H = 0.1 T

H
/(M

 - M
0 ) (1

0
4 m

o
lF

.U
.  e

m
u

-1)
 M

/H
 (

1
0

-4
 e

m
u
 m

o
l-1 F

.U
.)

TiAu

 

T (K)

Figure 6.4: Temperature-dependent magnetization of TiAu. Left axis: zero-field
cooled magnetic susceptibility as a function of temperature for µ0H = 0.1 T applied
field. Right axis: inverse susceptibility H/M along with a Curie-Weiss-like fit (solid
line), with θ ≈ - 37 K. Inset: the crystal structure of TiAu with Ti (small) and Au
(large) atoms.
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Figure 6.5: Specific heat and resistivity of TiAu. H = 0 temperature-dependent re-
sistivity (a) and specific heat (b). (c) The ordering temperature TN (vertical dotted
line) for TiAu determined from peaks in the temperature derivatives of resistivity,
dρ/dT (black triangles), and MT , d(MT )/dT (red squares), and in Cp/T (blue cir-
cles). The entropy Sm (solid blue line, right axis) is calculated by subtracting a
polynomial non-magnetic component (dashed line) from the measured specific heat
data.
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H/M has been long considered the hallmark of local moment magnetism, until it

was observed in the weak itinerant ferromagnets without local moments, ZrZn2 [245]

and Sc3In [246] (see Section 2.1.8). Puzzling at first, the origin of this behavior was

reconciled in the case of itinerant ferromagnets, when spin fluctuation effects were

considered by Moriya [264, 265]. The self-consistent renormalization theory unified

the local and itinerant pictures of ferromagnetism, and postulated a new origin for

the Curie-Weiss-like susceptibility in the latter, as the interactions of the spatially

extended modes of spin fluctuations [151, 261]. TiAu however is an itinerant antifer-

romagnet, and no existing theory accounts for an itinerant antiferromagnetic ground

state if neither Ti nor Au have conventional local moments. X-ray photoemission spec-

troscopy analysis suggests that Ti is close to the non-magnetic 4+ oxidation state.

This is striking in light of the high magnetic volume fraction observed in the muon

spin relaxation measurements presented below, which, together with the single phase

x-ray photoemission spectroscopy and neutron patterns shown in Figs. 6.3 and 6.1,

indicates that the observed magnetic behavior is indeed intrinsic. Therefore, Pmma

TiAu is the first itinerant antiferromagnet metal with no magnetic constituents, with

the magnetic ground state strongly affected by spin fluctuations.

Remarkable for a weak itinerant (ferro- or antiferro-) magnet, the electrical

resistivity (Fig. 6.5(a)) and specific heat data (Fig. 6.5(b)) also show signatures

of the phase transition around 36 K. The H = 0 ρ(T ) data are typical of a good

metal, decreasing nearly linearly from room temperature down to ∼ 40 K. A drop of

about 10 %, similar to the loss of spin-disorder scattering, occurs at TN (Fig. 6.5(a)).

Although often the gap opening associated with the spin density wave ordering results

in a resistivity increase, a similar drop was observed in BaFe2As2 single crystals [395].

In the absence of local moment ordering, the decrease in the resistivity at TN results

from the balance of the loss of scattering due to Fermi surface nesting (see below) and

the gap opening due to the spin density wave antiferromagnetic state. At the same
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Figure 6.6: Field-dependent magnetization of TiAu. The magnetization isotherms
M(H) (solid, left axis) and the derivative dM/dH (open, right axis) for T = 2 K
(circles) and 60 K (triangles). No saturation is achieved for magnetic fields up to 7
T. A metamagnetic transition is observed around 4 T in the T = 2 K isotherm, but
not in the one above the magnetic order.

temperature in TiAu, a small peak becomes visible in the specific heat data Cp (Fig.

6.5(b)), such that TN in this antiferromagnetic metal can be determined, as shown by

Fisher [114,115], from peaks in Cp (most visible in Cp/T ), d(MT )/dT and dρ/dT (Fig.

6.5(c)). Distinguishing between local and itinerant moment magnetism is inherently

difficult, especially in the nearly unexplored realm of itinerant antiferromagnets. It

is therefore striking that in TiAu, abundant evidence points towards its itinerant

magnetic moment character. The fact that the peak in Cp is not as strong as Fisher’s

prediction [114] is one such argument favoring the itinerant moment scenario in TiAu.

Another argument is the small magnetic entropy Sm (gray area, Fig. 6.5(c)) associated
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with the transition (solid blue line, Fig. 6.5(c)). Even though the Sm calculated after

assuming a polynomial non-magnetic Cp around the transition (dashed line, Fig.

6.5(c)) is an underestimate, it amounts to only 0.2 J mol−1 K−1 or ∼3 % of Rln2.

Despite the remarkably large paramagnetic moment µPM ' 0.8 µB, derived

from the Curie-Weiss-like fit of the inverse susceptibility (Fig. 6.4(a), right axis),

the field-dependent magnetization M(H) does not saturate up to µ0H = 7 T, and

the maximum measured magnetization is only 0.01 µB (Fig. 6.6). A closer look at

the low temperature M(H) reveals a weak metamagnetic transition starting around

µ0H = 3.6 T for T = 2 K (circles, Fig. 6.6). This is most apparent in the derivative

dM/dH (open symbols) rather than in the as-measured isotherms (full symbols),

with the latter nearly indistinguishable well below (T = 2 K) and above (T = 60

K) the magnetic ordering temperature. It has been shown by Sandeman et. al.

[318] that, within the Stoner theory, the presence of a sharp double peak structure

in the electronic density of states sufficiently close to the Fermi level results in a

metamagnetic transition. The argument requires that the paramagnetic Fermi level

lie in between the two peaks of the density of states, and this is indeed revealed by

the band structure calculation for TiAu, as is shown below. It results that, as the

Fermi sea is polarized by the applied magnetic field H, the majority and minority

spin Fermi levels feel the effect of the two density of states peaks at different values of

induced magnetization. The density of states peak that is closest to the Fermi level

will lead to a sharp increase (decrease) in the population of the majority (minority)

spin band, resulting in a metamagnetic transition.
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6.2.3 Muon Spin Relaxation and Neutron Diffraction Mea-

surements

In the ordered state of prototypical ferromagnets or antiferromagnets at low tem-

peratures, long-lived sinusoidal muon spin precession has been observed with more

than several oscillation periods in zero field µSR. Good examples for those can be

found in antiferromagnetic Ca2RuO4 (TN = 110 K) ( [65], supplementary info A),

La2CuO4 (TN = 240 K) [319], BaFe2As2 (TN = 140 K) [8], (CuBr)LaNb2O7 (TN =

35 K) [379], Ca2CuO3 (TN = 10 K) [209], Sr2CuO3 (TN = 5 K) [209], and helical

magnet MnSi (TC = 29 K) [369]. Bessel function line shapes with long lived oscilla-

tions were observed in the incommensurate spin density wave (IC-spin density wave)

system (TMTSF)2PF6 [380] and for the stripe magnetic order of (La, Ba)2CuO4 [319].

Observation of homogeneous internal fields can certainly indicate long-range spatial

spin order.

However, there are also many cases of known long-range ordered magnetic sys-

tems in which muon spin precession is either heavily damped or even absent. Exam-

ples for these cases include ferromagnetic systems (Sr,Ca)RuO3 [128,380], (Sc, Lu)3In

[355], IC-spin density wave systems CeCu2Si2 (α - phase) [349,382], (Sr1.5Ca0.5)RuO4

[65, 218], and Sr2(Ru, Ti)O4 [50, 65], as well as low-dimensional and/or frustrated

magnetic systems such as Sr2(Ca, Pd)O3 [210], Cu(Cl, Br)LaNb2O7 and CuClLa(Nb,

Ta)2O7 [383]. In general, the absence of oscillation or overdamped line shapes could

results from several reasons including: (a) multiple muon sites, (b) inhomogeneous

fields from magnetic domain boundaries and/or crystallographic grain boundaries, as

well as (c) spatial variation of the ordered moment size in long-range ordered sys-

tems. An example for the case (c) is discussed in Ref. [210] for Sr2(Cu, Pd)O3, where

Pd atoms generate spatial inhomogeneity in the ordered moment size of the quasi

one-dimensional S = 1/2 Cu spin chain, as illustrated in Fig. 6.7.
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Figure 6.7: Spin chain: quasi one-dimensional S = 1/2 spin chain [210].

In TiAu, the initial fit of the muon spin relaxation data includes two simple

exponential relaxing components, yielding the black curve shown in Fig. 6.8. The

corresponding asymmetry function is of the following form:

A(t) = A(fe−λst + (1− f)e−λf t) (6.1)

However, considering the polycrystalline nature of our sample, the isotropy

of the overall local magnetic field dictates an average of 1/3 of all muons to have

spin parallel to the local field, hence showing no relaxation arising from the random

static magnetic field in the sample. In a system with randomly oriented, dense,

and static magnetic moments, a Gaussian Kubo-Toyabe relaxation function [154] is

usually expected:

AGaussian KT (t) = A
(1

3
+

2

3
(1− σ2t2)e−

1
2
σ2t2
)

(6.2)

while in dilute spin systems a corresponding Lorentzian spin-glass (LSG) function,

initially developed [383] for dilute alloy SGs CuMn and AuFe, is due to the Lorentzian
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internal field distribution [209]:

ALorentzian SG(t) = A
(1

3
+

2

3
(1− at)e−at

)
(6.3)

For the polycrystalline TiAu sample a LSG function (blue line, Fig. 6.8)

is more appropriate and yields a distinctively better fit than the Gaussian Kobo-

Toyabe function. This might give an impression that magnetic order of TiAu is

associated with very dilute ordered moments. However, both in ferromagnetic systems

(Ca,Sr)RuO3 and IC-spin density wave systems (Sr1.5Ca0.5)RuO4, which have a decent

density of ordered Ru moments, the LSG line shape was observed over a large doping

range near the disappearance of the static magnetic order [65,128,380]. Furthermore,

this line shape also fit well the 5 % Mn-doped CuMn SGs [383], in which more than

one Mn moment exists in every 5 unit cells of the FCC Cu crystal structure. In the

FCC structure, one atom belongs to 8 unit cells. Therefore, in 5 % CuMn, most of the

Mn spins have their nearest neighbor Mn spin within these 8 unit cells. In this sense,

the observation of the LSG line shape is not restricted to just dilute spin systems.

Table 6.3: Comparison of µSR results for itinerant helimagnetic, ferromagnetic, spin
density wave, spin glass, and charge density wave systems.

Pressure
Chemical Relaxation Precession Ordered

composition rate (T = 0) frequency volume

(kbar) ∆1 (µs−1) ν (MHz) (T = 0) (%)

TiAu 0 1 100

MnSi 0 12 100

MnSi 13-15 11 20 - 80

SrRuO3 0 80 15, 30 100

(Sr, Ca)RuO3 0 Ca0.6−0.7 20 40 - 60

(Sr, Ca)2RuO4 0 Ca1.5Sr0.5 8 100

Cu(Mn) 0 1 % Mn 10 100

BaTi2(As, Sb)2O 0 0.1 - 0.2 (NDB)2
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Figure 6.8: µSR asymmetry analysis: Comparison of the fit with the LSF line shape
(Eq. 6.3, blue line) and the two-exponential phenomenological line shape (Eq. 6.1,
black line). The difference is subtle, and the choice between these two functions does
not alter the essential part of the presented conclusions. The reasoning for using LSG
function is described below.

As shown in Fig. 6.8, the two-exponential function (Eq. 6.1) gives a slightly

better fit than the LSG function (Eq. 6.3). This is partly due to the fact that Eq. 6.3

has more freedom than the Eq. 6.1. For the estimate of the magnetic volume fraction

f , it is important to use a theoretically derived LSG function which properly accounts

for the ”1/3” component in zero field. There is no theoretical field distribution which

can generate the sum of two exponential function Eq. 6.1. In view of these two

limitations of Eq. 6.1, we used the LSG function (Eq. 6.4 and Eq. 6.3) for the

present analysis.

Even for systems which exhibit Bragg peaks in neutron diffraction due to
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Figure 6.9: Muon spin relaxation and neutron diffraction. (a) Time dependence of
the asymmetry, fit with Eq. 6.4 (solid lines). (b) A small applied longitudinal field
µ0H = 0.01 T eliminates the relaxation response. (c) Relaxation rate a (black circles,
left) and volume fraction (red circles, right) as a function temperature. (d) Integrated
intensity of the (0, π/b, 0) TiAu magnetic Bragg peak as a function of temperature
with mean-field fit (TN = 36(2), black curve). Inset: net counts normalized for 2 min.
counting time between 2.5 K and 60 K, showing the (0, π/b, 0) magnetic peak fit
with a resolution-limited Gaussian (red line). Uncertainties are statistical in origin
and represent one standard deviation.
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Table 6.4: Comparison of µSR results for itinerant helimagnetic, ferromagnetic, spin
density wave, spin glass, and charge density wave systems.

Ground Ordered Transition Dynamical

Referencestate moment temperature critical

(µB F.U.−1) range (K) behavior

TiAu AFM SDW 33 - 38 no Present

MnSi Helical 0.4 29 yes [380]

MnSi Helical 0.4 5, 10 no [380]

SrRuO3 FM 0.7 160 yes [128]

(Sr, Ca)RuO3 FM 0.1 - 0.2 25 weak [128]

(Sr, Ca)2RuO4 IC-SDW 0.2 - 0.3 8 yes [65]

Cu(Mn) SG 0.04 (4/Mn) 10 yes [383]

BaTi2(As, Sb)2O CDW1 [284]

long-range magnetic order, if there is spatial distribution in the ordered moment size,

then the µSR line shape can exhibit fast damping or absence of oscillations. This

could explain the absence of oscillations in the zero field µSR data [65] in the IC-spin

density wave systems (Sr1.5Ca0.5)RuO4 [218] and Sr(Ti0.09Ru0.91)O4 [50]. Therefore,

the observation of an antiferromagnetic Bragg peak in neutron scattering and the

over-damped LSG line shape in µSR can be reconciled within the picture of long-

range (neutrons) static (µSR) magnetic order. Positive muon is a local probe whose

information is integrated over momentum space. The determination of long-range

magnetic order can be done better by neutron scattering.

