
RICE UNIVERSITY 

On the Application of Graphics Processor to Wireless 
Receiver Design 

by 

Michael Wu 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

MASTER OF SCIENCE 

APPROVED, THESIS COMMITTEE: 

k<ML~ 
JosfciJh R. Cavallaro, Chair 
Professor of Electrical and Computer 
Engineering A 

rMWWXL 
Behnaam Aazhang 
J.S. Abercrombie Professor of Electrical 
and Computer Engineering 

Lkf^hong 
^ ^ s s i s t a n t Professor of Electrical and 

Computer Engineering 

Houston, Texas 

April, 2010 



UMI Number: 1486053 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 1486053 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



ABSTRACT 

On the Application of Graphics Processor to Wireless 
Receiver Design 

by 

Michael Wu 

In many wireless systems, a Turbo decoder is often combined with a soft-output 

multiple-input and multiple-output (MIMO) detector at the receiver to maximize per­

formance in many 4G and beyond wireless standards. Although custom application 

specific designs are usually used to meet this challenge, programmable graphics pro­

cessing units (GPU) has become an alternative to the traditional ASIC and FPGA 

solution for wireless applications. However, careful architecture-aware algorithm de­

sign and mapping are required to maximize performance of a communication block 

on GPU. For MIMO soft detection, we implemented a new MIMO soft detection al­

gorithm, multi-pass trellis traversal (MTT). For Turbo decoding, we used a parallel 

window algorithm. We showed that our implementations can achieve high through­

put while maintaining good performance. This work will allow us to implement a 

complete iterative MIMO receiver in software on GPU in the future. 
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Chapter 1 
Introduction 

In many wireless systems, a channel decoder such as Turbo codes is combined with 

a soft output multiple-input and multiple-output (MIMO) detector at the receiver 

to maximize performance gain. The combination of MIMO and Turbo decoder is 

used in many 4G and beyond wireless standards such as IEEE 802.16e WiMax, and 

3GPP LTE (long term evolution). Although the combination of MIMO detector and 

Turbo decoder improves performance of a MIMO system dramatically, both MIMO 

detector and Turbo decoder are very computation intensive blocks. In the case of 

MIMO detector, as an exhaustive search based MIMO detector's complexity would be 

prohibitive, implementations are suboptimal MIMO detectors which can provide close 

to optimal performance with significantly lower complexity. Nevertheless, typical 

suboptimal MIMO detectors are ASIC designs [1, 2, 3], other implementations include 

FPGAs [4, 5] and application-specific instruction set processors (ASIPs) [6]. In the 

case of Turbo decoder, the inherently large decoding latency and a complex iterative 

decoding algorithm have made it very difficult to achieve high throughput in general 

purpose processors or digital signal processors. As a result, Turbo decoders are often 

implemented in ASIC or FPGA [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. 

To accelerate 3D visual effects that are moving toward photorealism, programmable 
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graphics processing units (GPU) delivers extremely high computation throughput by 

employing many cores working a large set of data in parallel. The GPU as an alterna­

tive to the traditional ASIC and FPGA solution for wireless applications is attractive 

for several reasons. As GPUs becomes increasingly more flexible, it can handle general 

purpose computations and can accelerate other tasks beyond the realm of graphics. 

Communication algorithms typically are very parallel and can take advantage of the 

inherently parallel structure of the GPU. For example, researchers have found GPUs 

can perform low density parity code (LDPC) decoding as well as ASICs [19]. Fur­

thermore, an implementation on GPU can be reconfigured easily to handle different 

workloads as it is done completely in software. Finally these type of processors are 

extremely cost-effective and ubiquitous in mobile and desktop devices, communica­

tion algorithms in the future can be offloaded onto this type of processor in place of 

custom ASICs or FPGAs. 

However, the underlaying hardware of GPU is fixed. Careful architecture-aware 

algorithm design and mapping are required to achieve good performance. Much of the 

mapping and optimizations are left to the programmer. For example, the programmer 

needs to specify how to use the limited amount of resources on GPU, such as on-chip 

shared memory. In addition, the programmer needs to specify how computation is 

partitioned on GPU by partitioning threads among the cores to handle the workload. 

An implementation that scales well, while keeping the cores fully utilized to achieve 
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peak throughput across different configurations, is a difficult to achieve. 

1.1 Contribution 

Our goal is to design and implement MIMO detection and Turbo detector effi­

ciently on GPU to maximize performance. To the best of our knowledge, there are 

no existing implementations of soft MIMO detector or Turbo decoder on GPU. For 

MIMO soft detection, we implement a new MIMO soft detection algorithm, multi­

pass trellis traversal (MTT), which is well suited for this architecture. We show that 

this MIMO detector implementation can achieve good performance while maintain­

ing flexibility offered by programmable hardware. We also compare the performance 

of MMT against K-best and a suboptimal one-pass trellis traversal implementation. 

Furthermore, we measure the efficiency of our implementation by measuring how well 

the hardware executes our code as well as the quality of the compiled code. For Turbo 

decoder, our implementation partitions the decoding workload across cores and pre­

fetch data to reduce memory stalls. As parallelization of the decoding algorithm can 

improve throughput of a decoder at the expense of decoder performance, we provide 

both throughput and performance of the decoder and show that we can parallelize the 

workload on GPU while maintaining reasonable performance. This work will allow 

us to implement a complete iterative MIMO receiver in software, which includes both 

MIMO detector and Turbo decoder on GPU in the future. 
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1.2 Thesis Overview 

The organization of the thesis is as follows. Chapter 2 give an overview of the 

CUDA architecture. Chapter 3 gives an overview of the MIMO detection and Turbo 

decoding algorithms. Chapter 4 discusses the implementation of MIMO detector 

on GPU, as well as the performance results and analyses. Chapter 5 discusses the 

implementation of Turbo detector on GPU, as well as the performance results and 

analysis. Finally, we will conclude in chapter 6. 



Chapter 2 
Overview of CUDA 

2.1 Compute Unified Device Architecture 

Compute Unified Device Architecture [20] is a software programming model that 

allows the programmer to harness the massive computation potential offered by the 

programmable GPU. The programming model is explicitly parallel. The programmer 

explicitly specifies the parallelism, i.e. how operations are applied to a set of data, in a 

kernel. At runtime, multiple threads are spawned, where each thread can select a set of 

data using its own unique ID and runs the operations defined by the kernel on the data 

set. Each thread block contains multiple threads, up to a 512 threads per thread block. 

In this programming model, threads are completely independent. However, threads 

within a block can share computation through barrier synchronization and shared 

memory. Thread blocks are completely independent and only can be synchronized 

through writing to the global memory and terminating the kernel. 

Compared to traditional general purpose processors, programmable GPU has 

much higher peak computation throughput. The overall architecture is shown in 

figure 2.1. The computation power is enabled by many stream multiprocessors (SM) 

on the GPU, where each SM is 8 ALU single instruction multiple data (SIMD) core. 

During runtime, a kernel is mapped onto the device by mapping each thread block 

to an SM. Threads within a thread block are divided into blocks of 32 threads. If 
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all 32 threads are doing the same set of operation, these 32 threads, also known as 

a WARP, are executed as a group on an SM over 4 cycles. Otherwise, threads are 

executed serially. There are a number of reasons for stalls to occur. As data is not 

cached, SM can stall waiting for data. Furthermore, floating point pipeline is long 

and register to register dependency can cause a stall in the pipeline. To keep cores 

utilized, multiple thread blocks, or concurrent thread blocks, are mapped onto an 

SM and executed on an SM at the same time. Since the GPU can switch between 

WARP instructions with zero-overhead, GPU can minimize stalls by switching over 

to another independent WARP instruction on a stall. 

Figure 2.1 CUDA architecture model 

Computation throughput can still become I/O limited if memory bandwidth is 

low. Fortunately, fast on-chip resources, such as registers, shared memory and con­

stant memory, can be used in place of off-chip device memory to keep the computation 
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throughput high. Shared memory is especially useful. It can reduce memory access 

time by keeping data on-chip and reduce redundant calculations by allowing data 

sharing among independent threads. However, shared memory on each SM has 16 

access ports. It takes one cycle if 16 consecutive threads access the same port (broad­

cast) or none of the threads access the same port (one to one). However, random 

layout with some broadcast and some one-to-one accesses will be serialized and cause 

a stall. There are several other limitations with shared memory. First, only threads 

within block can share data among themselves and threads between blocks can not 

share data through shared memory. Second, there are only (16KB) of shared memory 

on each stream multiprocessor and share memory is divided among the concurrent 

thread blocks on a SM. Using too much shared memory can reduce the number of 

concurrent thread blocks mapped onto a SM. 

