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ABSTRACT

The RC filter-hard limiter-RC filter nonlinear system shown in Fig. 1 is
the subject of this paper. Because of combutational difficulties implicated
in the analysis of the above system, only its response to the zero mean Gaus-
sian system input has been analytically investigateé [2,3,5]. An approximate
output density has also been found for nonzero mean Gaussian,while verified
to be ''close!! to the real one for finite means [4]. In the present paper, a
close form of the system output density is obtained when the input mean tends

to infinity. For that, e-upcrossing methods were used.

1. INTRODUCT 10N

The system in Fig. 1 is considered where [2]
n(t) : white, Gaussian, zero mean noise

?

] .
; time constants of the two RC filters

L

b

x(t) : Gaussian, mean (-m), markov process with autocorrelation

R (J) = e_a|J|
x

z(t) : sgn(x(t))

y(t) : the output process

Hence, the hypothesis here is that the system input n(t) = m is Géussian and

white with mean (-m).




The steady-state output y(0) of the system which will be the subject of
our investigation is given by the following equation [2]:
o) ©

v(0) = [ be®*z(s)ds = [ be z(-s)ds ()
L .

From (1) it is obvious that =1 < y(0) gll . A first look at expression (l)‘
makes one thfnk that, since the integral iﬁ it changes sign each time the
process x(s) does, applications of zero-crossing methods might lead to some
kind of expression for the density of y(Oj. |

If one defines the new process w(t) as follows:'

w(s) = x(s) +m (2)
then a crossing of the zero level by the process x(s) is equivalent to the
crossing of the level (+m) by the zero-mean process w(s) . The process
w(s) has, of course, the same autocorrelation with the process x(s). That
is: |

-a|J]

R =R (J) =¢e (3)
w x

The equation giving the sign process z(s) as a function of w(s) , is the
following:
1, w(s) >m
z(s) = l (4)
-1, wis) <m
The definition of the process w(s) in}(2) places the problem of defining
the density of y(0) into the category of crossings of the (+m) level by a

zero-mean Gaussian process. James Pickands 1] [1] developed formulas and

density-expressions for such crossings when the level (+m) is infinitely in-




creasing. Specifically, he developed expressions for g-upcrossings of a high
level, as they will be defined in the process of the introduction, which
happened to be independent of the chosen ¢ . Hence, he was able to conclude
that his results were independent of ¢ and’so one could talk about simply
upcrossings of a certain high level (+m) by a zero-mean Gaussian process. We
will proceed by giving a few definitions and formulas from Pickands! paper‘

which we will use to determine the density of the y(0) in (1).

Definition |

€-upcrossing at time t of a level (+m) by a process w(s) 1is called

the event that w(t) =+m and w(J) <+m , for every J such that t - ¢ <
J<t . The number € 1is an arbitrary number and it can be as small as de-

sired.

Definition 2

N(e,m,t) is defined as the number of e-upcrossings of the level +m by

the process w(s) and in a time length t .

If the process w(s) is zero mean, Gaussian and with autocorrelation
Rw(J) such that
R, (I =1 = aJ+ 0(J) (5)
for J tending to zero from positive values (the autocorrelation R (J) =
w
-a|J s £
e 1] satisfies property (5)), then the number N(e,m,t) is given by the

. following formula:




L

4
i EMeam, ) 6)
m_ . =(m2)/2
m—o =="e *t
2
Expression (6) was proven to be true by Pickands [1]. Pickands also found
the following expression for the distribution of N(e,m,t):
-\ Xk
Vim P(NCe,m,2) = k) = & L A (7)
m-e M ’
where
u = u(e,m) = E{N(e,m,t)}/t (8)

Hence, |4 is actually the expected number of e-upcrossings of the level m ,
per unit time, which in the limit of m = ® is given by the following equa~

tion (substitutions of (8) into (6)):

lim y(e,m) -
m -(mz)/2
m- == e .