However, µSR results reflect signals from all the muons in the total sample

volume, with the information about the volume fraction of the magnetically ordered

region. In µSR studies, the local field at the muon site is generated mainly via dipolar

interactions of surrounding magnetic moments. If an ordered moment of 1 µB is 1

Å away from a muon site, it will generate a local field of 1 T. When the distance is

3 Å, the local field becomes about 400 G. For the distance of 10 Å, the field becomes

10 G. The randomness of the internal magnetic field of 10 G will result in muon spin
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relaxation rate of about 1 µs−1 in zero field. Therefore, the observation of relaxation

in the ordered state in TiAu, with the relaxation rate of 1 µs−1 in the full volume

fraction can rule out the existence of paramagnetic or non-magnetic domains larger

than 10 - 15 Å in size with more than ∼ 5 % of the volume fraction.

Zero field µSR spectra with overdamped or absent oscillations have been of-

ten observed in various magnetic systems near the disappearance of magnetic order

and/or at a quantum critical point. On the other hand, many of the above-mentioned

examples involve built-in randomness due to chemical substitutions. TiAu is synthe-

sized with nominal 1 : 1 stoichiometric composition. Further detailed studies of the

origin of the observed LSG line shape and local field distributions in TiAu could

lead to more insight on the generic behavior of homogeneity near a magnetic quan-

tum critical point. With the currently available data, however, it is impossible to

determine the origin of the LSG line shape. Thus, we rely on the neutron scattering

information for discussions of the long-range magnetic order, and µSR for discussions

of the volume fraction of magnetic order.

Muon spin relaxation (µSR) data shown in Fig. 6.9 unambiguously confirm

the static magnetic order developing in the full volume fraction, with the transition

temperature corresponding to the anomaly in the magnetic susceptibility, resistivity

and specific heat shown in Fig. 6.5(c). For temperatures above 35 K, the total

asymmetry undergoes a negligibly small relaxation, signaling lack of static magnetic

order (Fig. 6.9(a)). In the time spectra observed in zero field, a fast decaying front end

begins to develop around 35 K, and becomes more pronounced for lower temperatures.

This early time decay results from the build up of static internal field, since a small

longitudinal field, µ0H = 0.01 T, eliminates this relaxation via the decoupling effect

(Fig. 6.9(b)). The time spectra in zero field are fitted with the relaxation function,
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expected for a Lorentzian distribution of local fields [383]:

G(t) = f
(1

3
+

2

3
(1− at)e−at

)
+ (1− f) (6.4)

where f represents the volume fraction with static magnetic order. The temperature

dependence of the relaxation rate a and the magnetic volume fraction f are shown in

Fig. 6.9(c). A reasonably sharp transition occurs below TN = 36 K to a state with

100 % ordered volume, preceded on cooling by a small temperature region around TN

characterized by the finite volume fraction f , which suggests co-existence of ordered

and paramagnetic volumes in real space via phase separation.

A remarkable feature found in both zero field and longitudinal field time

spectra is the absence of dynamic relaxation, expected for critical slowing down of spin

fluctuations around TN . Such an effect should have resulted in the 1/T1 relaxation of

the asymmetry measured in µ0H = 0.01 T, since this longitudinal field can eliminate

the effect of static magnetism, while dynamic effects survive in a small longitudinal

field. The observed relaxation rate 1/T1 in LF = 100 G was smaller than 0.02 µs−1.

Using the well-known formula 1/T1 ∼ ∆2τc, with the local field strength ∆ = 1 µs−1,

we then find that the correlation time τc of the local field fluctuations should be

shorter than 20 ns. Critical slowing down of spin fluctuations slower than this should

have resulted in an observable decay in the longitudinal field spectra near the spin

freezing temperature ∼ 36 K. Another piece of information comes from the absence

of the decay of the ”1/3” component in zero field and the decoupled time spectra in

longitudinal field at low temperatures. These spectra indicate that the local field at

low temperatures in the ordered state is quasi-static, with the time scale of 10 µs or

more. See Ref. [383] for more details.

Together with the zero field relaxation function (Eq. 6.4) which solely in-
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volves static effects, the present data indicate complete absence of dynamic critical

behavior. Although occurring in a limited temperature region, the aforementioned

phase separation indicates that the transition is likely first-order, without dynamic

critical behavior. As shown in Table 6.4, similar absence of dynamic critical behavior

associated with phase separation was observed in µSR studies of the itinerant heli-

magnet MnSi in an applied pressure of 13 - 15 kbar [380], near the pressure-tuned

quantum crossover to the paramagnetic phase. Such tendencies were also seen in

the itinerant ferromagnet (Sr,Ca)RuO3 close to the disappearance of static magnetic

order around a Ca concentration of 0.7 [128]. The first-order transition may be a

generic feature of weak magnetic order in itinerant-electron systems [37].

As Tables 6.3 and 6.4 show, the magnitude of the internal magnetic field in

TiAu in the ordered state is remarkably small, compared to µSR results in other

itinerant electron systems, dilute alloy spin glasses (SGs) or the incommensurate

spin density wave system (Sr1.5Ca0.5)RuO4 [65]. Although this indicates a very small

ordered moment in TiAu, it is not possible to estimate the moment size since the

hyperfine coupling constant could depend strongly on the assumption of the location

of muon sites. The line shape of the zero field µSR data in Eq. 6.4 is obtained for the

case of dilute-alloy SGs where the local field at the muon site varies due to different

distances to the moment site [383]. However, the same line shape was also observed in

(Sr1.5Ca0.5)RuO4 in which incommensurate spin density wave order was recently con-

firmed by neutron scattering. Therefore, it is difficult to determine the spin structure

of the TiAu system from the present µSR data alone. In general, the observation of

long-lived oscillations by µSR can indicate homogenous long-range order, but the ab-

sence of oscillations does not rule out long-range magnetic correlations. This feature

can be found in many cases of known antiferromagnetic and ferromagnetic systems,

as reviewed in Table 6.4.
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Neutron diffraction measurements above (T = 60 K) and below (T = 2 K) the

ordering temperature reveal a resolution-limited magnetic peak (inset, Fig. 6.9(d))

in the low temperature data. The temperature dependence of this peak indicates

magnetic ordering at TN = 36 ± 2 K. The magnitude of the ordered moment is

estimated to be 0.15 µB/Ti, consistent with a small itinerant moment. The neutron

data eliminate the possibility that the observed magnetism is due to dilute magnetic

impurities. The µSR results show a magnetic phase fraction of 100 % eliminate the

possibility of neutron signal coming from a minority phase of small volume. These

arguments demonstrate that the magnetism of the present system is an intrinsic

feature of TiAu.

6.2.4 Tunnel Diode Oscillator Measurements

It has been reported that itinerant and local moment systems induce a substantially

different frequency shift, providing a new way of differentiating between them [386]

(Section 3.9). Itinerant ferromagnet ZrZn2 does not show a sharp peak in the res-

onator frequency at TC as compared with a sharp peak in a local moment ferromagnet

CeVSb3 [386]. The lack of peak at the transition temperature was also reported for a

local moment antiferromagnet SmAgSb2, in which only a gradual decrease of suscep-

tibility below the Néel temperature TN is observed due to the loss of spin-scattering

which changes the penetration depth of the AC excitation field [386].

The itinerant magnet TiAu, composed of non-magnetic elements, displays

antiferromagnetism below the Néel temperature TN ≈ 36 K [359]. The oscillator

frequency shift ∆f as a function of temperature T is shown in Fig. 6.10(b). The

resonant frequency f0 was 13.5 MHz and the total frequency shift was about 90

KHz. Since the TDO measurement probes both electric and magnetic susceptibility,

it is complementary but not equivalent to the resistivity measurement, shown in Fig.
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6.10(a). The transition is less visible, compared to the DC resistivity curve. The

temperature derivative, shown in the inset of Fig. 6.10(b) estimates the transition

temperature to be around 27 K, similar to that determined from DC resistivity.

6.2.5 High Field Magnetization Measurements

Given that no saturation was observed in fields up to 7 T, the high-field experiments

were carried out. The VSM data, shown in Fig. 6.11(a), agrees well with the low-field

measurements. A small increase in M(13 T) is observed for 5 < T < 26 K, followed

by a decrease with increasing temperature. The high-field VSM magnetization data

is exceptionally linear, reminiscent of some of the Kondo systems [118,155,315].

The calibrated M(H) data up to H = 60 T is shown in Fig. 6.11(b). For

temperatures below T = 30 K, the value of magnetization at the maximum field is

temperature-independent. For higher temperatures, the value of magnetization at

high fields decreases. Additionally, the M(H) data above T = 30 K confirm the

remarkable linearity, observed in the pulsed field data.

While the the Rhodes-Wohlfarth ratio of magnetic carries [309] is generally

used to differentiate between local and itinerant mechanisms in ferromagnetic mate-

rials (see Section 2.1.7), similar analysis has been applied to antiferromagnetic sys-

tems [31,288,301]. The qs is obtained from the saturation magnetization at tempera-

tures below the transition temperature, while qn is determined from the paramagnetic

moment µpm, which describes the behavior of the system for temperatures above the

transition temperature [309]:

qs =
µsat

2
and qn(qn + 1) =

µ2
pm

4
(6.5)

For the localized case, the values of the magnetic moment above and below



204

TN are the same, yielding qn/qs ≈ 1. The Rhodes-Wohlfarth ratio values are larger

in the itinerant case, as exemplified by ferromagnets ZrZn2 (qn/qs = 4) and Sc3In

(qn/qs = 6) [309]. The paramagnetic moment of TiAu has been extracted from the

Curie-Weiss-like fit and is equal to µpm = 0.8 µB/F.U. [359]. Since no saturation is

observed, the lower bound estimate of qs can be extracted from µs(64 T) ≈ 0.13µB.

This yields qn/qs = 0.14/0.065 = 2.2, confirming the itinerant character of TiAu.

Combined Rhodes-Wohlfarth is shown in Fig. 2.13.

Combined M(H) data from pulsed and VSM methods are shown in Fig.
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6.11(a). The derivative dM/dH, shown in Fig. 6.11(d), indicates that most of the

changes in M(H) are due to a low-field increase in gradient at low temperatures that

fades away as T is raised. This is clearly seen in dM/dH, which has a peak that

moves to higher field with increasing T before fading away at around 30 K. This is

consistent with a metamagnetic transition, suggested above.

6.2.6 High Pressure measurements

In weakly magnetic materials, low ordering temperatures are easily suppressed to zero

by small perturbations that arise from change in composition, application of pressure

or magnetic field [140]. In ferromagnets, this is attributed to the decrease of the

density of states at the Fermi level, which reduces the Stoner product [401]. As for

the antiferromagnetic case, similar mechanism has been suggested [117].

While ferromagnetism in ZrZn2 is suppressed by pc ≈ 9 GPa [163, 339, 396],

application of pressure in Sc3In enhanced the magnetic properties [124,140], contrary

to what is predicted by the Wohlfarth’s theory [400,401]. On the other hand, doping

experiments were successful in inducing a quantum critical point in both compounds

[341, 359], indicating that a combination of both disorder and pressure are likely

necessary to induce a quantum phase transition. Moreover, in ZrZn2, the order of the

quantum phase transition changes from first to second upon doping.

In TiAu, application of pressure increases TN , as shown in Fig. 6.12. Given

that from band structure calculations, the pressure needed to suppress magnetic or-

dering is estimated to be about 70 GPa, it is possible that higher values of pressure

will reduce TN . Comparison with Sc3In and ZrZn2 along with the analysis of the pos-

sible quantum critical point are of interest. Thus, experiments with applied pressures

of up to 30 GPa are currently underway.
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Figure 6.12: (a) Temperature-dependent resistance for various pressure values. Inset:
the value of TN , determined from dR/dT . (b) The transition is more visible in the
derivative of resistance with respect to temperature dR/dT .

6.3 Band Structure Calculations

Band structure calculations were performed using full-potential linearized augmented

plane wave method implemented in the WIEN2K package [41]. PBE-GGA was used

as the exchange potential, as the default suggestion by WIEN2K [296]. A 10×10×10

k-point grid was used, and shift away from high symmetry directions was allowed. The

convergence criterion for force is 1 mRyd/a.u. (1 Ryd = 13.6 eV), with the residual

force for the Q = (0, 2b/3π, 0) state less than 3.5 mRyd/a.u. (or 90 meV/Å). For the

density of states plot, the Gaussian broadening was used, with a broadening factor

of 3 mRyd. In order to make the Fermi surface plot (shown in Fig. 6.13(c)) easier to

read, a separated Fermi surface plot for the different bands in shown in Fig. 6.14.

Even though the experimental evidence demonstrates long range antiferro-

magnetic, small moment ordering in orthorhombic TiAu, a comparison between the

experimental data with theoretical results from band structure calculations are of

interest. These were performed using a full-potential density functional theory [239]

while taking spin-orbit coupling into account. A number of possible magnetic config-

urations were considered: ferromagnetic (FM), antiferromagnetic spin density wave
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with modulation vectors Q1 = (0, 2π/3b, 0) (AFM1) and Q2 = (0, π/b, 0) (AFM2).

Their energies relative to the paramagnetic state were estimated to be EFM = −35

meV/Ti, EAFM1 = −47 meV/Ti and EAFM2 = −34 meV/Ti, respectively. Given

the systematic error bars of the exchange-correlation potential employed in the den-

sity functional theory, the calculated energy values point to an antiferromagnetic

ground state with wavevector Qexp = (0, k, 0), with k between 2π/3b (AFM1) and

π/b (AFM2), a value consistent with the neutron diffraction experiments. However

the uncertainty in determining the exact wavevector from density functional the-

ory does not affect the conclusions from the overwhelming experimental evidence for

the itinerant antiferromagnetic order in TiAu. Furthermore, the calculation yields

a small ordered magnetic moment µcalc for all surveyed configurations, 0.52 µB/Ti

kb

ka kc

kb

ka kc

kb

ka
kckb

ka

kc

Figure 6.14: Separated Fermi surface for different bands. Color is used for the ease
of viewing only.
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≤ µcalc ≤ 0.74 µB/Ti, reflecting the itinerant nature of the ordered moment. This den-

sity functional theory overestimate compared to the experimental moment estimate

of 0.15 µB/Ti from neutron scattering is likely a result of strong spin fluctuations

which cannot be accounted for by the density functional theory calculations. The

same problem was also encountered in Fe pnictides, which are also itinerant dpin

density wave antiferromagnetic compounds [92, 234]. In the case of TiAu this may

be remedied by future dynamical mean-field theory calculations, beyond the scope of

this mainly experimental report of itinerant antiferromagnet in TiAu.