Table 2.1 Available resources for each memory 

Type 

Register 

Shared Memory 

Constant Memory 

Texture Memory 

Global Memory 

Speed 

fast 

fast 

fast 

fast 

slow 

Access 

RW 

RW 

RO 

RO 

RW 

Size 

8192 per multiprocessor 

16 KB per multiprocessor 

8 KB per multiprocessor 

8 KB per multiprocessor 

> 512 MB per device 

There are several other limitations with shared memory. First, only threads within 
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block can share data among themselves and threads between blocks can not share data 

through share memory. Second, there are only (16 KB) of shared memory on each 

stream multiprocessor and share memory is divided among the thread blocks on a 

SM. Using too much shared memory can reduce the number of concurrent thread 

blocks mapped onto a SM. 

As a result, to keep the multiprocessor from idling, designing an algorithm that 

effectively partition shared memory, has an efficient memory access pattern, does 

not require synchronization between blocks and needs few global memory access is 

non-trivial task. 

2.2 Alternative Platforms 

There are other many-core architectures other than CUDA. We investigate CUDA 

as a software wireless receiver platform for several reasons. As GPU is a high vol­

ume consumer device, an efficient software wireless receiver will lead to extremely 

cost-effective accelerator, which can accelerate software defined radio platforms and 

simulations. In addition, compared to alternative platforms, Nvidia provides a mature 

development platform, which includes a robust set of tools and good documentation. 

For example, Nvidia provides documentation for the user to interface the software 

written in CUDA to Matlab. Furthermore, the software blocks described in this the­

sis could be ported to other many-core architectures as they are similar to CUDA. 

We will now describe several other many-core architectures. 
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Imagine stream processor [21, 22], in particular, shares many similarities to a 

stream multiprocessors on CUDA. Like CUDA, Imagine stream processor exploits 

data level parallelism (DLP) by providing several ALU lanes that share the same in­

struction stream. Unlike CUDA, Imagine stream processor exploits instruction level 

parallelism (ILP) by using VLIW instructions. Each ALU lane, in this case, has 

multiple parallel ALUs controlled by an VLIW instruction. Imagine stream processor 

also has a multi-level memory subsystem that tries to reduce memory I/O bandwidth 

to external device memory. There is a set of registers, Local Registers File (LSR), per 

ALU lane. There is also a SRAM block, Stream Register File (SRF), which serves as 

the intermediate buffer between external device memory and LSR. Furthermore, there 

is a communication network which allows the lanes to exchange data. In CUDA, regis­

ters function both as LSR and SRF, serve as the intermediate buffer between external 

device memory and ALUs. However, registers on CUDA are still local to each ALU. 

Therefore, there is a dedicated shared memory which allows the ALUs to shared data 

by reading and writing to shared memory. Finally, the Imagine Stream Processor has 

more memory on-die than a CUDA stream multiprocessor. However, CUDA exploits 

task level parallelism (TLP) by supporting fast thread-switching between different 

instruction streams. By interleaving computation from different tasks, CUDA can 

hide potential stalls. Finally, CUDA supports branch, which make it more flexible 

than Imagine stream processor. 
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AMD [23] also provides graphics processor units for general purpose comput­

ing. CUDA and AMD graphics processors are very similar-both are essentially many 

SIMD cores on the same die. The overall architecture is very similar with different 

terminology and slight different hardware configuration. For example, a wavefront 

is the same as WARP. However, a wavefront consists of 64 threads. A group is the 

same as a thread-block. Global data share has the same functionality as shared mem­

ory. However, shared registers can be used to shared data between wavefronts on an 

AMD graphics processor. The biggest difference between these two processors how 

ALUs are arranged. First, there are more ALU lanes per core on AMD graphics pro­

cessor. Like Imagine stream processor, each ALU lane on AMD graphics processor 

is VLIW-up to 5 ALU instructions can be issued per VLIW instruction. Although 

the instruction issue width is wider for AMD graphics processors, this adds another 

level of complexity. The compiler will try to extract ILP by vectorizing a thread's 

instructions. However, the programmer need to vectorize code explicitly to maximize 

performance [23]. Nevertheless, receiver algorithms described can be implemented 

on this platform, although code need to be optimized for this hardware's specific 

parameters to maximize performance. 

A more general many-core model is multiple instruction multiple data (MIMD). 

In this model, each core is completely independent and does not need to share the 

same set of instructions. There are several examples of upcoming MIMD proces-
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sors, for example, Tilera Tile-Gx, Intel 48-core single-core cloud computer, Larrabee, 

and Siliconhive HiveFlex Processors. The overall architecture of these processors is 

similar-many cores with local data cache connected by network. The specific ar­

chitecture for each core is different for each architecture. For example, Larrabee is 

arranged into SIMD clusters while HiveFlex is arranged into VLIW clusters. Simi­

larly, the specific arrangement of local data cache and interconnect differs between 

these processors. However, unlike Graphic processors, where each thread-block is 

independent and can be scheduled on any SIMD core by hardware, the programmer 

may need to distribute the work and balance the workload across on MIMD proces­

sors as cores can be executing different set of instructions. Nevertheless, a MIMD 

model can be used to pipeline and/or implement different communication blocks on 

the same die. Hence, these upcoming platforms that may lead to even more flexible 

software receivers in the future. 



Chapter 3 
MIMO Detection and Turbo Decoder 

In section 3.1 of this chapter, we will first describe the soft-decision MIMO detec­

tion problem. We will give a brief summary of different MIMO detection algorithms 

and describe a trellis MIMO detection algorithm which we implemented on GPU. In 

section 3.3 of this chapter, we will describe the Turbo decoding algorithm and then 

describe parallel Turbo decoding techniques. 

3.1 MIMO Detection 

For an M x N MIMO configuration, the transmitter transmits different signals 

on the M antennas and the receiver receives N different signals, one per receiver 

antenna. An M x N MIMO system can be modeled as: 

y - Hs + w (3.1) 

where y = [yo,yi, - , y M - i ] T is the received vector. H is the M x N channel 

matrix, where each element, hitj, is an independent zero mean circularly symmet­

ric complex Gaussian random variables with unit variance. Noise at the receiver is 

w = [wo, Wi, ...wisr-i]T, where io, is an independent zero mean circularly symmetric 

complex Gaussian random variables with a2 variance per dimension. The transmit 

vector is s = [so,Si, . . . , S M - I ] , where Si is drawn from a finite complex constellation 

alphabet, 17, of cardinality Q. For example, the constellation alphabet for QPSK is 
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{—l—j,—l+j,l—j,l-\-j} and Q = 4 for this particular case. 

After complex QR decomposition of the channel matrix, H, we can model the 

M x N MIMO system with an equivalent model: 

y = QRs + w (3.2) 

y = Rs + w (3.3) 

where R i s a M x J V complex upper triangular matrix. The vector y = [yQ, r/i,..., y^-i] 

is the effective complex receive vector. 

Each symbol sm is obtained using the mapping function sm = map(x), where x = 

{x0, Xi,..., X M C - I } , a Mc x 1 vector (block) of transmitted binary bits. Mc — log2 Q 

is the number of bits per constellation symbol. 

The soft decision MIMO detector calculates the a posteriori probability (APP) in 

term of log likelihood ratio (LLR) for each transmitted bit, Xk- Assuming no extrinsic 

probability, using max-log approximation, LLR can be expressed as [24]: 

L{xk\y) « =-» ( min A ( s , y ) - min A ( s , y ) j , (3.4) 
Zo" yxexkj_i xexki+1 j 

where the set Xk,+i = {x\xk = +1} and set Xk,-i = {x\xk — —1} and 

A(s,y) = | | y - R s | | 2 (3.5) 

One way we can solve this problem is through exhaustive search. For a 4 x 4 

MIMO point to point link, if the transmitter is utilizing 16 QAM,the total number 
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of possible transmit vectors is 164 = 66534.If the transmitter is utilizing 64QAM,the 

total number of possible transmit vectors is 644 = 16777216. In either case,searching 

through all possible transmit vectors is an time intensive process. To reduce com­

plexity, there are two algorithms of searching through find list of candidates, the set 

of Xk,+i and Xk,-i, for the soft decision MIMO detector, K-best MIMO detection[25] 

and depth-first sphere detection[2]. In both cases, the algorithms view the search 

space, the set of all possible transmit vectors, as a tree. K-best detection algorithm is 

a breath-first tree search algorithm, a greedy MIMO detection algorithm. It reduces 

the number of candidate we search through in the detection process by detecting in­

put symbols antenna by antenna, keeping at most k-vectors per level. There are quite 

few drawback for this algorithm. An initial implementation we used K-best detection 

algorithm, we found sorting takes up to 70% of the run time and requires many reads 

from and writes to memory. Sphere-detection is a depth-first tree search algorithm. 