217

a (9)

Furthermore, one can write (7) in the following different way:

k
lim P(N(e,m,t) = k} = e M QL;,L | (10)

N--o

which shows that the number N(e,m,t), for level m increasing, tends to be
Poisson distributed with pafameter tu .
Also, from expression (9) one concludes that in the limit (m -~ »), the

expected number of e-upcrossings per unit time decreases with increasing m

2
- 2
as fast as m/{(/2m) e (m=)/ . If one calls d = d(e,m) the distance between

two consecutive e-upcrossings of the level m , then:

lim P{d(e,m) > T} = P{0 e-upcrossings in a time interval of length T}

M=

= e_HT . ' (]]) ‘.




In the development of (11), formula (10) was used. From (11) we have, of
course, thét
. uT a ' ’
lim P(d< T} =1 - ¢ (12)
m—s0
. “uT
lim P(T<Kd<LT+dT) = pe — dT (13)
m-—so ‘
dT-0
With formula (13) which gives the limiting density of the distance be-
tween two consecutive e-upcfossings, we have given to the reader all the for-
mulas that we will use from Pickands' paper and we have completed the intro-
duction. In the following sections we will give expressions of the system
output y(0) using reasonable approximations and we will finally reach a

close limiting expression (m — =) of the output density based on some intui-

tive assumptions.

2. AN APPROXIMATE LIMITING EXPRESSION OF v(0)

It is obvious from expression (1) that the value of y(0) depends on
the instants that the process x(s) changes sign. That is equivalent to
saying that the value of y(0) depends on the instants that the process w(s),
as defined in (2), crosses the level +m . One can express y(0) as a func-
tion of these last crdssing instants. Such an expression will be djfferent
depending on whether or not the process. w(s) finds itself at a level below
or above +m at the observation time t =0 . The two figures 2 and 3 are
drawn with the process w(t) actually moving in time from right (t = =) to

left (t = 0), until it reaches its final value w(0) . Figure 2 indicates the




changes of the process when it ends at a level lower than +m, while figure
3 indicates the similar changes when w(0) > +m . The following variables

were introduced in figures 2 and 3:

. .th .
t, : instant at which the i closest to t = 0 upcrossing
|
happens
. . .th .
] : time difference between the i closest to t =0 wupcrossing

and the downcrossing which immediately follows

. . . .th
instant at which the downcrossing between the i closest

i, i
' . . th
to t =0 upcrossing and the (i+1)  one
Mot S T8
J -
i ti+1 tl
o Y ie2 T Y e

Applying the above table of variables to formula (]); one can easily break
the integral in it into the sum of integrals as follows: |f w(0) < +m and,

using Fig. 2, one gets

t ® t, . -t
y(0) = 'f 1 be-bsds + 5 [I i,it] be-bsds _ I i+1 be-bsds]

w(0)< +m o i=l t, t, .
i i,i+]

~bt ©  =bt, -bt -bt, .
= e -1+ % [e "+ e g 2 |,|+]]

i=l
© =bt, o =bt




T

) (48

Using Fig. 3 for the case that w(0) > 4m and applying the same table to

expression (1), one gets

t @ t t
- i - i+1,i+2 _ -b
v = [ 2 be™us + 2 (-] | bePoas 4 [ ] be™ “ds]
w(0) >+m o i=1 ti,i+1 ti
-bt © bt -bt -b
. T,
=] - 12 + 5 i,i+] + 2e i e |+I,|' ]
i=]
T -bt,
=1-2% T r o ge !
i=] |=i i
-b X b T4,
bt w TN ey e j=1
=1 - 2e O+ Te 77 y+2e (1+3Te ) (15)

Our objective will now be to simplify expressions (14) and (15) using reason-

able approximations. The variables that appear in both formulas are t], t

o and Ji » with the last two forming infinite exponential sums. From

12°?

expressions (11) and (9) one can easily see that, for the level m tending

to plus infinity, the probability of Ji being larger than a number m" , for
any arbitrary integer n , is tending to one. This combined with the fact
that the Ji's are independent because of the Markov character of. w(t),

give the following equality with probab{lity are:

@ -bJ, _
lim £ e ZJ,~e : (16)

mee =] j=]




Similarly, one expects that in the limit (m » ), since the upcrossings
happen very rarely, so do downcrossings. Furthermore, because of the Markov

character of w(t), the pi's are also independent. Hence, with probability

one we can write:

® . ] -bo] :
lim Ze ~ e . (]7)

After these two approximations, one gets, with probability one, the following

simplified formulas of y(0):

-bt, -bJ, -bt,, -bp,
lim y(0) ~ =1 + 2e (1l + e ) - 2e (1l +e ) (18)

m — ®

w(0) <nm

-bt]2 -bp] -bt] ‘-bJ]
lim y(0) ~ 1 = 2e (1 + e ) + 2e (1l + e ) (19)

m —

w(0) >m

IT we express y(0) through the variables ei and X12 we will get

the following two new expressions

-bt] -bel ~-b) -b62
lim y(0) ~ -1 + 2e [1 -e (1 +e [e - 1Dh1 (20)
me-w .

w(0). < m

lim y(0) ~ 1 = 2e [1 +e (1 -e [1+e ] (21)

m -

w(0) >m

3. PARTIAL DISTRIBUTIONS

In the limiting case of the level +m increasing towards infinity, one

expects the distance i
p S Gi to tend to zero, the way the distance J. tends
i




to infinity. In other words, intuitively we expect the density of Gi to
tend in the limit to a delta function. In this case, the distribution of the

variable ). ] will be the same with the distribution of Ji in the limit,
s |

This is because

Pr(Ji <x) = Pr(xi

i ¥ < = j'oPr[)\i’i_H <X - u, 8, =uldu

Because of the Markov character of w(t) , Xi and Bi are independent;

,i+1

hence

Pr{Ji <xl= fo Pr{xi,i+] <x - u}'fei(u)éu (22)

where fe (u) is the density of the variable ei .
i ‘
From (22) one directly gets that if fe (u) tends toward a delta function
i

for m - ®, and since Pr{Ji < X} practically zero for X very large, then:

lim Pr{Ji <x}~ Pr(xi

Mes0

i S X (23)

Equation (23) is the formal consequence of the intuitive expressions that

fe (u) is in the limit a delta function. Another consequence of the claim
i .
that fe (u) tends to a delta function is that in the limit (m - ») , Ji and
i
ei tend to become two independent random variables. Indeed, then:

[o o]

Vim Pr{d, <x3 = 1im [ Pr{y. < x, 0, = uldu
M- m-—o O I :

lim [ Prly; < w/6; = ulfy (wdu

m—= O I

Pr(Ji < x/ei = uo} ’(24>

where uo is the value close to zero that 6, can take.
_ i




s

10

Continuing on the same intuitive assumption on ei , we find the density

of P, - e is the sum of the two independent variables ki,i+1 and ei+].
Hence
lim Pr{pi <x} o= lim [' Prb‘i,‘iﬂ < x-ul - fe. (u)du
m—o m-= 0 i+1
= Pr{xi,i+1 <y o= Pr(Ji < xJ | (25)

Hence, from (25) one concludes that in the.limit (m - ») the three variables

Jou X

: i and °; have the same distri bution given by expressions (11),

(12) and (13). Furthermore, for similar reasons expressed for the variable

are in the limit independent. From

Ji , the two variables P; and 9i+]

figure #2, one can see that since w(t) is a Markov process, the variable

t] in formula (20) is independent of the variables 61, XIZ and 62 .

Similarly, from Figure 3 one can conclude that the variable t is indepen-

12
dent of the variables Pys 6] and J] that appear in (21). The only thing
that remains now is to express the distributions of the above mentioned vari-
ables t] and t]2 .