It is instructive to analyze the origin of magnetism in TiAu using the input

from the band structure calculations. A picture that is often employed is that of

the weak-coupling random phase approximation, resulting in the generalized Stoner

criterion for the bare magnetic susceptibility χ(0) at a reciprocal wavevector Q [214]:

I(Q)χ(0)(Q,ω = 0) ≥ 1 (6.6)

Within this picture, the idealized itinerant limit can be understood as the

case where χ(Q) is strongly peaked at a particular Q vector, resulting in a spin

density wave ordering at that wavevector. In this case, the Q dependence of the

interaction strength I(Q) is unimportant. Traditionally, for instance in Cr [108], the

peak in χ(0)(Q) is understood as originating from Fermi surface nesting. Indeed,

the calculated Fermi surface of the non-magnetic TiAu (Fig. 6.13(c)) exhibits large

nearly nested regions in the kb direction with the nesting wavevector Qnest = (0, k, 0)

discussed above. In one spatial dimension, nesting is known to result in a logarithmic

divergence of the susceptibility at Qnest = 2kF , χ(0)(Qnest) ∼ −ρ(EF ) log [ρ(EF )T ],

resulting in the celebrated Peierls mechanism for charge density wave and spin density

wave, with ρ(EF ) representing the electronic density of states at the Fermi level.

However in higher dimensions, it was pointed out that the divergence of χ(0) is strongly
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suppressed [410], and moreover, the ordering wavevector Q of the charge density wave

(and by analogy, spin density wave) does not generally coincide with the nesting

wavevector Qnest [249], shown to be the case in e.g. rare earth tritellurides [249,410].

The reason behind this is that the real part of the susceptibility χ(Q) contains the

integration over all bands deep below the Fermi level, whereas nesting is the property

of the Fermi surface itself and its effect is limited (except in the special case of perfect

nesting, as in 1D).

It is a non-trivial task to calculate χ(0)(Q) accurately from the density func-

tional theory results, however the fact that all three magnetic configurations consid-

ered above have comparable energies indicates that χ(0)(Q) is not a simple single-

peaked function. This goes to show that, while magnetism in TiAu is close to the

itinerant limit, its mechanism is more complicated than in Cr [108]. The difference

between Cr and TiAu is further highlighted by the fact that the latter has a con-

siderably larger drop in the relative magnetic susceptibility ∆M/M at TN , where

∆M/M = [MTN −MT=0]/MTN . In TiAu, ∆M/M is ∼ 20 %, nearly five times larger

than in Cr [108]. In the latter, the small magnetization decrease at TN had been at-

tributed to the small spin susceptibility (and not the larger orbital component) being

affected by the gap associated with the spin density wave transition. Conversely, the

larger magnetization change in TiAu might indicate a sizable effect on the orbital

magnetization, as the spin density wave transition is now associated with more 2D

nesting than that in Cr.

6.4 Conclusion and Open Questions

In this Chapter it was shown that the orthorhombic TiAu is a new itinerant anti-

ferromagnetic metal, the first of its kind, and analogous to the only two itinerant
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ferromagnets with no magnetic elements, Sc3In and ZrZn2. Ample experimental evi-

dence for the itinerant character of the magnetic state in TiAu comes from the small

magnetic moment in the ordered state compared to the paramagnetic moment, small

magnetic entropy at TN , it is readily apparent that strong spin fluctuations are at

play in this novel magnetic system. The exact role of the spin fluctuations, their

strength, as well as the details of the magnetic structure in the ordered state, remain

to be fully elucidated with further experiments. Doping experiments presented in the

following Chapter indicate that the magnetic order in doped TiAu is suppressed to

0 in a quantum critical regime with strong spin fluctuations. This provides a long

sough after insight on quantum critical behavior of itinerant magnets in general and

itinerant antiferromagnets in particular. Ultimately, the search for itinerant antiferro-

magnet materials appears to be a promising avenue for furthering our understanding

of the complex magnetism, and providing the unifying picture for local and itinerant

moment magnetism.



Chapter 7

Doping-induce Quantum Critical Point in

Ti1−xScxAu

In previous Chapter, a novel antiferromagnet composed on non-magnetic constituents

has been described. A number of measurements as well as theoretical analysis indi-

cated a spin density wave ground state below TN ≈ 36K. It is particularly interesting

to investigate the behavior of this system under various perturbations. Since appli-

cation of high field and pressure did not result in the suppression of the ordering

temperature, partial substitution of Ti by Sc was implemented. It was found that a

small doping amount of about 13 % induces a quantum critical point in Ti1−xScxAu.

Non-Fermi liquid behavior observed in both resistivity (ρ ∝ T ) and specific heat

(Cp/T ∝ - logT ) is consistent with a 2D antiferromagnetic quantum critical point.

Moreover, divergent magnetic Grűneisen ratio clearly signals critical behavior. En-

hanced value of the Sommerfeld coefficient indicates strong spin fluctuations, while

diverging value of the resistivity coefficient has been attributed to enhanced electron-

electron correlations around the quantum critical point [354].
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7.1 Motivation and Background

Many interesting phenomena in condensed matter physics occur in the vicinity of

quantum critical points, with notable examples including unconventional supercon-

ductivity [84, 175, 242, 320], non-Fermi liquid [34, 129, 226, 227] and heavy fermion

behavior [129,206,207,322], as well as the coexistence of superconductivity and mag-

netism [207, 242, 419]. The emergence of such exotic ground states is possible due

to competing interactions in the zero temperature limit, where thermal fluctuations

cease to exist [348]. While the notion of competing interactions is old, a complete

understanding of the resultant quantum critical phenomena is still a subject of great

interest [285]. Conveniently, the presence of a quantum critical point manifests itself

in the physical properties well above absolute zero. In particular, deviations from

the Fermi liquid behavior that frequently accompany quantum phase transitions have

been the central topic of both experimental and theoretical studies of correlated elec-

tron systems in the past decade [227]. In a number of materials, it has been possible

to reach a quantum critical point via the application of pressure [110, 142, 207, 384],

doping [34, 175, 341, 355], or magnetic field [129, 294, 373]. Fine tuning capability is

key in probing quantum critical points systematically, as the role of disorder is still

unclear [391]. For instance, while the ferro- to paramagnetic quantum phase transi-

tion is theoretically of first order [38], doping-induced disorder changes the transition

to second order [51].

While a plethora of antiferromagnetic quantum critical points has been ob-

served in heavy fermion materials [129,175,206,207,322], this is not the case for the d

electron systems for which the examples of antiferromagnetic quantum critical points

are limited to Cr [172, 173, 223, 253, 368, 411] and V2−yO3 [30, 182]. In the latter, the

quantum critical point is accompanied by an insulator-to-metal transition [182] and

the antiferromagnetic order arises from local rather than itinerant moments. Cr, on
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the other hand, is the archetypical 3D antiferromagnetic metal for which conduc-

tion electrons are lost as they order magnetically when the temperature is decreased

below the Neél temperature TN . While it was suggested that a 2D antiferromag-

netic metal should exhibit a continuous second order quantum phase transition [4],

experimentally this has not yet been realized, perhaps explaining why the detailed

characteristics of metallic antiferromagnetic quantum phase transitions in 2D remain

one of the pressing questions from both theoretical and experimental viewpoints [227].

Not surprisingly, the nature of spin fluctuations in antiferromagnetic metals is even

less understood [181, 184, 269]. Here we present the first experimental realization of

a 2D antiferromagnetic quantum critical point in a d electron system Ti1−xScxAu

metal, with a critical doping xc = 0.13± 0.01.

7.2 Physical Properties

Recently, we reported TiAu as the first itinerant antiferromagnetic metal with no

magnetic constituents [359]. The antiferromagnetic spin density wave order for TiAu

develops below 36 K, and is surprisingly robust to perturbation with pressure [356],

with the Néel temperature enhanced by small increasing pressure [356], similar to

what has been observed for the ferromagnet without magnetic elements Sc3In [124,

140]. Moreover, according to band structure calculations [356], a pressure of nearly

80 GPa is predicted theoretically to suppress TN to zero in TiAu. However, it has

been established that Ti bands contribute the most to the density of states at the

Fermi level [359], and so it appears that partial substitution of Ti may provide an

avenue for reducing TN . In order to minimize the effects of chemical pressure, host

Ti atoms were partially replaced with Sc, a dopant of similar size (r(Ti4+) = 0.61

Å and r(Sc3+) = 0.75 Å [329]). Doping with a slightly larger Sc ion expands the

lattice, as evidenced by the evolution of the volume V with doping x, shown in Fig.
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7.1 (right axis). The monotonic change in all three lattice parameters a, b and c (full

symbols) as well as the unit cell volume (open symbols) is shown in Fig. 7.1. It is

important to note that, although the TiAu crystal structure is intrinsically 3D, we

believe that the spin fluctuations have a 2D character, as evidenced by the behavior

of specific heat and resistivity close to the quantum critical point summarized below.

This dimensional discrepancy so far has only been observed in the heavy fermion

CeCu6−xAux [125].

Similar to local moment magnets, a cusp in the magnetic susceptibility marks

the transition from antiferromagnetic to paramagnetic state in TiAu [359]. With Sc

doping (Fig. 7.2), TN moves down in temperature, and is suppressed below 1.8 K for

x ≥ 0.13. At high temperatures (T > TN), the H = 0.01 T magnetic susceptibility

for Ti1−xScxAu exhibits Curie-Weiss-like behavior for the whole composition range
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0 ≤ x ≤ 0.25, similar to what has been observed in doped itinerant ferromagnets

[341,355], but distinct from the behavior of the itinerant antiferromagnetic Cr [261].

This is in stark contrast with the self-consistent renormalization theory prediction,

where the Curie-Weiss-like behavior is expected in both the 2D [169] and 3D [151]

antiferromagnetic cases. In Ti1−xScxAu, the value of the paramagnetic moment µPM ,

determined from the linear fits of the inverse susceptibility (Fig. 7.2a) remains nearly

constant even as the transition is suppressed by increasing x. The ordered moment

µord in TiAu [359] is ∼ 0.1 µB/F.U., four times smaller than that of Cr [411]. It is

thus very difficult to track the evolution of µord with x in Ti1−xScxAu by means of

neutron diffraction as µord is close to the instrumental resolution limit. An estimate

of TN for Ti1−xScxAu (0 ≤ x ≤ 0.25) is obtained from the local maximum of the

derivative d(χT )/dT (Fig. 7.2c) [114,115]. The resultant suppression of the ordering

temperature is nearly linear as a function of doping x, similar to what has been seen

in Cr1−xVx [411] and consistent with a second order 2D antiferromagnetic quantum

critical point [4].

A theoretical description of the behavior close to a quantum critical point

for d electron systems was established on the basis of the self-consistent renormal-

ization theory of spin fluctuations for both ferromagnetic [261] and antiferromagnetic

materials [267]. However, while these predictions are consistent with a number of ex-

perimental ferromagnetic quantum critical points [170,171,181,228,281,298,341,366],

the antiferromagnetic comparison had only been possible for the 3D case [184], given

the limited number of d electron antiferromagnetic quantum critical points [227].

According to Moriya’s prediction for a 2D antiferromagnet, quantum fluctuations in

the vicinity of the respective quantum critical point result in the breakdown of the

Fermi liquid state, yielding Cp/T ∝ −logT [268]. In Ti1−xScxAu, this divergence

persists over nearly a decade in temperature for x = 0.12 (Fig. 7.3a), with non-Fermi

liquid behavior signaled by the divergent γ = Cp/T ∝ logT for 0.09 ≤ x ≤ 0.20.
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Away from the quantum critical point, the Fermi liquid-like specific heat behavior

(Cp/T ∝ γ + βT 2) is recovered for 0 ≤ x ≤ 0.05 and x > 0.5, as shown in Fig. 7.3b.

As a result, the Sommerfeld coefficient γ is maximum close to xc ≈ 0.13 as shown

in Fig. 7.10c, left axis. Such behavior of the electronic specific heat coefficient was

also reported for Cr1−xVx [368]. Positive pressure induced by the slightly larger Sc

ions substituting for Ti [329] is expected to decrease band overlap, increasing the

density of states at the Fermi level, and, consequently, yielding larger γ and M0/H

values [150, 368]. However, while M0/H increases gradually over the whole composi-

tion range (Fig 7.10(b), right axis), γ values exhibit a peak centered around xc (Fig.

7.10c, left axis), most likely a signature of the critical fluctuations associated with the

quantum critical point in itinerant magnets: γ = γband + γSF [150]. According to the

self-consistent renormalization theory for antiferromagnets [151], TN ∝ (2Iχs − 1)2/3

and γSF ∝ (2Iχs− 1)1/2 (where I is the exchange interaction and χs is the staggered

susceptibility), which indicates that γSF should scale with TN as γSF ∝ T
3/4
N . Indeed,

Fig. 7.4b shows the linear relationship between γ and T
3/4
N , evidence for strong spin

fluctuations in Ti1−xScxAu [261].

The resistivity of TiAu [359] decreases below TN , a feature that is typically

observed in local moment systems and is due to loss of spin disorder scattering. By

contrast, in both Cr and V2−yO3 antiferromagnets, the resistivity increases below

TN due to the partial gapping of the Fermi surface [30]. In Ti1−xScxAu, magnon

scattering results in resistivity exponent values n (ρ = ρ0 + AnT
n) distinct from the

Fermi liquid n = 2 value [261]. As shown in Fig. 7.10(e) (triangles, left axis), n ≥ 2

is observed for 0 ≤ x ≤ 0.10 samples, for which TN ≥ 2 K (Fig. 7.10a). As the

quantum critical point is approached both from below (x ≤ 0.13) and above (x ≥

0.13), n decreases to n ≈ 1 at the quantum critical point, corroborating the non-

Fermi liquid scenario close to the quantum critical point, as previously indicated by

the specific heat data.
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The T n resistivity behavior is best reflected in the ρ vs. T n plots shown in

Fig. 7.6. Close to the quantum critical point (x = 0.14) ρ vs. T n is linear over a

decade in temperature (up to T = 65 K), with n near a local minimum n ≈ 1. Close

to a quantum critical point, exponent values n smaller than 1.5 have been attributed

to reduced dimensionality [242], with n = 1.5 expected for a 3D antiferromagnetic

quantum critical point [267]. This would suggest that, upon approaching the quantum

critical point in Ti1−xScxAu, the critical fluctuations become more 2D rather than

3D [78,313].