In this case, we traverse the tree depth first. Each time we reach the last level of the 

tree of a transmit vector, we use the euclidean distance to prune all nodes with partial 

distance bigger than the current euclidean distance. The drawback of this algorithm 

is that it is essentially sequential, we search for candidates depth first one at a time. 

We can parallelize the workload by splitting up the tree. However, the runtime of the 

tree paritions will be not deterministic and performance of the detector will be bound 

by the parition that takes longest to complete. As such, we search for an alternative 
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search algorithm-an sort-free algorithm that is very data parallel. 

3.2 Multi-pass trellis traversal MIMO Detection 

Multi-pass trellis traversal MIMO detector is first proposed by Yang Sun for cus­

tom ASIC design [26, 27]. The algorithm is well suited for GPU architecture for 

several reasons. The algorithm is very regular, data parallel and completely sort-free. 

In addition, the multi-pass trellis traversal MIMO detector improves the reliability of 

the LLR values to improve the performance of the detector. 

Without loss of generality, we will now use a 3 x 3 QPSK system to explain our 

proposed algorithm in this section. 

MIMO Trellis 

To generate LLR value for each transmitted bit Xk based on (3.4), the soft MIMO 

detector needs to compute the minimum Euclidean distance 

A 

r 

yo 

Vi 

h 

— 

Roo 

0 

0 

-Roi 

R\\ 

0 

_ 

RQ2 

R\2 

# 2 2 

so 

«1 

S2 

(3.6) 
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over sets {Xk,+i and {Xkt-i. The calculation of A can be decomposed as: A = 

w<0> + w<1> + w<2>, where w<l> is the 1-D Euclidean distance and is calculated as 

w 
<o> 

\y2 - .R22S2I 

w 
< i > 

w 
<2> = llyo - (-R00S0 + -Roisi + -R02S2) (3.7) 

This process can be illustrated using a MIMO flow graph as shown in Figure 3.1. 

There are 3 trellis stages, one stage per antenna. In each stage, there are Q vertices, 

one per constellation point. The edge between v(t — l,i) and v(t,j) has a weight of 

wff*. the weight function depends on its current stage and all its predecessors. For 

example, wf2> depends on the vertices in stages 2, 1, and 0. 

Weight wf* 
\ J 

Weightw^0> 

CO 
c 
o 

JS 
~S <n 
o 

O 

(Antenna 2) (Antenna 1) (Antenna 0) 
Stage 0 Stage 1 Stage 2 

Number of Antenna 

Figure 3.1 MIMO detection flow graph 
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3.2.1 Soft MIMO Detection 

To compute the LLR value for each transmitted bit x^, we first generate a can­

didate list for each trellis stage. For each vertex i (0 < i < Q — l ) i n the stage t 

(0 <t < M — 1), the detector finds the shortest path, which must contain this vertex, 

from the root to the toor. The Q conditioning shortest paths found at every stage t 

make a candidate list Cu- We then use the lists to compute the LLR for each bit in 

a straight forward manner 

W*|y) = o^ (j?in A - ™in A ) • M 
la' \xecu,-oo xe£u,+oo / 

3.2.2 Candidate List Generation 

In this section, we introduce a trellis based shortest path algorithm to approxi­

mately solve the soft detection problem. There are two ways of reducing the number 

of paths in the trellis. We can either prune the incoming paths or outgoing paths at 

each vertex. 

(a) Edge reduction (b) Path extension 

Figure 3.2 Data flow at vertex v(t, i) 
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Edge Reduction 

Edge reduction reduces the number of paths by pruning incoming paths. Figure 

3.2(a) shows that each vertex i at each stage t has Q incoming subpaths h0,...,/IQ_I. 

Let the partial distance be dk, which is the cumulative weight of the subpath hk 

from the root to this vertex i. Among the Q incoming subpaths, we select the best 

subpath hm with the the smallest partial distance. 

m = argmin dm, (3.9) 
m€{0,...,Q-l} 

and discard the other Q — 1 subpaths. 

Path Extension 

Given one incoming path and multiple outgoing paths, path extension reduces the 

number of path by pruning outgoing paths. Figure 3.2(b) shows that each node i at 

each stage t has Q outgoing subpaths. The outgoing path weight from node v(t, i) to 

node v(t + l,k) is updated as 

<?k = dm + <fc + 1 > , 0<k<Q-l, (3.10) 

Among the Q outgoing subpaths we find the shortest outgoing subpath h'n where 

n•= argmin d'n. (3-H) 
n€{0,...,Q-l} 
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Shortest Path Algorithm 

The goal is finding the shortest path through the trellis for each node i. The 

search process can be expressed as edge reductions followed by path extensions. To 

generate the candidate list for Cu, we perform edge reductions until there is one path 

per trellis stage at level t. If we perform edge reductions after this level, we can not 

guarantee each path in candidate list has a vertex from trellis level t. Therefore, after 

this trellis level t, we perform path extensions until we have completely traversed the 

trellis. Figure 3.3 shows each stage of the search process for C^. We do two rounds 

of edge reduction followed by one round of path extension. There are common steps 

when generating candidate lists for each trellis level. For example, all search processes 

starts with a path reduction at stage 0. The search processes can be represent with 

a data flow diagram, shown by figure 3.4. 

3.3 Overview of Turbo Decoder 

The principle of Turbo decoding is based on the BCJR or MAP (maximum a 

posteriori) algorithms [28]. The structure of a MAP decoder is shown in Figure 3.5. 

One iteration of the decoding process consists of one pass through both decoders. 

Although both decoders perform the same set of computations, the two decoders 

have different inputs. The inputs of the first decoder are the deinterleaved extrinsic 

log-likelihood ratios (LLRs) from the second decoder and the input LLRs from the 
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Stage 0 Stage 1 Stage 2 

(a) Result after two stages of edge reduction 

Toor 

Stage 0 Stage 1 Stage 2 

(b) Result after one stage of path extension 

Figure 3.3 Search process for generating C0 

y,R, D E 

R 

F 

E 

R 

Lo 
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£2 

Figure 3.4 Data-flow diagram for generating candidate lists 
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channel. The inputs of the second decoder are the interleaved extrinsic LLRs from 

the first decoder and the input LLRs from the channel. 

IT1 

Lc(y
s) Decoder 0 

L»+Lci 

n 
La+Lcl 

Decoder 1 

Lc(yp0) 

W ) 
Figure 3.5 Overview of Turbo decoding 

To decode a codeword with N information bits, each decoder performs a forward 

traversal followed by a backward traversal through an JV-stage trellis to compute an 

extrinsic LLR for each bit. The trellis structure, or the connections between two 

stages of the trellis, is defined by the encoder. Figure 3.6 shows the trellis structure 

for the 3GPP LTE Turbo code, where each state has two incoming paths, one path 

for Ub — 0 and one path for Ub = 1. Let Sk be a state at stage k, the branch metric 

(or transition probability) is defined as: 

7fe(sfe_i, sk) = (Lc(y
s
k) + La(y

s
k))uk + Lc(y

p
k)pk (3.12) 

where uk, the information bit, and pk, the parity bit, are dependent on the path 

taken (sk+i,sk). Lc(yk) is the systematic channel LLR, La(y
s
k) is the a-priori LLR, 

and Lc(yl) is the parity bit channel LLR at stage k. 
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U b=0 

U„=l 

Figure 3.6 3GPP LTE Turbo code trellis with 8 states 

The decoder first performs a forward traversal to compute ctk, the forward state 

metrics for the trellis state in stage k. The state metrics ak are computed recursively 

as the computation depends on aifc_i. The forward state metric for a state s& at stage 

k, afe(sfc), is defined as: 

afc(sfc) = max (afc_i(sfc_i) + 7(*fc-i,Sfc)) (3-13) 

where K is the set of paths that connect a state in stage k — 1 to state Sfc in stage k. 

