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HETEROSKEDASTICITY AND SERIAL CORRELATION
IN TESTS FOR RATIONAL EXPECTATIONS AND/OR SIMPLE MARKET
EFFICIENCY: A WHITE-TYPE APPROACH

by
Antonio V. Ligeralde

ABSTRACT

The simple market efficiency hypothesis implies that prediction errors, such as
forward less spot exchange rates, will be orthogonal to elements of the information
set. One can therefore test for market efficiency via ordinary least squares by
regressing the prediction errors on pieces of information available at the time the
predictions are made and checking if the intercept term and slope coefficients are
jointly equal to zero.

Two econometric complications have to be dealt with when testing for market
efficiency in the above manner. The first complication arises from the fact that
multi-period-ahead predictions lead to an inter-temporal band structure for the
covariance matrix. This complication can be handled by employing Hansen's
Generalized Method of Moments (GMM) estimate which takes explicit account of the
band structure of the covariance matrix.

The second complication arises from the fact that the disturbances in the
regression may also be heteroskedastic. Insofar as heteroskedasticity might adversely
affect inference, we propose a White-type test that indicates whether or not a
covariance matrix correction for heteroskedasticity is necessary. The test essentially

checks if the difference between the homoskedastic and heteroskedastic consistent



ii
forms of Hansen's GMM estimate tends towards zero. Monte Carlo experiments
examining the performance of the proposed :est show that at least in large samples,
the White-type test works well under a variety of heteroskedastic specifications.

By actually applying the above procedures to test the simple foreign exchange
market efficiency hypothesis, we find that for particular regression specifications and
data sets, it does not make a practical difference whether we base inferences on the
homoskedastic or the heteroskedastic consistent forms of Hansen's GMM covariance
estimate. For other data sets and regression specifications, however, we are able to
reject market efficiency only if we use the appropriate form of Hansen's GMM

estimate as determined by the White—type test.



ACKNOWLEDGEMENTS

Until I went to graduate school, I never fully appreciated the saying "Ignorance
is bliss." After five years of intensive study, I now have more questions than I ever
imagined asking. But thanks to the careful tutelage of my mentors, I leave Rice
equipped with the tools necessary to satisfy my newfound curiosity.

I especially want to thank Dr. Bryan Brown, whose patience, systematic
teaching style and genuine desire to impart knowledge made me realize that
econometrics can indeed be learned, if not loved. I also like to thank Dr. Peter
Hartley, who has, consciously and unconsciously, reminded me that econometrics is
spelled with "econ" for a reason; and Dr. Kathy Ensor, whose comments have
sharpened my understanding of statistics. Special thanks also go to Drs. George
Zodrow and Peter Mieszkowski, two of several professors whom I have come to
admire and befriend during my stay at Rice.

My gratitude also goes to those who made graduate school not only bearable,
but enjoyable — my friends, whose names I shall not mention, but will never forget.

Finally, I would like to thank my parents and family members whose love,
guidance and support saw me through the most trying moments of graduate life. But
most of all, I would like to thank Rica, from whom I learned lessons that no graduate
program can ever teach. To her I dedicate this work, and the rest of my life.



TABLE OF CONTENTS

Introduction

Econometric Tests of Rational Expectations and/or Market Efficiency
Heteroskedasticity in the Presence of Serial Correlation

Monte Carlo Experiments

Re-testing Rational Expectations/Simple Market Efficiency
Summary and Conclusion

Notes

Bibliography

Appendix 1 Central Limit Theorem

Appendix 2 Sample Program

20

32

33

58

61

65

68



INTRODUCTION

In 1961, Muth advanced the rationai expectations hypothesis which asserts that
economic agents generally do not waste information. More specifically, agents are
presumed to form their expectations as 1f they know the process which will ultimately
generate the actual outcomes in question [Friedman 1979; Muth 1961]. Since then,
numerous macroeconomic models have been formulated with rational expectations as
a key assumption. A classic example is the use of rational expectations, together with
other auxiliary assumptions, to demonstrate such strong results as the neutrality of
systematic money supply changes and therefore the impossibility of a systematic
monetary stabilization policy [Friedman, 1980]. The commotion that such results have
caused among economists with differing attitudes toward Keynesian macroeconomic

theory is one important reason why many researchers have tried to test whether or not

1
expectations are rational in Muth's sense.—/

More recently, the focus of a lot of research has been on testing the efficient
markets hypothesis, a concept that is distinct from but closely related to the rational
expectations hypothesis. An asset market is said to be efficient if asset prices fully
reflect available information, thus eliminating opportunities for supernormal profits.
Subsumed in the hypothesis is the assumption that agents have rational expectations.
The motivation for testing whether or not markets are efficient is hinted at by Fama
[1976] who notes that an efficient market is an important component of a capitalistic
system where prices should ideally provide accurate signals for allocation. Bailey,
Beillie and McMahon [1984] echo this point by emphasizing the importance of the
market efficiency issue in our understanding of the mechanisms by which markets
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determine prices and disseminate information. But while tests of the market efficiency
hypothesis may have their distinct motivations, it is nonetheless a test of the rational
expectations hypothesis. This is due to the fact that rational expectations is a key
assumption of the efficient markets hypothesis. Moreover, as will become apparent
later, procedures to test for rational expectations and efficient markets are quite
indistinguishable.

The empirical evidence from the plethora of papers that deal with testing
rational expectations/market efficiency is mixed and difficult to interpret. The
traditional position regarding the issue is summanzed in the following quote from
Poole [1976]:

"The validity of the rational expectations hypothesis as applied to prices in
active auction markets has been extensively tested ... and no serious departure

from predictions of the hypothesis has been found. Thus there is very strong
evidence in favor of the hypothesis.”

However, a cursory look at relaiively recent work, especially in the foreign exchange
markets, makes one wonder just how strong the evidence in favor of the hypothesis
really is. The findings of several authors [Geweke & Feige, 1979; Hansen & Hodrick,
1980] that foreign exchange data do not appear to support the so-called "simple
market efficiency hypothesis” are particularly interesting. In this version of the
hypothesis, a market is considered efficient if the expected return to speculation in the
forward exchange market is zero, given that economic agents are risk neutral,
transactions costs are zero, agents have rational expectations and the market is
competitive.

Because of the many auxiliary assumptions embedded in the simple market
efficiency hypothesis, it is clear that rejections of the simple market efficiency

hypothesis do not necessarily imply rejections of the rational expectations hypothesis.
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What is not clear is which of the auxiliary assumptions is inappropriate. An obvious
extension of earlier work on testing for simple market efficiency therefore involves
zrelaxing some of the ecoromic assumptions, like risk neutrality, embedded in the
hypothesis. Undoubtedly, such research direction is bound to produce significan:
insights regard®.sg the issue of whether or not expectations are rational.

This, however, is not the research direction we pursue in this dissertation.
Instead, we take a more careful look at the econometric techniques that have been
employed to test for simple market efficiency. In particular, we wish to find out to
what extent the presence of both serial correlation and heteroskedasticity in linear
tests of simple market efficiency is responsible for rejections of the hypothesis. It
must be mentioned that earlier studies have recognized that econometric tests of
simple market efficiency should a'ccomodate the possibility that the data under
consideration may either be serially correlated [Brown & Maital 1981; Hansen and
Hodrick 1980] or heteroskedastic [Gregory & McCurdy 1984 ; Hakkio 1980].
However, to this author’s knowledge, no one has considered the case where the
observations may be simultaneously serially correlated and heteroskedastic. One could
possibly attribute the absence of such studies to the fact that econometric techniques
to handle both problems at the same time are not readily accessible.

To better appreciate the econometric complications involved, consider the
standard linear statistical model. Two of the basic assumptions made regarding the
disturbance term are: that the disturbances are independent, and therefore serially
uncorrelated; and that the disturbances are identically distributed, and therefore
homoskedastic.

If in fact the disturbances are heteroskedastic, the covariance matrix of the
disturbances will not necessarily be a scalar identity matrix, but rather, a diagonal

matrix whose non-zero elements will generally be unique. This means that test
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statistics based on the standard covariance matrix could lead to wrong inferences. The
applied worker therefore needs a way to determine whether or not heteroskedasticity
is causing problems with inference.

The White test for heteroskedasticity provides such diagnosis. The usefulness
and appeal of this test lies in the fact that one does not need prior information on the
type or form of the heteroskedasticity in question in order to carry out the test. After
one determines that heteroskedasticity is a problem, one can then simply base
inferences on a covariance matrix estimate which has been corrected for general forms
of heteroskedasticity.

Aside from heteroskedasticity, however, the disturbances could also be serially
correlated, implying a covariance matrix with a band structure. One can arrive at
correct inferences in this case by using either the homoskedastic consistent or
heteroskedastic consistent form of Hansen's [1982] Generalized Method of Moments
(GMM) estimate of the covariance matrix which takes explicit account of the band
structure. The choice of which particular form of the GMM estimate to use would
depend on whether or not heteroskedasticity is a problem.

Since the White test for heteroskedasticity is applicable only to diagonal
covariance matrices, researchers wishing to use the White test in this case have had to
adjust their model specifications to eliminate the serial correlation. This has meant, for
instance, either applying generalized least squares (GLS) or dropping intervening data
points. As will be explained later, the first option is not always appropriate (especially
when testing for market efficiency) while the second option is inefficient since it
involves throwing away otherwise useful information.

In this dissertation, we therefore extend the White test for heteroskedasticity to
accomodate the band structure which serial correlation imposes on the covariance

matrix. We also report results of Monte Carlo simulations examining the performance
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of the proposed White-type test and both forms of Hansen's GMM estimates of the

covariance matrix in the face of different heteroskedastic specifications. Finally, we
apply the proposed procedure to an econometric test of the rational
expectations/simple market efficiency hypothesis using spot and forward exchange
rate data.

Accordingly, this dissertation is presented as follows: Chapter II gives a more
precise definition of rational expectations, explains how one may carry out a test for
rational expectations/market efficiency and reviews some empirical studies based on
relatively simple linear techniques; Chapter III operationalizes a White-type test for
heteroskedasticity; Chapter IV presents some Monte Carlo results; Chapter V provides
empirical results from testing simple market efficiency based on the modified

econometric procedures; and Chapter VI concludes.



CHAPTER I

ECONOMETRIC TESTS OF RATIONAL EXPECTATIONS
AND/OR MARKET EFFICIENCY

In this chapter, we present the basic statistical relaticnships typically associated
with the rational expectations hypothesis. We also review some of the econometric
techniques employed in earlier empirical studies of rational expectations and/or simple

market efficiency and highlight the necessity for dealing with serial correlation and

heteroskedasticity.

A. Rationality and the Orthogonality of Prediction Errors to the Information Set.

Let A and P represent realized and predicted values of a given variable,
respectively.
Also let

P = prediction made in period t pertaining to period t+d
At +d = realized value of the variable at time t+d
I = information set available at time t

t
It can theoretically include any information available at time t. However, given the
fact that information is costly to acquire and evaluate, it is often useful to categorize

the types of information based on how accessible it actually is to economic agents.
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Consequently, one can speak of weak form, semi-strong form and strong form rational
expectations depending on whether It includes, respectively, costless, cost'; or very
costly information. In succeeding discussions, we shall primarily deal only with the
weak form version of the hypothesis.

The key property of rational expectations is that they incorporate all publicly
available information efficiently. We thérefore say that the expectation P‘tl is rational,

and optimal in the sense that no other unbiased predictor has smaller variance, [Brown
& Maital, 1981] if

d_

A corollary to eq. (1) is
) A= P‘ti t0d
where Efu, 4 | 11=0.
From eq. (2) we can readily see that
3) E[A,, ,~P4|1]=0

t+d t!ot '
Condition (3) simply states that the ex—post forecasting errors are uncorrelated with
each and every component of the information set. This condition has obvious
empirical applications since we can attempt to check whether or not forecasting errors

are correlated with particular pieces of information clearly available at the date

expectations were formed [Begg, 1982).
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To operationalize tests for the orthogonality condition given in eq. (3), one must
first have observations on the expectation variable P?. One way to do this is to use
survey data on market participants' expeciations of certain economic variables.
Examples of such survey data are the Mc-Graw-Hill and Commerce/SEC investment
surveys, Livingston consumer price index expectations survey, and the Conference
Board consumer surveys [Friedman, i980].