The resistivity coefficient An for both optimal n (full diamonds) and fixed

n = 2 (open diamonds) is shown in Fig. 7.10(e) (left axis) as a function of x.

Both sets of An values diverge as as the quantum critical point is approached from

the paramagnetic state. The expected divergence is given by An ∝ (σ − σc)
0.5

[378], where σ is an extrinsic tuning parameter such as pressure, composition or

magnetic field. In the case of Ti1−xScxAu, An ∝ (x − 0.13)α fit yields a slightly

slower divergence with an exponent α = 0.46 (Fig. 7.10(e), black line). Similar

behavior of An has been observed near x = xc in a number of heavy fermion quantum

critical points for antiferromagnets [33,129,142,206,207,419] and ferromagnets [281],

and has been interpreted as a signature of increased electron-electron correlations.

Additional evidence for the stronger correlations close to the quantum critical point

in Ti1−xScxAu is provided by the Wilson ratio given by RW = 4π2k2
Bχ0/9µ

2
Bγ [399].

As seen in Fig. 7.10d, RW increases from 1 close to the quantum critical point (xc ≈

0.13) to 2 at high x (x ≈ 0.25), as compared with the free-electron value of RW = 1,

has been suggested to arise due to the Stoner enhancement in itinerant magnets [130].

On the other hand, the n ≤ 2 values have been previously employed to

pinpoint the quantum critical point in both antiferromagnetic [207] and ferromag-

netic [281] materials. For a 2D antiferromagnetic quantum critical point, the resis-
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Figure 7.6: (a) - (l) Resistivity as a function of temperature T n for Ti1−xScxAu
where 0 ≤ x ≤ 0.25. The value of the exponent n achieves a minimum for x = 0.13,
consistent with the breakdown of the Fermi liquid regime for which n = 1. On either
side of the critical point, Fermi liquid resistivity is regained with n values close to 2.
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Figure 7.7: Magnetic Grűneisen ratio Γmag for Ti1−xScxAu where 0 ≤ x ≤ 0.25: the
value of Γmag at lowest temperature diverges as x→ xc.

tivity exponent n = 1 is expected [267, 268], marking the onset of the non-Fermi

liquid behavior in Ti1−xScxAu with n → 1 as x → xc from both sides (Fig. 7.10(e),

right axis). Although the existence of the quantum critical point in Ti1−xScxAu is

confirmed unambiguously by the onset of the non-Fermi liquid behavior as the Néel

temperature TN is suppressed to zero, an insight on the nature of the quantum crit-

ical point can be gained from examining the Grűneisen ratio [143]. The magnetic

Grűneisen ratio (Γm = −(dM/dT )/Cp(T )) is expected to diverge at any quantum

critical point [420], however, this has only been observed in antiferromagnetic heavy

fermions [131,215–217,374], unlike the ferromagnetic systems for which Γm remains fi-

nite as T → 0 [166]. The evolution of the magnetic Grűneisen ratio Γm for Ti1−xScxAu

at low temperature is shown in Fig. 7.7. The divergence is evident from the Γm(0)

values (Fig. 7.10c, right axis) which exhibit a step close to xc = 0.13 ± 0.01. Fur-

thermore, the temperature exponent of the Grűneisen ratio closest to the quantum



225

critical point provides a direct way to measure the product of the dynamical critical

exponent z and the exponent of the correlation length ν since Γcr ∝ T−zν [420]. In

Ti1−xScxAu, a fit of the Γcr(x = 0.13) yields zν = 0.4. Fractional Grűneisen expo-

nents have been previously attributed to a localized quantum critical point, for which

spatially local critical excitations emerge and coexist with the spatially extended crit-

ical spin fluctuations [217, 374]. This scenario is, however, inconsistent with a fully

itinerant mechanism of magnetism in Ti1−xScxAu.

7.3 Band Structure Calculations

The suppression of the antiferromagnetic spin density wave in Ti1−xScxAu is evi-

denced by a number of physical properties summarized above. Several phenomena

contribute to this evolution: change in number of valence electrons, lattice expansion,

atomic displacement, and effects of disorder. Addressing the latter is not possible

within the DFT framework. Since the volume change for the entire doping range

is less than 4%, we believe that the slight expansion of the crystal structure does

not contribute to the quantum critical phenomenon. Therefore, only change in the

valence electron number was taken into account – the VCA approximation was used

for the x = 0.20 and x = 0.40 samples. While quantitative agreement between theory

and experiment is often not possible, present theoretical analysis fits well within the

qualitative picture of the effects of Sc doping on TiAu. Relative energies of surveyed

magnetic configurations for Ti1−xScxAu compounds with x = 0, 0.2 and 0.4 are sum-

marized in Table 7.1. As discussed in Ref. [359], the (0, 1/3, 0) spin density wave state

is the ground state of the undoped TiAu. From Table 7.1, the (0, 1/3, 0) spin density

wave state is the ground state for both x = 0 and x = 0.2 since ESDW < EFM < EPM .

For x = 0.4, the paramagnetic state is the ground state since EPM is the lowest. This

indicates that the transition from the spin density wave to the paramagnetic ground
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Figure 7.8: The total (solid lines) and partial (dashed lines) density of states in
paramagnetic state for Ti1−xScxAu where x = 0, 0.2 and 0.4. In the x = 0 case, Ti
bands (maroon) contribute more to the density of states at the Fermi level than the
Au bands (cyan). The dashed densities of state are divided by a factor of two for
ease of viewing. Inset: both position and magnitude of the peak at the Fermi level
are affected by doping.

state occurs between x = 0.2 and x = 0.4. Experimentally, the critical doping is es-

timated to be xc = 0.13± 0.01. Although consistent with each other, the theoretical

analysis is not able to correctly estimate the exact critical doping level, which likely

indicates the importance of disorder for this quantum critical point. The decrease of

the calculated ordered moments of the (0, 1/3, 0) spin density wave state, listed in

Table 7.1, is consistent with suppression of antiferromagnetic-paramagnetic transition

to T = 0 K.

Total (solid lines) and partial (dashed lines) densities of states of the Ti1−xScxAu
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compounds (x = 0, 0.2 and 0.4) in the paramagnetic state are shown in Fig. 7.8.

As evident from the partial density of states for TiAu, the Au d bands lie mostly

below the Fermi level while the Ti d bands contribute the most at the Fermi level.

In TiAu, a sharp peak at the Fermi level indicates that the ground state is likely to

be magnetic, a feature also seen in other itinerant magnets [261]. Upon addition of

Sc doping, the peak shifts away from the Fermi level, as seen in the inset of Fig. 7.8.

The direction of the shift indicates depletion of the valence band, which is consistent

with the reduced number of valence electrons in Sc as compared with Ti.

Table 7.1: Summary of the band structure calculations for Ti1−xScxAu with x = 0, 0.2
and 0.4 with paramagnetic, ferromagnetic, and spin density wave configuration.

x
PM FM SDW

Energy (meV) Energy (meV) Energy (meV) µord (µB)

0 0 -19 -76 0.5

0.20 0 -4.2 -45 0.35

0.40 0 44 23 0.6 · 10−5

The change in electronic properties induced by Sc doping in TiAu is also

evident from the Fermi surface evolution. Firstly, the (0, 1/3, 0) Fermi surface nest-

ing present in TiAu (Fig. 7.9a) disappears in Ti0.6Sc0.4Au (Fig. 7.9b). As stated

previously [359], Fermi surface nesting is a critical feature of the electronic state for

itinerant antiferromagnets. Therefore, loss of Fermi surface nesting indicates change

of the ground state from the spin density wave state to the paramagnetic one. Ad-

ditionally, while four bands cross the Fermi level in the TiAu case (Fig. 7.9a), only

three do so for the case of Ti0.6Sc0.4Au (Fig. 7.9b).
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(a) TiAu (b) Ti0.6Sc0.4Au

Figure 7.9: The evolution of the Fermi surface in TiAu with doping. While four
bands contribute to the Fermi level in x = 0, only three bands are present for the
x = 0.4 compound.
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7.4 Conclusion and Open Questions

In this work, the suppression of the antiferromagnetic order to T = 0 in a quantum

critical regime was possible via partial substitution of Ti with Sc in Ti1−xScxAu. The

critical doping estimate xc = 0.13 ± 0.01 is consistent across all measurements (Fig.

7.10), indicating collective quantum critical phenomenon. Moreover, the scaling be-

havior of Ti1−xScxAu clearly indicates the 2D antiferromagnetic nature of magnetic

spin fluctuations [268]. The suppression of the spin density wave-paramagnetic transi-

tion to absolute zero with Sc doping is also confirmed via band structure calculations,

where a gradual shift of the peak in the density of states at the Fermi level as well

as the loss of the Fermi surface nesting are expected. While the critical doping level

extracted from the band structure calculations is larger than xc = 0.13 ± 0.01, the

quantitative discrepancy is expected to decrease if the effects of disorder are taken

into account. Such analysis is currently underway and will be reported elsewhere.

Although 2D antiferromagnetic quantum critical points have been reported

for f electron systems [129, 206, 207], quantum critical point in Ti1−xScxAu is the

first among the filled shell d electron materials. Understanding the properties of

this system will serve as a stepping stone towards explaining anomalous properties

of solids in general and itinerant magnets in particular. Neutron scattering experi-

ments are currently underway, targeted towards fully understanding the dimension-

ality of spin fluctuations and Fermi surface evolution as a function of Sc doping.

However, possible complications may arise due to the small ordered moment of these

weakly antiferromagnetic materials along with polycrystalline sample form, making

single crystal synthesis highly desirable. Further doping experiments can elucidate

the role of spin fluctuations, in particular it has been noted that 2D systems are more

favorable for spin fluctuation-induced superconductivity, as compared with the 3D

candidates [370]. This may potentially shed light on the intimate relation between
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antiferromagnetism and d -wave superconductivity [391]. In general, it is commonly

accepted that the comprehensive understanding of antiferromagnetic quantum phase

transitions is essential for studying unconventional superconductivity [182]. It has

also been suggested that the mechanism of the antiferromagnetic spin density wave

quantum critical point is relevant to the heavy fermion quantum critical points, the

description of which is still incomplete [77, 267]. Moreover, a detailed analysis of an-

tiferromagnetic spin fluctuations for systems close to a quantum critical point could

provide a microscopic mechanism for the marginal Fermi liquid [30,388].



Chapter 8

Mechanical Properties of Ti-Au Alloys

The search for new hard materials is often challenging from both theoretical and ex-

perimental points of view. Furthermore, using materials for biomedical applications

calls for alloys with high biocompatibility which are even more sparse. The Ti1−xAux

(0.22 ≤ x ≤ 0.8) alloys exhibit extreme hardness values, elevated melting tempera-

tures (compared to those of constituent elements), reduced density compared to Au,

high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction,

potentially high radio opacity, as well as osseointegration. All these properties render

the Ti1−xAux alloys particularly useful for orthopedic, dental, and prosthetic appli-

cations, where they could be used as both permanent and temporary components.

Additionally, the ability of Ti1−xAux alloys to adhere to ceramic parts could reduce

the weight and cost of these components.
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8.1 Introduction

Hardness is generally understood as a measure of resistance that a material offers

against penetration by another object. Often, hardness is closely related to the re-

sponse of surfaces to wear and the effectiveness of various tools, making hard materials

highly utilized and valued by many industries. Advances of material science in this

area have played an important role in the progress of civilization, from the first tools

fashioned out of bone to chemically vapor deposited diamonds [134]. A good example

is evolution of the cutting speed with hardness, shown in Fig. 8.1.

While diamond is certainly the hardest known material, it is not applicable

everywhere; for example it is not effective for cutting ferrous metals, such as steel,

because of a chemical reaction that produces iron carbide [189]. Other synthetic

materials must be produced under high pressure and temperature, thus making the

search for new hard materials not only scientifically interesting but also technologi-

cally useful.

Figure 8.1: Cutting speed as a function of time [134].



234

8.2 Material Selection and Ashby Diagrams

Material selection is a significant part in the process of designing any physical object.

This task becomes more involved given the large number of available materials and

their properties. Out of all mechanical and thermal properties, about 30 are most

important for both material characterization and engineering design [26]: hardness,

strength, density, price, wear rate, melting point, thermal conductivity, electrical

resistivity and such. In most cases, the performance of a component depends on a

combination of material’s properties. This suggests the idea of plotting properties

against one another, so the materials may be separated into classes and families,

now referred to as Ashby diagrams [26]. Examples of such Ashby diagrams include

Young’s modulus vs. density (Fig. 8.2(a)), strength vs. density, fracture toughness

vs. Young’s modulus, thermal conductivity vs. electrical resistivity, wear rate vs.

hardness, and strength vs. relative cost (Fig. 8.2(b)). The underlying microstructure,

shared by materials from the same family (i. e. ceramics, metal polymers, etc.), forces

them to cluster together on the Ashby diagram. The elongated bubbles are the result

of heat treatment and mechanical working, often used to alter physical properties of

a material [26].

The Ashby diagrams condense a lot of information into a manageable form,

aiding with material selection as well as further material development [26]. All Ashby

diagrams have parts that are not populated with materials. While some empty regions

can be explained by fundamental causes such as atom sizes and binding, there are

regions that, in principle, should be accessible [26]. The new materials that belong

to those regions will open new design possibilities.



235

(a)

(b)

Figure 8.2: An example of Ashby plots [26] for (a) Young’s modulus vs. density and
(b) strength vs. relative cost per unit volume. The guide lines are used to select
materials better suited for minimum weight design and minimum cost for desired
strength, respectively.