Using figure #4 first, where the trajectory of the process w(t) in

figure #3 was extended to the left until the downcrossing instant, one has

© x < tlz'g X + dx,|

lim Pr(xgtlzgx+dx}=1imj‘ Pr dy
M- m-= 0 e =y
= lim [ Prix < try S X+ dx/8 = y}f (y)dy (26)
m—e X

The choice of the origin 0 inside the interval of length © in figure #4
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is unbiased. Hence one has

Prix < t, Sx+dx/6 =y} = (1/y)dx | (27)
Application of (27) in (26) will give the density of the variable t]2 as
an integral;

lim £ (x) = (/Y (y)dy , : (28)

m-= 12 X
From figure #5 we similarly express the density of the variable t] after

we have used the equal choice equation

Prix < t, <x+ dx/) = y} = (1/y)dx . (29)

Indeed, we have from application of (11) and (25):

Pfix < £, < x+dx]) = [ Prix < t) S x +dx/y =y} Priy = yldy
X
© © “uy
Jue™ry)dy = e [ i dy (30)

X o
Expression (30) can be simplified if one remembers formula (9). Indeed for
any y < m » where n s any arbitrary integer, the product Moy is in
~the limit zero. Hence, for m - o » the exponential e ™Y is equal to one

then. Because of that one can write:

n

® Y m MY @ MY,
e e e ‘
lim f —— dy = lim f —— dy + lim — dy +
o o y+x e o y+X 3 Mo mn y+x
mn ‘ \
N ] fee] e—“
=1lim —— dy + lim f — dy (31)
m—o o y+x o mn y+x ‘ .

For fixed x and y > m , the sum y+x s épproximately equal to vy .,

Hence, expression (31) finally becomes:




12
y mn ® v 4
e M 1 e
lim r ——dy= lim [ ——dy + lim [ == dy =
m— O Y+ ' M- O y+x M-~ mn 4
'HY
= lim n(—+l)+f S— dgy| =
m—eo Y
= lim{ndn(m) -~ Lnx + r £ dy| =
Y
m—so
- @ MY
= (for fixed x) lim|ntn(m) + I n dy
Mo m Y
= independent of x ,
Applying this last result to (30) we finally get
Tim £ (x) = c(u) - ye ™ (32)

meo t

1
where ft](x) is the density of the variable t] and c(y) is a function
of 1 .

Up to this point the densities of all the variabjes that appear in-expres;
sions (20) and (21) have been covered. About the variables SI and 92
though, only the claim that in the limit their deﬁsity function should be a
delta function has been expressed. Here we will conjecture this density to

be a Rayleigh one. This éonjecture will be again based on our intuition. So,

we will write

2
lim £ (x) = 1lim f (x) = 55 exp |- 5-5' (34)
Mo 6] Mo 62 o} 20

2
The parameter o~ will have to be very small so that in the limit the two den-
sities fy (x) and fg (X) approach a delta function and it will be left ar-
1 2

bitrary at the moment.




W

. for the limiting density of the variable t

13

Application of expression (34) to (28) will give the following expression

12
lim f (x) = L2n [1 - ¥x/0)] ‘ (35)
t lof
o me ]2 :
where
X 2
200 = [ 7= e Dy, (36)

With (36) we conclude this section. Our objective in the following section
will be to find the distribution of the system output y(0) from expressions

(20) and (21) as well as (25), (32), (34),(35) and (11).

4. _THE DISTRIBUTION OF y(0)

The distribution (y) of the system output y(0) can be broken

Fy(O)

into two parts. That is:

;:1 Fy<0)(x) = ;_.:: Priy(0) <y, w(0) < m} +
) (37)
+ lim Priy(0) <y, w(0) > m}

M- .