When generating expectations data in this manner, however, one must be aware
that the survey data might not necessarily reflect market participants' behavior. Webb
[1987] notes that "although most economists could state an opinion for the future time
path of macroeconomic variables, not all would be willing to bet money on their
predictions.” Some survey data, however, such as the Goldsmith-Nagan interest-rate
survey, are made up of forecasts from actual market participants. A more valid case
against the use of survey data is therefore made by Mishkin [1980] when he states that
"Not all market participants have to be rational in order for a market to display
rational expectations ... As long as unexploited profit opportunities are eliminated by
some participants in the market, then the market will behave as though expectations
are rational ... Therefore survey forecasts does not in itself imply that market forecasts
are also irrational.”

Given the shortcomings of survey data, an alternative way to generate
expectations data is to assume a certain model of market equilibrium that will allow
us to deduce what P‘:‘ is. This is the strategy commonly followed when testing the
rational expectations hypothesis in the context of the efficient markets hypothesis. For
example, if we are considering the one-period return on a security, one possible
assumption that can be made is that the market sets prices so that the return on a
security is constant through time, ie. E[A, |1)<Pl=pt [Fama, 1976]. The
orthogonality condition in this case would be IE[At +1—u|lt]=0.
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While the use of models to generate data circumvents the criticisms levelled
against the use of survey data, model-based data induces another type of difficulty.
This is the fact that any test of rational expectations based on model-generated data
necessarily becomes a concurrent test of the assumpiions implicit in the model of
market equilibrium being used. This means that one might find violations of the
orthogonality condition not because expectations are irrational but because the
assumed model of market equilibrium is wrong.

The caveats given above highlight the fact that tests of rational expectations are
also simultaneously tests of several économic assumptions. In subsequent discussions,
however, what we will focus on is the fact that aside from the economic assumptions,
tests of rational expectations are also inevitably joint tests of the econometric

assumptions implicit in the statistical technique(s) being employed.

B. Linear Tests and Serial Correlation.

In this section, we present some procedures by which earlier investigators have

tested the rational expectations/market efficiency hypothesis. While a lot of articles

2
using high level econometrics have recently been publish ) , the following
econometric procedures have been singled out since they represent the applications on
which we base the modified econometric techniques to be discussed in subsequent

chapters.

One Step Ahead Forecast With No Serial Corrrelation, Tests of rationality using the
orthogonality condition given in eq. (3) above can be conducted within the framework
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of the following linear model:

4 Ve =5 B+ U,q @=12..n)
where

Yeed =Apa~ P?
X, = vector consisting of variables in L

Under the null hypothesis of rational expectations, [ = 0. Note that when we are
dealing with one-step ahead predictions (i.e. d=1), the disturbance term will be
serially uncorrelated under the null hypothesis of rational expectations. To see this, we

recall that the orthogonality condition assures us that Efu 1=0 for ©>0,

141411

since u would be an element of the information set It.

t+1-1

Given that the one-step ahead prediction errors are not serially correlated and
assuming that all other requirements for ordinary least squares to be a best linear
unbiased estimator are met (including normality), the null hypothesis that B=0 can be
checked by running OLS on eq. (4) and using a standard F-test.

Using the methodology just described, Friedman[1980] studies the forecast of
interest rates on six different instruments: federal funds, three-month US treasury
bills, six-month eurodollar certificates of deposit, twelve—month US treasury bills,
new issues of high—grade long-term utility bonds and seasoned issues of high—grade
long-term municipal bonds. P: in this case would correspond to the three-month
ahead forecast of interest rates on whatever financial instruments is being considered.
For Pl, Friedman uses the Goldsmith-Nagan Bond and Money Market Letter which

conducts a quarterly survey of interest rate expectations of a selected panel of

approximately fifty market professionals from a variety of financial institutions.
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To test for the orthogonality condition given in eq. (3), Friedman lets X in eq.
(4) consist of five macro series that are not only costlessly available to market
participants but also feature prominently in typical discussions of interest rate outlook.
These are the lags of the unemployment rate, the growth rate of industrial production,
price inflation, the growth rate of the money stock and the federal government deficit.

The F-statistics which result from performing the test for orthogonality show
that although interest rate forecasts for most financial instruments appear rational,
predictions for utility bond yields and municipal bond yields could have been
improved by exploiting information contained in X Given that the survey data
provides an accurate indication of market expectations, Friedman takes the results as
evidence against the rational expectations hypothesis.

In a different context, Geweke & Feige [1979] test the simple market efficiency
hypothesis in the foreign exchange market. If we let A, +d be the spot rate at time
t+d and P‘tl be the forward rate at time t, the simple market efficiency hypothesis
implies that P"2=I:‘.[At +d|It]' Geweke and Feige consider quarterly observations of
spot and 90-day forward dollar exchange rates in the Belgian, Canadian, French,
German, Dutch, Swiss and British markets. To test the simple market efficiency
hypothesis, they let Yeel in eq. (4) be the spot—forward rate differential for the
particular exchange market in consideration and they take X, to be simply a constant
and Yer1 lagged once. They find that for the period 19721 to 19771, they can reject
the hypothesis only for the Canadian market.

Geweke and Feige also consider the case where X, in eq. (4) includes
once-lagged spot-forward rate differentials from all the exchange markets under
study. This time, thev are able to reject the hypothesis for both the Canadian and
British markets. While noting that departures from market efficiency could come from

several causes, they surmise that their results are indicative of risk averse behavior of
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market participants and the existence of transactions costs.

Brown and Maital
[1981] and Hansen and Hodrick [1980], among others, have pointed out that when
predictions are made for several periods ahead, the prediction errors {ut +d} may be

serially correiated even if expectations are rational.

The serial correlation may arise beczuse when P‘z is being constructed at time t,

the realized values of At 1’ At T TEPEP At +d e not yet known. Thus, the

corresponding d—period ahead prediction errors u, +d—'t=At +d _t—Pctl_t, for t=1, 2,
...d-1, are not observable. Since Uid-1° Bp4d-2> = > Ypep are DOt part of the
information set It, we cannot rule out the possibility that Efu

1=1,2,..4d-1 ; orthat

ed | Upagg] # 0 for

(&) coviu, pU.5.020 5 T=1,2.,d-1.

However, the preceding d-period ahead forecast errors Uid—t for ©2d are

observable at time t. Since rationality requires E[ut +d| u, +d—1:]=o for t2d, we have
©) cov[ut_._d,u&d_T]:O s t2d .

Assuming that {A,4) and (P9} are jointly stationary and ergodic, (0,4 =

3
At +d = P‘:} will be covariance stationary.J From egs. (5) and (6), we can therefore

write
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PO, ;1=0,1,2,.,d1

@ coviu, ., u 1={ .

We take note that a covariance matrix consistent with eq. (7) results when the

residuals u, are generated by a (d-1) order moving average process such as:

® Uid = Seed ~ 82814d1 — - ~ 8318141

where {et} are white noise residuals. We take note, however, that strictly speaking,
the orthogonality condition only implies a band structure, not necessarily an MA
process.

In view of the serially correlated errors, the use of generalized least squares
(GLS) would seem to be an appropriate estimation technique. However, GLS
techniques require the strict exogeneity of X, in eq. (4), a condition that is not
typically met when testing for rationality since X, often includes lagged endogenous
variables (i.e. we can think of At as being determined simultaneously with a whole
bunch of other variables which might be useful in predicting At +d)‘ When GLS is
performed, the transformed residuals for some particular period will be linear
combinations of the original residuals with their lagged values. The inconsistency in
GLS estimates arises because we cannot, in general, rule out the possibility that the
current values of the regressors are correlated with lagged values of the residuals
[Brown and Maital, 1981].

Given that OLS yields inconsistent covariance estimates while GLS yields
inconsistent coefficicnt estimates, an appropriate procedure would be to base

inferences on OLS estimates and at the same time make corrections in the covariance
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matrix using Hansen's GMM estimate of the covariance matrix.

To illustrate this procedure, we can write eq. (4) more compactly as:

(9) y =X f +u
(nx1) (oxk)(nxl) (nx1)
where y = vector of all observations on Yesd

X = matrix of all observations on the x's
u = vector of disturbances .

If ﬁ is the OLS estimate and Q is the covariance matrix of u , it can be shown that:
(10) A @-p 9> No, D) and
an Dy= plim (XX/n) " (X'0X/n) XX/n) ! .
Since Q is not known, a consistent estimate of DO is given by
A _l A _1

12) Dy = n XX) X0 X XX)
where, if the disturbances are homoskedastic, the non—zero elements of ) are simply
the samplc covariances from the OLS residuals. An asymptotically appropriate test
statistic for the joint null hypothesis that § = ﬁo is

A A -
a3) q=@-8y xx x8%™ xx @-8)

which will follow xﬁ under the null hypothesis and be large under the alternate
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hypothesis [Brown and Maital, 1981].

Using the covariance correction procedure described above, Brown and Maital
[1981] test for rationality using the bi-annual Joseph Livingston survey which
includes the six— and twelve— month forecast of more than a dozen key variables by
leading economists. P‘ti in this case would depend on which of the following key
variables is being considered: % change in consumer prices, wholesale prices, weekly
wage in manufacturing, standard and poor stock price index, constant GNP, current
GNP, industrial production, business fixed investment and unemployment rate. They
regress prediction errors for each variable against a vector X, consisting of the
following variables: government spending, money growth, changes in public
interest—bearing debt over the same quarter a year ago, % change in consumer and
wholesale prices, weekly wages, industrial production, business investment and the
unemployment rate, appropriately lagged.

Brown and Maital find that "for half-year forecasts, the null hypothesis that all
available, relevant information was in fact used was not rejected for only four of the
nine variables: industrial production, investment, the unemployment rate and stock
prices. For full-year forecasts, unused information existed for all but real GNP,
investment and unemployment forecasts."”

A similar procedure is used by Hansen and Hodrick [1980] to test the simple
foreign exchange market efficiency hypothesis. Using weekly data for the 13-week
forward rate, they let Yied in eq. (4) be equal to (st +13—f:3). They then regress this
on a constant term and 13th and 14th lags of Yeeq Lee (st_fEIS) and (st_l—fE1 e
This assures that F.(xtut +d)=0. They then use the corrected OLS procedure discussed
above. They find that they cannot reject the null hypothesis for the following
currencies: the Canadian dollar, the French franc, the UK. pound, the Swiss franc, the
Japanese yen and the Italian lira. Th.cy do, however, reject the null in the case of the
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deutsche mark — U.S. dollar exchange rate.

Hansen and Hodrick also tried regressing (st +13 f :3) on lagged values of the
currency's own forecast error and four other currencies' lagged forecast error and a
constant term. The null hypothesis that all coefficients in the regression are zero is
rejected for the Canadian dollar, the deutsche mark and the Swiss franc.

Hansen and Hodrick view their resuits cautiously, emphasizing the fact that
what has been rejected is a joint hypothesis. If, in fact, agents are risk averse such that
P‘ti is not equal to the log of the forward rate but instead, P‘t1 is equal to the log of the
forward rate plus a risk premium, then their results do not reject rationality but rather,
the assumed model of forward rate determination.

Other than Hansen's GMM procedure utilized above, an even simpler procedure
to get around the serial correlation problem would have been to define the sampling
interval to be equal to the forecast interval. This strategy, however, requires the
dropping of intervening observations. Because of this, we cannot expect this strategy
to be more efficient than the strategy proposed earlier. Hansen and Hodrick [1980]
demonstrate that the covariance matrix obtained by dropping observations exceeds DO
by a positive definite matrix.