After the decoder performs a forward traversal, the decoder performs a backward 

traversal to compute fa, the backward state metrics for the trellis state in stage k. 

The backward state metric for state Sfc at stage k, fa{sk), is defined as: 

fa(sk)= max (fa+i(sk+i) + jisk+i,sk)) (3.14) 
sk+i€K 

Although the computation is the same as the computation for a*, the state transitions 

are different. In this case, K is the set of paths that connect a state in stage k + 1 to 

state Sfc in stage k. 
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After computing /?&, the state metrics for all states in stage k, we compute two 

LLRs per trellis state. We compute one state LLR per state Sk, A(sk\uk — 0), for the 

incoming path that is connected to state Sk which corresponds to uk = 0. In addition, 

we also compute one state LLR per state Sk, A(sk\ub = 1), for the incoming path that 

is connected to state Sk which corresponds to Uk = 1. The state LLR, A(sfc|u(, = 0), 

is defined as: 

A(sk\ub = 0) = afc_i(sfe_i) + 7(sfe_i, sk) + (3k(sk) (3.15) 

where the path from Sk-\ to Sk with u& = 0 is used in the computation. Similarly, 

the state LLR, A(sk\ub = 1), is defined as: 

A(sk\ub = 1) = Ofc_i(sfc_i) + 7(«fc-i, sk) + Pk(sk) (3.16) 

where the path from Sk-\ to Sk with ub = 1 is used in the computation. 

To compute the extrinsic LLR for Uk, we perform the following computation: 

Le(k) = max.*k€K(A(sk\ub = 0) - A(sk\ub = 1)) 

-LM) ~ Lcivt) (3-17) 

where K is the set of all possible states and max*() is defined as max* (S) = ln(^2s€S es) 



Chapter 4 
MIMO Detector on GPU 

4.1 Proposed Implementation on GPU 

A single kernel generates the candidate lists and computes LLRs for a large number 

of problems at a time. At runtime, the kernel spawns a large number of independent 

soft MIMO detector thread blocks, one thread block for each channel matrix and the 

corresponding receive vector. Each thread block generates a candidate list for each 

trellis level and calculates the LLR for each bit using the candidate lists. Effectively 

the kernel creates a large array of soft MIMO detectors that operates on an array of 

data in parallel. This reduces overhead since synchronization across different stream 

multiprocessor is not needed. 

Given a receive vector, the corresponding channel matrix and the complex con­

stellation alphabet, a soft MIMO detector block generates the candidate lists through 

a combination of edge reductions and path extension steps. Given the incoming sub-

paths and the associated partial distances, each step prunes the number of possible 

subpaths and outputs the updated subpaths and path partial distances. Both reduc­

tion and extension are extremely regular and can be efficiently implemented on the 

GPU. At each stage, the detector does either Q path reductions or Q edge extensions. 

Therefore, we can handle the computation by spawning Q threads per thread block, 

one per each vertex. We use log2(Q) threads out of Q threads to perform LLR com-
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putation. This section is less parallel than path reduction and path extension. This 

method does not require terminating a kernel, and reading and writing from slower 

global memory. 

We attempt to keep our detector operating at peak utilization by minimizing stall 

time. Penalty to due to memory access is low since this algorithm has a regular 

memory access pattern. Furthermore, by using an efficient traversal, we reduce the 

amount of memory required and allow more concurrent thread blocks to mask stalls. 

We also improve the performance the detector by reducing the number of instructions 

required to perform MIMO detection through sharing computation across threads 

within a thread block. We unroll loops when possible to reduce instruction count. 

y - K , R — • • E — • • E — • • A LLR, 

LLR! 

LLR, 

Figure 4.1 CUDA MIMO detector data flow 

We took several additional steps to reduce the overall complexity of algorithm. 

Since both a reduction step and the edge reduction directly above prune the edges 

between stage i and stage i + 1 and have the same set of incoming subpaths, both 

steps compute the same Q2 weights. Computation can be reduced by allowing these 
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two steps share computation. 

Figure 4.1 illustrates the steps for a 4 x 4 MIMO detector. The algorithm generates 

£,, £oo, £ e and £ 3 using a series of path reduction and path extension steps followed 

by APP computation. We will now describe implementation of each step of the 

detection algorithm, path extension, path reduction and LLR computation. 

4.1.1 Extension 

The inputs to the extension step are the outputs from the previous step. There 

are Q incoming subpath and Q incoming path partial distances, one subpaths and 

path partial distance per vertex. Since we have Q threads, each thread handles one 

incoming path by searching for the best path among Q outgoing paths. Particularly, 

thread k, assigned to vertex k, evaluates all Q outgoing path for path k. For the path 

extension corresponding to stage t, the computation for the path weight between 

vertex k (in stage t — 1) and vertex q (in stage t) is: 

Wk,q — 

N-l 

VN-t-1 — J_^ R(N-k-l,j)Sj 

2 

(4.1) 

where h'k is kth subpath and Sj is the j t h element of {h'k, q}. 

The calculation above is done in two steps to reduce required computation. Thread 

k first calculates 5k, the kth. intermediate partial distance vector: 

AT-2 

4 = ^2 R(N-i-k,j)Sj (4.2) 
j=M-l-k 

where Sj is the j t h element of a kth subpath h'k. 
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Thread k now evaluates Q outgoing paths by evaluating each q^ in our complex 

constellation alphabet fl. 

wk^ = \\yN-t-i - Sk - R{N-i,N-i)qk\\2 (4.3) 

Thread k picks the smallest outgoing path by evaluating the outgoing paths one 

by one. The path selected is the new kth path. And we update the partial distances 

as well. 

Algorithm 1 summarizes steps taken to find the path with the smallest partial 

distances. Line 2 calculates Sk using equation( 4.2). Lines 4-17 evaluate Q outgoing 

paths by evaluating all constellation points in our complex constellation alphabet Q. 

Line 12 first computes edge weight iujf'> and line 13 computes the partial distance, 

dk- Lines 14-17 search outgoing paths with the smallest partial distance serially. The 

path selected is the new kth path. 

For the extension step right above a reduction step, thread k also saves Sk into 

shared memory to speed up the next reduction step. 

4.1.2 Reduction 

For each iteration of the edge reduction, thread q needs to pick the best path out 

of Q paths connected to vertex q. For the iteration corresponding to stage t, the path 

weight between vertex k in stage t — 1 and vertex q in stage t also can be computed 

using equation(4.1). 

file:////yN-t-i
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Algorithm 1 The k thread searches for the best outgoing path 

1: //Calculate intermediate PD vectors 

2: Calculate 5k 

3: //Search for the path with minimum partial distance serially 

4: w = 0 

5: Fetch d'k from shared memory 

6: Fetch Cl0 from shared memory 

7: Calculate w^ using 5k and VLQ 

8: Update dk 

y : QJW — Q*k 

10: for q = 1 to Q - 1 do 

11: Fetch Qq from constant memory 

12: Calculate w^ using 5k and ilg 

13: Update dk 

14: if (rffc) < (dw) then 

15: (iu, = dk 

16: end if 

17: end for 

18: Store wth path into kth path history in shared memory 

19: Store wth path's partial distance in shared memory 

20: SYNC 
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Similar to path extension, each weight calculation can be done in two steps to 

reduce complexity. However, the extension step above each reduction step already 

computed all 8k, which reduces complexity significantly. The search process is similar 

to path extension except each thread evaluates incoming path, not each outgoing 

path. Each thread computes Q partial distances serially and finds the best incoming 

path with the minimum partial distance. At the end of the iteration, there are Q 

paths, one path per thread. The paths are written to the shared memory for the next 

iteration. 

The steps in the algorithm are summarized in Algorithm 2. The algorithm works 

as follows. Each thread calculates Q partial distances serially and finds the path with 

the minimum partial distance. At the end of the iteration, there are Q paths, one 

path per thread. The paths are written to the shared memory for the next iteration. 