The two terms in (37) correspond to the two expressions (20) and (21) of the

introduction. Hence,

-bt, -be, -bx,, b,
Tim Priy(0) <y, w(0) < m} = Prj=l + 2e 1 - e (1 +e [e
Mo .
<y
(38)
and
-bt -bp bo -br

lim Priy(0) <y, w(0) > m} = Pr|i - 2¢ [1 +e ](] -e ][l + e ]])]

M-

IN
<

(39)

- 1]
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According to the previous section, all the variables involved in expressions

(38) and (39) are in the limit independent from each other. Their densities

are all given in this same section with only the density fe (x) conjectured.
i

Hence, both distributions in (38) and (39) can be found. Indeed, fran'appen-

dices 1 and 2 (expressions (14) and (10) correspondingly) one gets:

1]

Hm f (y) =Tim £ (y, w(0) <m) + lim £ (y, w(0) > m)
m-  y(0) m- y(0) : m-  y(0)

Kz(;_,l,b)(]+y)“‘/b + [K3(H:b) + K4(H’b)] (40)

The functions Kz(u,b), K3(H’b) and K4(u,b) are either constants with re-
spect to y or very slowly changing with it when compared with (1 + y)“/b .
So, in tﬁe limit, all three function§ are considered nonfunctions of vy ,
Calling
K3(u,b) + K4(u,b) = C(u,b) (41)
we can write (40) as follows:
Vim £ (y) = K Gub) - (1 + PPk cqy,b) ' (42)
m-= y(0)
where y is taking values in the interval [-1,1]. Both Kz(u,b) and  C(y,b)
are complicated 1imiting funcfions of M and b given in appendices | and
2. Their values can be easily calculated though indirectly. Indeed, we mﬁst

obviously have the following equation satisfied by f

y(0yY:

1 .
[ f oy ey =1 (43)
-1

Also, from expression (1) we easily get that
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° bs )
E{y(0)} = f be = E{z(s))ds (44)
where z(s) is given by (4). Hence,

E{z(s)} = Priw(s) > m} - Priw(s) < m) (45)
' -alJ
But the process w(s) is -Gaussian zero mean with autocorrelation RW(J) = a l ‘

(hence variance one). So,

E{z(s)) =1 = 2Pr{w(s) < m} =1 =28(m) (46)
where
m  -3u _
&(m) = [ em du | (47)

Application of (45) to (44) gives:

| |
E(y(O)} =1 -28(m) = [y f (y)dy (48)
-1 y(0)

If one solves the system of equations (43) and (48), with £ (y) given in

y(0)
the limit by expression (42), one gets
[28(m) - 1] + @2 + &
K, (u,b) = - S T— (49)
y N latl W, o0+ /b
b
[28(m)-1]1(2 + %)
Clu,b) = 5 + % (50)
b
and
_ u/b
lim £ (y) = 22m =1 Q4w | (51)
m—o  y(0) % 2u/b . '

We will here remind the reader that expression (51) corresponds to the

limiting density of the steady-state output of the nonlinear system in Fig. |

when the input is Gaussian, white and of mean (=m). As it was expected, the




density f (y) tends in the limit to a delta function at the point y = =1,

y(0)

It is very important that we point out here that the conjecture on the
density fe(x) of the distance between one upcrossing of the level m and
the following downcrossing was only used as a mathematical tool towards the

calculation of the density f (y) . The parameters of the density fe(x)

y(0)
as well as its exact form do not appear in the expression (51). Hence, the
density fy(o)(y) is in the limit independent of the actual density fa(x).

We will conclude this section by pointing out that becau;e of symmetry,
the steady-state dénsity of the system output in Fig. 1, when the input is
mean (+m), is given in the limit by the following expression:

) _ /b |
lim £ (y) =22m =11, -y | (52)

b
m~eo y(O) % ' Zu/

COMMENTS

In reference [4] an approximation of the steady-state output‘density of
the system in Fig. 1 was found based on a Markov assumption. The result was
numerically proved to be ''close'’ to the real density for white, Gaussian ar-
bitrary finite mean input n(t). It was pointed out, though, that the ''taijl
values'' of the real and the approximate density did not agree. |In this paper
this ''tail value' was calculated for the first time in the limiting case of

infinitely large input signal.
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APPENDIX 1
In this appendix, the distribution
calculated.