Hsich [1984] suggests that in order to get around the serial correlation problem
and at the same time compensate for the loss of efficiency for considering only
non—overlapping observations, one can artificially construct a data set which provides
more frequent observations than would otherwise be available. For example, Hsich
notes that multinational banks frequently deal in one- two- and seven— day forward
contracts but data are not publicly available. However, by using the "covered interest
arbitrage” formula:

*
(14) s A +ip/a+ip
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where

forward rate at time t for delivery at time t+d
spot rate at time t
= Eurodollar market borrowing interest rate

ol
"

1

i, = Eurobank deposit interest rate

[~ J %

one can generate 2 larger data set. The idea behind the above formula is that buying a
d—day forward contract to buy marks for dollars at t‘z , for instance, is equivalent to
borrowing from the eurodollar market at the rate id » selling the doliars in the spot
exchange market for S marks and then depositing the marks in a eurobank at the rate

%*

id . An important assumption behind this is that arbitrage opportunities between

4
forward and eurocurrency rates, and transactions costs do not exist.-/

At any rate, it is apparent that if ever one could construct a more refined data
set, there is still efficiency to be gained by taking into account overlapping
observations. Besides, the use of the "covered interest arbitrage” formula to generate

data means yet another hypothesis subsumed in the simple market efficiency
hypothesis.

C. Linear Tests and Heteroskedasticity.
Other than serial correlation, researchers have become increasingly concerned

about the potential problems that heteroskedasticity may introduce when testing for
rational expectations/market efficiency, particularly in the foreign exchange market.
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As is well known, failing to take heteroskedasticity into account could lead to wrong
inferences.

There are several reasons why one might find heteroskedasticity when dealing
with foreign exchange data. For instance, heteroskedasticity may arise from
announced and unannounced institutional changes during the sample period. It could
also arise from lumping data points from different days since each trading day has its
unique characteristics. As Glassman [1983] illustrates, Monday trades reflect
substantial catching up with the news that have come over the weekend while
Thursday trades are heavily influenced by pre-weekend activity in the eurocurrency
markets as there is little opportunity for transatlantic trading on Friday because of
time differences. Finally, there is always the possibility that any form of residual
misspecification is translated into a heteroskedastic disturbance. This last point is
important as it is commonly assumed that taking differences to eliminate unit roots is
enough to eliminate heteroskedasticity. But as Judge, et. al. [1985; p. 234] note, this
may not be enough considering the many other factors that could cause
heteroskedasticity.

In fact, several authors [Gregory & McCurdy 1984, 1986; Hakkio 1980] have
reported the presence of heteroskedasticity in various foreign exchange data sets. A
particularly interesting finding by Gregory and McCurdy [1984] is that by taking
sub-samples of data which "passes” specification tests for heteroskedasticity and serial
correlation, rejections of the market efficiency hypothesis for some exchange markets
can be overturned. Equally interesting are the findings of Hsieh [1984] that inferences
based on covariance matrices corrected for heteroskedasticity generally give opposite
results from inferences based on the standard OLS covariance matrices.

To this author’s knowledge, however, tests of heteroskedasticity using the White
test have only been carried out on non—overlapping data, primarily because the White
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test is not designed to work in the presence of serial correlation. Thus, in order to be

able to test for unspecified forms of heteroskedasticity in conjunction with Hansen's
GMM estimate of a band covariance matrix, the White test must be modified. We
therefore tackle this problem in the next chapter.
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CHAPTER I

HETEROSKEDASTICITY IN THE PRESENCE OF SERIAL CORRELATION

White's [1980] test for heteroskedasticity §/ has become a welcome addition to
the diagnostic arsenal of many econometricians. This general test for
hetcroskedaéticity was originally formulated in the context of the standard linear
regression model. Since then, the test has been extended to cover more complicated
problems. A particularly interesting, albeit useful, extension deals with applying a
White-type test to time series regressions.

In this chapter, we are primarily interested in adapting the White test for
heteroskedasticity to the following problem. Consider estimating the following

equation via ordinary least squares:

15) Verd =5 BHug
where the disturbances {ut +d} are serially correlated. In particular,

&

t+d,t+d—t » 1=0,- ..,d—l;

Eut+dut+d—1:={0 .t 2d;

so that the resulting covariance matrix has a band structure. Such a band structure
could arise, for instance, when U.d is a moving average process of order (d-1). For

eq. (1), we will also allow x to include A +d's lagged sufficiently far enough (i.e.

6
. . . S
Yy and earlier) so that X, is uncorrelated with Ud
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We take note that eq. (15) basically describes the estimation problem involved

in testing the simple market efficiency hypothesis. Earlier comments on an appropriate
estimation procedure therefore apply. Specifically, we recall that in view of the serial
correlation, the use of generalized least squares (GLS) would be inappropriate since
X, is not strictly exogenous. GLS could therefore lead to inconsistent coefficient

estimates. OLS on the other hand, would lead to consistent coefficient estimates but

7
would yield inconsistent covariance estimates.-/ Thus, an appropriate procedure,

suggested by Hansen [1982], would be to base inferences on OLS estimates and at the
same time make corrections in the covariance matrix. This essentially requires taking
explicit account of the band structure which the serial correlation imposes on the
covariance matrix.

The question we wish to answer in this chapter is how to apply the White test
for heteroskedasticity when the covariance matrix has a band structure as above.

To derive a White-type test for heteroskedasticity, let us first look more

carefully at eq. (15) which can be written more compactly as

(16) ¥y=X B + 1
(nx1) (nxk) (kx1) (nx1)

where

y = vector of all observations on Yeed

X matrix of all observations on the x's
u vector of disturbances

8
If we let ﬁ be the OLS estimate and QH be the covariance of y, it can be shown~
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that:

an n'?@-p —>NoDy
and
Dy = pm(XX/n)" X'QpyX/n) (XX/) ! .
Since QH is not known, one can use a consistent estimate of DH given by

(19) Dy = ki)~ Vg exmy ™

where, if we have observations t=1...n+d,

v -y 2 -1 dfl z [ N
=n c '+ n e e ' o+Xx, X
H =1 t+d X%y t = tops] - tHd Cted— L+ 3. S .

A
€id =Veed gtﬁ , the least squares residual.

The covariance matrices have an H subscript to denote that they are kcteroskedasticity
9

consistent mau-iccs.-/ We take note that no structure on the heteroskedasticity has
been imposed.

An appropriate test statistic for the null hypothesis that ﬁ=ﬁo is therefore given
by

(19) a=n§-8y B @-8y

which will follow xi under the null hypothesis and will be large under the alternate
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hypothesis.
Notice that if the disturbances {“t} are homoskedastic, the covariance matrix

estimate would take the following form

A _1 A _l
(20) DO = X'X/n) VO X'X/n)
where :
A 12 2 13
Va=n X e n X xx'
0 =1 t+d =1 tt
dgl -1 n -1 g
+ {[n )} e ..e ] [n X _+ ')]}
=1 R S . =,t+l(5t-t—t 4 %

— 'A
Crd = Yeed "% B -

The subscript 0 is used to denote that these covariance matrices are consistent under

10
homoskedasticity but not under hctcroskedasticity.—/

Two things are worth noting about 60 and ﬁH First, even if the disturbances
are homoskedastic such that both 60 and ﬁH are consistent, there may be a small
sample gain from using 60 since 60 is likely to approach DH faster than ﬁH will.
There is an econometric presumption that if one is able to impose the correct structure
on a covariance matrix, asymptotic efficiency will be enhanced. In this case, the
additional structure imposed on 60 is that the non-zero elements of the same diagonal
are assumed to be alike. Second, if indeed the disturbances are heteroskedastic, using

1'50 could lead to wrong inferences. Thus, having a way to determine whether to use
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ﬁO or ﬁH is important. In what follows, we shall develop a procedure that will allow
us to determine which covariance estimate, 60 or 1’5 , 1S more appropriate.

Following White [1980], the test we propose involves comparing the covariance
matrix estimator 6H = (X'X/n)-1 {}H (X'X/n)_1 to the covariance matrix estimator
= (X'X/n)-1 00 (X'X/n)‘l and checking if their difference tends to zero. If ﬁH -
60 —> 0, then 60 is an adequate representation of the covariance matrix. This
means that either the disturbances are truly homoskedastic or that the
heteroskedasticity is not significant enough to affect inference. However, if ﬁH - 1’50
—/-> 0, then 60 is not an adequate representation of the covariance matrix and
would, in general, lead to incorrect inferences. These implications arise from the fact
that ﬁH is a consistent covariance estimator under both homoskedasticity and
heteroskedasticity while 130 is consistent only under homoskedasticity.
To set up the test for heteroskedasticity, we first take note that if plim (X'X/n)
goes to a fixed matrix, we can simply check if QH - 00 —> 0. We can write this

comparison more explicitly as

d-1 n
-1y -1 : :
@ {07 E gm0 T D e Gl 5 ) |

1 o2 z EE, T ([ 3
=1 N ¢ n + [ {n (2 C }
{ =1 tHd =1 et T

{n— t_1+1[3txtt+xt_txt]]] } —> 0.

11
Taking the vec of eq. (21), rearranging terms and eliminating redundant elements—/ ,



we get

-1, , n
22) T {n I w,¥, -

1 =0 t=1+1
-l 1y } 0
n W, n : —
t=1+1 O t=T+1

where, if we have an intercept term in the primary regression

w,':’t =€, frdr’ T 0,1, ... ,d-1

(22a) [1, 0' t] E(xI e_xt)' where redundant elements of the
i Kronecker product are excluded
[1 x k (k+1)/2]

22b) [2, }I{%,t] E(&text—ft)' + (Kt—t e;t)‘, T = 1,...,d-1
[1x k(k+1)/2] where redundant elements of the
Kronecker product sums are
excluded.

We take note that when no intercept term is specified for the primary regression, eqs.
(22a) and (22b) will simply be

¥, = Gox
[1x k(k+1)/2]

¥, = (5, 0%, ) + X,_ ®%)>T=1,..0-1
[1x k&+1)2)
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where redundant elements are still eliminated.
Now eq. (22) will hold if and only if €1+ dSt+d— (t =9, ... d-1) is uncorrelated
with the ¥'s. To test this, consider running OLS on the following stacked
12,13
regression'—/ -

wy ] 10...00 ¥ ] 0y ] g
23) | . = e e e e e . + .
Y40 00...10 ‘Pd—2 04-1 L )
LR Q0 0...0 1 ¥, b | LYY
d-1 d-1 : d-1
[ > (n—‘r)xl][ T (n-1)x(d-1)+k(k+1)/2 [(d—l)+k(k+l)/2 xl][ z (n—t)xl]
Tt =0 T =0 ’ Tt =0
where
w'r,'|:+l —‘;:,‘t-l-l
w, = o ¥ = : for t=0,1,...,d-1
Vi.n ¥ n

a_ = intercept coefficients

o
]

[k(k+1)/2 x 1] vector of coefficients

By writing eq. (23) more compactly as

(24) W=ZB +n1

and treating the above as a regression with dependent but identically distributed
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observations we can invoke an appropriate central limit theorem to show that

nlﬂ(ﬁ—ﬂ) will have the following asymptotic distribution:

25) n*2@-B) ~ NO,Q
where
Q=M1aAMm1
M = plim(Z'Z/n)
A=varn /2 Zn

Sufficient conditions for the above normality result to hold are given in the appendix.
With eq. (25), we can then verify the validity of eq. (22) by specifying and testing the
null hypothesis that b = 0 . To see this, we simply take note that by allowing for

intercept terms in eq. (24), our least squares estimate for b becomes

(26) b=@¥my 0 lgg
where
¥ ¥ -1 3y 0,...d-1 1
= ; =n ., 1T=0,...d-1, t=1+1, ... n
T,t el Tot
¥g 1 — Yo
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¥ ¥
¥ | W -z d
W= W =n W » T=0,..d-1, t =141, .. n.
T,t 4] ot
¥a-1 ~ ¥ggd

Note that n_ 1 ¥'w is exactly the left hand side of eq. (22), so that checking if eq.
(22) holds is equivalent to testing if b = 0.