4.1.3 LLR C o m p u t a t i o n 

The algorithm generates a LLR for each bit. There are log2(Q) parallel LLR 

computations for each candidate list. The thread block spawns Q threads for the 

reduction steps and extension steps. The complexity of LLR computation is smaller 

than the reduction and the extension step. Therefore, we propose a simple linear 

search-thread k computes LLR for bit k, where k < log2(Q). This method is less 

efficient than path extension or path reduction as only log2(<5) threads are doing 
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Algorithm 2 The qth thread searches for the best incoming path 

1: //Search for the path with minimum partial distance serially 

2: w = 0 

3: Fetch 5o from shared memory 

4: Fetch d'0 from shared memory 

5: Fetch Q,q from constant memory 

6: Calculate w^ using 50 and Qq 

7: Update cfo 

8: dw = Ufc 

9: for k = 1 to Q - 1 do 

10: Fetch d'k from shared memory 

11: Fetch 5k from shared memory 

12: Calculate W£*> using 5k and Q.q 

13: Update dk 

14: if (dk) < (dw) then 

15: G^ = rffc 

16: end if 

17: end for 

18: SYNC 

19: Store toth path into qth path history in shared memory 

20: Store iwth path's partial distance in shared memory 

21: SYNC 
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useful work. However, each thread does computation independently and does not 

require any synchronization. 

The candidate lists are the Q path partial distances. To compute LLR for kih bit, 

the kth thread looks at kth bit, search for two smallest partial distances, one minimal 

partial distances where kth bit is 0 and one minimal partial distances where kth bit 

is 1. The difference between the two partial distances is the LLR. The steps in LLR 

computation are summarized in algorithm 3. 

4.1.4 Additional Optimizations 

Since GPU is connected to the host through the PCI-express bus, transport time 

results in measurable penalty. GPU supports asynchronous memory copy which al­

lows global memory access to overlap with kernel execution. This is accomplished by 

breaking data into chucks and creating a stream per data chuck. While the kernel is 

preforming computation for one stream, memory operations, both reading from host 

memory to global memory as well as writing from global memory to host memory 

can happen in parallel. This minimizes the performance penalty due to transport 

overhead. 

4.2 Performance Results 

In the rest of the paper we will refer to our configurable multi-pass trellis traversal 

real-time MIMO detector on GPU simply the "MTT". To evaluate the performance 



Algorithm 3 The kth thread compute the kth LLR 

1: m0 = 999 

2: mi = 999 

3: if k < log2(<2) then 

4: for k = 0 to Q - 1 do 

5: if kth bit is 0 and m0 > <4 then 

6: m0 = dk 

7: else if kth bit is 1 and m\ > dk then 

8: mi = dk 

9: end if 

10: end for 

11: LLRk = ( m o ' m i ) 

12: end if 

13: SYNC 
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of "MTT detector", we tested our detector on a Linux platform with 8GB DDR2 

memory running 800 MHz and an Intel Core 2 Quad Q6600 running at 2.4Ghz. The 

GPU used in our experiment is a Nvidia Telsa C1060 graphic card, which has 240 

stream processors running at 1.3GHz and 4GB of GDDR3 memory running at 1600 

MHz. The host computer first generates the random input symbols and a random 

channel. After passing the input symbols through the random channel, the host 

performs QR-decomposition on the channel matrix H to generate R and y, which 

are fed into the detection kernel running on GPU. 

4.2.1 M T T Detector Performance 

We first evaluate the performance of this detector by comparing the bit error 

rate (BER) performance against other detectors. We compare MTT against the 

optimal solution which is exhaustive search. In addition, we compare MTT against 

the performance of K-Best, a well-known breadth-first algorithm. Finally, to measure 

how multiple passes through the trellis improves performance, we compared MTT 

against our first GPU MIMO detector, one-pass trellis detector (OT), which does 

only one-pass through the trellis. To mitigate inaccuracies in LLR computation due 

to the small list, we apply the LLR clipping technique to the K-Best detector [29] and 

OT. It should be noted that in the K-Best and one-pass trellis detector algorithm the 

Euclidean distance for hypothesis-0 or hypothesis-1 can be missing due to the small 

list, so the LLR clipping is necessary in the K-Best algorithm. The LLR clipping is 
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not needed in MTT because each node in the trellis has an associated full Euclidean 

path. Thus, we can always find a partial distance for hypothesis-0 and hypothesis-l 

required in the bit LLR computation. 

We run BER simulations using 2 x 2 and 4 x 4 4-QAM/16-QAM/64-QAM MIMO 

systems. The soft output of the detector is fed to a length 2304, rate 1/2 WiMAX 

layered LDPC decoder [30], which performs up to 15 LDPC iterations. Figures 4.2, 

4.3, and 4.4 compare the BER performance of the MMT with the K-Best detectors. 

Figures 4.5, 4.6, and 4.7 compare the BER performance of the proposed 4 x 4 detec­

tor with the K-Best detectors. As can be seen, MTT performs better than K-Best 

detector with K = M and OT for 2 x 2 MIMO receiver. This is expected as MTT 

is the optimal detector for 2 x 2 as MTT enumerates all possible paths through each 

trellis vertex. For 4 x 4 MIMO receiver, MTT performs close to K-Best detector 

with K — M. Compared to BER performance of the simple one-pass trellis detector 

where the trellis is only visited once from left to right, MTT performs better since it 

evaluates more path per trellis vertice and hence able to compute more accurate LLR 

for the decoder. 

4.2.2 M T T Detector Throughput 

We now look at the throughput of this detector on the GPU. To keep utilization 

high, a thread block detects multiple symbols in parallel - each thread block detects 

8 symbols for 4-QAM, 2 symbols for 16-QAM, and 1 symbol for 64-QAM. In our 
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° Trellis, Onepass 
- KBest, K=4 
• Trellis, Multipass (Optimal) 

4.5 

W 6 ' 

Figure 4.2 Simulation results for a LDPC-coded 2 x 2 4-QAM MIMO system. 

Figure 4.3 Simulation results for a LDPC-coded 2 x 2 16-QAM MIMO system. 
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Figure 4.4 Simulation results for a LDPC-coded 2 x 2 64-QAM MIMO system. 
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Figure 4.5 Simulation results for a LDPC-coded 4 x 4 4-QAM MIMO system. 
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Figure 4.6 Simulation results for a LDPC-coded 4 x 4 16-QAM MIMO system. 

•""#*™ Trellis, Onepass 
- » - KBest, K=48 
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* ® - Exhaustive-search 

Figure 4.7 Simulation results for a LDPC-coded 4 x 4 64-QAM MIMO system. 
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benchmark, both 2 x 2 and 4 x 4 MIMO configurations are tested. The detector 

kernel detects 8 streams of 16384 symbols for 2 x 2 and 8 streams of 8192 symbols 

for 4 x 4 . Execution time of the detector is averaged over 1000 runs. We compared 

both asynchronous and synchronous implementations of this MIMO detector. 

Table 4.1 shows the execution time and the throughput performance for 2 x 2 

MIMO detector. Table 4.2 shows the execution time and the throughput perfor­

mance for 4 x 4 MIMO detector. The table includes performance of our synchronous 

implementation, our asynchronous implementation, as well as performance of the 

kernel of the MIMO detector. 

Table 4.1 Average Runtime for 2 x 2 

Q 

4 

16 

64 

Runtime(ms)/Throughput(Mbps) 

synchronous 

5.05/99.10 

9.49/105.27 

46.85/37.35 

asynchronous 

0.75/663.65 

3.70/269.89 

39.97/43.91 

kernel 

0.61/822.59 

3.57/280.08 

39.80/43.86 

For both 2 x 2 and 4 x 4 MIMO configurations, asynchronous memory transfer is 

an effective way of hiding data transfer latency. By breaking incoming data into eights 

stream and overlapping transfer and computation, our MIMO detector performs very 

close to kernel running time. 



39 

Q 

4 

16 

64 

Table 4.2 Average runtime for 4 x 4 

Runtime (ms) /Throughput (Mbps) 

synchronous 

12.52/39.90 

19.85/50.35 

138.17/10.85 

asynchronous 

1.76/284.75 

8.31/120.25 

124.62/12.04 

kernel 

1.62/308.40 

8.19/122.03 

124.52/12.05 

MIMO-OFDM is used to achieve high data rate in a real time system such as 3GPP 

LTE and WiMAX. Figure 4.8 and figure 4.9 compares the throughput of the proposed 

detector with asynchronous memory transfer to the performance requirement of a 5 

MHz LTE MIMO configuration. 