236

8.3 Designing and Improving Hard Materials

Even though the physical difference between a hard and a soft material is intuitively

simple and can be quantified by measurement rather easily, no model exists for pre-

dicting hardness of a given material [134]. In crystalline compounds, mechanical

hardness is a direct consequence of the chemical structure, atom packing, and bond

type, with the latter being the most important. For example, it is the strong covalent

bonding in three dimensions that gives diamond its superior hardness properties. A

clear dependence of hardness on the type of chemical bonding as well as the crystal

structure can be seen from Table 8.1 [157, 333], for all Mohs’s scale standards. As

bonding changes from ionic (weak) to covalent (strong), hardness increases. Atom

configurations with higher symmetry and packing coefficients also lead to increased

hardness.

While covalent bonds in minerals such as diamond and corundum are strong,

in metals, the bonds are generally weaker, as showcased by soft high purity crys-

tals [134]. However, more factors are at play for alloys. For example, a common

Table 8.1: Crystal structure for the Mohs’s scale reference materials [157,333].

Mohs’s Reference Chemical Crystal Type of

Hardness Mineral Composition Lattice Type Bonding

1 Talc Mg3Si4O10(OH)2 Monoclinic Ionic

2 Cement CaSO42H2O Monoclinic Ionic

3 Calcite CaCO3 Trigonal or hexagonal Ionic

4 Fluorite CaF2 Cubic Ionic

5 Apatite CaF(PO4)3 Trigonal or hexagonal Ionic

6 Orthoclase KAlSi3O8 Monoclinic lattice Ionic

7 Quartz SiO2 Trigonal or hexagonal Covalent

8 Topaz Al2F2SiO4 Orthorhombic Covalent

9 Corundum Al2O3 Trigonal or hexagonal Covalent

10 Diamond C Cubic Covalent
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property widely observed in metallurgy is the increased hardness of metallic alloys

as compared with that of the constituent elements, hence the addition of foreign el-

ements to a metal, such as carbon to iron [85]. The increase in hardness happens

because forces between similar sized atoms are smaller than those between atoms of

a different size [157]. The hardness of a metal also depends on the grain size: the

smaller the grain size, the higher the hardness (Fig. 8.3) [147, 157]. This fact has

been attributed to the number of grain boundaries, which act as barriers to dislo-

cation motion, strengthening the material [134]. Moreover, homogeneous materials

with small grain sizes lack defects and dislocations, which are usually required for a

deformation to occur. Exceptionally high-hardness metals exhibit grain sizes in the

nm range [157].

In efforts to increase hardness, cold working (also known as work hardening

or strain hardening) is frequently implemented. The process entails deforming the

material, usually by rolling at room temperature, which results in the increase of

dislocations [58]. Moreover, the grains become distorted, trying to align with the

direction of rolling, and eventually fracture into even smaller grains. This process has

it’s drawbacks - while the hardness and strength are increased, ductility decreases

and preferred orientation emerges [58]. The solution is to subject the material to

annealing, a heat treatment at an elevated temperature for an extended period of

time, followed by slow cooling. The increase in thermal energy, brought on by elevated

temperature, reduces the energy stored in the material by applied deformation [58].

The annealing process (Fig. 8.4) is usually understood in terms of three stages:

1. Recovery: the name refers to the recovery of the original physical properties

observed before cold working. During this step the internal strain and residual

stress are relieved as the dislocations rearrange into lower-energy configurations.

Moreover, the excess point defects such as vacancies are annihilated. Since grain
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Figure 8.4: An example of an annealing process for cold-worked nickel [58,334]. The
energy released on annealing was compared with that of a non-deformed sample.

orientations, shapes and sizes remain the same, the strength and ductility are

not affected.

2. Recrystallization: this is a process of nucleation and growth of new grains

when the badly deformed grains are replaced by the strain-free ones with new

orientation, shape and size. Therefore, the strength is decreased and ductility is

increased, returning to the pre-cold-working values. The rate of recrystallization

depends largely on the temperature, duration, the purity of the specimen, the

original grain size, and, most importantly, the degree of cold work.

3. Grain growth: this is an undesirable process given that increased grain size

leads to decreased strength. The process involves migration of grain boundaries

- grains with 6 or more sides grow at the expense of other ones.

When two or more materials are combined in the melt, additional steps in
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the process of heat treatment need to be taken is order to optimize the mechanical

properties. A method known as precipitation hardening is commonly used in magne-

sium, aluminum, beryllium-copper alloys, stainless steels, and nickel-base superalloys

to significantly enhance hardness [58]. During precipitation hardening small particles

(for example particles of carbon in steels) are dispersed throughout the matrix, cre-

ating a barrier against dislocations and providing resistance to slip, thus increasing

overall hardness and strength. It has been determine that for optimal results, par-

ticles should be as hard as possible and the matrix should be soft and ductile [58].

Moreover, the particles should be spherical rather than needle-like, as small as possi-

ble, well-separated, and large in number. Similar to the treatment method described

above for pure metals, alloys undergo a number of heat treatments to improve hard-

ness and ductility:

1. Solution annealing: this initial step is aimed at producing a supersaturated

metastable solid solution. The material is heated below the melting temperature

(0.5 of Tm) for a short period of time (2 - 4 min/cm3), long enough to ensure

a nearly homogeneous solid solution via diffusion. The profile temperature

needs to be carefully selected so as to dissolve maximum amount of solute while

preventing grain boundaries from melting. Solution annealing is commonly used

in steels [58] to improve the distribution of carbides and thus hardness [68]. For

non-ferrous alloys this is the first step in the hardening process.

2. Quenching: the temperature of the speciments is rapidly decreased to room

temperature [68], preserving the supersaturated solid solution. Rapid quenching

often results in high residual stresses and distortion, which is often accounted for

by carefully selecting the quenching medium (water and other aqueous solutions,

oil, air, glycol). After this step, materials are very ductile, thus forming into a

desired part or straightening of metal sheets are conducted as soon as possible
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after quenching.

3. Aging: a precipitate is formed from the alloying element, increasing strength

and hardness dramatically [58]. The aging process is classified into two types:

artificial, which requires reheating to a temperature well below melting (0.3 of

Tm), and natural, which takes place at room temperature (T = 27 ◦C). Since

aging significantly increases hardness, straightening and forming need to be

completed prior to precipitation. The solution is to suppress the natural aging

by treatment at low temperatures (about -18 ◦C) for several days.

Figure 8.5: The effects of various precipitation hardening methods on hardness of the
Al-4%Cu alloy [58]

Numerous studies have been conducted in efforts to perfect precipitation hard-

ening for commercially available alloys. The drastic differences in hardness result from

changing one or more parameters of the treatment, as can be seen from Fig. 8.5. Ad-
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ditionally, a number of properties besides hardness can also be affected by the above

process: tensile strength, formability, corrosion resistance, exfoliation corrosion, duc-

tility, and stress resistance.

Many other heat treatment methods aim to improve other mechanical prop-

erties of alloys [58]:

1. Tempering requires heating to an intermediate temperature in an aim to im-

prove ductility. It is most often used in steels which are too brittle to be used

for most applications. While tempering significantly improves ductility and

toughness, the hardness and strength are diminished.

2. Oxide dispersion strengthening yields higher strength materials due to the

addition of oxides (yttria, alumina and others) during alloying.

3. Differential hardening employs different heat treatments for different parts of

a single object. By using an insulation layer, only certain areas are left exposed

to fully harden. This process is commonly used for knives and swords.

4. Surface hardening:

• Induction hardening: a no-contact induction heating increases surface

temperature very quickly. Consequent quenching results in a very hard,

wear-resistant surface layer of martensite.

• Flame hardening results in a layer of martensite being formed on top of

a softer interior core. This process is mostly used for steels.

• Case hardening is a thermochemical diffusion process during which atoms

of carbon and nitrogen are absorbed by the outermost surface layer. De-

pending on the materials, this process is often referred to as carburizing,

cyaniding, nitriding and carbonitriding.
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5. Cryogenic treating requires cooling to extremely low temperatures (-192 ◦C)

in order to improve hardness and wear resistance. It is usually only effective for

materials that contain more than 10% austenite after quenching [68].

8.4 Properties of Ti and its Alloys

Titanium possesses high strength (Titans of Greek mythology are the inspiration

behind the name) and low density, which has paved its way into a variety of fields.

Like many other materials, Ti occurs in two different crystallographic structures, with

a structural transition between two occurring at 882 ◦C in the pure metal. Below

this temperature, Ti has a hexagonal close packed structure (α-Ti, P63/mmc space

group) while above it the structure is body centered cubic (β-Ti, Im3m space group).

When selecting a Ti alloy for a certain application, it is important to differentiate

between three main groups of titanium alloys [233]:

1. Hexagonal α alloys weld well, have low to medium strength, good toughness

and ductility. While these alloys can be stress relieved and annealed, aging,

solution treatment, quenching or any other heating methods do not affect the

strength.

2. α− β alloys exhibit medium to high strength levels, respond well to heat treat-

ment and are generally rather weldable. This type of Ti alloys is the most

common one.

3. Cubic β alloys have high strength and are readily affected by heat treatment.

Both stress-relieving and aging are very effective in improving the overall hard-

ness.

The transition temperature between α- and β-Ti can be altered by either

doping or heat treatment [233]. If the additive element increases the transition tem-
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perature, it is referred to as the α-stabilizer. Some examples include Al, O, N, Sn,

Zr and C. Similarly, β-stabilizers such as Cr, Mn, Fe, Mo, Nb, V, Ta, H and Au,

decrease the transformation temperature. Most often, the β phase is sought after due

to its superior strength values, hot and cold working properties and susceptibility to

heat treatment [233]. To further improve the strength of Ti alloys, solution treating

and aging are commonly implemented [398], as can be seen from Table 8.2.

Table 8.2: Temperature range and time typically used for stress relief in Ti and
Ti-based alloys [307].

Ti Phase Alloy
Temperature range Time

(◦C) (hours)

Pure Ti 480-590 1/4 - 4

α alloys
Ti-8Al-1Mo-1V 590-700 1/4 - 4

Ti-6Al-2C-1Ta-0.8Mo 600-650 1/4 - 2

α− β alloys

Ti-6Al-4V 485-645 4 - 4

Ti-3Al-2.5V 540-650 1/2 - 2

Ti-8Mn 480-590 1/4 - 2

β alloys
Ti-13V-11Cr-3Al 710-730 1/2 - 1/4

Ti-10V-2Fe-3Al 680-700 1/2 - 2

In addition to numerous applications in the industrial, automotive and aerospace

fields, Ti has been widely used for implant devices that replace patients’ hard tis-

sues [105, 327]. After a number of toxic effects were reported in permanent im-

plants [105], the use of V- and Al-containing Ti alloys was discontinued. A number

of in vivo and in vitro experiments with various grades of Ti concluded that commer-

cially pure Ti is a highly biocompatible material [105, 179] due to the spontaneous

build-up of an inert and stable oxide layer. Additional properties that make Ti suit-

able for biomedical applications include low electronic conductivity, low ion-formation

levels in aqueous environments, low pH value and dielectric constant, comparable to

that of water [105]. Moreover, Ti is one of a few materials capable of osseointegra-

tion - mechanical retention of the implant by the host bone tissue - which stabilizes
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the implant without any soft tissue layers between the two [52]. That is why Ti

has been widely used for devices such as artificial knee and hip joints, screws and

shunts for fracture fixation, bone plates, pacemakers and cardiac valve prosthesis

that require high biocompatibility and corrosion resistance as well as high strength

and low density [240, 317]. Not surprisingly, the dental applications of Ti are just

as common for implants and their components, inlays, crowns, overdentures, and

bridges [67, 105, 192, 193, 392]. The one drawback is the poor machineability of pure

Ti, which reduces tool life, increases the processing time and is problematic when the

elimination of a dental Ti prosthesis is necessary [278, 290]. This can be improved

by adding a softer material to Ti. The addition of Ag and Cu has been rather suc-

cessful in improving hardness and machineability of Ti [195–197, 363]. Since both of

the dopants are α-stabilizers, α-Ti was produced. It can be expected that, if it were

possible to form the equivalent β-Ti alloys, its hardness may increase β [362]. Au,

which is located in the same group as Ag and Cu, is likely to increase the hardness,

given that it is a β-stabilizer. Moreover, the high biocompatibility and corrosion re-

sistance of Au may yield an alloy suitable for biomedical purposes [192]. While the

machineability would decrease with increased hardness, the relatively low melting

temperatures of Ti-Au alloys will allow for the majority of parts to be used in as-cast

form.

Additionally, pure Ti is not strong enough for a number of medical devices

[107,159], calling for the development of a more superior alloy [152,222,290,361,363].

While hardness can be improved by alloying Ti with another element [105], care must

be taken to preserve biocompatibility. Presently, only a two-fold increase in hardness

has been possible in Ti [195–197,363], achieved by alloying it with Cu or Ag. Using an

alloying element with the same valence electron number as Cu and Ag, but with higher

density, will result in a higher valence electron density of the alloy, which will likely

lead to higher bond strength, and, consequently, higher hardness [123, 145]. This
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immediately identifies Au as a suitable alloying candidate for increasing hardness.

An already wide use of Au and Au-doped implant devices [111,122,164,364] ensures

biocompatibility and corrosion resistance [192]. Furthermore, the ability of these

alloys to adhere to a ceramic surface [111,351] along with a reduction in density upon

dilution of Au with Ti can lessen overall weight and cost of medical components.

8.5 Ti - Au Alloys

8.5.1 Previous Work: From Dental Implants to ”Iron Man”

While the rarity of gold has secured its position as the world’s main currency for

many centuries, its role in technology has been rather small. High biocompatibility,

corrosion resistivity, and the melting temperature of pure Au make it extremely well

suited for dental applications; however it is too soft and expensive to be used for

components on its own [111]. In past studies, it was observed that the addition of

small quantities of Ti (< 10% Ti) into pure Au improved the overall hardness [111,122,

164,364] and corrosion resistance [111]. The enhanced hardness is particularly useful

for jewelry, minting [122] and integrated circuitry [164] applications, diminishing the

wear of these components. Additionally, the Ti-Au alloy can adhere to a ceramic

surface, making it convenient for a number of biomedical applications, reducing the

overall weight and cost of the corresponding parts [111, 351]. The appeal of Ti-Au

alloys for strength applications has even been acknowledged by the movie industry,

listing the Ti-Au alloy as the material for Iron Man’s face mask [1].