From eq. (25), an appropriate test statistic under the null hypothesis HO: b=0 is
then given by

A -1 A 2
7N n(k-0) Q)  ®&-0—> Xk (k+1)/2

where the appropriate submatrix of Q is used. Equivalently, this statistic is given by

(28) n ﬁ' Q_l .G—> sz(k+1)/2
where

Q=M1xis!

M = plim (¢ ¥/n)

X =varn 12 Py .

Substituting in the OLS expression for ﬁ, eq. (28) simplifies to
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(29) d=n &¥m) X ¥s/m — xﬁ(kﬂ) /-

If the null Hy: b=0 is not true, then we could expect large values of q.

To obtain a feasible test statistic, we take note that we can express A as follows

O 4,d-1d=1 n n ,
GO " E¥nn¥=Enl z X X I na1 ¥ Frne

T =0 m=0 t=1+1 c=m+] ©t ML~

-1 dgl dgl-‘t ; DEI @
=En n. N..: 4 ' .
T =0 j=— t=T+] A=t+j+lt ©F THFATTLETH A

Since the primary covariance matrix has a band structure, a lot of the terms in the

14
above expression will be equal to zero—j . Thus the above expression reduces to

d-1 0 N
-1
v z{ s [“ T Enm A% % ]
=0 ' A=(d-1) t=1+1-A U A TTETHA
d_l -1 n—A
* Az=:1 [n t=f+ 1E LELLI Ef,i‘[,t-l-A] }
d—2 d-1— g 1 g .
+ £ X { [n e ( L
=0 j=I A=j—d-1) t=t+l-A+j W CHLHA i‘l.’,tit<i-3,t+A

i't+j,t+ASE‘é,t ) ]

j-1

—A
1 B
+ z [n z En_n... ( v +

A=1 t=T+1-A+j T,t T+, t+A L,tiﬁj,t.;.A
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:E1:+j,t+A£;:,t ) ]

d-1 —A

-1 0
+ T [n R - I TN G . S
A=j t=t+1 TUTHHA ETTLA

E1+j,t+AS""t,t ) ] } :

15
Using the fact that ETly M | =HANASHHA--)(A+D) ~/ where

#0for 0 < |a] £d-1

(32) T =Eu 498 4.2 { = 0 otherwise

we get

. d-1 d-1 2 1 N
33) K= }:{ T [['y(A) sya-vasl a2 g @ ]

v =0 L A=(a-1) e
dgl A 2 A A S | ngA ¥

d—2 d-1-1 { d-1

+ T % z [u(AmA-j) + VA=A +D)]
=0 j=1 \Asj~(d-1)

.-1 2 ' ;
n z ( m-;,tE'-:-i-j,&A + Y‘H’j ,;+A£r,t) ]

t=1+1-A+j
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j-1
+ I [ (rama + xaciaso)

. ~1 BA , :
n" Z ( i'v:,tmt-*-j AT 2‘r-l-j,t+A2r,t) ]

t=1+1T-A+j
d-1

+ I [ (AN + waimaso)
=)

—A
. —1 n ' '
n tzl +1( it,tI-:+j,t+A + it+j,t+A£:,t) ] } .
E/
We take note that summations which have descending indices are not evaluated.

A consistent estimate of A can be obtained by replacing Y(a) in eq. (32) by

-13 \ . X :
n tz'let +dCt+d +|a] where the e,s are the residuals from doing OLS on the

primary regression eq. (16).
An asymptotically appropriate test statistic for the null hypothesis HO: b=0 is

therefore

A . A
(34) q=n(¥¥n)X 1 (¥En)

which will follow xi(k+l)/2 under the null hypothesis and be large under the
17
alternative hypothcsis.—/ Notice that q can be formed without actually having to do

18
the regression on eq. (23) since we can simply use the residuals from eq. (18).—/
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CHAPTER IV

MONTE CARLO EXPERIMENTS

In this chapter, we will look at results of Monte Carlo simulations to examine
the performance of the proposed White—type test for heteroskedasticity and the two
covariance matrix estimates, 130 and ﬁH In particular, we would like to know if the
proposed test is a good indicator of whether or not using the uncorrected
homoskedasticity consistent covariance matrix estimate, 130, would lead to correct

inferences on the primary regression coefficients. We would also like to know how
good a heteroskedasticity correction ﬁH is.

Four regression equations of the following form are considered:

Yead = By¥e # BoYe g + o+ BYpp1 + g
where

U d=Ceg T 058,41+ +(0.5/(d-1)) €1 -

The following types of heteroskedasticity are also specified for each of the

regressions considered:

Cl. Var €ad = 1

C2. Vare g = v, 4(y,n1? Viq IS iid NOD
C3. Var g,y =v,405+025¢e2,, )2 v isiid NOD
C4. Var g, 4 = 0.05(+d)
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100 for t+d = 1,...,n2
C5. Var €d = {
1 for t+d = n/2+1,...n

C6. Var g4 = [sin@+d))?

Three different sample sizes (=700, n=300, n=50) and 500 replications are used. The
Monte Carlo simulations are carried out on an IBM-PC compatible using the GAUSS
programming language [Edlefsen & Jones, 1986]. A sample program is given in the
appendix.

The choice of parameter and heteroskedasticity specifications are primarily
based on Hsieh's [1984] Monte Carlo experiments examining a White—type test in the
context of autoregressive models. Other than this, our choices are fairly arbitrary. We
do take note that care has been taken in specifying the autoregressive and moving
average coefficients in order to assure that the resulting values of Y and u do not
form explosive series. We have also included heteroskedasticity specifications C2 and
C3 since these types of hetcroskedasticity are likely to be encountered in applied
work.

The results of the Monte Carlo experiments are summarized in Tables 1-6. Each
table corresponds to the six heteroskedastic specifications C1-C6 described above. All
the numbers presented are percentage rejections cut of 500 replications using a 5%
significance level. Aside from the White-type test for heteroskedasticity, two sets of
null hypotheses are tested, H, and Hy H,, specifies the null that B=0.5 for the
regressions Y, +d=0'5yt+ut + »9=14 and £'=[0.9,0.03,0.001] for the regressions
Ye _',d=0.9yt-!0.03yt_1-l-O.OOlyt_2+ut +d »d=14; while H,, tests the null that B=0.6
and §'=[0.8,0.03,0.001], respectively. Thus, we would expect H, to be rejected close
to 5% of the time and HO to be rejected close to 100% of the time. For each of the

hypotheses tested, two forms of covariance estimates are used: 60’ the homoskedastic
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consistent covariance matrix estimate, and ﬁH, the heteroskedastic consistent
covariance matrix estimate.

To make the task of wading through the sea of numbers to be presented in the
Tables more manageable, it pays to remember that our primary interest in doing the
Monte Carlo experiments is to determine how well the proposed White-type test
points out whether or not a heteroskedasticity correction is needed for the primary
covariance matrix estimate. We would also like to find out how good a correction for
heteroskedasticity Dy is. It is also important to remember that since the White—type
test is based on asymptotic theory, it would be more appropriate to start reading all
the Tables for n=700 , the largest sample size considered in the experiments, before

taking a look at the resuits for n=300 and n=50.
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Table 1 &
Monte Carlo Expt. With Var €= 1
Y, +d=o'5yt+“t +d A +d=°'9’:*°'°3’:-1“°°°°1y:-2““: +d
where L is MA@Q)/d=1 MA(3)/d=4 MA0)/d=1 MAQR)/d=4
L n=700 Y
White-type test 64 42 44 52
</ A e
H .= D, - 6.0 4.0 44 54
0 0
A f/ *
DH - 6.6 38 44 74
d/ A * L * *
H('):— D0 87.2 63.6 99.6 99.4
A * L ] * *
DH 874 654 99.4 98.6
II. n=300
*
White-type test 44 24 35 3.2
A
HO: D0 5.2 42 5.6 6.0
A *
DH 5.6 52 6.2 114
A * * * *
H0 D0 51.0 34.8 874 75.0
A L . * *
DH 52.6 374 87.8 78.2
III. n=50
* * *
White-type test 1.6 0.4 36 12
A * *
HO: D0 56 58 76 8.2
A * * L
DH 7.6 126 122 342+
A * L ] * L d
H('): DO 15.2 10.8 29.2 17.6
A * L * *®
DH 174 20.2 38.8 474
a/ Numbers are % rejections out of 500 replications using a 5% sig. level
b n is the number of observations
¢/ Test of the null that $=0.5 and B={09,0.03,0.001] respectively
4 Test of the null that B=0.6 and [=[0.8,0.03,0.001] respectively
e/ Using the homoskedastic coasisient covariance matrix estimate
f/ Ucing the heteroskedastic comsistent covariance matrix estimate
»

Significantly different from 5%; Se¢ note 21
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Table 2 -/
12, . . s
Monte Carlo Expt. With Var € = t+d(|ytl) ; v, is Niid

+d 0V g Yi4q=0-95#0.03y, ,+0.001y, ,+u
where ul +d is MA@0)/d=1 MA(3)/d=4 MA(0)/d=1 MA(3)/d=4
1. n=700 1-)/
® L ] L g *
White-type test 100.0 98.6 100.0 100.0
(o []
HO:J 1'50 74 as0 184" 4838 2638
A 5/ * *
DH 54 56 7.0 104
9/ A *® * *® *
HO DO 78.2 63.0 89.2 834
A * L * *
DH 42.8 38.2 60.8 654
II. n=300
* ® * *
White—type test 100.0 740 100.0 88.6
Hy; 1'50 274 172" 402 240
A *® *® *
DH 12 5.6 88 154
A * L ] ® *®
H0 DO 58.0 39.6 65.8 59.0
A * » * *®
DH 278 220 318 45.0
II1. n=50
*® * *® *
White-type test 614 8.6 718 210
A » * * »
HO: D0 19.6 16.2 280 244
A * *® * *
DH 10.0 16.8 204 38.0
A E ] ]
Ho DO 29.0 248 26.0 222
A *® * E 3 -
DH 13.8 242 2390 41.0
Numbers are % rejections out of 500 replications using a 5% sig. level
n is the number of observations
Test of the null that B=0.5 and 8=[09,0.03,0.001] respectively

rereRrRrRER

Test of the null that B=0.6 and ﬁ=[030030001] _respectively

Significantly different from 5%; See note 21

36
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a
Table 3 J

. _ 2 172, R
Monte Carlo Expt. With Var et WA +d(0'5+0’258t +d-l) A Niid

Y, +d=°'5yt+ut d A +d=0.9yt+0.03yt_l+0.001yt_2+ut +d
where ut +d is MAQ)/d=1 MA(3)/d=4 MA(0)/d=1 MAQ3)/d=4
1. n=700 P-/ ;
*® : * *
White-type test 96.4 58 96.6 78
c e
HO:J B, 7 8.6 50 88" 52
N .
DH 4.6 58 50 8.8
S/ A ® *® *® *®
H('): DO 84.2 64.8 99.8 97.8
A - ' * *
DH 74.4 66.0 99.8 97.8
. n=300
L * *
White—-type test 67.6 2.8 710 54
A = *
HO: D0 12.2 6.0 7.6 4.0
A * *® ]
DH 1.6 8.0 50 10.0
A » ] * *
H('): D0 55.0 344 88.6 75.4
A * L d L J *
DH 442 376 876 79.8
. n=50
*  J ] 3
White-type test 148 04 15.6 28
|
Hy 1'50 122 6.0 98" 92"
A * * *®
DH 8.8 142 13.0 36.0
A ] * * L
H('): D0 18.0 13.0 322 216
A  J 3 *® *
DH 15.2 21.8 374 454

reeeERrR

Numbers are % rejections out of 500 replications using a 5% sig.
n is the number of observations
Test of the null that

B=0.5 and B=[0.9,0.03,0.001] respectively
Test of the null that

B=0.6 and [=[0.8,0.03,0.001] respectively
Using the homoskedastic consistent covariance matrix estimate
Using the heteroskedastic consistent covariance matrix estimate
Significantly different from 5%; See note 21
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Table 4
Monte Carlo Expt. With Var et = 0.05(t+d)