Figure 4.8 Performance compared to 5 MHz LTE 2 x 2 MIMO 

Our detector can handle 4-QAM, 16-QAM, 64-QAM for 2 x 2 and 4 x 4 5 MHz LTE 

MIMO system. Since our detector can achieve more than four times the performance 
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Figure 4.9 Performance compared to 5 MHz LTE 4 x 4 MIMO 

requirement of 5 MHz LTE MIMO configuration for 4-QAM, 16-QAM for 2 x 2 and 

for 4-QAM 4 x 4 LTE MIMO system, our detector can also handle larger 20 MHz 

LTE MIMO configuration for these cases. Category 1 to category 4 devices are 2 x 2 

devices, while category 5 devices are 4 x 4 devices [31]. To support 4 x 4, we need 

7 times number of cores to support the workload. However, the number of cores in 

GPU is growing rapidly [31]. Assuming the number of cores continue to double after 

Fermi, we expect to meet the performance requirement by using two next generation 

graphic cards. 

4.2.3 Detector Instruction Throughput Ratio 

The current implementation attempts to maximize efficiency by ensuring each 

thread block is a multiple of 32 threads. By employing a regular algorithm with 

allows for regular memory access, stall time can be reduced. CUDA Visual Profiler 

provides instruction throughput ratio in the summary table. This metric measures 

1LTE 

• GPU 
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efficiency of the mapping as it is the ratio of achieved instruction rate to peak single 

issue instruction rate. Accordingly, the achieved instruction rate is I/T, where / is 

the number of executed warp instructions and T is the actual time it takes to run the 

algorithm. The peak single instruction rate is FC/CPI, where Fc is clock frequency 

and CPI is the average number of cycles per instruction, Therefore, the instruction 

throughput ratio can be calculated as: 

R = 
I/T I x CPI x F-1 

FJCPI 
(4.4) 

In CUDA, the average CPI is 4 cycles per instruction and each SM is clocked at 

1.3GHz. The estimated runtime is shown in Table 4.3. 

Table 4.3 Instruction Throughput Ratio for 2 x 2 , 16800 subcarriers 

Modulation 

4-QAM 

16-QAM 

64-QAM 

I 

13894 

137712 

1601220 

T 

0.08 

0.45 

4.98 

R 

0.549 

0.940 

0.996 

The ratio is smaller than 1 since instruction throughput ratio of 1 corresponds 

to the maximum instruction throughput. Instruction throughput ratio is lowest for 

4-QAM since the detector does smaller number of computations per global memory 

fetch. Conversely, instruction throughput ratio is close to 1 for 16-QAM and 64-QAM 
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as stall due to long device memory access for the computation intensive cases as the 

detector does more computations for each global memory fetch. 

4.2.4 Detector Instruction Mix 

Instruction throughput ratio measures how well instructions for our MIMO de­

tector executes on the hardware. However, it does not measure how well these in­

structions solve our problem. We use decuda, a disassembler, to study the quality of 

detector code generated by the CUDA compiler. The main steps of the algorithm are 

edge reductions, path extensions and APP computations. We measure quality of the 

instructions that make up our detector by looking at the loop body within these three 

functions. Using the disassembler, we see that path extensions, path reductions, and 

APP computations are completely unrolled. Particularly, path extension and path 

reduction are essentially the same. Each loop iteration consists of two add, two abs, 

two add, which is the minimum number of instructions needed to compute the par­

tial distance of each incoming path. The if statement within these loops consists of 

three instructions, one compare instruction that sets the predication register, another 

instruction stores the minimum partial distance for the next iteration. For both path 

extension and reduction, there are a total of 8 instruction per loop iteration. For 

4 x 4 , there is an additional store to save the index of the best path. For the APP 

computation, each loop iteration consists of one compare, one shared memory load 

and two stores. 
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For 2 x 2 configuration, there are one reduction step, one extension step and two 

APP computation steps. After counting the number of instructions outside of the 

loop, the number of instruction (N) required for our MIMO detector is modeled as 

the following: 

N=113 + 16Q + 8Q (4.5) 

For 4 x 4 configuration, there are three path reductions, six path extensions and 

four APP computations. After counting the number of instructions outside of the 

loop, the number of instruction(A^) required for our MIMO detector is modeled as 

the following: 

N = 600 + 81Q + 16Q (4.6) 

Table 4.4 compares our model against the number of instructions reported by 

Nvidia Profiler for one thread block. Note that compiled code are strip-mined into 

32 wide WARP instructions during execution. Therefore we divide the number of 

instruction reported by the profiler by 2 for 64QAM. Furthermore, the result reported 

by profiler is approximate as it varies by a few instructions from run to run. 

When Q is large, most instructions are loop iterations. For example, for 2 x 2 

MIMO configuration, 74 percent of the instructions are in loops for 16-QAM. Similarly 

93 percent of the time are loop iterations for 64-QAM. Since each iteration of the loop 

consists of reasonable number of instructions, performance of this MIMO detector 
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Table 4.4 Number of Instructions Per Threadblock 

4 

16 

64 

2 x 2 

Model 

209 

497 

1649 

Profiler 

209 

496 

1780 

4 x 4 

Model 

988 

2152 

6808 

Profiler 

1014 

2137 

9749 

for 16-QAM and 64-QAM will not improve significantly more without changing the 

underlying algorithm. 

4.2.5 Compared to A S I C / F P G A / A S I P 

Although a conventional MIMO ASIC detector could achieve higher throughput 

with fewer silicon resources, it lacks the necessary flexibility to support different mod­

ulation orders and different number of antennas. Moreover, the fixed-point arithmetic 

employed by the ASIC has to be designed very carefully to avoid large performance 

degradation. For example, the internal bit width could be large due to the correlation 

of the channel matrices and the "colored noise". The GPU, on the other hand, will 

never encounter performance loss due to its floating point computation capability. 

Table 4.5 compares our GPU design with state-of-the-art ASIC/FPGA/ASIP de­

signs in terms of throughput. Compared to our previous work [32], this work is a 

better comparison since it is also a soft detector. In [33], a depth-first search detector 
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with 256 searches per level is implemented. In [3], a K-best detector with K = 5 and 

real decomposition is implemented. In [34], a relaxed K-best detector with K = 48 

is implemented. In [6], a K-best with K = 7 detector is implemented. We also list 

our early ASIC design [26] based on the same trellis detection algorithm described 

above. As can be seen, the proposed detection algorithm is not only suitable for 

parallel ASIC implementation but also suitable for GPU-based parallel software im­

plementation. Compared to ASIC/FPGA/ASIP solutions from [33, 3, 34, 6] for 4 x 4 

MIMO systems, our GPU design can achieve comparable or even higher throughput. 

In summary, the GPU design has more flexibility to support different MIMO sys­

tem configurations and has the capability to support floating-point signal processing 

which can eliminate the need for fixed-point design analysis. 

Table 4.5 Throughput comparison with ASIC/FPGA/ASIP solutions for 4 x 4 system. 

GPU 

FPGA [34] 

ASIP [6] 

ASIC [33] 

ASIC [3] 

4x4 QPSK 

284.7 Mbps 

N/A 

N/A 

19.2 Mbps 

N/A 

4x4 16-QAM 

120.0Mbps 

N/A 

5.3 Mbps 

38.4 Mbps 

53.3 Mbps 

4x4 64-QAM 

12.0Mbps 

8.57 Mbps 

N/A 

N/A 

N/A 

ASIC [26] 300 Mbps 600 Mbps N/A 



Chapter 5 
Turbo Decoder on GPU 

5.1 Proposed Implementation on GPU 

A straight-forward implementation of the decoding algorithm requires the comple­

tion of N stages of ctk computation before the start of /?& computation. Throughput 

of such a decoder would be low on GPU. First, the parallelism of this decoder would 

be low; since we would spawn only one thread block with 8 threads to traverse the 

trellis in parallel. Second, memory required to save N stages of a*, is significantly 

larger than the shared memory size. Finally, a traversal from stage 0 to stage N — 1 

takes many cycles to complete and leads to very long decoding delay. 