As for the Ti-rich Ti-Au alloys, the mechanical properties and grindability

were also previously examined in search for the optimal dental alloy [362]. Despite

the fact that Au is a β-stabilizer in Ti, it has been observed that the alloys (60 −

95% Ti) form two microstructures: αTi and a mixture of αTi and Ti3Au. Higher
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Ti concentrations were not attempted since it was believed that the intermetallic

compound Ti3Au caused the 60% Ti alloy to become brittle [362]. However, the

Young’s modulus increased as the concentration of Ti decreased to 60% possibly

because of the Ti3Au precipitation. The Young’s moduli of the Ti-Au alloys are

higher than those typically used for dental applications [362].

8.5.2 Current Study

Biomedical applications of the alloys from both Ti-rich and Au-rich sides of the Ti-Au

phase diagram were previously explored in detail [102,111,362,363]. While hardness

values were increase in both regions, the effect was comparable to that seen in Ti-

Ag and Ti-Cu systems. Interestingly enough, hardly anything has been reported on

the hardness of intermediate compositions. In this manuscript, a series of Ti1−xAux

(0.22 ≤ x ≤ 0.8) alloys was prepared, spanning the whole composition range. A re-

markable nearly four-fold increase in hardness, as compared to pure Ti, is registered

for the Ti0.75Au0.25 alloy, placing the hardness of this material above that of most bio-

compatible alloys currently used in the medical field [26]. The coefficient of friction

and, consequently, wear rates, of this material are improved significantly in compar-

ison with Ti, suggesting longer component life and less debris accumulation. These

properties indicate that the Ti0.75Au0.25 alloy is suitable for a number of biomedical

applications, particularly where Ti is already employed [67,105,192,193,240,317,392].

As mentioned above, hardness measurements reveal a non-monotonous change

of hardness with x – the hardness reaches maximum values for 0.22 ≤ x ≤ 0.35 (Fig.

8.7, red symbols). Those values are up to three or four times higher than that of

pure Ti. Among surveyed nominal compositions, the x = 0.25 alloy exhibits the

highest hardness value of ≈ 800 HV, higher than that of pearlitic steels [149, 305]

and similar to both drawn pearlite and high carbon martensitic steels [85]. While
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Figure 8.6: Binary phase diagram of Ti-Au with the open circles representing the
compositions of the Ti1−xAux alloys for the current study (0 ≤ x ≤ 1) [389].

other metallic alloys such as WC, cBN, and high-carbon steels show higher hardness

values, they are often not desirable for medical applications due to high toxicity.

As mentioned above, both Ti and Au are biocompatible and have high resistance

to in vivo corrosion, suggesting that the resulting alloys are suitable for biomedical

applications [105, 179, 192]. In order to compare hardness and density of Ti1−xAux

alloys with those of materials typically used for medical applications, an hardness vs.

density diagram [26] was constructed (Fig. 8.7). As can be seen, Ti0.75Au0.25 offers

a nearly four-fold increase in hardness while the density is comparable to commonly

used implant materials. Moreover, it was noticed that melting Ti1−xAux samples

in Al2O3 crucibles resulted in the intermetallic alloy adhering to the walls of the

container. This property can reduce both the weight and cost of medical components
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even further, if Ti1−xAux material is used as a coating for a ceramic part. Moreover,

the values of the melting temperatures Tm for the Ti1−xAux alloys [389], are lowered

upon Ti dilution with Au. The reduction in the melting temperature will allow for

the preparation of components via casting, avoiding costly machining process [196].

A full theoretical understanding of the hardness mechanism remains challeng-

ing due to the inherent complexity and large number of parameters that affect it [70].
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Figure 8.7: Hardness as a function of composition (top axis) and density (bottom
axis) for Ti1−xAux and other medical alloys. Current study is represented by red
circles. Previous studies of Ti1−xAux alloys are shown in full black symbols while
other medical alloys are represented by open symbols.
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Table 8.3: Summary of parameters for as-cast Ti1−xAux alloys.

x
Melting temperature Tm [389] Mass density ρ As-cast hardness

(◦C) (g/cm3) (HV)

0 882 4.5 267± 22

0.22 1367 7.1 725± 12

0.25 1395 7.9 796± 21

0.33 1310 8.9 627± 45

0.45 1470 10.9 305± 40

0.50 1495 11.1 287± 9

0.60 1385 12.3 269± 24

0.67 1455 14.1 213± 5

0.75 1400 14.4 286± 30

0.80 1315 14.5 288± 8

1.00 1064 17.7 42± 4

In alloys, hardness is determined by the underlying crystal structure [123], making

structural analysis of high importance. As summarized in Table 8.3, SEM and XRD

analysis clearly indicate that all of the samples are composed of multiple phases. In

Ti0.75Au0.25, the XRD analysis (Fig. 8.8(c)) revealed that the majority phase is Pm3n

Ti3Au and the minority phase is Pm3m Ti3Au, accompanied by minor inclusions of

αTi. Samples studied with scanning electron microscopy (SEM) were polished and

examined in a field emission gun scanning electron microscope Zeiss 1540 esB. Sam-

ples for transmission electron microscopy (TEM) analysis were prepared via grinding

and ion milling. The microstructures of the samples were investigated by a probe

aberration corrected JEOL-JEMARm200cF at 200 kV. Microstructural TEM data

are consistent with XRD results (Fig. 8.8(a)), indicating that during the solidifica-

tion, intermetallics with chemistry close to Ti0.75Au0.25 form dendritic structure first,

rejecting the Ti to the liquid between the dendrites. At lower temperature, solid solu-

tion of Ti is formed between the dendrites. TEM bright field image of the Ti0.75Au0.25

sample is shown in Fig. 8.8(b), consistent with the SEM data – the darker features in
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Fig. 8.8(b) correspond to αTi, which are marked by arrows in Fig. 8.8(a). This den-

dritic nature of Ti has also been observed in Ni-treated Ti [271], with higher hardness

corresponding to the dendritic regions of the alloy.

The lifetime of a medical component within live tissue is determined by the

wear rate with which it degrades. In particular, knee and hip replacements can

only last on the order of a decade, making additional component replacement nec-

essary [26]. Tribological experiments were conducted using a pin-on-disk tribometer

(CSM Instruments). The diamond-SiC disk was selected for its durability. The ingot

samples of Ti1−xAux (x = 0.25, 0.3 and 0.50) were used as a pin with a Ti ingot used

as a reference. An example of the Ti0.75Au0.25 sample used for wear tests is shown in

the inset of Fig. 8.9(a). In order to simulate wear during walking, a linear reciprocal

motion was used with a sliding speed of 3.15 cm sec−1 and an applied load of 2N.

The sliding distance of wear tests was set at 4 mm per stroke, with the total of 40

000 cycles. A synthetic body fluid was used as the test medium. Details of wear

of diamond-SiC disk have been reported previously [405–407]. Comparison of the

time-dependent coefficient of friction for Ti1−xAux (x = 0, 0.25, 0.30 and 0.50) alloys

is shown in Fig. 8.9(a). The reference sample is Ti (black) with an average coefficient

of friction (COF = 0.35) persistent for about 700 seconds. All of the Ti1−xAux alloys

show COF< 0.1 after an initial running-in period of 100 seconds. These results indi-

cate that the addition of Au to Ti is effective in reducing friction in Ti1−xAux alloys.

Wear volumes of the Ti1−xAux pin and a diamond disk composite are shown in Fig.

8.9(b). To identify the wear modes, SEM analysis was conducted, with the pin and

disk results shown in Fig. 8.10. In the SEM images of the wear of Ti1−xAux and

SiC, the bright and groove-like features correspond to abrasion (from diamond grits)

while the darker spots result from adhesion wear. The wear of SiC is also reduced

for Ti1−xAux alloys as compared with Ti. This is consistent with the results in wear

volume of both pin and disk as well, summarized in Table 8.3.
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Figure 8.8: (a) In an SEM image, arrows indicate second phase particles which form
between the dendrites of the material. Those particles are a Ti-rich solid solution.
(b) The dark contrasted features in the TEM bright field image are the second phase
Ti particles, one of which is indicated by an arrow. (c) X-ray diffraction pattern
indicates that the αTi3Au phase (blue vertical symbols) main phase accompanied by
small inclusions of βTi3Au and αTi (marked by asterisks).
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The stabilization of Ti by Au is indicated by the reduced adhesion of the

x = 0.50 sample. The SEM and TEM images, shown in Fig. 8.8(a) and (b), indicate

the secondary Ti-rich solid solution, thus the adhesion is Ti or Ti-rich. The wear

modes on the pin (Fig. 8.10, images on the left) are given in Table 8.3 for all samples.

The Ti1−xAux alloys have some features shown that seem to be worn less. Those

are likely the microstructural hardening of the matrix. These features are more

pronounced in the Ti0.75Au0.25 sample. The disk wear (Fig. 8.10, images on the

right) show visible flattened diamond grits that indicate tribochemical interactions.

This is, however, only true for Ti (Fig. 8.10(b)) rather than Ti1−xAux alloys (Fig.

8.10(d), (f) and (h)).

For metallic materials, the valence electron density (VED) has been suggested

to improve phase stability, and, therefore, hardness [123, 145]. The VED value for

Ti3Au is 0.2 Å−3, which is higher than that of any other Ti-Au binaries (Table

8.6). Another possible origin of high hardness in Ti0.75Au0.25 is the reduction in

the density of states (DOS) at the Fermi level (EF ), which has been referred to

as a pseudogap [241, 257]. If such a pseudogap is formed across the Fermi level,

Table 8.4: Summary of composition analysis for as-cast Ti1−xAux alloys.

x
Phase(s) determined

from TEM from XRD

0.22 Ti3Au + αTi αTi3Au + αTi

0.25 αTi3Au αTi3Au + βTi3Au + αTi

0.33 Ti3Au + TiAu αTi3Au + βTi3Au + βTiAu

0.45 βTiAu + αTi

0.50 βTiAu + Ti βTiAu + αTi + βTi3Au

0.60 TiAu + TiAu2 βTiAu + TiAu2 + αT

0.67 Ti3Au + TiAu2

0.75 TiAu2 + TiAu4

0.80 TiAu2 + TiAu4 TiAu2 + TiAu4
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Figure 8.9: (a) Coefficient of friction as a function of time for Ti1−xAux with x = 0,
0.25, 0.30 and 0.50. Inset: the x = 0.25 sample used for wear tests. (b) Wear volumes
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Figure 8.10: SEM images of the pin and disk wear test: (a) Ti reference ingot, (b),
(d), (f) and (h) SiC disk. Ti1−xAux pins for x = 0.25 (c), x = 0.30 (e) and x = 0.50
(g) samples.
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Table 8.5: Wear parameters of the Ti1−xAux alloys.

x

Ti1−xAux SiC

wear volume
wear type

wear volume
wear type

(mm3) (mm3)

0 0.038 abrasive, adhesive 0.183 adhesive

0.25 0.012 abrasive, adhesive 0.163 abrasive, adhesive

0.30 0.010 abrasive, adhesive 0.153 adhesive

0.50 0.017 abrasive 0.093 adhesive

the electronic energy is lowered, stabilizing the phase and, consequently, improving

the hardness [257]. The pseudogap feature has been observed in a large number of

materials for which either covalent or metallic bonds are dominant [257]. Typically,

to affect the crystallographic phase significantly, the pseudogap must have a width

W of 0.5 - 1.5 eV and height ratio H/H0 > 0.5 [257]. As can be seen in Fig. 8.11,

TiAu, TiAu2, and Ti3Au exhibit pseudogaps around EF . The parameters for those

are listed in Table 8.6, from which it is obvious that the pseudogap for Ti3Au is the

most pronounced one (inset of Fig. 8.11), with W ≈ 1 eV and H/H0 ≈ 4. This is

again consistent with the highest hardness value of the Ti0.75Au0.25 alloy.

Table 8.6: Crystallographic and pseudogap parameters for Ti-Au phases.

Phase
Space VED ρ Pseudogap

group (Å−3) (g/cm3) W (eV) H/H0

Ti3Au Pm3n 0.20 7.87 1 4

TiAu Pmma 0.15 11.05 1 0.4

TiAu4 I4/m 0.10 14.52 – –

TiAu2 I4/mmm 0.12 14.09 0.2 2
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8.5.3 Effects of Heat Treatment

Given that Ti alloys are frequently heat-treated to improve both hardness and ductil-

ity, two types of annealing were carried out for Ti-Au alloys. The first one consisted

of heating the samples to 900 ◦C and dwelling for 7 days. The second annealing pro-

file was based on the melting temperature, similar to what has been done for other

Ti-base alloys, as shown in Table 8.2. The samples were heated to 0.5Tm for 1 hour

and then annealed at 0.3Tm for 8 hours. The resulting hardness values are listed

in Table 8.7. The hardness values of as-cast and annealed samples are very similar,

which might be caused by variation in microstructure homogeneity which can mask

the true annealing effects.

Alternative temperature treatments can be implemented in conjunction with

plastic deformation. Cold- or hot-rolling these alloys can increase both plasticity and

provide a more homogeneous material for further annealing. Consequently, hardness

enhancement might decrease but increased plasticity could pave the way for additional

applications.

Table 8.7: Comparison of hardness for different annealing profiles of Ti1−xAux alloys.

x
As-cast First anneal Second anneal

(GPa) (GPa) (GPa)

0.22 7.11 ± 0.12 7.26 ± 0.10 6.73 ± 0.32

0.25 7.81 ± 0.21 7.51 ± 0.08 7.55 ± 0.18

0.335 6.56 ± 0.20 6.30 ± 0.29 6.36 ± 0.11

0.50 2.34 ± 0.24 2.51 ± 0.09 2.91 ± 0.17

0.60 2.64 ± 0.24 2.31 ± 0.15 2.14 ± 0.36

0.67 2.09 ± 0.05 2.68 ± 0.08 2.63 ± 0.04

0.80 2.83 ± 0.08 1.71 ± 0.07 1.80 ± 0.05
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8.5.4 Conclusion and Future Endeavors

A series of Ti1−xAux alloys (0.22 ≤ x ≤ 0.8) has been investigated due to their

extreme hardness values, elevated melting temperatures (compared to those of con-

stituent elements), reduced density compared to pure Au, bulk metallicity, and high

biocompatibility. Previously, radio opacity of other Ti1−xAux alloys has been re-

ported [48, 49], allowing for differentiation between implants and live tissue. These

properties make medical applications especially favorable with examples including

replacement parts and components (both permanent and temporary), dental pros-

thetics and implants. The ability to adhere to ceramic components along with os-

seointegration are also beneficial, as they are able to reduce component weight and

cost. Possible additional applications include circuit wires, hard coatings for tools

and other medical equipment, drill head bits, as well as sporting goods.