A +d=o'5yt+“t +d Ye +d=0.9yt+0.03yt_l+0.001yt_2+ut +d
where L is MA(0)/d=1 MA(3)/d=4 MA@©)Y/d=1 MAQ)/d=4
1 n=700 ¥
* * * *
White-type test 88.6 25.8 97.6 59.0
c e
H. b - 84 78" 126 108"
0 0
N .
DH 6.8 52 6.2 7.6
9/ A * * * *®
Ho D0 84.2 64.0 99.2 954
A * * = *
DH 76.2 " 542 98.6 93.0
II. n=300
*  J - *
White-type test 484 124 822 36.8
A L L ] *® *
H.: D, 104 9.2 120 12.0
0 0
A L *
DH 6.2 7.6 6.2 15.6
A * * L *
H0 DO 51.0 38.8 88.2 73.2
A * * *
DH 4238 33.2 834 63.0
I, n=50
L ] L * *®
White-type test 8.6 1.6 234 9.6
: D > o 144" 194"
Ho. DO 8.8 9. y .
A * L] » *
DH 8.0 16.8 14.8 420
A * * L *®
H('): D0 17.6 16.0 342 272
A - * * *
DH 19.2 4.8 326 48.8
al Numbers are % rejections out of 500 replications using a 5% sig. level
Y n is the number of observations
¢/ Test of the null that B=0.5 and B=[0.9,0.03,0.001] respectively
4@ Test of the nuii that B=0.6 and [3=[0.8,0.03,0.001] respectively
e/ Using the homoskedastic consistent covariance matrix estimate
¥ Using the heteroskedastic consistent covariance matrix estimate
*

Significantly different from 5%; See note 21



Monte Carlo Expt. With Var et +d={

a
Table 5 -/

100 for t+d=1,..0/2

1 for t+d=n/2+1,..n

Yerd 0 Mg Yiag™09y 003y, +0.001y, o+u
where L is MAQ)/d=1 MAQR)/d=4 MA(0)/d=1 MAQ3)/d=4
1. n=700 E/

* ] * *®

White~type test 100.0 81.2 100.0 96.6

c e

HO:-/ 1'50 4 130 174 252" 26
A f/ *® *®

DH 56 7.6 44 9.6

9/ A * ] ® *

HO D0 80.0 62.0 98.4 96.8
A = * * *

DH 61.4 43.2 954 92.0

II. n=300

L ] L ] *

White-type test 97.8 43.6 100.0 4
A * L ] * *

H.: D 15.8 16.0 230 19.4

0 0

A : ] *

DH 5.6 8.8 5.8 16.4

A * ] * *

Ho D0 494 36.8 854 75.0
A * * * *

DH 334 24.6 64.8 67.2

n=50

*» * * *

White-type test 31.8 14 644 13.6
A - - * »

HO’ D0 17.0 9.6 21.6 94
A - * * -

DH 11.6 16.6 164 29.0

A ] * * *®

H0 D0 24.2 13.0 434 16.4
A L L ] L *

D__ 15.2 23.2 38.2 58.6

Numbers are % rejections out of 500 replications using a 5% sig. level

reeERrR

n is the number of observations
of the null that P=0.5 and
Test of the null that 3=06and

[0.9,0.03,0.001] respectively
[0.8, 0 03,0.001] respecnvely

Significantly different from S%; See note 21
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Table 6 -
Monte Carlo Expt. With Ver €, = [sin(t+d))2

40

A +d=0'5yt+ut +d Ye +d=0.9yt+0.03yt_140.001yt_2+u d
where L is MA@0)/d=1 MA(3)/d=4 MA(0)/d=1 MAQ3)/d=4
I. n=700 L
* *
White-type test 63.0 46 91.8 6.8
c e
H b, 7 36 58 36 58
0 0
f
b, 52 78 538 66
9/ A * *® * *
I-Io D0 90.0 63.2 99.8 98.6
A * * * *
DH 93.0 654 99.8 99.0
. n=300
Whitetype test 372" 42 540" 50
A *
HO: D0 3.0 42 32 56
A * *
DH 5.2 9.0 5.8 122
A » * * *
H0 D0 55.6 346 98.2 754
A L J * *
DH 64.4* 39.6 89.8 81.2
II. n=50
White—type test 62 0.8* 86 12
A *
HO: DO 4.6 7.0 44 64
A * * *
DH 6.8 13.0 9.8 30.8
A * L J * *»
H(‘): D0 104 128 244 15.6
A * . * ¥
DH 15.6 22 36.2 434
a/ Numbers are % rejections out of 500 replications using a 5% sig. level
Y a is the number of observations
o/ Test of the null that B=0.5 and B=[0.9,0.03,0.001] respectively
& Test of the null that B=0.6 and B=[0.8,0.03,0.001] respectively
e/ Using the homoskedastic consistent covariance matrix estimate
f/ Using the heteroskedastic consistent covariance matrix estimate
t

Significantly different from 5%; See note 21
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Before discussing the White—type test results, three things are worth noting
about the covariance matrix estimates 60 and 6H

First, for all heteroskedasticity specifications C1-C6, and all sample sizes, there
does not appear to be a debilitating loss of power to reject the null hypothesis H(')
when one chooses 60 over 6H and vice-versa. Thus, we shall concentrate our
discussion of the performance of the White—type test relative to choosing a covariance
matrix estimate that gives us a correct test size when making inferences on the
primary regression coefficients.

Second, even though both 60 and 6}! are consistent under homoskedasticity,
it appears that there is a "small sample” advantage in using 130 over ﬁH From
Table 1, we can see that even at n=700, ﬁH still gives us a wrong sized test under
the null hypothesis I-I0 for one of the regressions. As for n=50, even though in two
of the regressions neither 60 nor 6H gives the correct size under the null
hypothesis I-IO , 130 provides a less biased estimate of the primary covariance matrix
than ﬁH This suggests that a strategy of always using ﬁH whether or not
heteroskedasticity is present could prove costly, especially in small samples.

Third, when the primary regression disturbances are heteroskedastic, 6H can

19
continue to exhibit bias, even in large samples.—/ This can be seen, for instance, in

Table 2. This obviously suggests the need for a better heteroskedastic consistent

covariance matrix estimate than 6H . This problem, however, is not within the scope
20
of this papcr.—/
We now turn to the results of the White-type test. Following our earlier
suggestion, we shall initially only consider results for the sample size n=700.

From Table 1, it appears that for all four regression specifications, the
White—type test exhibits the correct test size under the null hypothesis that the
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disturbances are homoskedastic. Looking at HO » we also find that the White-type

test correctly indicates the appropriateness of using 60 and rules out the need for
any heteroskedasticity correction in the covariance matrix estimate.
The power of the White—type test to reject the null of homoskedasticity can be

gleaned from Tables 2-6, where different forms of heteroskedasticity are specified.

; 21
We find that when ﬁo is biased, the White—type test significantl rejects

homoskedasticity more than the required 5% of the time. In these instances, ﬁH most
often tumns out to be a less biased, if not an unbiased estimate of the covariance
matrix. These findings can be seen from Table 2, for instance.

On the other hand, there are rare instances when the White-type test continues
to reject significantly more than 5% of the time even though 60 is unbiased. For
example, see Tables 3 and 6 for n=700. This, however, should not present a major
concern. Aside from the fact that such cases seem to be the exception rather than the
rule, ﬁH is a consistent estimate of the covariance matrix anyway. The only downside
to this is that there will be rare instances (only Table 3 in this case) when we will not
be able to take advantage of an otherwise unbiased and asymptotically more efficient
estimate, 1'50.

These results are very comforting since they suggest that when one fails to
detect heteroskedasticity via the White~type test, 60 can be safely used to obtain
correct inferences on the primary regression coefficients. On the other hand, one will
probably not be misled into using 60 inappropriately because the White-type test
will likely reject homoskedasticity if in fact 60 is biased. Finally, we find that
although the White-type test rejects significantly more than the required 5% of the
time when appropriate, the power of the test seems to be affected by the nature of the
heteroskedasticity, the number of primary regression coefficients, and the order of the
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moving average process. The most noticeable finding is that increasing the order of
the moving average process can substantially reduce the power of the White-type test.

The above results appear to hold even for the smaller sample size, n=300. It
suffices to say that the only difference is a drop in the power of the White—type test to
reject homoskedasticity when appropriate.

The White—type test results for n=50 are not as encouraging. Here we find a
marked deterioration in the power of the White—type test to reject homoskedasticity.
There are also instances when 60 exhibits bias even though the White-type test fails
to significantly reject homoskedasticity more than 5% of the time. The only
consolation is that when the White-type test fails to significantly reject more than 5%
of the time, D) is still less biased than Dy,



CHAPTER V

RE-TESTING RATIONAL EXPECTATIONS/SIMPLE MARKET EFFICIENCY

In this chapter, we apply the modified White—type test for heteroskedasticity in
conjunction with Hansen's GMM estimate of the covariance matrix to re—test the
simple foreign exchange market efficiency hypothesis. We want to know what new

insights may be obtained from taking simultaneous account of serial correlation and

heteroskedasticity.

We therefore consider testing the simple market efficiency hypothesis using spot
and foreign exchange data from an earlier study by Baillie, Lippens & McMahon
[1983]. They describe the data as follows:

Daily observations on spot and 30 day forward rates on various currencies
were taken from the New York foreign exchange market. For each week an
observation for the spot rate was recorded on the Thursday and the forward rate
was recorded on the Tuesday. This method of recording ensured that exactly 30
days separated each spot and its corresponding forward rate. When an
observation was unavailable due to the foreign exchange market being closed, an
observation on an adjacent day was chosen and the observation point of the
corresponding series was also moved to ensure a 30 day gap between the
observations. Observations were recorded on six different currencies in terms of
their value against the U.S. dollar. For UK., West Germany, Italy and France
observations covered the period June 1, 1973 to April 8, 1980, realizing 362
data points. For Canada and Switzerland the same quality data were only

available from December 1, 1977 to May 15, 1980, which provided 128
observations.

For each of the foreign exchange markets considered, we then estimate the

following regressions and test the null hypothesis that § = 0.
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where
s, = log of the spot rate

t‘tl = log of the d—period forward rate established at time t

For regressions R1 and R3, we only take every 4th observation, avoiding any
prediction overlap and serial correlation, at least under the null hypothesis that § = 0.
This gives us 90 observations for the UK., West Germany, Italy, and France and 32
observations for the two other currencies. Regressions R2 and R4, on the other hand,
consider 4-week ahead predictions and therefore make full use of all available and
possibly serially correlated observations.

Tables 7-11 present the results for the above regression specifications. Aside
from the coefficient estimates, we also report three other statistics: a chi-square
statistic, q(ﬁo), based on a "homoskedasticity—only” consistent covariance matrix
estimate to test the null that § = 0; a chi-square statistic, q(ﬁn), ‘based on a
"heteroskedasticity-also” consistent covariance matrix estimate to test the null that § =

0; and a White—type statistic to test the null that the disturbances are homoskedastic.
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Table 7
Yo B+ By vyt yt=lnst'mf:—l
currenc B B (13 (ﬁ ) Whi test
y 0 1 q 0) APy te—type
* *
UK. 0.001 0.318 10.239 7.485 2.805
(0.003) (0.101) (0.006) (0.024) (0.246)
W Germany 0.0004 -0.07 0.49 0.367 3.125
(0.003) ©.1) (0.783) (0.832) 0.21)
® *
Italy 0.003 0.164 4115 5.815 10.709
(0.003) 0.125) (0.123) (0.055) (0.005)
France 0.002 0.033 0477 0457 0.420
(0.003) (0.106) (0.788) (0.796) (0.811)
Canada 0.003 -0.066 0.989 0.878 1.747
(0.003) (0.179) (0.610) (0.645) 0417
Swiss 0.006 0.121 1.039 1430 1.8
(0.008) (0.182) (0.595) 0.489 (0.407)
key: Numbers in parentheses are std. errors & significance levels for

coefficient estimates & test statistics, respectively.