lim Pr{y(0) <y, w(0) < m} =

M=o

I]Pf<;-bt
0

]
It (-

In x

Joc [ 7, (- &

-bt -b® -b) [-b
Pr{e 1E-e l(I+e 12e
} {-be] ( -bxlz[ -b6
= xJ*Prle 1 +e e

18

lim Pr{y(0) <y, w(0) <m} will be

M-

From expression (38) in section 4 we have:

)PPy,

2

_J)Z]_x_udx

2x
)du f f (- in w)dw .
b
2
{-bxlz 1 -1[1 - ]
* Prie <
t]’ e]’ ez) X]Z ? as

In expression (1) the independence of the varjables

expressed in section 3 was used.

. the exponential e .

]

The variable KIZ

is always between zero and

‘being always positive,

one. Hence,

)

] - w
fb ' [; 1L"‘€] <0
1-1[1- +‘]\
" 2n - 2x , 1--'-[1-1’—-]
] - w u 2X
=41 =-F |- , 0< <1
. 112 b l - w
,_'l_[] _y_+_1}

d , u 2x >

therefore
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' J_[ _Y_'"_‘}
-bxlz ] 9y 1 X
Prle < 1 - w
— y + 1
0 » X2 2(1=u)
Lol [ AN
’ u 2x
N
1l - w y + 1 y+ 1
= -F - b » 20w = X S50
12
cxF 1
L ! 2(1=uw)
(2)
[f one applies the results in (2) in expression (1), considering also the
fact that =1 < y(0) <1 in any case [2], one gets
lim Priy(0) < vy, w(0) < m)
m—eo
] y + 1
hl mln(]’Z(l-u)) Anx Anu Anw
= f f I dudwdx ft - —E— fe - -E* fe “
00 y+1 1 1 2
2(1=uw)
y+1
1 b - : - 2x
1 - F - g‘bn T
M2
N min(]’Z(ltuL)> Lnx 4nu Lnw
+ f r r dudwdx ft (— T) fe (— T) fe (- —b—)
000 1 1 2
(3)

If one applies the results in section 3" here, one gets:
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lim Pr{y(0) <y, w(0) < m)
m—-
. y+ 1
! mm(]’Z(]-'-u)) Anu Anw
= f_ff du dw dx fe - _E_ fe - —g— .
0 y + 1 1 2
2(1-uw) | { + f] u/b
T - =11 - o
u/b U 2X
. C(u)- Mot —
J“]fj'min (] ’Z(ITUV]V)) £nu Anw
+ du dw dz f (— -—-)f (. ——)
0o 9]- b 92 b
u/b | )

'C(U)'H'f‘

A few manipulations on (4) and integration with respect to x lead to the

following expression: '

lim Priy(0) <y, w(0) < m}

M0

=u££ul_j'] dudn oo Anu) o [ tow)
/b e] b ez b

1+L; 0 (1-w)M

. M
u{x+l_l-umin(lx+l):‘1+b_[y+1_~£y+l)_g-u)]]-'%}
u

u-l» 2u ’2(1=u) 2u 2(1-uw) u
] L+
+ helu) ff du dw fe (- {ﬂ) fe (-/&Dﬂ> . ‘Enin(l ,—L—z ]+ ! )]
1 +L;- 0 1 2 (1-uw)
(5)

From (5), one gets the following expression if one gets rid of the min(.,-)

functions:
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lim Priy(0) <y, w(0) < m)
m—o
B
FE
pc () b Anw
= (y + 1) [ dw(1-w) C--—-) .
(1+§)2‘+(“/b) 0 S\ B
| - f (-iﬁkﬁdu
0 (1-u)(1-uw) FW/B) 8\ b
1 1=

dw {nw 2 ] Lnu Lnw

+[ = (-——>j T f (-—-‘+‘—)du
A A TN E L AL

R ] 1 '

R (-&;M)jd“fe (‘QQ‘”-*%”‘)
I C 1.y 1
2
1 1 1+§
dw Lnw u ' Inu\ly + 1 u - 1

- —_—f (--——) [ du f (— )[: + }

0 (]_w)u/b 0, b loy 1 -u 6] b 2u u

' 2
(6)

Differentiating (6) with respect to y , one finds the following expression

for the density f (y, w(0) < m);:

0 (1=-uw

y(0)
lim £, (y, w(0) < m)
o y(0)
B '

JHEG) b ( im)
= y) - I dw f (= .