Among biomedical materials, hardness of the Ti0.75Au0.25 alloy is clearly

superior. Moreover, comparison with Ti indicates improved coefficient of friction

and wear rates, reduced melting temperatures, and biocompatibility, making this

compound particularly well suited for applications where Ti is already employed

[67,105,192,193,240,317,392], with examples including replacement parts and compo-

nents (both permanent and temporary), dental prosthetics and implants. The reduced

density along with an ability to adhere to ceramic components and osseointegration

will aid in reducing both component weight and cost.

An increase in the hardness can potentially be achieved by strengthening the

covalent bonding, possible via addition of a dopant that is small enough so that

the volume would stay nearly the same. Suitable choices include C and B, as their

valence electron density values are similar to that of Ti3Au [135]. Consequently, the

biocompatibility might have to be sacrificed in order to achieve even higher hardness

values, making Ti1−xAux alloys more suitable for industrial applications.



Chapter 9

Type I Superconductivity in ScGa3 and LuGa3

Superconductivity in single crystals of ScGa3 and LuGa3 is observed from magne-

tization, specific heat and resistivity measurements: low critical temperatures Tc =

2.1 - 2.2 K, field-induced second-to-first order phase transition in the specific heat,

critical fields less than 240 Oe and low Ginzburg-Landau coefficients (κ ≈ 0.23 and

0.30 for ScGa3 and LuGa3, respectively) all suggest that these crystals have a Type

I superconducting ground state. These observations render ScGa3 and LuGa3 two of

only several Type I superconducting compounds, with most other superconductors

being Type II (compounds and alloys) or Type I (elemental metals and metaloids).
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9.1 Motivation and Background

Despite the large number of known conventional and unconventional superconduc-

tors, new findings still emerge even from simple, binary intermetallic systems. The

majority of the metallic elements are superconducting with small values of the crit-

ical temperatures Tc [311]. It has been noted [186], that intermetallic compounds

often have Tc values higher than those of the constituent elements, as is the case

in Nb3Sn [247], V3Si [243], ZrB2 and NbB2 [127]. Thermodynamic and transport

measurements performed on single crystals of RGa3 (R = Sc or Lu), formed with

superconducting Ga with Tc = 1.09 K [311] and either non-superconducting Sc or

superconducting Lu whose critical temperature is Tc = 0.1 K [311], place ScGa3 and

LuGa3 among the aforementioned intermetallic superconductors.

Past studies focused on the synthesis of polycrystalline samples of RGa3,

with reports on single crystals limited to de Haas-van Alphen measurements [302].
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Figure 9.1: (a) Powder x-ray diffraction pattern for ScGa3 (black), with calculated
peak positions (vertical red marks) for space group Pm3m and lattice parameter a
= 4.0919 Å. Minute amounts of residual Ga flux are marked by asterisks. Inset: a
picture of a single crystal of ScGa3. (b) A cluster of ScGa3 crystals, prepared from a
molten solution.
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Pluzhnikov et. al. characterized the geometry of the Fermi surface of three related

intermetallic compounds, RGa3 (R = Sc, Lu) and LuIn3. Together with findings from

band structure calculations [161] on the same systems, these reports suggested great

similarities between the electronic properties of ScGa3 and LuGa3. Superconductivity

below 2.3 K in LuGa3 had already been mentioned [153], but thermodynamic and

transport properties measurements of both ScGa3 and LuGa3 so far have been limited

to T > 4.2 K [202, 204]. The similarities in the electronic structures of ScGa3 and

LuGa3 suggest that if the superconductivity in the latter compound is confirmed, the

former is also likely to display a superconducting ground state. Physical properties

summarized below evidence that indeed both RGa3 (R = Sc and Lu) are supercon-

ducting. The low critical temperatures Tc around 2.2 K and small critical fields Hc <

240 Oe point to Type I superconductivity in both compounds. Additional supporting

evidence for the Type I superconductivity is provided by the field-dependent specific

heat and low values of the Ginzburg-Landau (GL) coefficient κ ≈ 0.23 and 0.3 for

ScGa3 and LuGa3, respectively.

The RGa3 compounds (R = Sc, Dy-Tm, Lu) crystallize in the cubic Pm3m

space group, a structure suggested by Matthias [244] to be favorable for superconduc-

tivity. Single crystals of ScGa3 and LuGa3 were prepared using a self flux method,

as described in Section 3.1. Powder x-ray diffraction data, shown in Fig. 9.1 for

ScGa3, were collected for both compounds, as described in Section 3.2. The patterns

for ScGa3 and LuGa3 were refined with the cubic space group Pm3m, with lattice

parameters a = 4.09 Å and a = 4.19 Å, respectively. A picture of a ScGa3 crystal

and a cluster os crystals is also shown in Fig. 9.1. Traces of residual Ga flux are

apparent in the powder pattern, and are marked with asterisks in Fig. 9.1. Addi-

tional single crystal x-ray diffraction measurements confirmed the crystals structure,

stoichiometry and purity of the ScGa3 crystals.
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9.2 Physical Properties

As-measured susceptibility data χ = M/H for RGa3 in various applied magnetic

fields H was scaled by 4π and corrected for demagnetizing effects (see Section 2.4 and

Eq. 2.124):

4πχeff =
4πχ

(1−Ndχ)
(9.1)

where Nd is the demagnetizing factor associated with the geometry of a crystal. For

a cubic system, Nd ≈ 1/3 [10, 292], yielding data shown in Fig. 9.2. As anticipated

from their electronic properties [302], both R = Sc (Fig. 9.2(a)) and Lu (Fig. 9.2(b))

compounds display similar superconducting ground states below 2.2 - 2.3 K. Increas-

ing magnetic field suppresses the transition for ScGa3 (Fig. 9.2(a)), such that Tc

becomes smaller than 1.8 K for H ≈ 80 Oe. Fig. 9.2(b) illustrates the similarity

between the H = 5 Oe M(T ) data for ScGa3 (squares) and LuGa3 (triangles), for

both zero-field cooled (full) and field-cooled (open) data. The critical field Hc for each

compound can also be estimated from the M(H) data, shown in Fig. 9.3. Taking the

demagnetization effect into consideration, a more accurate estimate of the field H is:

Heff = H −NdM (9.2)

where, as before, for a cube and H||a, Nd ≈ 1/3. The resulting M(Heff ) isotherms

are displayed in Fig. 3 (full symbols, bottom axes) along with as-measured M(H) for

T = 1.8 K (open symbols, top axes). The critical field values Hc, corresponding to the

entrance to the normal state (M = 0), are not changed when demagnetizing effects

are taken into account for H||a. The critical fields are remarkably low, Hc reaching

only about 90 Oe at 1.8 K, the lowest temperature available for the magnetization
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measurements. Moreover, as will be shown below, the critical fields for both com-

pounds remain small down to 0.4 K. This observation, along with the small critical

temperatures and the shape of the M(H) isotherms, indicate Type I superconduc-

tivity in both ScGa3 and LuGa3. While most elemental superconductors are Type I,

this is a rare occurrence in superconducting compounds, making ScGa3 and LuGa3

two of only a few such known systems [17,376,393,413,418]. It is therefore imperious

to fully characterize the superconducting state in the RGa3 superconductors. Specific

heat and resistivity measurements extend the findings from magnetization data down

to lower temperatures.

Field-dependent specific heat measurements for ScGa3 and LuGa3 were car-

ried out in fields up to 240 Oe, as shown in Fig. 9.4. As expected, a sharp peak is

observed for field values H < 240 Oe, from which the critical temperature Tc can be

determined as the point halfway between the peak and the normal state specific heat

signal. Type I superconductivity in both compounds is confirmed by the increase of

the jump in specific heat between zero and non-zero applied magnetic field H, indicat-

ing second-to-first order phase transition. Tc for ScGa3 and LuGa3 is suppressed from

2.1 K (open squares, Fig. 9.4(a)) and 2.0 K (open squares, Fig. 9.4(b)), respectively,

at H = 0 to below 0.4 K at H = 240 Oe (solid line, Fig. 9.4(c) and (d)). The normal

state electronic specific heat coefficient γn and phonon specific heat coefficient β were

estimated from the linear fit of the normal state (H = 240 Oe) specific heat below 8

K, plotted as Cp/T vs. T 2 (not shown). Very similar γn values, 7.11 mJ mol−1 K−2

and 8.46 mJ mol−1 K−2, were obtained for ScGa3 and LuGa3, respectively.

The superconducting electronic specific heat coefficient γs can also be deter-

mined from γn and the residual electronic specific heat coefficient γres. The latter

coefficient, γres, estimated from Ce/T at T = 0.4 K and H = 0 (Fig. 9.4(c) and (d)),

is much smaller than γn for both compounds. This results in γs = γn - γres ≈ γn
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for both ScGa3 and LuGa3. The entropy-conservation construct shown in Fig. 9.4(c)

and (d) for ScGa3 and LuGa3, respectively, yields the same value for the jump in the

electronic specific heat Ce at Tc, ∆Ce/γnTc ≈ 1.44, consistent with BCS-Type super-

conductivity [32]. One more similarity between the two compounds is the minimum

excitation energy ∆(0): from the low-temperature fit of the electronic specific heat

Ce ∝ e−∆/kBT (dashed lines in Fig. 9.4(c) and (d)), ∆(0) is estimated to be 0.18 meV

for ScGa3 and 0.17 meV for LuGa3. The Debye temperature:

θD =
(12NArkB

5βπ4

)1/3

, (9.3)

where r = 4 is the number of atoms per formula unit, can be determined using the

phonon specific heat coefficient β (Table 9.1), also estimated from the linear fit of

Cp/T vs. T 2 (not shown). This yields θD = 660 K for ScGa3 and 232 K for LuGa3.

Moreover, the electron-phonon coupling constant λel−ph, can be determined using

McMillan’s theory [251]:

λel−ph =
1.04 + µ∗ ln

(
θD

1.45Tc

)
(1− 0.62µ∗) ln

(
θD

1.45Tc

)
− 1.04

(9.4)

where µ∗ represents the repulsive screened Coulomb potential and is usually between

0.1 and 0.15. Setting µ∗ = 0.13, results in λel−ph = 0.45 and 0.55 for ScGa3 and LuGa3,

respectively, implying that both compounds are weakly coupled superconductors.

From the specific heat data for both the superconducting (H = 0) and the

normal (H = 240 Oe) states, an estimate of the thermodynamic critical field Hc

can be obtained using the free energy relation [372]. The thermodynamic critical

field values Hc = 209 ± 10 Oe for ScGa3 and 226 ± 10 Oe for LuGa3 are consistent

with what has been observed in magnetization and specific heat data. The field- and
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Figure 9.5: H = 0 temperature-dependent resistivity for ScGa3 (full black symbols)
and LuGa3 (open gray symbols), with Bloch-Grüneisen-Mott fits (solid lines) for
n = 2 (ScGa3) and n = 3 (LuGa3). Left inset: low-temperature ρ(T ) around Tc.
Right inset: ∆ρ = ρ - ρ(0) vs. T 2, with solid lines representing linear fits up to 80 K
for ScGa3 and 70 K for LuGa3.

temperature-dependent data can be summarized in the H −T phase diagram, shown

in Fig. 9.7 and discussed below.

Previously reported resistivity measurements [202,204] on LuGa3 were limited

to temperatures above 4.2 K, while similar data had not been presented for ScGa3.

Figure 9.5 displays the H = 0 resistivity data for ScGa3 and LuGa3 (full and open

symbols, respectively). The superconducting transition (left inset) is around 2.2 - 2.3

K for both compounds. The apparently finite resistivity in the superconducting state

is likely an artifact of the measurement: the overall resistivity values are very small for

both compounds; below Tc, the contact resistance, albeit small, might alter the mea-
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sured voltage, which is very close to the instrument resolution. Above the transition

and below 80 K for ScGa3 or 70 K for LuGa3, ρ(T ) exhibits Fermi liquid behavior,

as illustrated by the ∆ρ ∝ AT 2 plot (right inset, Fig. 9.5), with A = 3.4·10−4 and

6.1·10−4 µΩcm K−2, respectively. At higher temperatures a slight curvature of the

resistivity is apparent. Solid line fits are obtained by using the Bloch-Grüneisen-Mott

(BGM) relation [39]:

ρ = ρ0 + A(
T

θD
)n
∫ θD/T

0

xndx

(ex − 1)(1− e−x)
− kT 3 (9.5)

with n = 2 for ScGa3 and n = 3 for LuGa3 describe the data well up to room

temperature, even higher than θD/4. This points to significant s− d band scattering,

while the different exponents n suggest underlying differences in the electron-phonon

scattering in the two compounds. The fits shown in Fig. 9.5 were performed using the

θD values determined from specific heat; the other BGM parameters were determined

to be A = 38.5 and 28.6 µΩcm and k = 1.3·10−7 and 0.3·10−7 µΩcm K−3, for ScGa3

and LuGa3, respectively. If the parameter θ is also released for the BGM fits, equally

good fits for n = 2 and n = 3 are achieved for ScGa3, for θR values between 320 and

460 K, significantly smaller than the Debye temperature θD = 660 K. For LuGa3, the

parameters remain nearly unchanged, with the best fit for n = 3 and θR = 230 K,

virtually identical to θD = 232 K.

Based on the Sommerfield coefficient extracted from the specific heat data, it

is possible to estimate the London penetration depth λL(0) (Eq. 2.120), the coherence

length ξ(0) (Eq. ) and the GL parameter (Eq. 2.122).