A A
Std.exrorisbasedoneitherDoorDHdependingonWhiw-typetest.
* indicates significance at 10% level.
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A A
currency Bo Ql 9Dy 9D White-type test
* *
UK. 0.002 0.276 9.444 9.711 0.944
(0.003) (0.093) (0.009) (0.008) (0.624)
W Germamy  0.001 0.022 0.244 0.258 1.262
(0.003) (0.089) (0.885) (0.879) (0.532)
* * *
Ttaly 0.003 0.222 7.051 9.421 25.449
(0.003) (0.135) (0.029) (0.009) (2.978E-6)
France 0.002 0.042 0.796 0.991 6652
(0.003) (0.120) 0.672) (0.609) (0.036)
Canada 0.004 -0.112 1.895 2.189 2.154
(0.003) (0.154) (0.388) (0.335) (0.341)
Swiss 0.008 0.103 1251 1429 5983
(0.010) (0.206) (0.535) (0.489) (0.050)
key: Numbers in parentheses are std. errors & significance levels for

coefficient estimates & test statistics, respectively.

A
Std.morisbasedmciﬂeroorlngependingonWhitc—typetest.
* indicates significance at 10% level.

Tables 7 and 8, which correspond to a test of a very weak form of the rational

expectations hypothesis, suggests that in the final analysis, whether we use

overlapping data or not, we can reject the null hypothesis that § = 0 only for two

exchange currencies, U.K. and Italy. For the first regression, however, we would have

rejected the null hypothesis that § = 0 for Italy only if we based our inferences on

A

DH’ as indicated by a significant White-type test statistic. In this case, the significant

White—type test statistic turns out to be important. The importance of testing for

heteroskedasticity is not brought out in the second regression, however. For instance,
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although the White—type test correctly picks up the substantial differences between the
test statistics based on 60 and ﬁH’ both test statistics are too extreme to matter
anyway.

We do make an interesting observation, however. By increasing the sample size
of our regression in case R2, we are able to magnify any divergence between ﬁ and
zero (our null hypothesis). Thus, we could expect to reject the null hypothesis for
more exchange markets than in case R1. The fact that we are still unable to reject the
null hypothesis for West Germany, France, Canada and Switzerland therefore suggest
that indeed, these exchange markets are very weak form efficient.

To get a better sense of just how efficient these latter markets really are, we
specify a slightly stronger null hypothesis by regressing (st d= t‘tl) on more pieces of

information. The results of the new regression tests are given in the following tables.
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Table 9
Y= B0""51 yt—l‘*Bz"u-z*“t ' yt"_lnst_lnf:-l
currenc B B B ® ®,) Whitetype
y 0 1 2 @y 9Dy Vot
UK. 0002 0338 0097 10222 7142 6.081
(003)  (0.108) (0109  (0O1T)  (0.068) (0.298)
W Germany 0001 0,031 0.073 0.744 0.752 3.113
(003)  (0.103)  (0.102)  (0.863)  (0.861) (0.683)
Tualy 0002 0133 0.136 5270 6.578 27.795"
(003) (0115 (0152  (0.153)  (0.087) (3.99E-5)
France 0003 007 0.008 1.553 1.792 5.989
(003)  (0.103) (0106  (0.670)  (0.617) 0.307)
Canada 0003 0125 0245 23860 3.380 3.063
(003) (0175  ©177) (0414 (0275 (0.690)
Swiss 0007  0.107 0.008 1.103 1497 4.621
(009)  (0.191)  (0.18T)  (0.798)  (0.683) (0.464)
key: Numbers in parentheses are std. errors & significance levels for

coefficient estimates & test statistics, respectively.

A
Std.arorisbasedmeithetboorﬁndependingonWhiw—typetest.
* indicates significance at 10% level.
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currenc B ﬁ B (ﬁ a’S ) ‘White
y 0 1 2 q 0) 9Dy, it -type
UK. 0002 0477 0243 2567 18.564" 2.862
(003)  (0.102)  (0.102)  (S0E-S)  (0.0003) ©.721)
W Germany 0002  0.308 0361 1.5 18.93" 8.388
(003)  (0.094)  (0.093)  (0.001)  (0.0003) (0.136)
» *® =
Ttaly 0003 0382 -0.197 165700  23.961 40.346
(003)  (0.110)  (0151)  (0.001)  (2.5E-5) (1.3E-7)
* *® *
France 0003 0416 0458 2156 36.326 14.241
(003) (0952  (0.109)  (80E-S)  (64E-S) 0.014)
Canada 0004  0.175 0377 6419 16.572 5.102
(003) (0167  (0.165)  (0.093)  (0.001) (0.404)
Swiss 0008  0.19 013 2518 4918 9941
(010) (0184  (0.123) (0472  (0.178) ©.077)
key: Numbers in parentheses are std. errors & significance levels for

coefficient estimates & test statistics, respectively.

A A
Su. eﬂorisbasedmeitherDoorDHdependingonWhite-typewst.
* indicates significance at 10% level.

Tables 9 and 10 present results comesponding to a test of a slightly stronger
form of the rational expectations hypothesis. The most striking result is that by not
dropping observations, we can stronély reject the null hypothesis that § = O for all but
one of the exchange currencies considered. Another striking result is that the
White—type test for heteroskedasticity correctly picks up the substantial differences in



51
the test statistics based on 60 and 61_1 This can be seen, for instance, in Table 10 for
Italy, France and Switzerland. Unfortunately, although there are substantial differences
in the said test statistics, they are both too large to make any practical difference. One
can speculate, however, that given ‘another regression specification (which leads to
lower significance levels of rejection than those obtained in Table 10), basing
inferences on q(ﬁH) instead of q(ﬁo) might just make a practical difference.

It could also be the case that if we use other data sets, heteroskedasticity might
make a practical difference. Just to illustrate the point, we re-estimate R4 using an

arbitrary sub-sample of 162 observations starting with the 91st observation. The

results are given in Table 11.

Table 11
y=By+ B Yea+ By Yes*tY 5 Yy=lns-In f:-4

currenc ﬂ B ﬁ (ﬁ (6 ) Whi
y 0 1 2 Py oDy Vlepe

UK. 0001 0453 —0.074 11404  17311° 8.781
(004)  (0.149)  ©.143)  (0010)  (0.001) (0.118)

W Germany 0003 0363 025 5769 8.776 1847
(004)  (0243)  (0.188)  (0.123)  (0.032) (0.002)

*® * ®

Taly 0002 0477 ~0.063 14.874 21.691 26.14
(005)  (0.181)  (0224)  (0.002)  (7.6E-5) (8.4E-5)

France 0.001 0417 0454 9.789 5.758 6817
(003)  (0.160)  (0160) (00200  (O124)  _ (0235)

key: Numbers in parentheses are std. errors & significance levels for

coefficient estimates & test statistics, respectively.

A A
Std.enorisbmdmeiﬂmDoorDHdependingonWhiw-typewst.
* indicates significance at 10% level.
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Table 11 clearly shows that by using ﬁH only when the White—type test rejects

homoskedasticity, one can reject the null hypothesis that § = 0 for all exchange
currencies considered. Thus, for this particular data set, accounting for
heteroskedasticity clearly makes a difference.

To summarize the results of this chapter, it does not appear that rejections of the
simple market efficiency hypothesis can be completely accounted for by a failure to
take simultaneous account of serial correlation and heteroskedasticity. This is
evidenced by rejections of the null hypothesis at extremly high significance levels
using either q(ﬁH) or q(ﬁo). However, because there can be substantial differences
between the two feasible test statistics, it is still advisable to continue testing for
heteroskedasticity when dealing with other regression specifications and/or data sets.
It could very well be the case that with other regression specifications and/or data sets,
the substantial differences beiween the two feasible statistics could spell the difference

between rejecting or accepting the simple market efficiency hypothesis.
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CHAPTER VI

SUMMARY AND CONCLUSION

This dissertation has really been a three-part treatise with one underlying
theme: the concern over heteroskedasticity in the presence of serial correlation. The
first part deals with a detailed exposition of a modified econometric technique
designed to test general forms of heteroskedasticity in the presence of serial
correlation. The second part examines the properties of the proposed technique based
on Monte Carlo simulations, while the third part applies the proposed technique to test
the rational expectations/simple market efficiency hypothesis.

We begin with some comments on the proposed econometric technique and its
performance in Monte Carlo experiments.

Heteroskedasticity is a culprit only insofar as it leads to incorrect inferences on
the primary regression coefficients. In the context of time series regressions with
serially uncorrelated disturbances, White's test for heteroskedasticity, as modified by
Hsieh [1983], provides us a way of detecting whether or not heteroskedasticity of
unknown form is severe enough to affect inferences.

In this dissertation, a White-type test similar to Cragg's [1982] is developed for
linear regressions with serially correlated disturbances. Monte Carlo results show that
at least in large samples, the failure of the White—type test to significantly reject
homoskedasticity implies that Dy, the standard OLS covariance marrix estimate is
unbiased. On the other hand, a significant White—type test rejection likely indicates
the need for a covariance matrix correction to handle general forms of
heteroskedasticity.



There are several points worth making about the proposed test.

First, the proposed White—type test statistic is not as simple to compute as
White's nR2 statistic. With the GAUSS [Edlefsen & Jones, 1986] programming
language, however, creating "subroutines” to perform the proposed White-type test is
relatively easy. However, since this would spn obviously require an initial investment
in programming time, the proposed tc;t might appeal primarily only to researchers
who strongly suspect that heteroskedasticity poses a major problem and/or researchers
who expect to encounter linear time series regressions, like the ones considered here,
more than once.

Second, the Monte Carlo results show that the White—type test is not very
powerful in small samples. This, of course, suggests using the White~type test oniy
when relatively large data sets are available. It is worth noting, however, that since the
proposed procedure explicitly handles the serial correlation problem, one can take
advantage of all intervening data points that may be available regardless of the
dependence that they may introduce. Hopefully, the addition of such intervening data
points would be enough to get around the problem of having too few observation.

Third, a strategy of compietely disregarding the White—type test and using a
heteroskedastic consistent covariance matrix like 6H even in the absence of
heteroskedasticity may prove costly. The Monte Carlo results show that the small
sample bias in 130 , the homoskedasticity consistent covariance matrix estimate,
disappears faster than the bias in SH

Fourth, the Monte Carlo results illustrate that when the disturbances are serially
correlated and the White-type test rejects homoskedasticity, ﬁH can continue to
exhibit bias, although this bias is likely to be less than the bias in 60. Since ﬁH
might not provide an adequate correction in the presence of heteroskedasticity, one

might like to consider alternative covariance matrix estimates like those proposed by
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Newey & West [1987] and Andrews [1987].

Finally, we reiterate White's [1980] caveat that the proposed test is not strictly a
test of heteroskedasticity, but rather, a test of whether or not any misspecification that
shows up in the disturbances is severe enough to affect inference. It becomes a test of
heteroskedasticity only when one is reasonably confident that the the regression is
properly specified.

We now offer concluding remarks regarding the rational expectations/simple
market efficiency hypothesis.

It is very difficult to interpret rejections of the simple market efficiency
hypothesis because of the joint nature of the hypothesis being tested. In this
dissertation, we pursued the idea that rejections of the hypothesis might be an artifact
of the econometric technique being employed. In particular, we explored what
happens when we allow for the possibility that the disturbances are both
heteroskedastic and serially correlated. We found that for the particular regressions
and data sets considered, failure to take heteroskedasticity into account does not make
any practical difference as far as inference is concerned. We point out, however, that
for different data sets and other regression specifications, taking heteroskedasticity
into account could be crucial.

Having placed the importance of heteroskedasticity and serial correlation in
perspective, we must now look at other alternatives to explain rejections of the simple
market efficiency hypothesis. It is clear that aside from the econometric assumptions,
we must also relax some of the economic assumptions implicit in the simple market
efficiency hypothesis. We therefore cap this study by pointing out two general
research dizections which could prove beneficial to our understanding of rational
expectations/market efficiency.