Figure 5.1 provides an overview of our implementation. At the beginning of the 

decoding process, the inputs of the decoder, LLRs from the channel, are copied from 

the host memory to device memory. Instead of spawning only one thread-block per 

codeword to perform decoding, a codeword is split into P sub-blocks and uses P 

independent thread blocks in parallel. We still assign 8 threads per each thread 

block as there are only 8 trellis states. However, both the amount of shared memory 

required and the decoding latency are reduced as a thread-block only needs to traverse 

through y stages. After each half decoding iteration, thread blocks are synchronized 

by writing extrinsic LLRs to device memory and terminating the kernel. In the device 

memory, we allocate memory for both extrinsic LLRs from the first half iteration and 
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extrinsic LLRs from the second half iteration. During the first half iteration, the P 

thread blocks read from extrinsic LLRs from the second half iteration. During the 

second half of the iteration, the direction is reversed. The a and j3 values between 

neighboring thread-blocks are exchanged to improve performance. 
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Figure 5.1 Overview of our MAP decoder implementation 

Only one MAP kernel is needed as each half iteration of the MAP decoding algo­

rithm performs the same sequence of computations. However, since the input changes 

and the output changes between each half iteration, the kernel needs to be reconfig-

urable. Specifically, the first half iteration reads a-priori LLRs and writes extrinsic 

LLRs without any interleaving or deinterleaving. The second half iteration reads a-

priori LLRs interleaved and writes extrinsic LLRs deinterleaved. The kernel handles 

reconfiguration easily with a couple of simple conditional reads and writes at the be­

ginning and the end of the kernel. Therefore, this kernel executes twice per iteration. 

The implementation details of the reconfigurable MAP kernel are described in the 
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following subsections. 

5.1.1 Shared Memory Allocation 

To increase locality of the data, our implementation attempts to prefetch data 

from device memory into shared memory and keep intermediate results on die. Since 

the backward traversal depends on the results from the forward traversal, we save ^ 

stages of afe values in shared memory from the forward traversal. Since there are 8 

threads, one per trellis state, each thread block requires ^r floats for a. Similarly, we 

need to save /3k to compute /3fe_i, which requires 8 floats. In order to increase thread 

utilization during extrinsic LLR computation, we save up to 8 stages of Ak(sk\ub = 0) 

and Afc(sfc|«t = 1), which requires 128 floats. In addition, at the start of the kernel, 

we prefetch ^ LLRs from the channel and ^ a-priori LLRs into shared memory for 

more efficient access. A total of - ^ + 196 floats is allocated per thread-block. Since 

we only have 16KB of shared memory which is divided among concurrent executing 

thread blocks, small P increases the amount of shared memory required per thread 

block which reduces the number of concurrent executing thread blocks significantly. 

5.1.2 Forward Traversal 

During the forward traversal, each thread block first traverses through the trellis 

to compute a. We assign one thread to each trellis level; each thread evaluates two 

incoming paths and updates ak(sj) for the current trellis stage using ctk-i, the for-



49 

ward metrics from the previous trellis stage k — 1. The decoder use Equation (3.13) 

to compute «fc. The computation, however, depends on the path taken (sk-i,Sk). 

The two incoming paths are known a-priori since the connections are defined by the 

trellis structure as shown in Figure 3.6. Table 5.1 summarizes operands needed for 

a computation. The indices of the a^ are stored in constant memory. Each thread 

Table 5.1 Operands for a^ computation 

Thread id {%) 

0 

1 

2 

3 

4 

5 

6 

7 

ub = 0 

Sk-l 

0 

3 

4 

5 

1 

2 

5 

6 

Pk 

0 

1 

1 

0 

0 

1 

1 

0 

ub = 1 

Sk-l 

1 

2 

5 

6 

0 

3 

4 

7 

Pk 

1 

0 

0 

1 

0 

1 

1 

0 

loads the indices and the values Pk\ut, — 0 and Pk\ut, = 1 at the start of the kernel. 

The pseudo-code for one iteration of <%k computation is shown in Algorithm 4: 

The memory access pattern is very regular for the forward traversal. Threads access 
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Algorithm 4 thread i computes ctk(i) 

1: a0 *- afc_i(sfc_i|u6 = 0) + Lc(y
s
k) * {pk\ub = 0) 

2: oi <- afc_i(sfc_i|u6 = 1) + (ZfC(j/g) + L0(fc)) 

3: +Lc(p
s
k)(pk\ub = 1) 

4: afc(i) = max*(a0,ai) 

5: SYNC 

values of ak-i in different memory banks. Since all threads access the same a-priori 

LLR and parity LLR in each iteration, memory accesses are broadcast reads. There­

fore, there are no shared memory conflicts in either case, that is memory reads and 

writes are handled efficiently by shared memory. 

5.1.3 Backward Traversal and LLR Computation 

After the forward traversal, each thread block traverses through the trellis back­

ward to compute /?. We assign one thread to each trellis level to compute (3, followed 

by computing A0 and Ai shown in Algorithm 5. The indices of (3k+i and value of pk 

are summarized in Table 5.2. Similar to the forward traversal, there are no shared 

memory bank conflicts since each thread accesses an element of a or /3 in a different 

bank. 

After computing A0 and Ai for stage k, we can compute the extrinsic LLR for 

stage k. However, there are 8 threads available to compute the single LLR, which 

introduces parallelism overhead. Instead of computing one extrinsic LLR for stage 
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Table 5.2 Operands for (3k computation 

Thread id (i) 

0 

1 

2 

3 

4 

5 

6 

7 

ub = 0 

Sfc+l 

0 

4 

5 

1 

2 

6 

7 

3 

Pk 

0 

1 

1 

0 

0 

1 

1 

0 

ub = l 

Sfc+l 

4 

0 

1 

5 

6 

2 

3 

7 

Pfc 

0 

0 

1 

1 

1 

1 

0 

0 

Algorithm 5 thread i computes /?&(«) and Ao(i) and Ai(i) 

1: 60 <- afc+i(sfe+1|u6 = 0) + £c(y£) * (pfcK = 0) 

2: 6i <- afc+i(5fc+1|ufc = 1) + (Lc(i/fc) + La{k)) 

3: +Lc(p|)(pfc|u6 = 1) 

4: /3fc(«) = max*(60,6i) 

5: SYNC 

6: A0(i) = afc(i) + Lp(i)pfe + /?fc+i(0 

7: Ai(t) - ak{i) + (Lc(fc) + La(k)) + Lp(sfc)pfc + /3k{i) 
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k as soon as the decoder computes pk, we allow the threads to traverse through the 

trellis and save 8 stages of Ao and Ai before performing extrinsic LLR computations. 

By saving eight stages of Ao and Ai, we allows all 8 threads to compute LLRs in 

parallel efficiently. Each thread handles one stage of A0 and Ax to compute an LLR. 

Although this increases thread utilization, threads need to avoid accessing the same 

bank when computing extrinsic LLR. For example, 8 elements of A0 for each stage is 

stored in 8 consecutive addresses. Since there are 16 memory banks, elements of even 

stages Ao or Ai with the same index would share the same memory bank. Likewise, 

this is true for even stages of A0. Hence, sequential accesses to Ao or Aj to compute 

extrinsic LLR will result in four way memory bank conflicts. To alleviate this problem, 

we permute the access pattern based on thread ID as shown in Algorithm 6. 

5.1.4 Inter leaver 

The inter leaver is used in the second half iteration of the MAP decoding algorithm. 

In our implementation, a quadratic permutation polynomial (QPP) interleaver [35], 

which is proposed in the 3GPP LTE standard was used. Although the QPP inter­

leaver is contention free since it can guarantee bank free memory access, where each 

subblock accesses a different memory bank. However, the memory access pattern is 

still random. Since the inputs are shared in device memory, memory accesses are 

not necessarily coalesced. We reduce latency by pre-fetching data into the shared 
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Algorithm 6 thread i computes Le(i) 

1: A0 = Ao(») 

2: Ai = Ai(«) 

3: for j' = 1 to 7 do 

4: index = (i + j)&7 

5: A0 = max* (Ao,A0 (index)) 

6: Ai — max* (Ai, Ai (index)) 

7: Le = Ai — Ao 

8: Compute write address 

9: Write Le to device memory 

10: end for 
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memory. The QPP interleaver is defined as: 

II(x) = fa + f2x
2 (mod N). (5.1) 

Direct computation of II(a;) using Equation (5.1) can cause overflow. For example, 

61432 can not be represented as a 32-bit integer. The following equation is used to 

compute II(x) instead: 

U(x) = (A + f2x (mod N)) • x (mod N) (5.2) 

Another alternative is to compute H(x) recursively [13], which requires II(x) to be 

computed before we can compute n (x + 1). This is not efficient for our design as 

we need to compute several interleaved addresses in parallel. For example, during 

the second half of the iteration to store extrinsic LLR, 8 threads need to compute 8 

interleaved address in parallel. Equation (5.2) allows efficient address computation 

in parallel. 

Although our decoder is configured for the 3GPP LTE standard, one can replace 

the current interleaver function with another function to support other standards. 