Since both ScGa3 and LuGa3 have one formula unit per unit cell, the con-

duction electron density n, due to three electrons contributed by Sc and Lu, can

be estimated as n = 3/V where V is the volume of the unit cell. It results that
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Table 9.1: Summary of parameters describing properties of ScGa3 and LuGa3.

ScGa3 LuGa3

Tc (K) 2.1 ± 0.2 2.2 ± 0.25

Hc (Oe) 209 ± 10 226 ± 10

γn (mJ mol−1 K−2) 7.03 ± 0.08 8.52 ± 0.06

β (mJ mol−1 K−4) 0.027 0.621

A (µΩcm K−2) 3.4·10−4 6.1·10−4

RRR 14.0 6.5
∆Ce(Tc)
γnTc

1.44 1.44

λel−ph 0.45 0.55

m∗m0 3.03 3.49

λ (nm) 59 63

ξ (µm) 0.26 0.21

κ 0.23 0.30

n = 4.39 · 10−2 Å−3 and n = 4.08 · 10−2 Å−3 for ScGa3 and LuGa3, respectively. If

a spherical Fermi surface is assumed for both compounds, the Fermi wave vector kF

can be roughly calculated as kF = (3nπ2)1/3 = 1.09 Å−1 for ScGa3 and 1.07 Å−1 for

LuGa3. The effective electron mass can then be expressed in terms of the free electron

mass m0:

m∗ =
~2k2

Fγn
π2nk2

B

, (9.6)

yielding m∗ = 3.03m0 and 3.49m0 for ScGa3 and LuGa3, respectively. The London

penetration depth, given by Eq. 2.120, has values of 59 nm for ScGa3 and 63 nm

for LuGa3. The coherence length, calculated from Eq. 9.2, also has similar values

for the two compounds: 0.26 µm for the former and 0.21 µm for the latter. The

GL parameter, given by Eq. 2.122, is therefore 0.23 for ScGa3 and 0.30 for LuGa3.

This indicates that both compounds are Type I superconductors, since κ < 1/
√

2. In

comparison, a Type II superconductor MgB2 has κ(0) value close to 26 [109], while



272

κ(0) for Type I superconductor LaRhSi3 is close to 0.25 [17].

9.3 Band Structure Calculations

Using Eq. 3.30, previously reported band structure calculations for both ScGa3 and

LuGa3 [161] predict smaller values of γn, compared to those obtained experimentally

(γn,PPPW = 2.4 mJ mol−1 K−2 and 1.2 mJ mol−1 K−2 and Table 9.1). Since the

above band structure calculations are based on the Pseudo-Potential Plane Wave ap-

proximation [161], a better estimate of γn can be achieved by using the Full-Potential

Linear Augmented Plane Wave method (FP-LAPW) [41,296], as described in the Ex-

perimental Methods Section 3.11. The density of states, shown in Fig. 9.6, exhibits a
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Figure 9.6: Density of states for ScGa3 exhibits a peak at the Fermi surface. Inset:
the Fermi surface of ScGa3.
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peak at the Fermi surface, as is the case for previous calculations [161]. However, the

magnitude of the peak is larger, yielding N(EF ) ≈ 2 states eV−1, and, consequently,

γn,FPLAPW = 7.1 mJ mol−1 K−2 for ScGa3, identical with the experimental value of

7.11 mJ mol−1 K−2.

9.4 Conclusion
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Figure 9.7: H − T phase diagram for ScGa3 (open black symbols) and LuGa3 (full
red symbols). The values of the critical fields Hc are determined from χ(T ) data
(squares), M(H) data (triangles) and Cp(T ) data (circles).

In summary, Type I superconductivity in ScGa3 and LuGa3 is reported, with

the parameters characteristic of the superconducting state, shown in Table 9.1. The

shape of the M(H) isotherms (Fig. 9.3), field-induced second-to-first order phase
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Figure 9.8: Doping of ScGa3 with C and B shifts the peak away from the Fermi
surface (a) and (c). The respective Fermi surface is plotted in (b).

transition in specific heat (Fig. 9.4), low Tc, Hc and κ values (Table 9.1) suggest that

ScGa3 and LuGa3 are both Type I superconducting compounds. This is reflected also

in the H − T phase diagram (Fig. 9.7), where the symbols represent experimental

points from M(T ) (squares), M(H) (triangles) and CP (circles). These data are in

good agreement with the thermodynamic critical field Hc temperature dependence

(solid lines). As suggested by the electronic properties [302], the superconducting

parameters for the two compounds are very similar, as are their H−T phase diagrams.

A careful analysis of the crystal structure on one hand, and the thermodynamic and

transport properties of the Type I superconducting compounds on the other hand,
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may offer valuable insights into the rare occurrence of Type I superconductivity in

binary or ternary systems. The relatively small electron-phonon coupling parameter

λel−ph indicates that both compounds are weakly-coupled BCS superconductors.

For a number of superconductors, the superconducting temperature Tc can

be raised by doping or application of pressure. Given face-centered crystal structure

of both ScGa3 and LuGa3, doping inside the cage with B and C was investigated.

It was not possible to introduce the dopant either by flux or by armelting, which is

likely caused by immiscibility of B and C in Ga and Sc. Moreover, according to the

band structure calculations, shown in Fig. 9.8 for B- and C-doped ScGa3, the peak

is shifted away from the Fermi level, suggesting a stable non-superconducting ground

state.



Chapter 10

Summary

While magnetism is certainly one of the most common and well studied condensed

matter phenomena, not all its properties are yet fully understood. In particular,

investigation of itinerant magnets composed of non-magnetic constituents has been

the topic of this dissertation.

The only two compounds previously known to exhibit itinerant magnetism

without any local moment contribution – ferromagnets Sc3In and ZrZn2 – were com-

pared. Both systems have been know for over 60 years but only ZrZn2 has been

studied in depth. In particular, a quantum critical point in Sc3In has remained elu-

sive until present work. It was possible to suppress the ordering temperature to zero

in a quantum critical regime by partially substituting Sc with Lu in Sc3.1In. In-depth

analysis of this quantum critical point via Arrott-Noakes method has indicated non-

mean-field nature of Sc3.1In, different from the mean-field behavior of ZrZn2. It was

postulated that these differences between seemingly analogous systems can possibly

be attributed to the dimensionality of spin fluctuations.

In order to further investigate this hypothesis, additional ferro- and antifer-

romagnetic compounds are necessary. In this work, a systematic method of finding
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itinerant systems composed of non-magnetic constituents was proposed. By exam-

ining band structures and phase diagrams of known materials, it was possible to

discover the first itinerant antiferromagnet composed of non-magnetic constituents –

TiAu. In-depth analysis of physical properties and band structure calculations has

indicated a spin-density wave ground state below 36 K.

The TiAu system was perturbed via application of pressure, high fields and

doping. It was found that by substituting Ti with Sc, a quantum critical point can be

achieved. Onset of non-Fermi liquid behavior close to the quantum critical point is

evident from several physical properties. Scaling analysis has indicated a 2D character

of this quantum phase transition, accompanied by enhanced spin fluctuations and

electron-electron correlations.

Further investigation of Ti-Au alloys resulted in the discovery of a four-fold

increase in hardness in Ti3Au, as compared with pure Ti. Combination of biocompat-

ibility, low wear and high hardness in this material make it well-suited for biomedical

applications where Ti is already used. The origin of high hardness in Ti3Au still

remains puzzling, with possible origin of high valence electron concentration or pseu-

dogap formation.
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[188] M. G. Kanatzidis, R. Pöttgen, and W. Jeitschko. The metal flux: a prepara-
tive tool for the exploration of intermetallic compounds. Angewandte Chemie
International Edition, 44:6996, 2005. 3.1

[189] R. B. Kaner, J. J. Gilman, and S. H. Tolbert. Designing superhard materials.
Science, 308:1268, 2010. 8.1

[190] T. Kato and T. Saita. Multi-canonical Monte-Carlo simulation on
ferromagnetism-cluster glass transition in Pd-Mn alloys. Physica B, 284:1347,
2000. 5.2



292

[191] R. J. Keizer, A. Visser, A. A. Menovsky, J. J. M. Franse, A. Amato, F. N.
Gygax, M. Pinkpank, and A. Schenck. Magnetism in heavy-fermion U(Pt,Pd)3

studied by µSR. Journal of Physics: Condensed Matter, 11:8591, 1999. 3.8

[192] B. Kempf, H. M. Rigelstein, T. Baumgaerther, and L. Voelkl. Manufacture of
cast Gold-Titanium alloy dental or jewelry parts. European Patent Application,
EP 717118 A2 19960619, 1996. 8.4, 8.5.2, 8.5.2, 8.5.4

[193] B. Kempf, H. M. Rigelstein, A. Voelcker, and U. Birkholz. Dental construction
element for use in a casting-on process. European Patent Application, EP 729739
A2 19960904, 1996. 8.4, 8.5.2, 8.5.4

[194] N. Kernavanois, S. Raymond, E. Ressouche, B. Grenier, J. Flouquet, and P. Le-
jay. Neutron diffraction study under pressure of the heavy-fermion compound
CePd2Si2. Physical Review B, 71:064404, 2005. 2.1.9

[195] M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and
T. Okabe. Grindability of cast Ti-Cu alloys. Dental Materials, 19:375, 2003.
8.4

[196] M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno,
and T. Okabe. Mechanical properties and microstructures of cast Ti-Cu alloys.
Dental Materials, 19:174, 2003. 8.4, 8.5.2

[197] M. Kikuchi, M. Takahashi, T. Okabe, and O. Okuno. Grindability of cast Ti-Ag
and Ti-Cu alloys. Dental Materials, 22:191, 2003. 8.4

[198] P. J. C. King, R. Renzi, S. P. Cottrell, A. D. Hillier, and S. F. J. Fox. ISIS
muons for materials and molecular science studies. Physica Scripta, 88:068502,
2013. 3.8

[199] H. Kitagawa, N. Kojima, and T. Nakajima. Studies of mixed-valence
states in three-dimensional halogen-bridged Gold compounds, Cs2Au′Au′′′X6,
(X= Cl, Br or I). Part 2: x-ray photoelectron spectroscopic study. Journal of
the Chemical Society, Dalton Transactions, 11:3121, 1991. 6.2.1

[200] C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, Hoboken,
NJ, 1996. 3.5

[201] O. Klein, S. Donovan, M. Dressel, and G. Gruner. Microwave cavity per-
turbation technique. International Journal of Infrared and Millimeter Waves,
14:2423, 1993. 3.9

[202] Z. Kletowski. Resistance of some Lantanum and Lutetium compounds of the
type (La,Lu)Me3. Physica Status Solidi, 108:363, 1988. 9.1, 9.2

[203] Z. Kletowski, R. Cloots, M. Ausloos, M. Pekala, A. J. Hurd, and G. Vac-
quier. Supermaterials, NATO Science Series. Springer-Verlag, Berlin, Heidel-
berg, 2001. 3.1



293

[204] Z. Kletowski, R. Fabrowski, P. Slawinski, and Z. Henkie. Resistance of some
REMe3 compounds, RE = La and Lu, Me = Sn, Pb, In, and Ga. Journal of
Magnetism and Magnetic Materials, 166:361, 1997. 9.1, 9.2

[205] W. Knafo, S. Raymond, J. Flouquet, B. Fak, M. A. Adams, P. Haen,
F. Lapierre, S. Yates, and P. Lejay. Anomalous scaling behavior of the dynam-
ical spin susceptibility of Ce0.925La0.075Ru2Si2. Physical Review B, 70:174401,
2004. 4.1

[206] G. Knebel, D. Aoki, J. P. Brison, and J. Flouquet. The quantum critical point
in CeRhIn5: A resistivity study. Journal of the Physical Society of Japan,
77:114704, 2008. 1, 7.1, 7.1, 7.2, 7.4

[207] G. Knebel, D. Braithwaite, P. C. Canfield, G. Lapertot, and J. Flouquet. Elec-
tronic properties of CeIn3 under high pressure near the quantum critical point.
Physical Review B, 65:1, 2001. 1, 7.1, 7.1, 7.2, 7.2, 7.4

[208] W. Kohn and L. J. Sham. Self-consisten equations including exchange and
correlation effects. Physical Review, 140:A1133, 1965. 3.11

[209] K. Kojima, Y. Fudamoto, M. Larkin, G.M. Luke, J. Merrin, B. Nachumi, Y.J.
Uemura, N. Motoyama, H. Eisaki, S. Uchida, K. Yamada, Y. Endoh, S. Hosoya,
B.J. Sternlieb, and G. Shirane. Reduction of ordered moment and Neel tem-
perature of quasi one-dimensional antiferromagnets Sr2CuO3 and Ca2CuO3.
Physical Review B, 78:1787, 1997. 6.2.3, 6.2.3

[210] K. M. Kojima, J. Yamanobe, H. Eisaki, S. Uchida, Y. Fudamoto, I. M. Gat,
M. I. Larkin, A. Savici, Y. J. Uemura, P. P. Kyriakou, M. T. Rovers, and G. M.
Luke. Site-dilution in quasi one-dimensional antiferromagnet Sr2(Cu1−xPdx)O3:
reduction of Neel temperature and spatial distribution of ordered moment sizes.
Physical Review B, 70:094402, 2004. (document), 6.2.3, 6.7

[211] J. D. Koralek, D. Meier, J. P. Hinton, A. Bauer, S. A. Parameswaran, A. Vish-
wanath, R. Ramesh, R. W. Schoenlein, C. Pfleiderer, and J. Orenstein. Obser-
vation of coherent helimagnons and Gilbert damping in an itinerant magnet.
Physical Review Letters, 109:247204, 2012. 2.1.9

[212] M. Koyano, M. Suezawa, H. Watanabe, and M. Inoue. Low-field magnetization
and ac magnetic susceptibility of spin- and cluster-glasses of itinerant magnet
FexTiS2. Journal of the Physical Society of Japan, 63:1114, 1994. 2.1.9

[213] J. Kubler. Spin fluctuations in ferromagnetic ZrZn2. Physical Review B,
70:064427, 2004. 2.1.9

[214] J. Kubler. Theory of Itinerant Electron Magnetism. Oxford Univeristy Press,
NY, 2009. 2.1.6, 2.1.8, 6.3
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[226] H. v. Löhneysen, T. Pietrus, G. Portisch, H. G. Schlager, a. Schröder, M. Sieck,
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