One research direction involves examining the role of central bank interventions
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in rejections of the simple market efficiency hypothesis. It is rather interesting to note
that the central banks of West Germany, Italy and France did in fact intervene
substantially in the foreign exchange markets during the latter part of the sample
period considered in this study. Such intervention was carried out in conjunction with
the establishment of the European Monetary System (EMS) in an effort to manage a
"joint" float against the U.S. dollar [Cohen 1981). While intervention by EMS
member banks does not entirely explain the rejections we got for the non—member
currencies (the British pound and the Canadian dollar), it does present the possibility
that central bank intervention, in general, might be an important factor. One might
argue, for instance, that rational forecasts can only be formed after agents have had
ample time to learn about the exchange rate environment. Thus, systematic forecasting
errors might arise from unannounced central bank intervention in the foreign exchange
market. On a related note, habitual government intervention could also lead to the
so—called "peso problem.” Krasker [1980] explains that if agents begin to anticipate
the possibility of a sizeable devaluation, one can reasonably expect to observe a
currency to consistently sell at a discount in the forward market. However, if the
expected intervention does not actually materialize, it would appear, ex post, that
people have been making biased forecasts of the spot rate.

Other than the effects of central bank intervention, one could also examine the
role of risk in the formation of expectations. It has been argued by many that tesis of
market efficiency should explicitly take into account the existence of a risk premium
instead of assuming that agents are risk neutral. Succinct summaries of theoretical
models that generate a risk premium and the empirical work that has been carried out
to test the implications of such models are provided by Hodrick and Srivastava
[1984], Domowitz and Hakkio [1985] and Mark [1985]. So far, attempts by Frenkel
{1978, 1982], Hansen and Hodrick [1983], Cumby and Obstfeld [1982] and Domowitz
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and Hakkio [1985], among others, to test for a constant risk premium have only been

partially successful. More recent works by Engle, Lilien and Robins [1987] and
Baillie and Bollerslev [1987], however, suggests that research efforts should really be
directed towards modelling a time varying, and not simply a constant risk premium.

Surely, there are many issues, other than those mentioned above, that are worth
investigating. But whatever economic angle one pursues, one should strive towards
eventually being able to come up with a testable alternative. In the case of the risk
premium, for instance, this would require motivating the magnitude of the risk
premium a priori and then checking if it explains away the existence of prediction
bias. Only by rejecting all other questionable auxiliary assumptions embedded in the
market efficiency hypothesis can we really mount a direct assault on the rational
expectations hypothesis.
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In this paper, we take rational to mean "having rational expectations"
in Muth's sense.

See Hodrick [1987] for an excellent review.

Denote the distribution function of z, +? i=1,2,..T by F(zt +1%427% +T)‘

The stochastic process z, is said to be stationary if, for any finite

positive integer T, F does not depend on t. A weaker form of stationarity
only requires that the mean and variance of the process z, does not

change through time, and the covariance between values of the process at
two time points depend only on the distance between these time points
and not on time itself [Granger and Newbold, 1977].

See Niehans [1984], pp. 154-156.
In this paper, we only consider unconditional heteroskedasticity.

The disturbance u, does not necessarily have to be an MA process. We
only need the covariance matrix to have a band structure.

More precisely, OLS packages which estimate the covariance matrix via
sz(X'X)_ will yield an inconsistent estimate of the covariance matrix.

See for instance, Brown & Maital [1981], White [1984], Hansen [1982].

Strictly speaking, the summands in V should be divided by (n—t)
instead of simply n. Asymptotically, however, it does not matter.

See note 9 above.

Consider k = 2.
1 [1,x] 1 %y
XX = |Xy = )
X 1 X2t

vee x50 = 12 Tng X1 253, T
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By deleting the redundant elements we get

[1.%,1=01,1Ixy,,%,1.

In order to fix matrix dimensions for subsequent discussions, we assume
that the primary regression in eq. (16) has no intercept.

The original White test rzguires the inclusion of a constant term in

the vector of regressors before taking their cross products even if an

intercept term is not originally specified [see Judge etal. 1980,

p. 453]. In our case, when no intercept term is specified for the

primary regression, a constant term is included only after the cross

products are taken. This assures that only elements actually present
A

in VH and {\’0 are compared.

In general, E e My +HA+A will be zero when any of the following holds:
|A[ > d-1; |A-j| > d-1; |A—1§| > d-1; |A+t| > d-1.

These conditions are based on Fuller [1976), pp. 18-20, 238. See also
eq. (32) and note 15 below. Eq. (31) merely limits the range of
summation to allow only for non-zero summands.

Equation is based on Fuller [1976] pp. 18-20, 238.

To illustrate the 4th moment assumption, we take note that

E N Mesjeea = Bl aU0a ¢ — E@ g4 2]
" [ grAPrrdrA—t-; T ECudrAludia—) -
Consider u, = €, + ®¢,_; where ¢, is Niid, '

EeZ = o® , Eed = 0, Be? = 36% [Hastings & Peacock]
d=2,1t=0,j=1,A=1 ie.

_ 2 2
EMoMos1,41 = E Wyyp —E v ollu qu 5 —Eu qu 5]

_ 2 2
= E u otat s —Eui s, Eu u
= 36%0@%+1) - 2(1+02) 20
= 26°®(1+02).
This is equivalent to

E flgMosieer = YDWI-D) + ¥(1-0-1)(140)
= 2Y(1)Y(0)
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18.

19.

20.

21.

_ 2
= 2E U904, )E Uyl

= 2 20 2(1+d°)

= 26%D+0d).

Note that this 4th moment assumption will generally hold only when the
disturbances are homoskedastic or when the heteroskedasticity is not

a function of the dependent variable (as in an ARCH specification). Thus,
the feasible statistic could theoretically lose power. As the Monte Carlo
results will show, however, this'does not appear to be a major problem.

For particular values of d, the range of some summations might be
d-1

meaningless. For example, when d=1, X does not make any sense.
A=1

In such cases, the summations are not evaluated.

Note that if the primary regression eq. (16) includes an intercept term,
the degrees of freedom would be {[k(k+1)/2]-1}.
The statistic given by eq. (34) is asymptotically equivalent to
White's [1980] nR2 statistic (where the R2 is that of the secondary
regression) when d-1=0. As it is, eq. (34) is similar to Cragg's [1982].
Inferences on § are also carried out using the true disturbances in

A
forming the primary covariance matrix. Results show that § in general
is unbiased.

The interested reader may want to look into papers by Andrews [1987],
Newey & West [1987] and White [1984].

If J is the proportion of rejections (i.e. J=1 or 0 depending on whether
you reject or not, respectively, for each replication) the 95% confidence

interval is given by
P[.05-1.96(.05(1-.05)/500)> < T < .05+1.96(.05(1-.05)/500)"] = .95.

Thus, rejection rates between 3.1% and 6.91% are not significantly
different from 5%.
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APPENDIX 1

Consider eq. (10) given by

W=2ZB+n
where

Z = [Zy w2y w2y 4]

Zy = [Zg 541 eyl -

Sufficient conditions for the asymptotic normality of nll2 (ﬁ—B) are given by the
following central limit theorem for dependent and identically distributed random
variables adapted from White's [1984] Theorem 5.16.

Given

Al. {(Z-r e t)'} is a stationary ergodic sequence for T = 0,...,d-1;

q.m. .
A2, E(Zt,t,i Mee | Dt —m) —> 0 as m —> = where {Dt} is adapted to

(Zg; M ©=0, 0 &1 i =1, .y @ DHKGHDR =

A3.E|Z P <o, 120, Q=1 ., @-DHGHD2 ;
Ad A= var(n_ll2 Z7) is uniformly positive definite;

AS. Define Rp; = E@p s Moy | Dy ~BZpis e, | Dy y)
t=0, ., d-1 i=1,., (@-1)+kk+1)2 t=1.
Fort=0, .., d-1 i=1, ., (d1)+kk+1)/2 t=1, assume that

J
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A6.E|Z, 2 <o, t=0, . dd i=1, ., @Dk ;

R4
A7. M = E(ZZ) is positive definite;

Then An —> A finite and positive definite as n—> = , and

A
Q12 412 B B) ~ NOJ), where Q = M} A ML,

Suppose in addition that

AG6. There exists IA\n symmetric and positive semidefinite such that

A P
An—An —> 0.

A p A -1 A -1
Then Q, - Q —> 0, where Q = (ZZ/n) ~ A (ZZ/n) .

A few points about the above central limit theorem are worth noting. Recall that
the variables in the secondary regression given by eq. (24) are derived from our
primary regression in eq. (16) given by

¥y=XB+u

In particular, W in eq. (24) is simply CtdStedr ' T T 0,..d-1 , where
€ d Ve +d-3£ ;and Z is primarily composed of the cross products of the x's.

Given that Xt could include lagged values of Yeed ° Z,: ¢ in the secondary
regression could also exhibit some degree of dependence. The ergodicity assumption
in Al above is therefore required to assure us that we are at least dealing with

variables which are "asymptotically independent on the average." Assumptions A2 and
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AS further limit the nature of dependence allowed. The stationarity assumption in Al,

on the other hand, essentially tells us that the u's are homokurtic. The rest of the
assumptions guarantee the existence of the 4th moments of x and u.
Finally we take note that our stipulation that . could only include values of y
lagged at least d periods is important. Without this stipulation, the serial correlation
¥ Anherent in Mot would violate assumption A2 since A2 implies that E(Z,t it nt’t)=0



APPENDIX 2

@ —

@ WHIT_BD.YA2 LAST MODIFIED 2-12-89

@ WHIT_BD.1H1-Monte Carlo simulation on the eq.

@ y@ = inrcp + x()*H0 + w(r)

@ where x(t) = vector of lagged y's uncorrelated with u(t)

@ u(t) = an MA(p) process

@ with a white-type (B or D) test for heteroskedasticity
@ NOTE: Regression can include an intercept term.

@ Program is a COPY of MAREGWIT.M2(7-29-88).

@ It allows the White—type t=st and estimated

@ covariances to consider different orders of the MA

@ process. Also take note that the White-type test does
@ not augment the matrix of regressors with a column of
@ ones before taking cross products (when no intercept
@ is specified for the primary regression)

@ Data generation has been modified to allow for special
@ form of heteroskedasticity

@

#LINESOFF;

load path = c:\yardstik;

@—— SPECIFY DESIRED CONDITIONS

@ Specify file in which to store the output of this program

output file = In3ho0.y2 reset;

print ; print;

print "EXPERIMENT with y type heteroskedasticity";

print "OUTPUT FROM RUNNING WHIT_BD.y*2(2-12-89)";

@ Specify sample size (n) and replication size (r)

n = 300;
r = 500;
print; print;

print "Sample size : " n;
print "Number of replications : " r;

@ Specify true primary coefficient vector
@ BE SURE NOT TO SPECIFY AN EXPLOSIVE SERIES

PORAAOAAAAAAAAOAOAOR

®

A
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intrcp=9999999999; @ Specify intercept coeff; 9999999999 if none @

b0 = (0.5); @ Specify non-intercept coeffs. @
if intrep /= 9999999999;
intrcpb0 = intrcpib0;
else;
intrcpb0 = bO;
endif;
k = rows(b0);

numofreg = rows(intrcpb0);

print; print;
print "True b= " intrcpb0’;

@ Specify null hypotheses you wish to test, including intrept, if any @

hOo = (0.5);
hl = (0.6);

@ Specify order of moving average process and its "seed” coefficient@

order = (; @ tue order of the MA process @
p = order;

seedval = 0.5;
@ Specify whitep, the order of MA you want the white-type test to consider@
whitep = order;
@ Specify covp, the order of MA you want the estimated covariance to have@
covp = order;
pring;
print "Disturbance is an MA(" p ") process";
print "Estimated cov. matrices consider an MA(" covp ") process™;
print "White—type test considers an MA(" whitep ") process
@ Specify critical right hand tail probability of a chi sqr distribution@

critstat = .05; @ 5% confidence; primary regression

®

weristat = .05; @ 5% confidence; White—type test

®

DEFINITIONS

OIGIOIO]