5 1+(u/b) 0 6\ b /.

D=wdy oy F/b) 8T b b

1=y )

Lr2 du inu  Aow)| _

ol 1+(1/b) fe(’ b T b)
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2 %0 (en/?
K
1 b
. du o dtnu) ty+1 u- 1} ’ 7
I 1-u fe( b ) [.ZU * u ' N
Iy
2

In (7) fe (+) = fe () = fe<-) was put. We will remind the reader here that
1 2
the density fe(-(énw)/b) tends in the limit towards a delta function. Hence

it is nonzero for w in the very close viéinity of the unity. For such w ,

the integral

" du . (f Anu &nw)
0 (]_u)1+(u/b) 6

is larger than the integral

1=y

I 2 du p (; 4nu + &nw)
0 (]_u)1+(u/b) ] b b

for all y's except for y = -1 in which case the two integrals approach each

other. So, for w's still very close to unity, the expression
e du . (_ inu | iL_nﬂ)
1-w 0 (]_u)1+(u/b) ) b b /-

being multiplied by 1/1-w which approaches infinity is always much larger

- than

] 2 du ( Lnu - &nm)
—j‘ f |- =—+ ==
0 (]_u)l+(p/b) b b

Hence, for w!s close to one, which is the only case counting for integrands

of the form
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! £nw
J‘ dw fe (— T) g(w)
0 N
we have that:
w
] du ( {nu &nw)
f ol — >
1 = w 0 (l_u)1+(u/b) b b
1=y
1 2 du Znu = 4nw
. "
W ey FVB) 80 b T b
and of course,
1 w ’ ‘
Lnw 1 du Lnu  dnw
lim [ dwf(- ) J f(--——+-—>
o 0 ] b 1 - w 0 (]_U)H(u/b) ] b b
1=y
1 2 du Lnu {nw
s o )|
WU ey /D) T8\ b b
] Lnw 1 v o du Anu Lnw
~ [ dwf('- ) i f(___._,__)
o B\ b/ 1w (lowy /D) "0\ b b
= K](H,b) (8)
Applying (8) to (7) one gets
eGu) b
. ‘ b
lim £ (y,w(0) < m) = - K. (,b) * (1+y)
o y(0) _ 2l+(;.1/b) ]
1 _
- pe(p) dw f (_ an)
2
0 (]_w)u/b b
1 » &
b .
du Anul ty + 1 u - ﬂ
‘J‘ ]‘Ufe( b')[Zu * u J4 )

l-y
2
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We will now concentrate on the integral
B
b
_ ] du £ [ 4nu [y + 1 R f\ -
m(y)—'r 1 -u 8 b 2u u J
T-y - :
2
=
' ] d 1 - b Inu\
= [ - [1-———1] f |- == : (10)
. 1 - u 2y e b
1y .
2
From (10) we can easily find
l( )»= M ! du | - 1 - x]-]"_(“/b) £ |- :Lﬂ) (]])
Y= 9 u(1-u) 2u o\" b
1=y ‘ :
2
At the same time, if we call
=
b
g(y) = (0 +vy) ' | (12)
we have ‘
=1+(u/b
g'(y) = & (14 y) T TWR) (13)

Comparison -of (11) and (13) shows that whiie both‘derivatives o' (y) and
g'(y) are positive for every vy (increasing anctions y) and g(y)),
they are approaching each other towards zéro for y's close to+l. For

y's smaller than -]+(Q/b) » 9'C(y) increases to a value larger than one and
approaching infinity as y - =1 , For similar y values, the derivative