Furthermore, we can define multiple interleavers and switch between them on-the-fly 

since the interleaver is defined in software in our GPU implementation. 
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5.1.5 max* Function 

Both natural logarithm and natural exponential are supported on CUDA. We 

support full-log-MAP as well as max-log-MAP [36]. We compute full-log-MAP by: 

m*ax(a, b) = max(a, b) + ln{\ + e_|fc~a|) (5.3) 

and max-log-MAP is defined as: 

max(a, b) = max(a,b). (5.4) 

Throughput of full-log-MAP will be slower than the throughput of max-log-MAP. 

Not only is the number of instructions required for full-log-MAP greater than the 

number of instructions required for max-log-MAP, but also the natural logarithm 

and natural exponential instructions takes longer to execute on GPU compared to 

common floating operations, e.g. multiply and add. An alternative is using a lookup 

table in constant memory. However, this is even less efficient as multiple threads 

access different entries in the lookup table simultaneously, only the first entry will be 

a cached read. 

5.2 Performance Results 

To evaluate the performance of our Turbo decoder, we tested our Turbo decoder 

on a Linux platform with 8GB DDR2 memory running at 800 MHz and an Intel 

Core 2 Quad Q6600 running at 2.4Ghz. The GPU used in our experiment is a Nvidia 
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TESLA C1060 graphic card, which has 240 stream processors running at 1.3GHz with 

4GB of GDDR3 memory running at 1600 MHz. 

5.2.1 Decoder Performance 

Since our decoder can change P, which is the number of sub-blocks to be decoded 

in parallel, we first look at how the number of parallel sub-blocks affects the overall 

decoder performance. In our setup, the host computer first generates the random 

bits and encodes the random bits using a 3GPP LTE Turbo encoder. After passing 

the input symbols through the channel with AWGN noise, the host generates LLR 

values which are fed into the decoding kernel running on GPU. For this experiment, 

we tested our decoder with P = 32,64,96,128 for a 3GPP LTE Turbo code with 

N = 6144. In addition, we tested both full-log-MAP as well as max-log-MAP with 

the decoder performing 6 decoding iterations. 

Figure 5.2 shows the bit error rate (BER) performance of the our decoder using 

full-log-MAP, while Figure 5.3 shows the BER performance of our decoder using 

max-log-MAP. In both cases, performance of the decoder decreases as we increase 

P. The performance of the decoder is significantly better when full-log-MAP is used. 

Furthermore, we see that even with parallelism of 96, where each sub-block is only 

64 stages long, provides performance that is within O.ldB of the performance of the 

optimal case (P — 1). 
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5.2.2 Decoder Throughput 

In this case, we measure the time it takes the decoder to decode a batch of 

100 codewords. Since our decoder can support various code sizes, we can decode 

TV = 64,1024,2048,6144 with various numbers of decoding iterations and parallelism 

P. However, we noticed that performance of the decoder is only dependent on W — 

p. This is expected as decoding time is linearly dependent with the number of 

trellis stages that the decoder needs to traverse. Therefore, we report the decoder 

throughput as a function of W which can be used to find the throughput of different 

decoder configurations. For example, if N = 6144, P = 64, and the decoder performs 

1 iteration, the throughput of the decoder is the throughput when W = 96. The 

throughput of the decoder is summarized in Table 5.3. 

Throughput of the decoder is inversely proportional to the number iterations 

performed. The throughput of the decoder after m iterations can be approximated 

as T0/m, where T0 is the throughput of the decoder after 1 iteration. 

Although throughput of full-log-MAP is slower than max-log-MAP as expected, 

the difference is small while full-log-MAP improves performance of the decoder sig­

nificantly. Therefore, full-log-MAP is a better choice for this architecture. 
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Table 5.3 Throughput vs W 

# I t e r 

1 

2 

3 

4 

5 

6 

Max-log-MAP throughput/ Full-log-MAP throughput (Mbps) 

W - 3 2 

49.02/36.59 

24.14/18.09 

16.01/12.00 

11.98/9.01 

9.57/7.19 

7.97/5.99 

W=64 

34.75/23.87 

17.09/12.72 

11.34/8.45 

8.48/6.51 

6.77/5.2 

5.64/4.33 

W=96 

26.32/19.50 

12.98/9.62 

8.57/6.39 

6.41/4.78 

5.12/3.82 

4.26/3.18 

W=128 

17.95/12.19 

8.82/5.59 

5.85/3.97 

4.37/2.97 

3.49/2.37 

2.91/1.97 

5.2.3 Arch i tec tu re Compar i son 

Table 5.4 compares our proposed decoder with other programmable Turbo decoder 

solutions. As can be seen, our decoder with W = 64 compares favorably in terms of 

throughput and performance. We can support both the full-log-MAP (FLM) algo­

rithm and the simplified max-log-MAP(MLM) algorithm while most other solutions 

only support the sub-optimal max-log-MAP algorithm. 
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Architecture 

Intel Pentium 3 

Motorola 56603 

STM VLIW DSP 

TigerSHARC DSP 

TMS320C6201 DSP 

32-wide SIMD 

Nvidia C1060 

vs other programmable Turbo decoders 

MAP Algorithm 

MLM 

MLM 

FLM 

MLM 

MLM 

MLM 

MLM/FLM 

Throughput 

366 Kbps 

48.6 Kbps 

200 Kbps 

2.399 Mbps 

500 Kbps 

2.08 Mbps 

6.77/5.2Mbps 

Iter. 

1 

5 

5 

4 

4 

5 

5 



Chapter 6 
Conclusion and Future Work 

Both MIMO detector and Turbo decoders are used in current and upcoming stan­

dards to improve performance of the wireless systems. The inherently large decoding 

latency and a complex iterative decoding algorithm have made it very difficult to 

achieve high throughput in general purpose processors or digital signal processors. 

As a result, these communication blocks are implemented in ASIC or FPGA. In this 

thesis, we aim to show that GPUs, homogeneous multi-core processors, can handle 

the workload and achieve high throughput. Since not all algorithms map well on 

this architecture, we showed how to implement these processing blocks efficiently on 

GPU. Particularly, we presented a reconfigurable soft MIMO detector and a 3GPP 

LTE compliant Turbo decoder on GPU. In the case of MIMO detector, we showed the 

performance of multi-pass trellis traversal performs similar to K-best MIMO detector 

with clipping and out-performs one-pass trellis traversal with LLR clipping. By using 

the Nvidia profiler to measure how well the compiled code runs on GPU and the 

disassembler to study the quality of detector code generated by the CUDA compiler, 

we showed that this algorithm is well-suited to the GPU. In addition, we showed 

our detector's throughput compared well with the conventional fixed-point VLSI and 

FPGA implementations. In the case of Turbo decoder, we implemented a parallel 
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window algorithm. By dividing the codeword into many sub-blocks to be decoded in 

parallel, workload was partitioned across cores on GPU. We also presented how both 

performance and throughput was affected by sub-block size and faster throughput 

than other programmable devices even though the full-log-MAP algorithm is used. 

Since both MIMO detection and the decoder is done in software, we can reconfigure 

the detector and decoder to support different MIMO configuration and different code 

standards. 

The architecture of GPU is driven by the demand for graphics toward photo­

realism, and graphics processors are becoming more powerful with each revision. The 

next generation Nvidia graphics processor, Fermi [41], will increase performance while 

reducing programming complexity by offering the following changes. First the amount 

of shared memory is increased and a LI cache and L2 cache are added. Each SIMD 

core now has 64KB of memory which can be partitioned between LI cache and shared 

memory by the programmer. All SIMD cores are now connected to a unified L2 cache. 

The cache hierarchy will improve performance in several ways. For example, the 

increased amount of shared memory will improve the performance of Turbo decoder 

as we can prefetch more data on-die and decrease parallelism required to achieve 

good throughput. The unified L2 cache will reduce performance loss of the Turbo 

decoder by allowing the thread blocks to share data across cache instead of external 

device memory. Furthermore, although the architecture remains SIMD, Fermi allows 



63 

multiple kernels to execute concurrently. For example, MIMO detection kernel and 

Turbo decoding kernel execute concurrently with the decoding block. The advance 

in the GPU architecture will allow us to improve the current decoder by evaluating 

other partitioning and memory strategies to improve performance and throughput. 

Furthermore, this will allow us to implement a completely iterative MIMO receiver 

by combining this decoder with MIMO detector on GPU. 
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