@
@
@ homcov — homoskedastic consistent primary covariance matrix
@ hetcov — heteroskedastic consistent primary covariance matrix



@ teshom — chi square statistic based on homcov
@ teshet — chi square statistic based on hetcov
@ failhom/failhet -~ counts failures of test for right hand side

@ probability

@ whitest — chi square statistic for white-type test of

@ heterosckedasticity

@ whitfail - counts failures of test for right hand side
@ probability

@

@

@ PREPARE FOR REPLICATIONS

@ Initialize counters

sumb = zeros(numofreg,1);

@ sum of coefficients over replications
sumhom = zeros(numofreg,numofreg);

@ sum of homcov over replications
sumhet = zeros(numofreg,numofreg);

@ sum of hetcov over replications

failhom0 = 0; @ number of rejections using teshom0
failhet) = 0; @ number of rejections using teshetd
failhoml = 0; @ number of rejections using teshom!
failhetl = 0; @ number of rejections using teshetl
whitfail = 0; @ number of rejections of hetero. test
homsnob = 0; @ counts iteraticns discarded due to errors

hetsnob = 0;

trapflag = 0; @ trap flag

@ Create vector of MA cocfﬁcients:[lxedval.seedvallz...xedval/p]' @

if p=0;
macoefs = 1;

else;
macoefs = zeros(p,1);
c=1

do while ¢ <= p;
macoefs[c,1] = seedval/c;

c=c+ 1
endo;
macoefs = (1~macoefs)’;
endif;
rmacoefs = rev(macoefs); @ reverse of macoefs

@ Form transformation matrix for White-type test

~l
o

OISIOIOIOTOIOTOIOTO)

® ® ® A A A ® M
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transmat = zeros (numofreg*numofreg,numofreg*numofreg);
i=1
do while j<=numofreg ;
i=j;
do while i <= numofreg;
1 = numofreg*(}-1) + i;
transmat(l,]] = 1.0;
i=i+1
endo;
i=i+ 1
endo;

@t*t**tttttt RDLICATE EmRIMENT SheER kb dRkE @

@Q—

trap 1; @ set error trapping on @
riter = 1;

DO WHILE RITER <= R;

output off;

print; print "ITERATION:" riter;

output on;

GENERATE DATA AND PERFORM OLS _— e

@ Form vector of dependent variables @

if intrcp /= 9999999999;
constant = intrcp ;
else;
constant = 0;
endif;

y = ones(20+ n+2*p+k,1);
epsln = mdn(20+ n+2*p+k,1);
i = 142%p+k;
do while i <= 20+ n+2*p+k;
yli,] = constant + (rev(b0))*yli-p-k:i-p-1,.]
+ rmacoefs'(epsinfi-p:i,.].*(abs(y[i-2*p~1:i-p-1,.)*.5));
i=i+ I
endo;

ytemp = trimr(y,20,0);
y = ytemplk+p+1m+p+k,1:1];

@ Form matrix of regressors @

x = zeros(n,k);

v=p + I;

do while v <= p + k;
x[.,v-p] = ytemp[k+p+l-vin+pik-v,1:1);
v=v + 1;

endo;



if intrcp /= 9999999999;
x = ones(n,1)~x;
endif;
@ Perform OLS on primary regression and compute primary residuals @

b = invpd(x'x)*x'y;

e =y - x*b;
@
@— Compute Homoskedastic and Heteroskedastic Covariance Matrices —@

P = covp;
vo = (¢'e/n)*(x'x/n); @ homosk. cov. matrix (principal diagonal) @

vh = (1/n)*x’.*(e.*e)™x; @ hetersk. cov. matrix (principal diagonal) @
tau = 1; @ compute oﬁ'-.diagonal terms of cov. matrices @
do while tau <= p;

votempe = 0;

votempx = zeros(numofreg,numofreg);

vhtemp = zeros(numofreg numofreg);

t=1tu + 1;
do while t <= n;

XCross
€Cross

x[t,]) . *x[t-tau,.] + x[t-tau,.]'.*x[t..];
e[t 1]%eft-tan,1];

volempe = votempe + €Cross;
votempx = volempx + XCrOSS;

vhtemp = vhtemp + ecross*xcross;
t=t+ 1
endo;

votemp = (votempe/n)*(voiempx/n);
VO = VO + volemp;

vhtemp = vhtemp/n;
vh = vh + vhtemp;

tau = tau + 1;
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inavxx = invpd(x'x/n);
homcov = inavxx * vo * inavxx;
hetcov = inavxx * vh * inavxx;

invhom = invpd(homcov); @ check for positive definiteness
invhet = invpd(hetcov);

if scalerr(invhom);
homsnob = homsnob + 1;
trapflag = 1;

endif;

if scalemr(invhet);
hetsnob = hetsnob + 1;
trapflag = 1;

endif;,

@
CLEAR epsin, u, ytemp, y, COVl, XCrOSS, €CroOSS;
@ to free up working memory

if wapflag /= 1;
@—— THE WHITE-TYPE TEST FOR HETEROSKEDASTICITY —@
p = whitep;

@ Compute left/right hand side elements of the test statistic
@ Prepare for computing lambda(curl hat), the matrix of 4th moments @

if intrcp == 9999999999;

g = k*&+1)/2;
else;
g = (numofreg*(numofreg+1)/2) - 1;
endif;
gammat = zeros(p+1,1); @ vector of means of 2nd moments
wpsi = zeros(l,g); @ w curl prime times psi curl
tau = (;

do while tau <= p;
wtau = efl+tau:n,1:1] .* e{l:n-tan,1:1];
wiaumn = (sumc(wtau)/n);
wtag = wtau — (wtaumn * ones(n-tay,l));
gammat{tan+1,1] = wtaumn;

srsxkron = zeros(n-tau,g); @ psi curl tau
i=1

Y0
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do while i <= n - tau;

if tau = O;

xkron = x[i,.]' .*. x[i,.];
else;

xkron = (x[i+tay,.J.*. x[i,.]) + (x[i,.].*. x[i+taw,.]);
endif;

if intrcp /= 9999999999;
xkron = Obxkron[2:numofreg*numofreg,1:1];

endif;

xkron = transmat * xkronm;
xkron = miss(xkron,0.0);
xkron = packr(xkron);
srsxkronfi,.] = xkron";
i=i+ 1

mnxkron = (sumc(srsxkron)/n) .* ones(n-tau,g);
= srsxkron -~ mnxkron;

wpsi = wpsi + wtau'srsxkron;

matname = “psi” $+ flocv(tau,1,0);

save “matname = srsxkron;

tau = tau + 1;
endo;

ifp 0

gammat = gammatizeros(p,l);
endif;

@ Form diagonal block elements of the fourth moment matrix lambda @
lambda = zeros(g,g);

tau = 0;
do while tau <= p;

matname = "psi® $+ flocv(tau,1,0);
load psi = Amatname;

a=-p
do while a <= p;

gamakros = gammat[1+abs(a),]] * gammat{1+abs(a),1]

+ gammat[l+abs(a-tau),1] * gammat[1+abs(a+tau),1];
if a <= 0;

psikros = (1/n) * psi[l-a:n-tau,1:g)'psi{1:n-tau+a,1:g];
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else;
psikros = (I/n) * psi[l:n—tau-a,1:g]'psi[l+a:n~tau,1:g];
endif;
lambda = lambda + gamakros * psikros;
a=a+1l;

endo;

tau = tau + 1;
endo;

CLEAR e, srsxkron, xkron, mnxkron, psi, wtau, wtaumn;
@ to free memory

@ Form off-diagonal block elements of the fourth moment matrix lambda @
fpFkoO

tau = Q;
do while tan <= p - 1;

matmame = "psi” $+ ftocv(tan,1,0);
load taupsi = Amatname;

i=1
do while j <= p - tau;

matname = "psi” $+ ftocv(tau+j,1,0);
load tjpsi = Amatname;

a=j-p
do while a <= p;

gamakros = gammat{l+abs(a),1] * gammat[l+abs(a—j),1]

+ gammat[1+abs(a—tav—j),1]*gammat[ 1+abs(a+tan),1];
if a <=0
psikros = (1/n) *
(taupsi[1-a+j:n—tau,1:g] tipsi{1:n-tau+a—j,1:g]
+ tjpsi[1:n—tan+a-j,1:g]'taupsi[ 1-a+j:n—tau,1:g));
elseif a>=l1landa<=j-1;
psikros = (I/n) *
(taupsi[1-a+j:n—tau-a,1:g]'tjpsi[1:n—tau—j,1:g]
+ tjpsi[l:n-tau-j,1:g]'taupsi[1-a+j:n~tav-a,1:2?);
else;

psikros = (I/n) *
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(taupsif1:n—tau-a,1:g'tipsi[1+a~j:n-tav-j,1:g]
+ tjpsi[l+a-j:n—au—j,1:g]'taupsi[1:n-tav-a,1:g]);

endif;
lambda = lambda + gamakros*psikros;

a=a+1l;
endo;

i=ji+ 1
endo;

tau = tau + 1;
endo;
endif;,
CLEAR taupsi, tjpsi; @ to free memory
@ Form White-type test statistic

whitest = n * (wpsi/n) * invpd(lambda) * (wpsi/)';
whitfail = whitfail + (cdfchic(whitest,g) <= wcristat);

@ If covariances turn out to be positive definite, add the results of @
@ this iteration to those of previous iterations; otherwise, redo iteration @

if trapflag = 1;
riter = riter;
trapflag = O;
else;
sumb = sumb + b;
sumhom = sumhom + homcov;
sumhet = sumhet + hetcov;

teshom0 = n*(b-h0)*invpdthomcov)*(b-h0);

teshet) = n*(b-h0)*invpd(hetcov)*(b-h0);

failhom0 = failhom0 + (cdfchic(teshomO,numofreg) <= critstat);
failhet) = failhet0 + (cdfchic(teshetOnumofreg) <= critstat);

teshoml = n*(b-h1)*invpd(homcov)*(b-hl);

teshetl = n*(b-hl)*invpd(hetcov)*(b-hl);

failhrom1 = failhoml + (cdfchic(teshoml,numofreg) <= critstat);
failhetl = failhetl + (cdfchic(teshetl numofreg) <= critstat);

riter = riter + 1;
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endif;
ENDO;
@
@————— CALCULATE AND PRINT SUMMARY STATISTICS —————@

@ Print out number of replications discarded due to program errors detected @

print;
print "Replications discarded (homcov not pos. def.):" homsnob;
print " (hetcov not pos. def.):" hetsnob;

@ Calculate and print mean of b over replications
bmean = sumb/r;

pring;
print "Ave. ols estimate of b' over replications: " bmean";
print; print;

@ Calculate and print results of the white—type test for heteroskedasticity @
avwhitst = (whitfail/r)*100;
print; print "% of iterations rejecting homoskedasticity :" avwhitst;

@ Calculate and print ave. of the different cov. matrices over replications @

avhomcov = sumhom/r;
avhetcov = sumhet/r;

print;

print "Ave. of homosk. consistent cov. matrix over replicns:" avhomcov;
print;

print "Ave of hetero. consistent cov. matrix over replicns :" avhetcov;

@ Calculate and print inference results for hO

failhom0 = (failhomO/r)*100;
failhet0 = (failhet0/r)*100;

print; print;

print "Tests of the null that b' = " h0';

print;

print "% of replications rejecting the null at 5% significance:";

print "  using homoskedasticity consistent cov. matrix : " failhom0;
print "  using heteroskedasticity cons. cov. matrix : " failhetO;

@ Calculate and print inference results for hl
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failhoml = (failhom1/r)*100;
failhetl = (failhetl/r)*100;

print; print;

print "Tests of the null that b’ = " hl";

pring;

print "% of replications rejecting the null at 5% significance:";

print "  using homoskedasticity consistent cov. matrix : " failhom1;
print "  using heteroskedasticity -cons. cov. matrix : " failhetl;

'

system;
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