@i(y) remains finite approaching zero for y = =1 . Thus one can write from
(9
: =3
. b
1 = (1 .
im fym)(y,W(O) <m) =K (u,b) (1 + y) + Kq(,b) (14)

M=o
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where
o He(w)
K(urb) = Ty i) | (15)
1
_ke) dw _ Aol
K3h0) 2 \}o N fe( bﬂ
: 2%
b
. du _ Inul jy + 1 u =1
'r]—_xl-ufe( b)[Zu + u J (16)
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APPENDIX 2

Using expression (21) in section 2, we will now express the probability:

N lim Priy(0) <y, w(0) > m)
M~

Indeed, we have:

lim Pr{y(0) <y, w(0) > m) =

it
?
—h
(a3
N
]
e
o>
X
~—
o,
X
e
o —
—h
/I\
l¢°
[ 2 po ]
o]
~. 1=
Q.
| ot
-0
-1
fo
o
@
L !
+
(1]
O
Py
| |
AN

Here, we have as in appendix 1:
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Equations (2) are equivalent to:

A e ) -

0 , u>

Applying (3) to (1), one gets:

lim Priy(0) <y, w(0) > m}

m-—e0
Lnw ‘ min I,-—'[I +Y-—]D
] fe -'b— 1 Lnx 1=w 2% 103 -
=r_'2—-dw‘f f (—"n—')dxf [w(l-——l-
' t b ul2x
0w 1=y 12 _W—E*y—]]
2 2=w 2x
4nu
fp (— b)du
1
w) [
1 {- 1 + .
] - ,
+ [ 7w [, (—é—';—’i)d pAml 2y (- £{)‘—")du (4)
0w 1-y“12 0 P
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Application of density expressions from section 3 to (4) leads to the fol-

lowing expression:

i lim Pr{y(0) <y, w(0) > m}
M=o
Lnw
1 f (— ——) ]
_ -4 8\ b ( Lnx)
- R = Py
b Wb Yy 20a0 j-y f2v P
' 2
i
IR S
[w(] ’ (1 = w) minil, T 1 7%
i
_ W w1~ y]
2 -w 2 -w 2x ‘
1 f (- ém) ] O i
o 8 b Inx w - 1
+ [ \ dw [ f (-_>dx-[ ] [1+Y—
1 + (u/b) 0 W2 1oy t, b 2 - w 2x
2
(5)
From (5) and by simple manipulation, one gets‘ '
lim Pr{y(0) <y, w(0) > m}
M=o
] f (- L—“Vl) 1 H% |
=1+(/b)j i be - dul + J 'l:l] f ('m)dx
H 0w TP (1 Ly 2myH/P 1- 2x G2\ b
(6)
By differentiating (6), one gets the density in the limit:
) lim fy(o)(y,w(O) >m) =
- : M—eo
~ ! f(-m) 1 a8 ('%&)
- Ll o\~ b deE__l;%b 12 i
2 . - '
2

(7)




29
The only y function appearing in (7) is the function:
4 U . (_ &ﬂé)
: ] - b t]2 b
A h(y) = [ [1 - o ] ” dx (8)
1y
2
with derivative
p (_ <nx
1 t b
. 12 v
lim hi(y) = f - dx (9)
m-e 1-y x[% - -—5—%]
2 .

The function h'(y) is always finite, while the derivative g'(y) of the

b
)H/

function g(y) = (1 + vy tends to infinity for 'y close to -1 . For

y's not close to -1, both g(y) and h(y) are practically not changing
with y . Hence, in the presence of a term including the function g(y) =

)H/b

(1 +y , the density fy(o)(y,w(O) >m) in (7) will be considered a con-

stant with respect to y . Then the following notation will be used:

;i: fy(o)(y,w(O) >m) = K4(H,b) . ‘ (10)
where ‘ ] ) (_ ﬁﬂﬂ)

K, (k,b) = 1im & | [ 8 b dw| -

4 me 2 [0 w!TVB) (g 20y /P

LR
‘ Il e /b t]2 b N ‘ ,
- 2x X, X ()




